

ricos FLEX BC EtherNet/IP 83.036.1050.0

Dok.-Nr. BA000975 Stand: 05/2014 (Rev. A)

	This work is copyrighted material. The resulting rights remain with Wieland Electric Inc. Any duplication of this document or parts thereof is permitted only within the limits of the statutory provisions of the Copyright Act. Alteration or abridgement of this document without the express written consent of Wieland Electric GmbH is prohibited.
	ricos FLEX is a trademark of Wieland Electric. Other names may in this assembly manual mentioned product and brand- trademarks or registered trademarks of their respective owners could be used, whose use by third parties for their own purposes could violate the rights of the owners.
NOTE	Every effort has been made to ensure that the information contained in this document was complete and accurate at the time of publishing. Nevertheless, the authors retain the right to modify the information. This customer document describes all the hardware units and functions known at the present time. Descriptions may be included for units which are not present at the customer site. The exact scope of delivery is described in the respective purchase contract.
Conformity Information	For more information regarding CE marking and Declaration of Conformity (DoC), please contact your local Wieland Electric customer service organization.
Trademarks	SPEED7 is a registered trademark of profichip GmbH.
	SIMATIC, STEP, SINEC, S7-300 and S7-400 are registered trademarks of Siemens AG.
	BLUETOOTH® is a registered trademark of Special Interest Group (SIG).
	Microsoft and Windows are registered trademarks of Microsoft Inc., USA.
	Portable Document Format (PDF) and Postscript are registered trademarks of Adobe Systems, Inc.
	All other trademarks, logos and service or product marks specified herein are owned by their respective companies.

Content

Conte	nt	. 3
1	About this manual	.4
1.1	Objective and contents	.4
1.2	Target audiences	.4
1.3	Structure of the manual	.4
1.4	Icons Headings	.5
2	Safety information	. 6
2.1	Applications conforming with specifications	.6
2.2	Safety precautions power module	.7
3	Basics and Assembly	. 9
3.1	Safety Information for Users	.9
4	System conception	10
4.1	Overview	10
4.2	Dimensions	13
4.3	Installation	13
4.4	Demounting and module exchange	16
4.5	Wiring	19
4.6	Trouble-shooting - LEDs	23
4.7	Installation guidelines	24
4.8	General data	26
5	Structure	28
5.1	ricos FLEX BC EtherNet/IP	28
6	Deployment	32
6.1	Basics EtherNet/IP	32
6.2	Basics - IP address and subnet	33
6.3	Setting the IP address	34
6.4	Operating modes	35
6.5	Web server	36
6.6	Accessing the System <i>ricos</i> FLEX	39
6.7	Deployment of FORWARD_OPEN	42
6.8	EtherNet/IP - Objects	46
7	Recommended literature	51
8	FAQ	52
9	Support	53

1 About this manual

This manual describes the *ricos* FLEX power modules (PW) and *ricos* FLEX potential distributor modules (PD) from Wieland Electric GmbH. Here you may find besides of a product overview a detailed description of the single modules. You'll receive information about the connection and the deployment of the system *ricos* FLEX PW and PD modules.

Please read this section carefully before you use this manual and the digital input module from the system *ricos* FLEX from Wieland Electric GmbH. Here you will find all the information required for commissioning and operation.

1.1 Objective and contents

This manual describes the System *ricos* FLEX power modules and clamp modules from Wieland Electric GmbH. It contains a description of the structure, project engineering and deployment.

Product	Order number	Version:	
		нพ	FW
ricos FLEX ETHERCAT	83.036.1050.0	01	1.0.0

This manual is valid for the following ordering numbers:

1.2 Target audiences

The manual is targeted at users who have a background in automation technology.

1.3 Structure of the manual

The manual consists of chapters. Every chapter provides a self-contained description of a specific topic.

Guide to the As a guidance the overall table of contents is available in the manual at the beginning.

Availability The manual is available in electronic form as PDF-file (Adobe Acrobat Reader).

Wieland Electric GmbH | BA000975 | 05/2014 (Rev. A)

document

1.4 Icons Headings

Important passages in the text are highlighted by following icons and headings:

Danger! Immediate or likely danger.

Personal injury is possible.

Warning!

Possible danger. Not heeding this warning can lead to minor injuries.

Attention!

Damages to property is likely if these warnings are not heeded.

Caution!

Damages to property by electrostatic charges is likely if these warnings are not heeded.

Note!

Supplementary information and useful tips.

ΝΟΤΕ

2 Safety information

This chapter is for your safety and the safety of equipment operators. Please read this chapter carefully before working with a VPN-Router.

General Safety

- Personnel inalling, programming, operating or maintaining the wienet router must have read and understood this manual.
- The personnel must be thoroughly familiar with all warnings, instructions and requirements contained in this manual.
- The applicable local safety, protection and installation requirements must be observed.
- The user is solely responsible for selecting the correct product and the technical design in accordance with appropriate local regulations

2.1 Applications conforming with specifications

Appropriate use

- The system *ricos* FLEX is constructed and produced for:
 - communication and process control
 general control and automation applications
 - industrial applications
 - operation within the environmental conditions specified in the technical data
 - installation into a cubicle

This device is not certified for applications in • in explosive environments (EX-zone)

Documentation	The manual must be available to all personnel in the • project design department • installation department • commissioning • operation
NOTE	 The following conditions must be met before using or commissioning the components described in this manual: Modification to the process control system should only be carried out when the system has been disconnected from power! Installation and modifications only by properly trained personnel The national rules and regulations of the respective country must be satisfied (installation, safety, EMC)
Disposal	National rules and regulations apply to the disposal of the unit!

Safety information

Please note the following instructions:

- The ricos FLEX system may only be used in accordance with applicable national and international regulations as well as any special restrictions on the use of the ricos FLEX system in prescribed applications and environments.
- To avoid personal injury or damage to the equipment and ensure that all the relevant regulations have been complied with, use only original accessories. Unauthorized modifications or use of non -approved accessories may damage the system and violate the law. Unauthorized modifications or use of unauthorized accessories may result in a loss of warranty.
- The voltage at ricos FLEX system must not be exceeded.
- Do not expose the ricos FLEX system to extreme environmental conditions. Protect the system from dust, moisture and high temperatures.
- If the ricos FLEX system is used in the vicinity of medical devices, such as pacemakers or hearing aids, special caution is required.

Any other use or modification to the system - even in the assembly and installation - resulting in a loss of warranty claims against the Wieland Electric GmbH.

2.2 Safety precautions power module

The Power modules were designed and constructed:

- to be installed on mounting rail along with system *ricos* FLEX components
- for installation in a cabinet with sufficient ventilation
- for industrial applications

The following precautions apply to applications employing the System *ricos* FLEX power supplies.

- The power modules may only be installed in areas that are only accessible to the maintenance!
- The power modules are not approved for use in explosive atmospheres (hazardous location)!
- The power module must be disconnected prior to the start of installation and maintenance, i.e. before work on a power supply or with the cabling, the voltage supply must be disconnected (Pull the plug, at fixed connection associated fuse)!
- Installation and modifications may be performed only by properly trained personnel!
- Due to the compact design, adequate cooling of the contact as and fire protection can not be guaranteed. For this reason, the fire protection must be guaranteed by the environment of the built-in power adapter (e.g. installation in a cabinet that meets the fire safety regulations)!
- Please refer to the national rules and regulations of the respective country (installation, safety, EMC ...).

Appropriate use

Please note the following instructions:

- The ricos FLEX system may only be used in accordance with applicable national and international regulations as well as any special restrictions on the use of the ricos FLEX system in prescribed applications and environments.
- To avoid personal injury or damage to the equipment and ensure that all the relevant regulations have been complied with, use only original accessories. Unauthorized modifications or use of non -approved accessories may damage the system and violate the law. Unauthorized modifications or use of unauthorized accessories may result in a loss of warranty.
- The voltage at ricos FLEX system must not be exceeded.
- Do not expose the ricos FLEX system to extreme environmental conditions. Protect the system from dust, moisture and high temperatures.
- If the ricos FLEX system is used in the vicinity of medical devices, such as pacemakers or hearing aids, special caution is required.
 Any other use or modification to the system - even in the assembly and installation resulting in a loss of warranty claims against the Wieland Electric GmbH.

3 Basics and Assembly

The focus of this chapter is on the introduction of the Wieland Electric GmbH system *ricos* **Overview** FLEX. Here you will find the information required to assemble and wire a controller system consisting of system *ricos* FLEX components.

Besides the dimensions the general technical data of System *ricos* FLEX will be found.

3.1 Safety Information for Users

ricos FLEX modules make use of highly integrated components in MOS-Technology. These components are extremely sensitive to over-voltages that can occur during electrostatic discharges.

The following symbol is attached to modules that can be destroyed by electrostatic discharges.

The symbol is located on the module, the module rack or on packing material and it indicates the presence of electrostatic sensitive equipment.

It is possible that electrostatic sensitive equipment is destroyed by energies and voltages that are far less than the human threshold of perception. These voltages can occur where persons do not discharge themselves before handling electrostatic sensitive modules and they can damage components thereby, causing the module to become inoperable or unusable.

Modules that have been damaged by electrostatic discharges can fail after a temperature change, mechanical shock or changes in the electrical load.

Only the consequent implementation of protection devices and meticulous attention to the applicable rules and regulations for handling the respective equipment can prevent failures of electrostatic sensitive modules.

Modules must be shipped in the original packing material.

When you are conducting measurements on electrostatic sensitive modules you should take the following precautions:

- Floating instruments must be discharged before use.
- Instruments must be grounded.

Modifying electrostatic sensitive modules you should only use soldering irons with grounded tips.

Personnel and instruments should be grounded when working on electrostatic sensitive modules.

Handling of electrostatic sensitive modules

Shipping of modules

Measurements and alterations on electrostatic sensitive modules

4.1 Overview

System *ricos* FLEX is a modular automation system for assembly on a 35 mm mounting rail. By means of the peripheral modules with 2, 4 or 8 channels this system may properly be adapted matching to your automation tasks.

The wiring complexity is low, because the supply of the DC 24 V power section is integrated to the backplane bus and defective modules may be replaced with standing wiring.

By deployment of the power modules in contrasting colors within the system, further isolated areas may be defined for the DC 24 V power section supply, respectively the electronic power supply may be extended with 2 A..

Components

The system *ricos* FLEX consists of the following components:

- Bus coupler (head module)
- Extension modules
- Power modules
- Accessories

Bus coupler

With a bus coupler bus interface and power module is integrated to one casing. With the bus interface you get access to a subordinated bus system.

Via the integrated power module for power supply the bus interface is supplied as well as the electronic of the connected extension modules.

The DC 24 V power section supply for the linked extension modules is established via a further connection at the power module. By installing of up to 64 extension modules at the bus coupler, these are electrically connected, this means these are assigned to the backplane bus, the electronic modules are power supplied and each extension module is connected to the DC 24 V power section supply.

Extension modules

Each extension module consists of a [1] terminal and an [2] electronic module.

Terminal module

Electronic module

The terminal module serves to carry the electronic module, contains the backplane bus with power supply for the electronic, the DC 24 V power section supply and the staircase-shaped terminal for wiring.

Additionally the terminal module has a locking system for fixing at a mounting rail. By means of this locking system your *ricos* FLEX system may be assembled outside of your switchgear cabinet to be later mounted there as whole system.

The functionality of a *ricos* FLEX extension module is defined by the electronic module, which is mounted to the terminal module by a safe sliding mechanism.

With an error the defective module may be exchanged for a functional module with standing installation. By an integrated coding only the modules may be plugged, which may be combined. At the front side there are LEDs for status indication.

For simple wiring each module shows a corresponding connection diagram at the front and at the side.

Power module

In the system *ricos* FLEX the power supply is established by power modules. These are either integrated to the bus coupler or may be installed between the extension modules. Depending on the power module isolated areas of the DC 24 V power section supply may be defined respectively the electronic power supply may be extended with 2 A. For better recognition the color of the power modules are contrasting to the extension modules.

Accessories

The optional accessories can be ordered upon request at Wieland Electric GmbH.

Shield bus carrier

The shield bus carrier serves to carry the shield bus (10 mm x 3 mm) to connect cable shields.

Shield bus carriers, shield bus and shield fixings are not in the scope of delivery. They are only available as accessories. The shield bus carrier is mounted underneath the terminal of the terminal module.

With a flat mounting rail for adaption to a flat mounting rail you may remove the spacer of the shield bus carrier.

Bus cover

With each bus coupler, to protect the backplane bus connectors, there is a mounted bus cover in the scope of delivery. You have to remove the bus cover of the bus coupler before mounting a *ricos* FLEX module.

For the protection of the backplane bus connector you always have to mount the bus cover at the last module of your system again.

4.2 Dimensions

Dimensions bus coupler (in mm)

Dimensions electronic module (in mm)

4.3 Installation

There is a locking lever at the top side of the terminal module. For mounting and demounting this locking lever is to be turned upwards until this engages audible. Now the module may be pulled forward.

Functional principle

For mounting plug the module to the module installed before and push the module to the mounting rail guided by the strips at the upper and lower side of the module.

The module is fixed to the mounting rail by pushing downward the locking lever.

The modules may either separately be mounted to the mounting rail or as block. Here is to be considered that each locking lever is opened.

For the exchange of an electronic module, the electronic module may be pulled forward after pressing the unlocking lever at the lower side of the module.

For installation plug the electronic module guided by the strips at the lower side until this engages audible to the terminal module.

Mounting proceeding

The modules were directly be mounted to the mounting rail and so connected to the backplane bus and the power supply for the electronic and power section.

Up to 64 modules may be mounted. Please consider here that the sum current of the electronic power supply does not exceed the maximum value of 3 A. By means of the power module PW 24 V / 5 V (order number: 83.036.0040.0) the current of the electronic power supply may be expanded with 2 A. More about this may be found at "Wiring".

 Mount the mounting rail! Please consider that a clearance from the middle of the mounting rail of at least 80 mm above and 60 mm below, respectively 80 mm by deployment of shield bus carriers, exist.

Mounting mounting rail

coupler)

Mounting Head

module (e. g bus

- Start at the left side with the head module (e.g. bus coupler). For this turn both locking lever upwards, put the head module to the mounting rail and turn both locking lever downward.
- Before mounting the extension modules you have to remove the bus cover at the right side of the Head module by pulling it forward. Keep the cover for later mounting.

• Mount the extension modules you want.

Mounting extension modules

• After mounting the whole system, to protect the backplane bus connectors at the last *Mounting the bus cover* module you have to mount the bus cover, now.

• The shield bus carrier (available as accessory) serves to carry the shield bus to connect cable shields. The shield bus carrier is mounted underneath the terminal of the terminal module. With a flat mounting rail for adaption to a flat mounting rail you may remove the spacer of the shield bus carrier.

Mounting shield bus carrier

4.4 Demounting and module exchange

Proceeding

With demounting and exchange of a module, head module (e. g. bus coupler) or a group of modules for mounting reasons you have always to remove the electronic module of the just mounted right module. After the mounting it may be plugged again.

Exchange of an electronic module

For the exchange of an electronic module, the electronic module may be pulled forward after pressing the unlocking lever at the lower side of the module.

For installation plug the electronic module guided by the strips at the lower side until this engages audible to the terminal module.

Exchange of a module

• Remove if exists the wiring. More about this may be found at "Wiring".

- Press the unlocking lever at the lower side of the just mounted right module and pull it forward.
- Turn the locking lever of the module to be exchanged upwards.
- Pull the module forward.

- For mounting turn the locking lever of the module to be mounted upwards.
- To mount the module put it to the gap between the both modules and push it, guided by the stripes at both sides, to the mounting rail.
- Turn the locking lever downward again.
- Plug again the electronic module, which you have removed before.

Bus interface and power module of a head module may not be separated! Here you may only exchange the electronic module!

Exchange of a head module (e. g. bus coupler)

- Remove if exists the wiring of the head module. More about this may be found at "Wiring".
- Press the unlocking lever at the lower side of the just mounted right module and pull it forward.
- Turn all the locking lever of the head module to be exchanged upwards.
- Pull the head module forward.

- For mounting turn all the locking lever of the head module to be mounted upwards.
- To mount the head module put it to the left module and push it, guided by the stripes, to the mounting rail.
- Turn all the locking lever downward again.
- Plug again the electronic module, which you have removed before.

Exchange of a module group

- Remove if exists the wiring of the module group. More about this may be found at "Wiring".
- Press the unlocking lever at the lower side of the just mounted right module of the module group and pull it forward.
- Turn all the locking lever of the module group to be exchanged upwards.

• Pull the module group forward.

- For mounting turn all the locking lever of the module group to be mounted upwards.
- To mount the module group put it to the gap between the both modules and push it, guided by the stripes at both sides, to the mounting rail.

- Turn all the locking lever downward again.
- Plug again the electronic module, which you have removed before.

4.5 Wiring

Terminals with spring clamp technology are used for wiring. The spring clamp technology **Connectors** allows quick and easy connection of your signal and supply lines.

NOTE The electronic power section supply is internally protected against higher voltage by fuse. The fuse is within the power module. If the fuse releases, its electronic module must be exchanged!

- The power section supply is to be externally protected with a fuse, which corresponds to the maximum current. This means max. 10 A is to be protected with a 10 A fuse (fast) respectively by a line circuit breaker 10 A characteristics Z!
- It is recommended to externally protect the electronic power supply for bus coupler and I/O area with a 2 A fuse (fast) respectively by a line circuit breaker 2 A characteristics Z.
- The electronic power supply for the I/O area of the power module PW 24 V / 5 V (order number: 83.036.0040.0) should also be externally protected with a 1 A fuse (fast) respectively by a line circuit breaker 1A characteristics Z.

After PowerON of the system *ricos* FLEX the LEDs RUN respectively MF get on so far as the sum current does not exceed 3 A.

With a sum current greater than 3 A the LEDs may not be activated. Here the power module with the order number 83.036.0040.0 is to be placed between the extension modules.

If the 10 A for the power section supply is no longer sufficient, you may use the power module from *ricos* FLEX with the order number 83.036.0030.0. So you have also the possibility to define isolated groups.

The power module with the order number 83.036.0040.0 is to be used if the 3 A for the electronic power supply at the backplane bus is no longer sufficient. Additionally you get an isolated group for the DC 24 V power section supply with 4 A.

By placing the power module 83.036.0040.0 at the following backplane bus modules may be placed with a sum current of max. 2 A. Afterwards the power module is to be placed again.

To secure the power supply, the power modules may be mixed used.

power supply via LEDs

State of the

electronic

Deployment of the power modules

Power module PW 24 V / 5 V

Shield attachment

To attach the shield the mounting of shield bus carriers are necessary.

The shield bus carrier (available as accessory) serves to carry the shield bus to connect cable shields.

The shield bus carrier is mounted underneath the terminal of the terminal module. With a flat mounting rail for adaption to a flat mounting rail you may remove the spacer of the shield bus carrier.

After mounting the shield bus carrier with the shield bus, the cables with the accordingly stripped cable screen may be attached and fixed by the shield clamp.

- 3 Shield clamp
- 4 Cable shield

4.6 Trouble-shooting - LEDs

Each module has the LEDs RUN and MF on its front side. Errors or incorrect modules may **General** be located by means of these LEDs.

In the following illustrations flashing LEDs are marked by \$\Omega\$.

Module failure	Behavior:	After PowerON all of the RUN LEDs up to the defective module are flashing. With all following modules the MF LED is on and the RUN LED is off.				
		RUN CRUN CRUN CRUN CRUN RUN RUN RUN MF MF MF				
	Reason:	The module on the right of the flashing modules is defective.				
	Remedy:	Replace the defective module.				
	4.7 Instal	lation guidelines				
General	The installation gu system <i>ricos</i> FLEX control, how you c manage the isolati	idelines contain information about the interference free deployment of . There is the description of the ways, interference may occur in your an make sure the electromagnetic digestibility (EMC), and how you on.				
What means EMC?	Electromagnetic digestibility (EMC) means the ability of an electrical device, to function error free in an electromagnetic environment without being interferenced res. without interferencing the environment.					
	All system <i>ricos</i> FLEX components are developed for the deployment in industrial environments and fulfill high demands on the EMC. Nevertheless you should project an EMC planning before installing the components and take conceivable interference causes into account.					
Possible	Electromagnetic interferences may interfere your control via different ways:					
interference causes	 I/O signal conductors Bus system Current supply Protected earth conductor 					
	Depending on the spreading medium (lead bound or lead free) and the distance to the interference cause, interferences to your control occur by means of different coupling mechanisms.					
	One differs:					
	 galvanic cou capacitive cou inductive cou radiant couple 	oling upling ipling ing				
Basic rules for EMC	In the most times EMC. Please regar	it is enough to take care of some elementary rules to guarantee the d the following basic rules when installing your PLC.				
	 Take care of your compor Install protecte Connel Please is theread 	a correct area-wide grounding of the inactive metal parts when installing nents. a central connection between the ground and the ed earth conductor system. ct all inactive metal extensive and impedance-low. try not to use aluminum parts. Aluminum is easily oxidizing and fore less suitable for grounding.				

- When cabling, take care of the correct line routing.
 - Organize your cabling in line groups (high voltage,
 - current supply,
 - signal and data lines).
 - Always lay your high voltage lines and signal res. data lines in
 - separate channels or bundles.
 - Route the signal and data lines as near as possible beside ground areas (e. g. suspension bars, metal rails, tin cabinet).
- · Proof the correct fixing of the lead isolation.
 - Data lines must be laid isolated.
 - Analog lines must be laid isolated. When transmitting signals with
 - small amplitudes the one sided laying of the isolation may be favorable.
 - Lay the line isolation extensively on an isolation/protected earth conductor rail
 - directly after the cabinet entry and fix the isolation with cable clamps.
 - Make sure that the isolation/protected earth conductor rail is connected impedance-low with the cabinet.
 - Use metallic or metalized plug cases for isolated data lines.
- In special use cases you should appoint special EMC actions.
 - Wire all inductivities with erase links, which are not addressed by the system ricos FLEX modules.
- Create a homogeneous reference potential and ground all electrical operating supplies when possible.

– Please take care for the targeted employment of the grounding actions. The grounding of the PLC is a protection and functionality activity.

– Connect installation parts and cabinets with the System ricos FLEX in star topology with the isolation/protected earth conductor system. So you avoid ground loops.

 If potential differences between installation parts and cabinets occur, lay sufficiently dimensioned potential compensation lines.

Electrical, magnetically and electromagnetic interference fields are weakened by means of an isolation, one talks of absorption.

Isolation of conductors

Via the isolation rail, that is connected conductive with the rack, interference currents are shunt via cable isolation to the ground. Hereby you have to make sure, that the connection to the protected earth conductor is impedance-low, because otherwise the interference currents may appear as interference cause.

When isolating cables you have to regard the following:

- If possible, use only cables with isolation tangle.
- The hiding power of the isolation should be higher than 80 %.

Normally you should always lay the isolation of cables on both sides. Only by means of the both-sided connection of the isolation you achieve high quality interference suppression in the higher frequency area. Only as exception you may also lay the isolation one-sided. Then you only achieve the absorption of the lower frequencies. A one-sided isolation connection may be convenient, if:

- the conduction of a potential compensating line is not possible
- analog signals (some mV res. μA) are transferred
- foil isolations (static isolations) are used.
- With data lines always use metallic or metalized plugs for serial couplings. Fix the isolation of the data line at the plug rack. Do not lay the isolation on the PIN 1 of the plug bar!

- At stationary operation it is convenient to strip the insulated cable interruption free and lay it on the isolation/protected earth conductor line.
- To fix the isolation tangles use cable clamps out of metal. The clamps must clasp the isolation extensively and have well contact.
 - -Lay the isolation on an isolation rail directly after the entry of the cable in the cabinet. Lead the isolation further on to the system ricos FLEX module and don't lay it on there again!

NOTE Please regard at installation!

At potential differences between the grounding points, there may be a compensation current via the isolation connected at both sides. Remedy: Potential compensation line.

4.8 General data

Conformity and approval				
Conformity				
CE	2006/95/EG	Low-voltage directive		
	2004/108/EG	EMC directive		
Approval				
UL	UL 508	Approval for USA and Canada		
Others				
RoHS		Product is lead-free		

Protection of persons and device protection			
Type of protection		IP20	
Electrical isolation			
to the field bus		Electrically isolated	
to the process level		Electrically isolated	
Insulation resistance	EN 61131-2		
Insulation voltage to reference earth			
Inputs / outputs		AC / DC 50 V, test voltage AC 500 V	
Protective measures		Against short circuit	

Environmental conditions to EN 61131-2				
Climatic				
Storage / transport	EN 60068-2-14	-25 °C+70 °C		
Operation				
Horizontal	EN 61131-2	0 °C+60 °C		
installation				
Vertical installation	EN 61131-2	0 °C+60 °C		
Air humidity	EN 60068-2-30	RH1 (without condensation, rel. humidity		
		10 % 95 %)		
Pollution	EN 61131-2	Degree of pollution 2		
Mechanical				
Oscillation	EN 60068-2-6	1 g, 9 Hz 150 Hz		
Shock	EN 60068-2-27	15 g, 11 ms		

Mounting conditions			
Mounting place	-	In the control cabinet	
Mounting position	-	Horizontal and vertical	

EMC	Standard		Comment
Emitted interference	EN 61000-6-4		Class A (Industrial area)
Noise immunity zone B	EN 61000-6-2		Industrial area
		EN 61000-4-	ESD
		2	8 kV at air discharge (degree of
			severity 3),
			4 kV at contact discharge
			(degree of severity 2)
		EN 61000-4-	HF irradiation (casing)
		3	80 MHz 1000 MHz, 10 V/m,
			80 % AM (1 kHz)
			1.4 GHz 2.0 GHz, 3 V/m, 80 %
			AM (1 kHz)
			2 GHz 2.7 GHz, 1 V/m, 80 %
			AM (1 kHz)
		EN 61000-4-	HF conducted
		6	150 kHz 80 MHz, 10 V, 80 %
			AM (1 kHz)
		EN 61000-4-	Burst, degree of severity 3
		4	
		EN 61000-4-	Surge, installation class 3 *)
		5	_

*) Due to the high-energetic single pulses with Surge an appropriate external protective circuit with lightning protection elements like conductors for lightning and overvoltage is necessary.

5 Structure

Overview

In this chapter you will find the description of the modules of *ricos* FLEX.

5.1 ricos FLEX BC EtherNet/IP

Properties

- Ethernet coupler with EtherNet/IP for max. 64 peripheral modules
- I/O access of up to 8 stations
- Online configuration via integrated Web server
- RJ45 jack 100BaseTX, 10BaseTX
- Automatic polarity and speed recognition (auto negotiation)
- Automatic recognition of parallel or crossed cable (auto crossover)
- Network LEDs for link/activity
- Status LEDs for Ready and Error

Structure

- 1 Locking lever terminal module
- 2 Labelling strip bus interface
- 3 LED status indication bus interface
- 4 Labelling strip power module
- 5 LED status indication power module
- 6 Backplane bus
- 7 DC 24V power section supply
- 8 Power module
- 9 Ethernet jack bus interface
- 10 Unlocking lever power module 11 Bus interface
- 12 Terminal
- 13 Address switch

indicati interfac	on bus ce
PWR SF	e
MS — NS — LNK1 —	

~ • • •

LED	Color	Description		
PWR	green	•		Bus interface is power supplied
SF	red	Ţ	¥	Error at Ethernet or at the System ricos FLEX bus
MS	green/red	•	0	Module state: Operational
(module		¢	0	Module state: Standby (Idle) - BASP activated
state)		0	•	Unrecoverable error ¹
		₀ ☆ Recoverable error (e.g. error in configu ☆ ☆ Module state: Selftest		Recoverable error (e.g. error in configuration)
				Module state: Selftest
NS	green/red	٠	0	EtherNet/IP communication: RUN
(network		¢	0	There is no connection to a Scanner
state)		0	¢	Recoverable Ethernet/IP error
		¢	¢	Module state: Selftest
LNK1	green	¢		Network activity
			•	No network activity

on: • off: • blinking: \Diamond

¹⁾Please contact Wieland Electric GmbH.

29

Structure

Status indication power module

PWR IO PF IO

PWR PF

LED	Color	Description			
PWR IO	green	•	Power section supply OK		
PF IO*	red	•	• Fuse power section supply defective (Power fail)		
PWR	green	•	Electronic section supply OK		
PF	red	•	Fuse electronic section supply defective		

On: •

*) This LED is only available on the power module with hardware release 1. Information concerning the hardware release may be found underneath the label strip.

PM

2 DC24V

0V

Sys DC24V 4 5

8 0V DC24V 0V

For wires with a cross section of 0.08 mm² up to 1.5 mm².

5

6

1

2

3

Position	Function	Туре	Description
1			not connected
2	DC 24V	E	DC 24V for power section supply
3	0V	Е	GND for power section supply
4	Sys DC 24V	E	DC 24V for electronic section supply
5			not connected
6	DC 24V	E	DC 24V for power section supply
7	0V	E	GND for power section supply
8	Sys 0V	E	GND for electronic section supply

I: Input

The jack has the following pin assignment: 8pin RJ45 jack:

Pin	Signal	Structure
1	Transmit +	
2	Transmit -	
3	Receive +	
4	-	
5	-	
6	Receive -	
7	-	87654321
8	-	07034321

Terminal

RJ45 jack bus interface

Structure

Address switch The address switch serves for the configuration of the IP address. On delivery the switch 2 (position 2) is switched to "1". Here the EtherNet/IP coupler has the following IP address data:

Subnet mask: 255.255.255.0

IP address: 192.168.1.1

The address switch has the following assignment:

Position	Description	Structure
1	0 = DHCP off	
	1 = DHCP on	
	4. Octet (x) of the IP address	
	192.168.1.x	
	(max. value for $x = 63$)	
2	2 ^o = 1 (default switched to "1")	16-6
3	2 ¹ = 2	
4	$2^2 = 4$	64 - 8
5	$2^3 = 8$	
6	$2^4 = 16$	1 0
7	$2^5 = 32$	
8	$2^6 = 64$	

Changes of the IP address only take effect on PowerON or an automatic reset. Changes during operation are not recognized!

Technical Data

Туре	Order no.
ricos FLEX BC EtherNet/IP	83.036.1050.0
Technical data power supply	
Power supply (rated value)	DC 24 V
Power supply (permitted range)	DC 20.428.8 V
Reverse polarity protection	available
Current consumption (no-load operation)	95 mA
Current consumption (rated value)	0.95 A
Inrush current	3.9 A
l²t	0.14 A ² s
Max. current drain at backplane bus	3 A
Max. current drain load supply	10 A
Power loss	3 W
Status information, alarms, diagnostic	
Status display	yes
Interrupts	yes, parameterizable
Process alarm	yes, parameterizable
Diagnostic interrupt	yes, parameterizable
Diagnostic functions	yes, parameterizable
Diagnostics information read-out	possible
Supply voltage display	green LED
Service Indicator	Bicolour green/red LED
Group error display	red SF LED
Channel error display	none

Structure

Hardware configuration	
De che avec	1
Racks, max.	
Number of digital modulos, max	64
Number of angles modules, max.	64
Communication	04
Communication	
Fieldbus	EtherNet/IP
Type of interface	Ethernet 10/100 MBit
Connector	RJ45
Topology	Star topology
Electrically isolated	yes
Number of participants, max.	-
Node addresses	IP V4 address
Transmission speed, min.	10 Mbit/s
Transmission speed, max.	100 Mbit/s
Address range inputs, max.	1 KB
Address range outputs, max.	1 KB
Number of TxPDOs, max.	-
Number of RxPDOs, max.	-
Housing	
Material	PPE / PPE GF10
Mounting	Profile rail 35 mm
Mechanical data	
Dimensions (WxHxD)	48.5 x 109 x 76.5 mm
Weight	155 g
Environmental conditions	
Operating temperature	0 °C to 60 °C
Storage temperature	-25 °C to 70 °C
Certifications	
UL508 certification	yes

Overview This chapter describes the use of the BC EtherNet/IP. After a short introduction you'll find all information on structure and configuration. The error processing completes the chapter.

6.1 Basics EtherNet/IP

- General EtherNet/IP (Ethernet Industrial Protocol) is an open standard for industrial networks, which is real-time capable. EtherNet/IP is developed by ODVA (Open DeviceNet Vendor Association) and is standardized in IEC 61158. Especially in the U.S. market EtherNet/IP is a standard in communication.
- EtherNet/IP* EtherNet/IP bases on TCP/IP. As user protocol CIP (Common Industrial Protocol) is used. CIP bases on an object model, which consists of classes, attributes, methods, states and instances. In contrast to the classical source-destination model, EtherNet/IP uses a modern producer/consumer model that requires data packets with identifier fields for the identification of the data. This approach caters for multiple priority levels, more efficient transfers of I/O data and multiple consumers for the data. A device that has data to send produces the data on the network together with an identifier. All devices requiring data listen for messages. When devices recognize a suitable identifier, they act and consume the respective data.

Via EtherNet/IP 2 types of messages are transported:

Implicit communication	 Messages for time-critical and control-oriented data, which are exchanged in a single or multiple cyclic connections. This connection is especially used for I/O data. For this the UDP protocol is used.
Explicit communication	 Here multipurpose point-to-point communication paths between two devices can be established. These are used in the configuration of the physical coupler and for diagnostics. This data are transferred with the TCP/IP protocol.

EtherNet/IP in
the ISO/OSI-
layer modelThe so called ISO/OSI layer model is generally accepted for the standardization of
computer communication. The layer model is based upon seven layers with guidelines for
the deployment of hard- and software.logical ring.

	Layer	Function	F	Protocols
	Layer 7	Application Layer (application)	CIP	
	Layer 6	Presentation Layer (presentation)		
	Layer 5	Session Layer (session)		
	Layer 4	Transport Layer (transport)	TCP	UDP
	IP	Network Layer (network)	IP	
	Layer 2	Data Link Layer (security)	Ethernet	MAC
	Layer 1	Physical Layer (bit transfer)	Ethernet	
Transfer medium	EtherNet/IP topology via least 1 scan The number available IP a	uses as transfer medium Ethernet cable. E an already existing company network. To ner (master) is required. of EtherNet/IP interface modules (slaves) i addresses and the performance of the scar	therNet/IP car operate an Et s only limited nner.	ı be operated in star herNet/IP network at by the number of
Addressing	All stations of EtherNet/IP EtherCAT an Manager-Co	of the network must be uniquely identified device has addressing facilities. The cycle d how this is synchronized for the transfer mmunication objects.	by means of a time to transfe is specified v	an IP address. Every er the process data via vith the Sync-

From Wieland Electric GmbH there EtherNet/IP coupler available. The communication connection to the	EDS file			
This file may be found in the servic EDS file in your configuration tool. from the manual supplied with you				
6.2 Basics - IP addres	ss and subnet			
Exclusively supported is IPv4. At IPv4 the IP address is a 32bit address that must be unique within the network and consists of 4 numbers that are separated by a dot. Every IP address is a combination of a Net-ID and a Host-ID and has the following structure: xxx.xxx.xxx Range: 000.000.000 to 255.255.255.255				IP address ² structure
The Net work-ID identifies a network network. The Host-ID marks the network.	Net-ID, Host-ID			
The Host-ID can be further divided bit AND assignment with the Subr overwritten by 1 of the Subnet ma	into a Subnet-ID an net mask. The area o sk becomes the Sub	d a new Host-II f the original Ho net-ID, the rest	D by using a bit for ost-ID that is is the new Host-ID.	Subnet mask
Subnet mask	Binary all "1"	Binar	y all "0"	
IPv4 address	Net-ID	Host-ID		
Subnet mask and IPv4 address	Net-ID	Subnet-ID	new Host-ID	

A TCP-based communication via point-to-point, hub or switch connection is only possible between stations with identical Network-ID and Subnet-ID! Different areas must be connected with a router. The subnet mask allows you to sort the resources following your needs. This means e.g. that every department gets an own subnet and thus does not interfere another department.Safe-Operational (Safe-Op)

With the transition from *Pre-Op* to *Safe-Op* the EtherCAT coupler checks if the SyncManager channels for process data communication are correct.

Before it acknowledges the state change, the EtherCAT coupler copies current input data to the corresponding DP RAM areas of the EtherCAT coupler controller. In the state *Safe-Op* mailbox and process data communication is possible. Here the input data are cyclically updated but the outputs are de-activated.

For IPv4 addresses there are five address formats (class A to class E) that are all of a length **Address classes** of 4byte = 32bit.

Class A	Class B	Class C	Class D	Class E
0	10	110	1110	11110
Network-ID	Network-ID	Network-ID	Multicast group	
(1+7bit)	(2+14bit)	(3+21bit)		
Host-ID (24bit)	Host-ID(16bit)	Host-ID (8bit)	Reserved	

The classes A, B and C are used for individual addresses, class D for multicast addresses and class E is reserved for special purposes. The address formats of the 3 classes A, B, C are only differing in the length of Network-ID and Host-ID.

These addresses can be used as net-ID by several organizations without causing conflicts, for these IP addresses are neither assigned in the Internet nor are routed in the Internet. To build up private IP-Networks within the Internet, RFC1597/1918 reserves the following address areas:

Private IP networks

	Network class	Start IP	Start IP	Standard subnet mask		
	A	10.0.0.0	10.255.255.255	255.0.0.0		
	В	172.16.0.0	172.31.255.255	255.255.0.0		
	С	192.168.0.0	192.168.255.255	255.255.255.0		
	The Host-ID is u	nderlined.				
Reserved Host- IDs	Some Host-IDs are reserved for special purposes. Host-ID = "0": Identifier of this network, reserved! Host-ID = maximum (binary complete "1"): Broadcast address of this network					
NOTE	Never choose an IP address with Host-ID=0 or Host-ID=maximum! (e.g. for class B with subnet mask = 255.255.0.0, the "172.16.0.0" is reserved and the "172.16.255.255" is occupied as local broadcast address for this network.)					
Setting	6.3 Sett	ing the IP add	Iress			
possibilities	 Setting the IP address via address switch Setting the IP address via standard object class 					
NOTE	With the EtherNet/IP coupler you should always use a static IP address. Please consider when using a DHCP server that the IP address assignment (lease) is not changed in the DHCP server. Otherwise, after a restart of the EtherNet/IP coupler the coupler can not be found by the EtherNet/IP scanner.					
Setting the IP	On delivery the I	EtherNet/IP coupler	has the following IP addr	ess data:		
web server	Subnet mask:	255.2	255.255.0			
	IP address:	192.1	68.1.1			
	With this IP address the integrated web server can be accessed. There the IP address can be changed.					
Setting the IP address via address switch	 There is an address switch at the front of the EtherNet/IP coupler. The address switch serves for the configuration of the IP address. On delivery the switch 2 (position 2) is switched to "1". Here the EtherNet/IP coupler has the following IP address data: 					
	Subnet mask: 25	5.255.255.0				
	IP address: 192	168 1 1				
	The address switch has the following assignment:					
	Position	Description				
	1	0 = DHCP off 1 = DHCP on				
		4. Octet (x) of the IP addres 192.168.1.x (max, value of x = 63)				

(max. value of x = 63)

2¹ = 2

 $2^2 = 4$ $2^3 = 8$

2⁴ = 16 2⁵ = 32

 $2^6 = 64$

2[°] = 1 (default switched to "1")

8

____16

Setting the IP

address via standard object

class

Changes of the IP address only take effect on PowerON or an automatic reset. Changes during operation are not recognized! If there is an IP address or DHCP activated via the address switch, at "IP" on the web page the input fields are de-activated but the current settings are shown.

The EtherNet/IP coupler supports the setting of the IP address by means of the standard object class TCP/IP (0xF5).

6.4 Operating modes

The EtherNet / IP coupler can take the following operating states: which are described **Overview** below:

- Selftest mode
- Idle mode
- Operational mode
- Error mode

Run/Idle header functionality is supported. Here you have the possibility to establish and release a communication connection by means of the scanner software.

After PowerON the EtherNet/IP coupler executes a selftest in the Selftest mode. With a successful test the EtherNet/IP coupler automatically switches to Idle mode and shows this by the blinking green MS LED.	Selftest mode
In Idle mode the EtherNet/IP coupler is in standby. The coupler waits for scanner connections. In Idle mode BASP (B efehls a usgabe sp erre i.e. command output lock) is activated, this means all the module outputs are switched off and the inputs are not read.	Idle mode
As soon as at least one scanner establishes a communication connection to the EtherNet/IP coupler, the coupler switches to Operational mode. In Operational mode BASP is de-activated. The coupler copies the output data received from the scanner to its outputs and transmits the input values to the scanners.	Operational mode

As soon as an error occurs during startup or operation the EtherNet/IP coupler switches to Error-Mode Error mode and shows this via LEDs. Here BASP is activated.

Transitions

- 1 Transition from Idle to Operational: As soon as a communication connection to at least one scanner exists respectively at least one scanner is in "Run mode".
- 2 Transition Operational to Idle: As soon there is no communication connection to a scanner respectively every scanner is in "Idle mode". With the release of the last communication connection by the scanner, the EtherNet/IP coupler automatically switches to Idle mode.
- 3 With a configuration error e.g. in the FORDWARD_OPEN Config Assembly, the EtherNet/IP coupler switches directly from Operational mode to Error mode and shows this by the blinking red MS LED.
- 4 If e.g. the Ethernet cable is removed during operation the EtherNet/IP coupler switches directly from Operational mode to Error mode. BASP is activated. By plugging the Ethernet cable the EtherNet/IP coupler automatically returns to Operational mode, if a communication connection to a scanner still exists. Otherwise it switches to Idle mode.

6.5 Web server

Access via IP address	The integrated web server can be accessed by means of this IP address data and these may be changed there. On delivery the EtherNet/IP coupler has the following IP address data:				
	Subnet mask:	255.255.255.0			
	IP address:	192.168.1.1			
NOTE	Please consider the System <i>rr</i> ID. These may not be recogni considered during slot allocat Further within EtherNet/IP the The counting always begins v	<i>icos</i> FLEX power and clamp modules do not have any module zed by the EtherNet/IP coupler and so are not listed and ion. a slots are designated an "EtherNet/IP-Slot". vith 0.			

The web page is built dynamically and depends on the number of modules, which are connected to the EtherNet/IP coupler.

Structure of the web page

			_				- • ×
🗲 🕣 🐺 http://192.168.1.2/ 🖉	- 🖒 🤯 BC EtherNet/IP	×					@ ☆ @
• Device (BC EtherNet/TP)	-1 1000 000	Barameter	Sacurity	10 510000000	Configuration	2	
Module 1 (DC24V) Module 2 (DC24V)	Device (BC Ethe	rNet/IP) information	on -		comparation		
	Name	Value					
	Ordering Info	303610500		3			
	Serial	999					
	Version	01V10.001					
	HW Revision	01					
	Software	0.2.0.6					
			-				

- [1] Module list: EtherNet/IP coupler and System *ricos* FLEX modules in installed order
- [2] Functions for the module selected in the module list
- [3] Information respectively input area of the corresponding function

For fast diagnostics, missing or wrong configured modules are represented red colored in the module list after refreshing the web page.

کی پر http://192.168.1.2/ ۵۰۰ ک wieland	C EtherNet/IP × ① ☆ 8	Web page of the selected EtherNet/IP coupler
Device (BC EtherNet/IP) Nodule 1 (DC24V) Nodule 2 (DC24V)	Info Data Parameter Security IP Firmware Configuration Device (BC EtherNet/IP) Information	
Here order number, serial nu EtherNet/IP coupler are listed	mber and the version of firmware and hardware of the	Info
Here you can define that the EtherNet/IP coupler, is ignore	configuration, which is stored in the flash memory of the ed during start-up.	Parameter
All functions for the writing a password.	ccess to the EtherNet/IP coupler can be secured by a	Security

Here you can enter IP address data for the EtherNet/IP coupler. Only if the bus is in BASP, an input is possible, this means no scanner is connected or every connected scanner is in Idle mode. Otherwise the input fields are de-activated but the settings shown. For valid IP address data please contact your system administrator. Directly after entering the IP address will be accepted; the web server can now only be reached via the new IP address.

With this function you can bring in a firmware update. You can get the appropriate **Firmware** firmware file from Wieland Electric GmbH.

Configuration	In this dialog field you have the possibility to store the current module configuration or to import a module configuration. With [Delete] the parameterization of all modules may be deleted in the EtherNet/IP coupler.				
	Export Station Configuration	 With [Save] a window is opened and shows the configuration as XML. Select File > Safe as and safe the current configuration as XML file. 			
	Import Station and Modules Configuration	 Select with [Search] the according XML file and load this with [Load]. While loading the parameters of the EtherNet/IP coupler and the modules are loaded. 			
	Import Modules Configuration	 Select with [Search] the according XML file and load this with [Load]. While loading only the parameters of the modules are loaded. The parameters of the EtherNet/IP coupler further exist. 			
	Save Configu- ration of all Modules	- With [Save] the current configuration is stored in the EtherNet/IP coupler. If the current module ID deviates from the just configured module ID after a system start-up, the EtherNet/IP coupler does not go into RUN and shows the error on its web page.			
	Delete Configu- ration of all Modules	- With [Delete] the configuration in the EtherNet/IP coupler may be deleted.			

NOTE Only there is a configuration for a module, this may be used to check preset and current configuration. If the current configuration differs from the preset (e.g. module was removed) the system reports an error and does not go to RUN. If there is no preset module configuration and the current configuration is changed during operation, the EtherNet/IP coupler performs a restart and switches again to RUN.

Web page with selected module	 	SC EtherNet/IP ×	- • ×
	Device (BC EtherNet/IP) • Module 1 (DC24V) Module 2 (DC24V)	Info Data Parameter Module 1 (DC24V) information Information Information	
		Namo	
		Name Value	
		Serial 1014	
		Version 1.001	
		HW Revision * í8 * í8	
		Software 48.48.88.77	
Info	Here product name, order num number of the according modu	nber, serial number, firmware version and hardware st ule are listed.	tate
Data	At Data the states of the inputs control the outputs of the corre	s respectively outputs are listed. In addition, you can c responding module.	directly
Parameter	If available the parameter data necessary. Here BASP must be	of the corresponding module may be shown and chan e activated the EtherNet/IP coupler.	nged if

Overview

6.6 Accessing the System *ricos* FLEX

- The EtherNet/IP coupler can control maximally 64 system ricos FLEX modules.
- A system *ricos* FLEX module can contain 1 ... 60byte I/O data.
- For the transport of this data stream, the data must be divided into EtherNet/IP packages and encapsulated.
 - Each package starts with the interrupt flags (1byte). With a pending hardware interrupt respectively diagnostics interrupt the according flag is set.
 - Behind the interrupt flags there is the length ModLen located in the data stream followed by the I/O data of the modules in plugged sequence. Information concerning the allocation of the I/O area of a module may be found in the description of the corresponding System *ricos* FLEX module.

From Wieland Electric GmbH you may receive an EDS file (Electronic Data Sheet) for your EtherNet/IP coupler. The file may be found in the service area at www.wieland-electric.com. Please install the EDS file in your configuration tool.

In the following you will find the description of accessing I/O area, parameter data and diagnostics data of the System *ricos* FLEX via EtherNet/IP. Here *"I stream"* is according to assembly class with Instance-ID 0x0A and *"O stream"* is according to assembly class with instance-ID 0x14.

You can start the communication with a Class1 connection. This should be a point-to-point connection in both directions. Here the frame size depends on the configured assembly class.

Please consider the System *ricos* FLEX power and clamp modules do not have any module ID. These may not be recognized by the EtherNet/IP coupler and so are not listed and considered during slot allocation.

NOTE

Further within EtherNet/IP the slots are designated as EtherNet/IP-Slot. The counting always begins with 1.

Accessing I/O area

The EtherNet/IP coupler determines automatically the modules on the System *ricos* FLEX bus and generates from this the number of input and output bytes. Information concerning the I/O allocation of a module may be found in the corresponding manual. The position (offset) of the input respectively output bytes within the input respectively output data results from the order of the modules (EtherNet/IP-Slot 1 ... 64). By means of the base address, which is to be preset in the EtherNet/IP scanner for the bus coupler and the offset you may access the input or output data of a module. During operation the EtherNet/IP coupler cyclically reads the input data of the peripheral modules and serves for the last state of these data for the EtherNet/IP scanner. Output data, which the EtherNet/IP coupler has received from the EtherNet/IP scanner, were directly transferred to the modules, as soon as they were received.

Et	horNl	∆t/IP	Devic	a (Slav	ם
			DEVIC		-

Structure of the Input data (Instance ID 0x0A)	Structure	Field name	Data type	Field value
	Header	Interrupt- Flags	USINT	Interrupt and diagnostics flags. An interrupt is pending when the corresponding bit is set. Bit 0: Hardware interrupt Bit 1: Diagnostics interrupt Bit 7 0: reserved
		ModLen	UINT	Length of the module data
	Module packages	ModData	ARRAY of USINT	Module data (see manual System <i>ricos</i> FLEX module)

With the first start-up modules, which were parameterizable, operate with their default parameters. If you want to change parameters the EtherNet/IP coupler respectively the corresponding modules may be parameterized via the integrated Web page. Here by means of the corresponding EtherNet/IP-Slot parameter may be viewed and changed.

With this method the EtherNet/IP scanner passes in the FORWARD_OPEN call a config assembly to the EtherNet/IP coupler. The config assembly is a collection of commands and has a fixed size of 400byte.

Here the corresponding System *ricos* FLEX module can be parameterized with the command SetModParam by specifying the EtherNet/IP-Slot at *"Pos"* and the module parameters at *"Param"*.

The description of the parameters can be found in the manual of the according System *ricos* FLEX module.

Code	Description	Error codes
0x0000	Command has been executed without error.	
0x0001	Configuration in FORWARD_OPEN could not be read.	
0x0002	Unknown command in config assembly.	
0x0003	Length in config assembly is not correct.	
0x0004	Data missing for the command.	
0x0005	SetIOStart twice in config assembly.	
0x0006	SetModCnt twice in config assembly.	
0x0007	SetModCnt overflows max available number of modules.	
0x0008	SetModType overflows max available number of modules.	
0x0009	SetModType for same module twice in config assembly.	
0x000A	NoFwdOpenCfg twice in config assembly.	
0x000B	IgnoreWebCfg twice in config assembly.	
0x000C	UseExistingCfg twice in config assembly.	
0x000D	SetModCnt underflows min. available modules.	
0x000E	SetModCnt doesn't match EtherNet/IP coupler module count.	
0x000F	System <i>ricos</i> FLEX Bus could not return the module ID.	
0x0010	SetModType found wrong-plugged module.	
0x0011	DeleteWebCfg twice in config assembly.	
0x0012	This function is not supported.	
0x0013	SlioModGetParameterLength is wrong in SetModParam.	
0x0014	The length of SetModParam differs to the expected length of the module.	
0x0015	SlioModSetParameters faulty in SetModParam.	
0x0016	SetModParam is greater than the max. possible number of modules.	
0x0017	SetIOStart could not find assembly information.	
0x0018	SetIOStart: The assembly has the wrong type.	
0x0019	SetIOStart is behind the available data length of the module.	1

Parameterization via the web page

Parameterization via *"FORWARD_ OPEN"*

Code	Description
0x001A	Initialization: ClientStart was faulty.
0x001B	Initialization: Assembly with input data could not be added.
0x001C	Initialization: Assembly with output data could not be added.
0x001D	Initialization: Config assembly could not be added.
0x001E	Initialization: Identity object could not be initialized.
0x001F	Initialization: Identity object could not be set.
0x0022	SetModTypeRange: There were more modules configured as exist.
0x0023	SetModTypeRange: A wrong plugged module was found.
0x0024	Initialization: Initialization could not be executed.

Accessing As soon as a module reports an interrupt via the backplane bus, this is automatically recognized by the EtherNet/IP coupler.

By setting the according interrupt bit in the I/O data stream the EtherNet/IP coupler reports this to the EtherNet/IP scanner. In the EtherNet/IP scanner you can adequately respond to the alarm.

Parts of the diagnostics data can be accessed by means of EtherNet/IP objects.

6.7 Deployment of FORWARD_OPEN

Structure

The FORWARD_OPEN config assembly can be combined by various commands and has the following structure:

- The length of the config assembly is always 400byte. Unused areas are to be zeroed.
- The config assembly is always to be finished with END_OF_CFG!
- The data within the config assembly always consist of a collection of commands.
- A command always consists of command header and command parameter.
- A command header always consists of a command ID and a length (number bytes of command parameters).
- In command parameter the command specific data are specified.

Example

Here an example of FWD_OPEN:

CMD 1: Ignore Webconfig: 01 00

CMD 2: Number of modules (5): 03 01

CMD 3: SetModuleType yy to Pos 3: 04 05 y4 y3 y2 y1 03

The specification for the type has to take place here in the little-endian format (leastsignificant byte first)

CMD 4: End of Config: 00

CMD 1...4: 01 00 | 03 01 05 | 04 05 y4 y3 y2 y1 03 | 00

→ FWD_OPEN command: 010003010405y4y3y2y10300

Below there is a list of all the commands, which can be used in a FORWARD_OPEN config assembly. Please configure that the config assembly can be limited any time by means of the command EndOfCfg. After you insert the command EndOfCfg all subsequent commands are ignored.

Command IDs

Elementary data types

Name	Description	Area	
		Minimum	Maximum
BOOL	Boolean	0: False	1: True
SINT	Short integer	-128	127
INT	Integer	-32768	32767
DINT	Double integer	-2 ³¹	2 ³¹ -1
LINT	Long integer	-2 ⁶³	2 ⁶³ -1
USINT	Unsigned short Integer	0	255
UINT	Unsigned integer	0	65535
UDINT	Unsigned double Integer	0	2 ³² -1
ULINT	Unsigned long Integer	0	2 ⁶⁴ -1
STRING	Character String (1byte per character)	-	-
SHORT_STRING	Character String (1byte per character + 1byte length)	-	-
BYTE	Bit string 8Bits	-	-
WORD	Bit string 16Bits	-	-
DWORD	Bit string 32Bits	-	-
LWORD	Bit string 64Bits	-	-

EndOfCfg (0x00)	The command Er position. The sub	ndOfCfg (0x00) spe sequent command	cifies that the con Is after this comm	configuration finishes at the inserted mmand are ignored.			
	Structure	Field name	Data type	Value	Designation		
	Command	ID	USINT	0x00	EndOfCfg		
neader	neauer	Length	USINT	0x00	No parameters		
HINWEIS	The config assembly is always to be finished with END_OF_CFG!						
lgnoreWebCfg (0x01)	The command Ig existing web con assembly.	noreWebCfg (0x01 figuration and may) specifies that the only be configure	e EtherNet/IP coup d by a FORWARD	ler has to ignore an _OPEN config		

Structure	Field name	Data type	Value	Designation
Command	ID	USINT	0x01	lgnoreWebCfg
neauei	Length	USINT	0x00	No parameters

DeleteWebCfgThe command DeleteWebCfg (0x02) specifies that the EtherNet/IP coupler has to delete an
existing web configuration and may only be configured by a FORWARD_OPEN config
assembly.

Structure	Field name	Data type	Value	Designation
Command header	ID	USINT	0x02	DeleteWebCfg
	Length	USINT	0x00	No parameters

UseExistingCfg (0x08)

The command UseExistingCfg (0x08) commits the EtherNet/IP coupler to use an existing I/O connection for configuration. With this command all the configuration parameters in the config assembly are ignored, except SetIOStart (0x07).

Structure	Field name	Data type	Value	Designation
Command header	ID	USINT	0x08	UseExistingCfg
	Length	USINT	0x00	No parameters

SetIOStart (0x07)

The command SetIOStart (0x07) defines the I/O area of the System *ricos* FLEX bus image, which is to be cyclically transferred in the selected assembly Asmld. Since an I/O connection may only transfer max. 496byte I/O data (excluding interrupt header and length), with SetIOStart a second connection may be opened to transfer the specified start area. This command can be used e.g. with UseExistingCfg.

Structure	Field name	Data type	Value	Designation
Command	ID	USINT	0x07	SetIOStart
header	Length	USINT	0x03	Length of the command data
Command specific data	Asmld	USINT		Number of the assembly
	Start	UINT		Start of the I/O data area of the according assembly

The command SetModCnt (0x03) specifies the number of modules by the parameter ModCnt.

Data type

Value

Value

0x04

0x05

1 ... 64

Value

0x05

Structure

Structure

Command

Command

Structure

Command

header

specific data

header

Field name

Field name

ID

Length

ModID

POS

Field name

ID

System ricos FLEX module.

Wieland Electric GmbH | BA000975 | 05/2014 (Rev. A)

SetModCnt	
(0x03)	

Designation

Designation

SetModType

Length of the command data

Module ID (see

technical data System ricos FLEX)

Module position

Designation

SetModType-

Range

Command	ID	USINT	0x03	SetModCnt
header	Length	USINT	0x01	Length of the command data
Command specific data	ModCnt	USINT	1 64	Number of modules
	·			

The command SetModType (0x04) specifies the module ID ModID of the module at position Pos.

Data type

USINT

USINT

UDINT

USINT

SetModType (0x04)

The command SetModTypeRange (0x05) specifies the module ID ModID of the modules
starting with position PosStart to position PosEnd.

Data type

USINT

SetModType-Range (0x05)

	Length	USINT	0x06	Length of the command data	
Command specific data	ModID	UDINT		Module ID (see technical data System <i>ricos</i> FLEX)	
	PosStart	USINT	1 63	Start position	
	PosEnd	USINT	2 64	End position	
The command SetModParam (0x06) specifies the module parameter Para of the module at position Pos. A description of the parameters may be found in the manual of the according					

SetModParam (0x06)

To get the current parameters as basis record set for parameterization, you can use a "class3 connection"!

ΝΟΤΕ

Structure	Field name	Data type	Value	Designation
Command header	ID	USINT	0x06	SetModParam
	Length	USINT	0x01 + n	Length of the command data
Command specific data	Pos	UDINT	1 64	Module position
	Param	ARRAY of USINT	n = number	Module parameter

6.8 EtherNet/IP - Objects

"Objects" are specified by their properties. The properties are called attributes. Similar objects are summarized in "object classes". An "object", which was built during run-time of an class is an "instance".

The EtherNet/IP coupler supports the following objects:

- Standardized EtherNet/IP objects
- Wieland Electric GmbH specified EtherNet/IP objects

Standardized EtherNet/IP Objects

Classes,

Objects, Instances and

Attributes

The following standardized object classes are supported by the EtherNet/IP coupler:

Object classes	Description
Message Router (0x02)	Distributed explicit requests to the associated handler
Connection Manager (0x06)	Responsible for different areas of the connection
Port (0x55)	Abstraction of a physical network connection
Identity (0x01)	Provides identification and general information about the device.
Ethernet Link (0xF6)	Shows information about the network interface (Error counter,)
TCP/IP (0xF5)	Configuration of the TCP/IP interface (e.g. IP address, Netmask, Gateway)
Assembly (0xF4)	Combines more attributes in one I/O connection
Custom Objects	Self-defined objects

NOTE More information about the standardized EtherNet/IP object classes may be found in the according EtherNet/IP respectively CIP standard of the ODVA (Open DeviceNet Vendor Association).

ricos FLEX specific EtherNet/IP objects The following Wieland Electric GmbH specific object classes are supported by the EtherNet/IP coupler:

Object class	Description
I/O data (0x64)	Access to the I/O data of the System ricos FLEX
Diagnostics and interrupt (0x65)	Access to the diagnostics and interrupt specific settings
Module (0x66)	Access to the configuration, diagnostics and status data of the modules
Coupler (0x67)	Access to the configuration and status data of the EtherNet/IP coupler
Assembly (0x04)	Access to the I/O and diagnostics data

I/O data class

(code: 0x64)

With this class the I/O data, which were configured via FORWARD_OPEN before, may be accessed.

The instances represent the INPUT respectively OUTPUT assemblies.

Is the ID assigned to the first INPUT assembly e.g. number 20, so the instance 20 is directly assigned with this assembly.

The attribute IDs of the object class can be found in the following table:

Attribute ID	Access	Name	Data type	Description
0x64	Set	I/O Set	ARRAY of BYTE	Setpoint (outputs)
0x65	Get	I/O Get	ARRAY of BYTE	Actual value (inputs)

With this class the diagnostics and interrupt specific settings can be accessed. If this data have to be manually reset, this happens by the module class.

With Instance you can define which System ricos FLEX slot is to be accessed (0: EtherNet/IP coupler, 1:1. System ricos FLEX module, 2:2. System ricos FLEX module, etc. ...).

Please consider the System ricos FLEX power and clamp modules do not have any module ID. These may not be recognized by the EtherNet/IP coupler and so are not considered during slot allocation.

The attribute IDs of the object class can be found in the following table:

Attribute ID	Access	Name	Data type	Description
0x64	Get	Status	USINT	Access to the status byte of the I/O data. An interrupt is pending, if the according bit is set: Bit 0: Process interrupt Bit 1: Diagnostics interrupt Bit 7 2: reserved
0x65	Set	Process Reset Config	BYTE	Here is specified when a hardware interrupt is to be reset: 0: Active reset by attribute 0x6D of the module class 1: Automatically after request (standard)
0x66	Set	Diagnostic Reset Config	BYTE	Here is specified when a diagnostics interrupt is to be reset: 0: Active reset by attribute 0x6E of the module class 1: Automatically after request (standard)
0x67	Set	Reset Process and Diagnostic Data	no data	Deletes each available process and diagnostic data (API SlioModClearAllErrors)
0x68	Get	Next Process Alarm	see table below	Reads the next available hardware interrupt. Contains the raw data of the interrupt type IO_EVENT_PROCESS_ALARM
0x69	Get	Next Diagnostic Data	see table below	Reads the next available diagnostics interrupt. Contains the raw data of the interrupt type IO_EVENT_DIAGNOSTIC_ALAR M

Diagnostics and interrupt class (code: 0x65)

Field name	Data type	Field value
Pos	USINT	Module position (1 64)
Length	UINT	Length of the interrupt and diagnostics data
Data	ARRAY of BYTE	Interrupt and diagnostics data in raw format

Structure of the interrupt and diagnostic data

Module class (code: 0x66)

This class offers access to the configuration, diagnostics and status data of the System *ricos* FLEX modules. Besides the module descriptive attributes there are the attributes 0x6B and 0x6C to read the module-specific hardware interrupt and diagnostics data. If the manual reset of hardware and diagnostics interrupts is set by the diagnostics and interrupt class, an interrupt can be acknowledged by means of the attributes Attribute 0x6D respectively 0x6E. With Instance the System *ricos* FLEX slot is defined, which is to be accessed.

NOTE Please consider the System *ricos* FLEX power and clamp modules do not have any module ID. These may not be recognized by the EtherNet/IP coupler and so are not considered during slot allocation.

		alsiant alaas		امک ممالد من	
i ne attribute	illus of the	ODJECT CLASS	can be tound	in the tol	lowing table.
ino attinoato	100 01 010	00,000 01000	ouri so rouria		lowing table.

Attribute ID	Access	Name	Data type	Description
0x64	Get/Set	Config	ARRAY of BYTE	Module configuration
0x65	Set	ClearCoun- ter	no data	Clear module counter
0x66	Get	GetMDL	WORD	Module MDL read counter
0x67	Get	GetNDL	WORD	Module NDL read counter
0x68	Get	VerFPGA	WORD	FPGA version
0x69	Get	VerFW	ARRAY of BYTE	Firmware version
0x6A	Get	Serial	ARRAY of BYTE	Serial number
0x6B	Get	Hardware- Interrupt	see table below	Contains the raw data of the interrupt type IIO_EVENT_PROCESS_ ALARM
0x6C	Get	Diagnostics Data	see table below	Contains the raw data of the interrupt type IO_EVENT_DIAGNOSTIC_ ALARM
0x6D	Set	Hardware- InterruptRe- set	no data	Reset of the hardware interrupt
0x6E	Set	Diagnostics InterruptRe- set	no data	Reset if the diagnostics interrupt

Structure of the interrupt and diagnostics data

Field name	Data type	Field value
Pos	USINT	Module position (1 64)
Length	UINT	Length of the interrupt and diagnostics data
Data	ARRAY of BYTE	Interrupt and diagnostics data in raw format

This class offers access to the parameter and status data of the Ethernet/IP coupler. The Instance is always 0. The attribute IDs of the object class can be found in the following table:

Coupler class (code: 0x67)

Attribute ID	Access	Name	Data type	Description
0x64	Get/Set	Config	ARRAY of BYTE	Coupler configuration
0x65	Set	ClearCount er	no data	Clear master counter
0x66	Get	GetMC	BYTE	Read master counter
0x67	Get	GetELE	WORD	Expected length error
0x68	Get	GetTOE	WORD	Time-out error
0x69	Get	GetSBE	WORD	Stop-bit error
0x6A	Get	GetFCSE	WORD	FCS error
0x6B	Get	GetTLE	WORD	Telegram length error
0x6C	Get	GetTTE	WORD	Telegram type error
0x6D	Get	GetARE	WORD	Alarm retry error
0x6E	Get	GetBITE	WORD	Bus idle time error
0x6F	Get	GetWNA	WORD	Wrong node address
0x70	Get	GetTV	WORD	Telegram valid
0x71	Get	GetML	WORD	Master load
0x72	Get	VerSLIO	BYTE	ricos FLEX version
0x73	Get	VerFPGA	WORD	FPGA version
0x74	Get	VerBus	WORD	ricos FLEX bus version
0x75	Get	VerFwPkt	DWORD	Firmware packet version
0x76	Get	VerMxFile	STRING	Name and version of the Mx file

In the following the Wieland Electric GmbH specific instances are listed for R/W access and for read access to the diagnostics data.

Instance ID 0x0A (10) to 0x13 (19) - Setpoint values (496byte).

Assembly-class (code: 0x04)

Instances

Byte	Туре	Content	
0	ARRAY of BYTE	Setpoint values (outputs) - output assembly	
Since an I/O connection can only transfer a maximum of 496byte I/O data (less interrupt			

header and length), with SetIOStart a second connection can be opened over which the defined start area is transferred.

Instance ID 0x14 (20) to 0x1d (29) - Actual values (496byte).

Byte	Туре	Content
0	ARRAY of BYTE	Actual values (inputs) - input assembly

Since an I/O connection can only transfer a maximum of 496byte I/O data (less interrupt header and length), with SetIOStart a second connection can be opened over which the defined start area is transferred.

Instance-ID 0x1E (30) - Config (400byte).

Byte	Туре	Content
0	ARRAY of BYTE	ForwardOpen

Byte	Туре	Content
0	WORD	System diagnostics: Bit 0: Scanner for time x lost Bit 1: Sporadic interrupt Bit 2: Long response time Bit 3: Module permutation Bit 15 4: reserved
2	BYTE	Module diagnostics: Bit 0: Hardware interrupt (group interrupt) Bit 1: Diagnostics interrupt (group interrupt) Bit 7 2: reserved
3	BYTE	reserved

Instance ID 0x79 (121) - Diagnostics (4byte).

Instance ID 0x7A (122) - Extended diagnostics (20byte).

Byte	Туре	Content
0	WORD	System diagnostics:
		Bit 0: Scanner for time x lost
		Bit 1: Sporadic interrupt
		Bit 2: Long response time
		Bit 3: Module permutation
		Bit 15 4: reserved
2	WORD	reserved
4	LWORD	Hardware interrupt:
		Bit 0: Module 1
		Bit 1: Module 2
		Bit 63 2: reserved
12	LWORD	Diagnostics interrupt:
		Bit 0: Module 1
		Bit 1: Module 2
		Bit 63 2: reserved

Instance ID 0x7B (123) - Diagnostics & actual values (500byte).

Byte	Туре	Content
0	DWORD	Instance ID 121 (diagnostics)
4	ARRAY of BYTE	Instance ID 120 (actual values)
		(input assembly 1)

Instance ID 0x7C (124) - Extended Diagnostics & actual values (516byte).

Byte	Туре	Content
0	DWORD LWORD LWORD	Instance ID 122 (extended diagnostics)
20	ARRAY of BYTE	Instance ID 120 (actual values) (input assembly 1)

Wieland Electric GmbH | BA000975 | 05/2014 (Rev. A)

7 Recommended literature

8 FAQ

9 Support

For the latest information about our product please check the following websites:

http://www.wieland-electric.com/ http://eshop.wieland-electric.com/

Technical Support

Industrieautomation Elektronik Hotline: +49 951 / 93 24-995 E-Mail: AT.TS@wieland-electric.com

Wieland Electric GmbH Brennerstraße 10-14 D-96052 Bamberg Tel. +49 (0) 951 / 9324 -0 Fax +49 (0) 951 / 9324 -198

Email info@wieland-electric.com www.wieland-electric.com