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Abstract

RNA-Seq and microarray platforms have emerged as important tools for detecting changes in gene 

expression and RNA processing in biological samples. We present ExpressionPlot, a software 

package consisting of a default back end, which prepares raw sequencing or Affymetrix microarray 

data, and a web-based front end, which offers a biologically centered interface to browse, visualize, 

and compare different data sets. Download and Installation instructions, user’s manual, discussion 

group, and a prototype are available at http://expressionplot.com/.



Main Text

RNA-Seq has emerged in recent years as the eminent platform for analysis of gene expression and 
RNA processing[1-3]. However, processing the raw sequence data to get useful and accurate 
information about gene expression and RNA processing is still a daunting task, even for 
computationally inclined researchers. High quality software packages now exist to perform specific 
steps in the analysis pipeline[4-10], as well as web-based systems such as Galaxy[11] and 
GenePattern[12] that enable the management of data flow through these tools. We present 
ExpressionPlot, an open source solution consisting of a back end pipeline, which performs alignment 
and statistical analyses, and a web-based front end, which allows users to explore and further 
compare the completed analyses. Compared to Galaxy and GenePattern, ExpressionPlot's web-
based front end is novel in the ease with which one can browse and manipulate gene expression 
results: gene/isoform lists are one-click filterable, sortable and hyperlinked to the underlying genomic 
regions in the table_browser tool. Furthermore, even with differing platforms (such as microarray 
versus RNA-Seq) or organisms (such as mouse versus human), the front end can automatically 
compare changes in gene expression across different experiments using the 4way and heatmap 
tools.

ExpressionPlot can be tested as a virtual machine (running under VirtualBox), or installed directly into 

an existing web server. Input to ExpressionPlot can be raw sequence data (FASTQ files) or Affymetrix 

array data (CEL files), completed alignments (BAM files), or tables of gene expression values and 

changes generated by other back ends. Once data is pre-processed, the web-based front end allows 

users to easily browse measures of quality control, plot changes in gene expression and RNA 

processing, browse hyperlinked tables of changed genes and splicing events, generate read plots 

from a genomic view, compare different datasets (including from different organisms or between 

microarray and RNA-Seq), generate empirical cumulative distribution functions (ECDFs) to look at 

levels or changes in a cohort of genes, and look up levels of specific genes.

The ExpressionPlot back end can also generate BAM and BigWig files upon request, and for 

downstream analysis the web-based front end can output spreadsheets with gene and exon statistics. 

ExpressionPlot includes a web-controllable user account and access control system by which pre-

published data can be shared with other users, or, when appropriate, made public. Finally, 

ExpressionPlot does not require a cluster; it can run on any machine with sufficient memory to hold 

the bowtie indexes (usually at least 3 or 4 GB) and hard drive space to hold the sequencing data and 

processed files (roughly 1-2 GB per lane).



In short, ExpressionPlot is a unified solution for gene expression analysis of RNA-Seq and microarray 

data.

Tasks of Gene Expression Analysis

RNA-Seq and microarray analyses begin with these pre-processing tasks:

Back End Pre-processing Tasks (RNA-Seq):

1. Alignment

2. Read accumulation

3. Statistical calculations

Back End Pre-processing tasks (microarrays):

1. Background subtraction

2. Probe normalization

3. Probe accumulation

4. Statistical Calculations

The pre-processing tasks are sequential and usually performed for all analysis projects. In 

ExpressionPlot they are performed by the back end, which is started from the command line on the 

server. A typical RNA-Seq data set might take a few days to to run, most of which is spent on 

alignments. Using pre-aligned data sets is possible by importing from BAM files. Once completed, the 

subsequent tasks can be considered a mixture of global (discovery-based) and specific (hypothesis-

based) tasks. In ExpressionPlot these tasks are the domain of the web-based front end, and all run 

on-demand within seconds:



Global tasks:

● Quality Control

● Generation of plots and tables of changed genes/events

● Genome-wide comparison of changes from different experiments/data sets

Specific tasks:

● Examining reads/probe intensities from a particular genomic region

● Examining levels/changes of a particular gene/splicing event or set of genes/splicing 

events

ExpressionPlot provides simple mechanisms to perform all of these steps.

Back End Pre-processing Tasks (RNA-Seq)

Alignment

ExpressionPlot uses bowtie[9] to align reads to the genome and then a database of splice junctions. 

The splice junction databases that come with ExpressionPlot were generated by combining the known 

half-junctions from each gene in every possible forward-splicing combination (exon n splices to exon 

m where m>n). Precomputed junction databases can be downloaded and installed with the EP

manage.pl script (human, mouse and rat as of press time) or can easily be generated using the 

make_junctions_database.pl script which comes with ExpressionPlot. ExpressionPlot’s 

alignment strategy is to find and use only unique best alignments either to the genome or to the splice 

junction database (Figure S1). For paired-end data an additional step is taken to try to align the single 

ends individually (Figure S2).

Counting Reads for Genes and RNA Processing Events



Aligned reads are then mapped to gene models and alternative splicing events. Users can supply their 

own models and events or download and install pre-computed annotations using EPmanage.pl 

(currently available for human, mouse and rat). The pre-computed gene models are built from all 

exons of any transcript (based on UCSC known genes[13] or Ensembl[14]). A read is counted towards 

any gene that contains the aligned positions, possibly split by a junction, on either strand within its 

exons. Scripts and detailed instructions to generate annotations for other genomes are included.

Pre-computed candidate skipped exon events are created from all known exons, regardless of 

whether or not they are known to be skipped. For skipped exons, skipping reads are considered as 

splice junction-spanning reads that both skip the exon and are additionally anchored in known splice 

sites of the host genes (Figure S3). 

For intron retention, the number of reads aligning to the intron is compared to the number aligning to 

locally constitutive flanking exons (Figure S4). Locally constitutive means that, based on the 

underlying annotation, all transcripts flanking that intron contain those exons (Figure S5). As with 

skipped exons, the pre-computed sets contain candidate events for all known introns.

Finally, alternative terminal exon events are created for genes with multiple transcript start sites 

(TSS) or multiple poly-adenylation/cleavage sites (PACS). These events compare reads supporting a 

candidate terminal exon with more distal (5’ of TSS or 3’ of PACS) exons. Such events are created for 

all but the 5’-most TSS and 3’-most PACS (Figure S6).

Support for other types of events, include alternative splice sites and sequence variants (due to SNPs 

or RNA editing), is planned for a future release.

Statistical Calculations

For changes in gene expression ExpressionPlot uses the DESeq package[15] to model biological 



variation in the calculation of P-values. This package normalizes samples using median fold-change, 

and models the read counts using the negative binomial distribution, including a term for both 

sampling and biological noise. Alternatively, users can choose a modification of a previously described 

procedure[16] to detect technical differences between two lanes or groups of lanes. In a similar spirit 

to DESeq and other existing packages[17,18], total read counts are normalized using a robust 

procedure that is not dominated by the mostly highly expressed genes. In this step, the effective total 

number of reads in each sample is optimized to minimize the resultant number of significantly changed 

genes, a procedure we call Minimize Significant Changes (MSC, see Methods). Finally, a binomial test 

is performed on the number of reads aligning to a particular gene from the two samples to determine if 

the ratio is significantly different from the ratio of total numbers of reads in the two samples (See 

Supplemental Methods).

For the RNA processing events, we form two-by-two contingency tables looking at the numbers of 

reads supporting the two isoforms in the different samples (e.g. see Figures S3, S4, and S6, and 

Supplementary Methods). The P-values are then derived from either Fisher’s Exact Test (which is 

known to be conservative in this regime, see Supplementary) or, if all the “expected values” are 

greater than 5, the Chi-Squared Test.

By default, the ExpressionPlot back end generates P-values that are not adjusted for multiple testing. 

This should be kept in mind when setting cutoffs on the website. We usually use a P-value cutoff of 

10-4 . For example, using the UCSC genes cluster for mouse (mm9) there are 27389 genes, so on 

average this cutoff would yield no more than 3 false positives. Actually, in most RNA-Seq data sets 

many of the genes are not expressed or at extremely low levels, and so the expected false positives is 

even lower since the small P-values are not achievable for these genes. Users who prefer to work with 

Benjamini-Hochberg-corrected P-values can choose to do so by providing the correct switches as 

described in the User's Guide.



Pre-processing Tasks (Microarrays)

Background subtraction and probe normalization

ExpressionPlot uses Affymetrix Power Tools[19] to perform the background subtraction using either 

mismatch probes (3’ UTR arrays) or GC-control probes (exon arrays), and follows this with quantile 

normalization of background-subtracted probe intensities. Users can use any affymetrix array for 

which they have the appropriate library files, but for the following arrays those files can be 

automatically downloaded and installed by EPmanage.pl: HG-U133 (A/B), HG-U133_Plus_2, 

HuExon, MOE430 (A/B), MoExon and Rat230_2 .

Statistical Calculations

For microarray data, gene levels are estimated first by finding all “detected probes”, which are defined 

as probes with positive (background-subtracted) intensities across all arrays in the project. Once these 

probes are defined, the gene level in each array is summarized as the median probe intensity. 

P-values for gene level changes are calculated by default using the Limma package[20], or, optionally, 

the t-test. As with the RNA-Seq pipeline, the P-values are not by corrected for multiple testing unless 

specifically requested.

Web-based Front End: Global Tasks

Website users are initially presented with a landing page with links and short descriptions of all the 

different tools available in ExpressionPlot (Figure 1). The navigation bar at the top, as well as the login 

box on the top right, are present on every page during the website experience for easy navigation. The 

“manual” link opens the page of the User's Guide relevant to the currently selected tool.

Quality Control

The ExpressionPlot front end provides several quality control tools for RNA-Seq data. The read_types 



tool graphs the number of reads in each sample of each “type”: non-aligning, multiply-aligning, paired-

end uniquely aligning, or single-end uniquely aligning (Figure 2A). The user can also run this tool 

looking at only the uniquely aligning reads to see if they align to exons, introns, intergenic regions or 

junctions (Figure 2B). The correlation tool generates either a heatmap or a hierarchical clustering 

dendrogram showing the pairwise correlations of gene expression profiles in the RNA-Seq or 

microarray samples of your project (Figure 2C, Supplementary Methods).

For paired-end data sets, the pairdist tool shows the fraction of paired end reads for which (1) the two 

ends align to different chromosomes, (2) the two ends align to the same chromosome but on the same 

strand, (3) the two ends align to the same chromosome and different strands but the minus end strand 

is upstream of the plus end strand and (4) the two ends align to the same chromosome, different 

strands, minus end downstream of the plus end but there is at least one intron between the two ends. 

The fifth category of reads, where the two ends don’t flank any known intron, can be used to estimate 

the insert size, and empirical cumultative distribution functions (ECDFs) of the insert sizes (defined as 

the length of the un-sequenced part of the library between the paired ends) for the different lanes are 

also plotted by this tool (Figure 2D).

Generation of plots and tables of changed genes/events

The 2way tool and its associated table browser are the basic tools to examine the relationships 

between gene levels (or RNA processing events) in two different samples. The x-axis will correspond 

to one sample (such as “wildtype”), and the y-axis to another (such as “mutant”). The project and pair 

of samples are chosen by the user from drop-down menus and the plots, like all the other plots in 

ExpressionPlot, are generated on-demand by the web server. The 2way plot is a scattergram where 

points correspond to genes (or RNA processing events, e.g. cassette exons), and are colored 

according to whether they are significantly different in the two samples (Figure 3A-B). P-value and 

fold-change cutoffs for significance can be controlled by the user.



After the plot is generated, action buttons are presented to the user to access the significantly 

changed genes or RNA processing events in the table browser. This screen presents the user with a 

dynamic table whose rows correspond to changed genes/events (Figure 3C). The columns of the table 

contain identifiers for the gene or event (like gene name, chromsome, strand and position), as well as 

all the associated statistics (such as read numbers, RPKM values, and P-values). The table can be 

sorted by clicking on the header of the desired field, or filtered using a text string or a numeric filter. 

Action buttons allow for the export of the table into other software such as R or OpenOffice (or Excel), 

for automatic conversion of the genes into other IDs (such as Ensembl or Entrez), and for the 

automatic generation of expression-controlled background sets of similarly expressed but unchanged 

genes (in terms of either RPKM or raw read numbers---the user chooses, although we recommend 

raw read numbers to avoid transcript length biases[21]). These background sets are appropriate for 

downstream gene ontology or motif analysis.

A convenient feature of the table browser is the ability to click on any row to be presented with a link to 

the ExpressionPlot genome browser seqview. This browser displays both RNA-Seq reads, including 

those spanning junctions, as well as array probe intensities, along with gene annotations (described 

below).

Comparison of changes from different experiments/data sets

Having examined changes in two different conditions of a single experiment, it is natural to ask how 

these changes compare to another experiment. Sometimes this second experiment may be part of the 

same project, but in other cases it could be part of another project, and maybe even have been 

performed on another platform (e.g. RNA-Seq versus microarray) or in another organism (e.g. human 

versus mouse). The 4way tool and its associated table browser automatically match up changed 

genes or RNA processing events from different experiments and presents them in a similar manner to 

its 2way cousin. After selecting two projects, and a pairwise comparison, P-value and fold-change 

cutoff for each, ExpressionPlot generates a scattergram where each point corresponds to a gene (or 



event). Here the x-axis shows the change in that gene/event in the first comparison and the y-axis 

shows the change in the second comparison (Figure 4). For example, points in the upper right 

quadrant would correspond to genes/events increased in both experiments, whereas those in the 

upper left quadrant would be decreased in the x-axis experiment, but increased in the y-axis 

experiment. Points are colored according to whether the gene/event is significantly changed in one or 

both experiments, with blue representing those changed in both experiments.

As with the 2way tool, after the plot is generated ExpressionPlot offers the user action buttons to 

select a group of genes/events to further examine in the 4way table browser. For example, clicking 

“Up/Up” would show a table of genes/events increased in both experiments. This table shows the 

annotation of the gene/event (identifier, chromosome, position, strand, etc) as well as all the 

associated statistics. It has the same fields that would be shown in the 2way browser, but they are 

then repeated for both experiments. This includes the annotation fields, since sometimes they are 

from different organisms. As with the 2way browser, there are action buttons to download, convert IDs 

and generate background sets. Finally, clicking on a row of the table opens a context menu with links 

that will automatically open the genome browser to the right part of the genome for the two 

experiments. In the case of RNA processing events the correct genomic region will be automatically 

highlighted within the browser, so the user can quickly find, for example, a differentially spliced 

cassette exon.

The heatmap tool (Figure S8) allows the user to compare larger numbers of change profiles. Here all 

the different comparisons from one project are laid out along the x-axis and all the comparisons from a 

second (possibly different) project are laid out along the y-axis. The color of each square of the 

heatmap indicates the similarity of the two comparisons. The user can choose from a variety of 

statistics to quantify similarity. This tool is a useful way to look for relationships within larger numbers 

of experiments.



Web-based Front End: Specific tasks

Examining reads from a particular genomic region

The seqview tool is ExpressionPlot’s genome browser (Figure 5). With it, the user can select the 

project of interest, then query either by a gene name or genomic region. One of several annotations 

can be chosen, and then a plot is generated showing either the pileup of reads in that region (with 

strands separated or merged, as requested by the user) or of the hybridization intensities of 

microarray probes in that region. Zooming and scrolling is implemented, and users can also highlight 

specific genomic coordinates. Barplots are automatically generated showing levels of genes within the 

requested regions.

The pairplot tool is a genome browser specifically designed to visualize the relationship between the 

aligned positions of paired-ends. Only one sample can be visualized at a time. The gene annotation of 

the requested region is shown, as well as the pileup track from the seqview tool showing total 

numbers of reads. Above this a scattergram shows a point for each paired-end read aligning to the 

genomic region. The x-axis gives the position of the plus-strand end and the y-axis gives the position 

of the minus-strand end. The colors and sizes of the points indicate the number of reads aligning to 

each pair of coordinates. Under conditions of constitutive splicing, the scattergram should form a 

series of segments above each exon and parallel to the diagonal, with the distance to the diagonal 

dictated by the paired-end insert and intron size. Alternatively spliced regions, however, will show 

multiple parallel segments corresponding to the different isoforms. The relative strength of the 

segments corresponds to the abundances of the two isoforms (Figure S9).

Examining levels or changes of particular genes or events

The genelev tool generates barplots of gene levels (RPKM) with error bars (Figure 6A). The ecdf tool 



allows the user to visualize the levels or fold-changes of a set of genes, by plotting the cumulative 

distribution of those genes’ levels in the samples of a project or fold-changes in the pairwise 

comparisons of a project (Figure 6B). Instead of looking at the distribution of the whole set, the 

event_heatmap tool visualizes the individual levels or fold-change of all the genes the set as a 

heatmap (Figure 6C).

Administrative tasks

ExpressionPlot has an access-management system that makes it easy for end users to share their 

data or release it publicly. New user accounts can be made automatically through the website, 

including an e-mail-based password recovery feature. When invoking the back end for a given project 

one user is assigned “admin” privileges. Users can then assign either “view” or “admin” privileges to 

other users on projects for which they are “admin”, or can add a “public” flag to the project to make it 

visible without login. These permissions are all controlled via a simple web interface.

Download, installation, help

Visit the ExpressionPlot website at http://expressionplot.com/ for instructions on how to download and 

install the latest version. ExpressionPlot requires an existing MySQL and Apache web server, as well 

as the RApache module. The install.pl script checks all the dependencies and tries to satisfy or 

make suggestions on how to satisfy any that are missing. It then downloads and installs the latest 

version of ExpressionPlot. Alternatively, a VirtualBox hard drive is available running Ubuntu linux with 

ExpressionPlot already installed. In either case, after installation is complete the EPmanage.pl 

script can be used to download and add on bowtie indexes, annotations and microarray library files as 

required. Example data sets, both unprocessed and processed, can also be installed using the same 

script. The User's Guide can be found at http://expressionplot.com/wiki and contains detailed 

instructions on setting up and running ExpressionPlot.



Please use the ExpressionPlot discussion group to post technical questions or hints. This can be 

accessed by visiting http://groups.google.com/group/expressionplot or by sending e-mail to 

expressionplot@googlegroups.com.

Extracting biological meaning from high throughput data

ExpressionPlot offers the gene expression community an easy-to-use tool for automated analysis of 

gene expression and RNA processing data. The back end offers a solution to the problem of detecting 

significant changes in gene expression and RNA processing, while the web-based interface offers 

data analysis, visualization and browsing tools that  realize the biological potential of this new 

technology.

Methods

Calculating P-values for significance of changes in gene expression

Given total numbers of reads in two samples (or two groups of samples) n1 and n2, g1 and g2 of which 

align to a particular gene of interest, we model g2 as a binomial distribution with parameters q2 and g, 

where q2 = n2 / (n1+n2), and g = g1+g2 is the total number of reads aligning to the gene in either sample. 

The (two-tailed) P-value is then calculated using R's binom.test() function.

Minimize Significant Changes (MSC) method to estimate effective total read  

numbers

To estimate the effective total number of reads n1 and n2 in a pair of samples (or pair of groups of 

samples) we estimate q2, which is the fraction of reads in the second sample, and then set n2 = q2N 

and n1 = N-n2 where N is the total number of uniquely aligning reads from either sample. 



The theory of our calculation of q2 is that once a P-value cutoffs is set any potential choice of q2 will 

lead to a certain number of significantly changed genes, say C(q2), which could be calculated by 

applying the procedure described above to every gene (for example 27,389 genes in mouse). Thus we 

have the optimization problem

Solving the problem by convex optimization methods would be feasible but slow, due to the cost of re-

calculating C(q2). Instead, we use the binconf() function from R's Hmisc library[22] to calculate a 95% 

confidence interval for q2 for every gene, based on the observed number of reads. This interval 

corresponds to the range of q2 for which that gene is not significantly changed. Then the range 0 to 1 

is split into windows of width 0.0001, and the number of genes whose confidence interval overlaps 

each of these windows is counted. The uncertainty introduced by using windows as point estimates is 

mitigated by their small radius: a difference of 0.0001 (0.01%) in the sample size estimate will have a 

minute effect on resultant gene levels.  The value of q2 for the window overlapped by the confidence 

intervals of the most genes (or the mean of the q2 for the several windows if there is a tie for the most 

intervals) is then taken as the optimum. Empirical tests show that this method is extremely robust to 

the choice of P-value cutoff (data not shown). This is implemented in a very short R function called 

minimize.significant.changes() in BradStats.R[23].

ENA Accession Numbers

The previously unpublished (and de-identified) data sets used to create figures 2D, S7 and S9 are 

available from the European Nucleotide Archive under accession number ERP000619, available at 

http://www.ebi.ac.uk/ena/data/view/ERP000619.
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Figure Legends

Figure 1. The ExpressionPlot home page. The website opens with this screen giving a list of tools 

available in ExpressionPlot, and a login box in the top right. The navigation bar on top appears on all 

pages, giving links to the other tools. The “manual” link is context-aware: it automatically opens the 

User's Guide (in another tab) to the page explaining the current tool.

Figure 2. Screen shots of ExpressionPlot quality control tools. (A) read_types tool showing all read 

types. Numbers of non-aligning (Nonmatch), mulitply-aligning (Mult), unique genome-aligning 

(Genomic) and unique junction-aligning (Junction) reads are shown for each lane from a mouse tissue 

transcriptome dataset[3]. Numbers (1/2) indicate different libraries; letters (A/B/C) indicate different 

lanes of the same library. (B) read_types tool showing matching read types, normalized to 100%. (C) 

Pairwise correlation heatmap of gene expression profiles generated from each lane. (D) pairdist tool 

shows ECDF of paired-end distances of “canonical” reads (same chromosome, different strand, minus 

strand read downstream of plus strand read). “Distance” is defined as the genomic distance, in 

nucleotides, between the aligned positions of the last sequenced bases of the two reads (can be 

negative if the alignments overlap). The samples have been de-identified (data in Additional File 3). 

Numbers in parentheses indicate median paired-end distance for each sample (add 36 for both 

sequences and 50 for both Illumina adaptors (+172) to get  complete library size).

Figure 3. Screen shots of ExpressionPlot 2way plot and table_browser. (A) 2way plot of human 

tissue panel RNA-Seq data[1] showing brain gene expression on y-axis and average expression in all 

other tissues (pooled) on x-axis. Blue points correspond to genes significantly higher (P ≤ 10-4, fold-

change ≥ 20, 370 points) in brain relative to the other tissues; green correspond to significantly lower. 

(B) 2way plot showing cassette exon usage (inclusion:skip read ratios) instead of gene levels in the 



same data set. The heavy lobe above the diagonal corresponds to exons with zero skipping reads in 

the brain, and the lighter lobe below the diagonal corresponds to exons with zero skipping reads in all 

other tissues. Although the P-values are still valid, in these regimes the inclusion:skip ratio statistic is 

less precise. (C) Partial screen shot of table browser showing brain-enriched cassette exons in the 

same data set. The context menu was triggered by the mouse clicking on the row for CLTA (clathrin, 

light chain A) and offers the user links to open the seqview genome browser tool in a window covering 

either the entire gene or just the alternative exon. In either case the exon will be automatically 

highlighted (See Figure 5).

Figure 4. Screen shots of ExpressionPlot 4way plots showing cross-platform and cross-species 

comparisons. (A) Heart-enriched gene expression in human tissue panel exon array[24] (x-axis) and 

RNA-Seq[1] (y-axis) data sets. Points correspond to genes. Fold-change of expression in heart is 

plotted versus all other samples in corresponding data set. Genes enriched in heart are plotted further 

to the right (exon array) and/or up (RNA-Seq), and those higher in other samples are further to the left 

and/or down. Genes significantly different only on one platform are colored red (exon array) or green 

(RNA-Seq) and those different on both platforms are colored blue. P-value cutoffs are 0.01 for exon 

array and 10-4 for RNA-Seq, and fold-change cutoffs are 2 for both platforms. Colored numbers show 

number of genes in each category. (B) Similar plot comparing the same x-axis (human heart-enriched 

gene expression by exon array) to mouse heart-enriched gene expression, also by exon array (y-axis).

Figure 5. Screen shots of ExpressionPlot's genome browser seqview. The region of the CLTA gene, 

which contains a brain-enriched exon (pink), is shown. Known transcripts of CLTA are seen along the 

bottom (arrowheads indicate plus strand). The accumulation of RNA-Seq reads from five human 

tissues is shown on the top. The heights of black bars indicate numbers of reads overlapping each 

genomic position, whereas the heights of blue brackets indicate numbers of reads overlapping splice 

junctions. Data from RNA-Seq human tissue panel[1]



Figure 6. ExpressionPlot screen shots examining spleen-enriched genes in human exon array tissue 

panel data[24]. (A) Levels of Myd88, a key signaling protein in the innate immune system[25], in 

human tissues using the genelev tool. (B) ecdf showing tissue enrichment (fold-change relative to all 

other tissues) of the 316 genes least 5-fold enriched in the spleen at a P-value cutoff of 10-4. The 

sharp angle at 2.3 in the spleen curve indicates the 5-fold cutoff. The position of the cerebellum curve 

to the left of all the others may reflect the general depletion of immune cells, which are characteristic 

of the spleen, within the nervous system. (C) event_heatmap showing the fold-enrichments of the 316 

spleen-enriched genes in all 11 tissues in the panel. Screen shot was edited by removing many of the 

genes from the middle for formatting purposes and adding an arrow to indicate Myd88, which is part of 

a cluster of spleen-enriched genes also enriched in the liver. The depletion of the spleen-enriched 

genes in the cerebellum is evident by the excess blue color in the cerebellum row.
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