
GOBLIN

A Library for Graph Matching and Network Programming Problems

31 29

1 14 17 26

4 12 21

7 9 24

0 30 28

19

13 25

5 10

2 15 18 27

3 16 20 22

6 8 11 23

Release 2.7.2 – Reference Manual
April 25, 2006

Contents

I Introduction 9

1 General Statements 11

1.1 Scope . 11

1.2 History . 11

1.3 Purpose and Applications . 12

1.4 Project Overview . 12

1.5 Fundamental Library Concepts 13

1.6 Mathematical References . 13

1.7 Contributions . 14

2 Installation 15

2.1 Licence Agreement . 15

2.2 Software Requirements . 15

2.3 Unpacking the Source . 16

2.4 Configuration . 16

2.5 The Makefile and UNIX Installation 17

2.6 Tcl Compatibility Issues . 18

2.7 Cygwin Build . 18

2.8 Windows Setup Package . 19

2.9 Download of new GOBLIN Versions 19

2.10 Bug Reports . 20

3 Getting Started 21

3.1 The GOBLET Graph Browser 21

3.2 GOSH Shell Scripts . 23

3.3 Using the Library . 24

3.4 Solver Executables . 25

4 The GOBLET Graph Browser 27

4.1 File Management (Menu Item: File) 28

4.2 Graph Editor Dialogs (Menu Item: Edit) 28

4.3 Editing Graphs (Menu Item: Edit) 29

4.4 LP Editor Dialogs (Menu Item: Edit) 30

4.5 Composing Graphs (Menu Item: Compose) 30

4.6 Graph Visualization (Menu Item: Layout) 32

4.7 Problem Solvers (Menu Item: Optimize) 33

4.8 Solver Configuration (Menu Item: Optimize) 34

4.9 Browser Configuration (Menu Item: Browser) 35

II Data Objects 37

5 Preliminary Statements 39

5.1 Some Conventions . 39

5.2 Base Types . 39

5.2.1 Nodes . 39

5.2.2 Arcs . 40

5.2.3 Capacities . 40

5.2.4 Floating Point Numbers 40

5.2.5 Handles . 40

5.2.6 Matrix Indices . 40

5.2.7 Class Local Types . 40

5.3 Bounds and Precisions of Numbers 41

5.4 Ownership of Objects . 41

1

6 Graph Objects 43

6.1 Abstract Classes . 43

6.1.1 Mixed Graphs . 43

6.1.2 Undirected Graphs . 44

6.1.3 Digraphs and Flow Networks 44

6.1.4 Bipartite Graphs . 45

6.1.5 Balanced Flow Networks 45

6.2 Persistent Objects . 46

6.2.1 Struct Objects . 46

6.2.2 Dense Graphs . 46

6.2.3 Sparse Graphs . 47

6.2.4 Sparse Bigraphs . 49

6.2.5 Planarity Issues . 49

6.3 Logical Objects . 50

6.3.1 Canonical Flow Networks 51

6.3.2 Layered Auxiliary Networks 52

6.3.3 Bipartite Matching Problems as Network Flow Prob-
lems . 53

6.3.4 General Matching Problems as Balanced Flow Problems 54

6.3.5 Layered Shrinking Networks 55

6.3.6 Surface Graphs . 55

6.3.7 Suboptimal Balanced Flows 56

6.3.8 Making Logical Objects Persistent 57

6.4 Derived Persistent Objects . 57

6.4.1 Copy Constructors . 58

6.4.2 Mapping Back Derived Graph Objects 58

6.4.3 Line Graphs and Truncation of the vertices 58

6.4.4 Tearing Apart the Regions of a Planar Graph 59

6.4.5 Complementary Graph 60

6.4.6 Dual Graphs . 60

6.4.7 Spread Out Planar Graphs 60

6.4.8 Metric Closure . 61

6.4.9 Distance Graphs . 61

6.4.10 Complete Orientation 61

6.4.11 Induced Orientation 62

6.4.12 Node Splitting . 62

6.4.13 Tilings . 62

6.4.14 Split Graphs . 63

6.4.15 Subgraph induced by a Node or Arc Set 63

6.4.16 Bigraph induced by two Node Colours 64

6.4.17 Colour Contraction . 64

6.4.18 Transitive Closure . 64

6.4.19 Intransitive Reduction 65

6.4.20 Explicit Surface Graphs 65

6.4.21 Voronoi Diagram . 65

6.4.22 Triangular Graphs . 66

7 Iterators 67

7.1 Incidence Lists . 67

7.2 Iterator Objects . 67

7.3 Implicit Access . 68

7.4 Implementations . 69

8 Explicit Data Structures 71

8.1 Container Objects . 71

8.1.1 Queues . 73

8.1.2 Stacks . 73

8.1.3 Priority Queues . 73

8.2 Disjoint Set Systems . 73

8.2.1 Static Disjoint Set Systems 74

8.2.2 Shrinking Families . 74

8.3 Hash Tables . 75

8.4 Dictionaries . 75

8.5 Matrices . 76

9 Index Sets 79

9.1 Interface . 79
9.2 Templates . 79

9.3 Graph Based Implementations 80

9.4 Containers as Index Sets . 80

10 Branch and Bound 81

10.1 Branch Nodes . 81

10.2 Generic Algorithm . 83

10.3 Implementations . 85

10.3.1 Stable Sets . 85
10.3.2 Symmetric TSP . 86

10.3.3 Asymmetric TSP . 87

10.3.4 Node Colouring . 87

10.3.5 Maximum Cut . 87

10.3.6 Mixed Integer Programming 87

III Methods 89

11 Prototypes and Data Structures 91

11.1 Graph Definition . 91
11.1.1 Incidences and Adjacencies 91

11.1.2 Arc Capacities and Node Demands 92

11.1.3 Length Labels . 92

11.1.4 Geometric Embedding 93

11.1.5 Layout . 93
11.1.6 Arc Orientations . 93

11.2 Potential Solutions . 94

11.2.1 Predecessor Labels . 94

11.2.2 Subgraphs . 95
11.2.3 Flow Labels . 95

11.2.4 Node Degrees . 96

11.2.5 Distance Labels . 96

11.2.6 Node Potentials . 97
11.2.7 Node Colours . 98
11.2.8 Partitions of the Node Set 98
11.2.9 Blossoms . 99
11.2.10 Props and Petals . 99
11.2.11 Odd Cycles . 100

11.3 Manipulating Graphs . 100

11.3.1 Changes of the Incidence Structure 100
11.3.2 Invalidation Policy . 101
11.3.3 Updates on the Node and Arc Labels 101
11.3.4 Merging Graphs . 102

12 Graph Drawing 103
12.1 Preliminary Remarks . 103

12.1.1 Layout Models . 103
12.1.2 Grid Lines . 104
12.1.3 Translations of the Current Drawing 104

12.1.4 Automatic Alignment of Arcs 104
12.2 Circular Layout . 104
12.3 Tree Layout . 105
12.4 Force Directed Placement . 105
12.5 Planar Straight Line Drawing 106
12.6 Orthogonal Drawing . 107
12.7 Equilateral Drawing . 109

13 High Level Algorithms 111
13.1 Shortest Paths . 111

13.1.1 Eligible Arcs . 112

13.1.2 Solver Interface . 112
13.1.3 Breadth First Search 113
13.1.4 The Dijkstra Algorithm 113
13.1.5 Discrete Voronoi Regions 113
13.1.6 The Bellman-Ford Algorithm 113
13.1.7 The FIFO Label-Correcting Algorithm 113

13.1.8 The T -Join Algorithm 114

13.1.9 The Floyd-Warshall Algorithm 114

13.1.10 Proposed Extension 114

13.2 Negative Cycles . 114

13.2.1 Negative Cycles . 115

13.2.2 Minimum Mean Cycles 115

13.2.3 Proposed Extension 115

13.3 DAG Search . 115

13.4 Euler Cycles . 116

13.5 Spanning Trees . 116

13.5.1 The (Enhanced) Prim Algorithm 117

13.5.2 The Kruskal Algorithm 118

13.5.3 Arborescences . 118

13.5.4 One Cycle Trees . 118

13.5.5 Tree Packings . 118

13.5.6 Proposed Extension 118

13.6 Connected Components . 119

13.6.1 First Order Connectivity 119

13.6.2 Strong Connectivity 119

13.6.3 Second Order Connectivity 119

13.6.4 Open Ear Decomposition and st-Numbering 119

13.7 Planarity . 120

13.7.1 The Method of Demoucron, Malgrange and Pertuiset . 120

13.7.2 Combinatorial Embedding 120

13.7.3 Outerplanar Embedding 121

13.7.4 Connectivity Augmentation 121

13.7.5 Canonically Ordered Partition 121

13.8 Maximum Flows and Circulations 122

13.8.1 The Augmentation Algorithm by Edmonds and Karp 123

13.8.2 The Capacity Scaling Algorithm 123

13.8.3 The Blocking Flow Algorithm by Dinic 123

13.8.4 The Push & Relabel Algorithm by Goldberg and Tarjan123

13.8.5 Admissible Circulations and b-Flows 124

13.8.6 Proposed Extension 124

13.9 Minimum Cuts and Connectivity Numbers 124

13.10Minimum Cost Flows . 126

13.10.1 The SAP Algorithm by Busacker and Gowen 127

13.10.2 The Refined SAP Algorithm by Edmonds and Karp . 128

13.10.3 The Cycle Canceling Algorithm by Klein 128

13.10.4 The Minimum Mean Cycle Canceling Algorithm . . . 128

13.10.5 The Cost Scaling Algorithm 128

13.10.6 The Multi Terminal SAP Method 129

13.10.7 The Capacity Scaling Method 129

13.10.8 The Primal Network Simplex Method 129

13.11Balanced Network Search . 130

13.11.1 The Algorithm by Kocay and Stone 131

13.11.2 The Breadth First Heuristics 131

13.11.3 The Depth First Heuristics by Kameda and Munro . . 131

13.11.4 The Algorithm by Micali and Vazirani 131

13.12Maximum Balanced Network Flows 132

13.12.1 The Balanced Augmentation Algorithm 132

13.12.2 The Capacity Scaling Algorithm 132

13.12.3 The Phase-Ordered Algorithm 132

13.12.4 The Cycle Canceling Algorithm 132

13.13Weighted Balanced Network Flow Algorithms 133

13.13.1 The Primal-Dual Algorithm 133

13.13.2 The Enhanced Primal-Dual Algorithm 134

13.14Matching Solvers . 134

13.15T -Join and Postman Problems 135

13.15.1 T -Joins . 136

13.15.2 The Undirected CPP 136

13.15.3 The Directed CPP . 136

13.16TSP Algorithms . 136

13.16.1 The Insertion Heuristics 137

13.16.2 The Tree Approximation 137

13.16.3 The Christofides Approximation 137

13.16.4 Local Search . 138
13.16.5 The Subgradient Method by Held and Karp 138
13.16.6 Branch and Bound . 139
13.16.7 Application to Sparse Graphs 139

13.17Graph Colourings and Clique Covers 139
13.18Stable Sets and Cliques . 141
13.19Discrete Steiner Trees . 141
13.20Maximum Edge Cuts . 142

IV Miscellaneous 145

14 The Object Controller 147
14.1 Construction . 147
14.2 Interaction with Data Objects 147

14.3 Logging . 148
14.3.1 Event Handlers . 148
14.3.2 Writing Log Entries 149
14.3.3 Structured Source Code 151
14.3.4 Filtering the output 151
14.3.5 Selection of logging information 152

14.4 Method Selection . 153
14.4.1 Optional Data Structures 154
14.4.2 Solver Options for NP-hard problems 154
14.4.3 Problem Specific Solver Options 155

14.5 Tracing . 156
14.5.1 Trace Level Options 157

14.5.2 Tracing Data Structures 157
14.6 Graphical Display . 158

14.6.1 Display Mode Options 158
14.6.2 Export of Graphical Information 158
14.6.3 Device Independent Layout 160
14.6.4 Formatting Arc and Node Labels 161
14.6.5 Arc Display Options 162

14.6.6 Node Display Options 162

14.6.7 General Layout Options 163

14.7 Random Instance Generators 164

14.8 Runtime Configuration . 165

15 The Messenger 167

15.1 Problem Solver Management 168

15.2 The Message Queue . 169

15.3 Tracing . 169

16 Linear Programming Support 171

16.1 Public Interface . 172

16.1.1 Entry Point . 172

16.1.2 LP Instance Retrieval Operations 174

16.1.3 LP Instance Manipulation 176

16.1.4 Basis Dependent Methods 177

16.1.5 Problem Transformations 179

16.1.6 Solving Problems . 180

16.1.7 File I/O . 181

16.1.8 Text Display . 182

16.2 Native LP Solver . 184

16.3 GLPK Wrapper . 185

17 Ressource Management 187

17.1 Memory Management . 187

17.2 Timers . 188

17.2.1 Basic and Full Featured Timers 188

17.2.2 Global Timers . 189

17.2.3 Lower and Upper Problem Bounds 189

17.3 Source Code Modules . 189

17.3.1 Authorship . 190

17.3.2 Bibliography Data Base 190

17.4 Progress Measurement . 191

18 Persistency 193

18.1 Export of Data Objects . 193
18.2 Import of General Data Objects 193

18.3 Import of Graph Objects . 194

18.4 File Format for Graph Objects 196

18.4.1 Definition . 197

18.4.2 Objectives . 198
18.4.3 Geometry . 199

18.4.4 Layout . 199

18.4.5 Potential Solutions . 199

18.4.6 Configuration . 200

18.5 File Format for Linear Programs 200
18.6 Canvas and Text Form . 201

18.7 Support of Standard File Formats 201

18.7.1 Import Filters . 202

18.7.2 Export Filters . 202

19 Exception Handling 203

V GOBLIN Executables 205

20 The GOSH Interpreter 207

20.1 GOSH Ressources . 207

20.2 Context Variables . 207

20.3 Root Command . 208

20.3.1 Ressource Management 209
20.3.2 Thread Support . 209

20.3.3 Messenger Access . 210

20.3.4 Accessing Timers . 210

20.4 General Object Messages . 211
20.5 Graph Retrieval Messages . 212

20.6 Graph Manipulation Messages 212

20.7 Sparse Graphs and Planarity 213

20.8 Graph Layout Messages . 214

20.9 Graph Node and Arc Messages 215

20.9.1 Node Based Messages 216

20.9.2 Arc Based Messages 217

20.10Graph Optimization Messages 218

20.11Derived Graph Constructors 220

20.12Messages for Undirected Graphs 220

20.13Messages for Directed Graphs 221

20.14Messages for Bipartite Graphs 221

20.15Messages for Balanced Flow Networks 221

20.16Linear Programming . 222

20.16.1 Instance Manipulation Messages 222

20.16.2 Instance Retrieval Messages and Basis Access 223

20.16.3 Row and Column Based Messages 223

20.16.4 Row Based Messages 224

20.16.5 Column Based Messages 225

20.16.6 Optimization Messages 225

21 Solver Applications 227

21.1 Solver Applications . 227

21.1.1 Matching Problems . 227

21.1.2 Network Flow Problems 227

21.1.3 Minimum Spanning Tree Problems 228

21.1.4 Shortest Path Problems 229

21.1.5 Chinese Postman Problems 229

21.1.6 Other Solvers . 229

21.2 Linear Programming . 229

21.3 Random Instance Generators 229

21.3.1 Random Digraphs . 229

21.3.2 Random Bigraphs . 230

21.3.3 Random Graphs . 230

21.4 Graphical Display . 230

VI Appendix 231

22 Computational Results 233
22.1 Symmetric TSP . 233
22.2 Asymmetric TSP . 235
22.3 Min-Cost Flow . 236
22.4 Non-Weighted Matching . 237
22.5 Weighted Matching . 238
22.6 Cliques and Node Colouring 238

Part I

Introduction

9

CHAPTER 1. GENERAL STATEMENTS SCOPE

Chapter 1

General Statements

1.1 Scope

GOBLIN is a C++ class library focussed on network programming prob-
lems. Roughly speaking, a network programming problem is a graph op-
timization problem which can be solved efficiently by linear programming
techniques. More explicitly, GOBLIN includes solvers for the following prob-
lems:

• Shortest paths

• Negative length cycles

• Minimum mean cycles

• Minimum spanning trees, arborescences and 1-trees

• Maximum packing with arborescences

• Maximum st-flows and min-cost st-flows

• Several types of minimum cuts and connected compenents

• Feasible [min-cost] circulations and b-flows

• Maximum cardinality and min-cost (perfect) assignments

• Directed Chinese postman problems

• Transportation problems

• Maximum cardinality and min-cost (perfect) matchings

• Undirected Chinese postman problems and T -joins

• (Weighted) b-matching problems

• (Weighted) f -factor problems

• (Weighted) capacitated b-matchings

The library also includes algorithms for some NP-hard problems in graph
theory, namely:

• ∆-TSP, TSP and ATSP

• Stable sets, vertex covers and maximum cliques

• Graph colourings and clique partitions

There is a generic branch and bound module which is applied for the metric
TSP solver and the computation of independent sets. Since GOBLIN does
not support cutting planes, the solvers cannot compare with state-of-the-art
codes for these problems, but should work for problems up to 100 nodes.

Release 2.6 comes with a basic LP simplex code and a generic interface
for integration with more sophisticated LP solvers. So far, this module is
utilized by the min-cost flow solver only. Branch and cut applications will
follow.

1.2 History

GOBLIN is result from the Deutsche Forschungsgemeinschaft (DFG) re-
search project Balanced Network Flows. This project is dedicated to the
design, analysis and implementation of algorithms for generalized matching
problems.

The extensive source code for network flow algorithms in GOBLIN is
due to the strong dependencies between network flow and matching prob-
lems: Some of the matching algorithms explicitly require solvers for certain

11

PURPOSE AND APPLICATIONS CHAPTER 1. GENERAL STATEMENTS

network flow problems. Furthermore, the layered shrinking graphs which
appear in our matching code reuse the layered auxiliary networks which
form part of the well-known Dinic max-flow method.

1.3 Purpose and Applications

GOBLIN has been designed for researchers, developers, people who just
need to solve network flow or matching (sub)problems, but also for educa-
tional purposes. Since the needs of all these potential users are sometimes
contradictory, GOBLIN provides several configuration mechanisms, both at
compile time and at runtime:

The GOBLIN runtime configuration includes the selection of logging in-
formation, of graph layouts, of tracing breakpoints and of the mathematical
methods and the data structures which are used.

The graphical display together with the logging module allows the rapid
preparation of adequate runtime examples for teaching and documenting
network programming algorithms. Of course, this functionality is also help-
ful for the debugging of such algorithms.

Before GOBLIN is compiled, one may edit the file config.h in order to
suppress the compilation of this GOBLIN functionality which is not needed
for the final version of a problem solver, but which causes considerable com-
putational overhead and large binaries.

Note that this compile time configuration is possible only with open
source software. Hence the open source concept is an important prerequi-
site for the success of this project.

The library comes with source code for executable solver programs which
support the runtime configurability. The experienced C++ programmer,
however, will find it easy to build GOBLIN problem instances immediately
from his domestic data structures.

The library also comes with source code for a Tcl/Tk based interpreter
gosh which can process complex scripts and user interactions, and with
the graphical front end goblet. Both parts heavily depend on the open
source Tcl/Tk library which must be installed to get the full functionality

of GOBLIN.

1.4 Project Overview

G
U

I
Sh

el
l

L
ib

ra
ri

es

GOBLINTkTcl

Gosh_InitTk_InitTcl_Init

Tcl Interpreter

Import/Export Filters

GOBLET Graph Browser

Figure 1.1: 3-Level Architecture

The GOBLIN programming project essentially splits into four parts each of
which provides its own interface to the graph optimization methods of the
GOBLIN library:

• The C++ Class library (64000 lines of source code)

12

CHAPTER 1. GENERAL STATEMENTS FUNDAMENTAL LIBRARY CONCEPTS

• An extension of the Tcl/Tk shell sript language to graph objects (6000
lines)

• A graph browser and editor tool (13000 lines)

• Solver executables (2000 lines)

Here we have listed the respective source code sizes which may indicate the
efforts of implementation. The Tcl wrapper is indeed a rather simple task
and strongly recommended for other mathematical programming projects.
Generally, the GOSH shell is compliant with other Tcl/Tk extensions. One
only has to merge the project file goshAppInit.cpp and the other AppInit
file. Alternatively, one can build a shared object and load the library dy-
namically into a Tcl shell.

This document describes the C++ API of the library functions and
the Tcl wrapper extensively. The solver programs and the graph browser
GOBLET are discussed within a few pages only.

1.5 Fundamental Library Concepts

The design of the GOBLIN library follows the object-oriented paradigm.
This means a rather restrictive data encapsulation in order to obtain:

• compliance with other mathematical libraries, especially LP-Solvers.

• a user interface which is as simple as possible.

Merely the configuration parameters associated with controller objects are
public.

The extensive use of polymorphisms leads to a class hierarchy which is
adequate and intuitive from the point of view of mathematics: High-level
methods are separated from data structures, and problem transformations
are established by separate classes.

In general, the C++ implementation of mathematical algorithms is
somewhat slower than straight C code. This stems from so-called late

binding operations which assign a method name to a method implemen-
tation at runtime.

On the other hand, polymorphism eases the development and debugging
of new algorithms a lot. Even more, this mechanism is compliant with the
idea of open source projects where nobody is responsible for the correct-
ness of the source code: Every new algorithm which uses an old part of the
library is a certificate that this old code fragment works correctly.

We tried a careful trade off between a C and C++ like implementation.
That is, to some extent we ignore the OO paradigm: Nodes and arcs are
base types, and vectors are implemented as ordinary arrays.

We briefly describe the various classes of GOBLIN: The design distin-
guishes between graph objects, iterator objects, explicit data structures
which are all data objects, and controller objects which allow to select
solution methods as well as logging information and tracing points. Con-
trollers also keep track of the dependencies among the various data objects.

The term explicit data structure shall indicate that such objects
have a meaning which is independent from graph theory. Apart from this,
there are implicit data structures such as incidence lists, subgraphs, dis-
tance labels etc. which are encapsulated in graph objects. The explicit
data structures are discussed in Chapter 8, the implicit ones in Chapter 11.

The GOBLIN design is completed by export and import objects which
manage the file interface of GOBLIN.

1.6 Mathematical References

Most GOBLIN algorithms are based on the textbooks

Network Flows
R.K.Ahuja, T.L.Magnanti, J.B.Orlin
Prentice Hall (1993)

Combinatorial Optimization
W.J.Cook, W.H.Cunningham, W.R.Pulleyblank, A.Schrijver
Wiley (1998)

13

CONTRIBUTIONS CHAPTER 1. GENERAL STATEMENTS

Graphs, Networks and Algorithms
D.Jungnickel
Springer (1999)

and

Graphs and Algorithms
M.Gondran, N.Minoux
Wiley (1984)

The matching code is described in a series of papers of Christian Fremuth-
Pager and Dieter Jungnickel:

Balanced Networks Flows (I): A unifying framework for design
and analysis of matching algorithms. Networks, 33::1-28, 1999

Balanced Networks Flows (II): Simple augmentation algorithms.
Networks, 33::29-41, 1999

Balanced Networks Flows (III): Strongly polynomial algorithms.
Networks, 33::43-56, 1999

Balanced Networks Flows (V): Cycle canceling algorithms.
Networks, 37::202-209, 2001

Balanced Networks Flows (VII): Primal-dual algorithms.
To appear in Networks

which constitute part of the theoretical output of the mentioned DFG
project.

1.7 Contributions

The core library has been written and is maintained by Dr. Christian
Fremuth-Paeger (University of Augsburg). The same applies for this refer-
ence manual and the GUI application.

The following people have reviewed earlier versions of this reference man-
ual: Dr. Andreas Enge (now at Ecole Polytechnique, Paris), Prof.Dr. Di-
eter Jungnickel and Priv.Doz. Bernhard Schmidt (both at the University of
Augsburg).

Andreas Hefele (University of Augsburg) has tested Release 2.1, Bern-
hard Schmidt has tested the releases 2.2, 2.5 and 2.6. Markus Eisensehr
(KUKA Controls Augsburg) and Bernhard Schmidt (University Augsburg)
have tested the Windows XP setup of release 2.7.

Many thanks to Dr.Petra Huhn (University of Augsburg), Priv.Doz.
Dirk Hachenberger (University of Augsburg) and Priv.Doz. Bernhard
Schmidt for several helpful talks and their suggestions. Bernhard Schmidt
has also contributed the GOBLET overview to this document.

Prof. Fernando de Oliveira Durao (Technical University of Lisboa) has
prepared a self-installing GOBLET 2.5 package for Windows 98/2000/XP.

The tree packing method and the ATSP subgradient optimization which
is new in GOBLIN 2.2 is written by Markus Schwank (University of Augs-
burg).

The basic LP simplex code which is attached to this release has been
written by Priv.Doz. Bernhard Schmidt and integrated by Christian
Fremuth-Paeger.

Birk Eisermann (University Augsburg) has contributed a planarity test,
a makefile revision and a doxygen configuration file for release 2.6.2.

Further informations about code authors can be obtained by using the
module browser in the GOBLET application.

14

CHAPTER 2. INSTALLATION LICENCE AGREEMENT

Chapter 2

Installation

2.1 Licence Agreement

The GOBLIN core library was written by

Christian Fremuth-Paeger
Department of Mathematics
University of Augsburg, Germany

E-Mail: Fremuth@Math.Uni-Augsburg.DE

(C) Dr. Christian Fremuth-Paeger et al. 1998-2005

For details about the contributions by other authors see Section 1.7. All
copyrights remain with the authors.

GOBLIN is open source software and covered by the GNU Lesser Public
License (LGPL). That is, GOBLIN may be downloaded, compiled and used
for scientific, educational and other purposes free of charge. For the details,
in particular the statements about redistribution and changes of the source
code, note the LGPL document which is attached to the package.

2.2 Software Requirements

To unpack and compile the GOBLIN library, the following software is nec-
essary: gzip, tar, gmake and a C++ compiler. All of these programs
should be available on any UNIX machine. We have tested the following
environments:

• Suse Linux 7.3 with GNU C++ 2.95.3 (GOBLIN 2.6.4)

• Redhat Linux 7.3 with GNU C++ 2.96 (GOBLIN 2.5)

• Redhat Linux 8.0 with GNU C++ 3.2 (GOBLIN 2.5.3)

• Solaris 5.6 with GNU C++ 2.8.1 (earlier GOBLIN versions)

• Aix 4.3 with GNU C++ (previous GOBLIN versions)

• Aix 4.3 with xlC (GOBLIN 2.6.4)

• Cygwin 1.5.9 with GNU C++ 3.3.1 (GOBLIN 2.6.4)

To compile the graphical tool GOBLET, one also needs a Tcl/Tk installa-
tion and POSIX threads. You may check whether a Tcl/Tk interpreter is
available on your UNIX system by typing which wish. Note that the com-
pilation of the GOSH shell tool does not utilize the wish interpreter, but
requires that the library files libtcl.a and libtk.a and the include files
tcl.h and tk.h are installed correctly. It might be necessary to manually
define links to make the Tcl/Tk library accessible to your C++ compiler.

To compile this reference manual, a latex installation is also needed. Fi-
nally, we recommend to install the graphical tools xv and xfig which supply
GOBLET with several export filters, especially the postscript filter needed
for printing. The xfig canvas drawing tool is useful for the postprocessing
of figures also.

Problem solvers can be compiled and linked even if the Tcl/Tk package
is not present, but the possible graphical output has to be processed man-
ually then. In particular, the .fig files can be input to the xfig drawing
tool.

15

2.3. UNPACKING THE SOURCE CHAPTER 2. INSTALLATION

2.3 Unpacking the Source

The source code is coming as a single zipped file goblin.<version>.tgz

which can be extracted from a shell prompt by typing

tar xfz goblin.<version>.tgz

and then generates a folder goblin.¡version¿ including the Makefile. With
elder tar versions, it may be necessary to extract the file in two steps:

gunzip goblin.<version>.tgz

tar xf goblin.<version>.tar

2.4 Configuration

Throughout this document, especially in Chapter 14, we will describe
the runtime configurability of the core library. This section adresses
some some possibilities for configuration at compile time by means of the
source file configuration.h, and the general build options by means of
Makefile.conf.

The latter file is intended to do the platform dependent settings. Cur-
rently, only Linux and Windows/Cygwin are well-supported. Advanced
Unix users will find it obvious how to configure the compiler and linker for
their own Unix platform. There are some more build parameters to set
but some options are experimental, and the default values achieve the most
stable code.

This Makefile.conf has been set up to run on a SuSE linux machine
with default parameters. Cygwin and Aix are explicitly supported, that is,
editing the platform specifier os in should be sufficient. Generally, before
applying the Makefile, you have to edit some further lines in it. You may
specify your compiler CC and CXX, the linker LD, the compression tool zip
and the linkage names of the Tcl/Tk libraries libtcl and libtk which are
installed on your machine. Probably, you need to change only some of of the

defaults. If no Tcl/Tk libraries are available, you may build the GOBLIN
library but not the the GOSH interpreter and the shared objects.

The file configuration.h contains some pragmas which may help to
improve the performance and/or stability of the final C++ code. Probably
it is not worth reading the following lines unless you encounter respective
problems.

First at all in this file, the index types TNode, TArc are declared implic-
itly. You can choose from three different scalings by uncommenting one of
the rows

// #define _SMALL_NODES_

// #define _BIG_ARCS_

// #define _BIG_NODES_

The scaling which is adequate for your purposes depends on the kind of
problems you want to solve: A large scale (but solvable in a few minutes)
spanning tree problem may have several 10000s of nodes, and hence requires
the _BIG_NODES_ pragma. On the other hand weighted matching problems
which have a few 1000s of nodes, would require the _BIG_ARCS_ pragma.

The default configuration is chosen to support the full functionality of
GOBLIN. If you want to compile the final version of a problem solver, you
may delete the pragma definitions

#define _LOGGING_

#define _FAILSAVE_

#define _TRACING_

#define _HEAP_MON_

from the file configuration.h. In our experience, this may decrease the
running times by somewhat like 30 percent. The final code is much smaller,
too. We mention what is lost if these pragmas are unset:

The _LOGGING_ pragma filters only the low level logging information.
The _FAILSAVE_ pragma enables or disables most error detections, includ-
ing wrong instrumentation of the C++ API and excluding some buffer over-
flows. This pragma seems to be the most important for code optimization,

16

CHAPTER 2. INSTALLATION THE MAKEFILE

but if your solver includes any bugs, you have to recompile the entire library
to get some hints. The _HEAP_MON_ define enables the compilation of special
versions of new and delete and should be omitted in case of incompatibility
with other C++ modules.

If the _TRACING_ pragma is not present, the graphical display and the
options traceLevel>1 are disabled. The option traceLevel==1which helps
you to decide whether your solver is still alive works even then. If the GOSH
interpreter is compiled without the _TRACING_ pragma, the GOBLET graph
browser does not produce trace files.

2.5 The Makefile and UNIX Installation

The GOBLIN Makefile controls the compilation and linkage of the library,
the GOSH shell tool and the executable solvers, the generation of this doc-
umentation and the generation of new GOBLIN packages, which either in-
clude all sources or binaries.

In what follows, it is supposed that your current working directory is
the root directory of the source code distribution. The GOBLIN library
libgoblin.a is then generated from console prompt by typing:

gmake goblin

As the next step of GOBLIN installation, generate the GOSH shell inter-
preter. For this goal, set in Makefile the variables libtcl and libtk to
the Tcl/Tk versions installed on your machine, and then type

gmake

Similarly,

gmake shared

creates a shared object libgoblin.so which includes the core library func-
tions in goblin.a plus the Tcl/Tk command registrations, and which can
be dynamically loaded into the original tclsh shell. The call

gmake manual

produces the two files mgoblin.<version>.ps and mgoblin.<version>.pdf.
This is the reference manual which you are just reading. The document can
be viewed and printed by using:

ghostview mgoblin.<version>.ps &

or

acroread mgoblin.<version>.pdf &

Once the shell tool is available, one can start the GUI by typing ./goblet,
but this works from the Makefile directory only. If you don’t have root
privileges, exectute the personal installation by typing

gmake private

or

gmake privclean

where the second command also deletes the C++ source files and the build
resources. Add the new bin directory to your PATH variable and the lib

directory to LD_LIBRARY_PATH in your user profile. To perform a system
installation, become a super user and then type

gmake install

The default installation directories are /usr/lib, /usr/include and
/usr/bin. Take care to set up these directories if you are working in a
system other than linux. Any existing installation (if it is not too old)
is properly removed from the system. One can manually delete a system
installation by typing

gmake sysclean

or, if the Makefile is not available, by executing

sh /usr/bin/goblin_uninstall.sh

17

TCL COMPATIBILITY CHAPTER 2. INSTALLATION

A binary distribution, say goblin.<version>.<platform>.tbz2, is in-
stalled as follows: Become a super user, copy the archive to the file system
root directory /, change to this directory and type in

tar xfj goblin.<version>.<platform>.tbz2

and then

sh goblin_install.sh

The gmake install command discussed before exactly generates such a bi-
nary distribution (via the gmake bin option) and then tries to execute the
goblin_install.sh. So there is good hope that your package will install
also on other machines. If you have made changes to the source code, you
may like to bind a new GOBLIN tarball by typing:

gmake pkg

The resulting package includes the source code for the library and the ex-
ecutables, the latex sources for the reference manual including the figures,
the tk scripts, the definition files for the examples, and a file doku/history
which keeps track of the ancestor tarballs.

This GOBLIN package contains some source code which helps to gen-
erate executable solvers for various optimization problems. In the same
manner, one can obtain some instance generators. The respective project
names are listed in Table 2.1 and coincide with the file names for the main
routines. If you just need a problem solver, say optflow, you may generate
this executable by typing:

gmake exe pr=optflow

For all purposes, gmake must be called from the GOBLIN root directory
where the produced files can be found. On linux computers and in a CYG-
WIN environment, one can type make instead of gmake. On other UNIX
platforms, make possibly cannot interprete the Makefile.

Project Name Purpose

optmatch All kinds of matching problems

optflow Max-Flow, feasible b-flows and min-cost flows

postman Directed and undirected Chinese Postman Problem

mintree Minimum spanning trees and 1-trees

gsearch Shortest paths and shortest path trees

connect (Strongly) connected components

opttour Heuristics and lower bounds for the (metric) TSP

colour Heuristic colouring

optbflow Maximum and min-cost balanced st-flows

Table 2.1: Executable Solver Programs

2.6 Tcl Compatibility Issues

Generally, GOBLIN can be linked with every Tcl/Tk 8.x release. Since
Tcl/Tk 8.4, a minor patch of the Makefile.conf is necessary: Activate the
define

tcl_flags = -D_CONST_QUAL_="const"

to compensate some changes of the Tcl prototypes between the releases 8.3
and 8.4.

2.7 Cygwin Build

Cygwin is an environment which admits to compile and/or run Unix soft-
ware on Windows machines. Similar to Linux distributions, Cygwin can
be downloaded from internet and installed online. A setup program can be
found at:

http://www.redhat.com/download/cygwin.html

18

CHAPTER 2. INSTALLATION WINDOWS SETUP PACKAGE

The first manual and non-trivial step is to choose from a large set of mod-
ule packages. In view of the later GOBLIN installation, select the following
packages:

• gmake

• gcc and gpp, including the libraries

• TclTk (for building the gosh shell)

• X11devel (included by the Tcl/Tk header)

• transfig, ghostscript and netpbm (only for the graphical export of
images from GOBLET)

The setup will detect package dependencies and hence add a lot of further
packages to your selection. So far, netpbm does not form part of the stan-
dard Cygwin installation and hence must be downloaded separately. It is
not required to install a X server.

In a final installation step, one has to extend the Windows system vari-
ables: Provided that the Cygwin installation directory is c:\cygwin, the
Path system variable must be extended by a sequence

;c:\cygwin\bin;c:\cygwin\usr\X11R6/bin

and an environment variable

HOME=c:/cygwin/home

should be added. Now, Windows is prepared to build the GOBLET graph
browser. Before compiling the gosh interpreter, just set os = cygwin in
the Makefile. Then start a bash shell and follow the description of the
previous section.

Starting with Release 2.7, we will also distribute Cygwin binaries with
each major build. This makes some of the comments obsolete, but the pack-
ages TclTk, transfig, ghostscript and netpbm are still required. Start
a bash shell or command prompt, copy the downloaded file to the Cygwin
(not Windows!) root directory, change to this directory in the shell and
type in:

tar xfj goblin.<version>.tbz2

2.8 Windows Setup Package

There are currently some efforts to make GOBLIN run out of the box on
Windows machines. The preliminary setup which is available consists of
a compact Cygwin environment, not just a Cywin dll. Unfortunately, this
package does not run with any concurrent Cygwin installation because of
the path variable extensions. Especially, latex makes trouble.

To be safe with other programs running Cygwin, check the Windows
registry for cygwin keys and values before executing the setup. If you
have trouble when starting the GOBLET graph browser, check the path

directories for other cygwin1.dll’s and occasionally change the order of
directories.

If you are already working with Cygwin, do not run the setup but revert
to the description of the previous section.

Since the tar and bunzip2 tools forms part of the GOBLIN setup,
an existing installation can be ’patched’ with subsequent versions of the
goblin.<version>.cygwin.tbz2 binary distribution (It is not really a
patch since all GOBLIN specific files will be replaced).

We mention that there are intrinsic problems with file names including
blanks. The graph browser can handle this in the most cases but we did
not find a way to save a GIF bitmap to a file in Documents and settings

yet.

2.9 Download of new GOBLIN Versions

New versions of GOBLIN will be distributed via the internet, URL:

http://www.math.uni-augsburg.de/opt/goblin.html

The project is presented at

http://www.freshmeat.net

19

BUG REPORTS CHAPTER 2. INSTALLATION

under the project name goblin. By subscribing to the project, you ob-
tain regular infos about updates via e-mail. Do not miss to make a project
rating!

2.10 Bug Reports

The authors appreciate any kind of suggestions and bug reports. E-mail to:

goblin@math.uni-augsburg.de

In the folder project of this installation, you can find a form for bug reports.

20

CHAPTER 3. GETTING STARTED THE GOBLET GRAPH BROWSER

Chapter 3

Getting Started

This chapter will give you a first idea of how GOBLIN can apply to your own
graph optimization problem. More explicitly, it describes the four different
interfaces to the GOBLIN library functions by some instructive examples.

3.1 The GOBLET Graph Browser

GOBLET is the graphical user interface to the GOBLIN library. It can be
used to edit graphs, to configure the core library, to run problem solvers and
to view the computational results. This graphical output can be printed,
and exported to bitmaps but also to canvases.

First, try the following example: Change to the root directory of the
GOBLIN installation 1 and type in:

goblet samples/strong4

Up to the missing node colours, the browser starts with a screen as depicted
in Figure 3.1. The main window is structed as follows:

• The leftmost icon bar refers to general tools for file management,
switches for the various operating modes, a reset button for the mes-
senger and a start/stop button for the problem solvers. By clicking on

the camera, you can save the current graph object into a trace image.
This tool bar is always available.

• The second icon bar and the canvas region form the built-in graph
editor. The editor mode is default, but if no geometric embedding is
available, GOBLET starts with the messenger window instead.

• The bottom line displays the operating mode, some status info de-
pending on the operating mode and, rightmost, an info about the
usage of ressources.

Now click on the Optimize menu and, in that menu, select

Connectivity... -> Strong Edge Connectivity -> Go

If nothing went wrong, the configuration shown in Figure 3.1 results in
which the strong components are represented by node colours.

1If you are working with a system installation, you can download and unpack the sources to get access to the samples library.

21

3.1. THE GOBLET GRAPH BROWSER CHAPTER 3. GETTING STARTED

Figure 3.1: GOBLET

Next, type Control-d in order to switch to the navigator mode. You now
can access a couple of images which illustrate the process of computing the
strong components. More explicitly, these images show the iterated depth
first search trees. If you like, you can print any of the displayed images by
typing Control-p.

If you do not like to generate such intermediate results, you can turn off
the tracing functionality by selecting:

Browser -> Tracing Options...

-> No Tracing -> Reset -> Done

If you want to see a descriptive log file, select

Browser -> Logging Options...

-> Detailed Information -> Done

restart the computation by Control-c and display the log file by Control-l.
In this example, the logfile does not provide much additional information
compared with the figures. In general, it contains informations about re-
cursive method calls, search orders, variable assignments and, which is also
helpful, about the writing of trace images.

Figure 3.2: GOBLET Browser

Suppose you want to make the graph strongly connected. You can add
some arcs by selecting Edit -> Insert Arcs. For example, click with the
left mouse button on the node 23, place some interpolation nodes, and then
click on the node 20. Finally, you are asked to specify the placement of arc
labels (click with the left button again) which is immaterial in this example.

22

CHAPTER 3. GETTING STARTED GOSH SHELL SCRIPTS

These manipulations result in a new graph arc (23, 20). You may run the
computation with Control-c again, and observe that the number of strong
components effectively reduces. Try and find out how many arcs must be
added to the original graph to make it strongly connected!

Figure 3.3: GOBLET Editor

We do not give a complete description of the GOBLET editor tool here. The
status line helps you stepping through the chosen editor function. The most
GOBLET menus and dialogs are intuitive, and this document describes the
various components of the GOBLIN library rather than the tool GOBLET.

Note that GOBLET may handle graph objects without any geometrical
embedding, but does not provide sophisticted tools for graph layout. Be
careful when tracing a computation: Without any special effort, GOBLET
may generate several thousands of files and, by that, cause a collapse of
your file system.

3.2 GOSH Shell Scripts

The GOSH shell script interpreter extends the well known Tcl/Tk script lan-
guage by the possibility of defining and manipulating graph objects. Tcl/Tk
is an excellent tool to prepare prototype algorithms, instance generators and
import/export filters with a minimum of code and effort.

Example:

set n [lindex $argv 0]

goblin sparse graph G

for {set i 1} {$i<=$n} {incr i} {

for {set j [expr $i+1]} {$j<=$n} {incr j} {

set node($i-$j) [G node insert]

for {set k 1} {$k<$i} {incr k} {

G arc insert $node($i-$j) $node($k-$j)

}

for {set k [expr $i+1]} {$k<$j} {incr k} {

G arc insert $node($i-$j) $node($i-$k)

}

for {set k 1} {$k<$i} {incr k} {

G arc insert $node($i-$j) $node($k-$i)

}

}

}

set FileName [file rootname [lindex $argv 1]]

G write "$FileName.gob"

G delete

23

USING THE LIBRARY CHAPTER 3. GETTING STARTED

exit

This script generates so-called triangular graphs which are interesting
for their regularity. The message goblin sparse graph G instanciates a
graph object G which is written to file and disallocated again by the mes-
sages G write and G delete respectively. Before file export, some node
and arc insertion operations occur which will not be explained in detail.

Example:

set fileName [file rootname [lindex $argv 0]]

set file [open "$fileName.max" r]

goblin sparse digraph G

set n 0

while {[gets $file thisLine] >= 0} {

if {[scan $thisLine "p max %d %d" n m]==2} {

for {set i 1} {$i<=$n} {incr i} {G node insert}

}

if {[scan $thisLine "n %d %s" u type]==2} {

if {$type=="s"} {set source [expr $u-1]}

if {$type=="t"} {set target [expr $u-1]}

}

if {[scan $thisLine "a %d %d %d" u v cap]==3} {

if {$n==0} {

puts "File conversion failed!"

exit 1

}

set a [G arc insert [expr $u-1] [expr $v-1]]

G arc $a set ucap $cap

}

}

close $file

if {$source=="*" || $target =="*"} {

puts "Missing source and/or target node!"

exit 1

}

G maxflow $source $target

This script reads a graph from a foreign file format, namely the DIMACS
max flow format, and computes a maximum st-flow.

These two examples illustrate how graph objects can be manipulated
easily from within a Tcl/Tk/GOSH script. On the other hand, the variable
substitution is sometimes difficult to read, and long scripts are more difficult
to handle than equivalent C++ code.

3.3 Using the Library

The bulk of this reference manual deals with the C++ library objects and
methods. This is so since direct application of the library produces the
most efficient code. Of course we also want to give other researchers the
opportunity to develop the GOBLIN library further.

Example:

graph G((TNode)0,(TOption)0);

TNode **node = new TNode*[n];

TNode i = NoNode;

for (i=0;i<n;i++)

{

24

CHAPTER 3. GETTING STARTED SOLVER EXECUTABLES

node[i] = new TNode[n];

TNode j = NoNode;

for (j=i+1;j<n;j++)

{

node[i][j] = G.InsertNode();

TNode k = NoNode;

for (k=0;k<i;k++)

G.InsertArc(node[i][j],node[k][j]);

for (k=i+1;k<j;k++)

G.InsertArc(node[i][j],node[i][k]);

for (k=0;k<i;k++)

G.InsertArc(node[i][j],node[k][i]);

};

};

delete[] node;

This C++ code is equivalent to the described GOSH script given before
which generates a triangular graph for a set with n elements. Using this
instance generator as a benchmark indicates that C++ code is almost five
times faster than equivalent Tcl code.

3.4 Solver Executables

GOBLIN comes with source code for solver executables. These main rou-
tines do not cover the entire GOBLIN functionality, but only the most
frequently asked standard problem solvers. To work with these solvers, you
must compile them separately (see Section 2.5).

You can customize the main routines which are distributed with the
GOBLIN source code to your own convenience without much effort. This
is probably the easiest way to become familiar with the library.

But note that every additional binary may include a lot of library func-
tions, and hence require a lot of disk space. Moreover, if you want to call a

GOBLIN solver from another C/C++ program, you may waste a lot of cpu
time and disk space for the file export and import.

25

3.4. SOLVER EXECUTABLES CHAPTER 3. GETTING STARTED

26

CHAPTER 4. THE GOBLET GRAPH BROWSER GOBLET

Chapter 4

The GOBLET Graph
Browser

This chapter gives an rough overview about the graphical front end of the
GOBLIN library. The GOBLET browser has been designed to test and de-
bug new implementations of graph algorithms, to visualize standard graph
methods in undergraduate courses and just to play with the combinatorial
structure of graphs.

Intentionally, GOBLET is no graph drawing software. But in order to
have a self-contained tool, we have added a graph editor. All graph layout
methods provided by the core C++ library can be accessed from the GUI.

The GOBLET tool utilizes the graphical filter software fig2dev,
ghostscript and transfig which supply to GOBLET an almost universal
export filter. This allows to prepare figures for latex documents which can
be included directly or post-processed by the canvas drawing tool xFig.

Every table lists a single pull-down menu. There are no inline descrip-
tions of how the tools work but only references to the C++ API functionality
for each item. A user manual would be more gentle, but many features are
still floating and it is hard to keep this document up to date.

One menu is missing, namely the info menu which provides the prob-
lem statistics and system ressources info: The statistics dialog gives some
insight about problem type, dimensions and numerics. In any case of trou-
ble, consult the problem statistics and the GOSH transscript. The system
ressources info displays some information about the heap (dynamic) mem-
ory occupied by GOBLIN.

Note that the browser does not support the entire GOBLIN function-
ality but somewhat like 95 percent. For example, the matching solver can
only be fed with one degree sequence while the C++ API allows to specify
upper and lower bounds on the node degrees.

We mention that one can solve moderate size optimization problems
without much knowledge of the library, but it requires some care and ex-
perience to produce graphical output which is useful for teaching purposes.
Then it is the combination of trace objects and the messages which is in-
structive.

27

4.1. FILE MANAGEMENT (MENU ITEM: FILE) CHAPTER 4. THE GOBLET GRAPH BROWSER

4.1 File Management (Menu Item: File)

Option Shortcut Effect Section

New... Generate a new graph object or linear program

Open... Ctrl+o Read a graph object from file. Supported formats: GOBLIN, DIMACS, TSPLIB and STEINLIB problems.
If the check button is unset, the current graph is replaced by the selected object. Otherwise, the graphs are
merged

18.4,
18.7

Save Ctrl+s Write current graph object to a GOBLIN file 18.4

Print Object... Ctrl+p Print the current graph or trace object. Assign a shell print command

Save as... Export the current graph object or the selected trace object to file. The supported file formats include prob-
lem instances (GOBLIN, DIMACS, TSPLIB), solutions, bitmaps (GIF,JPEG) and canvasses (Postscript,
EPS). If a trace file is exported to a GOBLIN file, the browser switches to the trace object as the current
graph

18.7

Compression... Specify the shell commands used for file compression and decompression

Save Settings Export the current configuration to the file .goshrc which is read when the GOSH interpreter is started 20.1

Quit Ctrl+q Quit GOBLET

4.2 Graph Editor Dialogs (Menu Item: Edit)

Option Shortcut Effect Section

Constant Labels... Ctrl+C Dialog for constant node and arc labelings

Metrics Choose edge length metrics (Only for dense graphs). Either explicit length labels are used during
optimization or length labels are computed with respect to the selected metrics. GOBLIN supports
Euclidian, Manhattan, coordinate maximum and spheric distances (as specified in the TSPLIB)

11.1.3

Delete Solutions... Ctrl+X Computational results can be deleted. This is important if algorithms support postoptimization but
computation shall be started from scratch

Extract Solutions... Ctrl+E Predecessor labels representing trees, 1-matchings or cycles can be extracted from the subgraph labels.
Node colourings representing bipartitions and edge-cuts can be extracted from the distance labels.

11.2.1

28

CHAPTER 4. THE GOBLET GRAPH BROWSER 4.3. EDITING GRAPHS (MENU ITEM: EDIT)

4.3 Editing Graphs (Menu Item: Edit)

Option Shortcut Effect Section

Insert Arcs Ctrl+a Left button click selects start node. Subsequent clicks place bend nodes. Final
click selects end node. Then the arc label can be placed by another left button
click. Alternatively, a right button click enables automatic alignment of the arc
label (only available if no bends are present)

6.2.3

Insert Nodes Ctrl+v Left button click in unoccupied area inserts a new graph node 6.2.3

Redirect Arcs Ctrl+r For sparse graphs only: Left button click reverts any directed arc, right button
click changes undirected edges into arcs and vice versa

6.2.3

Incidences → Reorder Manually Ctrl+i For sparse graphs only: Left button on a node steps over its incidences, right
button click admits to change the ordering

6.2.3

Incidences → Planar Ordering For sparse planar graphs: Compute a combinatorial embedding. This operation
does not produce a plane drawing

13.7

Delete Objects Ctrl+x Left button click on existing graph nodes and arc labels deletes objects 6.2.3

Explicit Parallels For sparse graphs only: Replace edges with non-unit capacity labels by simple,
parallel arcs

6.2.3

Move Nodes Ctrl+m Left button drag and drop graph nodes, arc labels and bend nodes

Edit Labels Ctrl+e Left button click on nodes and arc labels opens a dialog to manipulate the labels
which are associated with graph nodes and arcs

11.2

Set Colours Left button click decreases, right button click increases the colour index of the
highlighted node or edge

11.2.7

Set Predecessors Left button click selects a node whose predessor arc can be deleted (click right
button) or replace by another arc (click with left button on an adjacent node or
incident arc)

11.2.1

Randomize → Add Arcs... Add a specified number of random arcs to the current graph

Randomize → Add Eulerian Cycle... Add to the current graph a random Eulerian cycle of specified length

Randomize → Make Graph Regular... Complete the current graph to a k-regular graph. For this goal, the degrees in
the current graph must not exeed k, and k must be even if the number of nodes
is even

Randomize → Random Generator... Ctrl+R Generate random labels for the existing graph nodes and arcs, and/or config-
ure the random generator which is also used for arc insertions and the graph
composition described in this menu

29

4.4. LP EDITOR DIALOGS (MENU ITEM: EDIT) CHAPTER 4. THE GOBLET GRAPH BROWSER

4.4 LP Editor Dialogs (Menu Item: Edit)

Option Shortcut Effect Section

Edit Columns... Ctrl+C Dialog for variable based data: Bounds, cost coefficients, labels. Mark variables as float or integers. Edit
restriction matrix

Edit Rows... Ctrl+R Dialog for restriction based data: Right hand sides, labels. Edit restriction matrix

Reset Basis Ctrl+X Basis solution is set to the lower variable bounds

Pivoting... Ctrl+P Perform pivoting steps manually

4.5 Composing Graphs (Menu Item: Compose)

The composition methods in this pulldown menu generate a new object from the currently controlled graph object. The original graph is not manipulated.

Option Effect Section

Underlying Graph Replace every class of parallel / antiparallel arcs by a single arc 6.4.1

Orientation → Complete Replace every undirected edge by a pair of antiparallel arcs 6.4.10

Orientation → Induced by Colours Orient every undirected edge from the lower to the higher colour index 6.4.11

Shrink Colours Contract nodes by colours 6.4.17

Subgraph → By Node Colours... Export the subgraph induced by a node colour 6.4.15

Subgraph → By Edge Colours... Export the subgraph induced by an edge colour 6.4.15

Subgraph → Induced Bigraph... Export the bigraph induced by a pair of node colours 6.4.16

Subgraph → Explicit Subgraph Export subgraph into a separate object 6.4.1

Subgraph → Transitive Closure For directed acyclic graphs only: Add all transitive arcs (arcs which represent non-trivial directed
paths

6.4.18

Subgraph → Intransitive Reduction For directed acyclic graphs only: Remove all transitive arcs 6.4.19

Complement Switch to the complementary graph 6.4.5

Line Graph Switch to the line graph 6.4.3

Node Splitting Switch to the node splitting 6.4.12

Distance Graph Generate a complete digraph where the length label of any arc uv is the length of a shortest
uv-path in the original graph

6.4.9

Metric Graph Undirected counterpart of the distance graph 6.4.8

30

CHAPTER 4. THE GOBLET GRAPH BROWSER 4.5. COMPOSING GRAPHS (MENU ITEM: COMPOSE)

Option Effect Section

Planar → Undirected Dual Graph Switch to the dual graph (only for plane graph objects) 6.4.6

Planar → Directed Dual Graph Switch to the directed dual graph (only for bipolar plane digraphs and for plane graphs with a
given st-numbering)

6.4.6

Planar → Planar Line Graph Replace all original nodes by faces of the same degree. The original arcs are all contracted to
nodes

6.4.3

Planar → Truncate Vertices Replace all original nodes by faces of the same degree, and keep the original edges connecting the
new faces

6.4.3

Planar → Tear Regions Apart Replace the original nodes by faces of the same degree, and the original edges by 4-sided faces 6.4.4

Planar → Tear & Turn Left / Right As before, but triangulate the faces representing the original edges 6.4.4

Planar → Spread To Outerplanar Requires an regular graph and a spanning tree. Double the tree arcs to obtain the exterior face
of an outerplanar graph. The result is a cutting pattern for the original graph

6.4.7

Tiling... Compose a graph from tiles. Open one of the templates tile*.gob in the example data base
(folder samples). Specify the number of tiles in x and y-direction

6.4.13

Split Graph... Swich to the skew-symmetric version of a network flow problem 6.4.14

Integer / Linear → Generate the (integer) linear formulation for the selected graph based optimization model. Do
not actually solve the ILP model

31

4.6. GRAPH VISUALIZATION (MENU ITEM: LAYOUT) CHAPTER 4. THE GOBLET GRAPH BROWSER

4.6 Graph Visualization (Menu Item: Layout)

The operations in this pull-down menu manipulate the display coordinates of the current graph object. Partially, pure display entities such as arc bend
nodes are added or deleted, and sometimes the order of node incidences are mainipulated to conform with the produced drawing.

Option Shortcut Effect Section

Strip Geometry Translate the node coordinates so that all coordinate are in the positive orthant. At least one
x-coordinate and one y-coordinate are zero. Attention: Do not manipulate the geometrical
embedding when working with spheric distances, use layout options instead

12.1.3

Scale Geometry... Scale the geometric embedding to fit into a specified bounding box 12.1.3

Node Grids... Configure separate, invisible grids for graph nodes, bend nodes and arc label alignment points.
Objects are aligned with this grid during editor operations automatically. Optionally move existing
nodes to the grid

14.6.7

Fit into Window Ctrl+w Fits the graph display into the GOBLET main window

Zoom In Ctrl+ Enlarge the graph display

Zoom Out Ctrl- Lessen the graph display

Planarity Check for planarity, compute a combinatorial embedding explicitly, maximize the number of ex-
terior nodes or compute a planar drawing from an existing combinatorial embedding

13.7

Force Directed Drawing
→ Unrestricted

Basically models the graph nodes as loaded particles and the graph arcs as springs. Searches for
equilibriance of the nodes.

12.4

Force Directed Drawing
→ Preserve Geometry

Similar to the previous method but maintains edge crossing properties. That is, if the input is a
planar straight line drawing, the result is a planar drawing with the same dual geometry

12.4

Align Arcs Redraw arcs such that loops become visible and parallel arcs can be distinguished 12.1.4

Predecessor Tree Manipulate the geometric embedding in order to expose a given tree of predecessor arcs 12.3

Circular Drawing Draw all nodes on a cycle. The order is either given by the predecessor arcs or by the node colours 12.2

Orthogonal Drawing Draw the graph on grid lines. The Kandinski model applies to general graphs. The other models
are limited to planar graphs and/or small node degrees

12.6

Arc Display... Ctrl+A Specify the arc and arc label display 14.6

Node Display... Ctrl+N Specify the node and node label display 14.6

Layout Options... Ctrl+W Specify layout parameters (scaling, node and arrow size) without changing the geometric embed-
ding and/or activate the graph legenda

14.6.7

32

CHAPTER 4. THE GOBLET GRAPH BROWSER 4.7. PROBLEM SOLVERS (MENU ITEM: OPTIMIZE)

4.7 Problem Solvers (Menu Item: Optimize)

This pulldown menu lists all available solvers for graph based optimization models. Calls to a solver can be interupted and / or repeated by pressing Ctrl+c.
Before repeating a solver call, one can use the node context menus to select a different root, source or target node.

Option Effect Section

Vertex Routing → Minimum Spanning Tree Compute a minimum spanning tree and return it by the predecessor labels 13.5

Vertex Routing → Maximum Spanning Tree Compute a minimum spanning tree and return it by the predecessor labels 13.5

Vertex Routing → Travelling Salesman Compute a minimum Hamiltonian cycle return it by the predecessor labels 13.16

Vertex Routing → Minimum 1-Cycle Tree Compute a minimum 1-cycle tree and return it by the predecessor labels 13.16

Vertex Routing → Minimum Steiner Tree Compute a minimum Steiner tree and return it by the predecessor labels. The
terminal nodes are specified by the node demands

13.19

Edge Routing → Shortest Path Tree For a given source node s, compute a shortest s-path tree. If a target node t is
specified, the computation stops once a shortest st-path has been found. The results
are returned by the predecessor and the distance labels

13.1

Edge Routing → Residual Shortest Path Tree For digraphs only: Similar to the previous operation, but search the residual network
as it occurs in min-cost flow algorithms

13.1

Edge Routing → Critical Path For directed acyclic graphs only: Compute a forest such that every node is reached
from a root node by a maximum length path

13.2.3

Edge Routing → Maximum st-Flow For digraphs only: Compute a maximum st-flow. Return the subgraph and a min-
imum st-cut by the distance labels. A subgraph must be given in advance which
satisfies the node demands other than for s and t (usually the zero flow)

13.8

Edge Routing → Feasible b-Flow For digraphs only: Compute a subgraph which satisfies all node demands 13.8

Edge Routing → Minimum Cost st-Flow For digraphs only: Compute a maximum st-flow of minimum costs. Return the
optimal subgraph and node potentials. A subgraph must be given in advance which
satisfies the node demands other than for s and t and which is optimal among all
st-flows with the same flow value (usually the zero flow)

13.10

Edge Routing → Minimum Cost b-Flow For digraphs only: Compute a subgraph of minimum costs satisfying all node de-
mands. Return the optimal subgraph and node potentials

13.10

Edge Routing → Eulerian Cycle Check if the graph object is Eulerian. Occasionally return an Eulerian walk by the
edge colours

13.3

Edge Routing → Minimum Eulerian Supergraph Increase the capacity bounds so that the graph becomes Eulerian 13.15

33

4.8. SOLVER CONFIGURATION (MENU ITEM: OPTIMIZE) CHAPTER 4. THE GOBLET GRAPH BROWSER

Option Effect Section

Bipartitions → Maximum Edge Cut Compute a maximum capacity edge cut and return it by the node colours 13.20

Bipartitions → Maximum Stable Set Compute a maximum stable set and return it by the node colours 13.18

Bipartitions → Minimum Vertex Cover Compute a minimum vertex cover and return it by the node colours 13.18

Bipartitions → Maximum Clique Compute a maximum clique and return it by the node colours 13.18

Graph Partitions... Compute a node colouring, a cover with node disjoint cliques or an edge colouring. Optionally,
the number of sets can be restricted

13.17

Connectivity... Compute the (strongly) (edge) connected components for a given degree of connectivity or
determine some connectivity number

13.6,
13.9

Matching Problems... Compute a maximum capacitated b-matching, a minimum cost perfect b-matching, a optimal
T -join or a minimal Eulerian supergraph (Chinese Postman Problem). The vector b and the
set T are determined by the current node demands

13.14,
13.15

Ordering Problems → st-Numbering Compute an st-numbering and return it by the node colours 13.6

Ordering Problems → Topologic Order For directed acyclic graphs only: Compute a topological order and return it by the node colours 13.2.3

Balanced Network Flows... Compute (min-cost) maximum balanced st-flow for a given source node s or (min-cost) st-flow.
The sink node t is determined by the graph symmetry

13.12,
13.13

Solve LP Relaxation Solve a linear program, neglect all integrality requirements 16.1.6

4.8 Solver Configuration (Menu Item: Optimize)

Option Shortcut Effect Section

Restart/Stop Solver Ctrl+c Resolve problem with the same parameters or stop the current computation 15.1

Optimization
Level...

Ctrl+O Restrict the computational efforts when solving NP-hard problem. Attention: Candidate sets work
for weighted matching problems also.

14.4.2

Method Options... Ctrl+M Configure the various problem solvers 14.4.3

Data Structures... Ctrl+S Select from alternative data structures for priority queues, union-find processes and node adjacencies 14.4.1

34

CHAPTER 4. THE GOBLET GRAPH BROWSER 4.9. BROWSER CONFIGURATION (MENU ITEM: BROWSER)

4.9 Browser Configuration (Menu Item: Browser)

Option Shortcut Effect Section

Toggle Editor/Navigator Ctrl+d Switches from edit mode to display mode or switches between edit and navigation mode

Snapshot Image Ctrl+t Generates a new trace image and switches to navigation mode

View/Update Messenger Ctrl+l Open messenger window

Tracing Options... Ctrl+T Configure the tracing module. That is, specify how often trace objects are generated 14.5

Browser Options... Ctrl+B Configure the browser, especially the file handling and windowing features

Logging Options... Ctrl+L Specify which amount of logging information shall be written by the problem solvers 14.3

Save Browser Options ...to a file in the .goblet folder

35

4.9. BROWSER CONFIGURATION (MENU ITEM: BROWSER) CHAPTER 4. THE GOBLET GRAPH BROWSER

36

Part II

Data Objects

37

CHAPTER 5. PRELIMINARY STATEMENTS CONVENTIONS

Chapter 5

Preliminary Statements

5.1 Some Conventions

Before we start the description of data objects, we give some general re-
marks about GOBLIN files, classes and methods which are omitted later in
this document.

• If not stated otherwise, any operation is elementary , that is, it
takes only a constant number of computing steps. Sometimes oper-
ations take constant time in practice, but an exact statement about
their theoretical complexity is beyond the scope of this document, and
therefore omitted.

• If not stated otherwise, the amount of computer storage required by
any algorithm is proportional to the number of arcs or less.

• A GOBLIN source code file contains the definition of a single class,
and the file name ends with .cpp. This class is declared in the header
file whose name only differs by the extention .h.

As an exception, a class definition may include a method of another
class if this method instanciates the former class, so that an external
definition would only complicate the dependencies among the source

code files. For example, the TSP branch and bound method is de-
fined in branchSymmTSP.cpp which implements the branch node data
structure.

• Iterators are declared with their graphs, but defined in a separate file
whose name differs from the graph definition file name by a leading i.

• Every section starts with a listing of the declaration of the methods
which are discussed. The header file where these methods are declared
is listed likewise.

• If not stated otherwise, all listed methods are declared public.

5.2 Base Types

There are a few GOBLIN objects which are rather basic values than in-
stances of a C++ class. The corresponding types can be configured at
compile time. We just considered late binding and dereferencing to be too
expensive operations at that low logical level.

5.2.1 Nodes

Graph nodes are distinguished by their indices which are integers of a spe-
cial type TNode. The sequence of node indices associated with a graph is
0,1,..,n-1, where n is a protected instance variable of every graph ob-
ject. In addition to the nodes of a graph, a global constant NoNode is defined
for the management of undefined node references. This constant appears in
GOBLIN files and in GOBLET as an asterisk *.

In bipartite graphs, the node set splits into outer nodes and inner
nodes. The outer nodes have the indices 0,1,..,n1-1, the inner nodes
have the indices n1,n1+1,..,n1+n2-1. Again, n1 and n2 are protected

instance variables of a bigraph object, and satisfy n==n1+n2.

In balanced flow networks, nodes are arranged in complementary
pairs which consist of one outer node and one inner node. The comple-

39

5.2. BASE TYPES CHAPTER 5. PRELIMINARY STATEMENTS

mentary node v of the node u can be obtained by the operation v = (u^1),
that is, by changing the least significant bit.

With every graph, up to three special nodes can be associated. These
nodes can be accessed by the methods Source(), Target(), Root().
For physical objects but not for problem transformations, these nodes
can be manipulated by the methods SetSourceNode(), SetTargetNode(),
SetRootNode() respectively.

5.2.2 Arcs

Graph arcs are distinguished by their indices which are integers of a spe-
cial type TArc. The sequence of arc indices is 0,1,..,2*m-1, where m is a
protected instance variable of every graph object. In addition to the arcs
of a graph, a constant NoArc is defined for the management of undefined
arc references. This constant appears in GOBLIN files and in GOBLET as
an asterisk *.

With every arc, the reverse arc also exists. Both arcs have indices which
differ in the least significant bit. Forward arcs have even indices, back-
ward arcs have odd indices. This is arranged such that a reverse arc is
computed by the operation a2 = (a1^1). Note that labels are assigned to
forward arcs only.

In balanced flow networks, arcs are arranged in complementary pairs.
Complementary arcs differ by the second least significant bit, that is, a com-
plementary arc is computed by the operation a2 = (a1^2). Note that flow
values are assigned to single arcs, but capacity labels and length labels are
assigned to complementary arc pairs.

5.2.3 Capacities

Capacity labels and node demands are held in numbers of a type TCap. This
may either be an integral type or a floating point type. We do not strictly
exclude the possibility of non-integral capacities. But note that matching
solvers require integral values.

There is a constant InfCap which represents infinite capacities. This
constant appears in GOBLIN files an in GOBLET as an asterisk *.

5.2.4 Floating Point Numbers

Length labels, distance labels, flow values and subgraph labels are held in
floating point numbers of a type TFloat. There is a constant InfFloat

which is used for undefined values and appears in GOBLIN files and in
GOBLET as an asterisk *.

Explicit length labels are considered integral, and metric distances are
rounded to integrality. Even if length and capacity labels are all integral,
several algorithms (cost-scaling method for min-cost flow, subgradient opti-
mization for TSP) deal with fractional node potentials and reduced length
labels. Weighted matching algorithms deal with half-integral potentials,
modified lengths and flow values. Note that the cost-scaling algorithm may
end up with a suboptimal solution if the length labels are not integral.

5.2.5 Handles

Handles are integer numbers of a type THandle which are used to iden-
tify objects. There is a constant NoHandle to determine undefined handles
which appears in GOBLIN files and in GOBLET as an asterisk *.

5.2.6 Matrix Indices

General matrix indices are integer numbers of a type TIndex. There is a
constant NoIndex to determine an undefined index. When working with
linear programs, two additional types TVar, TRestr occur with special con-
stants NoVar and NoRestr. Although all three types are interchangable, the
latter types are helpful to distinguish the primal respectively dual side of a
linear program.

40

CHAPTER 5. PRELIMINARY STATEMENTS BOUNDS AND PRECISIONS

5.2.7 Class Local Types

Apart from these global base types, there are some more types which are
used with a few methods only and which are declared within one of the root
classes goblinDataObject and goblinILPWrapper respectively. Generally,
the scope is obvious and not specified explicitly in this document.

5.3 Bounds and Precisions of Numbers

The length of matrix indices is an upper bound to the length of arc indices
which in turn bounds the length of node indices.

Node indic values are bounded by the number of nodes in the corre-
sponding graph object. This number of nodes is in turn bounded by the
maxNode parameter defined in the context. Finally, maxNode is bounded by
the constant NoNode which cannot be manipulated at runtime.

The method goblinController::SetMaxNodemanipulates the maxNode
parameter. There is a method goblinController::SetMaxArcwhich works
in the same way for arc indices, the parameter maxArc and the constant
NoArc.

The context variable goblinController::epsilon denotes the smallest
number which is treated different from zero. It may apply in any situation
where the numerical stability needs to be improved.

5.4 Ownership of Objects

Include file: globals.h

Synopsis:

class goblinAbstractObject

{

enum TOwnership {OWNED_BY_SENDER, OWNED_BY_RECEIVER};

};

When passing an object pointer by a method call or returning an object
pointer, it may be necessary for permanent access to specify which context
owns the passed object:

• If the calling context specifies OWNED_BY_SENDER and passes an ob-
ject pointer, the message receiver must make a copy of the object for
permanent access.

• If the calling context specifies OWNED_BY_RECEIVER and passes an ob-
ject pointer, the passed object is already a copy or not needed by the
message sender any longer.

• If the calling context specifies OWNED_BY_SENDER and an object pointer
is returned, the method instanciates a copy to which the returned
pointer refers.

• If the calling context specifies OWNED_BY_RECEIVER and an object
pointer is returned, the calling object either does not use the reference
on the long run or makes a copy.

That is, the SENDER denotes the sender of the message rather than the sender
of the object pointer.

41

5.4. OWNERSHIP OF OBJECTS CHAPTER 5. PRELIMINARY STATEMENTS

42

CHAPTER 6. GRAPH OBJECTS ABSTRACT CLASSES

Chapter 6

Graph Objects

Graph objects can be devided into three groups: Abstract classes which
hold mathematical methods and prototypes for implementations, persis-
tent classes which can be written to and read from a file, and logical
classes which hold the problem transformations which are so important in
network programming. Figure 6.1 shows the GOBLIN classes which model
abstract graph objects and logical views.

surgragra2balbal2bal

big2fnw

absgra

absbigabsbalfnw2fnw

absobj

absmix

absdig

Figure 6.1: GOBLIN Base Classes

6.1 Abstract Classes

Abstract classes allow an high level description of solvers for graph opti-
mization problems. They separate the fundamental algorithms from the
data structures which are defined in dedicated classes called implementa-
tion classes or concrete classes.

Every abstract class definition is endowed with file export methods for
problem instances and potential solutions. These methods are inherited by
all implementation classes. That is, the external formats are implementa-
tion independent. Details can be found in Chapter 18.

6.1.1 Mixed Graphs

Include file: abstractMixedGraph.h

43

6.1. ABSTRACT CLASSES CHAPTER 6. GRAPH OBJECTS

The class abstractMixedGraph is the base class for all graph structures.
It handles the management of the implicit data structures which are listed
in Table 6.1 and which will be discussed in Chapter 13. Roughly speaking,
these data structures represent solutions of graph optimization problems
whereas the graph defining data structures are implemented in the various
concrete classes.

The first exception to this rule are subgraphs [flows] for which absmix.h

provides some prototypes, but which are not implemented. This polymor-
phism results from the fact that subgraphs [flows] are subject to problem
(back)transformations, and that dense graph objects should admit a sparse
subgraph structure. Based on these prototypes, abstractMixedGraph im-
plements methods to extract trees, paths, cycles and 1-matchings from a
subgraph data structure.

On the other hand, one may think that adjacencies which are imple-
mented in abstractMixedGraph constitute a graph defining data structure.
But note that graph defintions are based on incidence lists, and that node
adjacencies are defined explicitly just to speed up algorithms: If the context
flag methAdjacency is enabled, the first call to Adjacency generates a hash
table for efficient access to node adjacencies. That is, this first call requires
O(m) computing steps, but the other calls can be considered elementary
operations. This data structure is not useful for dense implementations
where the index of an adjacent arc can be computed directly from the node
indices. Hence Adjacency is overloaded in some classes.

name public access description

adj Adjacency(TNode,TNode) Arcs connecting two nodes
d Dist(TNode) Distance labels
nHeap — Heap in cache
P Pred(TNode) Path predecessor labels
partition Find(TNode) Node partitions
colour Colour(TNode) Node colours
pi Pi(TNode) Node potentials
sDeg Deg(TNode) Node degrees in a subgraph

Table 6.1: Implicit Data Structures

Incidence lists are managed by iterator objects which allow to iterate on
the node incidences. The class abstractMixedGraph declares prototype
methods First(TNode) and Right(TArc,TNode) which admit a generic
class of iterators. More explicitly, First(v) returns some arc with start
node v, and Right(a,u) returns the successor of the arc a in the inci-
dence list of the node u.

The class abstractMixedGraph also provides methods for the caching of
iterator objects, and for the implicit access to graph iterator objects. More
information about iterators can be found in Chapter 7.

One of the most important features of this class are the methods
Display() and TextDisplay() on which the tracing of all graph objects
depends.

Finally, the definition of abstractMixedGraph includes some mathemat-
ical methods. These are basic graph search procedures like BFS and other
shortest path algorithms which essentially work on the complete orientation
of mixed graphs, and methods which totally ignore the arc directions.

6.1.2 Undirected Graphs

Include file: abstractGraph.h

Abstract graphs inherit from abstract mixed graphs. Several optimization
problems are associated with this class, namely all kinds of matching prob-
lems and minimum spanning tree problems, including the 1-tree problem.
There are also some algorithms for the symmetric TSP and the metric TSP.
The matching code and the Christofides heuristics are defined in the file
gra2bal.cpp.

6.1.3 Digraphs and Flow Networks

Include file: abstractDigraph.h

44

CHAPTER 6. GRAPH OBJECTS 6.1. ABSTRACT CLASSES

Abstract digraphs inherit from abstract mixed graphs. This class contains
only a few graph theoretical methods, but also models abstract flow net-
works which supply lot of additional functionality:

• Residual capacities ResCap(TArc)

• Node imbalances Div(TNode)

• Computation of path capacities FindCap(TArc*,TNode,TNode)

• Push operations Push(TArc,TFloat) and AdjustDegree(TArc,TFloat)

• Augmentation Augment(TArc*,TNode,TNode,TFloat)

• Max flow algorithms (Push-Relabel, augmentation, capacity scaling)

• Min cost flow algorithms (SAP, cycle canceling, cost-scaling, minimum
mean cycles)

These methods are defined in the file absdig.cpp. There are further defini-
tion files including network flow algorithms which directly utilize a special
problem transformation:

• auxnet.cpp: Defines layered auxiliary networks which form part of
the well-known Dinic max flow algorithm. This file also defines the
method abstractFlowNetwork::Dinic(TNode,TNode).

• fnw2fnw.cpp: The reduction of circulation problems to st-flow prob-
lems: abstractFlowNetwork::ShortestAugmentingPath(TNode,TNode).

6.1.4 Bipartite Graphs

Include file: abstractBigraph.h

Abstract bigraphs inherit from undirected graphs, and specify a bipartition
by parameters n1 and n2. This parameters can be accessed by the methods
N1() and N2(). Nodes can be checked to be in one of the components by
Outer(TNode) and Inner(TNode) respectively.

Bigraphs overload the matching algorithms by dedicated assignment al-
gorithms. The file big2fnw.cpp which defines the reduction of assignment

problems to network flow problems also defines these assignment methods.
The remaining methods are defined in absbig.cpp, including specialized
methods for colouring and stable sets.

6.1.5 Balanced Flow Networks

Include file: abstractBalancedDigraph.h

Abstract balanced flow networks inherit from digraphs, but have a certain
symmetry based on the complementarity of nodes and arcs. The additional
functionality is:

• Pairwise push operations (BalPush(TArc,TFloat)), symmetrical
residual capacities (BalCap(TArc)).

• Symmetrical path capacities (FindBalCap(TNode,TNode)), pairwise
augmentation (BalAugment(TNode,TNode,TFloat)).

• Balanced network search methods which constitute the balanced aug-
mentation algorithm (Kocay/Stone, Kameda/Munro and other heuris-
tics).

• Maximum balanced flow algorithms which essentially solve non-
weighted matching problems (Anstee, Micali/Vazirani, augmentation,
capacity scaling).

• Min-Cost balanced flow algorithms which essentially solve weighted
matching problems (Primal-dual, primal-dual starting with min-cost
flow optimum).

The new functionality is needed if one is interested in integral symmetric
flows only. But this is the case for the reduction of matching problems which
is implemented by the class gra2bal.

All class methods are defined in the file absbal.cpp except for the meth-
ods

abstractBalancedFNW::MicaliVazirani(TNode);

abstractBalancedFNW::BNSMicaliVazirani(TNode,TNode);

45

PERSISTENT OBJECTS CHAPTER 6. GRAPH OBJECTS

which are defined in the file shrnet.cpp, the method

void abstractBalancedFNW::PrimalDual(TNode)

which is defined in the file surgra.cpp, and the methods

void abstractBalancedFNW::CancelOdd()

void abstractBalancedFNW::CancelPD()

which are defined in the file bal2bal.cpp.

6.2 Persistent Objects

A data object is persistent iff it can be exported to a file, and reimported
without (significant) loss of information. The file formats for persistent
objects are described in Chapter 18.

To every abstract class of graph objects, potentially two persistent im-
plementations exist: A sparse implementation based on incidence lists,
and a dense implementation based on adjacency matrices. The persistent
classes defined in GOBLIN are listed in Table 6.2.

class name description include file

mixedGraph mixed graph objects "spsmix.h"

graph sparse graph objects "spsgra.h"

diGraph sparse digraph objects "spsdig.h"

biGraph sparse bigraph objects "spsbig.h"

balancedFNW sparse balanced flow network objects "spsbal.h"

denseGraph dense graph objects "dnsgra.h"

denseDiGraph dense digraph objects "dnsdig.h"

denseBiGraph dense bigraph objects "dnsbig.h"

Table 6.2: Persistent Graph Objects

The definition of persistent classes is of little mathematical interest since
algorithms are defined by abstract classes (where all object functionality is

specified), and problem reduction principles are defined by dedicated logical
classes. We concentrate on the specific data structures and functionality of
persistent graphs.

6.2.1 Struct Objects

Include file: graphStructure.h

The various sparse graph object classes are not defined independent from
each other but are composed of a sparseGraphStructure object. In the
same way, dense graph objects are composed of denseGraphStructure ob-
jects.

Both of the mentioned classes inherit by a class genericGraphStructure
in which most graph data structures are defined: Capacities, arc length la-
bels, node demands, geometrical embedding into the plane, arc orientations.
There are methods for loading a data structure, changing values, handling
default values and bounds.

Note that persistent graphs do not inherit from denseGraphStructure

or sparseGraphStructure objects, but have such a component object. This
avoids multiple inheritance, but makes it neccessary to repeat the declara-
tion of many methods in every class of persistent graph objects.

To avoid such repetitions, there are special include files named geninc.h,
spsinc.h, dnsinc.h which declare the interface between struct objects and
graph objects.

6.2.2 Dense Graphs

Include file: denseStructure.h

Synopsis:

class denseGraphStructure : public genericGraphStructure

{

void NewSubgraph(TArc);

void ReleaseSubgraph();

46

CHAPTER 6. GRAPH OBJECTS 6.2. PERSISTENT OBJECTS

TFloat Sub(TArc);

void AddArc(TArc,TFloat);

void OmitArc(TArc,TFloat);

}

The data structures defined in genericGraphStructure are simply arrays
with fixed dimensions. To handle sparse subgraphs in complete and geomet-
rical graph instances, denseGraphStructure implements an optional hash
table for subgraph labels. This data structure is generated by the first call
of AddArc automatically. In that case, the number of arcs in the subgraph
is restricted to the number of nodes which is satisfactory for working with
trees, 1-trees, 1-matchings and 2-factors.

Alternatively, the subgraph data structure may be allocated explicitly
by the method NewSubgraph(TArc) which takes the maximum size l as a
parameter and requires O(l) computing steps.

6.2.3 Sparse Graphs

Include file: sparseStructure.h

Synopsis:

class sparseGraphStructure : public genericGraphStructure

{

TArc First(TNode);

void SetFirst(TNode,TArc);

TArc Right(TArc);

void SetRight(TArc,TArc);

TArc Left(TArc);

TNode StartNode(TArc);

TNode EndNode(TArc);

void ReSize(TNode,TArc);

TArc InsertArc(TNode,TNode,TCap,TCap,TFloat);

TArc InsertArc(TNode,TNode);

TNode InsertNode();

TNode InsertArtificalNode();

TNode InsertAlignmentPoint(TArc);

TNode InsertBendNode(TNode);

void ExplicitParallels();

void SwapArcs(TArc,TArc);

void SwapNodes(TNode,TNode);

void FlipArc(TArc a);

void CancelArc(TArc);

void CancelNode(TNode);

void ReleaseBendNodes(TArc);

bool ReleaseDoubleBendNodes();

void ReleaseShapeNodes(TNode);

void DeleteArc(TArc);

void DeleteNode(TNode);

void DeleteArcs();

void DeleteNodes();

void ContractArc(TArc);

void IdentifyNodes(TNode,TNode);

}

In the class sparseGraphStructure, the node incidence list defining meth-
ods First(TNode) and Right(TArc) are implemented by own data struc-
tures. In addition to the general functionality of node incidence lists, sparse
graph objects admit the following operations:

The predecessor of any arc in the incidence list of its start node is
returned by the method Left(TArc). An explicit data structure is gener-

47

6.2. PERSISTENT OBJECTS CHAPTER 6. GRAPH OBJECTS

ated from the successor labels by the first call of Left which therefore takes
O(m) computing steps. Subsequent calls are O(1).

Node incidence lists can be sorted by a method SwapArcs(TArc,TArc).
The first arc on a list can be fixed by a method SetFirst(TNode,TArc).
Arc directions can be changed by a method FlipArc(TArc).

SetRight(a1,a2,a3) makes a2 the successor of a1 in the start nodes
incidence list and make the original successor of a1 the new successor of
a3. If no thirst argument is specified, a2 = a3 is assumed. In any case, for
Left() and Right() circular lists are maintained.

The methods StartNode(TArc) and EndNode(TArc) are implemented
such that arrays for start nodes and end nodes of arcs are generated by
the first request. Again, the first call of StartNode or EndNode takes O(m)
computing steps, but subsequent calls take O(1) steps.

Since sparse graphs are usually grown from scratch (only file construc-
tors work somewhat differently), the class sparseGraphStructure allows to
predefine the final dimensions by the method ReSize(TNode,TArc) which
effectively prevents the iterated reallocation of the data structures.

The insertion of an arc connecting the nodes with indices v

and w is achieved by InsertArc(v,w), InsertArc(v,w,uc,ll) or
InsertArc(v,w,uc,lc,ll) respectively. Each of the methods return the
index of the new arc. One may explicitly assign an upper capacity bound
uc, a lower capacity bound lc and a length label ll to the new arc. If no
labels are specified, the labels are set to default values or to random values
depending on how the random generator is configured.

Once an arc is present, an alignment point for the arc label
and bend nodes for the arc drawing can be defined by the methods
InsertAlignmentPoint() and InsertBendNode() respectively.

Example:

TArc a = InsertArc(v,v);

TNode x = InsertAlignmentPoint(a);

TNode y = InsertBendNode(x);

TNode z = InsertBendNode(y);

introduces a new graph edge, namely a loop, which has two bend nodes y
and z, and whose labels are drawn at the position of x. The coordinates
have to be specified by the method SetC separately.

To delete arcs, the following operations are provided: CancelArc(TArc)
which deletes an arc and its reverse arc from the incidence lists, and
DeleteArc(TArc) which eventually deletes the canceled arc from all data
structures. Note that the latter operation may change the index of other
arcs, and hence must be applied very carefully. A call to DeleteArcs()

eliminates all canceled arcs. This operation should not be used in algo-
rithms intermediately but rather as a concluding step.

Similarly, a call to CancelNode(TNode) cancels all arcs incident with
this node and DeleteNodes() eliminates all canceled and isolated nodes.
The methods DeleteNode(TNode) and DeleteNodes() potentially change
all node and arc indices.

Calling ReleaseBendNodes(a) eliminates the alignment point for the arc
label and all bend nodes assigned with a. Similarly, ReleaseShapeNodes(v)
deletes all artifical nodes assigned with the vertex v. The method
ReleaseDoubleBendNodes() checks for pairs of consecutive bend nodes
with the same position in a drawing and occasionally deletes some bend
nodes. This check includes the end nodes of all edges.

The method ContractArc(TArc) merges the incidence list of the end
node into the incidence list of the start node of the given arc and cancels
the arc and the end node. If the incidence lists provide a planar embedding,
the contraction preserves planarity.

More generally, IdentifyNodes(x,y) merges the incidence list of the
node y into the incidence list of the node x and cancels node y. The nodes
to be identified may be non-adjacent.

The method ExplicitParallels() splits the arcs a with capacity
UCap(a)>1 into a couple of arcs which all have capacity ≤ 1. The total
upper and lower bounds as well as sum of potential flows remain unchanged.

48

CHAPTER 6. GRAPH OBJECTS 6.2. PERSISTENT OBJECTS

6.2.4 Sparse Bigraphs

Include file: sparseBigraph.h

Synopsis:

class biGraph

{

TNode SwapNode(TNode);

}

For the manipulation of bigraph nodes, an additional method SwapNode(v)

is provided which moves the passed node v to the other component. The
return value is the new index of v, say u. Effectively, the nodes u and
v are swapped. Deletions of outer nodes include an implicit SwapNode()

operation.

6.2.5 Planarity Issues

Include file: abstractMixedGraph.h

Synopsis:

class abstractMixedGraph

{

void MarkExteriorFace(TArc);

TArc ExteriorArc();

bool ExteriorNode(TNode,TNode = NoNode);

enum TOptExtractEmbedding {

PLANEXT_DEFAULT = 0,

PLANEXT_GROW = 1,

PLANEXT_DUAL = 2,

PLANEXT_CONNECT = 3

};

TNode ExtractEmbedding(

TOptExtractEmbedding = PLANEXT_DEFAULT,

void* = NULL);

TNode Face(TArc);

TNode ND();

void ReleaseEmbedding();

}

A graph is planar if it can be drawn in the plane without any edge cross-
ings. If for every node v (and some virtual plane drawing), the arcs starting
at v are listed in clockwise order by the incidence lists, the graph is called
combinatorially embedded. In embedded graphs, the face left hand of
a given arc a0 can be traversed as follows:

Example:

TArc a = a0;

do

{

a = Right(a^1);

...

}

while (a!=a0);

Supposed that the graph is connected, all faces are traversed counter clock-
wise, except for the exterior face which is traversed clockwise.

Every graph object may provide a combinatorial embedding from its own
but only sparse graph objects admit manipulation of the incidence lists. Arc
deletions and contractions maintain a combinatorial embedding but some
care is necessary when edges are inserted into an incidence structure:

The idea is that arcs are always inserted into the exterior face. Calling
MarkExteriorFace(a) sets the First() incidences appropriately so that
inserting an arc into the face left hand of a will preserve the embedding.
The arc a is saved as a representant of the exterior face and can be retrieved
again by calling ExteriorArc().

49

LOGICAL OBJECTS CHAPTER 6. GRAPH OBJECTS

Of course, it is possible to mark a face exterior, insert edges and then re-
vert to the original exterior face. The running time of MarkExteriorFace()
is proportional to the number of arcs of the selected face.

Another effect of this method is that the face of a given arc a0 can be
traversed in the converse (usually clockwise) direction of the previous ex-
ample, but only if the graph is biconnected:

Example:

TArc aExt = ExteriorArc();

MarkExteriorFace(a0);

TArc a = a0;

do

{

TNode v = StartNode(a);

a = First(v)^1;

...

}

while (a!=a0);

MarkExteriorFace(aExt);

There is no need to store a planar embedding in a special data structure
persistently. If one calls ExtractEmbedding(), to every arc the left hand
face is saved internally. The procedure also determines a face with a max-
imum number γ of incident edges, marks this face exterior and returns γ.
The running time is O(m) in the default setting.

If the graph is disconnected, the procedure processes each connected
component separately and exports the connected components by the node
colours. Note that for disconnected graphs, a distinction between regions
(of the complement of plane drawing) and faces (cycles in the boundary of
a region) is necessary and that this code handles faces rather than regions.

Depending on the optional parameters, the procedure performs addi-
tional operations:

• For PLANEXT_DUAL, the void* pointer is interpreted as a
abstractMixedGraph* pointer to an empty graph which is filled with
the dual incidence structure.

• For PLANEXT_GROW, the incidence lists are manipulated to obtain an
embedding with the maximum of exterior nodes. In the extreme case,
an outerplanar embedding results. Here the running time is O(m2)
due to nested graph search for exterior separating edges.

• For PLANEXT_CONNECT, the connected components are linked such that
in the resulting embedding, all original components are exterior. This
graph augmentation effectively corrupts the face assignments. Hence
a second pass with PLANEXT_DEFAULT would be necessary to rebuild
the indices.

The number of faces is retrieved by ND() and the face left hand to a given
arc a is obtained by Face(a). If the embedding has not been extracted
explicitly, Face() will initiate this operation in its first occurence. So, for
connected graphs, a is an exterior arc if

Face(a) == Face(ExteriorArc())

provided that the graph is implicitly or explicitly embedded. In order to de-
cide if a given node v is on the exterior face, one just calls ExteriorNode(v).

Note that arc insertions and deletions call ReleaseEmbedding() and
after that the dual incidences must be extracted again.

6.3 Logical Objects

Logical objects describe a special view of another object. Roughly speaking,
a logical class defines the reduction mechanism of one optimization problem
to another. The referenced object may either be persistent or logical.

Logical objects keep reference of the original object all of their lifetime.
A referenced object may not be disallocated while logical views are present.
The benefit is a hidden back transformation of potential solutions of the

50

CHAPTER 6. GRAPH OBJECTS 6.3. LOGICAL OBJECTS

respective optimization problems. More precisely, the potential solutions
are merely logical views of solutions for the original problem.

0/1

0/2

0/2

0/1
1/1

−1

−1

1

1

0/1

0/2

0/2

0/1

0/1

0/2

0/2

0/1

0

0

0

0

00

Figure 6.2: Transformation of Network Flow Problems

6.3.1 Canonical Flow Networks

Include file: digraphToDigraph.h

Synopsis:

class FNW2FNW : public virtual abstractDiGraph

{

FNW2FNW(abstractDiGraph &);

TNode Source();

TNode Target();

bool Perfect();

}

A canonical network flow problem is a flow network whose lower capac-
ity bounds are all zero and such that, except for a special node pair, all
node demands are zero. The class FNW2FNW allows to transform a given net-
work flow problem into an equivalent canonical problem. More explicitly, it
manages:

(1) the reduction of the feasible circulation problem to the maximum st-
flow problem,

(2) the reduction of the min-cost circulation problem to the min-cost st-
flow problem.

The reduction technique is adding an artificial source node and an artificial
target node, and adding some arcs to the network. The artificial nodes may
be accessed by the respective methods Source() and Target().

Any flow on the logical graph object corresponds to a pseudoflow of the
referenced flow network which respects the capacity bounds. For example,
a zero flow corresponds to a pseudoflow with Flow(a)==LCap(a).

If a feasible b-flow (circulation) of the referenced networks exists, any
maximum flow of the logical object will give such a b-flow. A maximum
flow of minimum costs corresponds to a minimum cost b-flow then. Given
any logical flow, it may be checked whether it maps to a feasible b-flow or
not by a call to the method Perfect().

The constructor method does not initialize the flow on the FNW2FNW ob-
ject to zero, but to the image of the original flow. Some augmentation steps
on the artificial arcs are done immediately which do not affect the flow on
the original network.

Example:

G1 = new diGraph("sample.gob");

G2 = new FNW2FNW(G1);

G2 -> MaxFlow(G2->Source(),G2->Target());

if (G2->Perfect())

{

F1 = new export("sample.rst");

G1 -> WriteFlow(F1);

delete F1;

}

delete G2;

delete G1;

51

6.3. LOGICAL OBJECTS CHAPTER 6. GRAPH OBJECTS

6.3.2 Layered Auxiliary Networks

Include file: auxiliaryNetwork.h

Synopsis:

class layeredAuxNetwork : public abstractDiGraph

{

layeredAuxNetwork(abstractFlowNetwork &,TNode);

void Phase1();

void InsertProp(TArc);

void Phase2();

bool Blocked(TNode);

TFloat FindPath(TNode);

void TopErasure(TArc);

}

Layered auxiliary networks are instanciated by the Dinic maximum flow al-
gorithm, and, via inheritance, by the Micali/Vazirani cardinality matching
algorithm.

A layered network is a logical view of a flow network, but with a different
incidence structure. Nodes and arcs are the same as for the orginal network,
and the arc capacities are the residual capacities of the original network. The
new incidence structure can be manipulated by two specific operations: Arc
insertions which are implemented by the method InsertProp(TArc), and
topological erasure which is done by the method TopErasure(TArc).

8/38

0/1

2/2

0/8
1/10

7/13

0/26

0/8

0/24

1/1

0/2

0/1

7/7

0/7

2/27

0

1

1

2

2

3

3

4

30

1

9

6

26

8

24

1

7

25

0

1

2

3

4

5

6

7

Figure 6.3: A flow and a layered auxiliary network

Topological erasure is the arc deletion process, but in a very efficient im-
plementation. If an arc is deleted, some node v may become non-reachable
from the source node ss specified in the constructor. In this case, all arcs
with start node v are deleted likewise. After the topological erasure of v,
one has Blocked(v)==1.

By that technique, the search procedure FindPath(t) which determines
an st-path with residual capacity is prevented from performing backtracking
operations. Note that the information about this path has to be passed from
the layeredAuxNetwork object to the original network for augmentation.
In the Dinic algorithm, both graphs share the predecessor data structure.

52

CHAPTER 6. GRAPH OBJECTS 6.3. LOGICAL OBJECTS

During augmentation, TopErasure(a) is called for every arc which has
no more residual capacity. Finally, the arc insertions and the topological
erasure operations are separated by calls to Phase1() and Phase2() respec-
tively.

The topological erasure process needs O(m) time during the construc-
tion of a single blocking flow (called a phase), and the time needed for a
FindPath() operation is proportional to the length of the constructed path.

Figure 6.4: A Maximum Assignment with Corresponding Flow

6.3.3 Bipartite Matching Problems as Network Flow Prob-
lems

Include file: bigraphToDigraph.h

Synopsis:

class big2FNW : public virtual abstractDiGraph

{

big2FNW(abstractBiGraph &,TCap *,TCap * = NULL);

big2FNW(abstractBiGraph &,TCap);

big2FNW(abstractBiGraph &);

TNode Source();

TNode Target();

}

This class handles the reduction of bipartite matching problems to network
flow problems ans is closely relates to the class of canonical flow networks
which were introduced before.

Technically, an artificial source node, an artificial target node, and some
arcs are added to the network. The arcs of the original bigraph are directed
from one part of the bigraph to the other part. The artificial nodes may be
accessed by the respective methods Source() and Target().

Any flow on the logical graph object corresponds to a subgraph of the
referenced bigraph, and a zero flow corresponds to the empty subgraph. If
a perfect matching of the referenced bigraph exists, any maximum flow of
the logical object will give such a matching. In that case, a maximum flow
of minimum cost corresponds to a minimum cost perfect matching. It may
be checked whether a logical flow maps to a perfect matching or not by a
call to the method Perfect().

One may pass optional values by the displayed constructor methods:
Using the first method, upper and lower degree bounds are defined which
appear as capacity bounds of the artificial arcs. Even if lower degree bounds
are specified, the big2fnw object is always in canonical form.

The second constructor method is used to solve a k-factor problem. If
no parameters (up to the bigraph) are specified, the node demand labels
encapsulated in the bigraph come into play.

Example:

G1 = new bigraph("sample.gob");

G2 = new big2FNW(G1,1);

G2 -> MaxFlow(G2->Source(),G2->Target());

if (G2->Perfect())

{

53

6.3. LOGICAL OBJECTS CHAPTER 6. GRAPH OBJECTS

F1 = new export("sample.rst");

G1 -> WriteSubgraph(F1);

delete F1;

};

delete G2;

delete G1;

effectively determines a mximum 1-matching of the graph object G1.

Figure 6.5: A Maximum Matching with Corresponding Balanced Flow

6.3.4 General Matching Problems as Balanced Flow Prob-
lems

Include file: graphToBalanced.h

Synopsis:

class gra2bal : public virtual abstractBalancedFNW

{

gra2bal(abstractGraph &,TCap *,TCap * = NULL);

gra2bal(abstractGraph &,TCap);

gra2bal(abstractGraph &);

TNode Source();

TNode Target();

void InitFlow();

void Update();

}

The idea of this problem transformation is to split the nodes and arcs into
symmetrical pairs and reduce to a balanced network flow problem. Similar
to the bipartite situation, artificial nodes and arcs are added. The resulting
flow network is bipartite, and the image of an original node consists of an
outer and an inner node.

The constructors and some other methods are defined in analogy to the
bipartite situation. If lower degree bounds are specified, the elimination of
the lower capacity bounds is done immediately. (If we would apply the class
fnw2fnw, the complementarity relationship would be lost!)

Balanced network flow methods (not ordinary network flow methods!)
manipulate the subgraph encoded into the referenced object. However, a
gra2bal object may maintain a flow which is non-symmetric, and indepen-
dent from the referenced object. One can generate and access this flow
simply by calling any network flow method or by explicit call to the method
InitFlow(). By that, the flow is initialized to the symmetric logical flow,
but can be treated as an ordinary flow afterwards.

Every call to a balanced network flow method requires the symmetric
flow. If necessary, Update() is called which symmetrizes the flow again.
The subgraph of the referenced object is updated, and the physical flow is
disallocated. Note that Update() is called by the gra2bal destructor also.

Hence, there are two kinds of flow associated with a gra2bal object,
exactly one of these flows is present at each point of lifetime, and the object
is generated and destructed with a balanced flow.

Example:

54

CHAPTER 6. GRAPH OBJECTS 6.3. LOGICAL OBJECTS

G1 = new graph("sample.gob");

G2 = new gra2bal(G1,1);

G2 -> MaxFlow(G2->Source(),G2->Target());

G2 -> CancelEven();

if (G2->CancelOdd()>1) G2->MaxBalFlow(G2->Source());

delete G2;

F1 = new export("sample.rst");

G1 -> WriteSubgraph(F1);

delete F1;

delete G1;

determines a maximum 1-matching of the graph in "sample.gob" as follows:
First an ordinary maximum flow of the object G2 is computed (starting with
a call to InitFlow). The call of CancelEven() implies a call to Update().
All subsequent operations immediately manipulate the subgraph of the ob-
ject G1.

6.3.5 Layered Shrinking Networks

Include file: shrinkingNetwork.h

Synopsis:

class layeredShrNetwork : public layeredAuxNetwork

{

layeredShrNetwork(abstractBalancedFNW &,TNode,

staticQueue<TNode,TFloat> **,

staticQueue<TArc,TFloat> **,

staticQueue<TArc,TFloat> **);

TNode StartNode(TArc);

TNode DDFS(TArc);

void ShrinkBlossom(TNode,TArc,TFloat);

TFloat FindPath(TNode);

void Expand(TNode,TNode);

void CoExpand(TNode,TNode);

void Traverse(TNode,TNode,TNode,

TArc,TArc *,TArc *);

void Augment(TArc);

}

This class makes the topological erasure technique of layered auxiliary net-
works available to matching and balanced network flow problems. But this
class has a lot of additional data structure and functionality.

If one looks at the constructor interface only, it is obvious that there
are a lot of dependencies between the layeredShrNetwork objects and the
algorithm which constructs the object. We do not go into the details, but
need to describe the functionality and the running times of some of the
methods.

Roughly speaking, a double depth first search DDFS(a) determines
the blossom which occurs if the arc a is added to the layered auxiliary net-
work, and returns the base b of this blossom. Then the blossom can either
be shrunk by a call ShrinkBlossom(b,a,..), or a minimum length aug-
menting path is found which can be extracted by a call of FindPath(s^1).

Note that FindPath() recursively calls Expand(), CoExpand() and
Traverse() which are only needed at this point. The method Augment()

actually does the augmentation and triggers off the necessary topological
erasure operations.

All these operations must be separated from the InsertProp() oper-
ations by using the methods Phase2() and a Phase1(). The complexity
of these new operations can be bounded for a whole phase, and is O(m)
for the DDFS() operations. The time needed for FindPath() operations is
proportional to the length of the constructed paths again.

55

6.3. LOGICAL OBJECTS CHAPTER 6. GRAPH OBJECTS

6.3.6 Surface Graphs

Include file: surfaceGraph.h

Synopsis:

class surfaceGraph : public abstractBalancedFNW

{

surfaceGraph(abstractBalancedFNW &);

TFloat ModLength(TArc);

TFloat RModLength(TArc);

void ShiftPotential(TNode,TFloat);

void ShiftModLength(TArc,TFloat);

bool Compatible();

void CheckDual();

TArc FindSupport(TNode,TArc,

dynamicStack<TNode,TFloat> &);

void Traverse(TArc*,TArc,TArc);

void Expand(TArc*,TArc,TArc);

void ExpandAndAugment(TArc,TArc);

TFloat ComputeEpsilon(TFloat*);

void PrimalDual0(TNode);

void Explore(TFloat*,goblinQueue<TArc,TFloat> &,

THandle,TNode);

TFloat ComputeEpsilon1(TFloat*);

void PrimalDual1(TNode);

}

Surface graphs are data structures which are needed by all weighted match-
ing algorithms. A surface graph object keeps a shrinking family of a given
balanced flow network and forms a new graph in which some of the original
nodes are identified, and some arcs are redirected.

While shrinking families will be discussed later in Section 8.2, we need
to describe the other components of the primal-dual algorithm here:

Modified length labels are the reduced costs known from linear pro-
gramming and are available by the method ModLength(). They may be
present by an own data structure, or must be computed recursively by
RModLength() which evaluates the node potentials and the shrinking fam-
ily data structure. This recursive computation is needed when working with
large scale geometrical matching problems and is enabled by the context flag
methModLength.

If disabled, mismatchs between physical and computed modified lengths
can be detected by a call of CheckDual(). This is done automatically before
the primal-dual methods halt, but only if the context flag methFailSave is
set. In that case, Compatible() is called likewise to check for reduced costs
optimality.

Note that a single RModLength() call takes O(n) operations, and that
exhaustive computation may increase the running time of the whole algo-
rithm by a factor of n. Hence some care is recommended when setting
methModLength and methFailSave. The complexity statements which fol-
low are true only if both variables are zero.

The method FindSupport determines the nodes of a blossom, and pre-
pares the data structures which are necessary to reconstruct an augmenting
path traversing this blossom. The latter task is managed by the meth-
ods Traverse, Expand and ExpandAndAugment which take O(n log n) time
per each augmentation. The FindSupport operations take O(n) time per
phase, that is the period between two augmentations of the PD algorithm.

GOBLIN includes three implementations of the PD algorithm
which can be selected by the context flag methPrimalDual. The
options methPrimalDual==0 and methPrimalDual==1 depend on
ComputeEpsilon(), whereas the option methPrimalDual==2 depends on
ComputeEpsilon1(). Both methods determine the amount of a dual up-
date, that is an update on the node potentials. The first procedure searches
all arcs and takes O(m) time, whereas the second procedure searches only
one arc for each node and hence takes O(n) time.

56

CHAPTER 6. GRAPH OBJECTS 6.3. LOGICAL OBJECTS

In the current state of development, methPrimalDual=0 causes the use
of PrimalDual0, whereas methPrimalDual=1 and methPrimalDual=2 cause
the use of PrimalDual1. Both methods use a dual update technique which
takes O(m) time so that the overall complexity is O(nm) per phase, in-
dependent of which implementation in used. It is planned, however, to
improve PrimalDual1 to O(n2) time.

6.3.7 Suboptimal Balanced Flows

Include file: balancedToalanced.h

The class bal2bal is the symmetrical counterpart of the class FNW2FNW, and
hence manages:

(1) the reduction of the feasible balanced circulation problem to the max-
imum balanced st-flow problem,

(2) the reduction of the min-cost balanced circulation problem to the min-
cost balanced st-flow problem.

The main application is the reduction of the odd cycle canceling prob-
lem for balanced network flows to a balanced st-flow problem. This problem
occurs if an integral circulation is symmetrized so that some flow values be-
come non-integral.

These reductions eventually extend the Anstee maximum balanced flow
algorithm to the general setting of balanced flow networks, and allow a
strongly poynomial implementation of the primal-dual algorithm respec-
tively.

6.3.8 Making Logical Objects Persistent

Logical objects turn into persistent objects by writing them to file and load-
ing them again. By running optimization methods on the persistent object,
one can avoid the time consuming dereferencing steps to the original data
object.

However, the capability of back transformation of computational results
to the original problem instance is lost. If necessary, the results can be
written to a file and reimported into the logical object.

Example:

G1 = new diGraph("sample.gob");

G2 = new FNW2FNW(G1);

F1 = new export("sample.tmp");

G2 -> Write(F1);

delete F1;

G3 = new diGraph("sample.tmp");

G3 -> MaxFlow(G2->Source(),G2->Target());

F1 = new export("sample.tmp");

G3 -> WriteFlow(F1);

delete F1;

delete G3;

F2 = new import("sample.tmp");

G2 -> ReadFlow(F2);

delete F2;

if (G2->Perfect())

{

F1 = new export("sample.rst");

G1 -> WriteFlow(F1);

delete F1;

}

delete G2;

delete G1;

It has turned out that file export is rather expensive, and should be used

57

DERIVED PERSISTENT OBJECTS CHAPTER 6. GRAPH OBJECTS

by extremely search intensive problem solvers only. With some additional
efforts for mapping the potential solutions, copy constructors as presented
in Section 6.4.1 are highly preferable.

6.4 Derived Persistent Objects

There are some situations where the implementation of a logical class with-
out an own incidence structure is inappropriate for the problem transfor-
mation:

• If the transformation mechanisms would be very expensive,

• If the problem to solve is very complicated so that the instances are
rather small,

• If the transformation is of academic interest rather than practical need.

Typically, the class definition only consists of a constructor method.

6.4.1 Copy Constructors

Each of the persistent base classes provides a copy constructor which sup-
ports the following general purpose options:

• OPT_CLONE: Generate a one-to-one copy of the graph. That is, map
every node and every arc of the original graph. If this option is absent,
arcs with zero capacity are not mapped.

• OPT_PARALLELS: Allow parallel edges. If this option is absent, an ar-
bitrary arc of every parallel class is mapped. The option is immaterial
if mapping to dense implementations.

• OPT_SUB: Export the subgraph labels into a separate object. That is,
the capacity of a mapped arc is the subgraph label of the original arc.

The graph and the denseGraph copy constructors accept arbitrary mixed
graphs and just forget about the orientations. The directed classed also

accept mixed graphs and, in principle, generate antiparallel arc pairs for
undirected arcs in the original graph. But be careful with the constructor
method digraph(G,opt): If the input graph is bipartite and OPT_CLONE

is absent, the arcs are just oriented from one partition (the end node with
smaller index) to the other.

6.4.2 Mapping Back Derived Graph Objects

Synopsis:

class abstractMixedGraph

{

TNode OriginalNode(TNode);

TArc OriginalArc(TArc);

void ReleaseNodeMapping();

void ReleaseArcMapping();

}

When generating graph objects from others, it is sometimes useful to
maintain the mappings of nodes and arcs from the derived to the origi-
nal graph. In principle, this information can be accessed by the methods
OriginalNode() and OriginalArc().

However, these mappings must be generated explicitly by the construc-
tor option OPT_MAPPINGS and only few classes implement this option yet
now. Even more, the mappings are invalidated by every node or arc dele-
tion operation. If there is no predecessor in the original graph, or if no
mappings are available, NoNode (NoArc) is returned.

6.4.3 Line Graphs and Truncation of the vertices

Include file: sparseGraph.h

Synopsis:

58

CHAPTER 6. GRAPH OBJECTS 6.4. DERIVED PERSISTENT OBJECTS

class lineGraph : public graph

{

lineGraph(abstractMixedGraph &,TOption option = 0);

}

class planarLineGraph : public graph

{

planarLineGraph(abstractMixedGraph &,

TOption option = 0);

}

class vertexTruncation : public graph

{

vertexTruncation(abstractMixedGraph&,TOption = 0);

};

In a line graph the nodes are the arcs of the original graph G, and nodes
are adjacent if and only if the arcs share an end node in the original graph.
The constructor method lineGraph(G) matches this graph-theoretical def-
inition of line graphs.

By the constructor planarLineGraph(G), edges are generated only for
pairs of edges which are neighbors in the incidence lists of G. We refer to
this as planar line graphs since planar input graphs are mapped to planar
graphs by this procedure. More explicitly, the faces are mapped to face of
the same length, and the boundary cycle is directed counter clockwise. The
nodes of the original graph are also mapped to faces where the boundary
cycle is directed clockwise and its length is the degree of the original node.

If G is the surface graph of some non-degenerate polyhedron (all vertices
have degree 3), both definitions coincide. If G is the surface graph of some
regular polyhedron (all faces are equilateral), the planar surface graph has
the same geometric interpretation.

By the constructor vertexTruncation(G), the vertices of the original
graph are also replaced by cycles of the adjacent edges, and these cycles
form faces of the newly generated graph. Other than for the planar line
graph, the original arcs are maintained, and all vertices have degree 3.

Loosely speaking, both planar transformations rasp off the vertices of
the original polyhedron, and the planar line graph is the extremal case where
the original edges collapse the vertices.

0 1

2 3

4 5

6 7

0

1 2

3

4 5

6 7

8

9 10

11

Figure 6.6: A Graph and its Line Graph

6.4.4 Tearing Apart the Regions of a Planar Graph

Include file: sparseGraph.h

Synopsis:

class facetSeparation : public graph

{

enum TOptRotation {

ROT_NONE = 0,

ROT_LEFT = 1,

ROT_RIGHT = 2

};

facetSeparation(abstractMixedGraph&,

59

6.4. DERIVED PERSISTENT OBJECTS CHAPTER 6. GRAPH OBJECTS

TOptRotation = ROT_NONE);

}

This constructor method is another technique to generate regular graphs.

• ROT_NONE: Grow the original nodes to faces of the same degree, and
the original edges to 4-sided faces. The resulting graph is 4-regular.

• ROT_LEFT: As before, but triangulate the faces representing the orig-
inal edges such that every node is incident with exactly one triangu-
lation arc and the resulting graph is 5-regular. Two different trian-
gulations are possible. Choose the one which can be interpreted as
rotating the original faces counterclockwise.

• ROT_RIGHT: Analogous to the ROT_LEFT option but rotate clockwise.

This construction is well-defined for every planar graph. A topologic em-
bedding is provided for the resulting graph.

As an example, if G is a tetrahedron, facetSeparation(G,facetSeparation::ROT_LEFT)
will produce an icosahedron.

6.4.5 Complementary Graph

Include file: sparseGraph.h

Synopsis:

class complementaryGraph : public graph

{

complementaryGraph(abstractMixedGraph &,TOption);

}

The complementary graph is defined on the same node set as the origi-
nal graph, and two nodes are adjacent if and only if they are non-adjacent
in the original graph. Complementary graphs are used to switch between
stable set and clique problems.

Note that the complement of a graph with many nodes but few edges
requires a lot of computer storage.

6.4.6 Dual Graphs

Include file: sparseGraph.h

Synopsis:

class dualGraph : public graph

{

dualGraph(abstractMixedGraph&,TOption = 0);

}

class directedDual : public diGraph

{

directedDual(abstractMixedGraph&,TOption = 0);

}

To generate a dual graph, the input graph must be planar and already pro-
vide a combinatorial embedding. A geometric embedding is not required.
The nodes of the new graph are the regions of the original graph and the
arcs map one-to-one. Nodes are adjacent if and only if the regions share an
arc in the original graph.

Dualization preserves the combinatorial embedding. In particular, the
dual of a dual graph can be computed instantly and the original graph and
combinatorial embedding will result. An existing drawing of the original
graph is translated to the dual graph in a very simple way. This drawing
does not map back to the original drawing and produces edge crossings at
least for the unbounded region.

It is also possible to generate directed dual graphs where the arcs are
oriented as follows:

• Exterior edges of the primal graph are pointing towards the exterior
region.

60

CHAPTER 6. GRAPH OBJECTS 6.4. DERIVED PERSISTENT OBJECTS

• If an interior edge is directed in the primal graph, the dual arc will
cross from the left-hand face to the right-hand face (provided that the
edges are ordered clockwise in the primal graph)

• If an interior edge does not have an explicit orientation, the colours of
its end nodes are compared, and the edge is directed from the smaller
colour index to the higher one.

By this procedure, bipolar digraphs (acyclic digraphs with a unique source
and a unique sink node) are mapped to bipolar dual digraphs. The dual
source and target nodes are available by Source() and Target() for further
processing. These nodes are adjacent by the ExteriorArc().

6.4.7 Spread Out Planar Graphs

Include file: sparseGraph.h

Synopsis:

class spreadOutRegular : public graph

{

spreadOutRegular(abstractMixedGraph&,TOption = 0);

}

This class is intended for displaying regular polyhedra in the plane. The in-
put graph must be planar and already provide a combinatorial embedding.
Furthermore, a spanning tree must be available by the predecessor labels.

The tree edges are replaced by an Hamiltonian cycle in which every of
the former edges occurs twice. The resulting graph is outerplanar with the
new cycle forming the exterior face. The graph is drawn with the specialized
method described in Section 12.7,

Formally, spreadOutRegular objects can be obtained from any planar
graph. But the final drawing step produces readable output only in the
situation of regular polyhedra.

6.4.8 Metric Closure

Include file: denseGraph.h

Synopsis:

class metricGraph : public denseGraph

{

metricGraph(abstractGraph &);

}

This class defines the metric closure of undirected graphs, in which the
length of an arc corresponds to the minimum length of a path in the original
graph. The metric closure is used to generate heuristic hamiltonian cycles
for sparse graphs.

1
1

22

2

11 12

1

Figure 6.7: A Graph and its Metric Closure

6.4.9 Distance Graphs

Include file: denseDigraph.h

Synopsis:

class distanceGraph : public denseDiGraph

{

distanceGraph(abstractMixedGraph &);

}

61

6.4. DERIVED PERSISTENT OBJECTS CHAPTER 6. GRAPH OBJECTS

This is the asymetric counterpart to the metric closure, in which the length
of an arc corresponds to the minimum length of a directed path in the
original (possibly mixed) graph object.

6.4.10 Complete Orientation

Include file: sparseDigraph.h

Synopsis:

class completeOrientation : public diGraph

{

completeOrientation(abstractMixedGraph &G,

TOption options = 0);

TArc OriginalArc(TArc);

}

The complete orientation of a mixed graph is the digraph in which every
undirected edge of the original object is replaced by a pair of antiparallel
arcs. If the optional parameter is OPT_REVERSE, directed arcs are mapped
to a pair of arcs likewise. For every arc a in the orientation, the origin can
be obtained by the call OriginalArc(a).

6.4.11 Induced Orientation

Include file: sparseDigraph.h

Synopsis:

class inducedOrientation : public diGraph

{

inducedOrientation(abstractMixedGraph &G,

TOption options = 0);

}

The complete orientation of a mixed graph is the digraph in which every
undirected edge of the original graph object is oriented from the smaller
node colour index to the higher index. Since edges with equal colour indices
are omitted, this construction can be used to achieve oriented bigraphs. An-
other application is the generation of st-orientations from st-numberings.

6.4.12 Node Splitting

Include file: sparseDigraph.h

Synopsis:

class nodeSplitting : public diGraph

{

nodeSplitting(abstractMixedGraph &,TOption = 0);

}

The node splitting of a mixed graph is similar to its complete orientation.
In addition, every node v of the original graph is replaced by a pair v1, v2

and an arc v1v2 whose capacity bound is the demand of the original node.
Every eligible arc uv in the original graph are represented by the arc u2v1

in the node splitting. Note that the origins of the arcs in a node splitting
cannot be dereferenced.

6.4.13 Tilings

Include file: sparseGraph.h

Synopsis:

class tiling : public graph

{

tiling(abstractMixedGraph &,TOption,TNode,TNode);

}

62

CHAPTER 6. GRAPH OBJECTS 6.4. DERIVED PERSISTENT OBJECTS

A tiling of a given graph consists of several copies of the original. The orig-
inal graph should provide a plane embedding, and the nodes 0,1,2,3 should
form a rectangle with the remaining nodes in the interior. The corner nodes
are identified in the tiling.

By this construction principle, one obtains a series of planar triangulated
graphs each of which has an exponential number of 1-factors and 2-factors,
and also an exponential number of odd cycles.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

Figure 6.8: A Tiling

6.4.14 Split Graphs

Include file: balancedDigraph.h

Synopsis:

class splitGraph : public balancedFNW

{

splitGraph(abstractDiGraph &G,TNode s,TNode t);

TNode Source() {return n-1;};

TNode Target() {return n-2;};

}

Split graphs establish balanced network flow (matching) formulations of or-
dinary st-flow problems with integral capacities. Since matching algorithms
are technically much more complicated than network flow methods, split
graphs are not useful for practical computations but rather for the debug-
ging of matching algorithms.

0 1

23

0

1

2

3

4

5

6

7

89

Figure 6.9: A Digraph and its Split Graph

6.4.15 Subgraph induced by a Node or Arc Set

Include file: mixedGraph.h

Synopsis:

class inducedSubgraph : public mixedGraph

{

inducedSubgraph(abstractMixedGraph&,indexSet<TNode>&,

63

6.4. DERIVED PERSISTENT OBJECTS CHAPTER 6. GRAPH OBJECTS

TOption = OPT_PARALLELS);

inducedSubgraph(abstractMixedGraph&,indexSet<TNode>&,

indexSet<TArc>&,TOption = OPT_PARALLELS);

}

Other than the subgraphs which can be generated by a mixedGraph con-
structor and which map every node of the original graph, this class handles
subgraphs which are induced by a given node set. This node set is passed as
an index set (see Chapter 9 for a description) and may be further restricted
by an arc index set.

More explicitly, the graph inducedSubgraph(G,V,A,opt) consists of all
nodes in the index set V . Only the original arcs in A are mapped, namely iff
both end nodes are in V . If no arc set A is specified, the resulting induced
subgraph is as in the literature.

If the option OPT_PARALLELS is specified or if the parameter opt is omit-
ted, parallel arcs are allowed. Otherwise, some minimum length edge is
mapped. The other supported options are OPT_NO_LOOPS, OPT_SUB and
OPT_MAPPINGS with the already described semantics.

6.4.16 Bigraph induced by two Node Colours

Include file: sparseBigraph.h

Synopsis:

class inducedBigraph : public biGraph

{

inducedBigraph(abstractMixedGraph&,indexSet<TNode>&,

indexSet<TNode>&,TOption = OPT_PARALLELS);

}

This constructor inducedBigraph(G,U,V,opt)works much like for the pre-
viously described class inducedSubgraph. Two specified node sets U and V
are mapped. Edges are mapped only if one end node is in U and the other

end node is in V and implicitly oriented from U to V then. Both sets must
be disjoint; otherwise an exception ERRejected() is raised. The options
are handled as before.

6.4.17 Colour Contraction

Include file: mixedGraph.h

Synopsis:

class colourContraction : public mixedGraph

{

colourContraction(abstractMixedGraph&,TOption = 0);

}

The nodes of colourContraction(G,opt) are the colour classes of G. That
is, all nodes are mapped and equally coloured nodes of G are mapped to
the same node. Edges are mapped only if the end nodes belong to different
colour classes.

Two options are supported: If the option OPT_PARALLELS is specified,
parallel arcs are allowed. Otherwise, some minimum length edge is mapped.
If the option OPT_SUB is specified, the subgraph data structure is exported
to an own graph object.

6.4.18 Transitive Closure

Include file: sparseDigraph.h

Synopsis:

class transitiveClosure : public diGraph

{

transitiveClosure(abstractDiGraph&G,TOption = 0);

}

64

CHAPTER 6. GRAPH OBJECTS 6.4. DERIVED PERSISTENT OBJECTS

This constructor transitiveClosure(G,opt) copies the input digraph and
augments it by all transitive arcs (whose end nodes are connected by a
directed path with at least two arcs length). The running time is O(nm).
If the option OPT_SUB is specified, the input graph is encoded by the edge
colours.

6.4.19 Intransitive Reduction

Include file: sparseDigraph.h

Synopsis:

class intransitiveReduction : public diGraph

{

intransitiveReduction(abstractDiGraph&,TOption = 0);

}

For a given acyclic digraph G, the constructor intransitiveReduction(G,opt)
determines a maximal subgraph without any transitive and parallel arcs.
The running time is O(nm). If the option OPT_SUB is specified, the in-
put DAG is copied, and the intransitive subgraph is encoded by the edge
colours.

6.4.20 Explicit Surface Graphs

Include file: mixedGraph.h

Synopsis:

class explicitSurfaceGraph : public mixedGraph

{

explicitSurfaceGraph(abstractMixedGraph&,

shrinkingFamily<TNode>&,TFloat*,TArc*);

}

This class has been added for the graphical tracing of the Edmonds’ span-
ning arborescence method only. In a future release, it may also be used to
trace matching algorithms.

The constructor parameters are the digraph for which the arborescence
is computed, the current shrinking family, the modified length labels and
the predecessors of the original digraph.

6.4.21 Voronoi Diagram

Include file: sparseGraph.h

Synopsis:

class voronoiDiagram : public graph

{

voronoiDiagram(abstractMixedGraph&);

~voronoiDiagram();

TFloat UpdateSubgraph();

}

This class has been introduced for the Mehlhorn Steiner tree Heuristic.
Other applications seem obvious, especially to the T -join solver. The name
indicates a relationship to the well-known geometric structure, but do not
confuse both notions.

The constructor method generates a copy of the given graph in which
the node sets of the partition data structure are contracted. The mapping
of the nodes and edges is preserved transparently.

The procedure assumes that in the original graph the predecessor la-
bels form partial trees which span the node partition sets and which are
rooted at some terminal node (see Section 13.19. The needed data struc-
tures for the original graph are implicitly set up by calling the method
VoronoiRegions(). By that, the partial trees consist of shortest paths,
corresponding distance labels are given, and hence the transformed graph
edges are shortest paths between different terminal node.

65

6.4. DERIVED PERSISTENT OBJECTS CHAPTER 6. GRAPH OBJECTS

The method UpdateSubgraph() considers the predecessor arcs of the
transformed graph and maps them back to paths in the original problem
instance. The result is a subgraph, not a set of modified predecessor labels!

6.4.22 Triangular Graphs

Include file: sparseGraph.h

Synopsis:

class triangularGraph : public graph

{

triangularGraph(TNode,TOption,

goblinController & = goblinDefaultContext);

}

The nodes of a triangular graph are the 2-element subsets of a finite
ground set. Two nodes are adjacent if they have an element in common.
Triangular graphs are interesting for their regularity.

Figure 6.10: A Triangular Graph

66

CHAPTER 7. ITERATORS ITERATOR OBJECTS

Chapter 7

Iterators

An iterator is an object which allows to access listed information which is
encapsulated into another data object. In the context of graphs, an iterator
supplies with a stream of incident arcs for each of the nodes.

7.1 Incidence Lists

Include file: abstractMixedGraph.h

Synopsis:

class abstractMixedGraph

{

TArc First(TNode);

TArc Right(TNode,TArc);

};

Node incidence lists are implicitly defined by the methods First and Right

which are available in arbitrary graphs, but implemented differently. In any
implementation, the method call First(v) should return an arbitrary arc
with start node v, and the call Right(u,a) should return an arc which has

the same start node as a, namely the node u. The repetition of the start
node is needed to improve the efficiency of the iterator oprations.

Moreover, node incidence lists must be circular, and contain all arcs
which have the same start node. That is, for every pair a1, a2 of arcs with
common start node a1 must be derefencable from a2 by the method Right.

The method name Right may suggest that one traverses the node inci-
dences clockwise. In fact, this makes sense for sparse graphs embedded in
plane. The most algorithms which run on planar graphs require that Right
provides a combinatorial embedding of the graph.

Accordingly, the method Left which is available for sparse graph ob-
jects, supplies with reverse incidence lists. In the mentioned cases, Left

defines a combinatorial embedding and traverses the node incidences anti-
clockwise.

7.2 Iterator Objects

Include file: goblinIterator.h

Synopsis:

class goblinIterator : public virtual goblinDataObject

{

goblinIterator(abstractMixedGraph &)

void Reset() = 0;

void Reset(TNode) = 0;

TArc Read(TNode) = 0;

TArc Peek(TNode) = 0;

void Skip(TNode) = 0;

bool Active(TNode) = 0;

}

Node incidences may either be accessed directly using the methods First

and Right, or by an iterator object which has some advantages:

67

IMPLICIT ACCESS CHAPTER 7. ITERATORS

• The code looks more tidy, more like a high-level description.

• There is a mechanism for caching iterator objects. By that, the fre-
quency of memory allocation and deallocation operations is reduced.

• Development is speeded up since memory faults can be avoided.

The possible iterator methods can be described within a few words: The
method Reset is used to reinitialize incidence streams, either of a single
node or the whole node set.

The method Active checks if there are unread incidences of a given
node. In that case, the methods Read and Peek return such an unread
incidence. Otherwise, Read and Peek throw an exception ERRejected.

The difference between Read and Peek is that the latter method does
not mark any incidences unread. To do this explicitly, that is, to proceed
in the incidence list, one calls Skip. A statement a = I.Read(v) does the
same as the sequence a = I.Peek(v); I.Skip(v).

Example:

...

goblinIterator *I = new goblinIterator(G);

TFloat L = -InfFloat;

for (v=0;v<G.N();v++)

while (G.Dist(v)<InfFloat && I->Active(v))

{

a = I->Read(v);

TNode w = G.EndNode(a);

if (G.Dist(w)<InfFloat && G.Length(a)>L)

L=G.Length(a);

};

delete I;

...

determines the maximum length of an arc spanned by the nodes with finite
distance labels in the graph G. Note that this code is optimal only if the
node set is rather small.

7.3 Implicit Access

Include file: abstractMixedGraph.h

Synopsis:

class abstractMixedGraph

{

THandle Investigate();

goblinIterator & Iterator(THandle);

void Reset(THandle,TNode=NoNode);

TArc Read(THandle,TNode);

bool Active(THandle,TNode);

void Close(THandle);

void ReleaseIterators();

};

Node incidences are accessed by iterators. This may be done explicitly as
described in the previous section. There is, however, an equivalent formu-
lation where all iterator functionality is encapsulated into the referenced
graph object:

Example:

...

TFloat L = -InfFloat;

THandle H = G.Investigate();

for (v=0;v<N();v++)

while (G.Dist(v)<InfFloat && G.Active(H,v))

{

a = G.Read(H,v);

TNode w = G.EndNode(a);

if (G.Dist(w)<InfFloat && G.Length(a)>L)

L=G.Length(a);

};

68

CHAPTER 7. ITERATORS IMPLEMENTATIONS

Close(H);

...

The latter approach requires additional effort for dereferencing the iterator.
The benefit is caching of the ’used’ iterator which effectively decreases the
effort of memory allocation and defragmentation.

The method Investigate() returns a handle to an iterator object. If
there is a cached iterator, the cached object is initialized, and the handle is
returned. Otherwise a new iterator is allocated and assigned to a handle.

The method Close(THandle) finishes a graph search. If the cache space
is exhausted, the iterator is disallocated. Otherwise the iterator object is
cached, and can be reused later. If the Close statement is omitted, GOBLIN
will return an error when the referneced graph object is deleted.

The method RelaseIterators() deletes all cached iterator objects.
This method is called by destructor methods automatically. The Reset,
Read and Active operations work just as if the iterator would be accessed
directly.

The most efficient way to work with iterators is to combine the caching
functionality with explicit access as described in the previous section. This
is accomplished by the method Iterator(THandle) which returns the ad-
dress of the iterator object associated with some handle.

7.4 Implementations

Include files: abstractMixedGraph.h, auxiliaryNetwork.h, surfaceGraph.h

Synopsis:

class abstractMixedGraph

{

virtual goblinIterator * NewIterator();

};

Just as graph objects, GOBLIN iterators are polymorphic. There
is, however, the class iGraph which supplies with iterators for

most graph objects. Such an iterator is returned by the method
abstractMixedGraph::NewIterator() and utilizes the methods First and
Right which have been discussed before.

Under some circumstances, the methods First and Right do not pro-
vide an efficient implementation. For this reason, surface graphs and layered
auxiliary networks implement own iterators which keep some temporary in-
formation.

Accordingly, the method NewIterator is overloaded in order to supply
Investigate with a proprietary iterator object.

69

7.4. IMPLEMENTATIONS CHAPTER 7. ITERATORS

70

CHAPTER 8. EXPLICIT DATA STRUCTURES EXPLICIT DATA STRUCTURES

Chapter 8

Explicit Data Structures

This chapter describes the GOBLIN classes which are data structures
in the usual sense and for some of which equivalent data structures can
be found in the C++ standard template library (STL). The template data
structures which are discussed here support the GOBLIN memory manage-
ment and tracing functionality.

In general, the template parameter <TItem> has to be integral and the
GOBLIN library file contains template instances for the types TNode and
TArc. To generate additional template instances, one may include the cor-
responding .cpp file directly.

36

40

24

83

90

8136

18

29

24

83

96

29 89

44

49 98

6053

Figure 8.1: Fibonacci Heaps

8.1 Container Objects

Include file: goblinQueue.h

Synopsis:

template <class TItem,class TPriority>

class goblinContainer : public virtual goblinDataObject

{

virtual void Init() = 0;

virtual void Insert(TItem,TKey) = 0;

virtual void ChangeKey(TItem,TKey) = 0;

virtual TItem Delete() = 0;

virtual TItem Peek() = 0;

virtual bool Empty();

virtual TItem Cardinality() = 0;

71

8.1. CONTAINER OBJECTS CHAPTER 8. EXPLICIT DATA STRUCTURES

}

Container objects are either set or multiset objects. One can also classify
containers into queues, stacks and priority queues by the order in which
elements can be deleted.

The members of a container are TItem objects which are inserted and
deleted by the listed prototype methods. The second template parameter
TKey is the optional priority of the members of a priority queue. It is de-
clared in a more general context to preserve compatibility among the various
container classes. The same holds for the operation ChangeKey.

Example:

...

binaryHeap<TArc,TFloat> Q(M());

for (a=0;a<M();a++) Q.Insert(a,Length(2*a));

while (!Q.Empty())

{

a = Q.Delete();

...

}

effectively sorts the arcs of a graph object by their length labels. This is
simply done by putting the arcs on a priority queue from where they are
taken for further processing.

All GOBLIN container classes are defined by templates. That is, the
member type TItem is abstract. This type is not resolved at run time, but
by the C++ compiler.

In our example, the template instance binaryHeap<TArc,TFloat> can
be already found by the linker in the library goblin.a. If no pre-compiled
code would be available, one would include binheap.cpp rather than
binheap.h to force the compiler to generate such code.

A container may be dynamic where every member is represented by an
individual struct object. Otherwise the container is static, and all members

are represented by arrays which are maintained during the entire lifetime of
the container object. The latter concept has some serious drawbacks:

• The member type TItem must be integral. That is, the members are
indices rather than objects.

• No repetitions are allowed. That is, static containers are set objects
rather than multisets.

• A maximum index must be passed to the constructor which determines
the size of all arrays encapsulated into the set object.

Note that a static data structure is adequate in the example from above.
Even if inefficient, static sets may be useful during the testing phase of an
algorithm to detect unwanted repetitions, and can be replaced by a dynamic
structure in the final version.

For static containers, one can check efficently if an item is missing
(IsMember()). Furthermore, static containers may share memory with other
containers. However, it must be clear that all these sets are disjoint:

Example:

...

staticQueue<TNode,TFloat> **Q

= new staticQueue<TNode,TFloat>*[n];

Q[0] = new staticQueue<TNode,TFloat>(n);

for (v=1;v<n;v++)

Q[v] = new staticQueue<TNode,TFloat>(Q[0]);

for (v=1;v<n;v++)

Q[d[v]] -> Insert(v);

...

These lines of code form part of the Micali/Vazirani algorithm which
distributes the node set of a balanced flow network over all queues
Q[0],Q[1],...,Q[n-1]where Q[i] consists of the node with distance label
i. In this special situation, the static implementation is indeed the most
efficient data structure.

72

CHAPTER 8. EXPLICIT DATA STRUCTURES DISJOINT SET SYSTEMS

Every container object can be ’emptied’ by the method Init(). This
is particularly useful for static implementations. One could also think of
some caching mechanism of dynamic queue member objects, but this is not
implemented yet.

8.1.1 Queues

Include files: staticQueue.h, staticQueue.cpp, dynamicQueue.h, dynamicQueue.cpp

Queues are container objects which follow the first-in first-out principle
principle. There are two implementations: The class staticQueue which
models sets, and the class dynamicQueue which models multisets.

For both classes, the GOBLIN library contains precompiled code for the
template instances <TNode,TFloat> and <TArc,TFloat>. Note that the
choice of TKey is immaterial to some extent. Except for the construction of
a static queue and the destruction of a dynamic queue, all operations are
elementary, that is, they take O(1) time.

8.1.2 Stacks

Include files: staticStack.h, staticStack.cpp, dynamicStack.h, dynamicStack.cpp

Stacks are container objects which follow the last-in first-out principle.
There are two implementations: The class staticStack which models sets,
and the class dynamicStack which models multisets.

For both classes, the GOBLIN library contains precompiled code for the
template instances <TNode,TFloat> and <TArc,TFloat>. Again, the choice
of TKey is immaterial. Except for the construction of a static stack, and the
destruction of a dynamic stack, all operations are elementary.

8.1.3 Priority Queues

Include files:

basicHeap.h, basicHeap.cpp, binaryHeap.h,

binaryHeap.cpp, fibonacciHeap.h, fibonacciHeap.cpp

Synopsis:

template <class TItem,class TKey>

class goblinQueue : public virtual goblinDataObject

{

void Insert(TItem,TKey);

TKey Key(TItem);

void ChangeKey(TItem,TKey);

};

Priority queues are container objects to which TItem objects are added to-
gether with a specific priority. The item to be deleted is the set member
with the highest priority. This value is usually called the key of an item,
a notation which is somewhat misleading since two members may have the
same priority.

GOBLIN priority queues are all static and differ only by their run time
behaviour. From a theoretical point of view (only), a fibonacciHeap per-
forms better than a binaryHeap which in turn performs better than a
basicHeap object in general. Binary and Fibonacci heaps can be traced
graphically, see Section 14.5 for some details.

8.2 Disjoint Set Systems

Include file: abstractFamily.h

Synopsis:

template <class TItem>

class goblinDisjointSetSystem : public goblinDataObject

{

73

8.2. DISJOINT SET SYSTEMS CHAPTER 8. EXPLICIT DATA STRUCTURES

virtual void Bud(TItem) = 0;

virtual void Merge(TItem,TItem) = 0;

virtual TItem Find(TItem) = 0;

virtual bool Reversible() = 0;

};

Disjoint set systems are objects which have been designed to perform a so-
called union-find process on the node set of a graph object. This process
is fully described by the listed operations.

The call Bud(v) creates a single node set containing v, while Merge(u,v)
effectively merges the sets containing u and v into a single set. Each of these
operations is elementary, that is, it requires a constant amount of time.

The call Find(v) returns the set containing the node v in terms of a
canonical element. That is, sets are identified with one of their elements.
To check whether u and v are in the same set, one would evaluate the ex-
pression Find(u)==Find(v).

Example:

...

goblinSetFamily<TNode> F(n);

for (v=0;v<n;v++) F.Bud(v);

for (a=0;a<m;a++) F.Merge(StartNode(a),EndNode(a));

return F.Find(x)==F.Find(y);

...

determines the connected components of a graph, and checks whether x and
y are in the same component. The running times of a Find(v) operation
are implementation dependent.

Disjoint set families can be traced graphically, see Section 14.5 for some
more details. The method Reversible() helps to distinguish the two avail-
able implementations at run time. The notation refers to the fact that
shrinking families allow to expand sets in the reverse order.

8.2.1 Static Disjoint Set Systems

Include files: setFamily.h, setFamily.cpp

A Find(v) operation runs in O(1) amortized time. That is, the running time
can be considered constant if the the total number of Finds is large enough.
If the number m of Finds is small, a worst-case bound is O(α(m,n)) where
α denotes some inverse of the Ackermann function. In practice, Find(v)
operations can be considered to be elementary operation.

This data structure is particularly useful for non-weighted matching al-
gorithms.

8.2.2 Shrinking Families

Include files: shrinkingFamily.h, shrinkingFamily.cpp

Synopsis:

template <class TItem>

class shrinkingFamily: public goblinDisjointSetSystem<TItem>

{

shrinkingFamily(TItem,TItem,

goblinController &thisContext=goblinDefaultContext);

void Bud(TItem);

TItem MakeSet();

void Merge(TItem,TItem);

void FixSet(TItem);

bool Top(TItem);

TItem Set(TItem);

TItem First(TItem);

TItem Next(TItem);

74

CHAPTER 8. EXPLICIT DATA STRUCTURES HASH TABLES

void Split(TItem);

void Block(TItem v);

void UnBlock(TItem v);

}

This data structure is required for weighted matching solvers and the min-
imum spanning arborescence method. Beside the inherited functionality, it
allows to split a set S into the subsets which previously were merged into
S. Actually there is a lot of new functionality associated with the class
shrinkingFamily:

We first mention that a constructor call shrinkingFamily(k,l,...)
specifies two dimensions k and l. The constructed shrinking family has k+ l
elements where the indices 0, 1, . . . , k − 1 represent real items whereas the
indices k, k + 1, . . . , k + l − 1 represent sets, called virtual items.

A Find(v) operation runs in O(log n) time in the worst case. The oper-
ations Block(w) and UnBlock(w) split and then shrink a virtual item again.
They are needed for the construction of augmenting paths in the primal-
dual method for weighted matching problems. The calls to Block(w) and
UnBlock(w) take O(n log n) time alltogether for one augmenting path com-
putation.

8.3 Hash Tables

Include file: hashTable.h

Synopsis:

template <class TItem,class TKey>

class goblinHashTable : public goblinDataObject

{

goblinHashTable(TItem,TItem,TKey,goblinController &);

TKey Key(TItem);

void ChangeKey(TItem,TKey);

}

A hash table is a data structure which allows to store a sparse vector or
matrix, say of length r in an array whose dimension is proportional to the
maximal number l of non-zero entries. Actually, the size of the hash table
is not l but some number s > l.

The definition of a hash table includes the choice of k, a hash func-
tion which maps the index set {0, 1, . . . , r − 1} onto the {0, 1, . . . , s− 1} so
that the preimages of any two indices have approximately equal size, and
a strategy for resolving collisions between two indices which need to be
stored but which have the same image.

In the class goblinHashTable, collisions are resolved by search-
ing through implicit set objects which model the images, the hash
value is the remainder modulo s and s = 2l. The constructor call
goblinHashTable(r,l,k0,...) specifies the dimensions r, l and a default
value k0 for the vector entries.

There are only two operations to be described here: A statement Key(i)
returns the current vector entry at index i, and statement ChangeKey(i,k)
would change this vector entry to k. In practice, only a few collisions occur
so that one can treat these operations as if they were elementary. But note
that Key and ChangeKey operations take O(s) steps in the worst case.

A drawback of hash tables is that the number l must be known a priori
or reallocations occur. Two main applications of hash tables in GOBLIN
are adjacency matrices of sparse graphs and sparse subgraphs (matchings,
paths, trees) of geometrical graphs. Here, the maximum size can be easily
determined. Additionally, sparse matrices are implemented by hash tables.

The template parameter TItem must be an unsigned integer type but
there are no restrictions about the data type TKey.

75

8.4. DICTIONARIES CHAPTER 8. EXPLICIT DATA STRUCTURES

8.4 Dictionaries

Include file: dictionary.h

Synopsis:

template <class TKey>

class goblinDictionary : public goblinDataObject

{

goblinDictionary(TIndex,TKey,goblinController&);

TKey Key(char*,TIndex = NoIndex);

void ChangeKey(char*,TKey,TIndex = NoIndex,

TOwnership = OWNED_BY_RECEIVER);

}

A dictionary is the pendant of an hash table which maps arbitrary C
strings to values of an unspecified type TKey. This data structure is obvi-
ously needed to compute object indices from a tuple of node, arc or variable
labels.

The constructor call goblinDictionary(l,k0,CT) sets the default value
k0 and the maximum number of non-zero entries l. The retrieval operation
Key(pStr,i) takes a string and an optional object index to compute a
hash value. That is, dictionaries do not only apply to the inverse mapping
problem but also to support free style node and arc labels. For the first ap-
plication, no index is specified at all. In the second case, an index denotes
an arc or node and a missing index denotes a constant arc or node labelling.

Since references are used, ChangeKey(pStr,k,i,tp) operations specify
if the dictionary shall work with a copy of the look-up string or if the string
ownership moves to the dictionary.

8.5 Matrices

Include file: matrix.h

Synopsis:

template <class TItem,class TCoeff>

class goblinMatrix : public virtual goblinDataObject

{

goblinMatrix(TItem,TItem) throw();

TItem K();

TItem L();

void Transpose();

virtual void SetCoeff(TItem,TItem,TCoeff) = 0;

virtual TCoeff Coeff(TItem,TItem) = 0;

void Add(goblinMatrix&);

void Sum(goblinMatrix&,goblinMatrix&);

void Product(goblinMatrix&,goblinMatrix&);

void GaussElim(goblinMatrix&,TFloat=0);

}

GOBLIN matrices are declared with two template parameters. The first
parameter TItem specifies the type of row and column indices, the second
TCoeff specifies the type of the matrix entries. The only precompiled tem-
plate instance uses TIndex indices and TFloat coefficients.

There is a base class goblinMatrix which declares the mathemat-
ical functionality, and two implementational classes denseMatrix and
sparseMatrix which merely have to implement the methods Coeff() and
SetCoeff(). The sparse implementation is based on hash tables.

Each matrix has a row dimension K() and a column dimension L(). Ma-
trices can be transposed implicitly by using Transpose() without affecting
the physical representation.

The very basic matrix algebra is implemented by the methods Add(),
Sum() and Product(). The adressed matrix object denotes the place where

76

CHAPTER 8. EXPLICIT DATA STRUCTURES 8.5. MATRICES

the results are stored. Either two input matrices are passed as parameters
or the adressed matrix also acts as an input. The running time complexities
are O(kl) and O(klm) where m denotes the number of right-hand columns.

The method GaussElim() applies to squares matrices only and tries to
solve a linear equation system where the matrix parameter acts as the right-
hand side. The second parameter denotes the absolut value at which matrix
entries are treated as zero. If omitted, the context parameter epsilon is
used. Of course, both matrices must have compliant dimensions.

Be aware that both input matrices are manipulated by the method. If
the initial left-hand matrix is regular, it is transformed to the identity. If
the right-hand matrix is a column vector, it is transformed to the unique
solution vector. By passing a right-hand identity, the left-hand matrix is
effectively inverted. If the initial left-hand matrix is singular, an exception
is thrown without reaching a triangular left-hand form.

Since the method indeed implements Gauss elimination, the complexity
is O(k2(k+l)) where k denotes the left-hand dimensions and l is the number
of right-hand columns.

The matrix functionality may increase in future, but only to speed up
certain high-level operations. It is not planned to grow a linear algebra
package.

77

8.5. MATRICES CHAPTER 8. EXPLICIT DATA STRUCTURES

78

CHAPTER 9. INDEX SETS INDEX SETS

Chapter 9

Index Sets

Index sets encode lists of integers which refer to node or arc indices in a
graph or to rows or columns in an LP object. Other than the container
objects which have been described in the previous chapter, an index set is
basically determined by its constructor call. It is not possible to manipulate
the content or order of indices.

The general purpose of index sets is to supply high-level algorithms with
input data. The concept is related to STL iterators, though, not as elaborate
and, currently, with only few applications. What is passed to algorithms,
in the STL language, are rather containers than iterators.

There are basic class templates to specify all, none or single indices of
an interval [0, 1, . . . , r − 1]. But there are also classes to collect all graph
entities with a specific property.

9.1 Interface

Include file: indexSet.h

Synopsis:

template <class TItem>

class indexSet

{

virtual bool IsMember(const TItem) const = 0;

virtual TItem First() const;

virtual TItem Successor(const TItem) const;

}

All index sets provide the following operations:

• IsMember(i) checks if the index i is in the set.

• First() returns a contained index if one exists, and an arbitrary index
out of range otherwise.

• Successor(i) returns the successor of index I in an arbitrary but
fixed ordering of all contained indices, and an arbitrary index out of
range for the final index in that list.

When inheriting from this base class, it is mandatory to implement
IsMember(). It is recommended to reimplement First() and Successor()

whenever it is possible to enumerate the contained indices more efficiently
than enumerating all indices in range (as the default codes do).

9.2 Templates

Include file: indexSet.h

Synopsis:

singletonIndex(TItem,TItem,

goblinController& = goblinDefaultContext);

fullIndex(TItem,goblinController& = goblinDefaultContext);

voidIndex(TItem,goblinController& = goblinDefaultContext);

These three class templates are almost self explanatory: TItem represents
the template parameter, that is the type of indices. The constructors require
to specify an index range by a TItem valued bound. For example,

79

GRAPH BASED IMPLEMENTATIONS CHAPTER 9. INDEX SETS

fullIndex<TArc>(G.M())

denotes the entire arc set of graph G. And

singletonIndex<TNode>(G.Root(),G.N())

denotes a set of nodes in the same graph, consisting of the predefined root
node.

All classes implement the methods First() and Successor() in the
obvious, efficient way.

9.3 Graph Based Implementations

Include file: abstractMixedGraph.h

Synopsis:

demandNodes(abstractMixedGraph&);

colouredNodes(abstractMixedGraph&,TNode);

colouredArcs(abstractMixedGraph&,TArc);

Include file: abstractDigraph.h

Synopsis:

supersaturatedNodes(abstractDiGraph&);

deficientNodes(abstractDiGraph&);

Again, the purpose of the listed classes is the obvious. But other than the
basic templates described in the previous section, enumeration of the ’good’
indices is not really efficient; the default implementations of the base class
apply. No lists of ’good’ indices are allocated!

If lists are read more than once, it is worth to generate a container object
with the same content and to use this as an index set.

9.4 Containers as Index Sets

Include file: staticQueue.h, staticStack.h

Sometimes, it makes sense to use containers as index sets:

• There is no predefined index set with the desired property or this set
must be post-processed.

• As pointed out in the previous section, if an index set has few elements
compared with the value range, it may be inefficient to enumerate its
indices several times. Exporting the indices to a container prevents
from searching deselected indices.

• In particular, when the index range is divided in different sets, contigu-
ous memory containers may operate on the same chunk of memory.

Using containers as index sets has the following limitations:

• Adding or deleting items from a container can invalidate running
enumeration processes.

• Only the classes staticQueue and staticStack provide the index set
functionality. Node based containers potentially repeat indices, and
elements may be of a non-integral data type also.

80

CHAPTER 10. BRANCH AND BOUND BRANCH AND BOUND

Chapter 10

Branch and Bound

Branch and bound is a strategy for solving hard integer optimization
problems, not only for problems on graphs. The basic concept is combina-
torial and does not involve LP formulations.

The GOBLIN branch and bound module operates on vectors of a spec-
ified dimension. To the vector components, we refer as the problem vari-
ables. These variables have values of a scalar type TObj and are indexed
by values of an integer type TIndex. Initially, there are certain upper and
lower integer bounds on the problem variables, but the concrete bounds,
variable values and the objective function are unknown to the branch and
bound module.

In order to derive a solver for a specific integer programming problem,
basically the following must be supplied:

• A fast method which solves a relaxed problem to optimality and
returns the objective value. That is, an easier problem with fewer
restrictions is solved instead of the original problem.

• A method to decide if a given integral vector is feasible for the origi-
nal problem. This is the only way for the branch and bound module
to get access to the combinatorial structure of a specific optimization
problem.

• Code to tighten the bounds of problem variables. The generic solver
changes only one variable bound at a time, but efficient implemen-
tations derive benefit from the combinatorial structure and implicitly
restrict further variables.

To the relaxed problem instance, together with the original variable bounds,
we refer as the root node (of the binary branch tree which is generate as
follows).

The branch and bound scheme adds this root node to a list of active
branch nodes or subproblems, and then iteratively deletes one of the
active nodes and splits it into two new subproblems by putting disjoint
bounds on one of the problem variables. For these new branch nodes, a re-
laxation is solved which either yields the optimal objective or an infeasibility
proof for the relaxed subproblem.

Newly generated branch nodes which admit feasible solutions (for the
relaxed subproblem) and objective values not exeeding the best known ob-
jective of a feasible solution (for the original problem), are added to the list
of active branch nodes.

Sometimes, the optimal solution of a relaxed subproblem is feasible for
the original problem and improves the best known solution. Then the new
solution is saved (after some post optimzation steps); and the new bound
decreases the number of active subproblems.

Implementing a branch and bound solver means implementing a class
for the branch nodes which occur. From this class, the root nodes are
explicitly instanciated and passed to the branchScheme constructor which
internally performs the branching operations. That is, the branch nodes
keep the problem dependent information, and the branch scheme models
the problem independent data and methods.

10.1 Branch Nodes

Include file: branchScheme.h

Synopsis:

81

10.1. BRANCH NODES CHAPTER 10. BRANCH AND BOUND

template <class TIndex,class TObj>

class branchNode : public goblinDataObject

{

branchNode(TIndex,goblinController&,

branchScheme<TIndex,TObj>* = NULL);

TObj Objective();

virtual bool Feasible();

TIndex Unfixed();

virtual TIndex SelectVariable() = 0;

enum TBranchDir {LOWER_FIRST=0,RAISE_FIRST=1};

virtual TBranchDir DirectionConstructive(TIndex) = 0;

virtual TBranchDir DirectionExhaustive(TIndex) = 0;

virtual branchNode<TIndex,TObj>* Clone() = 0;

virtual void Raise(TIndex) = 0;

virtual void Lower(TIndex) = 0;

virtual TObj SolveRelaxation() = 0;

virtual TObjectSense ObjectSense() = 0;

virtual TObj Infeasibility() = 0;

virtual void SaveSolution() = 0;

virtual void LocalSearch() {};

}

This class describes the interface between the generic branch scheme and
the problem dependent branch nodes. In order to implement a concrete
branch and bound solver, one just defines a subclass of branchNode which
implements all listed prototypes. We describe all methods in the order of
occurence in the branch scheme.

The method SelectVariable() returns the index i of a problem vari-
able for which the lower and the upper bound still differ and which is relevant
in the following sense: The current variable value is non-integral, or restrict-
ing this variable promises a large change of the optimal objective in one of
the new subproblems, and a feasible solution in the other subproblem.

To generate the two new subproblems, the branch scheme first calls
Clone() which returns a copy of the branch node which is currently ex-
panded. Then, Lower(i) is called for the original, and Raise(i) is called
for the clone. This restricts the value of the variable i to disjoint intervals
in both subproblems. To the new problems, we refer as the left and the
right successor. The parent node is not needed any longer!

The methods DirectionConstructive() and DirectionExhaustive()

tell the branch scheme which of the two new subproblems is inspected first.
A return value RAISE_FIRST causes that the left subproblem is inspected
first. Note that DirectionConstructive() is called before the first feasible
solution for the original problem is found; and DirectionExhaustive() is
called afterwards.

Then, the branch scheme evaluates the left and the right subproblem
using the following methods:

• SolveRelaxation() actually computes the objective value for the re-
laxed subproblem while Objective() retrieves the cached objective
value when possible. The objective value is compared with the class
constant Infeasibility() in order to detect infeasible relaxed sub-
problems. It is not allowed that SolveRelaxation() operates on the
original graph or LP data structures since these are needed to save
the best solution found so far.

• ObjectSense() is a class constant and specifies either a maximization
or minimization problem.

• Unfixed() returns the number of variables for which the lower and
the upper bound still differ. A subproblem with Unfixed()==0 must
be either feasible for the original problem or infeasible for the relax-

82

CHAPTER 10. BRANCH AND BOUND GENERIC ALGORITHM

ation. For all other subproblems, let SelectVariable() return some
branching variable.

• Feasible() checks if the optimal solution returned by
SolveRelaxation() is feasible for the original problem. The default
implementation considers every fixed solution to be problem-feasible.

• If the relaxed optimum is feasible and improves the best known solu-
tion for the original problem, then SaveSolution() is called in order
to send this solution to the original graph or LP data structures. It
is useful to implement LocalSearch() such that a post optimization
procedure is applied to all saved solutions. This local search method
should be defined for the hidden graph objects rather than the branch
nodes so that it can be used independently from branch and bound.

1

1

2

2

5
5

8
8

8
8

4
4

3
3

0

12

34

56

78 910

1112

1314

Figure 10.1: A Branch Tree

Nothing else is needed for an executable branch and bound solver. With
respect to efficiency, the following should be kept in mind:

• Let the branch nodes consume as few as possible memory if you want
to solve large scale instances with optimality proof. In the constructive
mode, the number of active nodes is somewhat like the DFS search
depth and memory usage is not the most important issue.

• The tradeoff between the running times and the obtained objective of
SolveRelaxation() can be bothering. It depends on the DFS search
depth and hence on the instance sizes. Generally, the quality of the
obtained bounds is more important than the running times.

• Consider if LocalSearch() is beneficial. It is not obvious whether
feasible solutions obtained by the branch scheme are locally optimal.
On the other hand, this method will be called only rarely.

10.2 Generic Algorithm

Include file: branchScheme.h

Synopsis:

template <class TIndex,class TObj>

class branchScheme : public goblinDataObject

{

private:

branchNode<TIndex,TObj> *firstActive;

diGraph * Tree;

protected:

void Optimize() throw();

83

10.2. GENERIC ALGORITHM CHAPTER 10. BRANCH AND BOUND

bool Inspect(branchNode<TIndex,TObj> *);

branchNode<TIndex,TObj> *SelectActiveNode();

void QueueExploredNode(branchNode<TIndex,TObj> *);

void StripQueue();

public:

TIndex nActive;

TIndex nIterations;

TIndex nDFS;

bool feasible;

TObj savedObjective;

TObj bestBound;

enum TSearchLevel {

SEARCH_FEASIBLE = 0,

SEARCH_CONSTRUCT = 1,

SEARCH_EXHAUSTIVE = 2};

TSearchLevel level;

branchScheme(branchNode<TIndex,TObj> *,TObj,

TSearchLevel = SEARCH_EXHAUSTIVE);

enum TSearchState {

INITIAL_DFS = 0,

CONSTRUCT_BFS = 1,

EXHAUSTIVE_BFS = 2,

EXHAUSTIVE_DFS = 3};

TSearchState SearchState();

unsigned long Size();

unsigned long Allocated();

};

Once a class of branch nodes is available, the application of the branch and
bound algorithm is as simple as possible: Just instanciate the root node
(an object which inherits from branchNode), and then a branchScheme ob-
ject. The branchScheme constructor takes the root node as a parameter and
implicitly calls the solver method Optimize(). As the second constructor
parameter, either pass the objective value of a solution known in advance,
or the Infeasibility() constant if no feasible solution is known.

The Optimize()method consists of the main loop and of iterated calls to
SelectActiveNode() and Inspect(). The method SelectActiveNode()

selects an active subproblem which is split as described in the previous sec-
tion; Inspect() evaluates the new subproblems; and StripQueue() deletes
irrelevant branch nodes when an improving feasible solution is found.

We have already described the problem specific parts of branch
and bound codes, and how these parts apply to the general algo-
rithm. We have seen that the branch strategy is partially con-
trolled by the methods SelectVariable(), DirectionConstructive() and
DirectionExhaustive(). The method SelectActiveNode() contributes
the general strategy of switching between best-first and depth-first steps.
This strategy depends on the specified search level:

• SEARCH_CONSTRUCT: Branching starts with a certain (rather large)
number of DFS steps in order to obtain an initial bound. After that,
series of depth-first steps alternate with a few best-first steps so that
the solver cannot get stuck in non-profitable regions of the branch tree.
When getting close to maxBBNodes, the maximal configured number
of active branch nodes, only DFS steps are performed.

• SEARCH_EXHAUSTIVE: It is assumed that the initial bound is very close
to the optimum. Best-first steps are performed unless the number of

84

CHAPTER 10. BRANCH AND BOUND IMPLEMENTATIONS

active branch nodes is getting close to maxBBNodes*100 (in that case,
DFS steps are performed).

• SEARCH_FEASIBLE: The search strategy is the same as in the
SEARCH_CONSTRUCT case, but the solver stops when the first feasible
solution has been found.

If the number of active nodes exeeds maxBBNodes*100, or if the total number
nIterations of solved subproblems exeeds maxBBIterations*1000, then
the solver halts in any case.

The current state of computation is given by SearchState(). Espe-
cially for SolveRelaxation() codes, it can be useful to retrieve this search
level and to apply a dual bounding procedure which is worse but faster to
compute in the inital DFS phase.

The transitions between the search states depend on the
branchNode::depth parameter which is copied once from the root node
to the branch scheme object. It basically denotes an estimation the depth
of the branch tree. This may be the maximum number of non-zero problem
variables, for example. If this depth is underestimated, the solver may halt
prematurely by reaching the configured maximal number of active branch
nodes; or the constructive DFS search is interrupted before any leaves of
the branch tree have been considered. If the depth is overrated, no best-
first steps can take place. By default, the depth is the number of problem
variables.

Iteration Objective Free Status Best Bound Best Lower Active Select

--

0 -5 12 QUEUED 0 -5 1 DEPTH

1 -4 11 QUEUED 0 -5 1

2 -4 7 QUEUED 0 -5 2 DEPTH

3 -4 6 QUEUED 0 -5 2

4 -4 3 QUEUED 0 -5 3 DEPTH

5 -3 2 QUEUED 0 -5 3

6 -4 1 QUEUED 0 -5 4 DEPTH

7 -3 0 SAVED -3 -5 3

8 -4 0 SAVED -4 -5 3 DEPTH

9 -3 1 CUTOFF -4 -5 2

10 -3 0 CUTOFF -4 -5 2 DEPTH

11 -3 5 CUTOFF -4 -5 1

12 -4 3 CUTOFF -4 -5 1 DEPTH

13 -4 10 CUTOFF -4 -5 0

14 -4 7 CUTOFF -4 -5 0

Figure 10.2: A Branching Protocol

The variable Treemaintains the branch tree which can be displayed graph-
ically. An example of a branch tree can be found in Figure 10.1 and the
corresponding logging information is shown in Figure 10.2. The labels of
the tree nodes denote the iteration number, and the arc labels denote the
branching variable.

10.3 Implementations

10.3.1 Stable Sets

Include file: branchStable.h

In the class branchStable, all problem variables are associated with graph
nodes. Nodes can either be unfixed, selected or excluded. Every time a node
is selected, all of its neighbours are excluded. A node selection corresponds
to a call to Raise(), excluding a node is done by calling Lower().

Let X denote the set of selected nodes and let Γ(X) denote the set of ex-
cluded nodes. The method SelectVariable() returns the index of a node
which has minimum degree in the graph restricted to V \(X∪Γ(X)). By the
definitions of DirectionConstructive() and DirectionExhaustive(),
the selected node is selected first in the DFS search, and then excluded.

The constructor of the root node determines a heuristic clique cover.
This clique cover is maintained for all subproblems. For a given subprob-
lem, the method SolveRelaxation() searches for all cliques which contain
at least one unfixed node. The number of these cliques plus the number of
selected nodes gives an upper bound which is returned.

A possible extension of this class to the weighted stable set problem
seems straightforward and desirable.

85

10.3. IMPLEMENTATIONS CHAPTER 10. BRANCH AND BOUND

10.3.2 Symmetric TSP

Include file: branchSymmTSP.h

In the class branchSymmTSP, all problem variables are associated with graph
edges. Every branch and bound node owns a copy of the original graph
where the some of the arc capacities have been restricted to 0 or 1. More
explicitly, Lower() sets the upper capacity bound to 0 and Raise() sets the
lower capacity bound to 1. A raise operation checks if two incident edges
have been selected for one of the end nodes. Both procedures can reduce
the complexity by implicitly fixing arcs.

The arc returned by SelectVariable() is always in the current 1-tree,
and one of the end nodes has degree higher than 2 in the 1-tree. If possible,
the arc is chosen such that the high degree end node is already adjacent to
a fixed arc. Arcs are selected first in the DFS search, and then excluded.

Figure 10.3: A Candidate Graph

The bounding procedure SolveRelaxation() is as follows: First, it is
checked that for all nodes at most two incident edges have been selected,
and that the subproblem is still 2-connected. If one of these conditions is
violated, InfFloat is returned.

Otherwise, a minimum spanning tree method is called which has been
modified to compute the optimal extension of the selected arcs to a 1-tree.
The used node potentials are inherited from the parent branch node. The
root node for the 1-tree computations is the same for all subproblems.

If methRelaxTSP2>0, if the inital DFS phase has been passed, and if
the the length of the optimal 1-tree does not exeed the feasibility bound,
subgradient optimization is applied to increase the relaxation bound. This
procedure stops immediately, when the 1-tree length exeeds the feasibil-
ity bound. When setting methRelaxTSP2=1, the subgradient method runs
in the fast mode. When setting methRelaxTSP2=2, the number of branch
nodes is minimized.

If the original graph is complete and CT.methCandidates==k where
k ≥ 0, the constructor of the root branch node computes a candidate sub-
graph which consists of

• the current predecessor arcs (usually the best known tour)

• 20 random tours (one should set methLocal==1 to force the tours to
local optimality)

• and the k least cost edges incident with every graph node.

It has been experienced that even for k = 0, often an optimal tour can be
obtained from the candidate graph. A TSP candidate graph is shown in
Figure 10.3.

It is useful to run the branch and bound procedure twice. First, perform
a candidate search with a limit on the number of branch nodes (Take care
that some sequences of best-first steps can occur). Then either run the can-
didate search again (The candidate graph includes the tour found before,

86

CHAPTER 10. BRANCH AND BOUND 10.3. IMPLEMENTATIONS

so the ”good” arcs are accumulated) or run an exhaustive search which can
also improve tours if the gap is small.

Experiments show that the TSP solver is able to evaluate complete
graphs with less than 150 nodes, and to candidate graphs with less than
200 nodes. See the appendix for some computational results.

10.3.3 Asymmetric TSP

Include file: branchAsyTSP.h

Nearly all statements of the previous section also apply to the TSP solver
for directed graphs. However, the applied spanning tree method is much less
performant, and the subgradient optimization is converging slower than in
the undirected setting. Also, only node insertion is available for local search
so that optimal tours are found later. Experiments have turned out that it
is possible to completely evaluate digraphs up to a size of 50 nodes.

10.3.4 Node Colouring

Include file: branchColour.h The class branchColour defines an enumer-
ation scheme rather than a branch and bound solver. That is, the solver
does not minimize the number k of colours but tries to find a k-colouring
for a given number k. The strategy is as follows:

Initially, all nodes are active. Nodes become inactive if they are
coloured or dominated by the current (partial) colouring. Here a node v
is called dominated if every consistent extension of the current colouring
to the active nodes can be extended to v consistently. Some nodes can be
marked dominated a priori. For example, if the graph is planar and k ≥ 6,
then all nodes are marked dominated.

The constructor for the master problem checks if the node colour data
structure of the original graph provides a clique. In the positive case, the
clique nodes are coloured 0, 1, 2, . . . immediately. Otherwise a maximum
degree node is coloured with colour 0, and one of its neighbours is coloured
with colour 1.

Here, SelectVariable() determines the minimum available colour c
and returns an active node u which can be coloured with c. A call Lower(u)
will fix this colour and Raise(u) will forbid this colour for u. The former
method calls SetColour(u,c)which actually fixes the colour of u and checks
for every active neighbour of u if the number of conflicts falls below k. In
that situation, Reduce(u) is called which marks the node as dominated.

The method SolveRelaxation() returns number of colours which are
used in this subproblem or detects infeasibility. If there are nodes for which
only one colour is available, then SetColour() to fix these node colours. If
there are no active nodes left, the dominated nodes are coloured by a call
to the method Complete().

10.3.5 Maximum Cut

Include file: branchMaxCut.h

In a branchMaxCut object, the problem variables represent the nodes of a
graph. A zero value denotes a left hand node, and a value of 2 denotes a
right hand node. A variable value 1 represents a node which is not fixed
yet. Depending on the status of the end nodes, arcs are either selected,
dismissed or unfixed.

In the undirected case, it is possible to extend the partial cut by at least
1/2 of the unfixed edges. To this end, SelectVariable() returns a maxi-
mum capacity unfixed node, and DirectionConstructive() guides a DFS
search to add this node to the more profitable component.

The dual bound computed by SolveRelaxation() counts all selected
and all unfixed edges. This simple bounding procedure performs really poor,
and only allows to evaluate undirected graphs with up to 30 nodes. It is
obvious (but not implemented yet) that the bounds can be improved by
considering odd length cycles and chains of directed arcs.

10.3.6 Mixed Integer Programming

Include file: branchMIP.h

87

10.3. IMPLEMENTATIONS CHAPTER 10. BRANCH AND BOUND

The class branchMIP implements a plain integer branch and bound. That
is, there is no code for cutting plane generation and pool management yet.
The problem variable returned by SelectVariable() has a maximum frac-

tional remainder among all integer variables; and a solution is considered
Feasible() when all fractional remainders fall beyond the context param-
eter epsilon.

88

Part III

Methods

89

CHAPTER 11. PROTOTYPES AND DATA STRUCTURES GRAPH DEFINITION

Chapter 11

Prototypes and Data
Structures

11.1 Graph Definition

In this section, we describe how problem instances, namely graph objects,
are specified in GOBLIN. In Section 11.2, we will also discuss the potential
solutions of graph optimization problems.

We have already mentioned that a class of graph objects may either
represent physical objects or logical views of other data objects. Hence we
are concerned with prototype methods rather than data structures.

11.1.1 Incidences and Adjacencies

Synopsis:

class abstractMixedGraph

{

protected:

goblinHashTable<TArc,TArc> * adj;

public:

virtual TArc First(TNode) = 0;

virtual TArc Right(TArc,TNode) = 0;

virtual TNode StartNode(TArc) = 0;

virtual TNode EndNode(TArc);

virtual TArc Adjacency(TNode,TNode);

void MarkAdjacency(TNode,TNode,TArc);

void ReleaseAdjacencies();

}

Node incidences are the very core of any implementation of graph objects.
They can be accessed by iterator objects which were discussed in Chapter 7
and which in turn require an implementation of the methods First() and
Right() (see Section 7.1 for the details).

In a similar way any graph implementation must provide arc inci-
dences, that are the end nodes of a given arc, by defining a method
StartNode. A call to the generic method EndNode() effectively determines
the start node of the reverse arc. We mention that StartNode() utilizes an
array in sparse graphs, but merely evaluates the arc indices in dense graphs.

Once node and arc incidences are available, GOBLIN can automatically
compute node adjacencies, that are arcs joining two given nodes, by main-
taining an adequate data structure. Hence node adjacencies are not really
graph defining data structures but rather redundant information which can
be generated and disposed dynamically.

The data structure used for node adjacencies is a hash table which is
generated by the first call to Adjacency(). Note that the operations on
this hash table are not bounded polynomially, but the computation of an
adjacency can be practically considered an elementary operation. The gen-
eration of this hash table can be suppressed by disabeling the context flag
methAdjacency.

91

11.1. GRAPH DEFINITION CHAPTER 11. PROTOTYPES AND DATA STRUCTURES

The returned arc is always non-blocking. That is, in digraphs, no back-
ward arcs are returned. If the adjacency is ambiguous (that is, if parallel
arc exist), the returned arc index is the minimal one.

The method call MarkAdjacency(u,v,a) specifies the arc a to be re-
turned by Adjacency(u,v). This is needed to maintain the adjacency table
during graph insertion and deletion operations.

Some classes override the generic implementations of EndNode() and
Adjacency() for reasons of efficiency. In any case, the generic code is help-
ful for the writing of preliminary versions of graph implementations.

11.1.2 Arc Capacities and Node Demands

Synopsis:

class abstractMixedGraph

{

virtual TCap UCap(TArc) = 0;

virtual TCap MaxUCap();

virtual bool CUCap() = 0;

virtual TCap LCap(TArc) = 0;

virtual TCap MaxLCap();

virtual bool CLCap() = 0;

virtual TCap Demand(TNode);

virtual TCap MaxDemand();

virtual bool CDemand();

}

Arc capacities and node demands are numbers which determine the set of
feasible subgraphs respectively flows of a network programming problem.
Although not checked exhaustively in GOBLIN, arc capacities and node
demands are supposed to satisfy some properties:

For digraphs and flow networks, the node demands must resolve, that
is, the sum of demands must be zero. The arc capacities have to be non-
negative, but may be non-integral or even infinite. Needless to say that the
lower bounds should not exeed the respective upper bounds.

For undirected graphs, all arc capacities and node demands must be
non-negative numbers which are either integral or infinite. The sum of the
node demands must be an even number which is at most twice the sum of
the arc capacities.

The methods MaxUCap, MaxLCap, MaxDemand return the respective max-
imum label and the methods CUCap, CLCap, CDemand decide whether the
labels are constant or not.

11.1.3 Length Labels

Synopsis:

class abstractMixedGraph

{

virtual TFloat Length(TArc) = 0;

virtual TFloat MaxLength();

virtual bool CLength() = 0;

}

Length labels install linear objective functions which apply to most kinds of
network programming problems. For physical graph objects, length labels
can either be implemented by a simple array or determined by the geometric
embedding of the graph.

More explicitly, if the context variable methGeometry is zero, length
labels are read from an array data structure. Otherwise a certain metric
of the graph embedding is evaluated. The methods MaxLength return the
maximum length label and the methods CLength, CDemand decide whether
the labels are constant or not.

92

CHAPTER 11. PROTOTYPES AND DATA STRUCTURES 11.1. GRAPH DEFINITION

methGeometry 0 Explicit length labels
1 Manhattan distances
2 Euclidian distances
3 Maximum coordinate distances
3 Spheric distances

Table 11.1: Selection of Length Labels

11.1.4 Geometric Embedding

Synopsis:

class abstractMixedGraph

{

virtual TFloat C(TNode,TDim);

virtual TFloat CMax(TDim);

virtual TDim Dim();

}

Any class may or may not provide a geometrical embedding for their graph
objects. This embedding is needed for the graphical display. In case of
physical graphs, the geometrical embedding may also determine the length
labels.

The method Dim() specifies the dimension of the embedding, that is
the number of coordinates of each graph node. The actual ith coordinate
of the node v can be obtained by C(v,i). A call CMax(i) returns the
maximum extension of the graph in the ith coordinate.

We mention that the graphical display uses the first two coordinates
only, and hence logical views are generally embedded into two-dimensional
space. Note also that the embedding includes the possible arc bend nodes
and the alignment points for arc labels.

11.1.5 Layout

Synopsis:

class abstractMixedGraph

{

virtual TNode NI();

virtual TNode Align(TArc);

virtual bool CAlign();

virtual TNode Interpolate(TNode);

virtual bool CInterpolate();

virtual bool HiddenNode(TNode);

virtual bool HiddenArc(TArc);

}

Here we have listed several graph properties which do not influence the be-
haviour of any problem solver but which are sometimes necessary to enhance
the graphical output.

The boolean functions HiddenNode and HiddenArc suppress the draw-
ing of certain nodes and arcs. The call Align(a) returns the potential first
artificial node for the arc a. Actually, this point determines the alignment
of the arc label. If CAlign() is true, no alignment points and no bend nodes
are present, and the labels are aligned by a generic strategy.

Using Align(a) as the initial point, the ordered list of bend nodes can
be reconstructed by the iterated call of Interpolate. If CInterpolate()
is true, no bend nodes are present, and the graph arcs are simple lines.

The interpolation and alignment points together are the artificial
nodes. The total number of artificial nodes is returned by NI().

So far, the layout of logical views is not too elaborate, in particular, the
definitions of Align and Interpolate are only dummies. In a later release,
these two methods may also control the drawing of graph nodes.

11.1.6 Arc Orientations

Synopsis:

class abstractMixedGraph

{

93

11.2. POTENTIAL SOLUTIONS CHAPTER 11. PROTOTYPES AND DATA STRUCTURES

virtual bool Blocking(TArc) = 0;

}

This functionality is needed to distiguish directed arcs from undirected arcs.
More explicitly, Blocking(a) is true if the arc a is directed, but a backward
arc. In most classes, this method returns a constant, but for physical mixed
graphs the method is the public interface to an array data structure.

11.2 Potential Solutions

11.2.1 Predecessor Labels

Synopsis:

class abstractMixedGraph

{

protected:

TArc * P;

public:

void InitPredecessors();

TArc Pred(TNode);

void SetPred(TNode,TArc);

void ReleasePredecessors();

void WritePredecessors(goblinExport*);

void ReadPredecessors(goblinImport*);

void ExtractTrees();

void ExtractTree(TNode);

TNode ExtractPath(TNode,TNode);

TNode ExtractCycles();

void Extract1Matching();

void ExtractEdgeCover();

}

The general purpose of this data structure is to keep track of paths, cy-
cles, trees and any disjoint collection of such subgraphs with a minimum of
computer storage. Since predecessor labels define arborescences rather than
undirected trees, subgraphs can be searched much faster if they are encoded
into predecessor labels. Hence at least shortest path algorithms and TSP
algorithms depend on this data structure.

There is a public method Pred to read the current predecessor arc of a
given node, and methods SetPred and InitPredecessors which manipu-
late the data structure in the obvious way. In addition, one can assign the
complete set of predecessors with a subgraph present by the subgraph data
structure. There are several such methods each of which requires a special
kind of subgraph:

• ExtractTrees() generates a set of rooted trees covering all graph
nodes and corresponding to the connected components of the sub-
graph. An exception ERCheck is returned if the subgraph contains
cycles.

• ExtractTree(r) generates a tree rooted at r. If the subgraph is dis-
connected or if the subgraph contains cycles, an exception ERCheck

is returned. If the context flag meth1Tree is enabled, a unique cycle
must exist, and r must be on this cycle.

• ExtractPath(u,v) generates a directed path starting at u and ending
at v. An exception ERCheck is returned if u and v are disconnected
in the subgraph of if the connected component of u and v contains
branches, that are nodes with degree at least 3.

• ExtractCycles() generates a set of directed cycles which cover all
graph nodes. Such a subgraph is called a 2-factor. An exception
ERCheck is returned if the original subgraph is not a 2-factor.

94

CHAPTER 11. PROTOTYPES AND DATA STRUCTURES POTENTIAL SOLUTIONS

• Extract1Matching() checks if the arcs of the subgraph are pairwise
non-ajacent. If so, the predecessor labels are assigned with this 1-
matching such that predecessors are always arcs with even indices.
If there are adjacent arcs, an exception ERCheck is returned.

• ExtractEdgeCover() checks if the arcs of the subgraph are pairwise
non-ajacent. If so, the predecessor labels are assigned with this 1-
matching and augmented to an edge cover. If the input subgraph is
a maximum cardinality matching, a minimum edge cover results. The
graph must not have isolated nodes.

• ExtractColours() generates from the node partition data structure
equivalent node colours such that the colour classes occur consecu-
tively.

11.2.2 Subgraphs

Synopsis:

class abstractMixedGraph

{

void InitSubgraph();

void WriteSubgraph(goblinExport*);

void ReadSubgraph(goblinImport*);

virtual void AddArc(TArc,TFloat) = 0;

virtual void OmitArc(TArc,TFloat) = 0;

virtual TFloat Sub(TArc) = 0;

virtual void SetSub(TArc,TFloat);

TCap Cardinality();

TCap Length();

void AddToSubgraph(TNode = NoNode);

}

A subgraph is a (possibly fractional) assignment of labels to the graph arcs
which satisfies the capacity bounds. If integral, a subgraph label Sub(a)
may be interpreted as the number of arcs in the subgraph which are parallel
to a. A subgraph of a directed graph is also called pseudo-flow.

This data structure differs from the other potential solutions by the fact
that it is implementation dependent. That is, a subgraph of a sparse graph
object is a vector, a subgraph of a dense graph object essentially is a hash
table, and subgraphs of logical views can be defined completely differently.

More explicitly, every class must implement three methods AddArc,
OmitArc and Sub. The first two methods increase respectively decrease
the subgraph label by a specified amount. If no subgraph data structure is
present, Sub should return the lower capacity bound. Every implementa-
tion of AddArc and OmitArc has to check that the resulting subgraph still
observes the capacity bounds. The method SetSub depends on AddArc and
OmitArc and can be used to set subgraph labels explicitly.

On the other hand, a subgraph may be infeasible, that is, node degrees
and node demands may differ. A subgraph may also be non-optimal, that
is, there is a subgraph whose weight

∑
a length(a)sub(a) is smaller. The

length of a subgraph can be computed in O(m) time by Weight(). A corre-
sponding method Cardinality() exists which determines the cardinality
∑

a sub(a) of a subgraph.

The method InitSubgraph() initializes the data structure with a
subgraph identical to the lower degree bound. Finally, the method
AddToSubgraph takes the characteristic vector of the subgraph determined
by the predecessor labels, and adds it to the subgraph data structure. If an
optional node v is specified, only the way back to the root of v respectively
the cycle containing v is added.

When working with subgraphs of dense graph objects, it is necessary
either to disable the subgraph hash table or to initialize the subgraph
data structure its maximum cardinality card by calling the struct method
NewSubgraph(card). See also Section 6.2.2.

95

POTENTIAL SOLUTIONS CHAPTER 11. PROTOTYPES AND DATA STRUCTURES

11.2.3 Flow Labels

Synopsis:

class abstractMixedGraph

{

virtual TFloat Flow(TArc) = 0;

virtual void Push(TArc,TFloat) = 0;

}

class abstractBalancedFNW

{

virtual TFloat BalFlow(TArc) = 0;

virtual void BalPush(TArc,TFloat) = 0;

virtual void Symmetrize() = 0;

virtual void Relax() = 0;

}

Flow labels are an alias for subgraphs which is used for network
flow problems. That is, Flow(a) and Sub(a) return the same
value, and Push(a,lambda) does the same as AddArc(a,lambda) or
OmitArc(a,lambda), depending on the parity of the arc a. Note that the
node degrees are affected as well.

In balanced flow networks, a symmetric version of flow labels exists
which admit the analogous operations BalFlow and BalPush. Note that the
call BalPush(a,lambda) essentially performs both Push(a,lambda) and the
symmetric operation Push(a^2,lambda).

There is a logical or even physical distinction between symmetric and
non-symmetric flow labels. Flow labels can be symmetrized explicitly by
calling Symmetrize(), and the non-symmetric labels are initilized with their
balanced counterparts by calling Relax().

11.2.4 Node Degrees

class abstractMixedGraph

{

protected:

TFloat * sDeg;

TFloat * sDegIn;

TFloat * sDegOut;

public:

void InitDegrees();

void InitDegIO();

TFloat Deg(TNode);

TFloat DegIn(TNode);

TFloat DegOut(TNode);

TFloat Divergence(TNode);

void AdjustDegrees(TArc,TFloat);

void ReleaseDegrees();

}

Node degrees are rather an auxiliary data structure than a potential so-
lution. They are completely determined by the subgraph labels. The call
Deg(v) returns the sum over all subgraph labels of undirected arcs adjacent
with the node v. In the same manner, DegIn(v) is the sum of all directed
arcs with end node v, and DegOut(v) is the sum of all directed arcs with
start node v.

The necessary data structures are generated by the first calls of Deg,
DegIn or DegOut respectively. To keep the degree labels and the subgraph
labels compliant, every implementation of AddArc and OmitArc must in-
clude a call to AdjustDegrees. If they are not needed any longer, degree
labels may be disposed (other than the subgraph data structure).

96

CHAPTER 11. PROTOTYPES AND DATA STRUCTURES POTENTIAL SOLUTIONS

In order to obtain the node degrees in the original graph rather than
in a subgraph, one may set the lower capacity bounds to the value of the
upper bounds. Then the subgraph multiplicities and the node degrees will
be set implicitly.

11.2.5 Distance Labels

Synopsis:

class abstractMixedGraph

{

protected:

TFloat * d;

public:

void InitLabels(TFloat = InfFloat);

virtual TFloat Dist(TNode);

void SetDist(TNode,TFloat);

void ReleaseLabels();

void WriteLabels(goblinExport*);

void ReadLabels(goblinImport*);

}

Distance labels are not only utilized by shortest path algorithms, but more
generally to store the length of the paths which are encoded into the prede-
cessor labels. They are also used to specify cuts (see Section 11.2.7).

A distance label may be read the method Dist and changed by SetDist.
There is an initialization procedure InitLabels which sets some default
value. This initilization routine supports the reusage of the data structure
to avoid repeated reallocation. Note that most algorithms access the data
structure directly for reasons of efficiency.

The methods ReadLabels and WriteLabels admit file import and ex-
port of the data structure. The file format forms part of the general file

format for graph objects presented in Section 18.4. Equivalent statements
hold for the other data structures described in what follows.

11.2.6 Node Potentials

Synopsis:

class abstractMixedGraph

{

protected:

TFloat * pi;

public:

void InitPotentials(TFloat = 0);

TFloat Pi(TNode);

void SetPotential(TNode,TFloat);

void PushPotential(TNode,TFloat);

void UpdatePotentials(TFloat);

void ReleasePotentials();

void WritePotentials(goblinExport*);

void ReadPotentials(goblinImport*);

virtual TFloat RedLength(TArc);

}

Node potentials form the LP dual solutions of network flows and matchings.
This data structure can be accessed directly by network flow algorithms.
Even if not accessed directly, they come into play via the reduced or modi-
fied length labels (see Section 11.1.3). Reduced length labels also appear in
the subgradient method TSPSubOpt1Tree for the TSP.

The public interface allows to read node potentials (Pi), to set a sin-
gle potential to the value (SetPotential) and to add some amount to the
current potential (PushPotential).

97

POTENTIAL SOLUTIONS CHAPTER 11. PROTOTYPES AND DATA STRUCTURES

If this data structure is not present, all potentials are treated as zero.
Accordingly, a call to InitPotentials generates the data structure and
sets all potentials to zero. Note that InitPotentials may be called by
SetPotential and PushPotential recursively.

A call UpdatePotentials(alpha) adds the current distance labels to
the current potentials. But note that only those potentials are changed for
which the corresponding distance label is less than alpha. This procedure is
used by the min-cost flow algorithm EdmondsKarp2 which recursively calls
the Dijkstra method. The latter procedure searches the reduced length
labels but keeps the result via the distance labels. The threshold alpha is
needed since the Dijkstra graph search is incomplete in general.

The reduced length labels combine the length labels and the node
potentials to the optimality certificates well-known in linear program-
ming. If a denotes some arc with end nodes u and v, then RedLength(a)

is defined as Length(a)+Pi(u)+Pi(v) in undirected graphs, and as
Length(a)+Pi(u)-Pi(v) in directed graphs. Shortest path problems and
weighted network flow problems are solved optimally if and only if all re-
duced length labels are non-negative.

There are two further methods ModLength and RModLength which ex-
tend the concept of reduced cost optimality to balanced network flow and
matching problems. Since the computation of modified length labels is ex-
pensive, RModLength allows the recursive computation whereas ModLength

utilizes an explicit data structure.

11.2.7 Node Colours

Synopsis:

class abstractMixedGraph

{

protected:

TNode * colour;

public:

void InitColours(TNode = NoNode);

virtual TNode Colour(TNode);

void SetColour(TNode,TNode);

void ReleaseColours();

void WriteColours(goblinExport*);

void ReadColours(goblinImport*);

void UpdateColours();

void ExtractCut();

void ExtractBipartition();

void ExtractColours();

}

Node colours are not only used to store graph colourings, but can also repre-
sent cuts and connected components with a minimum of computer storage.
For example, the matching procedures return the blossom structure as node
colours. More explicitly, the gra2bal destructor assigns to each node the
blossom base as its colour.

ExtractCut() assigns colour zero to all nodes with finite distance labels,
and colour 1 to the remaining nodes. ExtractBipartition() assigns colour
zero to all nodes with even finite distance labels, and colour 1 to the remain-
ing nodes. ExtractColours() saves a (non-persistent) node partition into
a consecutive series of node colours.

11.2.8 Partitions of the Node Set

Synopsis:

class abstractMixedGraph

{

protected:

98

CHAPTER 11. PROTOTYPES AND DATA STRUCTURES POTENTIAL SOLUTIONS

goblinDisjointSetSystem<TNode> * partition;

public:

virtual void InitPartition();

virtual void Bud(TNode v);

virtual void Merge(TNode u,TNode v);

virtual TNode Find(TNode v);

virtual void ReleasePartition();

}

The partition data structure is a disjoint set union data structure. In con-
trast to the most data structures which were discussed here, a partition is a
high-level data structure which cannot be written to a file and reconstructed
properly.

The methods are only shortcuts for the operations described in Section
8.2.1. That is, Bud(v) generates a one elementary set which consists of v,
Merge(x,y) unifies the sets containing x and y, and Find(w) returns the
canonical element of the set cotaining w.

11.2.9 Blossoms

Synopsis:

class abstractBalancedFNW

{

protected:

TNode * base;

public:

void InitBlossoms();

void ReleaseBlossoms();

TNode Base(TNode v);

void Shrink(TNode u,TNode v);

}

Blossoms are the symmetric specialization of the node partition data struc-
ture, and override the general definitions. In contrast to general partitions,
complementary nodes are always in the same part of thepartition. The
method Base does not return an arbitrary canonical element, but a special
node which is called the blossom base.

This node can be defined algorithmically as follows: Bud(v) implies that
Base(v)==v. If one has Base(u)==v and Base(x)==y, then the operation
Shrink(u,x) implies that Base(u)==Base(x)==v. That is, the first param-
eter of Shrink determines the blossom base.

11.2.10 Props and Petals

Synopsis:

class abstractBalancedFNW

{

protected:

TArc * prop;

TArc * petal;

public:

void InitProps();

void ReleaseProps();

void InitPetals();

void ReleasePetals();

}

99

11.3. MANIPULATING GRAPHS CHAPTER 11. PROTOTYPES AND DATA STRUCTURES

Props and petals determine augmenting paths in a balanced flow network.
The labels are set by the balanced network search methods which are dis-
cussed in Section 13.11. Augmenting paths can be extracted by the recursive
call of the methods Expand and CoExpand. The resulting path is assigned
to the predecessor labels.

11.2.11 Odd Cycles

Synopsis:

class abstractBalancedFNW

{

protected:

TArc * Q;

public:

void InitCycles();

void ReleaseCycles();

}

This data structure is used quite analogously to the predecessor labels, in
particular, to store a system of disjoint cycles in a balanced flow network.
These odd cycles occur during the symmetrization of the flow labels and
denote the arcs with non-integral flow labels after a call of CancelEven().
The odd cycles are cancelled again by CancelOdd() and CancelPD(). Both
methods form part of the Anstee and the EnhancedPD method. See Sections
13.12.4 and 13.13.2 for the details.

11.3 Manipulating Graphs

The following methods are available for physical graph objects only. That
is, we are now talking about data structures, not only about prototype

methods.

11.3.1 Changes of the Incidence Structure

Synopsis:

class sparseGraphStructure

{

TArc InsertArc(TNode,TNode,TCap,TCap,TFloat);

TArc InsertArc(TNode,TNode);

TNode InsertNode();

TNode InsertartificialNode();

TNode InsertAlignmentPoint(TArc);

TNode InsertBendNode(TNode);

void SwapArcs(TArc,TArc);

void SwapNodes(TNode,TNode);

void FlipArc(TArc);

void CancelArc(TArc);

void CancelNode(TNode);

void DeleteArc(TArc);

void DeleteNode(TNode);

void DeleteArcs();

void DeleteNodes();

void ContractArc(TArc);

void IdentifyNodes(TNode,TNode);

void ReSize(TNode,TArc);

}

class denseGraphStructure

{

TArc InsertArc(TArc,TCap,TCap,TFloat);

}

100

CHAPTER 11. PROTOTYPES AND DATA STRUCTURES MANIPULATING GRAPHS

In sparse graph objects, InsertArc(u,v,uu,ll,cc) generates a new in-
cidence with start node u, end node v, upper capacity bound uu, lower
capacity bound ll and length label cc. In order to avoid multiple realloca-
tion of the data structures when several new arcs are generated, one can
call ReSize(n,m) initially to set the final dimensions. In the same way,
InsertArc(u,v) generates a new incidence with random or constant ca-
pacities. This depends on the configuration flags randLength, randUCap,
randLCap.

Dense graph objects also admit an operation InsertArc(a,uu,ll,cc).
Actually, such an operation does not generate a new incidence but increases
the lower bound of an existing arc a by an amount of ll, and the upper
bound by an amount of uu. The new length label overwrites the old one.

The other operations which apply to sparse graph objects only, have been
described in Section 6.2.3. Note that node insertions maintain colours, dis-
tance labels and node potentials but destroy node partition data structure.
Arc and node canceling operations do not influence the potential solutions,
but node deletions effectively destroy all potential solutions.

None of the listed methods does apply if another data object references
the graph which has to be manipulated.

11.3.2 Invalidation Policy

When the incidence structure of a graph is modified, the following internal
data structures are invalidated, that is, they do not apply to the modified
graph object:

• Iterators

• Potential solutions

• Dual incidences

• Node ajacencies

There is no exhaustive code that keeps these data structures up to date.
It is only guaranteed that invalid data structures are deleted transparently.

In the case of node adjacencies, node degrees and graph duality data, this
strategy is adequate since the data structure can be rebuilt implicitly.

With some exceptions (required in the library) potential solutions are
lost irreversibly if they are invalidated.

Special care is required with iterators if maintained independently from
the graph object. To be safe, generate a graph clone, manipulate this copy
but iterate on the original graph. If you want to delete nodes or arcs, apply
cancel operations instead and delete the canceled items in a final step.

The following is a list of graph manipulation operations ordered by their
impact on the discussed data structures:

• Arc insertions

• Node insertions

• Arc cancel and contraction operations

• Arc deletions

• Node deletions

11.3.3 Updates on the Node and Arc Labels

Synopsis:

class genericGraphStructure

{

void SetUCap(TArc,TCap);

void SetLCap(TArc,TCap);

void SetDemand(TNode,TCap);

void SetLength(TArc,TFloat);

void SetOrientation(TArc,char);

void SetC(TNode,bool,TFloat);

void SetCUCap(TCap);

void SetCLCap(TCap);

void SetCDemand(TCap);

101

MANIPULATING GRAPHS CHAPTER 11. PROTOTYPES AND DATA STRUCTURES

void SetCLength(TFloat);

void SetCOrientation(char);

}

For physical graph objects, each of the labels discussed in Section 11.1 can
be set to another value by the methods SetUCap, SetLCap, SetDemand,
SetLength, SetOrientation and SetC respectively. All methods maintain
the respective maximal labels in a way such that an exhaustive computation
is avoided.

The methods SetCUCap, SetCLCap, SetCDemand, SetCOrientation and
SetCLength set the current labeling to a constant and disallocate the re-
spective data structures.

Note that the updates described usually lead to non-optimal or even in-
feasible solutions. Post-Optimality procedures are problem-dependent and
hence cannot be supported here.

11.3.4 Merging Graphs

Synopsis:

class abstractMixedGraph

{

void Merge(abstractMixedGraph&);

}

This method merges a specified graph object into another graph without
identifying any of the graph nodes. The passed graph is not manipulated
(but only a copy is generated). The addressed graph which stores the result
is layouted.

102

CHAPTER 12. GRAPH DRAWING PRELIMINARY REMARKS

Chapter 12

Graph Drawing

12.1 Preliminary Remarks

By graph drawing, we denote techniques to manipulate the graph node
coordinates and to add some artificial points for better readability. This
task is distinguished from the graph display process which maps a draw-
ing to a computer screen and which assigns some textual information to the
nodes and edges in the drawing. When dealing with planar graphs, draw-
ing is also distinguished from the embedding phase which determines an
appropriate order of the node incidences and selects an exterior face.

In case of geometric optimization instances, the node coordinates
also define the edge lengths. Here, layout methods generally do not apply.

All produced drawings are 2-dimensional. This is frequently used for
inline drawing when graph objects are derived from others.

12.1.1 Layout Models

Include file: globals.h, abstractMixedGraph.h
Synopsis:

enum TLayoutModel {

LAYOUT_DEFAULT = -1,

LAYOUT_FREESTYLE_POLYGONES = 0,

LAYOUT_FREESTYLE_CURVES = 1,

LAYOUT_ORTHO_SMALL = 2,

LAYOUT_ORTHO_BIG = 3,

LAYOUT_VISIBILITY = 4,

LAYOUT_KANDINSKI = 5,

LAYOUT_STRAIGHT_2DIM = 6,

LAYOUT_LAYERED = 7,

LAYOUT_NONE = 8

};

class goblinController

{

void SetDisplayParameters(TLayoutModel);

}

class abstractMixedGraph

{

void Layout_ConvertModel(TLayoutModel);

}

Layout models denote general drawing styles with precise properties al-
lowing to improve given drawings and to convert to other laout models.
All drawing methods activate the appropriate layout model by calling
Layout_ConvertModel() and, recursively, SetDisplayParameters().

The latter procedure effectively overwrites the various display param-
eters (listed in Section 14.6) with layout model dependent default values.
One can customize the display style by setting some of the context pa-
rameters. Note that custom values are overwritten with the next call to
SetLayoutParameters().

In addition, Layout_ConvertModel(model) has the capability to adjust
the current drawing: If the target layout model is LAYOUT_STRAIGHT_2DIM,

103

CIRCULAR LAYOUT CHAPTER 12. GRAPH DRAWING

all bends and shape nodes are eliminated. Conversely, if the target model
is LAYOUT_FREESTYLE_POLYGONES or LAYOUT_FREESTYLE_CURVES, the edges
are redrawn to exhibit parallel edges and loops. If neither the target model
nor the original model is LAYOUT_STRAIGHT_2DIM, by default, an interme-
diary conversion to the LAYOUT_STRAIGHT_2DIM model takes place.

Future development will bear more sophisticated conversion rules, but
only for particular pairs of layout models. The procedure is not intended to
perform drawing algorithms inline.

12.1.2 Grid Lines

Synopsis:

class goblinController

{

int nodeSep;

int bendSep;

int fineSep;

}

12.1.3 Translations of the Current Drawing

Include file: abstractMixedGraph.h

Synopsis:

class abstractMixedGraph

{

void Layout_StripEmbedding();

void Layout_ScaleEmbedding(

TFloat,TFloat,TFloat,TFloat);

}

There are two methods Layout_StripEmbedding()and Layout_ScaleEmbedding(x,X,y,

which shift respectively scale the current drawing. The strip operation shifts
the drawing to the non-negative orthant such that every coordinate becomes
zero for at least one graph node.

The parameters of the scale operation specify a tight bounding box for
the updated coordinates. By taking X<x or Y<y, the scale operation can be
used to flip the layout along the ordinate or abscissa.

Do not confuse this functionality with the display parameters which are
discussed in Section 14.6 and which change the view independently from
the saved coordiantes and the geometric distance labels.

12.1.4 Automatic Alignment of Arcs

Include file: abstractMixedGraph.h

Synopsis:

class abstractMixedGraph

{

void Layout_ArcAlignment(TFloat = 0);

}

The method Layout_ArcAlignment(d) eliminates all arc alignment points
from the present layout and then redraws the arcs where simple graphs are
drawn with straight lines. Parallel arcs are separated by using the parame-
ter d. If no value is specified, the context variable bendSep comes into play.
Loops which are usually invisible (unless interpolation points are associated
with them) are also drawn. All of the layout methods which are discussed
next perform this arc alignment procedure as a final step.

12.2 Circular Layout

Include file: abstractMixedGraph.h

Synopsis:

104

CHAPTER 12. GRAPH DRAWING TREE LAYOUT

class abstractMixedGraph

{

void Layout_Circular(int = 0);

void Layout_CircularByPredecessors(int = 0);

void Layout_CircularByColours(int = 0);

bool Layout_Outerplanar(int = 0);

}

The method Layout_Circular(spacing) draws the graph nodes as a regu-
lar polyhedron in the x-y plane. If spacing is specified, this overwrites the
context parameter nodeSep. There are some variants of the method which
differ by the order of the nodes on the resulting circle:

• Layout_CircularByPredecessors(): If predecessor arcs are avail-
able, the method starts at some node, tracks back the predecessor
arcs and consecutively places the nodes until a node is reached with is
already placed. Then, a new thread of search is started. In particular,
the procedure exhibits Hamiltonian cycles. If no predecessor labels
are available, nodes are placed by their indices.

• Layout_CircularByColours(): The nodes are displayed by their
colour index. By that, colour clusters and special node orderings can
be exhibited. If no predecessor labels are available, nodes are placed
by their indices.

• Layout_Outerplanar(): This checks if an outerplanar embedding is
available and, occasionally, exhibits this embedding. If methLocal is
set, the planar FDP method is called to improve the circular drawing.

When calling Layout_Circular(), it applies on of the described methods
(in that order of preference).

12.3 Tree Layout

Include file: abstractMixedGraph.h

Synopsis:

class abstractMixedGraph

{

enum TOptAlign {

ALIGN_LEFT,

ALIGN_CENTER,

ALIGN_RIGHT

};

void Layout_PredecessorTree(

TOptAlign = ALIGN_CENTER,

TFloat = 0,TFloat = 0);

}

The method Layout_PredecessorTree(method,dx,dy) determines a x-y
plane layout based on the predecessor labels. The predecessor labels must
exist and form a forest of rooted trees. Connectivity is not required. The
parameters dx and dy hereby denote the horizontal respectively the verti-
cal node distance. If no values are specified, the context variable nodeSep

comes into play.

12.4 Force Directed Placement

Synopsis:

class abstractMixedGraph

{

enum TOptFDP {

105

STRAIGHT LINE DRAWING CHAPTER 12. GRAPH DRAWING

FDP_DEFAULT = -1,

FDP_SPRING = 0,

FDP_GEM = 1,

FDP_PLANAR = 2

};

void Layout_ForceDirected(

TOptFDP = FDP_DEFAULT,int = 0);

void Layout_PlanarFDP(int = 0);

void Layout_SpringEmbedder(TFloat = 0,TFloat = 0);

void Layout_GEMDrawing(TOptFDP = FDP_GEM,int = 0);

}

The method Layout_ForceDirected(method,spacing) is the interface to
a couple of layout methods which all are force directed. These kind of
methods apply to general graph objects and can help to exhibit graph sym-
metries. If method does not specified otherwise, the applied method is
determined by the context parameter methFDP. The role of the parameter
spacing is the same as for the circular layout method.

The method Layout_SpringEmbedder(gamma,delta)models the graph
nodes as loaded particles and the graph arcs as springs in the x-y plane. The
parameters work as constants for the respective forces. Starting with the
present embedding, a Newton iteration scheme searches for equilibriance of
the modelled forces. The main disadvantage of this algorithm is its poor
performance. The input graph should be connected for otherwise the con-
nected components diverge.

For practical purposes, it is recommended to apply Layout_GEMDrawing()

instead of the classic spring embedder. This algorithm moves only one node
at a time. In addition to the forces discussed before, attraction to the center
of gravity is modelled. The step length is determined by the nodes’ tem-
peratures and the sophisticated temperature adjustment rule is the reason
for the good performance. The resulting drawings do not differ significantly

compared with the spring embedder.
There is another method Layout_PlanarFDP()which preserves the edge

crossing properties of the initial layout. It applies to general graphs but, of
course, is intended to allow post processing of planar layouts. The procedure
augments the GEM algorithm by additional forces and certain restrictions.
It is less performant than the unrestricted GEM code.

12.5 Planar Straight Line Drawing

Synopsis:

class abstractMixedGraph

{

void Layout_StraightLineDrawing(

TArc = NoArc,int = 0);

void Layout_ConvexDrawing(

TArc = NoArc,int = 0);

}

The method Layout_ConvexDrawing(a,spacing) computes a straight line
grid drawing without edge crossings for triconnected planar graphs such that
all interior faces are convex. A combinatorial embedding must be already
assigned.

The shape of drawing is a triangle with the specified arc a forming the
basis. By that, the exterior face is set to the left hand side of a. If no arc
is specified, the basis arc is the same as ExteriorArc(). If the latter arc is
undefined, the exterior arc is chosen on a face which maximizes the number
of exterior nodes. The tip node is set implicitly and is ”half way” on the
exterior face. All nodes are placed at integer coordinates, depending on
spacing or the context parameter nodeSep. The time complexity is O(m).

The procedure uses the canonically ordered partition which is discussed
in the next chapter. This structure and the convexity of the interior faces
require that the input graph is triconnected.

106

CHAPTER 12. GRAPH DRAWING ORTHOGONAL DRAWING

When calling Layout_StraightLineDrawing(a,spacing), the graph is
triangulated and to the triangulation, the convex drawing method is ap-
plied. The time complexity is O(n2). If methLocal is set, the planar FDP
method is called to improve the drawing of the original graph. This post-
processing is necessary at least if a lot of artificial edges have been added.
See Section 13.7 for more details about triangulations.

12.6 Orthogonal Drawing

Include file: abstractMixedGraph.h

Synopsis:

class abstractMixedGraph

{

enum TOptOrthogonal {

ORTHO_DEFAULT = -1,

ORTHO_EXPLICIT = 0,

ORTHO_EULER = 1,

ORTHO_DEG4 = 2,

ORTHO_4PLANAR = 3,

ORTHO_VISIBILITY = 4,

ORTHO_VISIBILITY_TRIM = 5,

ORTHO_VISIBILITY_GIOTTO = 6

};

void Layout_Orthogonal1Bent(

TOptOrthogonal = ORTHO_DEFAULT,int = 0);

void Layout_OrthogonalDeg4(

TOptOrthogonal = ORTHO_4PLANAR,int = 0);

void Layout_VisibilityRepresentation(

TOptOrthogonal = ORTHO_VISIBILITY_TRIM,

int = 0);

}

In an orthogonal drawing, every edge is represented by an alternating se-
quence of horizontal and vertical line segments. If the nodes are drawn
without dimension, this approach is restricted to graphs with maximum de-
gree 4 or less. The literature comes up with at least four layout models for
drawing high degree graphs:

• GIOTTO, where the nodes are rectangles in a square grid. Edges
are drawn by placing ports at each end node and a sequence of bend
nodes within the same grid as the rectangles. No bound on the size
of the rectangles is imposed by this model.

• Kandinski, where the nodes are squares of a common size centered
in a sparse square grid. Edge ports and bend nodes are placed in a
subdivided square grid. The size of the node squares is the maximum
number of ports d assigned to one side of a square.

• Proportional growth, which is similar to GIOTTO but also requires
that the height of a node equals the number of ports on either the left
or the right side, and that the width equals the number of ports on
the top or the bottom line.

• Visibility representations, in which nodes are horizontal and edges
are vertical line segments. The length of node segments does not de-
pend on the node degrees.

In every model, the edges must be drawn on the grid lines. Edges and
node representation may not overlap or cross each other, but edges may
cross other edges when planarity is not required. The known algorithms
for graphs with maximum degree 4 produce drawings which fit into the
first three models. General methods, applied to degree-4 graphs, are not as
smart. That is, large nodes with several ports on one side of a node may
result.

GOBLIN provides Kandinski drawings of general graphs, visibility rep-
resentations and GIOTTO drawings for planar graphs and drawings with

107

12.6. ORTHOGONAL DRAWING CHAPTER 12. GRAPH DRAWING

small nodes for 2-connected graphs with maximum node degree 4. Post-
processing techniques for the GIOTTO model are desirable but are not
available yet.

By calling Layout_Orthogonal1Bent(opt,grid), the following steps
are performed in order to obtain a drawing in the Kandinski model:

• The nodes are placed in general position, that is with only node in
one column or row. This placement preserves the order of coordinate
values in the preceding drawing.

• The edges are distributed to the four sides of each node. The node
size is also computed. This procedure depends on the opt parameter.

• A couple of context parameters are set according to the Kandinski
layout model and the grids used for this drawing.

• The edges on each side of a node are ordered so that the drawing does
not include crossings of adjacent arcs.

• Every arc is drawn with exactly one bend node and with the arc label
in the neighbourhood of this bend node.

If the graph layout and incidence structure is not changed intermediately,
calling this layout tool several times results in the same drawing. But the
procedure supports some pre- and postprocessing techniques:

• The preceding node placement: It is useful to start with a readable
drawing, not necessarily in an orthogonal layout model. One can move
nodes manually and rerun the method to improve the node placement.

• When using opt = ORTHO_EXPLICIT, directed arcs leave on the top
or the bottom side of the start node and enter the end node on the
left or the right side. The same is true for the inherent orientation of
undirected edges. It follows that one can revert the the orientations
of undirected edges in order to reduce the number of edge crossings
and the node size d.

The running time is O(m), the number of bends is m and the square area
is (2n(d + 1) − 1)2. The parameter d is trivially bounded by the maximum
node degree ∆ and for opt = ORTHO_EULER, one has d ≤ ∆/2.

By calling Layout_OrthogonalDeg4(opt,grid), an st-numbering is
computed and the nodes are placed one-by-one with respect to this or-
dering, each node on a new grid row. Columns may carry several graph
nodes and at most two bends. The input graph must be 2-connected and
without loops.

If the graph is planar and if opt = ORTHO_4PLANAR is used, a plane
drawing results and the inherent embedding is visualized. In this case, the
running time is O(n). Otherwise, the running time is O(n2) due to the
iterated computation of horizontal coordinates. The achieved grid size is
(m − n + 1)n in the worst case. Every edge is drawn with at most two
bends. Only one edge incident with the final node may be drawn with 3
bends.

By calling Layout_VisibilityRepresentation(opt,grid), the input
graph is augmented to a 2-connected planar graph. Then, a bipolar orien-
tation and a directed dual graph are generated. For both the primal and
the dual digraph, the distance labels with respect to the source nodes are
computed. The primal distances give assigment of rows to the nodes in the
drawing, and the dual distances determine the columns for the drawing of
arcs. The method option applies as follows:

• Using opt = ORTHO_VISIBILITY_RAW, the drawing is as usually de-
scribed in the literature. That is, the node width may exceed the size
required by the vertical edge segments.

• Using opt = ORTHO_VISIBILITY_TRIM, the nodes are shrunk in a way
that edges are still drawn vertically without bends.

• Using opt = ORTHO_VISIBILITY_GIOTTO, the node widths are mini-
mized and every edge is drawn with at most two bends. If the input
graph is 2-connected and all nodes have degree 2 or 3, the final drawing
is in the small node model. Otherwise, a GIOTTO drawing results.

108

CHAPTER 12. GRAPH DRAWING EQUILATERAL DRAWING

In any circumstances, the input graph must be without loops. The running
time is O(n) and the achieved grid size is (2n− 5)(n− 1) in the worst case.

12.7 Equilateral Drawing

Include file: abstractMixedGraph.h

Synopsis:

class abstractMixedGraph

{

void Layout_Equilateral(int = 0);

}

This method requires an outerplanar, 2-connected graph. All faces other
than the exterior region are drawn as equilateral polygones. The constant
edge length is either passed explicitly or given by the context parameter
nodeSep.

The procedure is intended for drawing regular polyhedra, including Pla-
tonic solids, after unrolling the surface to plane.

109

12.7. EQUILATERAL DRAWING CHAPTER 12. GRAPH DRAWING

110

CHAPTER 13. HIGH LEVEL ALGORITHMS SHORTEST PATH ALGORITHMS

Chapter 13

High Level Algorithms

This chapter shows how GOBLIN problem solvers are called and configured.
It also includes a brief introduction to the respective problem settings, and
to the general ideas behind the algorithms implemented. With some text
book about graph theory at hand and using the GOBLET browser, any
interested people should be able to understand the source code.

For the most problems, the implemented algorithms do not reflect the
current state of research. But the library covers all of the standard prob-
lems and careful implementations of all of the algorithms which one can find
in text books about graph optimization. The non-weighted matching code
which was the original authors research interest clearly stands out.

Up to the max-cut and the Steiner tree codes which can only be viewed
as an interface for future implementations, all solvers are configured to solve
practical problem instances. This ranges from several 10000 node instances
for shortest path, min-tree, max-flow and non-weighted matching prob-
lems, a few thousand node problems for min-cost flow, arborescence and
weighted matching problems to 150 node instances for the exact solution
of NP-hard problems (we have restricted ourselves to pure combinatorial
methods). Note that there was considerable effort to provide codes which
support post optimization and which apply to the most general problem
formulations possible.

13.1 Shortest Paths

Synopsis:

class abstractMixedGraph

{

enum TOptSPX {

SPX_DEFAULT = -1,

SPX_FIFO = 0,

SPX_DIJKSTRA = 1,

SPX_BELLMAN = 2,

SPX_BFS = 3,

SPX_DAG = 4,

SPX_TJOIN = 5

};

enum TOptSPXChar {

SPX_PLAIN = 0,

SPX_SUBGRAPH = 1,

SPX_RESIDUAL = 2,

SPX_REDUCED = 4,

SPX_REDUCED_RESIDUAL = 6

};

bool ShortestPath(TNode s,TNode t = NoNode);

bool ShortestPath(TOptSPXMeth,TOptSPXChar,

TNode,TNode = NoNode);

bool Eligible(TOptSearch,TArc);

bool BFS(TOptSearch,TNode,TNode = NoNode);

TNode SPX_Dijkstra(TOptSPXChar,

const indexSet<TNode>&,

const indexSet<TNode>&);

111

13.1. SHORTEST PATHS CHAPTER 13. HIGH LEVEL ALGORITHMS

bool SPX_FIFOLabelCorrecting(TOptSPXChar,

TNode,TNode = NoNode);

bool SPX_BellmanFord(TOptSPXChar,

TNode,TNode = NoNode);

TNode VoronoiRegions();

}

class abstractGraph

{

bool SPX_TJoin(TNode,TNode);

}

13.1.1 Eligible Arcs

The method Eligible() qualifies the arcs which may appear on a shortest
path (tree). Basically, it guides shortest path algorithms to compute di-
rected paths for digraph objects, and arbitrary paths in undirected graphs.
If the SPX_RESIDUAL option is used, paths with residual capacity are deter-
mined. If the SPX_SUBGRAPH option is used, the subgraph defined by the
arcs a with Subgraph(a)>0 is searched.

An eligible st-path is a simple path starting at node s and ending at
node t which entirely consists of eligible arcs. A shortest st-path is an
eligible st-path of minimum length. A shortest path tree is a tree such
that any path from the root to another node is a shortest path.

16 10 11 2

11

1 3

4

4

5 6

1

2

10

2

4

8

0

4

3

1

6

0

10

12

4 9

7

9 8

13

13

12

Figure 13.1: A Shortest Path Tree

13.1.2 Solver Interface

The solver is called like ShortestPath(method,characteristic,s,t).
There is a shortcut ShortestPath(s,t) which applies the op-
tions method = SPX_DEFAULT and characteristic = SPX_PLAIN. A
method = SPX_DEFAULT value is eventually replaced by the value of the
context variable methSearch.

The parameter s denotes the root of the requested shortest path tree.
The parameter t is optional and denotes a node to be reached. If no t is
specified, the member targetNode is used. If this is also undefined, a full
shortest path tree is determined. If t is specified and reachable from s by el-
igible arcs, the computation may stop prematurely for sake of performance.
The return value is true if t is s-reachable, and false otherwise. Shortest
paths are returned by the predecessor labels together with the matching
distance labels.

The characteristic parameter switches between applying the original

112

CHAPTER 13. HIGH LEVEL ALGORITHMS 13.1. SHORTEST PATHS

length labels and the reduced length labels (when using SPX_REDUCED or
SPX_REDUCED_RESIDUAL).

A shortest path tree with respect to the reduced length labels is also
a shortest path tree for the original length labels. The length of cycles
does not depend on the characteristic option and the concrete node po-
tentials. But searching the reduced length labels is useful since those labels
can be usually kept non-negative, and this is required by some shortest path
methods.

In what follows, the particular shortest path algorithms are described.
Most methods can be accessed by the hub ShortestPath(), but this does
mean that the codes are interchangeable: Each algorithms applies to a spe-
cial (and often restrictive) setting. The label correcting algorithms are the
most general ones, but even those cannot handle the computation of a short-
est path when the graph admits negative length cycles and, in particular,
when undirected edges of negative length exist.

In any situation where the selected method does not apply, an
ERRejected exception is raised.

13.1.3 Breadth First Search

This method computes an eligible sv-path with a minimum number of arcs
for every node v of the graph. So this procedure solves the shortest path
problem for graph with constant non-negative edge lengths. The running
time is O(m). When calling BFS() directly, the length labels are ignored.
When calling this method by using ShortestPath(), and if the length labels
are not constant or negative, an exception is raised.

13.1.4 The Dijkstra Algorithm

This is a multi-terminal version of the Dijkstra method. One index set is
passed to specify the root nodes, the second index set specifies the target
nodes. The return value is some target node which could be reached from
any root node.

The Dijkstra method cannot handle negative length arcs at all.It will,
however, complain only if a negative length arc is actually searched.

The algorithm utilizes a priority queue data structure. This may either
be passed by the member pointer variable nHeap or, if nHeap==NULL, gener-
ated by the method itself. In the latter case, the type of the priority queue is
chosen according to the context parameter methPQ. The respective running
times are O(n2), O(m log n) with the binary heaps and O(m+n log n) with
the Fibonacci heaps.

If one needs to compute all-pair shortest paths, it is reasonable to ap-
ply a label-correcting method (but only if negative lengths can occur) and
then to compute a shortest path tree for each graph node with the Dijk-
stra method. This requires O(n(m + n log n)) time and only O(m) storage
compared with O(n2) for the Floyd-Warshall code.

13.1.5 Discrete Voronoi Regions

This is a variation of the Dijkstra method which treats all graph nodes with
Demand() different from zero a root nodes. The set of target nodes is empty
and, by that, all full graph search is performed. If every connected compo-
nent includes at least one terminal node, the procedure returns with partial
trees which connect every node to some terminal, and with corresponding
distance labels.

The Voronoi regions are also returned by the node partition data
structure. The formal return value is the number of terminals and the
running times are essentially the same as for SPX_Dijkstra().

13.1.6 The Bellman-Ford Algorithm

This method determines a shortest sv-path for every node v of the graph.
Negative length labels are allowed. If a negative length cycle is detected,
the procedure returns an exception ERCheck. The running time is O(mn).

113

NEGATIVE CYCLES CHAPTER 13. HIGH LEVEL ALGORITHMS

13.1.7 The FIFO Label-Correcting Algorithm

This method determines a shortest sv-path for every node v of the graph.
Negative length labels are allowed. If a negative length cycle is detected,
the procedure returns an exception ERCheck. The running time is O(mn).
This algorithm is a practical improvement of the Bellman-Ford procedure.

−2

2

2

26

−3
5

1

2

1

Figure 13.2: A T -Join Shortest Path

13.1.8 The T -Join Algorithm

The method SPX_TJoin() differs from the previous shortest path algorithms
in several ways: First of all, it does not compute a shortest path tree but
only a single simple path. Furthermore, it applies to undirected graphs only.

In any circumsatnces, the method returns an optimal T -join by the sub-
graph labels, and this subgraph splits into an st-path and a couple of (not
necessarily node-disjoint) cycles. The following situations may arise:

• The T -join is a simple st-path. Then this path is a shortest st-path
and is returned by the predecessor labels.

• There is no T -join. Then also no st-path exists.

• The T -join splits into a simple st-path plus some more connected com-
ponents. Then this st-path is returned by the predecessor labels, but
this is not necessarily a shortest path.

• In the T -join, s and t are in a common non-trivial component. From
this component, an arbitrary st-path is extracted.

That is, the method can deal with negative length arcs, at least, if there
are no negative length cycles. When it is not possible to compute an exact
solution for the shortest path problem from the optimal T -join, at least, a
heuristic solution is returned.

The method consists of O(n) calls of the Dijkstra method and the solu-
tion of a weighted 1-matching problem with at most n nodes (the problem
size depends on the number negative length edges). This matching problem
dominates the running times.

13.1.9 The Floyd-Warshall Algorithm

This method determines the distances between every pair of nodes in O(n3)
time. It is encoded into the constructor of the class distanceGraph and, by
that, generates a complete digraph which has the original node distances as
its length labels.

13.1.10 Proposed Extension

A dequeue label-correcting algorithm.

13.2 Negative Cycles

Synopsis:

class abstractMixedGraph

{

114

CHAPTER 13. HIGH LEVEL ALGORITHMS DAG SEARCH

TNode NegativeCycle(TNode = NoNode);

}

class abstractDiGraph

{

protected:

TCap mu;

public:

TNode MinimumMeanCycle();

}

Primal min-cost flow algorithm traditionally try to find an augmenting cycle
of negative length. GOBLIN supplies two methods which are useful in this
context. Both methods apply for digraphs only.

13.2.1 Negative Cycles

The method NegativeCycle() determines an arbitrary eligible cycle with
negative length. The return value is a node on this cycle. The cycle itself is
returned via the predecessor labels. If an optional node is passed, this node
is considered to be the root of a graph search, and essentially the FIFO
label correcting algorithm results.

13.2.2 Minimum Mean Cycles

The method MinimumMeanCycle() determines an eligible cycle such that
the ratio of the sum of length labels and the number of arcs on this cycle
is minimum. Again, the return value is a node on the cycle, and the cycle
itself is returned via the predecessor labels. The minimum ratio is kept by
the variable mu for further processing. The method also works if this ratio
is negative.

An important drawback of the algorithm is that it requires Θ(n2) storage
units which makes it inapplicable to large-scale problems, say with n > 105.

13.2.3 Proposed Extension

A mean cycle algorithm which runs with linear storage requirements.

13.3 DAG Search

Synopsis:

class abstractDigraph

{

enum TDAGSearch {

DAG_TOPSORT,

DAG_CRITICAL,

DAG_SPTREE

};

TNode DAGSearch(TDAGSearch,

TNode=NoNode,TNode=NoNode);

TNode TopSort();

TNode CriticalPath();

}

A DAG is a directed acyclic graph object. The procedure DAGSearch(opt)
handles the recognition of DAGs and does some additional computations
depending on the value of opt:

• For DAG_TOPSORT and DAG_SPTREE, a topological oerdering is exported
by the node colour data structure. If the graph contains directed cy-
cles, a node on a cycle is returned.

• For DAG_SPTREE, a shortest path tree and the distance labels are ex-
ported.

• For DAG_CRITICAL, a directed path of maximum length is computed
and its end node is returned (unless cycles are found). For every

115

EULER CYCLES CHAPTER 13. HIGH LEVEL ALGORITHMS

node, the distance label denotes the maximum path lengths from a
root node.

The methods CriticalPath() and TopSort() are shortcuts which should
be used as entry points. The shortest path version is handled by
ShortestPath(). The running time of a DAG search is O(m) in every
instance. Note that eligible (residual capacity) arcs are searched instead of
the original directions.

13.4 Euler Cycles

Synopsis:

class abstractMixedGraph

{

bool EulerCycle(TArc*);

bool EulerCycle();

}

An Euler cycle is a closed walk which traverses all graph edges exactly
once. It can be computed by the call EulerCycle(pred) in O(m) time.
This method implements the Hierholzer algorithm and returns false if no
Euler cycle exists. Otherwise an Euler cycle is returned by the referenced
array pred which must be allocated by the calling context as TArc[M()].
The Euler cycle is decoded from the array as follows:

Example:

TArc* pred = new TArc[M()];

if (!EulerCycle(pred)) {/* Handle exception */};

TArc a = pred[0];

for (TArc i=0;i<=M();i++)

{

a = pred[a>>1];

// Process the arc a

}

If one calls EulerCycle() without parameters, the Euler cycle is translated
to an edge numbering and saved to the edge colours.

Note that the procedure does not inspect the arc capacities. If capaci-
ties are considered as multiplicities (as in the Chinese postman solver), the
graph must be preprocessed with ExplicitParallels() to eliminate the
capacities. Zero capacity arc must be eliminated manually. Be aware of the
problem size and the running time which grows linearly with the sum of
multiplicities!

13.5 Spanning Trees

Synopsis:

class abstractMixedGraph

{

enum TOptMSTMeth {

MST_DEFAULT = -1,

MST_PRIM = 0,

MST_PRIM2 = 1,

MST_KRUSKAL = 2,

MST_EDMONDS = 3

};

enum TOptMSTChar {

MST_PLAIN = 0,

MST_ONE_CYCLE = 1,

MST_REDUCED = 8,

MST_MAX = 16

116

CHAPTER 13. HIGH LEVEL ALGORITHMS 13.5. SPANNING TREES

};

TFloat MinTree(TNode r = NoNode);

TFloat MinTree(TOptMSTMeth,

TOptMSTChar,TNode = NoNode);

TFloat MST_Prim(TOptMSTMeth,

TOptMSTChar,TNode = NoNode);

TFloat MST_Edmonds(TOptMSTChar,TNode = NoNode);

TFloat MST_Kruskal(TOptMSTChar,TNode = NoNode);

}

class abstractDiGraph

{

TCap TreePacking(TNode);

abstractDiGraph* TreePKGInit();

TCap TreePKGStripTree(

abstractDiGraph*,TCap,TNode);

}

A spanning tree of a graph is a subgraph which connects all nodes but does
not contain cycles. There is no reason to distinguish between a minimization
and a maximization problem for spanning trees. We follow the convention
to formulate the minimization problem, at least as the default setting.

The spanning tree solver is called like MinTree(method,characteristic,r).
The shortcut MinTree(r) applies method = MST_DEFAULT and
characteristic = MST_PLAIN. A method = MST_DEFAULT value is even-
tually replaced by the value of the context variable methMinTree. The
parameter r is optional and denotes the root node. If r is not specified, the
member rootNode is used.

Other than in earlier releases, the MinTree() interface function is used
for both the directed and the undirected setting. Accordingly, the Edmonds
arborescence method can run on undirected graphs (with a similar behavior
as the Kruskal method, at least when the edge lengths are mutually distinct)

and the Prim and the Kruskal method apply to mixed and to directed graphs
(ignoring the edge orientation).

There is a couple of options which can be passed with characteristic

and which all methods allow for:

• MST_MAX: Changes the object sense to maximization

• MST_REDUCED: Consider the reduced length labels instead of the orig-
inal length labels

• MST_ONE_CYCLE: Construct a one cycle tree instead of a spanning tree

The Kruskal method, the enhanced Prim method and the method for mixed
graphs can handle arcs with non-trivial capacity lower bounds which denote
mandatory arcs. This mechanism is applied in the branch and bound mod-
ule of the TSP solver.

13.5.1 The (Enhanced) Prim Algorithm

This procedure grows the spanning tree from the root node to the tips. If
no root node is passed, one is selected automatically. The resulting tree is
returned by the predecessor labels.

Two versions of this method are provided. The running time of the basic
version is O(n2). The enhanced code differs from the basic version mainly
by using a priority queue for node selection. The complexity depends on the
special choice of this queue, and matches the running times for the Dijkstra
algorithm (see Section 13.1.4).

117

13.5. SPANNING TREES CHAPTER 13. HIGH LEVEL ALGORITHMS

12

3

8

7

6

14

9

210

11

5

1

13

4

*

*

10

*

2

**

12

Figure 13.3: Intermediate Step in the Prim Method

13.5.2 The Kruskal Algorithm

The procedure returns a spanning tree via the subgraph data structure if
one exists. If not, the connected components are maintained by the par-
tition data structure. The running time is O(m log n) due to the needed
sorting of the edge by their lengths.

13.5.3 Arborescences

The method MST_Edmonds() is an O(nm) implementation of Edmond’s ar-
borescence algorithm and determines a maximum spanning forest. If a root
node is passed, and this is actually a root node, an arborescence is returned
by the predecessor labels. If no root node is passed, one is selected automat-
ically. The procedure uses the shrinking family data structure (see Section
8.2.2).

13.5.4 One Cycle Trees

All spanning tree methods described above can be used to compute an r-
tree. In the undirected setting, this is a minimum spanning tree of the
nodes other than r plus the two shortest edges incident with r. In the di-
rected setting, an r-tree is an minimum arborescence rooted at r plus the
shortest arc entering r.

When the spanning tree solver is called with the MST_ONE_CYCLE and a
root node r, it will determine predecessor labels such that r is on the unique
directed cycle defined by these labels. For every node v not on this cycle,
there is a unique directed path of predecessor arcs connecting the cycle and
v.

The worst case complexities are the same as for constructing ordinary
spanning trees.

13.5.5 Tree Packings

The method TreePacking(TNode) determines a maximum cardinality set
of pairwise disjoint arborescences rooted at a specified node. If the arc ca-
pacities are non-trivial, the algorithm computes some tree capacities and
for every arc the sum of the tree capacities satisfies the capacity bound.

If the main procedure TreePacking() is called, the tree capacities are
provided by the log file and, if traceLevel>2, the found arborescences are
written to trace files. But one can also call the component TreePKGStrip()
which manipulates a copy of the digraph and one-by-one returns the ar-
borescences via the predecessor labels of the original graph and also returns
the corresponding tree capacity. The graph copy is generated by the method
TreePKGInit(). The complete method looks like this:

Example:

TCap totalMultiplicity = StrongEdgeConnectivity(r);

abstractDiGraph* G = TreePKGInit();

while (totalMultiplicity>0)

{

118

CHAPTER 13. HIGH LEVEL ALGORITHMS CONNECTED COMPONENTS

TreePKGStrip(G,&totalMultiplicity,r);

// Use the predecessor labels

}

delete G;

The tree packing method is non-polynomial, also slow in practice and ap-
plies to directed graphs only. Note that the application to the complete
orientation does not yield a tree packing in the undirected sense.

13.5.6 Proposed Extension

A cycle canceling method for post-optimization of spanning trees.

13.6 Connected Components

Synopsis:

class abstractMixedGraph

{

bool Connected();

bool StronglyConnected();

bool CutNodes(TNode* = NULL,TArc* = NULL,

TNode* = NULL,TArc = NoArc);

bool TwoConnected();

bool STNumbering(TArc = NoArc);

}

13.6.1 First Order Connectivity

The DFS method Connected decides whether a graph is connected or not,
and returns 1 or 0 respectively. In the latter case, the connected compo-
nents are available by the node colour data structure. The running time is
O(m).

Note that the Kruskal algorithm also applies to this problem but returns
the connected components by the node partition data structure.

13.6.2 Strong Connectivity

Two nodes x, y of a graph are strongly connected if there are an eligible
xy-path and an eligible yx-path. A strong component is a maximal node
set such that each pair of nodes is strongly connected.

The method StronglyConnected decides whether a graph is strongly
connected or not, and returns 1 or 0 respectively. In the latter case, the
strong components are available by the node colour data structure. The
running time is O(m).

Figure 13.4: Blocks and 2-Edge Connectivity

13.6.3 Second Order Connectivity

A cut node [bridge] of a graph is a node [arc] whose deletion increases
the number of connected components. A block is a maximal node set such
that each pair of nodes is traversed by a simple cycle. A 2-edge connected
component is a maximal node set such that the induced subgraph contains
no bridges.

The method CutNodes() checks if the graph has a cut node. In that
case, the cut nodes are returned by the node colours with colour 0. The
remaining nodes are coloured block by block. For this direct 2-connectivity
application, no parameters are passed to CutNodes().

119

PLANARITY CHAPTER 13. HIGH LEVEL ALGORITHMS

The method TwoConnected() checks if the graph is 2-edge connected.
It calls CutNodes() with some extra data structures and returns a set of
subgraph labels which represent the blocks and a colouring which represents
the 2-edge connectivity components. To store the blocks, the arc capacities
have to be infinite. For both procedures, the running time is O(m).

13.6.4 Open Ear Decomposition and st-Numbering

An ear decomposition partitions the edge set into simple paths
P1, P2, . . . , Pk such that both end nodes of Pi+1, i > 1 occur on P1, P2, . . . , Pi

but the intermediate nodes do not. Ear decompositions are stored as edge
colours. If no cycles occur among P1, P2, . . . , Pk, the ear decomposition is
called an open ear decomposition.

For given nodes s and t, an st-numbering is an assignment to the node
colours with colour[s] = 0, colour[t] = n-1 and such that for every
other node v, two neighbors u and w with

colour[u] < colour[v] < colour[w]

exist. If s and t denote the end nodes of the path P1 in an open ear de-
composition, one can obtain an st-numbering by inserting the nodes of each
path in the order of appearance, right after the start node of the path.

The method STNumbering() computes both data structures simultane-
ously from a DFS tree which is again obtained from CutNodes(). It is not
possible to choose the nodes s and t independent from each other. Instead,
a so-called return arc can be passed whose end nodes are t and s then,
in that order! The input graph must be 2-connected, the running time is
O(m).

13.7 Planarity

Synopsis:

class abstractMixedGraph

{

bool IsPlanar();

bool PlanarityDMP64(TArc*);

TNode LMCOrderedPartition(TArc*,TArc*,TNode*)

void GrowExteriorFace();

void PlaneConnectivityAugmentation();

void PlaneBiconnectivityAugmentation();

void Triangulation();

}

class sparseGraphStructure

{

void Planarize(TArc*);

}

A planar graph is a graph which can be drawn in the plane without any
edge crossings. Many optimization problems admit special solvers for planar
graphs which perform much better than the general codes (see the max-cut
section for an example). Usually, it is not necessary to know an explicit
drawing.

The method IsPlanar() is the general entry point for planarity tests.
It checks if the graph is planar but does not export an embedding. The
pure planarity test is implemented for general graph objects. Explicit pla-
narization is restricted to sparse graph objects which are stored by incidence
lists.

13.7.1 The Method of Demoucron, Malgrange and Pertuiset

The implemented planarity test PlanarityDMP64() first adds some arcs to
obtain a 2-connected graph. Then an initial cycle and two regions are gen-
erated. The remaining graph arcs are partitioned into segments. In the
main loop of the algorithm, a segment is determined which can be embed-
ded into a minimum number of regions. From this segment, an arbitrary
path is embedded into some feasible region and this region is split. All loops

120

CHAPTER 13. HIGH LEVEL ALGORITHMS 13.7. PLANARITY

and parallel arcs are embedded in a post processing step to prevent from
computational overhead. The running time of this method is O(m3) and,
by that, O(n3) for planar graphs.

Currently, the required storage can be bounded only by O(nm). If the
input graph is non-planar, no forbidden configuration is exported yet.

13.7.2 Combinatorial Embedding

For sparse graph objects, a method Planarize() exists which calls the pla-
narity test and then exports a combinatorial embedding to the node
incidences: To this end, the method Planarize() is called which actually
orders the incidence lists. It takes an array which specifies the predecessor
of each arc when traversing the regions. This array must be filled by any
prospective planarization method.

13.7.3 Outerplanar Embedding

An outerplanar graph is a graph which can be drawn in the plane with-
out edge crossings and such that all nodes are incident with the unbounded
region to which we refer as the exterior face.

The method GrowExteriorFace() requires a combinatorial embedding
and selects from this embedding a region with the maximum number of
adjacent nodes. Then, all exterior cut edges (whose end nodes form cut-
ting pairs and which are no bridges) swapped to the interior. By that, the
number of external nodes strictly increases. The running time is bounded
by O(n2).

If the input graph is (implicitly) outerplanar, a respective combinatorial
embedding results. But even in the case of general planar graphs, more
appealing layouts can be achieved with this procedure. Furthermore, one
can determine st-numberings with both v1v2 and v1vn on the exterior face
of the refined embedding.

The procedure also applies if the input graph is disconnected. It is only
a wrapper around the call ExtractEmbedding(PLANEXT_GROW). See section
6.2.5 for more details.

13.7.4 Connectivity Augmentation

Most planar graph drawing algorithms require a certain level of connectivity
of the input graph. One can link the connected components of a planar em-
bedded graph arbitrarily without destroying the combinatorial embedding.
Even more, if the connected components are linked tree like, this gives a
minimal connected planar supergraph in linear time. The only advanced fea-
ture of the procedure PlaneConnectivityAugmentation() is that it selects
a maximal exterior face of each component. This procedure is a wrapper
around the call ExtractEmbedding(PLANEXT_CONNECT) and runs in linear
time.

Things are more complicated with the biconnectivity and triconnectiv-
ity augmentation problems. One can compute in polynomial time minimal
biconnected and triconnected supergraphs but these are, in general, not
planar. The planar versions of these problems are NP-hard.

GOBLIN includes a procedure PlaneBiconnectivityAugmentation()

which computes a (probably not minimal) planar biconnected supergraph
in linear time. The restriction to the original graph gives the original com-
binatorial embedding. The input graph must be connected.

There is also a procedure Triangulation() to compute a maximum
planar supergraph of the adressed graph object. Such graphs are always
triconnected and called triangulations since all faces form triangles. As
before, the restriction to the original graph gives the original embedding.
The time complexity is O(m) up to the lookup of node adjacencies. The
input graph must be biconnected.

All procedures modify the incidence structure of the original graph!

13.7.5 Canonically Ordered Partition

The canonically ordered partition splits a simple triconnected planar
graph G into components which can be inserted one by one into a par-
tial plane drawing. This structure applies to convex as well as orthogonal
drawing methods. In some sense, it is the triconnectivity analogon of ear
decompositions and st-numberings discussed earlier. More explicitly, the

121

MAXIMUM FLOWS AND CIRCULATIONS CHAPTER 13. HIGH LEVEL ALGORITHMS

discussed partition consists of disjoint node sets X1,X2, . . . ,Xk such that
V (G) =

⋃k
i=1 Xi and

• X1 = {v1, v2}, v1 and v2 are neighbors on the exterior face of G and
v1v2 is called the basis arc.

• The induced subgraph Gj of G to
⋃j

i=1
Xi is biconnected and inter-

nally triconnected for every j = 2, . . . , k. That is, deleting two
interior nodes preserves connectivity.

• For j = 1, . . . , k, all nodes in Xj are exterior with respect to Gj .

• For j = 2, . . . , k − 1, the component Xj is adjacent to
⋃k

i=j+1 Xi and
has at least two contact nodes in Gj−1.

• For j = 2, . . . , k − 1, the component Xj is either a single node or a
path vr1

, vr2
, . . . , vrs

with exactly two contact nodes, one adjacent to
vr1

and the other adjacent to vrs
.

• Xk = {vn} consists of a single node.

Provided that the original graph is simple, triconnected and combinatorially
embedded (not just implicitly planar), the call

TNode k = LMCOrderedPartition(aLeft,aRight,vRight);

returns the following information:

• The number k of components.

• The components by the node colours where Colour(v) is the index of
the component of v, i ∈ {0, 1, . . . , k − 1}.

• The components by the array vRight where vRight[v] is the right-
hand neighbor of the node v in its component or NO_NODE if v is
right-most.

• The left-most contact arc aLeft[i] directed to the component i.

• The right-most contact arc aRight[i] directed from the component
i.

• If no exterior face and basis arc have been defined in advance, both
data are computed and stored internally. See Section 6.2.5 for details
about the data structures.

The running time is O(m). We only mention that the procedure computes
the left-most canonical ordered partition and refer to the literature for the
mathematical details.

13.8 Maximum Flows and Circulations

Synopsis:

class abstractFlowNetwork

{

protected:

TCap delta;

public:

TFloat MaxFlow(TNode,TNode);

TFloat EdmondsKarp(TNode,TNode);

TFloat CapacityScaling(TNode,TNode);

TFloat GoldbergTarjan(TNode,TNode);

TFloat Dinic(TNode,TNode);

bool AdmissibleCirculation();

}

122

CHAPTER 13. HIGH LEVEL ALGORITHMS 13.8. MAXIMUM FLOWS AND CIRCULATIONS

An st-flow is a pseudo-flow such that every node v 6= s, t is balanced
(Divergence(v)==Demand(v)). A maximum st-flow is an st-flow such
that Divergence(s), the flow value, is maximal. There is a generic prob-
lem solver MaxFlow() which chooses one of the methods listed in Table
13.1 according to the value of the context variable methMaxFlow. If the
context flag methFailSave is enabled, a reduced costs optimality criterion
is checked, that is, a minimum cut is computed. All methods return the
maximum flow value.

2/2

1/2

2/2

1/1

0/1
1/1 2/2

0/1

1/1

1/1

2/2

1/1

1/1

0/1
1/2

0

* *

1 *

2 *

*

x / ucap
d(u) d(v)

Figure 13.5: A Maximum Flow Problem

All max-flow methods have to be started with a feasible st-flow. Sup-
posed that all lower bound are zero, one can start the solver with the zero
flow. If you have already compute an st-flow and you have only increased
some capacity or inserted a new arc, no special initialization of the flow
labels is required. But if the source or target node have changed, you have
to start with the zero flow again. If the lower bounds are non-trivial, you
either need a feasible st-flow or you can fix the desired flow value by set-
ting the demands of the root and the target node, and then search for an
admissible b-flow instead.

13.8.1 The Augmentation Algorithm by Edmonds and Karp

This is the basic max-flow algorithm which depends on the search method
BFS. The used data structures are the subgraph, the predecessor labels and
the distance labels which determine a corresponding minimum cut eventu-
ally. The method runs in O(nm2) computing steps.

13.8.2 The Capacity Scaling Algorithm

The method CapacityScaling splits the balanced augmentation algo-
rithm into scaling phases. In the delta-phase, only the arcs with
ResCap(a)>delta are eligible. The parameter delta is initialized to the
maximum capacity, and divided by 2 if no more augmenting paths can be
found in this scaling phase. The resulting time bound is O(m2 log U) where
U := maxm−1

a=0 ucap(a).

13.8.3 The Blocking Flow Algorithm by Dinic

This method heavily depends on the class layeredAuxNetwork which is de-
scribed in Section 6.3.2. In contrast to the augmentation algorithm, the
Dinic method does not compute the distance and predecessor labels be-
fore every augmentation step, but grows an acyclic incidence structure to
perform a couple of augmentations.

123

MINIMUM CUTS AND CONNECTIVITY NUMBERS CHAPTER 13. HIGH LEVEL ALGORITHMS

The method runs in O(n2m) computing steps which is inferior to the
push and relabel algorithm, but performs better in many practical situa-
tions. At least in the case where all arc capacities are one, the Dinic method
is the most efficient and robust of the max-flow algorithms implemented.

13.8.4 The Push & Relabel Algorithm by Goldberg and Tar-
jan

This method iteratively chooses an active node, that is a node v which
has Divergence(v)>Demand(v). This node can either be relabeled so that
the distance label increases, or a certain amount of flow is pushed to an
appropriate neighbour of v.

The procedure GoldbergTarjan() supports three different strategies:

• If methMaxFlow==2, active nodes are selected by a FIFO strategy and
an O(n3) algorithm results.

• If methMaxFlow==4, the set of active nodes is restricted to nodes whose
flow excess exeeds a lower bound. This bound is decreased everytime
when no more active nodes exist. This strategy is known as excess
scaling. The running time is bounded by O(nm + n2 log U).

• Otherwise, the active nodes are stored on a priority queue, and the
priority of a node increases with its distance label. Here, the context
variable methPQ determines the used PQ data structure, and the best
possible complexity bound is O(n2

√
m).

In either case, several push operations from a selected active node are per-
formed and, if no further push is possible, the node is relabelled immediately.

We have experienced that the push & relabel technique can be even
more efficient than blocking flow algorithms, but only if no flow has to be
pushed back to the source node. In odd cases, not even a percent of the
running time is needed to send the maximum flow to the sink node.

13.8.5 Admissible Circulations and b-Flows

An b-flow of a flow-network is a pseudo-flow such that all nodes are bal-
anced. In the special situation where all node demands are zero, the b-flows
are also called circulations.

The method AdmissibleCirculation() decides whether an admissible
b-flow exists or not. This is achieved by using the class FNW2FNW which is
described in Section 6.3.1, and the generic solver method MaxFlow(). Since
the parameters n, m and U grow only by a constant factor during the prob-
lem transformation, the complexity bounds are the same as for the used
max-flow methods.

13.8.6 Proposed Extension

The MKM blocking flow algorithm.

methMaxFlow 0 Successive augmentation
1 Blocking flows, Dinic
2 Push & relabel, FIFO
3 Push & relabel, highest order
4 Push & relabel, excess scaling
5 Capacity scaling

Table 13.1: Maximum Flow Solver Options

13.9 Minimum Cuts and Connectivity Numbers

Synopsis:

class abstractMixedGraph

{

124

CHAPTER 13. HIGH LEVEL ALGORITHMS 13.9. MINIMUM CUTS AND CONNECTIVITY NUMBERS

virtual bool Connected(TCap);

virtual bool EdgeConnected(TCap);

virtual bool StronglyConnected(TCap);

virtual bool StronglyEdgeConnected(TCap);

TCap Connectivity();

TCap EdgeConnectivity();

virtual TCap StrongConnectivity();

virtual TCap StrongEdgeConnectivity();

virtual TFloat StrongEdgeConnectivity(TNode);

virtual TFloat StrongEdgeConnectivity(TNode,TNode);

TCap MinCutLegalOrdering(TNode,TNode&,TNode&);

TCap MinCutNodeIdentification();

}

class abstractDiGraph

{

TCap MinCutHaoOrlin(TNode);

}

The vertex connectivity number is the minimum number of nodes which
must be removed from the graph so that some nodes become disconnected.
Correspondingly, the edge connectivity number is the minimum number
of edges which must be removed so that two nodes become disconnected.
The strong counterparts require that all connecting paths are eligible.

methMinCut 0 Iterated Max-Flows
1 Push/Relabel, FIFO
2 Push/Relabel, Highest Order
3 Node Identification

Table 13.2: Minimum Cut Solver Options

In GOBLIN, there are two sets of methods which check for graph connec-
tivity and which are listed above. The methods of the first series take the
desired connectivity order k as an input parameter and check if the graph
actually is k-connected. If k is small, one of the basic methods described
in Section 13.6 is used. For (strong) edge connectivity of higher order, the
connected components are determined by computing minimum cuts on the
subgraph induced by a single colour and splitting the node set with respect
to this cut. This requires the solution of O(n2) max-flow problems. For
vertex connectivity of higher order, merely the method Connectivity() re-
spectively StrongConnectivity() are called since connected components
are immaterial here.

The methods of the second series compute a minimum cut and return
the cut capacity. The cut is returned by the node colours where the colours
of edge cuts are 0-1, and cut edge are directed from colour 1 to colour 0.
Node cuts are coloured 0 and directed from the nodes with colour 1 to the
nodes with colour 2.

Figure 13.6: Edge Connected Components of Order 3

125

MINIMUM COST FLOWS CHAPTER 13. HIGH LEVEL ALGORITHMS

Note that the methods Connectivity() and StrongConnectivity() uti-
lize node splittings which were described in Section 6.4.12 and essentially
solve O(n2) max-flow problems. Since the node demands in the original
graph map to arc capacities in the node splitting, the vertex connectivity
methods observe node capacities. In order to compute vertex connectivity
in the traditional sense, one must set all node demands to 1.

2

1

5

4
3

2

3

2

3

2

6

0

4 6

53

1 2

Figure 13.7: A Legal Ordering

If methMinCut==0 is configured, each of the three edge connectivity meth-
ods solves O(n) max-flow problems. If StrongEdgeConnectivity(TNode)
or EdgeConnectivity() is called with methMinCut>0, a modified version
of the push and relabel method MinCutHaoOrlin() is called which has the
same worst-case time complexity as the original max-flow algorithm. To our
experience, the highest order implementation performs much better than the
FIFO version and the iterated max-flow strategy.

The method EdgeConnectivity() which works for the global
min-cut problem supports a further algorithm: The method

MinCutNodeIdentification() can be called which iteratively chooses a
pair x, y of nodes, determines a minimum (x, y)-cut and then identifies the
nodes x and y. These nodes and the (x, y)-cut capacity are supplied by
MinCutLegalOrdering(r,x,y) where r is an arbitrary root of search. The
search for a legal ordering is very similar to the Dijkstra and the enhanced
Prim algorithm and hence runs in O(n2), O(m log n) or in O(m + n log n)
time depending on the setting of methPQ. In practice, the node identification
method performs much worse than the push/relabel method.

13.10 Minimum Cost Flows

Synopsis:

class abstractDiGraph

{

enum TOptMCFST {

MCF_ST_DEFAULT = -1,

MCF_ST_DIJKSTRA = 0,

MCF_ST_SAP = 1,

MCF_ST_BFLOW = 2

};

TFloat MinCostSTFlow(TNode,TNode,TOptMCFST);

TFloat MCF_BusackerGowen(TNode,TNode);

TFloat MCF_EdmondsKarp(TNode,TNode);

enum TOptMCFBF {

MCF_BF_DEFAULT = -1,

MCF_BF_CYCLE = 0,

MCF_BF_COST = 1,

MCF_BF_TIGHT = 2,

MCF_BF_MEAN = 3,

126

CHAPTER 13. HIGH LEVEL ALGORITHMS 13.10. MINIMUM COST FLOWS

MCF_BF_SAP = 4,

MCF_BF_SIMPLEX = 5,

MCF_BF_LINEAR = 6,

MCF_BF_CAPA = 7

};

TFloat MinCostBFlow(TOptMCFBF);

TFloat MCF_CycleCanceling();

TFloat MCF_MinMeanCycleCanceling();

TFloat MCF_CostScaling(TOptMCFBF);

TFloat MCF_ShortestAugmentingPath();

TFloat MCF_CapacityScaling();

TFloat MCF_NWSimplex();

void MCF_NWSimplexCancelFree();

void MCF_NWSimplexStrongTree();

}

Two formulations of the min-cost flow problem are supported: st-flows
and b-flows. All algorithms are accessed by the respective entry methods
MinCostSTFlow() and MinCostBFlow().

An st-flow is a pseudoflow such that all nodes are balanced, up to a
fixed pair s, t of nodes, and the imbalance at node t is called the value
of this flow. An extreme or (ν)-optimal st-flow is an st-flow which is
optimal among all st-flows with the same value ν.

When calling the first solver, MinCostSTFlow(s,t), a series of (ν)-
optimal st-flows is computed, and the flow value ν is strictly increasing.
This process halts if either a maximum flow has been determined or if the
sink node t becomes balanced. This scheme is usually known as the short-
est augmenting path (SAP) algorithm, referring to the fact that every
intermediary extreme flow differs from its predecessor by a shortest aug-
menting path.

It is required that the input flow is also an extreme st-flow. In many
situations, one can call the solver with the zero-flow which is (0)-optimal
if the length labels are non-negative. The zero flow is admissible also for
negative edge lengths if the digraph is acyclic. If node potentials are not
already present, the solver is smart enough to compute a compatible dual
solution before starting with augmentations.

The second solver, MinCostBFlow(), determines b-flows (in which all
node imbalances match the given node demand vector b) of minimum costs.
This includes the special case of circulations where the node demands are
zero. The applied method can either be primal, that is, it starts with de-
termining an arbitrary feasible b-flow. This solution is improved iteratively,
and stays feasible throughout the computation.

Or the solver applies an SAP like algorithm to the b-flow problem with
the slight difference to the st-flow solver that multiple terminal nodes occur.
This stems from the fact that only complementary slackness but not primal
feasibility is maintained, and that all supersaturated nodes are sources when
searching for shortest augmenting paths.

The general drawback of SAP methods is that the running time com-
plexity is polynomial only if the number of augmentations can be bounded
polynomially. When optimizing from scratch, this is true for the capacity
scaling method only.

The generic solver methods MinCostSTFlow() and MinCostBFlow() ac-
cept optional parameters in order to specify a particular algorithm. If
these parameter are omitted, the context variables methMinCFlow and
methMinCCirc apply. The possible values match the symbolic enum val-
ues which are listed above.

In all possible configurations, the solvers check if the node demamds sum
up to zero, and raise an ERRejected exception otherwise. If the problem
is infeasible for other reasons, InfFloat is returned. All methods preserve
optimal flows as far as possible. As an exception, starting b-flow SAP codes
with an optimal b-flow but with suboptimal node potentials may lead to a
different final flow.

127

13.10. MINIMUM COST FLOWS CHAPTER 13. HIGH LEVEL ALGORITHMS

13.10.1 The SAP Algorithm by Busacker and Gowen

This method iteratively computes shortest paths using the generic method
ShortestPath(), and augments on these paths. The running time is
O(νmn). The code is not for practical computations, but rather for com-
parison with the refined method which is discussed next.

13.10.2 The Refined SAP Algorithm by Edmonds and Karp

This method depends on the Dijkstra shortest path algorithm and on
the reduced length labels. The running time is O(ν(m + n log n)). This
method is of practical importance, since it solves the assignment problem in
O(n(m+n log n)) computing steps and can produce a near-optimal solution
for the general 1-matching problem in the same order of complexity.

The method may be called with an st-flow and with node potentials
such that the residual network contains negative length arcs. In that case,
a label setting shortest path method is called, and the node potentials are
corrected. Doing so, it may turn out that the input flow is not extreme. In
that case, an ERRejected exception is raised.

8

−1

−2

5 9

2

3

0

4

6

1

7

5

0 1 2

3

4

5

length
u v

Figure 13.8: A Minimum Mean Cycle

13.10.3 The Cycle Canceling Algorithm by Klein

This is the very basic primal min-cost flow method. It iteratively searches
for negative length cycles and augments on these cycles. Consult Section
13.1.10 for information on the method NegativeCycle() which is applied.
If no negative length cycle exists, the circulation is optimal, and the proce-
dure halts.

The procedure is non-polynomial and also performs very badly in prac-
tice. It is only useful for post-optimization and educational purposes.

13.10.4 The Minimum Mean Cycle Canceling Algorithm

This is a strongly polynomial specialization of the cycle canceling method
where all augmenting cycles are minimum mean cycles. The running time is
O(n2m3 log n) and O(n2m log (nC)) where C := maxm−1

i=0
{length(a)}. The

major drawback is the fact that the procedure requires Θ(n2) units of stor-
age. In our experience, it is also too slow to solve practical min-cost flow
problems.

13.10.5 The Cost Scaling Algorithm

An ǫ-optimal b-flow is a b-flow such that one can find node potentials with
RedLength(a)>=-epsilon for every arc which satisfies ResCap(a)>0. A
b-flow is ǫ-tight if it is ǫ-optimal, but it is not δ-optimal for any δ < ǫ.

The cost scaling algorithm iteratively transforms a 2ǫ-optimal b-flow and
compliant node potentials into an ǫ-optimal b-flow and a corresponding set
of potentials.

During such a scaling phase, the method manipulates an ǫ-optimal
pseudo-flow rather than a b-flow. It performs push and relabel operations
similar to the non-weighted algorithm until every node is balanced.

The running time is O(n3 log(nC)) for the basic version without epsilon-
tightening. If tightening operations are enabled (depending on the value of

128

CHAPTER 13. HIGH LEVEL ALGORITHMS 13.10. MINIMUM COST FLOWS

methMinCCirc, the method MinimumMeanCycle() is called to check for opti-
mality after each scaling phase, and the running time is O(mn3 log n). Each
of the tightening steps derives potentials for which the b-flow is epsilon-tight.
It can been experienced that the method performs much better without ap-
plying MinimumMeanCycle().

13.10.6 The Multi Terminal SAP Method

The SAP algorithm starts with sending flow on all arcs which have residual
capacity but the reduced length is negative. After that operation, the com-
plementary slackness condition is satisfied, but many nodes are unbalanced.
So the remainder of the procedure is sending flow on shortest paths in the
residual network and updating the node potentials correspondingly.

Only a non-polynomial complexity order O(m U(m + n log n)) for the
running times is achieved here, but the method performs well in practice.
In particular, it is well-suited for post-optimization.

13.10.7 The Capacity Scaling Method

The capacity scaling method MCF_CapacityScaling() is a variant of this
SAP method which limitates the number of augmentation steps by choosing
augmenting paths with sufficiently high capacity.

The running time is bounded by O(m log(U)(m + n log n)) but, frankly,
can be achieved only for graphs which have infinite capacity paths be-
tween each pair of nodes. Practically, the capacity scaling method performs
slightly better than the cost scaling method.

13.10.8 The Primal Network Simplex Method

The network simplex method can be considered an adaption of the gen-
eral simplex method to network flows but also a clever specialization of
the Klein cycle canceling algorithm. In order to generate negative cycles,
the network simplex method maintains node potentials and a spanning tree
which entirely consists of arcs with zero reduced length.

0/13

0/224 0/131

0/0

10/0

10/0

0/112

0/0

20/0

10/0

0/0

0/182

0/−22

0/190

0/192

0/92

20/0

0/0

10/0

20/0

0/40

0/36 0/0

20/0

0/73 0/−9

10/0

0/64 0/−108

0/−75

10/0 10/0

0/252

0/98 0/224

0/251

0/174

10/0 0/253

0/0

0/−109 0/−55

10/0

0/204 10/0

0/−328

0/323 0/0

0/372

0/226 10/0

20/0

0/−89

109 88 61 25 −142 −127

−52 40 114 9 −33 −123

−21 3 31 187 −60 96

−88 −186 −102 286 0 78

Figure 13.9: A Strongly Feasible Spanning Tree

Every arc not in the tree which has negative reduced length can be extended
by tree arcs to a cycle with negative length. One selects such a pivot arc
with positive residual capacity, but even then it is impossible to guarantee
that the pivot cycle has residual capacity different from zero. Such degen-
erate pivot steps do not affect the flows but change the node potentials
and the spanning tree structure. To fix up the problems with degeneracy,
one uses strongly feasible spanning tree structures where every arc
can send flow up the tree and the leaving arc on the pivot cycle is chosen
carefully.

129

13.11. BALANCED NETWORK SEARCH CHAPTER 13. HIGH LEVEL ALGORITHMS

In our implementation, connectivity is neither required for the input
graph nor forced by a problem transformation. The method must start
with a feasible b-flow. In a first step, a procedure NWSimplexCancelFree()
transforms the initial b-flow into a cycle free solution by a depth first
search strategy in O(m2) time. Then NWSimplexStrongTree() computes a
strongly feasible spanning tree structure from any given cycle free b-flow in
O(m n) time.

The main functionality is located in a separate class networkSimplex,
especially the management of spanning tree indices and the data structures
which are needed for the pricing step. The initilization phase ends by calls
to methods InitThreadIndex() and ComputePotentials() of this class
which take O(n) steps together. If the network simplex method is started
with a cycle free solution, the neccesary data are reconstructed without
modifying the b-flow!

The cyclic part consists of alternating calls to PivotArc() and
PivotOperation(). The pivot arc determination takes O(m) steps and the
pivot step O(n) steps. The practical perfomance depends on a good pric-
ing rule which is fixed by the context parameter methNetworkPricing.
All possible rules are based on the idea of choosing the arc with the most
negative reduced length for pivoting. By the Dantzig rule, all arcs are
considered. By the partial pricing and the multiple partial pricing
rules, only a few arcs are considered. The extreme case is the first eligible
arc rule where only one admissible pivot arc is generated.

The network simplex code performs much better than the cost scaling
method up to the case where Dantzigs rule is applied. The other rules show
a similar performance and partial pricing performs best of all methods.

methMinCFlow 0 Revised shortest path
1 Shortest path
2 Transformation to b-flows

methMinCCirc 0 Klein (cycle canceling)
1 Cost scaling
2 Cost scaling with ǫ-tightening
3 Minimum mean cycle canceling
4 Shortest Augmenting Path
5 Primal network simplex
6 Reduction to linear program
7 Capacity scaling

methNetworkPricing 0 Partial pricing
1 Multiple partial pricing
2 Dantzig
3 First eligible arc

Table 13.3: Min-Cost Flow Solver Options

13.11 Balanced Network Search

Synopsis:

class abstractBalancedFNW

{

bool BNS(TNode,TNode = NoNode);

bool BNSKocayStone(TNode,TNode = NoNode);

bool BNSKamedaMunro(TNode,TNode = NoNode);

bool BNSHeuristicsBF(TNode,TNode = NoNode);

bool BNSMicaliVazirani(TNode,TNode = NoNode);

130

CHAPTER 13. HIGH LEVEL ALGORITHMS BALANCED NETWORK SEARCH

void Expand(TNode,TNode);

void CoExpand(TNode,TNode);

}

A valid path in a balanced flow network is an eligible path which does not
traverse a pair of complementary arcs with BalCap(a)==BalCap(a^2)==1.
A balanced network search (BNS) method is a procedure which decides
which nodes are reachable by a valid path from a specified root node.

All procedures take one or two parameters. The first one is the root of
search while the second optional parameter is a target node which should be
reached on a valid path. If such a target t is specified, the method effectively
decides whether t is reachable and halts once t has been reached. The BNS
methods may either be exact, that is, a valid path is determined for every
node which is reachable on a valid path, or heuristic.

For every BNS method and every node with finite distance label, a
valid augmenting path can be expanded by using the method Expand. This
method recursively calls CoExpand, and utilizes the prop and the petal

data structures which are returned by all BNS methods. The exact meth-
ods BNSKocayStone and BNSMicaliVazirani also return an odd set system
by the partition data structure.

The generic solver method BNS calls one of the various BNS meth-
ods according to the context variable methBNS. Note that the DFS heuris-
tics and the Kameda-Munro heuristics are both encoded into the method
BNSKamedaMunro which also reads methBNS. If a heuristical method is se-
lected but the target is missed, the method BNSKocayStone is called to
verify the negative result.

13.11.1 The Algorithm by Kocay and Stone

This method is in the tradition of the Edmonds/Gabow cardinality match-
ing algorithm and uses a BFS approach. It is exact, that is, it finds a
valid augmenting path if there is one. Although improved to O(m) com-
plexity, it cannot beat the running times of the heuristic methods. It also
fails to compute paths of minimum length, but is much simpler than the

Micali/Vazirani algorithm.

13.11.2 The Breadth First Heuristics

This is the most simple BNS procedure since it totally ignores the necces-
sity of blossom shrinking and does not use any high level data structures.
It runs in O(n2) time, but performs better than the Kocay/Stone algorithm
up to a size of 5000 nodes approximately. Just as the other heuristics,
BNSHeuristicsBF does not compute a dual solution (odd set system).

13.11.3 The Depth First Heuristics by Kameda and Munro

This is the most efficient method according to our experiments and runs in
O(m) time. It utilizes two stacks for the management of blossoms instead of
a disjoint set system. Both version are only an heuristics which may miss to
find a balanced augmenting path even if there is one. The enhanced version
requires some additional storage for time stamps but misses a node only in
pathological situations.

13.11.4 The Algorithm by Micali and Vazirani

This method finds the distance labels with respect to the specified root
node in O(m) time. It depends on layered auxiliary shrinking networks,
into which the shortest augmenting paths are encoded. For the time being,
no st-path is extracted to the prop and petal data structures.

methBNS 0 Breadth-First (Kocay/Stone)
1 Depth-First Heuristics
2 Depth-First Heuristics (Time Stamps)
3 Breadth-First Heuristics

Table 13.4: Balanced Network Search Options

131

13.12. MAXIMUM BALANCED NETWORK FLOWS CHAPTER 13. HIGH LEVEL ALGORITHMS

13.12 Maximum Balanced Network Flows

Synopsis:

class abstractBalancedFNW

{

TFloat MaxBalFlow(TNode);

TFloat BNSAndAugment(TNode);

TFloat BalancedScaling(TNode);

TFloat Anstee(TNode);

TFloat MicaliVazirani(TNode,TNode = NoNode);

void CancelEven();

virtual TFloat CancelOdd();

}

A balanced pseudo-flow on a balanced flow network is a pseudo-flow such
that for every arc a, BalFlow(a)==BalFlow(a^2) holds. In contrast to the
ordinary max-flow solvers, one only specifies the source node s. The sink
note t == (s^1) is determined by the flow symmetry.

The generic solver method MaxBalFlow calls one of the actual problem
solvers according to the value of methMaxBalFlow.

13.12.1 The Balanced Augmentation Algorithm

The method BNSAndAugment is the most simple method which iteratively
calls BNS. It solves a k-factor problem in O(nm) time for fixed k, and the
general maximum balanced flow problem in O(νm) time.

13.12.2 The Capacity Scaling Algorithm

The method CapacityScaling splits the balanced augmentation algo-
rithm into scaling phases. In the delta-phase, only the arcs with
BalCap(a)>=delta are considered. The parameter delta is initialized to

the maximum capacity, and is divided by 2 if no further augmenting path
can be found. The resulting time bound is O(m2 log U).

Except for the final scaling phase, every augmenting path is valid.
Hence, the balanced network search is replaced by an ordinary BFS for
the bulk of the computation. Effectively, the effort decreases to the solution
of an ordinary network flow problem.

13.12.3 The Phase-Ordered Algorithm

The method MicaliVazirani is the fastest cardinality matching algorithm
both in practice and theory achieving the complexity bound O(

√
nm). The

general problem of maximum balanced network flows is solved in O(n2m)
time.

In fact, the GOBLIN implementation is not the original Micali/Vazirani
algorithm but a careful extension to balanced network flows. It is the most
involved of the maximum balanced flow solvers and implemented by its own
class (see Section 6.3.5 for the details).

13.12.4 The Cycle Canceling Algorithm

The method Anstee computes an ordinary maximum st-flow which is sym-
metrized afterwards resulting in a balanced flow which is half-integral but
not integral. The non-integral flow values are deleted successively by calling
the methods CancelEven and CancelOdd. The latter method may decrease
the flow value and perform some balanced augmentation steps which con-
clude the computation.

Note that the generic method MaxFlow is used which allows to select
from all implemented max-flow algorithms. On the other hand, CancelOdd
calls the procedure BNSKocayStone directly which is needed to perform the
balanced augmentations.

Hence the complexity of the Anstee algorithm is dominated by the max-
flow algorithm used. If one uses the push and relabel algorithm, this yield
the best complexity bound, namely O(

√
mn2), but the Dinic algorithm

performs much better for explicit matching problems. In our experience,

132

CHAPTER 13. HIGH LEVEL ALGORITHMS WEIGHTED BALANCED NETWORK FLOW ALGORITHMS

MicaliVazirani and Anstee perform much better than the augmentation
methods, but neither beats the other.

methMaxBalFlow 0 Successive augmentation
1 Phase-Ordered augmentation
2 Phase-Ordered augmentation with look-ahead
3 Phase-Ordered augmentation with look-ahead

and augmentation
4 Capacity scaling
5 Cycle canceling

Table 13.5: Maximum Balanced Flow Options

In the situation of k-factor problems, Anstee runs in O(nm) time which is
the same as for the basic method BNSAndAugment. However, it has turned
out that CancelOdd decreases the flow value only by a very small amount
(probably < 10 for 105 nodes). Since balanced augmentation steps are con-
siderably more expensive than ordinary augmentations, the method Anstee

performs much better than BNSAndAugment in practice.

Note that the method CancelOdd() has two different implementa-
tions. The general procedure depends on the problem transformation class
bal2bal. The second, simpler implementation, is in the class gra2bal, and
hence applies to explicit matching problems only.

13.13 Weighted Balanced Network Flow Algo-
rithms

Synopsis:

class abstractBalancedFNW

{

TFloat MinCBalFlow(TNode s);

TFloat PrimalDual(TNode s);

TFloat EnhancedPD(TNode s);

TFloat CancelPD();

}

13.13.1 The Primal-Dual Algorithm

The primal-dual algorithm for ordinary flows maintains an st-flow and a set
of potentials which satisfy a reduced length optimality criterion. If these
solutions admit an augmenting path such that all arcs on this path have zero
reduced length, the PD algorithm augments as long as possible. Otherwise
several dual updates (updates on the node potentials) are performed, each
of which extends the set of s-reachable nodes.

In the setting of balanced networks, the dual solution consists of node
potentials, a shrinking family, and variables assigned with the sets of this
family. These data structures are managed by a special class surfaceGraph
whose incidence structure is the graph in which all blossoms (sets in the
shrinking family) are contracted to a single node. This class has been de-
scribed in Section 6.3.6.

The GOBLIN implementations are still rather basic. That is, they do
not use splitable priority queues or multiple search trees. The complex-
ity so far is O(νnm) where ν denotes the value of a maximum balanced
st-flow (minus the vlaue of the initial flow). A later release of GOBLIN
should achieve a O(νn2) implementation. See Table 13.6 for the available
variations of the PD algorithm.

Note that all PD methods can run with modified length labels which are
not physically present, but computed from the dual variables. This recur-
sive computation takes O(n) time, and hence may increase the complexity
of the PD method by a factor n. It has the benefit that only O(n) storage
is needed for keeping the modified length labels compared to O(m). This
is important for large scale geometrical matching problems, say with > 105

nodes.
The recursive computation of modified length labels is enabled by the

133

MATCHING SOLVERS CHAPTER 13. HIGH LEVEL ALGORITHMS

context flag methModLength, and can be performed explicitly if RModLength
is called.

13.13.2 The Enhanced Primal-Dual Algorithm

This is an improvement of the PD algorithm resambling the cycle canceling
method Anstee discussed in Section 13.12.4. More explicitly, the method
EnhancedPD first calls the generic solver MinCFlow to compute an ordinary
extreme maximum st-flow.

This flow is symmetrized by using CancelEven and CancelPD. The latter
method is essentially the same as the general implementation of CancelOdd,
but calls PrimalDual for the final balanced augmentation steps. The mere
symmetrization takes O(m) steps.

By this preprocessing, PrimalDual is started with a complementary pair
where the flow value is at most n less than the value of a maximum balanced
st-flow, and therefore runs in O(n2m) time. The overall complexity is dom-
inated by the min-cost flow solver which comes into play. If one enables the
cost-scaling or minimum-mean cycle canceling method (see Section 13.10),
a strongly polynomial procedure results.

If one applies EnhancedPD and the shortest path method EdmondsKarp2

to a k-factor problem, the time complexity is the same as for the straight
primal-dual method. However, the actual running times may decrease dra-
matically, since Dijkstra augmentations are conceptually much more simple
and can be performed in O(m + n log n) time instead of O(mn) time.

methMinCBalFlow 0 Primal-Dual
1 Enhanced primal-dual

methPrimalDual 0 Restart BNS after each dual update
1 Restart BNS after changes in the shrinking family
2 Restart BNS after blossom expansions

methModLength 0 Recursive computation
1 Store modified length labels

Table 13.6: Min-Cost Balanced Flow Options

13.14 Matching Solvers

Synopsis:

class abstractGraph

{

virtual bool MaximumMatching();

virtual bool MaximumMatching(TCap);

virtual bool MaximumMatching(TCap*,TCap* = NULL);

virtual bool MinCMatching();

virtual bool MinCMatching(TCap);

virtual bool MinCMatching(TCap*,TCap* = NULL);

TFloat MinCEdgeCover();

}

Matching problems are solved in GOBLIN by transformation to balanced
flow networks generally. This involves the class gra2bal which was dis-
cussed in Section 6.3.4. Note that the general methods are overridden for
bipartite graphs by another problem transformation which depends on the
class big2fnw.

134

CHAPTER 13. HIGH LEVEL ALGORITHMS T-JOIN AND POSTMAN PROBLEMS

If the matching solver is called without any parameters, a subgraph with
Deg(v)==Demand(v) for every node v is computed. It may also be called
with an integer k, and then returns a k-factor, that is, Deg(v)==k for every
node. Finally, the matching solver may be called with two degree sequences
a and b. Then a[v]<=Deg(v)<=b[v] will hold for the resulting subgraph.

0

0

0

0

1

1 0 7

5
4

0

Figure 13.10: An Optimum 2-Factor

For complete graphs and bigraphs, one can solve the matching problem on
a sparse subgraph either heuristically (if methSolve==0) or to optimality.
The candidate graph consists of 10 greedy like heuristic matchings and the
k nearest neighbours of each node where k=methCandidates. Note that this
option is provided for optimization with the internal node demands only. If
the graph is non-bipartite, only the fractional matching problem is solved
on the candidate graph.

0

1

23

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

2223

24

Figure 13.11: Gallai-Edmonds Decomposition

There is a procedure MinCEdgeCover()which determines an edge cover with
minimum weight. This uses the well-known reduction to the 1-factor prob-
lem. In particular, the worst-case time complexity is the same as for the
underlying matching solver. A procedure to compute a minimum size edge
cover from a given maximum cardinality maching is discussed in Section
11.2.

13.15 T -Join and Postman Problems

Synopsis:

class abstractGraph

{

void ComputeTJoin();

void MinCTJoin();

void MinCTJoin(TNode,TNode);

135

TSP ALGORITHMS CHAPTER 13. HIGH LEVEL ALGORITHMS

void ChinesePostman();

}

class diGraph

{

void ChinesePostman();

}

An Eulerian cycle is an eligible closed walk which traverses every arc a at
least Cap(a) times. A graph is Eulerian if it admits an Eulerian cycle.

The Chinese postman problem (CPP) asks for an eulerian super-
graph such that the Eulerian cycle has minimum length. This problem is
NP-hard for general mixed graphs, but can be reduced to matching prob-
lems if the graph is either directed or undirected. These easy cases are
handled in GOBLIN.

Given a node set T of even cardinality, a T -join is a subgraph in which
all nodes in T have odd degree and all other nodes have even degree. The
undirected CPP is a special case of the minimum T -join problem which is
actually solved in GOBLIN. Note that the minimum T -join problem has
several further interesting special cases: 1-matching, shortest paths and
optimization on the cycle space.

All methods require Θ(n2) storage for the complete graph on which the
respective matching problems are solved. Hence the CPP solvers do not
work for large scale problems, say with n > 105 nodes.

13.15.1 T -Joins

The method ComputeTJoin() requires non-negative length labels and a set
T which is specified by the node demand labels, where a demand 1 denotes
a member of T . This procedure reduces the T -join problem to a 1-matching
problem so that the running time is dominated by the matching solver used.

The methods MinCTJoin(TNode,TNode), graph::ChinesePostman()

and MinCTJoin() can handle negative length labels. These latter proce-
dures set the demand labels and then call ComputeTJoin() which actually

determines the T -join.

3

1

3

1

5

5

5

5

3

1

0

1 2

3

4

5 6

length

u v

2

1

1

2

1

1

1

1

1

2

0

1 2

3

4

5 6

ucap

u v

Figure 13.12: A Graph and a Minimum Eulerian Supergraph

13.15.2 The Undirected CPP

The method abstractGraph::ChinesePostman returns an Eulerian sub-
graph which has maximum weight rather than an Eulerian cycle. It calls
the method ComputeTJoin() which has been described before.

The method graph::ChinesePostman increases the capacities of the
graph to a minimal Eulerian supergraph and has been added to preserve
the analogy of the directed and the undirected case.

13.15.3 The Directed CPP

The method diGraph::ChinesePostman reduces the CPP to a bipartite
b-matching problem, and the running time is dominated by the matching
solver used.

Note that the method is defined for the sparse implementation diGraph

only. The procedure does not compute an Eulerian cycle but increases the
capacities of the graph to a minimal Eulerian supergraph.

136

CHAPTER 13. HIGH LEVEL ALGORITHMS 13.16. TSP ALGORITHMS

13.16 TSP Algorithms

Synopsis:

class abstractMixedGraph

{

TFloat TSP(TNode = NoNode);

virtual TFloat TSPHeuristics(TNode);

TFloat TSPHeuristicsRandom();

TFloat TSPHeuristicsInsert();

TFloat TSPHeuristicsInsert(TNode);

TFloat TSPHeuristicsTree();

TFloat TSPHeuristicsTree(TNode);

virtual TFloat TSPLocalSearch(TArc*);

bool TSPNodeExchange(TArc*,TFloat = 0);

TFloat TSPSubOpt1Tree(TNode,

TFloat = InfFloat,TOption = 1);

TFloat TSPBranchAndBound(TNode,

TFloat = InfFloat);

}

class abstractGraph

{

virtual TFloat TSPHeuristics(TNode);

TFloat TSPHeuristicsChristofides(

TNode = NoNode);

TFloat TSPLocalSearch(TArc*);

bool TSP2Exchange(TArc*,TFloat = 0);

TFloat TSPSubOpt1Tree(TNode,

TFloat = InfFloat,TOption = 1);

TFloat TSPBranchAndBound(TNode,

TFloat = InfFloat);

}

class denseDiGraph

{

TFloat TSPHeuristics(TNode);

}

class denseGraph

{

TFloat TSPHeuristics(TNode);

}

A hamiltonian cycle or tour is an eligible cycle which traverses every node
exactly once. The traveling salesman problem (TSP) asks for a tour
of minimum length. In GOBLIN, tours are represented by the predecessor
labels.

The general TSP solver is defined by the method TSP(). This method
is controlled by the configuration parameters methTSP, methSolve and
methLocal. The parameters methTSP allows to select from several TSP
heuristics, and methLocal enables or disables local search routines.

The parameter methSolve determines the general optimization level. If
its value is zero, only a heuristic tour is computed. If its value is one, a
subgradient optimization is performed to obtain good lower bounds. For
higher values of methSolve, the problem can be solved to optimality by
branch and bound. When the TSP solver starts, it first checks if a 1-tree
exists to sort out some infeasible instances.

The configuration parameters methSolve and methLocal are designed
to control other hard problem solvers too, but there is no application yet.

The optional node passed to TSP() is used by the TSP heuristics in
different ways and may help to produce good starting solutions. In our
experience, the subgradient optimization produces the best heuristic tours.

13.16.1 The Insertion Heuristics

The method TSPHeuristicsInsert(r) starts with a cycle through r and a
neighbour of r and successively inserts nodes into this cycle. The node to be

137

13.16. TSP ALGORITHMS CHAPTER 13. HIGH LEVEL ALGORITHMS

inserted is the node with maximum distance from the cycle. It is inserted
at the position where it causes the smallest possible costs. If one neglects
the computation of node adjacencies, the running time is O(n3).

13.16.2 The Tree Approximation

The method TSPHeuristicsTree(r) expects an r-tree stored in the pre-
decessor labels. This r-tree is transformed into a tour which is at most
twice as long as the original tree if the graph is metric. If one neglects the
computation of node adjacencies, the running time is O(n).

13.16.3 The Christofides Approximation

The method TSPHeuristicsChristofides(r) combines the ideas of the
tree heuristics and the Chinese postman algorithm. It first computes a
minimum r-tree. Then a complete graph on the nodes with odd degree is
instanciated, a perfect 1-matching of this graph is determined, and added
to the graph. Then an Eulerian cycle results which can be contracted to a
tour which is at most 50 percent longer than the initial r-tree if the graph
is metric.

The final tour is returned by the predecessor labels, and its length is the
return value. If one neglects the computation of node adjacencies, the run-
ning time is dominated by the complexity of the selected matching solver.

13.16.4 Local Search

GOBLIN provides a local search routine TSPLocalSearch() which can be
used to improve the heuristic tours discussed so far. Local search is enabled
by the configuration parameter methLocal. One can also start this post-
optimization routine with a random tour by calling TSPHeuristicsRandom.

The method TSPLocalSearch() iteratively tries to improve the present
tour by recursive calls to TSP2Exchange() and/or TSP2NodeExchange()

The first method iteratively tries to improve a given tour by deleting two
arbitrary arcs which are replaced by two new (and entirely determined)

arcs. The second procedure selects a node which is deleted and inserted at
another point of the tour.

Both local search procedures take an array of predecessor labels and an
optional parameter which denotes the minimal improvement accepted for a
local exchange. If this value is positive, a local exchange may increase the
tour length by the specified amount.

Figure 13.13: A 2-Opt Step

13.16.5 The Subgradient Method by Held and Karp

The method TSPSubOpt1Tree(r) iteratively calls MinTree(r)which returns
an r-tree as described in Section 13.5.4 by the subgraph data structure. If
all nodes have Deg(v)==2, a tour is found, and the procedure halts.

138

CHAPTER 13. HIGH LEVEL ALGORITHMS 13.16. TSP ALGORITHMS

8

1

12
10

7

11

5

99

14

6

8

1

0

−1

−1

−1

2

lengthpi(u) pi(v)

Figure 13.14: An optimal 1-Tree which forms a tour

Otherwise, the potentials of the nodes with Deg(v)>2 are increased and
the potentials of the nodes with Deg(v)<2 are decreased by some amount,
and the min tree solver is called again. If the TSP problem cannot be solved
within a certain number of iterations, the procedure returns the best lower
bound and the corresponding r-tree by the subgraph data structure.

If it looks promising, TSPSubOpt1Tree() calls TSPHeuristicsTree(r)

which determines a feasible tour and hence an upper bound. The best tour
found is returned by the predecessor labels. One may pass the length of a

known tour by an optional parameter in order to initialize the upper bound.

This procedure yields very strong lower bounds on the length of an opti-
mal tour, but one cannot expect that an optimal tour is found for practical
instances. The quality of the bound depends on the third parameter which
acts as follows: If a value of zero is passed, only a single 1-tree is computed
without changing any node potentials. If a value of one is passed, good
potentials are computed within a reasonable number of iterations, say 100,
roughly. For a value of two, a large number of iterations occurs, 3000 ap-
proximately. The found bound is much better for some instances, but on
the average the fast strategy already achieves the optimal bound.

This calling parameter is matched by the context parameters
methRelaxTSP1 and methRelaxTSP2 which specify how the 1-tree method
is applied to find the initial bound respectively the partial bounds for the
branch and bound scheme. A value of methRelaxTSP2=2 does not yield a
practical method.

13.16.6 Branch and Bound

There is a branch and bound solver TSPBranchAndBound which depends on
the 1-tree relaxation. It also uses the node potentials found by subgradient
optimization. If the configuration parameter methCandidates is negative,
the branch and bound module evaluates the entire graph. Otherwise, a
candidate graph is generated which consists of the best tour found so far,
several random locally optimal tours and the nearest neighbours of each
node. In that case, the value of methCandidates denotes a lower bound on
the node degrees. See Section 10.3.2 for the details of the branch and bound
module.

13.16.7 Application to Sparse Graphs

The TSP solver also applies to sparse graph objects and to graphs with
non-trivial capacity bounds. The latter can be used to restrict the set of
feasible solutions.

139

GRAPH COLOURINGS CHAPTER 13. HIGH LEVEL ALGORITHMS

None of the implemented heuristics would be helpful, if applied to the
original graph. Instead of this, the method TSPHeuristics() computes
the metric closure of the graph (see Section 6.4.8 for more details). On
this metricGraph object, the heuristics and the subgradient optimization
are run irrespecitive of the current value of methSolve. If the tour of the
metric closure maps to the original graph, this tour returned.

If branch and bound is enabled, this applies to the original graph. No
candidate search is performed but the entire graph is evaluated.

methTSP 0 Random tour
1 Insertion heuristics
2 Tree heuristics
3 Christofides (undirected graphs only)

methRelaxTSP1 0 Straight 1-tree bound
1 Subgradient optimization (fast)
2 Subgradient optimization (stable)

Table 13.7: TSP Solver Methods

13.17 Graph Colourings and Clique Covers

Synopsis:

class abstractMixedGraph

{

TNode NodeColouring(TNode);

TNode PlanarColouring();

TNode NCLocalSearch();

bool NCKempeExchange(TNode*,TNode,TNode);

TNode CliqueCover(TNode);

TNode EdgeColouring(TNode);

}

A node colouring is an assignment of colours to the graph nodes such
that the nodes with equal colour are non-adjacent. A clique cover is an
assignment of colours to the graph nodes such that every colour class forms
a clique.

The procedure NodeColouring calls the enumeration scheme which is
described in Section 10.3.4. The parameter denotes the acceptable number
of colours. This value k has strong impact on the practical performance of
the solver. For example, for a planar graph and a value of 6, the branch and
bound would end within a single iteration. If k is very close to the chromatic
number χ, the computational efforts are tremendous even for a 50 node
graph. In the case of k = 5 and n ≤ 3m− 6, the method PlanarColouring

is called, and enumeration occurs only if the specialized method does not
return a 5-colouring. The colouring of planar graphs requires O(nm) time.

140

CHAPTER 13. HIGH LEVEL ALGORITHMS STABLE SETS AND CLIQUES

Figure 13.15: A 3-Colouring of the Dodecahedron

If no k is specified, the method produces a decreasing sequence of values for
k, for which the enumeration scheme is started. By this strategy, one can
produce colourings which come close to χ. Note that cliques sizes are lower
bounds for χ. Hence, with some luck, it is possible to bound the chromatic
number to a small interval.

The clique cover and the edge colouring method essentially perform
a node colouring of the complementary graph and the line graph respec-
tively. More precisely, if ∆ denotes the maximum node degree, then
EdgeColouring(k) computes an approximative edge colouring with either
∆ or ∆+1 colours in O(m∆(m+∆ log ∆)) time. If k > ∆, this colouring is
returned by the subgraph labels. If k < ∆, no k-edge colouring exists. Only
if k = ∆ and if the approximation method has obtained a ∆ + 1-colouring,
the enumeration scheme is used for an potential improvement.

All described methods return the number of colours in the final solution
or the constant NoNode if no colouring was found.

If the context flag methLocal is set, the procedure NCLocalSearch is
called with the final colouring obtained by the enumeration scheme. Each of
the methods NCLocalSearch(), PlanarColouring and EdgeColouring()

depend on the method NCKempeExchange() which takes the colours of the
two specified nodes and flips the colours in the Kempe component of the
first node. If both nodes are in in the same Kempe component, 0 is returned
and 1 otherwise. Such an exchange operation needs O(m) time.

13.18 Stable Sets and Cliques

Synopsis:

class abstractMixedGraph

{

void StableSet();

void Clique();

void VertexCover();

}

A stable set is a set of pairwise non-ajacent nodes whereas a clique con-
sists of pairwise adjacent nodes and a vertex cover is a node set which
contains at least one end node of every egde. The three listed methods
return the maximum cardinality of a respective node set. The set itself
consists of the nodes with colour 1.

All methods call the branch and bound solver for the stable set problem
described in Section 10.3.1 and use heuristic graph colouring. Our experi-
ments have turned out that one can compute cliques in graphs with 150-200
nodes depending on the graph density and on the quality of the heuristic
colouring.

Figure 13.16: A Maximum Stable Set of Queens on a Chessboard

141

DISCRETE STEINER TREES CHAPTER 13. HIGH LEVEL ALGORITHMS

13.19 Discrete Steiner Trees

Synopsis:

class abstractMixedGraph

{

TFloat SteinerTree(TNode);

TFloat SteinerTrimLeaves(TArc*);

virtual TFloat SteinerHeuristics(TNode);

virtual TFloat SteinerEnumerate(TNode);

}

class abstractGraph

{

TFloat SteinerHeuristics(TNode = NoNode);

TFloat SteinerEnumerate(TNode = NoNode);

}

The method SteinerTree() evaluates the node demand labels which have
to be either 0 or 1. A Steiner tree is a rooted tree or arborescence which
spans all nodes with demand 1, the terminals. The demand 0 nodes are
called Steiner nodes and are spanned only if they denote shortcuts.

The method SteinerEnumerate() enumerates on all possibilities for the
Steiner nodes and iteratively calls the generic min-tree solver. Hence, the
algorithm is non-polynomial and the running times are acceptable for at
most ten Steiner nodes.

The method SteinerTrimLeaves(TArc*) turns a given spanning tree
(arborescence) into a Steiner tree by successively deleting all Steiner
nodes which are leaves. The running time is O(n), the return value
is the sum of lengths of the deleted arcs. The general implementation
of SteinerHeuristics() does nothing more than calling MinTree() and
SteinerTrimLeaves().

In undirected graphs, SteinerHeuristics() implements the Mehlhorn
2-approximation algorithm. This method calls Prim2() with some discrete

adaption of the Voronio geometry. The running time is O(m + n log n) and
is dominated by the shortest path problem which must be solved to the
compute the Voronoi regions (see Section 13.1.5 for the details).

The compound solver method SteinerTree() calls the heuristics and,
if methSolve>1, the enumeration scheme. Lower bounds can be obtained
without complete enumeration in the undirected case only.

13.20 Maximum Edge Cuts

Synopsis:

class abstractMixedGraph

{

TFloat MaxCut(TNode=NoNode,TNode=NoNode);

virtual TFloat MaxCutHeuristics(

TNode=NoNode,TNode=NoNode);

TFloat MaxCutHeuristicsGRASP(

TNode=NoNode,TNode=NoNode);

TFloat MaxCutLocalSearch(

TNode*,TNode=NoNode,TNode=NoNode);

TFloat MaxCutBranchAndBound(TNode=NoNode,

TNode=NoNode,TFloat=InfFloat);

}

class abstractGraph

{

TFloat MaxCutHeuristics(

TNode=NoNode,TNode=NoNode);

TFloat MaxCutHeuristicsTree(

TNode=NoNode,TNode=NoNode);

TFloat MaxCutDualTJoin(TNode=NoNode);

}

142

CHAPTER 13. HIGH LEVEL ALGORITHMS 13.20. MAXIMUM EDGE CUTS

A maximum cut is a strong edge cut with the maximum sum of weights
where the weight of an arc a is defined as UCap(a)*Length(a). In undi-
rected graphs with unit edge capacities and lengths, a maximum cut corre-
sponds to a maximum bipartite subgraph.

For all described max-cut algorithms, the return value is the cut weight.
The cut is returned by the node colours which can be either 0 or 1. Cut
arcs are directed from colour 0 to colour 1 and only non-blocking arcs are
counted for the cut weight. If one or two optional nodes are specified, the
first node is always coloured 0 and the second node is coloured 1.

Apart from the exact methods, GOBLIN provides two starting heuris-
tics:

• In the general setting, MaxCutHeuristicsGRASP() applies which as-
signs colours to the nodes step by step. In each iteration, a candidate
list with a few nodes is generated and from this list, an arbitrary node
is chosen. Then, this node is always added to the most profitable
component. If the graph is undirected, the cut weight is at least 1/2
of the sum of arc weights.

• In undirected graphs, MaxCutHeuristicsTree() computes a mini-
mum spanning tree where the length labels are substituted by the
arc weights. After that, the bipartition is chosen with respect to the
tree.

Figure 13.17: A Maximum Edge Cut

The local search procedure MaxCutLocalSearch() iteratively shifts a single
node from one component to another if the cut capacity strictly increases by
that operation. Every iteration takes O(m) computing steps but the num-
ber of iterations cannot be bounded polynomially. As for other solvers, the
local search procedure is integrated into the heuristics and executed when
the context flag methLocal is set.

For planar undirected graphs with non-negative arc weights, the method
MaxCutDualTJoin() determines a maximum ∅-join of the dual graph and
maps it back to an edge cut. This is an exact algorithm, not just a heuristic!
The running time is dominated by the used T-join method.

The method MaxCutBranchAndBound() applies to the general setting
but can solve and proof optimality for small graphs only (with roughly 30
nodes and less).

143

13.20. MAXIMUM EDGE CUTS CHAPTER 13. HIGH LEVEL ALGORITHMS

144

Part IV

Miscellaneous

145

CHAPTER 14. THE OBJECT CONTROLLER THE OBJECT CONTROLLER

Chapter 14

The Object Controller

With any object derived from the base class goblinDataObject (graph ob-
jects, iterator objects and data structures), a goblinController object is
associated. To this controller object, we refer as the context of the data
object.

Data objects may share their controller with other data objects. In
particular, iterators, logical views and temporary data structures used in
algorithms are in the same context as the referenced graph object.

There is a global controller object, namely the goblinDefaultContext.
For the most default and file constructors of GOBLIN data objects, a ref-
erence to goblinDefaultContext appears as a default parameter.

14.1 Construction

Synopsis:

class goblinController

{

goblinController();

goblinController(goblinController&);

}

Whenever a controller object is instanciated, this generates a couple of timer
objects and an object hash table which allows to dereference the dependent
data objects from a given integer handle. All other context parameters are
initialized either with default values or the respective value of the master
context.

The copy constructor method produces a clone of the controller ob-
ject passed by its reference. All built-in type and char* string values are
copied, event handlers and module entry points are inherited from the mas-
ter context.

For example, a display configuration is a volatile controller object and
copied from the context of the object to be displayed. This controller is
modified with some class dependent display parameters before the object is
actually mapped or written to file:

exp2tk E(*this,"dummy.tk");

ConfigDisplay(E.Configuration());

E.DisplayGraph();

Controller objects which are constructed by the default constructor, are
somewhat like clones of the global object goblinDefaultContext.

Other than for the subsequent controller instanciations, the construc-
tion of goblinDefaultContext also generates a controller object hash table
which allows to dereference all valid controller and data objects from their
handle.

14.2 Interaction with Data Objects

Synopsis:

class goblinController

{

147

LOGGING CHAPTER 14. THE OBJECT CONTROLLER

public:

THandle InsertObject(goblinDataObject*);

void DeleteObject(THandle);

goblinRootObject* ObjectPointer(THandle) const;

goblinRootObject* Lookup(THandle) const;

}

class goblinDataObject : public goblinRootObject

{

protected:

goblinController &CT;

THandle &H;

public:

goblinDataObject(goblinController &

= goblinDefaultContext);

goblinController &Context();

THandle &Handle();

}

Every constructor of a GOBLIN data object subscribes to the controller ob-
ject which forms its context. This is managed by the method InsertObject

which returns a globally unique object handle.

This functionality is transparent to the programmer. If a new class is
derived from goblinDataObject or its descendants, the programmer merely
writes a call goblinDataObject(CT) into all constructors of the new class.
Here, CT denotes the desired context.

The context of a goblinDataObject and its respective handle can be
accessed by the class methods Context() and Handle(). Conversely, con-

trollers can determine the addresses of the hosted data objects from their
handles by means of ObjectPointer(). If only the handle H but not the
context is known, goblinDefaultContext.Lookup(H) returns the address.

It is particular useful to store handles instead of addresses if the refer-
enced object may be deleted within the life time of the referencing object.
Lookup() returns a NULL pointer when dereferencing raises a segmentation
fault!

Internally, all data objects hosted by the same controller object are in a
linked list. Since all controller objects are also in a linked list, it is possible
to enumerate all valid GOBLIN data objects. The method DisplayAll()

is a straight forward application.
To every controller object, one can assign a master object by calling

SetMaster() with the handle of the desired master object. This handle
can be questioned by the method Master(). The master object determines
the context label and, implicitly, the labels of all unnamed objects in that
context.

14.3 Logging

GOBLIN is fitted with an elaborate logging module. Like the tracing mod-
ule which is discussed later, it can be used for debugging, and also for
preparation of runtime examples.

14.3.1 Event Handlers

Synopsis:

class goblinController

{

private:

unsigned long suppressCount;

148

CHAPTER 14. THE OBJECT CONTROLLER 14.3. LOGGING

public:

void (*logEventHandler)(msgType,TModule,THandle,char*);

void PlainLogEventHandler(msgType,TModule,THandle,char*);

void DefaultLogEventHandler(msgType,TModule,THandle,char*);

void SuppressLogging();

void RestoreLogging();

}

In order to keep any multitasking code out of the core library, we have in-
troduced a function pointer logEventHandler which originally references
the method DefaultLogEventHandler(). This method writes all passed
logging information to the file or device referenced by logStream. There is
an alternative procedure PlainLogEventHandler() which processes user-
readable output to the same stream but only handles plain message texts.

The messenger and the GOSH shell which are discussed later
provide more complex event handlers. These procedures call
DefaultLogEventHandler() in turn.

The method SuppressLogging() saves and deregisters the current event
handler, RestoreLogging() registers the saved event handler again. Calls
must be matching, but it is save to use these methods in a nested way.

14.3.2 Writing Log Entries

Synopsis:

class goblinController

{

private:

THandle LogFilter(msgType,THandle,char*);

public:

char logBuffer[LOGBUFFERSIZE];

void LogEntry(msgType,THandle,char*);

THandle LogStart(msgType,THandle,char*);

void LogAppend(THandle,char*);

void LogEnd(THandle,char* = NULL);

}

Data objects do not call the registered event handler directly but rather the
context methods listed above. If no handler is registered, nothing happens.
Otherwise the information delivered by the data object is extended by some
structural information and passed to the event handler.

Logging information is grouped into several classes each of which is rep-
resented by a token of the enumeration type msgType. Table 14.3.5 shows
the tokens which are used for the GOBLIN core library logging information.
The tokens associated with errors and with the GOSH shell are discussed
later in this document.

The parameters of LogFilter() are such a token, an object handle and
a text line which has to be logged. It manages the filtering of message types
and handles the event handlers.

The method LogEntry() does nothing else than calling LogFilter()

and suppressing messages nested into compound log entries. One can use
the predefined buffer logBuffer to pass the message text but only for strings
up to a size of LOGBUFFERSIZE-1.

The methods LogStart(), LogAppend() and LogEnd() are used to grow
compound messages from a series of strings. To this end, LogFilter()

and, eventually, the event handler are called with a special message type
MSG_APPEND. The handle returned from LogStart() must be passed for the
trailing components. Calls to LogStart() and LogEnd() must be matching.

149

14.3. LOGGING CHAPTER 14. THE OBJECT CONTROLLER

To prevent obvious overhead, data objects also implement a method
LogEntry() which substitutes the own object handle in the context method.
Compound messages can be written by data object methods likewise.

The method Error() calls the log event handler with a message com-
posed from the two strings passed as arguments. The first string describes
the scope where the exception occured and the second one describes the
exceptional situation. All information about the most recent exception is
saved internally. Finally, Error() throws a C++ exception depending on
the delivered msgType token. See Chapter 19 for more details.

150

CHAPTER 14. THE OBJECT CONTROLLER 14.3. LOGGING

14.3.3 Structured Source Code

Synopsis:

class goblinController

{

private:

TModule nestedModule[MAX_MODULE_NESTING];

int moduleNestingLevel;

public:

char logDepth;

char logLevel;

void IncreaseLogLevel();

void DecreaseLogLevel();

enum TFoldOptions {

NO_INDENT = 1,

SHOW_TITLE = 2

};

void OpenFold(TModule,TOption = 0);

void CloseFold(TModule,TOption = 0);

}

The event handlers do some alignment of the log entries depend-
ing on the current logLevel which can be manipulated by calls to
IncreaseLogLevel() and DecreaseLogLevel(). The maximum indenta-
tion level is specified by logDepth.

In the same way, OpenFold() and CloseFold() manipulate the pa-
rameter moduleNestingLevel and set the current code module context:
OpenFold() saves the new context on the stack nestedModule (if the max-
imum depth MAX_MODULE_NESTING has been reached, the context does not
change effectively) and CloseFold() recovers the parent context.

If the NO_INDENT option is specified, OpenFold() [CloseFold()] im-
plicitly calls IncreaseLogLevel() [DecreaseLogLevel()]. The option
SHOW_TITLE causes OpenFold() to send the module name to the log event
handler.

Note that data objects also implement OpenFold() and CloseFold()

methods which cover the described functionality and, in addition, start and
stop the module timers. See Section 17.3 for more details.

14.3.4 Filtering the output

The information which is actually logged can be filtered by several context
parameters. The available flags are listed in Table 14.3.5. Note that all
values higher than the default values may result in a tremendous increase
of logging information. But for rather small problem instances, the options
logMeth==2 and logRes==2 allow a good understanding of the various op-
timization algorithms. Other than the preliminary version of the logging
module, the output is now filtered by the controller object internally.

The flags logWarn and logMem have been added for debugging purposes.
The flag logMem is discussed in Section 17.1. The flag logWarn concerns
GOBLIN exceptions (see Chapter 19) which do not affect the general data
integrity. More explicitly:

• By Error(MSG_WARN,..), an error message is printed only if logWarn
is set but no exception is raised.

• By Error(ERR_CHECK,..), an error message is printed only if logWarn
is set and an exception ERCheck is raised in any circumstances.

• By Error(ERR_REJECTED,..) an exception ERRejected is raised and
an error message is printed independently of the value of the flag

151

14.3. LOGGING CHAPTER 14. THE OBJECT CONTROLLER

logWarn.

This is so since the exception class ERCheck does not necessarily indicate
errors. For example, a call FlowValue(s,t) returns an exception ERCheck

if the subgraph does not form an st-flow. Algorithms may check feasibility
by this method, and treat the exception as a standard functionality. If tests
are needed several times by an algorithm, the log file should not include
corresponding error messages.

There is pragma _LOGGING_ which is defined in the file config.h. This
definition may be omitted in order to improve the performance. Note, how-
ever, that only a certain part of the logging module is compiled condition-
ally, namely the information which is assigned with LOG_METH2, LOG_RES2,
MSG_WARN, and some of the IncreaseLogLevel() and DecreaseLogLevel()

statements.

14.3.5 Selection of logging information

Variable Def Token Information

logMeth 1 LOG METH,
LOG METH2

Course of algorithms (two levels)

logMem 0 LOG MEM,
LOG MEM2

Memory allocations (two levels)

logMan 1 LOG MAN Object manipulations
logIO 1 LOG IO File management
logRes 1 LOG RES,

LOG RES2
Computational results (two levels)

logTimers 1 LOG TIMERS Timer statistics
logGaps 1 LOG GAPS Duality gaps
logWarn 0 MSG WARN Warnings

152

CHAPTER 14. THE OBJECT CONTROLLER METHOD SELECTION

14.4 Method Selection

Synopsis:

class goblinController

{

int methFailSave;

int methAdjacency;

int methDSU;

int methPQ;

int methModLength;

int methGeometry;

int methSearch;

int methMaxFlow;

int methMinCFlow;

int methMinCCirc;

int methMinTree;

int meth1Tree;

int methMaxBalFlow;

int methBNS;

int methMinCBalFlow;

int methPrimalDual;

int methTSP;

int methLocal;

int methSolve;

int maxBBIterations;

int maxBBNodes;

}

This section merely summarizes the method selector flags which have been
described with the respective problem solver methods. For details, we refer
to the Chapters 8 and 11.

153

14.4. METHOD SELECTION CHAPTER 14. THE OBJECT CONTROLLER

14.4.1 Optional Data Structures

Variable Value Description

methFailSave 0 No special certificate checking
1 Network flow and matching solvers are forced

to verify a reduced costs optimality criterion

methAdjacency 0 Search incidence lists
1 Generate hash table

methDSU 0 Path compression disabled
1 Path compression enabled

methPQ 0 Use basic priority queue
1 Use binary Heaps
2 Use Fibonacci Heaps

methModLength 0 Recursive computation of reduced length labels
1 Explicit data structure

14.4.2 Solver Options for NP-hard problems

Variable Value Description

methSolve 0 Apply only heuristics
1 Compute lower and upper bounds
2 Apply branch and bound

methLocal 0 Apply only construction heuristics
1 Apply local search heuristics

maxBBIterations 100 Maximum number of branch and bound
iterations divided by 1000

maxBBNodes 20 Maximum number of active leaves in
the branch tree divided by 100

methCandidates -1 Minimum degree in the candidate graph.
If negative, candidate search is disabled.
Used for TSP and weighted matching.

154

CHAPTER 14. THE OBJECT CONTROLLER 14.4. METHOD SELECTION

14.4.3 Problem Specific Solver Options Variable Value Description

methSearch 0 FIFO label correcting
1 Dijkstra
2 Bellman/Ford
3 BFS

methMaxFlow 0 Successive augmentation
1 Dinic
2 Push/Relabel, FIFO
3 Push/Relabel, Highest Order
4 Capacity scaling

methMinCFlow 0 Revised shortest path
1 Shortest path
2 Capacity scaling (Not implemented)
3 Transformation to circulations

methMinCCirc 0 Klein (cycle canceling)
1 Cost scaling
2 Cost scaling with ǫ-tightening
3 Minimum mean cycle canceling
4 Transformation to st-flows

methMinTree 0 Prim
1 Enhanced Prim
2 Kruskal

meth1Tree 0 Ordinary spanning tree
1 Minimum 1-trees

methMaxBalFlow 0 Successive augmentation
1 Phase-Ordered augmentation
2 Phase-Ordered augmentation with look-ahead
3 Phase-Ordered augmentation with look-ahead

and augmentation
4 Capacity scaling
5 Max-Flow start up

methBNS 0 Breadth-First
1 Depth-First Heuristics
2 Depth-First Heuristics
3 Breadth-First Heuristics 155

TRACING CHAPTER 14. THE OBJECT CONTROLLER

Variable Value Description

methMinCBalFlow 0 Primal-Dual
1 Enhanced primal-dual

methPrimalDual 0 Restart BNS after each dual update
1 Restart BNS after changes in the shrinking fam-

ily
2 Restart BNS after blossom expansion

methTSP 0 Random tour
1 Insertion heuristics
2 Tree heuristics
3 Christofides (undirected graphs only)

14.5 Tracing

Synopsis:

class goblinController

{

int traceLevel;

int threshold;

int fileCounter;

int traceStep;

int traceData;

int commLevel;

int breakLevel;

void Ping(THandle,unsigned long);

void ResetCounter();

void IncreaseCounter();

ostream &Display();

}

The tracing functionality is a valuable tool both for debugging and for vi-
sualising of the course of an algorithm. The tracing can be controlled by
the following members of the controller object:

A class method can be traced only if it defines a breakpoint. By this,
we denote a method call CT.Ping(H,priority) which does the following:

The handle H specifies the object to be traced. The value of priority
is added to the current value of traceCounter. If the new value of the
counter exeeds traceStep, then traceCounter is reset to zero, and some
information is written to an output device. To this situation, we refer as a
tracing point. If one has traceStep == 1, every breakpoint triggers off a
tracing operation.

The concrete output depends on the value of traceLevel. Table 14.5.1
gives an overview. A higher trace level generally generates more tracing
information. Levels 3 and 4 are reasonable for small examples only, and
may generate several megabyte of tracing files.

It is possible to suppress the first k tracing operations by setting the
context variable threshold to k. Note that any error prompt contains a
line

Before tracing point #...

which allows to debug large problems graphically by setting threshold to
a reasonable value.

The message Display() which is mentioned in Table 14.5.1 is available
for every GOBLIN data object. In order to trace an object, its class must
implement the Display() method. So far, graph objects can be displayed
both graphically and textually, and most data structures can be displayed
textually. If textual output is configured, the output stream is obtained by
the context method ostream & goblinController::Display().

Otherwise a so-called trace file is written which, by default, consists of
the graph object and the context information with some modifications in the
GOBLIN native format. The file name is the concatenation of the context
label obtained by the method Label(), the current value of fileCounter
and one of the extensions .gob, .fig or .tk. Every trace file export will
trigger off an increase in the value of fileCounter.

156

CHAPTER 14. THE OBJECT CONTROLLER 14.5. TRACING

Note that the value of priority has strong impact on the quality of a
tracing session. We propose a value of 1 if the expected time between two
breakpoints is O(1), and a value of n*m if the expected time is O(nm), for
example.

A data object can be traced only if its class implements a method
Display() which should show relevant information encapsulated into the
object. The object to be displayed should reveal some relevant information
about the course of an algorithm, and the breakpoint should be placed right
behind an update of this object.

Sometimes, it may be useful to have more than one breakpoint in order to
trace different objects. For example, the Dinic maxflow algorithm contains
two breakpoints CT.Ping(Aux.Handle(),m) and CT.Ping(Handle(),m).
The first one is placed between the construction of the layered auxiliary
network Aux (which actually is displayed) and the augmentation step. The
second breakpoint displays the flow network which has been augmented just
before.

To use the tracing functionality and the graphical display, make sure
that the _TRACING_ pragma is defined in config.h. If this pragma is un-
defined, the breakpoints are still found, but only trace level 1 is available.

14.5.1 Trace Level Options

Level Description

0 No output is written

1 A dot (.) is written to the standard output device

2 As before, but a method Display() is called by the construc-
tors of classes which support this functionality. Display() ei-
ther writes information in tabular form to the standard output
device or graphical information to trace files which can viewed
via Xfig or, GOBLET or the Tcl/Tk script display.

3 The method Display() is called at each tracing point.

4 The method Display() is called at each tracing point. Every
output must be prompted by the user. Only useful for console
applications.

14.5.2 Tracing Data Structures

The GOBLIN data structures discussed in Chapter 8 can be traced sep-
arately from general objects by setting the traceData flag. In that case,
every elementary operation on the used data structures is subject to graph-
ical tracing. The tracing mechanism is restricted to binary heaps, Fibon-
nacci heaps and disjoint set families. Stacks and queues do not produce any
graphical output.

157

GRAPHICAL DISPLAY CHAPTER 14. THE OBJECT CONTROLLER

14.6 Graphical Display

Synopsis:

class goblinController

{

int displayMode;

int xShift;

int yShift;

double xZoom;

double yZoom;

int nodeSize;

int nodeStyle;

int nodeLabels;

int nodeColours;

int arcStyle;

int arcLabels;

int arcLabels2;

int arcLabels3;

int arrows;

int arrowSize;

int subgraph;

int predecessors;

int legenda;

char* nodeFormatting;

char* arcFormatting;

}

Every GOBLIN data object accepts a message Display() which may write
some tracing information to the standard output device or to a trace file.
Graph objects admit textual output which is generated by TextDisplay(),
but also graphical output which is generated by Display().

The latter method may call TextDisplay() again, but may also write
trace files which can be read by GOBLET or the Xfig drawing tool. More
explicitly, the output depends on the context variable displayMode which
admits the alternatives shown in Table 14.6.1.

Trace files either consist of the graph object, its current potential solu-
tions and context information in the GOBLIN native format, or an explicit
canvas, depending on the value of diplayMode. See Section 14.5 for the file
naming policy.

14.6.1 Display Mode Options

Mode Description

0 Textual output

1 Graphical output: A *.fig file is written and Xfig is called.

2 Graphical output: A *.tk file is written and the tk script display
is called.

3 Graphical output: A *.gob file is written which is processed by
the GOBLET graph browser.

14.6.2 Export of Graphical Information

GOBLIN provides two export filters for graph layouts which are imple-
mented by the classes exp2tk and exp2xfig respectively. As the names
suggest, the first class generates some kind of Tcl/Tk scripts while the sec-
ond class generates canvases for the xFig drawing tool. The xFig files can
be converted to other graphics formats by using the tool fig2dev which
usually forms part of the xFig distribution.

158

CHAPTER 14. THE OBJECT CONTROLLER 14.6. GRAPHICAL DISPLAY

Note that the Tk files generated by exp2tk cannot be executed directly,
but are input to the GOBLET graph browser. If you want to display a
trace file on screen without using GOBLET, you can use the small Tk script
display which does not require the complete installation of the GOSH in-
terpreter. This script is called if displayMode=2 is configured. See Section
18.7 for a description of the explicit canvas export methods.

159

14.6. GRAPHICAL DISPLAY CHAPTER 14. THE OBJECT CONTROLLER

14.6.3 Device Independent Layout

Synopsis:

class goblinDisplay

{

protected:

char* predColour;

char* inftyColour;

long int width;

long int height;

public:

virtual void goblinDisplay(abstractMixedGraph&,float);

long int CanvasCX(TNode v);

long int CanvasCY(TNode v);

long int AlignedCX(TNode u,TNode v);

long int AlignedCY(TNode u,TNode v);

goblinController &Configuration();

virtual void DisplayGraph();

char* ArcLabel(TArc,int);

char* NodeLabel(TNode);

char* ArcLegenda(int);

char* NodeLegenda(char*);

char* FixedColour(TNode);

char* SmoothColour(TNode);

virtual void DisplayArc(TArc) = 0;

virtual void DisplayNode(TNode) = 0;

virtual void DisplayLegenda(long int,long int,

long int) = 0;

}

The class goblinDisplay organizes the device indepent layout of GOBLIN
graph objects. This class is abstract, and instances are implicitly generated
by the method abstractMixedGraph::Display()which also calls a virtual
method ConfigDisplay().

The goblinDisplay constructor generates a clone of the controller
object. This clone, the configuration, can be accessed by the method
Configuration(). The method ConfigDisplay() which is called with the
display configuration makes some class-dependent changes of the layout pa-
rameters.

The class goblinDisplay provides some other ressources such as colours
and the bounding box. This guarantees that the graphical output gener-
ated by the classes exp2tk and exp2xfig has the same appearance. The
colours predColour and inftyColour are used for the display of predeces-
sor arcs and the display of unreachable nodes respectively. The method
FixedColour() provides an explicit scheme for the node and arc colours.
SmoothColour() can be used if the fixed colours are not exhausted (20
colours are defined) of if adjacent colour indices should be displayed with
similar colours. All returned strings are in 24 bit rgb format.

160

CHAPTER 14. THE OBJECT CONTROLLER 14.6. GRAPHICAL DISPLAY

16

714

21

11

11

11

11

30

14

11

21

Figure 14.1: A Graph Layout with Subgraph and Predecessor Arcs

The class goblinDisplay also supplies with the node and the arc labels
and the labels of the legenda. Note that two sets of arc labels can be dis-
played simultaniously, that is, the arcLabels or arcLabels2 option must
be passed to the methods ArcLabel and ArcLegenda explicitly. Figure 13.5
shows a graph layout with two sets of arc labels and a legenda.

The layout is based on the geometric information which is encapsulated
into the graph object. Up to the layout of trees, GOBLIN does not compute
any graph embeddings. If no embedding is present, the graph object cannot
be viewed. The parameters xShift, xZoom, yShift and yZoom define an
affine transformation of this embedding, and the transformed coordinates
can be accessed by CanvasCX and CanvasCY.

The parameter legenda enables or disables the generation of a legenda.
This legenda shows which node and arc labels are displayed in the layout.
If legenda==0, no legenda is printed. Otherwise, the value of legenda

specifies the space between the graph and the legenda.
The other layout parameters, together with their possible alternatives

(defaults boldfaced), are listed in the following subsections. The layout of

graph arcs deserves some further statements:

If the node x=Align(a) is undefined, the arc is drawn as a straight line
between the geometrical embedding of the two end nodes u and v, and the
potential label is aligned with the center of this line. Otherwise, the label
is aligned with the transparent node x.

If y=Interpolate(x) is undefined, the arc is drawn as line between u

and v again. Finally, if y!=NoNode, the interpolation points are y and the
iterated points y=Interpolate(y) (until y==NoNode is reached). This list
of points either defines a spline or a polyline object in the graph drawing.

The end nodes of a spline or polyline object are aligned with the graph
node objects which depend on the nodeStyle and the nodeSize parame-
ters. This is done by the methods AlignedCX, AlignedCY which shift the
second nodes coordinates in the direction of the first graph node so that it
becomes visible.

14.6.4 Formatting Arc and Node Labels

There are two ways how labels can be formatted: By setting the format
strings arcFormatting and nodeFormatting, one can produce almost uni-
versal labels. If these strings are left blank, the node and arc labels are
computed in the way known from earlier releases.

In the format strings, only two characters are special: The token %1 refers
to the current values of the context variables arcLabels or nodeLabels re-
spectively. The tokens #1, #2, .. each represent one of the potential values
of arcLabels and nodeLabels as listed in the Tables 14.6.5 and 14.6.6. As
a simple and useful example,

arcFormatting = "$e_#7$"

would result in a set of arc labels e_1, e_2, .. in the GOBLIN canvas.
If this canvas is imported to LaTeX, the labels e1, e2, . . . would result. If
one sets

arcFormatting = "%1 [%2,%3]"

161

14.6. GRAPHICAL DISPLAY CHAPTER 14. THE OBJECT CONTROLLER

the ConfigDiplay() methods can determine which data shall be displayed
by setting the variables arcLabels, arcLabels2, arcLabels3. The appear-
ance is left to the user. In this example, a label 1.5 [1,3] may result, a
flow value with according capacity bounds.

The default layout of arc labels can be expressed as %1/%2/%3 provided
that none of the context variables arcLabels, arcLabels2, arcLabels3 is
unset. If arcLabels is unset, the equivalent format string is %2/%3.

14.6.5 Arc Display Options

Parameter Value Description

arcStyle 0 lines and polygons
1 interpolated splines
2 pipes (othogonal polygons)

arcLabels, 0 no labels
arcLabels2, 1 indices 0, 1, 2, ...
arcLabels3 2 capacities

3 subgraph (flow)
4 length labels
5 reduced length labels
6 lower capacity bounds
7 indices 1, 2, 3, ...

arrows 0 aligned with node objects
1 centered

subgraph 0 draw predecessor arcs only
1 draw non-empty arcs only
2 draw fractional arcs dashed
3 draw empty, free, full arcs with different width
4 draw all arcs uniformly
5 different patterns for different subgraph labels
6 display arc colours with a fixed colour pattern
7 display arc colours with a dynamic colour pat-

tern

predecessors 0 nothing special
1 highlight predecessor arcs

14.6.6 Node Display Options

162

CHAPTER 14. THE OBJECT CONTROLLER 14.6. GRAPHICAL DISPLAY

Parameter Value Description

nodeStyle 0 dots
1 circles
2 boxes

nodeLabels 0 no labels
1 indices 0, 1, 2, ...
2 distance labels
3 node potentials
4 node colours
5 node demands
6 indices 1, 2, 3, ...

nodeColours 0 no colours
1 highlight nodes with finite distance labels
2 node colours
3 node demands
4 node partition

14.6.7 General Layout Options

Parameter Default Value Description

xShift 400 Shift on the ordinate

xZoom 150 Scaling of the ordiante

yShift 400 Shift on the abscissa

yZoom 150 Scaling of the abscissa

nodeSize 100 Diameter of graph nodes

arrowSize 300 Width of arrows

legenda 0 Separator for the legenda.
If zero, no legenda is generated

nodeSep 10 Grid size for the graph nodes.
Used in several graph layout methods

bendSep 5 Grid size for the bend nodes.
Used in AutoArcAlignment()

fineSep 2 Grid size for node and arc labels.
Currently used by the browser only

163

14.7. RANDOM INSTANCE GENERATORS CHAPTER 14. THE OBJECT CONTROLLER

14.7 Random Instance Generators

Synopsis:

class goblinController

{

unsigned long Rand(unsigned long);

TFloat UnsignedRand();

TFloat SignedRand();

int randMin;

int randMax;

int randUCap;

int randLCap;

int randLength;

int randGeometry;

int randParallels;

}

Many instance generators are prepared to generate random arc and node
labels depending on which of the context flags randLength, randUCap,
randLCap and randGeometry are set. The flag randParallels enables or
disables the generation of parallel arcs.

Random labels can be generated by every graph constructor method and
by every call to the method InsertArc(TNode,TNode) and InsertNode().
If you do not want to generate labels, keep in mind to unset the respective
flags.

Edge length labels and node coordinates are generated by the method
SignedRand() and arc capacities are genrated by UnsignedRand(). The
numbers returned by SignedRand() are equally distributed integers
from the interval [randMin,..,randMax]. The numbers returned by
UnsignedRand() are in the same range if randMin is non-negative and from

the interval [0,..,randMax] otherwise. A method call Rand(k) returns
equally distributed integers from the interval [0,..,k-1].

164

CHAPTER 14. THE OBJECT CONTROLLER 14.8. RUNTIME CONFIGURATION

14.8 Runtime Configuration

Synopsis:

class goblinController

{

void Configure(int ParamCount,char* ParamStr[]);

}

Throughout this chapter, we have described the various configuration pa-
rameters which are available in GOBLIN. We finally need to explain how
the controller objects are configured in practice:

If you call GOBLIN from within a C++ program, you can access all
variables directly. If you call the library from a GOSH script, the GOBLIN
context variables have a prefix goblin. For example, the tracing module is
switched off by the command set goblinTraceLevel 0.

Sometimes, it is more efficient to call the method Configure which can
change several parameters in one pass. This method is called with an ar-
ray of strings each of which represents a variable name, value or a general
option. One can set a context variable by adding a parameter which is
composed from -, the variable name and the desired value.

The Configure method can be called from any C/C++ main routine
and then passes the console input to GOBLIN. It can also be called from
GOSH scripts. For example, the GOBLIN branch and bound module is
enabled by the command goblin configure -methSearch 2.

The logging module admits some general settings which can be selected
from the options -silent, -report, -details and -debug with increasing
order of logging information.

Note that string context variables are generally read-only in the GOSH
shell. Strings can be set with the goblin configure command only. Even
from C++ level it is recommended to use this mechanism to avoid incon-
sistencies with the memory management.

165

14.8. RUNTIME CONFIGURATION CHAPTER 14. THE OBJECT CONTROLLER

166

CHAPTER 15. THE MESSENGER THE MESSENGER

Chapter 15

The Messenger

A messenger object manages the interaction of two threads of execution,
namely a problem solver and a user interface. It implements methods to
browse and edit the logging information, provides the possibility to inter-
rupt the solver from the user interface, and it keeps control of the trace
files.

Internally, the messenger is thread safe, that is, its data structures are
locked by so-called semaphores to prevent different threads from accessing
the data at the same time. The solver thread takes semaphores for a short
period only, but the user interface may block the solver in order to read
some volatile information and to make online changes.

The GOBLIN core library does not utilise semaphores at all. But
for the GOSH shell the function pointers solverStopSignalHandler,
logEventHandler and traceEventHandler essentially refer to messenger
methods. Hence editing a graph which is subject to some computation can
(but does not necessarily) corrupt the object and the solver process.

167

SOLVER MANAGEMENT CHAPTER 15. THE MESSENGER

15.1 Problem Solver Management

Include file: messenger.h

Synopsis:

class goblinMessenger

{

bool SolverRunning();

bool SolverIdle();

void SolverSignalPending();

void SolverSignalStarted();

void SolverSignalStop();

void SolverSignalIdle();

}

The first goal of task communication is to force a solver to stop the opti-
mization with a suboptimal solution. The complete schedule is as follows:

• The user interface checks if the flag SolverIdle() is true and, if so,
calls SolverSignalPending() and then sets up a new thread of exe-
cution. At this stage, both SolverIdle() and SolverRunning() are
false.

• The new thread calls SolverSignalStarted() and then the solver
method. Now SolverRunning() is true.

• Occasionally, the user interface calls SolverSignalStop() so that the
flag SolverRunning() becomes false again.

• The solver thread stops the computation before time (if the core li-
brary includes solverStopSignalHandler retrieval operations). The
thread calls SolverSignalIdle() and then exits.

The messenger also allows to interrupt the solver temporarily, and this fea-
ture is described in Section 15.3.

168

CHAPTER 15. THE MESSENGER MESSAGE QUEUE

15.2 The Message Queue

Include file: messenger.h

Synopsis:

class goblinMessenger

{

void MsgAppend(msgType,TModule,THandle,char*);

void MsgReset();

bool MsgEOF();

bool MsgVoid();

void MsgSkip();

char* MsgText();

msgType MsgClass();

TModule MsgModule();

int MsgLevel();

THandle MsgHandle();

}

The message queue buffers the most recent log entries generated by the
solver thread. It is just large enough to fill a single screen, but does not
occupy much system ressources. The log event handler also writes an incre-
mental log file for later evaluations.

A new log entry is added to the queue by calling MsgAppend() which
takes the class of information and an object handle as parameters. If the
class is MSG_APPEND, the passed string is appended at the most recent log
entry. Otherwise the oldest log entry on the queue is deleted and replaced
by the new data.

The other functions are needed by the user interface for reading the
messages which are currently queued. The method MsgReset() initializes
a pointer to the oldest message in the queue. The method MsgSkip() then

moves from one entry to another. If no more unread log entries exist, the
flag MsgEOF() becomes true. The flag MsgVoid() indicates if no message is
queued at all.

The following properties of the currently referenced message can be re-
trieved: The message text, the class of information, the module index and
the object handle which all have been passed by the respective LogEntry()

and MsgAppend() calls. The MsgLevel() is the context parameter logLevel
at the time of writing the log entry.

In later releases, it will be possible to switch between the described online
mode and a mode for importing the incremental log file into the messenger
and editing.

15.3 Tracing

Include file: messenger.h

Synopsis:

class goblinMessenger

{

void TraceAppend(char*);

void TraceSemTake();

char* TraceFilename();

bool TraceEvent();

void TraceUnblock();

}

The tracing module has two ressources each of which is locked by an own
semaphore: A list of trace file names and a flag which indicates if there are
unhandled trace events and which can be read by calling TraceEvent().

To the list of trace files, the solver thread declares every trace file name
by calling TraceAppend(). This also sets the event flag. The solver thread

169

15.3. TRACING CHAPTER 15. THE MESSENGER

then calls TraceSemTake() before continuing its computations. The latter
method returns only if the trace event is handled in the user interface.

The user interface handles a trace event as follows: It reads the last trace
file name by calling TraceFileName() and then calls TraceUnblock()which
effectively resets the event flag.

We mention that TraceAppend() and TraceFileName() allocate copies
of the file name string and that the string returned by TraceFileName()

must be disallocated by the calling context.
Some future work is at hand: It should be possible to read the complete

list of trace file names, and this list should be editable in the same way as
the message queue.

170

CHAPTER 16. LINEAR PROGRAMMING SUPPORT LINEAR PROGRAMMING SUPPORT

Chapter 16

Linear Programming
Support

In order to allow development of this library beyond the scope of pure com-
binatorial algorithms, the author has decided to add some support for linear
and integer programming techniques. This currently includes:

• An abstract class goblinILPWrapper which models mixed integer
problems and the interface to the GOBLIN core library.

• A basic simplex code which applies to problems with a few 100s of
variables but which does not utilize LU decomposition and sophisti-
cated pricing techniques yet.

• An LP module entry point which is also designed as an abstract class
goblinILPModule and which can be overloaded with plugins for other
LP codes.

• File import and export filters which can supply to LP solvers other
than the native simplex code.

Future releases may come up with a more efficient simplex code as well as
with branch and cut techniques. Additionally, plugins for popular LP codes
are desirable.

This chapter mainly discusses the method prototypes. Of course, all
pure virtual messages must be implemented by any prospective LP wrapper.
Some virtual functions provide default implementations which can be over-
loaded with more immediate code. Others are needed for user interaction
only and hence provide dummy implementations which throw exceptions if
called from the GOBLET browser.

171

PUBLIC INTERFACE CHAPTER 16. LINEAR PROGRAMMING SUPPORT

16.1 Public Interface

16.1.1 Entry Point

Include file: ilpWrapper.h

Synopsis:

class goblinController

{

void const* pLPModule;

}

class goblinILPModule

{

goblinILPModule();

virtual goblinILPWrapper*

NewInstance(TRestr,TVar,TIndex,TObjectSense,

goblinController&) = 0;

virtual goblinILPWrapper*

ReadInstance(char*,goblinController&) = 0;

virtual goblinILPWrapper*

Reinterprete(void*) = 0;

virtual char* Authors() = 0;

virtual int MajorRelease() = 0;

virtual int MinorRelease() = 0;

virtual char* PatchLevel() = 0;

virtual char* BuildDate() = 0;

virtual char* License() = 0;

enum TLPOrientation {

ROW_ORIENTED = 0,

COLUMN_ORIENTED = 1

};

virtual TLPOrientation Orientation() = 0;

}

The LP module is accessed by a context pointer to a goblinILPModule ob-
ject. The purpose of this class is instance generation (NewInstance() and
ReadInstance()), explicit runtime time information about the LP instances
(Reinterprete()) plus some general module information.

The method ReadInstance() expects a filename as an input parameter.
The input file format may differ among the various implementations. The
method NewInstance() takes the desired number of restrictions, variables
and non-zero matrix coefficients as well as the direction of optimization.
Note that the goblinILPModule object is in the goblinDefaultContext

but LP instances may be inserted into other contexts.
In order to generate LP instances from this abstract interface, one needs

to cast back the entry pointer before problem instanciation:

Example:

...

goblinILPModule* X =

(goblinILPModule*)goblinController::pLPModule;

goblinILPWrapper* myLP =

X->ReadInstance(fileName,thisContext);

...

Accordingly, the registration of an LP module looks like

Example:

...

goblinILPModule* tmpPtr = new myLPModule();

goblinController::pLPModule = (void*)tmpPtr;

...

172

CHAPTER 16. LINEAR PROGRAMMING SUPPORT 16.1. PUBLIC INTERFACE

where myLPModule may denote some implementation of goblinILPModule.
The extra assignment is needed to reconstruct a valid pointer later!

The parameter Orientation() is needed only for access to the
current bases or tableaus of LP instances. Then a return value of
ROW_ORIENTED indicates that restrictions are treated as artificial columns
whereas COLUMN_ORIENTED indicates that variables also form restrictions.
Row and column indices are partially orientation dependent!

173

16.1. PUBLIC INTERFACE CHAPTER 16. LINEAR PROGRAMMING SUPPORT

16.1.2 LP Instance Retrieval Operations

Include file: ilpWrapper.h

Synopsis:

class goblinILPWrapper

{

virtual TRestr K();

virtual TVar L();

virtual TIndex NZ() = 0;

virtual TFloat Cost(TVar);

virtual TFloat URange(TVar);

virtual TFloat LRange(TVar);

virtual TFloat UBound(TRestr);

virtual TFloat LBound(TRestr);

enum TVarType {

VAR_FLOAT=0,

VAR_INT=1,

VAR_CANCELED=2

};

virtual TVarType VarType(TVar);

virtual TObjectSense ObjectSense();

virtual TFloat Coeff(TRestr,TVar);

virtual TVar GetRow(TRestr,TVar*,double*);

virtual TRestr GetColumn(TVar,TRestr*,double*);

virtual char* VarLabel(TVar,TOwnership);

virtual char* RestrLabel(TRestr,TOwnership);

}

A goblinILPWrapper object models a general form linear program

minimize
cT x

subject to
a ≤ Ax ≤ b
l ≤ x ≤ u

with the dual form

maximize
aT y+−bT y−+lT z+−uT z+

subject to
AT (y−−y+)+z−−z+ = c
y+, y−, z+, z− ≥ 0

Each of the vectors a, b, l and u may include symbolic infinite coefficients.
In that case, the associated dual variables are fixed to zero implicitly. In
the primal form, lower and upper bounds may coincide to represent equal-
ity restrictions respectively fixed variables. This mathematical description
translates to the C++ model as follows:

• A TRestr value denotes a row index running from 0 to either K()-1

or K()+L()-1 depending on wether only structural restrictions or
also variable range restrictions are valid arguments.

• A TVar value denotes a column index running from 0 to L()-1 or
K()+L()-1 if auxiliary variables are also valid arguments (which
then occupy the indices 0, . . . ,K() − 1).

• The direction of optimization is determined by ObjectSense() with
the possible values MAXIMIZE, MINIMIZE and NO_OBJECTIVE.

• The method Cost() represents the cost vector c.

• The methods LRange() and URange() represent the vectors l and u.

• The methods LBound() and UBound() represent the vectors a and b
which are extended to the variable range restrictions in the obvious
way.

174

CHAPTER 16. LINEAR PROGRAMMING SUPPORT 16.1. PUBLIC INTERFACE

• The matrix A is represented by the method Coeff() which is re-
stricted to the structural restrictions. The number of non-zero matrix
coefficients is obtained by NZ().

• The VarType() of a variable is either VAR_FLOAT, VAR_INT (which in-
dicate rational or integer variables) or VAR_CANCELED (which indicates
deleted variables).

• The methods VarLabel() and RestrLabel() supply with variable
names and symbolic row labels. Generally, rows and columns are ref-
erenced by indices rather than labels.

175

16.1. PUBLIC INTERFACE CHAPTER 16. LINEAR PROGRAMMING SUPPORT

16.1.3 LP Instance Manipulation

Include file: ilpWrapper.h

Synopsis:

class goblinILPWrapper

{

virtual TVar AddVar(TFloat,TFloat,TFloat,TVarType);

virtual TRestr AddRestr(TFloat,TFloat);

virtual void DeleteVar(TVar);

virtual void DeleteRestr(TRestr);

virtual void SetURange(TVar,TFloat);

virtual void SetLRange(TVar,TFloat);

virtual void SetUBound(TRestr,TFloat);

virtual void SetLBound(TRestr,TFloat);

virtual void SetCost(TVar,TFloat);

virtual void SetVarType(TVar,TVarType);

virtual void SetVarLabel(TVar,char*,TOwnership);

virtual void SetRestrLabel(TRestr,char*,TOwnership);

virtual void SetObjectSense(TObjectSense);

void FlipObjectSense();

virtual void SetCoeff(TRestr,TVar,TFloat);

virtual void SetRow(TRestr,TVar,TVar*,double*)

virtual void SetColumn(TVar,TRestr,TRestr*,double*)

virtual void Resize(TRestr,TVar,TIndex);

virtual void Strip();

}

Every goblinILPWrapper object is instanciated with a couple of problem
dimensions. These quantities are not the actual dimensions but rather the
amount of reserved memory which can be adjusted dynamically by using
Resize(k,l,r). This concerns the number of rows k, the number of vari-
ables l and the number of non-zero matrix coefficients r. A Strip() oper-
ation performs a Resize() with the actual problem dimensions.

The obvious purpose of this functionality is to save memory re-
allocations. Any possible implementation class other than the native
goblinLPSolver may ignore these implicit problem dimensions up to that
adding rows and variables must be possible even if this requires a realloca-
tion.

An AddRestr() operation sets a lower and an upper bound, an AddVar()

operation sets the bounds, the cost coefficient and a variable type (in that
order). The variable type must be VAR_INT or VAR_FLOAT. The matrix coef-
ficients associated with a restriction and variable are initialized as zero and
have to be set one by one using SetCoeff().

Deleting rows (DeleteRestr()) or variables (DeleteVar()) may not
change the remaining indices. It essentially marks the row or column as
canceled. If deletions cannot be implemented otherwise, a delete operation
may zero out rows and columns.

Calling FlipObjectSense() changes the object sense and inverts
the objective vector. By that, optimum solutions are preserved
but the objective value changes. Calling SetObjectSense(MAXIMIZE)

or SetObjectSense(MINIMIZE) only changes the object sense whereas
SetObjectSense(NO_OBJECTIVE) assigns a zero objective vector.

The implementation of the other methods is obvious. Specifying incom-
patible bounds should raise an exception. If setting a matrix coefficient
corrupts the active basis, this should be checked by the next access to some
basis dependent data only.

176

CHAPTER 16. LINEAR PROGRAMMING SUPPORT 16.1. PUBLIC INTERFACE

16.1.4 Basis Dependent Methods

Include file: ilpWrapper.h

Synopsis:

class goblinILPWrapper

{

virtual void ResetBasis();

virtual bool Initial();

enum TRestrType {

BASIC_LB=0,

BASIC_UB=1,

NON_BASIC=2,

RESTR_CANCELED=3

};

virtual TRestrType RestrType(TRestr);

virtual TRestr Index(TVar);

virtual TRestr RowIndex(TRestr);

virtual TVar RevIndex(TRestr);

enum TLowerUpper {

LOWER=0,

UPPER=1

};

virtual void SetRestrType(TRestr,TLowerUpper);

virtual void SetIndex(TRestr,TVar,TLowerUpper);

virtual void Pivot(TIndex,TIndex,TLowerUpper);

virtual TFloat X(TVar) throw(ERRange);

virtual TFloat Y(TRestr,TLowerUpper) throw(ERRange);

virtual TFloat ObjVal();

virtual TFloat Slack(TRestr,TLowerUpper);

virtual TFloat Tableau(TIndex,TIndex);

virtual TFloat BaseInverse(TIndex,TIndex);

virtual bool PrimalFeasible();

virtual bool DualFeasible();

}

All throughout lifetime, a goblinILPWrapper maintains some kind of basis.
An initial basis is provided by the method ResetBasis(). This basis may
consist of the variable range restrictions but other mechanisms are also pos-
sible. The flag Initial() indicates the state of the basis correspondingly.

The current row basis is accessed by the mappings Index() and
RevIndex() which are inverse. The method Index() returns the basis
row assigned with a given variable. More precisely, RestrType(i) is either
RESTR_CANCELED or NON_BASIC, or RevIndex(i)!=NoVar is defined. In the
latter case, the type is either BASIC_LB or BASIC_UB. In a column oriented
implementation, the basis data can be manipulated as follows:

• The operation SetIndex(i,j,tp) results in RevIndex(i)==j and
Index(j)==i. The passed type tp has to be either LOWER or UPPER. If
previously Index(k)==i, then k must be matched elsewhere, ideally
with the former Index(j). It is not checked that the basis rows are
linear independent after the operation!

• The operation Pivot(i,j,tp) has similar effects on the indices but
requires that the entering row j is non-basic (Exception: j == i).
The indexed rows must be linearly independent afterwards.

• Switching between RestrType==BASIC_LB and BASIC_UB is also
achieved by SetRestrType(). Of course, this applies to basis rows
only.

The methods Index() and SetIndex() are also mandatory for row ori-
ented implementations. Additionally, the current (column) basis has to
be determined by the method RowIndex() and the row and column in-
dices have to be partially inverse: If RowIndex(i) is a structural variable,

177

16.1. PUBLIC INTERFACE CHAPTER 16. LINEAR PROGRAMMING SUPPORT

Index(RowIndex(i))==i must hold. Both indices are completed by artifi-
cial variables and variable range restrictions respectively. Column oriented
solver do not need to implement a RowIndex()!

The primal and dual solutions which are associated with the current
basis are returned by the methods X() (only structural variables are han-
dled) and Y() respectively. The violation of the primal restrictions is
checked with the methods Slack() and PrimalFeasible(). The method
DualFeasible() essentially checks the signs of the dual variable values.
How the solutions are computed from the basis indices are implementation
details.

The methods Tableau(), BaseInverse() and Pivot() have been added
for didactic purposes. In order to get a unique interface for both column
and row oriented solvers, all methods accept indices running from 0 to
K() + L() − 1. For Tableau() and Pivot(), the first parameter spec-
ifies a basic index and the second parameter is a non-basic index. For
BaseInverse(), the first parameter denotes a basic index running from 0
to K() + L() − 1 and the second parameter denotes a row index ranged in
0, . . . ,K() − 1 or a column index ranged in 0, . . . , L() − 1 respectively!

Finally, it must be mentioned how the basis changes if the problem def-
inition changes. If the right-hand sides or the cost coefficients are modified,
the basis remains intact. If some matrix coefficients are modified, the in-
dexed rows may become linearly dependent, but this may be detected by
the next pivoting step only.

If a variable is added, a basis row must be assigned immediately, ideally
the variable range restriction (this is always feasible). A new structural re-
striction does not affect the (row) basis and the primal solution and slacks of
the existing restrictions (although the solution may become primally infea-
sible and the indices must be recomputed). It shall not possible to delete a
row in the current basis. The deletion of a variable must mark the matched
basis row non-basic.

178

CHAPTER 16. LINEAR PROGRAMMING SUPPORT 16.1. PUBLIC INTERFACE

16.1.5 Problem Transformations

Include file: ilpWrapper.h

Synopsis:

class goblinILPWrapper

{

goblinILPWrapper* Clone();

goblinILPWrapper* DualForm();

goblinILPWrapper* StandardForm();

goblinILPWrapper* CanonicalForm();

}

The LP interface supports the well-known transformations of linear pro-
grams. All methods do not modify the addressed object but return a new
LP instance of the requested form:

• If the original LP instance is a standard or canonical form, the
DualForm() flips the role of rows and variables but does not intro-
duce new items. Generally, lower and upper bounds are replaced by
two variables or two rows, and the object sense is reverted.

• The CanonicalForm() replaces all variable range restrictions by struc-
tural restrictions and all equality restrictions by a pair of inequalities.
Computing the canonical form of a canonical form, does not change
anything. Canonical forms are maximization problems.

• The StandardForm() fills inequality restrictions with slack variables
and substitutes variables with non-trivial bounds. Computing the
standard form of a standard form, does not change anything. Stan-
dard forms are minimization problems.

• The Clone() is a plain copy of the addressed MIP object. It can be
used for explicit manipulation without changing the original LP.

All transformations preserve the optimum objective value.
Generally, the new variable [row] names can clash with original names.

To be safe, the original names should consist of a letter followed by digits.
For example, you can use the internal naming scheme.

179

16.1. PUBLIC INTERFACE CHAPTER 16. LINEAR PROGRAMMING SUPPORT

16.1.6 Solving Problems

Include file: ilpWrapper.h

Synopsis:

class goblinILPWrapper

{

enum TSimplexMethod {

SIMPLEX_AUTO=0,

SIMPLEX_PRIMAL=1,

SIMPLEX_DUAL=2

};

enum TStartBasis {

START_AUTO=0,

START_LRANGE=1,

START_CURRENT=2

};

virtual TFloat SolveLP();

virtual TFloat SolvePrimal();

virtual TFloat SolveDual();

virtual bool StartPrimal();

virtual bool StartDual();

}

This is the most straightforward part of the LP interface description:
The entry point SolveLP() calls one of the methods SolvePrimal() and
SolveDual() based on the value of the context variable methLP. There
is a default implementation provided for SolveLP() which can be used
from later plugins in order to support the GOBLET browser messaging.
The relationship between the options methLP, methLPStart and the types
TSimplexMethod, TStartBasis is the obvious one.

The methods StartPrimal() and StartDual() can be used to deter-
mine feasible rather than optimal solutions.

Variable Value Description

methLP 0 Automatic selection
1 Primal Simplex
2 Dual simplex method

methLPStart 0 Automatic selection
1 Start with lower bounds
2 Start with current basis

Table 16.1: LP Solver Options

180

CHAPTER 16. LINEAR PROGRAMMING SUPPORT 16.1. PUBLIC INTERFACE

16.1.7 File I/O

Include file: ilpWrapper.h

Synopsis:

class goblinILPWrapper

{

enum TLPFormat {

MPS_FORMAT=0,

LP_FORMAT=1,

MPS_CPLEX=2,

BAS_CPLEX=3,

BAS_GOBLIN=4

};

void Write(char*,TOption = 0);

void Write(char*,TLPFormat,TOption = 0);

void WriteMPSFile(char*,TLPFormat = MPS_CPLEX);

void WriteMPSFile(ofstream&,TLPFormat = MPS_CPLEX);

void WriteBASFile(char*,TLPFormat = BAS_CPLEX);

void WriteBASFile(ofstream&,TLPFormat = BAS_CPLEX);

void ReadMPSFile(char*);

void ReadMPSFile(ifstream&);

void ReadBASFile(char*);

void ReadBASFile(ifstream&);

}

The LP file interface supports the standard MPS format and the CPLEX
MPS variant for both reading and writing files, and the CPLEX LP format
for writing files only. The output methods work implementation indepen-
dent, the input MPS method requires a void LP to run and, by that, a
default constructor in the LP plugin. Additionally, one can read and write

MPS basis files. Again, reading a basis requires that the LP plugin supports
setting a special basis.

The native LP file format generated by the method
Write(char*,TOption) consists of a certain header part, an MPS problem
description and an MPS basis file. In order to implement this efficiently,
all file I/O methods exist in two versions, writing to or reading from a
file specified either by the file name or an open stream. A more detailed
specification of the native format can be found in Section 18.5. The LP
format generator is discussed next.

181

16.1. PUBLIC INTERFACE CHAPTER 16. LINEAR PROGRAMMING SUPPORT

16.1.8 Text Display

Include file: ilpWrapper.h

Synopsis:

class goblinILPWrapper

{

enum TDisplayOpt {

DISPLAY_OBJECTIVE = 1,

DISPLAY_RESTRICTIONS = 2,

DISPLAY_BOUNDS = 4,

DISPLAY_INTEGERS = 8,

DISPLAY_FIXED = 16,

DISPLAY_PRIMAL = 32,

DISPLAY_DUAL = 64,

DISPLAY_SLACKS = 128,

DISPLAY_BASIS = 256,

DISPLAY_TABLEAU = 512,

DISPLAY_INVERSE = 1024

};

void WriteLPNaive(char*,TDisplayOpt = 0);

}

There is an implementation independent layout method WriteLPNaive()

which can display the complete problem description and tableau data. This
information is grouped into several sections rather than filled into a single
table. The calling parameters are an output file name and a bit field which
is composed from the following flags:

• DISPLAY_OBJECTIVE: Write the direction of optimization and the lin-
ear objective function. Variables with zero coefficients are omitted.

• DISPLAY_RESTRICTIONS: Write the structural restrictions. Fields with
zero coefficients are left blank. Displayed are either equations or in-
equalities with one or two right-hand sides.

• DISPLAY_BOUNDS: Write the variable range restrictions. Free variables
are not listed. Non-negative, non-positive and binary variables are
grouped together. The remaining variables are displayed by equations
or inequalities with one or two right-hand sides.

• DISPLAY_INTEGERS: Write the list of integer variables.

• DISPLAY_FIXED: Write the list of fixed variables.

• DISPLAY_PRIMAL: Write the variable values. Zero values are omitted.

• DISPLAY_DUAL: Write the dual variable values associated with the
structural and the range restrictions. Lower and upper bound re-
strictions are grouped together. Zero values are omitted, especially
those of unbounded restrictions.

• DISPLAY_SLACKS: Write the primal slacks. Lower and upper bounds
are grouped together. Unbounded restrictions and zero slacks are not
listed.

• DISPLAY_BASIS: Write the mapping from variables to basis restric-
tions.

• DISPLAY_TABLEAU: Write the transposed tableau matrix where the ba-
sis column are omitted. Zero matrix entries are not displayed.

• DISPLAY_INVERSE: Write the transposed inverse of the basis matrix.
Zero matrix entries are not displayed.

If no display option or a zero value is specified, the output is in CPLEX LP
format. This essentially consists of the first three listed sections.

All sections list variable and restriction labels rather than indices. The
tableau and basis inverse output is always formatted (take care with large

182

CHAPTER 16. LINEAR PROGRAMMING SUPPORT 16.1. PUBLIC INTERFACE

scale problems). If the width does not exeed 120 characters, the objective
function and the structural restrictions are aligned together. The remaining
sections are written in blocks of 5 or 10 entries.

In this format, a given basis is primally feasible if all displayed slacks
are non-negative. Optimality can be checked with the dual variable values
which must have the correct sign (depending on the direction of optimiza-
tion and differing for lower and upper bound restrictions).

183

Native LP Solver CHAPTER 16. LINEAR PROGRAMMING SUPPORT

16.2 Native LP Solver

Include file: lpSolver.h

Synopsis:

class goblinLPSolver

{

private:

bool baseInitial;

bool baseValid;

bool dataValid;

void DefaultBasisInverse();

void EvaluateBasis();

void BasisUpdate(TRestr,TVar);

void SolutionUpdate();

void PrimallyFeasibleBasis();

TVar PricePrimal();

TRestr QTestPrimal(TVar);

void DuallyFeasibleBasis();

TRestr PriceDual();

TVar QTestDual(TRestr);

public:

void Pivot(TRestr,TVar,TLowerUpper);

}

The native LP solver is preliminary, and currently only a very basic sim-
plex code is available. For this reason, a detailed documentation of pricing

techniques, ratio tests and the used data structures is postponed. We give
a few remarks about the basis update strategies so far and about some flags
used internally:

• The flag baseInitial is equivalent with the method Initial(). It
is set by constructors and by ResetBasis() operations. It indicates
the basis consisting of the lower variable bounds. The flag is cleared
by every SetIndex() operation.

• The flag baseValid indicates if a basis inverse matrix exists and if it
is up to date with the basis indices and the coefficient matrix. It is set
by DefaultBasisInverse(), EvaluateBasis() and BasisUpdate().
The flag is cleared initially and by ResetBasis(), SetIndex() and
SetCoeff() operations.

• The flag dataValid indicates if the basic solutions are up to date with
the problem definiton and the basis inverse matrix. It set by calls to
DefaultBasisInverse() and SolutionUpdate(), and cleared when-
ever the problem is modified or the basis indices change.

The method EvaluateBasis() computes the basis inverse matrix and a
pair of basis solutions from scratch. This operation takes O(l3) time and is
used only if optimization is started from a given basis without knowing the
initial basis inverse, especially if SetIndex() has been called explicitly.

A Pivot() operation also calls SetIndex() but then updates the basis
inverse by a subsequent call to BasisUpdate(). The update of the basic
solutions is delayed until values are actually requested.

184

CHAPTER 16. LINEAR PROGRAMMING SUPPORT GLPK WRAPPER

16.3 GLPK Wrapper

Include file: glpkWrapper.h

Synopsis:

class goblinGLPKWrapper

There are some conceptual differences between GLPK and the GOBLIN
native code:

• In GLPK, cost coefficients can be associated with restrictions which
are considered auxiliary variables.

• In GLPK, efficient access to the constraint matrix is provided by row
and column operations.

• GLPK is distributed under the terms of the GNU public licence.

185

16.3. GLPK WRAPPER CHAPTER 16. LINEAR PROGRAMMING SUPPORT

186

Chapter 17

Ressource Management

17.1 Memory Management

Include files: globals.h, goblinController.h
Synopsis:

long unsigned goblinHeapSize;

long unsigned goblinMaxSize;

long unsigned goblinNFragments;

long unsigned goblinNAllocs;

long unsigned goblinNObjects;

void* operator new(size_t size);

void* operator new[](size_t size);

void* GoblinRealloc(void* p,size_t size);

void operator delete(void *p);

void operator delete[](void *p);

class goblinAbstractObject

{

virtual unsigned long Size() = 0;

};

class goblinController

{

unsigned long Size();

};

The GOBLIN memory management keeps track of all changes of the
dynamic memory (heap) referenced by the data objects. Other than
in previous releases, the counters are global rather than context rela-
tive. The counters inform about the current heap size (goblinHeapSize),
the maximum heap size (goblinMaxSize), the current number of
data objects (goblinNObjects), the current number of memory frag-
ments (goblinNFragments) and the total number of memory allocations
(goblinNAllocs).

To this end, the operators new, new[], delete and delete[] have been
overwritten. If conflicts with other C++ modules arise, the entire func-
tionality can be turned off at compile time via the pragma _HEAP_MON_.
The function GoblinRealloc() does the same as the C function, but a new
name has been chosen to separate from C memory management.

Note that a block of memory which was allocated with the default im-
plementation of new() cannot be disallocated with the GOBLIN version of
delete(). Do also take care that new[]() and delete[]() are matching
for sake of later redesigns.

If desired, the calling class method has to provide meaningful logging
information about allocation and disallocation of implicit objects (objects
which are not GOBLIN data objects). A typical sequence of statements is
like follows:

Example:

...

thisArray = new TFloat[100];

LogEntry(LOG_MEM,Handle(),"...Array allocated!");

187

17.2. TIMERS CHAPTER 17. RESSOURCE MANAGEMENT

...

thisArray = TFloat(GoblinRealloc(sizeof(TFloat)*200);

LogEntry(LOG_MEM,Handle(),"...Array resized!");

...

delete[] thisArray;

LogEntry(LOG_MEM,Handle(),"...Array disallocated!");

...

Independently from the described heap information one can retrieve the size
of any object by calling Size(). The returned amount is the actual object
size via sizeof() plus the amount of heap memory referenced by this object
(other than GOBLIN data objects). Calling Size() for an object controller
would return its actual object size plus the size of all managed data objects.

17.2 Timers

Include files: timers.h

Synopsis:

class goblinTimer

{

goblinTimer(goblinTimer** = NULL);

void Reset();

bool Enable();

bool Disable();

double AccTime();

double AvTime();

double MaxTime();

double MinTime();

double PrevTime();

bool Enabled();

};

The class goblinTimer provides timer objects to keep track of
roundtrip times (PrevTime()), accumulated times (AccTime()), minimum
(MinTime()), maximum (MaxTime()) and average (AvTime()) roundtrip
times for a special unit of code.

Timer are started by the method Enable() and stopped by Disable().
A Reset() operation clears the timer statistics and also stops the timer.
One can check if the timer is currently running by calling Enabled().

If nested starts and stops of the same timer occur, the timer object main-
tains the nesting depth and effectively stops only if all starts are matched
by stop operations.

The compilation of the entire timer functionality is suppressed if the
pragma _TIMERS_ is unset.

17.2.1 Basic and Full Featured Timers

Include files: timers.h

Synopsis:

class goblinTimer

{

double ChildTime(TTimer);

bool FullInfo();

};

A timer can report about explicit starts and stops but also about relative
running times of other timers (child timers). For this goal, a pointer to a
list of global timers must be passed to the constructor method.

Whenever a timer is started, all child running times are reset. Since
several timers can be active at a time, the child times do not sum up to the
parent timer value.

188

CHAPTER 17. RESSOURCE MANAGEMENT 17.2. TIMERS

if no or a NULL pointer is passed to the constructor method, a basic
timer is instanciated. Such timers do not keep track of nested timer starts
and stops. A given timer is basic if FullInfo() returns false.

17.2.2 Global Timers

Include files: globals.h, goblinController.h
Synopsis:

enum TTimer {..., NoTimer};

struct TTimerStruct {

char* timerName;

bool fullFeatured;

};

const TTimerStruct listOfTimers[];

class goblinController

{

pGoblinTimer* globalTimer;

};

There is a list of global timers, declared by the enum index type TTimer

and the global array listOfTimers. From this structural information, ev-
ery controller object instanciates its own timer table. This table can be
addressed by the pointer globalTimer and the enum index values.

Global timers are intended to split the code into functional units whereas
the source code modules discussed later represent special authorship. Sev-
eral modules may share a global timer.

Some basic global timers are utilized explicitly by the high-level data
structures and the file interface whereas the other global timers are
(de)activated by OpenFold() and CloseFold() operations implicitly.

If the context flag logTimers is set, every CloseFold() operation files
the complete timer status including child times. Zero timer values are not
displayed.

17.2.3 Lower and Upper Problem Bounds

Include files: timers.h, dataObject.h
Synopsis:

class goblinTimer

{

bool SetLowerBound(TFloat);

bool SetUpperBound(TFloat);

TFloat LowerBound();

TFloat UpperBound();

};

class goblinDataObject

{

void SetLowerBound(TTimer,TFloat);

void SetUpperBound(TTimer,TFloat);

void SetBounds(TTimer,TFloat,TFloat);

TFloat LowerBound(TTimer);

TFloat UpperBound(TTimer);

};

With every timer, a pair of problem bounds is associated which can be
manipulated in the obvious way. For global timers, an additional wrapper
exists which simplifies the access from data object methods.

If the context flag logGaps is set, every SetBounds() operation which
strictly decreases the duality gap writes some logging information.

189

17.3. SOURCE CODE MODULES CHAPTER 17. RESSOURCE MANAGEMENT

17.3 Source Code Modules

Include files: globals.h

Synopsis:

enum TModule {..., NoModule};

struct TModuleStruct {

char* moduleName;

TTimer moduleTimer;

TAuthor implementor1;

TAuthor implementor2;

char* encodingDate;

char* revisionDate;

TBibliography originalReference;

TBibliography authorsReference;

TBibliography textBook;

};

const TModuleStruct listOfModules[];

class goblinDataObject

{

void OpenFold();

void CloseFold();

void OpenFold(TModule,TOption = 0);

void CloseFold(TModule,TOption = 0);

};

As mentioned before, a code module denotes a specific implemen-
tation rather than a functional unit. Source code is assigned to a
module modSample by the method calls OpenFold(modSample,opt) and
CloseFold(modSample,opt) which must match each other.

By default, folds signal indentations to the messenger. To suppress such
indentations, one can pass an optional parameter NO_INDENT. Conversely,
if the module context has already been set, additional indentations can be
forced by calling OpenFold() and CloseFold() without any parameters.

Opening a fold enables the associated timer. If the timer was not already
running, the problem bounds are also reset.

17.3.1 Authorship

Include files: globals.h

Synopsis:

enum TAuthor {..., NoAuthor};

struct TAuthorStruct {

char* name;

char* affiliation;

char* e_mail;

};

const TAuthorStruct listOfAuthors[];

17.3.2 Bibliography Data Base

Include files: globals.h

Synopsis:

enum TBibliography {..., NoBibliography};

struct TBibliographyStruct {

char* refKey;

char* authors;

char* title;

char* type;

190

CHAPTER 17. RESSOURCE MANAGEMENT 17.4. PROGRESS MEASUREMENT

char* collection;

char* editors;

int volume;

char* publisher;

int year;

}

const TBibliographyStruct listOfReferences[];

17.4 Progress Measurement

A description of this functionality is delayed until the interface has become
stable.

191

17.4. PROGRESS MEASUREMENT CHAPTER 17. RESSOURCE MANAGEMENT

192

CHAPTER 18. PERSISTENCY PERSISTENCY

Chapter 18

Persistency

18.1 Export of Data Objects

Include file: fileExport.h

Synopsis:

class goblinExport

{

goblinExport(char*,goblinController &

= goblinDefaultContext);

void StartTuple(char*,char,char = 0);

void StartTuple(unsigned long,char,char = 0);

void EndTuple();

template <typename T>

void MakeItem(T value,char length);

void MakeNoItem(char);

}

This class supports file export of data objects into a hierarchical format.
In this format, a data object is essentially a tree. The non-leaf nodes of

this tree are called tuples; they start and end with a parenthesis. Between
these two parenthesis, a label and the child nodes are listed.

All child nodes must be of the same type, that is, either they are all
tuples or they are all numbers of a certain type. Needless to say that this
simple concept does not only work for graph objects, but is adequate for
any data object which essentially consists of vectors.

Every StartTuple() operation must be matched by an EndTuple()

operation and vice versa. These operations write parenthesis (and) re-
spectively. It is checked if the number of parentheses resolve in the end, and
if there are unmatched opening parenthesis intermediately.

The first parameter of a StartTuple(label,type) call is a header in-
formation which is written, either a string (which should not contain any
white spaces) or an integer number (which represents some kind of index).

The second parameter is the type of the tuple. If zero, the tuple
is a structured object, and the next operation must be another call to
StartTuple(). Otherwise, the tuple represents a vector or a constant. If
the type k is one, the entire vector is written to a single line. Finally, if
k > 1, the entries are written in batches of k numbers.

The third optional parameter denotes the maximum length of an entry
if written to file. This parameter is needed for formatting the output only.

A call MakeItem<T>(x,l) writes a value x of type T into a
field of width l. In case of floats, one can use the context
method SetExternalPrecision() to control the formatting. Finally,
MakeNoItem(l) writes an asterisk * which represents undefined values. All
items are aligned to the right-hand side.

18.2 Import of General Data Objects

Include file: fileImport.h

Synopsis:

enum TBaseType {

TYPE_NODE_INDEX, TYPE_ARC_INDEX, TYPE_FLOAT_VALUE,

193

IMPORT CHAPTER 18. PERSISTENCY

TYPE_CAP_VALUE, TYPE_INDEX, TYPE_ORIENTATION,

TYPE_INT, TYPE_BOOL

};

enum TArrayDim {

DIM_GRAPH_NODES, DIM_GRAPH_ARCS, DIM_ARCS_TWICE,

DIM_ALL_NODES, DIM_LAYOUT_NODES, DIM_SINGLETON

};

class goblinImport

{

goblinImport(char*,goblinController&

= goblinDefaultContext);

char* Scan(char* = NULL);

bool Seek(char*);

bool Head();

bool Tail();

bool Eof();

TNode* GetTNodeTuple(unsigned long);

TArc* GetTArcTuple(unsigned long);

TCap* GetTCapTuple(unsigned long);

TFloat* GetTFloatTuple(unsigned long);

TIndex* GetTIndexTuple(unsigned long);

char* GetCharTuple(unsigned long);

bool Constant();

unsigned long Length();

size_t AllocateTuple(TBaseType,TArrayDim);

void ReadTupleValues(TBaseType,size_t);

template <class TEntry> TEntry* GetTuple();

template <class TToken> TToken ReadTuple(

const TTokenTable listOfParameters[],

TToken endToken,TToken undefToken)

}

Only a few comments are needed regarded the import of data objects: The
most basic method is Scan() which reads a string separated by white spaces
and parentheses, called token in what follows. Note that an opening paren-
thesis may not be followed by a white space. If string argument is passed
to Scan(), the method checks if this tring equals the scanned token and
throws an ERParse exception otherwise. If no argument is passed, a pointer
to the read token is returned.

The method Seek() scans the input, searching for the string which has
been passed as argument. It returns true if the string has been found in
the context, and false otherwise.

The methods Head() and Tail() can be used to determine the position
of the last read token within its tuple. Accordingly, EOF() detects the end
of an object definition which should coincide with the file end.

For each base type used in GOBLIN, a special method exists which
reads a complete tuple. These methods take a parameter which specifies
the desired length of the tuple, and the input is accepted if either the actual
length matches this parameter value or if the actual length is one. This fact
is used to read constant graph labelings more economically.

The method Length() returns the length of the last read tuple and,
accordingly, Constant() decides whether the last read tuple has length 1.

18.3 Import of Graph Objects

Include file: fileImport.h

Synopsis:

class goblinImport

194

CHAPTER 18. PERSISTENCY 18.3. IMPORT OF GRAPH OBJECTS

{

TOptDefTokens ReadDefPar();

TOptLayoutTokens ReadLayoutPar();

TOptRegTokens ReadRegister();

}

195

FILE FORMAT FOR GRAPH OBJECTS CHAPTER 18. PERSISTENCY

18.4 File Format for Graph Objects

The general file format for graph objects is as follows:

< graph object >:=

(< class label >
< definition >
< objectives >
< geometry >
< layout >
< solutions >
< configuration >
)[CR/LF]

where

< class label >:=

graph | dense_graph | digraph | dense_digraph |
bigraph | dense_bigraph | balanced_fnw | mixed_graph

Usually, the information associated with some node or arc is stored by a file
record. Instead of this, GOBLIN stores vectors, that are lists of numbers
which represent a specific node or arc labeling. Many fields in the file for-
mat can be filled either with such a vector or with a single value which then
denotes a constant labeling.

This may be inconvenient for reading and editing the files by hand, but
a lot of information is immaterial for concrete problems. In that sense, the
GOBLIN file format keeps the file sizes small. Some items merely keep place
for future extensions of GOBLIN.

In what follows, a term < arc >x can be replaced either by a single arc
index or by a list of arc indices with exact length x. Corresponding terms
are used for node indices, booleans, capacities and floating numbers.

196

CHAPTER 18. PERSISTENCY 18.4. FILE FORMAT FOR GRAPH OBJECTS

18.4.1 Definition

< definition >:=

(definition

(nodes < n1 > < n2 > < n3 >)

[(arcs < m = number of arcs >)

(incidences

(inc0 < arcs incident with node 0 >)

(inc1 < arcs incident with node 1 >)

.

.

(inc< n − 1 > < arcs incident with node n − 1 >)

)]
(ucap < capacity >m)

(lcap < capacity >m)

(demand < capacity >n)

(directed < boolean >m)

)

The definition part essentially describes the feasibility region of a network
programming problem. For concrete classes, the following items can be
omitted:

• For bipartite graphs, the cardinality of both partitions is specified by
the numbers n1 and n2, and the total number of nodes is n := n1+n2.
Otherwise, the number of graph nodes is n := n1. The number n3
denotes interpolation points which are needed for the graph layout
sometimes. In what follows, some vectors have length n∗ := n + n3.

• Incidence lists are specified for sparse graphs only. In dense graphs,
the incidences are determined by the arc indices implicitly.

• A list of arc directions are specified for mixed graphs only. Otherwise,
this field is filled with a constant 0 or 1.

The incidence lists must be disjoint and cover the integers 0, 1, . . . , 2m −
2, 2m − 1. The node whose incidence list contains the integer a is the start
node of the arc a, and the node whose incidence list contains the integer a^1
is the end node. As mentioned earlier, an even index 2i denotes a forward
arc, 2i + 1 is the corresponding backward arc.

197

18.4. FILE FORMAT FOR GRAPH OBJECTS CHAPTER 18. PERSISTENCY

18.4.2 Objectives

< objectives >:=

(objectives

(commodities < c = number of commodities >)

[(bound < float >c)

(length

(comm0 < float >m)

(comm1 < float >m)

.

.

(comm< c − 1 > < float >m)

)]
)

An objective function is a cost vector on the arc set of a graph, essen-
tially a set of arc length labels. A network programming problem with
side constraints asks for a certain subgraph such that for each objective
the total length does not exeed a respective bound or which minimizes the
maximal objective.

This part has been added to support such problems at least by an ade-
quate file format. So far, no algorithms and no internal data structures for
problems with multiple objectives are available in GOBLIN, and this part
should look like

(objectives

(commodities 1)

(bound *)

(length

(comm0 < float >m)

)

)

198

CHAPTER 18. PERSISTENCY 18.4. FILE FORMAT FOR GRAPH OBJECTS

18.4.3 Geometry

< geometry >:=

(geometry

(metrics < type of metrics >)

(dim < d = dimension of the embedding>)

[(coordinates
(axis0 < float >n∗)

(axis1 < float >n∗)

.

.

(axis< d − 1 > < float >n∗)

)]
)

This information becomes important if one needs to solve geometrical prob-
lems, but is also used for the graphical display.

The field < type of metrics > denotes the method by which
length labels are computed internally and overwrites the context variable
methGeometry. If this parameter is zero, the length labels are specified
in the objectives part. Otherwise, GOBLIN takes the geometric embed-
ding specified here and computes the distances with respect to the specified
metric.

In the current release, the dimension d must be either 0 or 2, that is, a
graph either has a plane embedding or is not embedded at all.

18.4.4 Layout

< layout >:=

(layout

(model < layout model >)

(align < node >m)

(thread < node >n∗)

(exteriorArc < arc >)

)

This information is needed only for the graphical display. Reading the value
of < layout model > overwrites the corresponding context variable. Even
more, SetLayoutParameters() is called with this value and effectively sets
all default values for this layout model. The configuration part is used to
customize the layout model.

If you do not want any graphical output, or if the pure geometric em-
bedding is satisfactory, the dimension n3 should be zero, and the layout
part should look as follows:

(layout

(model 6)

(align *)

(thread *)

)

The displayed order of tuples is realized by the file export interface. When
reading from file, the order is immaterial and tuples can be omitted instead
of passing default values.

18.4.5 Potential Solutions

< solutions >:=

(solutions

(label < float >n)

(predecessor < arc >n)

(subgraph < float >m)

(potential < float >n)

(nodeColour < node >n)

199

FILE FORMAT FOR LINEAR PROGRAMS CHAPTER 18. PERSISTENCY

(edgeColour < arc >2m)

)

This part keeps the computational results and corresponds to the internal
data structures discussed in Chapter 13. If an object is imported from file,
the internal data structures are initialized with the external data. This can
be used for post-optimization procedures.

Some care is recommended when a graph object is exported: All internal
data structures which are not needed any longer should be deleted explicitly
before file export. If possible, subgraphs should be converted to predecessor
labels. There are methods available for the conversion of paths, trees and
matchings, see Section 11.2.1 for details.

The displayed order of tuples is realized by the file export interface.
When reading from file, the order is immaterial and tuples can be omitted
instead of passing default values.

18.4.6 Configuration

< configuration >:=

(configure

{-< context parameter > < integer >}∗
)

This part may keep any kind of context parameters: logging, method se-
lection as well as layout information. When a graph object is imported
from file, the method goblinImport::ReadConfiguration() is called, and
the information from file overwrites the respective context variables. The
method

goblinExport::WriteConfiguration(goblinController&,

TConfig = CONF_DIFF)

allows to write the configuration of the specified controller object to file.
If the optional parameter is CONF_DIFF, the values of the configuration pa-
rameters are compared with the default context, and only differing values
are written to the output file. Alternatively, CONF_FULL can be specified to
write a complete set of parameters. During graph export, the method

goblinExport::WriteConfiguration(goblinDataObject*)

is used which calls the graph method ConfigDisplay() and then writes the
resulting configuration.

18.5 File Format for Linear Programs

The native file format for linear programs and mixed integer problems con-
sists of a GOBLIN specific header followed by the problem definition and
some basis:

< mip object >:=

(mixed_integer

(rows < integer >)

(columns < integer >)

(size < integer >)

(pivot { * | < integer > < integer > {0|1}})
(rowvis < boolean >k)

(colvis < boolean >l)

< configuration >
)

< mps problem >

< mps basis >

200

CHAPTER 18. PERSISTENCY CANVAS AND TEXT FORM

Here < mps problem > denotes the full description of a mixed integer linear
program in CPLEX MPS format, and < mps basis > denotes a respective
basis. The fields in the header are as follows:

• rows specifies the number k of structural restrictions.

• columns specifies the number l of variables.

• size denotes the number of non-zero matrix coefficients.

• pivot specifies a potential pivot element, listing the row index, the
column index and if the lower (0) or upper bound (1) is achieved af-
ter the pivot step. Alternatively, an asterisk indicates that no pivot
element is defined.

• rowviz and colviz are currently not in use and must be set to 1
constantly.

• The < configuration > part is formatted as in graph objects files.

18.6 Canvas and Text Form

Include file: abstractMixedGraph.h

Synopsis:

class goblinDataObject

{

void Export2XFig(char*);

void Export2Tk(char*);

void Export2Ascii(char*);

};

In principle, every data object can be exported into some user readable
form. The method prototypes are listed above and are, so far, implemented
for graph objects (canvas and text forms) and mixed integer problems (only
text form).

The text form provided by Export2Ascii() is used by the GOBLET
browser. The exact format for mixed integer problems is described in Sec-
tion 16.1.8. For mixed graphs, a node oriented format is generated which
lists the node attributes and all node incidences. An incidence record possi-
bly starts with a mark P to indicate the predecessor arc and with a mark B

to indicate backward arcs. All constant arc labellings are listed at the end
of the file.

Graph can also be written to some canvas formats. The method
Export2Tk() generates a Tcl/Tk canvas and is needed by the GOBLET
browser again. The method Export2XFig() generates a canvas format
which can be processed by the xfig drawing program and the transfig

filter software. By the latter tool, one can obtain a series of other can-
vas and bitmap formats. More details about the GOBLIN graph layout
functionality can be found in Section 14.6.

18.7 Support of Standard File Formats

We have already mentioned that MPS file can be read and written from
C++ level. The GOBLIN library does not support additional graph and
lp formats directly, but there are GOSH scripts import.tk and export.tk

which can be used to read and write DIMACS and TSPLIB problems. So-
lutions can be exported, but not imported into the GOSH interpreter. For
example, you may input at the GOSH prompt the following:

Example:

source tcl/import.tk

goblinImport G sample.tsp tsp

G tsp

source tcl/export.tk

201

18.7. SUPPORT OF STANDARD FILE FORMATS CHAPTER 18. PERSISTENCY

goblinExport G sample.tour tour

This sequence would load the filter precedures, read a problem in TSPLIB
format from the file sample.tsp, compute a tour and save this tour to the
file sample.tour which is again in TSPLIB format.

Do not confuse the Tcl/Tk canvasses which have been discussed in the
last section with the Tcl library graph objects which can be generated from
script level.

18.7.1 Import Filters

Type Description

gob GOBLIN native format
edge DIMACS generic format for undirected graphs
max DIMACS max-flow instance
min DIMACS min-cost flow instance
asn DIMACS assignment problem instance
geom DIMACS geometric matching instance
tsp TSPLIB symmetric TSP instance
atsp TSPLIB asymetric TSP instance
stp Steinlib instance
mps MPS linear program (standard and CPLEX)
bas MPS basis

18.7.2 Export Filters

Type Description

gob GOBLIN native format
tcl Tcl library graph Object
edge DIMACS generic format for undirected graphs
max DIMACS max-flow instance
min DIMACS min-cost flow instance
asn DIMACS assignment problem instance
flow DIMACS flow labels
geom DIMACS geometric matching instance
match DIMACS matching solution
tsp TSPLIB symmetric TSP instance
atsp TSPLIB asymetric TSP instance
tour TSPLIB solution
mps Standard MPS linear program
cplex CPLEX MPS linear program
lp CPLEX LP format
bas MPS basis

202

CHAPTER 19. EXCEPTION HANDLING EXCEPTION HANDLING

Chapter 19

Exception Handling

Include file: globals.h

Synopsis:

class ERGoblin {};

class ERIO : protected ERGoblin {};

class ERFile : protected ERIO {};

class ERParse : protected ERIO {};

class ERInternal : protected ERGoblin {};

class ERRejected : protected ERGoblin {};

class ERRange : protected ERRejected {};

class ERCheck : protected ERRejected {};

Throughout this document, we have described the exceptions which are
thrown by the various methods. On the other hand, we did not list any
declarations of exceptions. Instead of this, we formulate the general policy
which exceptions should be used in which circumstances:

An exception ERInternal indicates that a data structure has been cor-
rupted by an error prone method. The calling context is asked to destruct
this object. This error class is a dummy. That is, such exceptions may
be thrown, but should not occur in a method signature. Hence, instead of
the GOBLIN exceptions, an unexpected exception is thrown which usually
causes the termination of a program.

We mention that absobj.h defines macros InternalError(scope,event)
and InternalError1(scope) which write some debug information includ-
ing file and line information and then raise an internal error. The first
macro takes two strings, the second reads the event description from
CT.logBuffer. Use these macros consequently, but be aware that they
can be applied from data object methods only.

An exception ERRange is returned if an array index exeeds the limits.
Occasionally, another data structure has been corrupted by the calling con-
text before and the calling context cannot handle the exception. In that
sense, ERRange may also denote an internal error.

An exception ERRejected indicates that a method failed its task, but
leaves consistent data structures. This does not mean that the method un-
does all object manipulations which probably would result in very inefficient
code.

It is impossible to formalize the notion of consistency from this general
point of view, but only when the concrete algorithm or data structure has
been specified.

For example, the method abstractGraph::ExtractCycles() translates
2-factors from the subgraph data structure into predecessor labels. If the
subgraph is not a 2-factor, the method will use the predecessor labels as
well, but later call the method ReleasePredecessors() to guarantee con-
sistency.

On the other hand, the method abstractGraph::ExtractTree(TNode x)

would return some spanning tree via the predecessor labels even if the sub-
graph contains cycles. Nevertheless, an exception ERCheck is returned to
indicate the special situation. If the calling context considers this an error,
it may release the predecessor labels from its own.

203

CHAPTER 19. EXCEPTION HANDLING

The detection of GOBLIN errors heavily depends on the presence of the
pragma _FAILSAVE_ which is defined in the file config.h. If this pragma
is undefined, no error messages are generated, and no errors are detected.
This substantially increases the performance and decreases the binary size
of problem solvers.

Note that GOBLIN may throw an exception ERCheck even if the pragma
FAILSAVE is undefined. Hence, if algorithms work correctly, the definition
of _FAILSAVE_ does not change the functionality of a problem solver, and
should be omitted in the final version.

204

Part V

GOBLIN Executables

205

CHAPTER 20. THE GOSH INTERPRETER THE GOSH INTERPRETER

Chapter 20

The GOSH Interpreter

The gosh interpreter is based on the Tcl/Tk libraries which are the out-
come of one of the most successful open source projects. The Tcl interpreter
can process complex scripts, but can also be used interactively. Without
much effort, it allows to construct adequate user interfaces for any kind of
mathematical software.

GOSH extends the Tcl/Tk scripting language to graph objects in a nat-
ural way. Although Tcl is a rather traditional language, the windowing
commands in Tk and the GOSH graph commands support some of the
ideas of object orientation.

The interpreter is called by the console command gosh and then starts
in the interactive mode. If the name of a script is passed as a parameter,
this script is evaluated. A script example.gosh can also be evaluated by
typing source example.gosh in the interactive mode.

Note that the Tcl interface of the GOBLIN library does not support all
of the library functions, but mainly those which were useful for the graph
browser GOBLET. Note also that the Tcl interface does not check the pa-
rameter lists of a GOSH command exhaustively. Inappropriate parameters
are detected by the library functions, and instructive error reports are avail-
able by the log file in addition to the Tcl return value.

If you have built the shared object libgoblin.so, this dynamic library
can be imported to an existing tcl interpreter by the command

load $libgoblin goblin

where $libgoblin stands for the complete path to the shared object. So
far, this shared object does not form part of the system installation.

20.1 GOSH Ressources

There are two files which are important when using the GOSH shell, namely
the transscript and the configuration file. Both files are located in the
user root directory.

The transscript file gosh.log is an important source of information since
most GOSH commands do not return instructive error messages. It can be
flushed explicitly by the command goblin restart.

The configuration file .goshrc is read during the initialization of the
gosh interpreter and whenever an object is read from file, this overwrites
the default configuration parameters with some user dependent settings.
The format is the same as described in Section 18.4.6 for the graph object
files. The current context variable settings may be saved to .goshrc by the
command goblin export settings.

20.2 Context Variables

All configuration parameters discussed in Chapter 14 can be manipulated
by GOSH scripts. The variable name in GOSH differs from the C++
variable name just by the prefix goblin. For example, the Tcl variable
goblinMethSolve matches the C++ variable methSolve. Note that all
configuration parameters are global Tcl variables. If you want to access
goblinMethSolve within a procedure, you have to declare this variable by
global goblinMethSolve.

207

20.3. ROOT COMMAND CHAPTER 20. THE GOSH INTERPRETER

20.3 Root Command

After its initilization, a GOSH interpreter provides only one new command compared with Tcl/Tk. There is a many-to-one correspondence between GOSH
interpreters and GOBLIN controller objects. All options of the root command goblin manipulate the controller or generate a new GOSH command and,
by that, a new object.

Example:

goblin sparse digraph G 10

G generate arcs 20

The first command generates a directed graph with 10 nodes whose Tcl name is G. Initially, this graph does not contain any arcs. Hence the second command
is used to generate 20 random arcs for G. If you want to generate bipartite graphs, specify the number of nodes in each component.

Message Parameters Effects

restart Reset logging and tracing module

configure Set some context flags

read Object name, file name Read graph object from file

mixed graph Object name, number of nodes Generate graph object
sparse graph

sparse digraph

sparse bigraph

dense graph

dense digraph

dense bigraph

ilp Object name, number of rows, number of variables Generate (mixed integer) linear program
lp

mip

export tk | xfig | goblet, input file name, output file name Read data object from file and translate it to a canvas. Uses a separate
context

export ascii input file name, output file name, optional integer Similar, but export to a text based form. Mainly used for linear programs

export settings Write configuration file

echo -nonewline, string Write string to goblin transscript

208

CHAPTER 20. THE GOSH INTERPRETER 20.3. ROOT COMMAND

20.3.1 Ressource Management

Message Return value

size Current heap size

maxsize Maximum heap size

#allocs Total number of mallocs

#fragments Current number memory fragments

#objects Number of currently managed objects

#timers Number of managed timers

20.3.2 Thread Support

The GOSH shell is all but thread-safe, and the thread support is intended for the GOBLET browser only. The browser utilizes a master thread for the
graphical interface and one slave thread for the computations. Both threads (interpreters) share the GOBLIN controller and occasionally some graph objects.
The slave interpreter uses an alias for the graph object which can be traced by the master but should not be edited during computations. All listed messages
start by goblin solver ...

The master thread can try to terminate the slave thread by the command stop and wait for termination by testing goblin solver idle which returns
false if the computation is still running. Note that only some solver routines support this termination mechanism. Eventually, the solver thread returns
some information before exiting by using the return and throw commands. The information is received on master side by the command result.

Message Parameter Description

thread Script name Evaluate script in an own thread of execution

alias Object name, object handle Assign a Tcl command name to an existing graph object

return Return code Set return value of a thread

throw Return code Set return value of a thread and signal an error

result Acknowledge the return code of a thread

stop Try to terminate the solver thread

idle Check if the solver thread is active

209

20.3. ROOT COMMAND CHAPTER 20. THE GOSH INTERPRETER

20.3.3 Messenger Access

Just as the context, ther is one messenger object shared by all GOSH shells. The explicit access to the messenger is restricted to the methods described in
Section 15.2. Note that posting a message from Tcl level is implemented by the goblin echo command. All listed messages start by goblin messenger ...

The messenger does not keep all raised messages but only the most recent ones. The buffer size is just large enough to fill a screen. Complete and
persistent information is provided by the transscript file.

Message Operation / Return value

restart Flush the message queue

reset Reset the iterator to the first queued message

eof Are there unread messages?

void Is the queue empty?

skip Move iterator to the next message

text Message text

class Message class ID

handle Originators handle

level Nesting level

hidden Is message marked as hidden?

filename Name of the most recent trace file

blocked Is the solver thread currently waiting at trace point?

unblock Free the solver thread from waiting at trace point

20.3.4 Accessing Timers

The commands listed here wrap the functionality described in Section 17.2. All messages start by the prefix goblin timer ... and the timer index which
must be ranged in 0 to [expr [goblin #timers]-1].

210

CHAPTER 20. THE GOSH INTERPRETER GENERAL OBJECT MESSAGES

Message Operation / Return value

reset Reset the timer

enable Enable the timer

disable Disable the timer

label Return the label

acc Return the accumulated times

prev Return the previous timer value

max Return the maximum timer value

min Return the minimum timer value

av Return the average timer value

The running time of timer j relative to the previous cycle of timer i is retrieved by the command goblin timer $i child $j.

20.4 General Object Messages

All commands other than the goblin root command are associated with data objects to which messages can be sent. Messages may manipulate the addressed
object, generate new objects from existing or call a solver routine. In many cases, the correspondence between the Tcl message and the signature of the
GOBLIN C++ method called is obvious. A detailed documentation of the Tcl commands is therefore omitted.

Message Parameters Description

delete Delete object and Tcl command

trace Write trace object

handle Return object handle

master Register this object as the master object

is graph | mip | sparse | undirected | directed | bipartite | balanced Evaluate object type

set name file name Assign a file name

The above messages apply to all GOBLIN data objects. In the following, we list the messages for special classes of data objects. Currently, graph objects
and linear problems are covered by the Tcl wrapper. The Tcl interpreter adopts the graph polymorphism from the core library.

211

20.5. GRAPH RETRIEVAL MESSAGES CHAPTER 20. THE GOSH INTERPRETER

20.5 Graph Retrieval Messages

Message Parameter Description

write File name Write object to file

#nodes Return number of nodes

#arcs Return number of arcs

#artificial Return number of bend nodes

source Return the default source node

target Return the default target node

root Return the default root node

cardinality Return subgraph cardinality

weight Return subgraph weight

length Return total length of predecessor arcs

max ucap | lcap | length | demand | cx | cy Return maximum label

is planar Perform planarity test

constant ucap | lcap | length | demand Is this a constant labeling?

adjacency Start node, end node Return an adjacency or *

20.6 Graph Manipulation Messages

Message Parameters Description

node insert Insert graph node

arc insert, head, tail Insert arc

generate arcs, number of arcs Generate random arcs

eulerian, number of arcs Generate random cycle

regular, node degree Generate random regular graph

length, ucap, lcap, geometry, Generate random node and arc labels

parallels Split arcs so that every arc has capacity ≤ 1

212

CHAPTER 20. THE GOSH INTERPRETER PLANARITY MESSAGES

Message Parameters Description

extract tree, root node Check if the subgraph forms a rooted tree. Generate predecessor labels

trees Check if the subgraph splits into trees. Generate predecessor labels

path, start node s and end node t Check if s and t are in the same connected component of the subgraph. Generate predecessor
labels for some st-path

cycles Check if the subgraph forms a 2-factor. Generate predecessor labels. Return the number of
cycles

matching Check if the subgraph forms a 1-matching. Generate predecessor labels

edgecover Check if the subgraph forms a (maximum cardinality) 1-matching. Return a (minimum size)
edge cover by the predecessor labels

cut Generate colours which separate the nodes with finite and infinite distance labels

bipartition Generate colours which separate the nodes with odd and even distance labels

colours Generate node colours equivalent (not equal) with the node partition

delete subgraph, labels, Delete the specified data structure
predecessors, colours,
potentials, partition

set ucap | lcap | length | demand Assign a constant labeling

source | target | root, node index Assign special nodes

20.7 Sparse Graphs and Planarity

Message Parameter Description

planarize Check if the graph is planar and occasionally compute a combinatorial embedding

outerplanar For planar graph objects: If possible, refine the present combinatorial embedding to an outerplanar embedding.
Return an arc on the exterior

exterior arc index For planar graph objects: Set the exterior face to the left hand side of the specified arc. Adjust the first incidence of
the exterior nodes

213

LAYOUT MESSAGES CHAPTER 20. THE GOSH INTERPRETER

20.8 Graph Layout Messages

The following messages apply to every graph object G with the prefix

G layout ...

and manipulate the node coordinates. rtificial nodes (which are only used for layout purposes) are also added, deleted or shifted. Most methods allow to
specify -spacing followed by the desired minimum distance between two nodes. For grid drawings, the keyword -grid is synonymous. Whenever -dx and
-dy are available, -spacing can also be used.

Message Options Description

scale bounding box (minX maxX minY maxY) Scale geometric embedding to the specified size. When max ¡ min, the drawing is
mirrored

strip Shift the geometric embedding so that the upper left corner of the bounding box be-
comes the origin

align -spacing Reroute arcs so that parallel arcs and loops can be distinguished

tree -dx, -dy, -left, -right Embedding guided by the predecessor arcs. A tree or forest is drawn, and the nodes
are aligned atop of its successors as specified

circular -spacing, -colours, -predecessors,
-outerplanar

Embedding of the graph on a cycle. Use an option to control the node order

orthogonal -grid, -small Embedding of the graph in a grid. The small node option applies to 2-connected graphs
with maximum degree 4 or less

fdp -spacing, -preserve, -unrestricted Force directed layout. Using the preserve option, nodes are shifted without modifying
the edge crossing properties

layered -dx, -dy Embedding guided by the node colours

plane -grid, -convex, -basis For planar graph objects: Straight line drawing of the current embedding and the
specified basis arc. Convex drawing requires 3-connectivity

visibility -grid, -giotto, -raw For planar graph objects: Visibility representation or an follow-up giotto drawing

equilateral -spacing For 2-connected outerplanar graphs: Draw every interior face as a regular polygone

214

CHAPTER 20. THE GOSH INTERPRETER NODE AND ARC MESSAGES

20.9 Graph Node and Arc Messages

The most significant difference between the C++ library functions and the GOSH message concerns the nodes and arcs of a graph. All messages which
address the node 3 and the arc 7 of a graph G start

G node 3 ...

and

G arc 7 ...

respectively. This applies to all messages listed in Table 20.9.1 and Table 20.9.2. All arc indices range between 0 and 2m− 1, and arc directions are specified
by the least significant bit. On the other hand, arc insertion messages return the new arc index without this additional bit.

Example:

G spath $s

set a [expr 2*[G arc insert $u $v]]

G arc $a set length [expr -[G node $u potential]

+[G node $v potential]]

would generate a new arc with start node u and end node v. The new arc is initialized with zero reduced length so that it can replace one of the arcs in the
shortest path tree which was computed before.

In order to specify the drawing of a graph arc a, first add an alignment point by the command

G arc $a set align $x $y

where x and y are the coordinates of the alignment point (This denotes the point where the arc labels are printed). Then interpolation points are successively
defined by

G arc $a interpolate $x $y

where x and y are the coordinates again. New interpolation points are placed at the end of the list. If an arc is deleted, its alignment point and all
interpolation point are deleted recursively. If a node is deleted, all incident arcs are deleted recursively.

Example:

215

20.9. GRAPH NODE AND ARC MESSAGES CHAPTER 20. THE GOSH INTERPRETER

for {set a 0} {$a<[G #arcs]} {incr a} {

set a2 [expr 2*$a]

if {[G arc $a2 head] == [G arc $a2 tail]} {

set $x0 [G node [G arc $a2 head] cx]

set $y0 [G node [G arc $a2 head] cy]

G arc $a2 set align $x0 [expr $y0-10]

G arc $a2 interpolate [expr $x0-10] [expr $y0-10]

G arc $a2 interpolate $x0 [expr $y0-20]

G arc $a2 interpolate [expr $x0+10] [expr $y0-10]

}

}

checks the graph for loops which cannot be displayed without interpolation points. For every loop, an alignment point for the arc label and three interpolation
points for a spline drawing are defined.

Whenever undefined or infinite labels are needed they are replaced by an asterisk *.

20.9.1 Node Based Messages

Message Description

delete Delete node

demand Return the node demand

cx Return the x-coordiante

cy Return the y-coordinate

colour Return the node colour or *

degree Return the subgraph degree

distance Return the distance label or *

potential Return the node potential

predecessor Return the predecessor arc or *

first Return some outgoing arc or *

thread Return the next bend node index or *

hidden Check if the node is displayed

set thread For artificial nodes: Insert new bend nodes after that node with the given coordinates

set Manipulate one of the listed node ressources

216

CHAPTER 20. THE GOSH INTERPRETER 20.9. GRAPH NODE AND ARC MESSAGES

20.9.2 Arc Based Messages

Message Description

delete Delete arc

contract Contract arc

straight Release all bend node of this arc

ucap Return the upper capacity bound or *

lcap Return the lower capacity bound

length Return the arc length

subgraph Return the subgraph label

orientation Return the orientation

head Return the start node

tail Return the end node

right Return a further arc with the same start node

align Return the label alignment point index or *

set align Generate an alignment point with the given coordinates

hidden Check if the arc is displayed

set Manipulate one of the listed arc ressources

217

GRAPH OPTIMIZATION MESSAGES CHAPTER 20. THE GOSH INTERPRETER

20.10 Graph Optimization Messages

The Tcl API of the C++ problem solver methods on script level is obvious:

Example:

goblin read G "example.gob"

G set demand 2

G set ucap *

G maxmatch

G write "example.rst"

computes a 2-matching of the graph whereas

G set demand 2

G set ucap 1

G maxmatch

determines a 2-factor.

Note that a matching solver is defined for undirected graphs only while network flow methods can be accessed with digraphs only. The Tables 20.12,
20.13, 20.14 and 20.15 list all messages which are restricted to special classes.

In order to simplify contributions by other authors, some solver messages are available from script level for every graph object even if there are no solver
methods for mixed graphs yet. This applies for the tree packing and the Chinese postman solver.

218

CHAPTER 20. THE GOSH INTERPRETER DERIVED GRAPH CONSTRUCTORS

Message Parameter Description

spath Root node Compute a shortest path tree and return its length

connected Order of Connectivity Check for vertex connectivity

econnected Order of Connectivity Check for egde connectivity

sconnected Order of Connectivity Check for strong connectivity

seconnected Order of Connectivity Check for strong edge connectivity

colouring Accepted number of colours (optional) Compute a node colouring

edgecolouring Accepted number of colours (optional) Compute an edge colouring

cliques Accepted number of cliques (optional) Compute a cliques cover

clique Compute a maximum clique and return its cardinality

vertexcover Compute a vertex cover and return its cardinality

stable Compute a maximum stable set and return its cardinality

eulerian Compute an Euler cycle if one exists. Return if the Graph is Eulerian

stnumbering Compute an st-numbering if the graph is 2-connected

topsort Compute a topological ordering or return a node on a cycle

critical Compute a critical path and return its end node

mintree -root Root node (optional) Compute a minimum spanning arborescence and return its length

mintree -max Compute a maximum spanning arborescence

mintree -cycle Compute a minimum 1-cycle tree

tsp Root node (optional) Compute an Hamiltonian cycle and return its length

steiner Root node Compute a minimum steiner tree and return its length

treepacking Root node Compute a maximum packing of arborescences

maxcut Compute a cut of maximum capacity and return this capacity

postman Compute a minimum Eulerian supergraph and return its weight

219

20.11. DERIVED GRAPH CONSTRUCTORS CHAPTER 20. THE GOSH INTERPRETER

20.11 Derived Graph Constructors

Message Description

linegraph Generate line graph

linegraph -planar Generate a planar line graph

truncate Replace the verices by cycles

complement Generate complementary graph

underlying Generate underlying graph

dualgraph Generate the dual graph of a plane graph

spread Generate an outerplanar representaion of a plane graph

induced subgraph Subgraph induced by a specified node colour

induced orientation Orientation induced by the node colours

induced bigraph Bigraph induced by two specified node colours

transitive Generate transitive closure

intransitive Generate intransitive reduction

contraction Contract every node colour into a single node

nodesplitting Generate node splitting

orientation Generate complete orientation

distances Generate distance graph

20.12 Messages for Undirected Graphs

Message Parameters Description

subgraph Object name Export subgraph into a separate object

metric Object name Generate metric closure

tiling Object name, number of rows, number of
columns

Generate graph which consists of several copies of the addressed graph

maxmatch Compute maximum matching and return its cardinality

mincmatch Compute perfect matching of minimum weight, return this weight or *

edgecover Compute an edge cover of minimum weight and return this weight

tjoin Compute minimum t-join and return its weight or *

220

CHAPTER 20. THE GOSH INTERPRETER MESSAGES FOR DIRECTED GRAPHS

20.13 Messages for Directed Graphs

Message Parameters Description

subgraph Object name Export subgraph into a separate object

splitgraph Generate a balanced version of the network flow problem

maxflow Source, target Compute a maximum st-flow and return the flow value

mincflow Source, target Compute a maximum st-flow of minimum weight and return this weight

circulation Compute an admissible circulation or b-flow

minccirc Compute an admissible circulation or b-flow of minimum weight and return
this weight

20.14 Messages for Bipartite Graphs

Message Parameters Description

#outer, Cardinality of the left hand component

#inner, Cardinality of the right hand component

node index, swap Move node the other component

20.15 Messages for Balanced Flow Networks

Message Parameters Description

maxbalflow Source Compute a maximum balanced st-flow, return the flow value

mincbalflow Source Compute a maximum balanced st-flow of minimum weight and return this
weight

221

LINEAR PROGRAMMING CHAPTER 20. THE GOSH INTERPRETER

20.16 Linear Programming

20.16.1 Instance Manipulation Messages

Message Parameters Operation

read bas, basis, mps or problem, file name Read MIP instance or basis

maximize Mark as maximization problem

minimize Mark as minimization problem

invert Invert the object vector and sense

nullify Dismiss the objective vector

resize Number of rows, number of columns, number of non-
zero coefficients

Reallocate MIP instance with the specified dimensions

strip Reallocate MIP instance within a minimum of memory

set coeff or coefficient, row index, column index, float
value

Set a coefficient in the restriction matrix

index, row index, variable index, upper or lower Specify a basis restriction

reset Reset basis to the lower variable range restrictions

222

CHAPTER 20. THE GOSH INTERPRETER 20.16. LINEAR PROGRAMMING

20.16.2 Instance Retrieval Messages and Basis Access

Message Parameter Operation / Return Value

write lp, mps, cplex, bas or basis, file name Write instance or basis to file

#rows or The number of restrictions
#restrictions

#columns or The number of variables
#variables

orientation row or column

direction maximize or minimize

coeff or
coefficient

row index, variable index A coefficient of the restriction matrix

tableau coeff or coefficient, row index, column index A tableau coefficient

inverse coeff or coefficient, row index, column index A basis inverse coefficient

feasible primal or dual Is the current basis feasible?

pivot veriable or column Return the pivot column

row or restriction Return the pivot row

direction Return upper or lower

objective primal or dual Return the objective value

row index restriction label Corresponding index or *

column index variable label Corresponding index or *

20.16.3 Row and Column Based Messages

All messages which address the restriction 3 and the variable 7 of a mixed integer problem X start

X row 3 ...

and

X column 7 ...

223

20.16. LINEAR PROGRAMMING CHAPTER 20. THE GOSH INTERPRETER

respectively. You may also use the keywords restriction instead of row and the keyword variable instead of column. This syntax applies to all
messages listed in Table 20.16.4 and Table 20.16.5. All column indices range between 0 and l − 1. The row indices range between 0 and k − 1 respectively
k + l − 1 depending on whether variable range restrictions are included. Here, k and l denote the effective dimensions returned by [X #restrictions] and
[X #variables] respectively.

Whenever infinite labels are needed they are replaced by an asterisk *. Lower bounds cannot be set to +∞, upper bounds are never −∞ which makes
the procedure unique.

Example:

if {[X row $i type]=="non_basic"} {

set k [X column $j index]

catch {X pivot $i $j upper}

}

puts [X row $i type]

would check if the ith row is in the current basis and occasionally try to exchange the current basis row k matched with variable j with i. If the pivoting is
successful, that is, if a basis structure can be maintained, the output is upper.

20.16.4 Row Based Messages

Message Parameter Operation / Return Value

insert Upper and lower bound (or *), variable type Add a variable (column)

cancel Effectively deletes the restriction

ubound Upper right-hand side bound

lbound Lower right-hand side bound

label The restriction label

type The restriction type

index The variable associated with the restriction in basis or *

value upper or lower The (dual) variable value

slack upper or lower The slack

set ubound, lbound or label, ressource value Change one of the listed ressources

224

CHAPTER 20. THE GOSH INTERPRETER 20.16. LINEAR PROGRAMMING

20.16.5 Column Based Messages

Message Parameter Operation / Return Value

insert Upper and lower bound (or *), variable type Add a variable (column)

cancel Effectively deletes the variable

urange The upper variable bound

lrange The lower variable bound

cost The cost coefficient

type The variable type

label The variable name

index The basis row associated with the variable

value The (primal) variable value

mark float, int or integer Set variable type

set urange, lrange, cost or label, ressource value Change one of the listed ressources

20.16.6 Optimization Messages

Message Parameter Operation

solve lp, primal or dual Solve linear relaxation

mixed or mip Solve mixed integer problem

start primal or dual Determine feasible solution of the linear relaxation

pivot Variable index, incoming row index, upper or lower Move from one basis to another

225

20.16. LINEAR PROGRAMMING CHAPTER 20. THE GOSH INTERPRETER

226

CHAPTER 21. SOLVER APPLICATIONS SOLVER APPLICATIONS

Chapter 21

Solver Applications

One may argue that explicit solver programs are immaterial by the existence
of the GOSH interpreter. But the overhead for tracing and the graphical
display is obvious, and the compilation of efficient solvers does not require
a Tcl/Tk installation.

All GOBLIN executables support the runtime configuration as described
in Section 14.8. That is, one can control the logging and tracing function-
ality (including the graphical display) from the console.

21.1 Solver Applications

The last argument passed to a problem solver is the input file name, say
xyz. The solver expects a file xyz.gob which consists of a graph definition
(see Section 18.4 for the file formats). Do not specify the extension .gob

explicitly!

The computational results are written to a file xyz.rst, and the logging
information is written to a file xyz.log. By default, the output is the entire
graph definition which can be read by the program gobshow to display the
results. One can produce a more economic output by using the options -sh
and -silent. The first option forces the solver to write only the relevant
data structure (subgraph, predecessor labels, etc.) to file, the second option

suppresses the writing of a log file completely.

Note that the main routines do not support any error handling yet. In
case of trouble, consult the log file. The return value indicates the existence
of a feasible solution rather than internal errors. If the log file does not give
evidence of what has gone wrong, please contact the author.

21.1.1 Matching Problems

The program optmatch is the GOBLIN solver for all kinds of matching
problems. The input graph may be any undirected graph, either sparse or
complete. For bipartite graphs, specialized methods are used.

If one specifies -w, either a perfect matching of minimal costs is com-
puted or the program shows that no perfect matching exists. If this option
is omitted, the objective is a maximal or minimum deficiency matching. For
example,

optmatch -w samples/optmatch2

would return the 2-factor depicted in Figure 13.10 since all node demands
defined in the input file are 2.

The node demands are specified in the input file. If you want to distin-
guish upper and lower bounds on the node degrees, you may use the option
-deg. Then the solver expects two additional input files whose names differ
from the graph definition file only by the extensions .adg respectively .bdg.
The first file consists of the lower degree bounds, the second consists of the
upper degree bounds. The formats are the same as for the graph definition.

If you want to solve a geometrical problem, you must set the metrics in
the input file to a value other than zero (see Section 11.1.3 for the details).

21.1.2 Network Flow Problems

The program optflow is the GOBLIN solver for all kinds of network flow
problems. The input graph must be a directed graph, either sparse or com-
plete.

227

21.1. SOLVER APPLICATIONS CHAPTER 21. SOLVER APPLICATIONS

There are two ways to use this solver: One may use the -div option and
specify a source s and a target node t. The solver will try to find a pseudo-
flow such that all divergences are zero, except for s and t. The divergence of
s is maximized, and the divergence of t is minimized simultaneously. This
solver requires that

• all lower arc capacities are zero,

• all node demands are zero, except for the nodes s and t,

• all arc length labels are non-negative.

For example,

optflow -div 0 7 samples/maxflow4

would return the (0, 7)-flow depicted in Figure 13.5, and a minimum (0, 7)-
cut likewise.

If no source node and no target node are specified, the solver will de-
termine a pseudo-flow such that all divergences match the node demands,
called a b-flow. If the -w option is used, the solver returns a b-flow with
minimum costs. This solver requires that

• all lower capacity bounds are non-negative,

• the node demands sum up to zero.

If the maximum value of an st-flow is known a priori, one can assign the
demands of s and t accordingly such that the second solver applies. For
example,

optflow samples/maxflow4

determines a maximum (0, 7)-flow due to the node demands specified in the
file.

21.1.3 Minimum Spanning Tree Problems

The program mintree is the GOBLIN solver for minimum spanning tree
and 1-tree problems. The input graph must be a graph or a digraph object,
either sparse or complete.

One may specify a root node r by the option -r. In that case, the pre-
decessors will form a rooted tree or, for 1-trees, a directed cycle through r
plus several node disjoint arborescences with their root nodes on the cycle.

If the input graph is undirected and no root node is specified, a subgraph
is returned which consists of the tree arcs. The 1-tree solver is enabled by
the parameter -1. For example,

mintree -r 9 -1 samples/mintree1

would return the 1-tree depicted in Figure 21.1.

7

26

10
15

13

8

1

3

5
9

14

4

12

6

2

1116

19

18

28

20

27

21

17

23 22

24

25

0

1

2

3

4

5

6

7

8

9

10

11

Figure 21.1: A Minimum 1-Cycle Tree

228

CHAPTER 21. SOLVER APPLICATIONS LINEAR PROGRAMMING

21.1.4 Shortest Path Problems

The program gsearch is the GOBLIN solver for shortest path problems.
The input graph must be a graph or a digraph object, either sparse or
complete.

One has to specify a root node s by using the -s option. The output
are the predecessor labels which determine a shortest path tree rooted at s.
If the complete output form is used, the distance labels are also returned.

One may optionally specify a target node by using the -t option. In
that case, the Dijkstra label setting method may halt once the target has
been reached.

Note that all shortest path algorithms require that no negative length
cycles exist, and some methods that the length labels are even non-negative.
If the input graph and the method configured are incompatible, this will be
reported in the log file. For example,

gsearch -s 0 samples/gsearch1

would return the shortest path tree depicted in Figure 13.1.

21.1.5 Chinese Postman Problems

The program postman is the solver for Chinese postamn problems. The
input file must denote a sparse graph object, either directed or undirected.
No mixed or bipartite graphs are allowed. The output is an Eulerian super-
graph with minimum costs. For example,

postman samples/postman1

would return the graph depicted in Figure 13.12.

21.1.6 Other Solvers

Table 2.1 lists some more problem solvers some of which are experimental.
For this reason we omit a documentation of these programs, but refer to the
source files of the main routine which easily exhibit how the solvers apply.

21.2 Linear Programming

The last argument passed to lpsolve is the LP instance name, say xyz.
The solver expects an input file xyz.mps which contains a linear program
in CPLEX MPS format. Do not specify the extension .mps explicitly!

The optimal basis is written to a file named xyz.bas, and the logging
information is written to xyz.log. If the option -b is given, the start basis
is read from xyz.bas and overwritten with the final basis. If -f is specified,
the computation stops with a suboptimal but primal or dual feasible basis
depending on which method is configured in methLP. The option -silent

suppresses the writing of a log file.

21.3 Random Instance Generators

These tools can be used to generate random graph objects. The last argu-
ment passed to an instance generator is the output file name, say xyz. In
any case, the solver writes a file xyz.gob, but never a log file. All tools work
in a very similar way, and Table 21.1 describes the command line options.
By default, no random arc labels and no parallel arcs are generated.

Option Description

-n Number of nodes

-m Number of arcs, only for sparse objects

-dns Complete graph

-euler Generate Eulerian graph

-regular Generate regular graph

Table 21.1: Instance Generator Options

229

GRAPHICAL DISPLAY CHAPTER 21. SOLVER APPLICATIONS

21.3.1 Random Digraphs

The tool rgraph generates directed graphs. The option -euler can be used
to obtain Eulerian digraphs. For example,

rdigraph -n 5 -m 6 -randUCap 1 -randLCap 1 example1

would generate a flow network with 5 nodes, 6 arcs and random upper and
lower capacity bounds, and

rdigraph -n 5 -m 22 -euler -randParallels 1 example2

would generate an Eulerian digraph with 5 nodes and 22 arcs. Note that the
-randParallels 1 option cannot be omitted here since a simple digraph
on 5 nodes may only consist of 20 arcs.

21.3.2 Random Bigraphs

The tool rbigraph generates bipartite graphs. The option -regular can
be used to obtain regular bigraphs. In that case, the -n and the -m option
are immaterial. Otherwise the size of both partitions is passed by the -n

option. For example,

rbigraph -n 3 4 -m 5 -randLength 1 example3

would generate a bigraph with 5 arcs, 3 outer nodes, 4 inner nodes and
random length labels. On the other hand,

rbigraph -regular 3 2 example4

would generate a 2-regular bigraph with 6 arcs, 3 outer nodes and 3 inner
nodes. That is, the -regular option replaces or overrides the -n and the
-m option.

21.3.3 Random Graphs

The tool rgraph generates undirected non-bipartite graphs. There are two
additional options -euler and -regular to obtain Eulerian and regular
graphs respectively. For example,

rgraph -n 5 -m 6 example5

would generate a sparse graph with 5 nodes and 6 edges, whereas

rgraph -n 5 -randGeometry 1 -dns -seed 77 example6

would generate a complete graph with 5 nodes and 10 and a random em-
bedding into plane. The random generator is initialized with a special seed.

21.4 Graphical Display

Every problem solver has the capability to produce graphical information if
the tracing module is configured that way. But sometimes it is more conve-
nient to display a graph directly. This is achieved by the program gobshow.
Note that the file extension must be specified. For example,

gobshow -arcLabels 4 samples/optasgn1.gob

would show the graph defined in the file optasgn1.gob, especially its length
labels. This program should be redundant in view of the existence of the
GOBLET graph browser. Since the compilation of the GOSH interpreter is
the most difficult part of the GOBLIN installation, it may be useful in case
of trouble.

230

Part VI

Appendix

231

CHAPTER 22. COMPUTATIONAL RESULTS COMPUTATIONAL RESULTS

Chapter 22

Computational Results

22.1 Symmetric TSP

All computations were performed with the GOBLET graph browser 2.7.1 on
an Athlon XP 1800 PC with 256 MB RAM and SuSE Linux 7.3. and with
gcc optimization level -O5. The test problems are all from the TSPLIB:

http://www.iwr.uni-heidelberg.de/groups

/comopt/software/TSPLIB95/

The following methods have been tested here:

• SGO: The fast version of the 1-tree subgradient optimization with
local search enabled. This method has produced the most heuristic
tours.

• SGO2: Exhaustive 1-tree subgradient optimization with local search
enabled.

• CAND: Branch and bound on a candidate graph with local search
enabled and with methCandidates=0.

• CND2: As before but with methRelaxTSP2=2.

• EXH: Branch and bound on the entire graph with local search dis-
abled.

• EXH2: As before but with methRelaxTSP2=2.

The initial tours were obtained from random tours with local search enabled.
Note that the candidate graph generation also includes such random tours.
The performance of the available construction heuristics is not tested.

With a few exceptions (marked by an asterisk), the branch and bound
has not been restricted in terms of running times or memory usage. Prac-
tically, one would interrupt the candidate search after a certain number of
branching steps.

Instance Opt Method Root Found Gap Time Branch

burma14 3323 SGO 13 3323 0s
ulysses16 6859 SGO 14 6859 1s
gr17 2085 SGO 0 2085 1s
gr21 2707 SGO 0 2707 0s
ulysses22 7013 SGO 14 7013 1s
gr24 1272 SGO 0 1272 1s
fri26 937 SGO 0 937 1s
bayg29 1610 EXH 4 1610 2s 8
bays29 2020 EXH 4 2020 2s 12
dantzig42 699 SGO 27 [697, 699] 3s
dantzig42 699 EXH 27 699 3s 8
swiss42 1273 SGO 4 [1272, 1273] 3s
swiss42 1273 EXH 4 1273 3s 8
hk48 11461 SGO 40 [11445, 11461] 4s
hk48 11461 EXH 40 11461 1s 12
gr48 5046 SGO 40 [4959, 5055] 4s
gr48 5046 CAND 40 [4959, 5046] 8s 1614
gr48 5046 EXH 37 5046 201s 816
eil51 426 SGO 21 [423, 432] 3s
eil51 426 CAND 21 [423, 426] 7s 1830
eil51 426 EXH 21 426 32s 228
berlin52 7542 SGO 42 7542 3s

233

22.1. SYMMETRIC TSP CHAPTER 22. COMPUTATIONAL RESULTS

Instance Opt Method Root Found Gap Time Branch

brazil58 25395 SGO 30 [25355, 25395] 8s
brazil58 25395 EXH 30 25395 17s 56
st70 675 SGO 16 [671, 684] 6s
st70 675 CAND 16 [671, 675] 11s 2844
st70 675 EXH 16 675 18s 64
eil76 538 SGO 6 [537, 543] 7s
eil76 538 CAND 6 [537, 538] 19s 3324
eil76 538 EXH 6 538 2s 8
pr76 108159 SGO 39 [105120,108879] 12s
pr76 108159 CAND 39 [105120,108159] 345s 6158
pr76 108159 EXH* 39 [106509,108159] 1516s 1000
gr96 55209 SGO 79 [54570, 55462] 34s
gr96 55209 CAND 79 [54570, 55209] 45s 4664
gr96 55209 EXH 79 55209 715s 760
rat99 1211 SGO 63 [1206, 1220] 14s
rat99 1211 CAND 63 [1206, 1211] 15s 4544
rat99 1211 EXH 63 1211 36s 62
rd100 7910 SGO 15 [7898, 8046] 17s
rd100 7910 SGO2 15 [7900, 8046] 29s
rd100 7910 CAND 15 [7900, 7910] 16s 4612
rd100 7910 EXH 15 7910 9s 18
kroA100 21282 SGO 86 [20937, 21583] 20s
kroA100 21282 CAND 86 [20937, 21282] 61s 4946
kroA100 21282 EXH 86 21282 5016s 5180
kroB100 22141 SGO 53 [21834, 23698] 15s
kroB100 22141 CAND 53 [21834, 22141] 51s 4914
kroB100 22141 EXH 53 22141 1338s 1274
kroC100 20749 SGO 49 [20473, 20812] 17s
kroC100 20749 CAND 49 [20473, 20749] 21s 4706
kroC100 20749 EXH 49 20749 1422s 1402
kroD100 21294 SGO 45 [21142, 21493] 18s
kroD100 21294 CAND 45 [21142, 21294] 19s 4674
kroD100 21294 EXH 45 21294 148s 156
kroE100 22068 SGO 71 [21800, 22141] 36s
kroE100 22068 CAND 71 [21800, 22068] 61s 5100
kroE100 22068 EXH 71 22068 1195s 1142

Instance Opt Method Root Found Gap Time Branch

eil101 629 SGO 41 [628, 647] 13s
eil101 629 CAND 51 [628, 629] 43s 5112
eil101 629 EXH 51 629 98s 196
lin105 14379 SGO 103 [14371, 14379] 29s
lin105 14379 EXH 103 14379 5s 6
pr107 44303 SGO2 86 [44116, 44744] 144s
pr107 44303 CND2 86 [44116, 44438] 92s 5210
pr107 44303 EXH2 86 44303 25s 8
gr120 6942 SGO 17 [6912, 7082] 21s
gr120 6942 CAND 17 [6912, 6942] 104s 6614
gr120 6942 EXH 17 6942 611s 446
pr124 59030 SGO 59 [58068, 59076] 26s
pr124 59030 CAND 59 [58068, 59030] 12s 1534
pr124 59030 EXH 59 59030 1489s 786
bier127 118282 SGO 93 [117431,118580] 39s
bier127 118282 CAND 93 [117431,118282] 28s 6500
bier127 118282 EXH 93 118282 112s 66
ch130 6110 SGO 81 [6075, 6216] 29s
ch130 6110 SGO2 81 [6076, 6216] 45s
ch130 6110 CAND 81 [6076, 6110] 109s 7338
ch130 6110 EXH 81 6110 4428s 3052
pr136 96772 SGO 34 [95720, 98650] 40s
pr136 96772 SGO2 34 [95935, 98650] 177s
pr136 96772 CAND 34 [95935, 96772] 2757s 23861
gr137 69853 SGO 87 [69120, 70240] 55s
gr137 69853 CAND 87 [69120, 69853] 78s 7462
gr137 69853 EXH 87 69853 2894s 1508
pr144 58537 SGO 29 [58190, 59113] 25s
pr144 58537 CAND 29 [58190, 58537] 19s 3670
pr144 58537 EXH 29 58537 818s 324
ch150 6528 SGO 39 [6490, 6610] 40s
ch150 6528 CAND 39 [6490, 6528] 422s 10930
ch150 6528 EXH 39 6528 6318s 3470
kroA150 26524 SGO 112 [26265, 26725] 49s
kroA150 26524 SGO2 112 [26299, 26725] 92s
kroA150 26524 CAND 112 [26299, 26525] 264s 9428
kroA150 26524 EXH 112 26524 22472s

234

CHAPTER 22. COMPUTATIONAL RESULTS ASYMMETRIC TSP

Instance Opt Method Root Found Gap Time Branch

kroB150 26130 SGO2 68 [25733, 26678] 164s
kroB150 26130 CAND 68 [25733, 26130] 905s 13410
pr152 73682 SGO2 120 [73209, 74279] 223s
pr152 73682 CAND 120 [73209, 73682] 52s 8356
pr152 73682 EXH 120 73682 18547s 1136
u159 42080 SGO 86 [41925, 42168] 56s
u159 42080 CAND 86 [41925, 42080] 132s 9352
u159 42080 EXH 86 42080 430s 204
si175 21407 SGO2 1 [21375, 21426] 278s
brg180 1950 SGO2 111 [1950, 2020] 513s
brg180 1950 CND2 111 1950 248s 10478
rat195 2323 SGO2 43 [2300, 2379] 297s
rat195 2323 CAND 43 [2300, 2323] 2145s 23784
d198 15780 SGO2 167 [15712, 15825] 450s
d198 15780 CAND 167 [15712, 15780] 802s 15196
kroA200 29368 SGO 40 [29065, 30043] 104s
kroA200 29368 CAND 40 [29065, 29368] 17015s 91520
kroB200 29437 SGO 57 [29165, 30364] 87s

22.2 Asymmetric TSP

All computations were performed with the GOBLET graph browser 2.7.2
on an Athlon XP 1800 PC with 256 MB RAM and SuSE Linux 10.0 and
without gcc optimization. The test problems are all from the TSPLIB:

http://www.iwr.uni-heidelberg.de/groups

/comopt/software/TSPLIB95/

The following methods have been tested here:

• SGO: The fast version of the 1-tree subgradient optimization with
local search enabled. This method has produced the most heuristic
tours.

• SGO2: Exhaustive 1-tree subgradient optimization with local search
enabled.

• CAND: Branch and bound on a candidate graph with local search
enabled and with methCandidates=0.

• CAND: Branch and bound on the entire graph with local search dis-
abled. For difficult problems, the number of branch nodes has been
restricted to 1000 so that no optimality proof is obtained but the lower
bound is improved.

Instance Opt Method Root Found Gap Time Branch

br17 39 SGO 7 39 1s
ftv33 1286 SGO 11 1286 0s
ftv35 1473 SGO 11 [1456, 1484] 4s
ftv35 1473 EXH 11 1473 11s 23
ftv38 1530 SGO 7 [1512, 1541] 2s
ftv38 1530 CAND 7 [1514, 1530] 5s 284
ftv38 1530 EXH 7 1530 30s 56
p43 5620 SGO2 40 [5611, 5629] 29s
p43 5620 CAND 40 [5611, 5620] 1629s 5000
p43 5620 EXH 40 [5614, 5620] 1133s 100
ftv44 1613 SGO 17 [1581, 1708] 3s
ftv44 1613 CAND 17 [1583, 1634] 35s 596
ftv44 1613 EXH 17 1613 175s 164
ftv47 1776 SGO 17 [1748, 1932] 4s
ftv47 1776 CAND 17 [1748, 1776] 27s 542
ftv47 1776 EXH 17 1776 156s 190
ry48p 14422 SGO2 40 [14290, 14429] 21s
ry48p 14422 EXH 40 14422 75s 46
ft53 6905 SGO2 52 6905 10s
ftv55 1608 SGO2 30 [1584, 1758] 9s
ftv55 1608 CAND 30 [1584, 1608] 31s 612
ftv55 1608 EXH 30 1608 883s 882
ftv64 1839 SGO2 20 [1808, 1958] 26s
ftv64 1839 CAND 20 [1808, 1839] 30s 738
ftv64 1839 EXH 20 1839 5816s 3996

235

MIN-COST FLOW CHAPTER 22. COMPUTATIONAL RESULTS

Instance Opt Method Root Found Gap Time Branch

ft70 38673 SGO 47 [38632, 38793] 22s
ft70 38673 CAND 47 [38632, 38694] 14s 708
ft70 38673 EXH 47 38673 43s 16
ftv70 1950 SGO 70 [1907, 2176] 7s
ftv70 1950 CAND 70 [1907, 1973] 2181s 12804
ftv70 1950 CAND 70 [1908, 1950] 335s 2510
ftv70 1950 EXH 70 [1928, 1950] 2589s 1000
kro124p 36230 SGO 90 [35974, 39278] 27s
kro124p 36230 SGO2 90 [35998, 39278] 64s
kro124p 36230 CAND 90 [35999, 36230] 207s 1496
kro124p 36230 EXH 90 36230 427s 52
ftv170 2755 SGO 123 [2682, 2932] 40s
ftv170 2755 SGO2 123 [2707, 2932] 182s
ftv170 2755 CAND 123 [2707, 2780] 4622s 10000
ftv170 2755 CAND 123 [2707, 2772] 4516s 10000
ftv170 2755 CAND 123 [2707, 2755] 6031s 10000

22.3 Min-Cost Flow

All computations were performed with the GOBLET graph browser 2.5.1
on an Athlon XP 1800 PC with 256 MB RAM and SuSE Linux 7.3. The
test sets are NETGEN problems taken from

http://elib.zib.de/pub/Packages/mp-testdata

/mincost/netg/index.html

The tested methods are the cost scaling algorithm (CS, methMinCCirc=1)
and the network simplex method (NW, methMinCCirc=5). The columns
for the respective solution times with gcc optimization level -O5 and the
pragmas _LOGGING_ and _FAILSAVE_ unset.

Instance Nds Arcs Cap Len Objective CS NW

big5 5000 80101 10000 1000 15817090 198s 9s
big6 5000 60092 10000 1000 15864843 165s 7s
big7 5000 40105 10000 1000 13970599 138s 6s
cap1 1000 10000 500000 10000 2572055650 7s 1s
cap2 1000 30000 1199995 10000 868553404 14s 1s
cap3 1000 40000 1199995 10000 835752895 23s 1s
cap4 5000 30000 600000 10000 6572052044 107s 1s
cap5 5000 40000 600000 10000 4596714758 130s 2s
cap6 5000 49999 600000 120756 3905503120 130s 2s
cap7 5000 60000 600000 10000 3514982153 142s 2s
cap8 10000 40000 1000000 10000 13836268653 473s 4s
cap9 10000 50000 1000000 10000 12273727410 389s 5s
transp1 800 10028 200000 9997 258178684 9s 0s
transp2 800 20000 200000 10000 147794030 16s 1s
transp3 800 30000 200000 10000 93015638 24s 1s
transp4 800 40002 200000 10000 75304321 37s 1s
transp5 1000 20049 200000 10000 176263777 22s 1s
transp6 800 40002 200000 10000 124416104 34s 1s
transp7 1000 40025 200000 10000 96121936 34s 2s
transp8 1000 50055 200000 10000 92366438 51s 2s
transp9 400 10000 200000 10000 158058350 6s 0s
transp10 400 19969 200000 10000 94008769 13s 1s
transp11 600 10020 200000 9997 220335437 9s 0s
transp12 600 20000 200000 10000 126443694 15s 0s
transp13 600 30000 200000 10000 110331273 25s 1s
transp14 600 40000 200000 10000 85534936 28s 1s

236

CHAPTER 22. COMPUTATIONAL RESULTS NON-WEIGHTED MATCHING

Instance Nds Arcs Cap Len Objective CS NW

stndrd1 200 1308 100000 9998 196587626 1s 0s
stndrd2 200 1511 100000 9998 194072029 1s 0s
stndrd3 200 2000 100000 9998 159442947 2s 1s
stndrd4 200 2200 100000 9998 138936551 2s 1s
stndrd5 200 2900 100000 9997 102950805 1s 1s
stndrd6 300 3174 150000 9996 191968577 2s 0s
stndrd7 300 4519 150000 9998 172742047 3s 0s
stndrd8 300 5168 150000 9997 164468452 4s 1s
stndrd9 300 6075 150000 9996 144994180 4s 0s
stndrd10 300 6320 150000 9996 148675665 4s 0s
stndrd16 400 1306 400000 10000 6815524469 1s 0s
stndrd17 400 2443 400000 10000 2646770386 1s 1s
stndrd18 400 1306 400000 10000 6663684919 1s 0s
stndrd19 400 2443 400000 10000 2618979806 1s 0s
stndrd20 400 1400 400000 10000 6708097873 1s 0s
stndrd21 400 2836 400000 10000 2631027973 2s 1s
stndrd22 400 1416 400000 10000 6621515104 2s 0s
stndrd23 400 2836 400000 10000 2630071408 1s 1s
stndrd24 400 1382 400000 10000 6829799687 2s 0s
stndrd25 400 2676 400000 10000 6396423129 2s 1s
stndrd26 400 1382 400000 10000 5297702923 1s 0s
stndrd27 400 2676 400000 10000 4863992745 1s 0s
stndrd28 1000 2900 1000000 9998 11599233408 6s 0s
stndrd29 1000 3400 1000000 9997 11700773092 6s 0s
stndrd30 1000 4400 1000000 9997 8782721260 6s 0s
stndrd31 1000 4800 1000000 9998 8577913734 6s 1s
stndrd32 1500 4342 1500000 9997 17996365110 13s 0s
stndrd33 1500 4385 1500000 9995 18424893900 13s 1s
stndrd34 1500 5107 1500000 9998 14596094907 11s 0s
stndrd35 1500 5730 1500000 9997 14350903861 13s 1s
stndrd36 8000 15000 4000000 10000 87957673940 329s 2s
stndrd37 5000 23000 4000000 10000 35607266430 149s 2s
stndrd38 3000 35000 2000000 10000 7265734372 84s 2s
stndrd39 5000 15000 4000000 10000 48660418428 145s 2s
stndrd40 3000 23000 2000000 10000 11068572024 62s 2s
stndrd45 4000 20000 5000 -50000 -1864582590629 16s 15s
stndrd50 350 4500 300000 100 4024557 2s 0s

22.4 Non-Weighted Matching

All computations were performed with the GOBLET graph browser 2.3 on
a Pentium III/850 MHz notebook with 256 MB RAM and SuSE Linux 7.3.
The test problems r10000 to r30000 are random graphs while reg3 is a 3-
regular random graph and tiling1, tiling2 are tilings with different base
graphs. The following methods have been tested here:

• ”Phase”: The phase ordered augmentation algorithm. We report the
running times and the number of phases which occur.

• ”Cancel”: The cycle canceling method. We report the running times
and the number of odd cycles after the call of CancelEven.

Note that the respective numbers of phases and odd cycles are much less
than the worst-case bounds may suggest.

Instance Nodes Arcs Type Phase Cancel Objective

r10000 10000 10000 1-factor 2s (13) 1s (0) 3932
2-factor 1s (7) 1s (0) 6815

r15000 10000 15000 1-factor 4s (24) 4s (0) 4634
2-factor 4s (22) 4s (0) 8488

r20000 10000 20000 1-factor 2s (15) 4s (6) 4896
2-factor 2s (15) 4s (6) 9407

r25000 10000 25000 1-factor 1s (12) 4s (8) 4963
2-factor 2s (11) 4s (6) 9755

r30000 10000 30000 1-factor 1s (9) 4s (2) 4989
2-factor 2s (9) 4s (2) 9903

reg3 10000 15000 1-factor 1s (10) 2s (0) 5000
2-factor 1s (11) 2s (2) 10000

tiling1 10166 30361 1-factor 2s (3) 1s (2144) 5083
2-factor 1s (5) 2s (34) 10166

tiling2 9941 29540 1-factor 1s (2) 2s (70) 4970
2-factor 2s (3) 3s (132) 9941

Average 10013 21863 1-factor 1.8s (11) 4.6s (279)
2-factor 1.8s (10.4) 3s (23)

237

22.5. WEIGHTED MATCHING CHAPTER 22. COMPUTATIONAL RESULTS

22.5 Weighted Matching

All computations were performed with the GOBLET graph browser 2.2 on
a Pentium III/850 MHz notebook with 256 MB RAM and SuSE Linux 7.3.
The test problems are from TSPLIB and defined on complete graphs. The
instances pr1002 and u1060 are geometric while si1032 is defined by a ma-
trix. The problem rnd1000 is a matrix problem with random length labels
equally distributed in the interval [0, 49999].

The following methods have been tested here:

• ”heuristic”: The problem is solved on a sparse subgraph only where
methCandidates=10.

• ”candidates”: The fractional matching problem is solved on a candi-
date graph with methCandidates=10 converted into a optimal frac-
tional matching on the entire graph, and then converted into a optimal
integral solution.

• ”exhaustive”: The matching solver is applied to the complete graph
directly, that is with methCandidates=-1.

The results indicate that the candidate graph is constructed slowly, but
provides excellent solutions. The price&repair strategy for the fractional
matching problem cannot reach the performance of price&repair methods
for the 1-matching problem. The running times of the price&repair method
strongly depend on the performance of the primal-dual method since the
number of expensive PD-operations does not decrease via candidate search.
Note the significant differences in the running times for the geometric and
the matrix problems.

Instance Type Method Objective Time Dual Expand

pr1002 1-factor heuristics 112630 84s 583 189
pr1002 1-factor candidates 112630 1263s 250 120
pr1002 1-factor complete 112630 5224s 248 119
pr1002 2-factor heuristics 244062 104s 419 87
pr1002 2-factor candidates 244062 2029s 428 106
pr1002 2-factor complete 244062 5435s 428 106
si1032 1-factor heuristics 45448 39s 6 0
si1032 1-factor candidates 45448 60s 6 0
si1032 1-factor complete 45448 1019s 7 0
si1032 2-factor heuristics 91940 59s 65 10
si1032 2-factor candidates 91939 562s 93 8
si1032 2-factor complete 91939 2163s 76 10
u1060 1-factor heuristics 100651 98s 590 130
u1060 1-factor candidates 100356 1898s 519 89
u1060 1-factor complete 100356 3461s 519 80
u1060 2-factor heuristics 210931 123s 409 77
u1060 2-factor candidates 210931 1439s 405 94
u1060 2-factor complete 210931 5372s 410 89
rnd1000 1-factor heuristics 41284 56s 0 0
rnd1000 1-factor candidates 41284 937s 69 0
rnd1000 1-factor complete 41284 2628s 69 0
rnd1000 2-factor heuristics 103401 77s 42 4
rnd1000 2-factor candidates 103282 274s 22 0
rnd1000 2-factor complete 103282 2752s 24 0

22.6 Cliques and Node Colouring

All computations were performed with the GOBLET graph browser
2.1d/2.2a/2.3c on a Pentium III/850 MHz notebook with 256 MB RAM,
SuSE Linux 7.2/7.3 and without any code optimization. The test sets are
from Michael Tricks graph colouring page

http://mat.gsia.cmu.edu/COLOR/instances.html

All computation times were restricted to 5 minutes (exceptions are marked
with an asterisk *). Note that node k-colourings and k-clique covers have

238

CHAPTER 22. COMPUTATIONAL RESULTS 22.6. CLIQUES AND NODE COLOURING

been computed for a series of fixed, decreasing k. A successful k-colouring
usually takes less than one second, times for negative results mainly depend
on the branch and bound configuration.

For the series fpsol*, inithx* and le450*, the k-colour enumeration
scheme requires too much computer memory to obtain the optimal colour-
ing. Moreover, the computation times for cliques and clique covers are
dominated by the explicit construction of complementary graphs. Results
are therefore omitted.

Instance Nodes Arcs Clique Colour Stable Cover

anna 138 586 11 11 80 80
david 87 812 11 11 36 36
homer 561 3258 13 13 341 341
huck 74 602 11 11 27 27
jean 80 508 10 10 38 38

DSJC125.1 125 736 4 [5, 6] [32, 48] [32, 48]
DSJC125.5 125 3891 10 [10,21] 10 [10, 20]
DSJC125.9 125 6961 [32,46] [32,46] 4 [4, 6]

flat300_20 300 21375 [10,40] [10,41] [12, 43] [12, 44]

fpsol2.i.1 496 11654 [45,65] [45,65] 307 307

games120 120 1276 9 9 [22, 24] [22, 24]

le450_5a 450 5714 [5, 8] [5, 8] [78,141] [78,141]

miles250 128 774 8 8 44 44
miles500 128 2340 20 20 18 [18, 19]
miles750 128 4226 31 31 12 12
miles1000 128 6432 42 42 8 8
miles1500 128 10396 73 73 5 5

Instance Nodes Arcs Clique Colour Stable Cover

mulsol.i.1 197 3925 49* 49 100 100
mulsol.i.2 188 3885 31 31 90 90
mulsol.i.3 184 3916 31 31 86 86
mulsol.i.4 185 3946 31 31 86 86
mulsol.i.5 186 3973 31 31 88 88

myciel3 11 20 2 4 5 6
myciel4 23 71 2 5 11 12
myciel5 47 236 2 [4, 6] 23 24
myciel6 95 755 2 [4, 7] 47 48
myciel7 191 2360 2 [4, 8] 95 96

queen5_5 25 320 5 5 5 5
queen6_6 36 580 6 7 6 6
queen7_7 49 952 7 7* 7 7
queen8_8 64 1456 8 [8,10]* 8 8
queen9_9 81 2112 9 [9,11]* 9 9
queen8_12 96 2736 12 [12,14] 8 8
queen10_10 100 2940 10 [10,13]* 10 10
queen11_11 121 3960 11 [11,15] 11 11
queen12_12 144 5192 12 [12,17] 12 12
queen13_13 169 6656 13 [13,17]* 13 13
queen14_14 196 8372 14 [14,20] 14 14
queen15_15 225 10360 15 [15,21] 15 15
queen16_16 256 12640 16 [16,22] 16 16

school1 385 19095 14 14 [40, 48] [40, 47]
school1_nsh 352 14612 [14,17] [14,17] [37, 47] [37, 47]

zeroin.i.1 211 4100 49 49 120 120
zeroin.i.2 211 3541 30 30 127 127
zeroin.i.3 206 3540 30 30 123 123

239

22.6. CLIQUES AND NODE COLOURING CHAPTER 22. COMPUTATIONAL RESULTS

240

Index

2-edge connected component, 119
T -join, 135

b-flow, 124, 127
ǫ-optimal, 128

r-tree, 118
st-flow, 127

(ν)-optimal, 127
extreme, 127

maximum, 122

st-numbering, 120
st-orientations, 62

st-path
eligible, 112

1-matching, 95
2-factor, 94

arc incidences, 91
artificial nodes, 93

auxiliary variables, 174

backward arcs, 40
balanced network search (BNS), 131

balanced pseudo-flow, 132
basic timer, 188

basis, 177
basis arc, 121

basis row, 177
bipolar digraphs, 60
block, 119
blossom, 99

base, 99
branch and bound, 81

branch node, 81
left successor, 82
right successor, 82

branch tree, 85
breakpoint, 156
bridge, 119

canonical element, 74
canonically ordered partition, 121
child timers, 188
Chinese postman problem (CPP), 135
circulation, 124
circulations, 127
clique, 141
clique cover, 140
code module, 190
combinatorial embedding, 120
combinatorially embedded, 49
complementary graph, 60
complementary pairs, 39, 40

241

INDEX INDEX

complete orientation, 62

concrete classes, 43
configuration file, 207

contact nodes, 121
container

dynamic, 72

static, 72
copy constructor, 147

cut edges, 121
cut node, 119

cycle free solution, 130
cycle space, 136

DAG, 115
Dantzig rule, 130

data structures, 71
default constructor, 147

degenerate pivot steps, 129
dense implementation, 46

dictionary, 76

directed dual graphs, 60
double depth first search, 55

dual graph, 60
dual update, 56

ear decomposition, 119
edge connectivity number, 125

elementary operation, 39, 74
eligible arc, 112

Eulerian cycle, 135
excess scaling, 124

exterior face, 121

faces, 50

first-in first-out principle, 73

flow value, 122

force directed, 106
forward arcs, 40

general position, 108

geometric embedding

dimension, 93

geometric optimization instances, 103

GIOTTO, 107
global timers, 188

GOBLIN file

token, 194

tuple, 193
type, 193

vector, 196

graph

Eulerian, 135
graph drawing, 103

hamiltonian cycle, 137

hash function, 75

hash table, 75

collisions, 75

implementation classes, 43

index set
ivalidation, 80

induced subgraph, 64

inner nodes, 39

internally triconnected, 121
invalidated, 101

Kandinski, 107

242

INDEX INDEX

last-in first-out principle, 73
layout model, 103
Layout models, 103
line graph, 58
linear program, 174

maximum cut, 142
metric closure, 61
modified length labels, 56
multiple partial pricing, 130

network programming problem with side constraints, 198
network programming problems, 11
node

balanced, 122
node adjacencies, 91
node capacities, 125
node colouring, 87, 140

active node, 87
dominated node, 87

node incidence
predecessor, 48
successor, 44

node splitting, 62

objective function, 198
odd cycle canceling problem, 57
open ear decomposition, 120
outer nodes, 39
outerplanar graph, 121

partial pricing, 130
persistent, 46
persistent object, 46
personal installation, 17

phase of the Dinic method, 52, 56
pivot arc, 129

pivot cycle, 129
planar, 49
planar graph, 120
planar line graphs, 59

pricing rule, 130
primal algorithms, 127
priority, 73
problem relaxation, 81

problem variables, 81
Proportional growth, 107
pseudo-flow, 95
push and relabel method

active node, 123

regions, 50
return arc, 120
root node, 81

SAP algorithm, 127
segments, 120

semaphores, 167
shortest path tree, 112
shrinking family

real items, 75

virtual items, 75
sparse implementation, 46
stable set, 141
Steiner nodes, 142

Steiner tree, 142
strong component, 119
strongly connected node pair, 119
strongly feasible spanning tree structures, 129

243

INDEX INDEX

structural restrictions, 174
subgraph, 95

cardinality, 95
infeasible, 95
non-optimal, 95
weight, 95

successor, 44
system installation, 17

templates, 72
terminals, 142
thread safe, 167
topological erasure, 52
tracing point, 156
transitive arcs, 64
transscript, 207
traveling salesman problem (TSP), 137
triangular graph, 24, 66
triangulations, 121

union-find process, 74

valid path, 131
value

st-flow, 127
variable range restrictions, 174
vertex connectivity number, 125
vertex cover, 141
Visibility representations, 107
Voronoi regions, 113

weight, 142

244

