
Marco Cantù

Essential
Pascal

Piacenza, Italy
4th Edition, April 2008

2 -

Author and publisher: Marco Cantù.

Editor: Peter W. A. Wood

Tech Editors (for this edition): Patricio Moschcovich, Keld R. Hansen

Cover Designer: Fabrizio Schiavi

Copyright @ 1995-2008 Marco Cantù, Piacenza, Italy. World rights reserved.

The author created example code in this publication expressly for the free use by its read-
ers. The source code for this book is copyrighted freeware, distributed via the web site
http://www.marcocantu.com. The copyright prevents you from republishing the
code in print media without permission. Readers are granted limited permission to use
this code in their applications, as long at the code itself is not distributed, sold, or com-
mercially exploited as a stand-alone product. Permission to add limited pieces of code to
your application is fine, regardless of the application's license.

Aside from this specific exception concerning source code, no part of this publication may
be stored in a retrieval system, transmitted, or reproduced in any way, in the original or
in a translated language, including but not limited to photocopy, photograph, magnetic,
or other record, without the prior agreement and written permission of the publisher.

ISBN: 1440480117 (EAN-13: 9781440480119).

Delphi is a trademark of CodeGear, a subsidiary of Borland. Windows and Windows Vista
are trademarks of Microsoft. Other trademarks are of the respective owners, as refer-
enced in the text.

The author (and publisher) has made his best efforts to prepare this book, and the con-
tent is based upon the latest release of software whenever possible. The author (and
publisher) make no representation or warranties of any kind with regard to the complete-
ness or accuracy of the contents herein and accepts no liability of any kind including but
not limited to performance, merchantability, fitness for any particular purpose, or any
losses or damages of any kind caused or alleged to be caused directly or indirectly from
this book.

Edition for createspace.com. Revision 2. April 21st 2008.

Printed copies of this book can be ordered at http://www.marcocantu.com/epascal.

Marco Cantù, Essential Pascal

Introduction - 3

Introduction

This book is dedicated to my family,
Lella, Benedetta, and Jacopo.

The first few editions of Mastering Delphi, the best selling series of Delphi
books that I wrote between 1995 and 2005, provided an introduction to the
Pascal language in Delphi. Due to space constraints and because many Del-
phi programmers looked for more advanced information, this material was
completely omitted in the later editions of the Mastering Delphi series. To
overcome the absence of this information, I started putting together an
ebook, titled “Essential Pascal”. After several online “only” editions I'm now
making the book available in three formats, a free HTML-based book (with
ads), a paid PDF-based version, and a printed book. I've kept the prices of
the PDF and print version very low, to suit an audience of students and hob-
byists, although the book can serve professional developers as well.

Pascal, as in Delphi
This is a detailed book on the Pascal language found in Delphi, and in some
of the available Delphi dialects (namely FreePascal and Chrome)1. The book

1 There is also a GNU Pascal compiler which supports the ISO 7185 and ISO 10206
standards, but it is really not commonly used by the Pascal community, which is
generally tied to non-standard Borland extensions of the language.

Marco Cantù, Essential Pascal

4 - Introduction

purposely focuses on the traditional Pascal language constructs, not delving
into its object-oriented extensions. From time to time there will be updates
to cover extensions to the core language provided by recent editions of Del-
phi (again, not the OOP extensions of Object Pascal).

The first complete version of this book, dated July '99, was published on the
Delphi 5 Companion CD. Following editions were updated, both in the con-
tent and in the format, with notes covering Kylix (Delphi for Linux) and
Delphi for .NET. This new edition, the first available in print, extends cover-
age to other Pascal/Delphi dialects.

During the various editions, the examples used in the book were all migrated
away from using Delphi's Visual Control Language (VCL) graphic user inter-
face (GUI), to make the book better suited for different platforms and
compilers. Changing the examples from visual ones to console based ones,
brings with it the advantage that the reader can focus even more on the lan-
guage, ignoring event handlers, methods, component, and other more
advance topics. Also, the programs can run on non-Windows platforms.

Book Copyright and Availability
The text and the source code of this book is copyright of Marco Cantù. Of
course, you can use the programs and adapt them to your own needs, only
you are not allowed to use them without permission in books, training mate-
rial, and other copyrighted formats (unless of course you use a reasonably
limited amount of the text or source code and explicitly mention the source).

Distributing this book in electronic format is not allowed. The HTML version
is available (and will remain available) free of charge at:
http://www.marcocantu.com/epascal

In the very beginning the book was HTML only. Following editions were
available as PDF, which was a free download although I did ask for a volun-
teer-based license fee (or donation). Now I'm publishing the book in three
formats (with exactly the same content):

● Free HTML version with advertising.

● PDF version you can buy on Lulu.com (if you've obtained it else-
where this is probably an illegal copy).

Marco Cantù, Essential Pascal

Introduction - 5

● Printed version you can buy on Lulu.com.

Source Code
The source code of all the examples mentioned in the book is freely available.
The code has the same copyright as the book: Feel free to use it at will but
don't publish it on other documents or site. Download details and a list of
examples are available in the Appendix to the book.

Feedback
Please let me know of any errors you find, but also of topics not clear enough
for a beginner. Also let me know which other topics you'd like to see me
cover in future books.

The preferred way of sending feedback is on my public newsgroup (see my
web site delphi.newswhat.com for a web interface to my groups) in the area
devoted to books. If you have trouble using the newsgroups email me at
marco.cantu@gmail.com.

Acknowledgments
That I'm publishing a book on the web for free is mainly due to Bruce Eckel’s
experience with Thinking in Java. I'm a friend of Bruce and think he really
did a great job with that book and few others, not only because of the high
quality content of those books, but also for his experiments with the books'
delivery model.

When I mentioned the project to people at Borland (as it was called at the
time) I got a lot of positive feedback as well. And of course, I must thank the
company for making first the Turbo Pascal series of compilers and now the
Delphi series of visual IDEs.

Marco Cantù, Essential Pascal

6 - Introduction

I've received some precious feedback on early versions of the ebook. The first
readers who helped improve this material were Charles Wood and Wyatt
Wong. Mark Greenhaw and Frederic Gauthier-Boutin helped with some
editing of the text. Rafael Barranco-Droege offered a lot of technical correc-
tions and language editing. Thanks.

While working on this new edition I had editorial help from Peter W. A.
Wood and technical reviews by Patricio Moschcovich and Keld R. Hansen.
The book cover was designed by Fabrizio Schiavi. It represents a Pascal tri-
angle2, and matches the cover of my Delphi 2007 Handbook.

About the Author
I live in Piacenza, Italy. After teaching the C++ language and writing C++
and Object Windows Library books and articles, in 1995 I delved into Delphi
programming. I'm the author of the Mastering Delphi book series, published
by Sybex, the advanced Delphi Developers Handbook (which is hard to find
these days, but might soon get republished by myself), and the recently pub-
lished Delphi 2007 Handbook. I have written articles for many magazines,
including The Delphi Magazine, have spoken at Delphi and Borland confer-
ences around the world, and given Delphi classes at basic and advanced
levels.

Lately I've been getting more and more involved in Web 2.0 development
techniques and XML-related technologies, although mostly from the Delphi
perspective. You can find more details about me and my work on my web
site,
http://www.marcocantu.com

and on my blog,
http://blog.marcocantu.com

2 More information on http://en.wikipedia.org/wiki/Pascal's_triangle.

Marco Cantù, Essential Pascal

Table Contents - 7

Table Contents

Introduction..3
Pascal, as in Delphi..3
Book Copyright and Availability...4
Source Code...5
Feedback..5
Acknowledgments...5
About the Author...6

Chapter 1:
 Short History of the Pascal Language...11

Wirth’s Pascal..12
Turbo Pascal..12
Delphi’s Pascal...13

Chapter 2:
 Coding in Pascal..15

Syntax and Style..16
Comments..16
Use of Uppercase...17
White Space...18
Pretty-Printing...19
Syntax Highlighting..20
Error Insight and Coding Helpers...21
Language Statements..21
Keywords...22
Literal Values...23
Expressions and Operators...24

Marco Cantù, Essential Pascal

8 - Table Contents

Showing the Result of an Expression (a First Program)..24
Operators and Precedence...25
Set Operators..27

Conclusion...27

Chapter 3:
 Types, Variables, and Constants..29

Variables..30
Constants...31
Resource String Constants..32
Data Types...33
Ordinal Types..33

Integer Types..34
Boolean...35
Characters..35
Displaying Ordinal Ranges..36
Ordinal Types Routines...38

Real Types...39
Date and Time..41
Specific Windows Types..44
Typecasting and Type Conversions..44
Summary...46

Chapter 4:
 User-Defined Data Types...47

Named and Unnamed Types..48
Subrange Types...49
Enumerated Types..50
Set Types..51
Array Types..52
Record Types...54
Pointers..56
File Types..58
Conclusion...58

Chapter 5:
 Statements..59

Simple and Compound Statements..59
Assignment Statements..60
Conditional Statements...61

If Statements..61
Case Statements...63

Loops in Pascal..63

Marco Cantù, Essential Pascal

Table Contents - 9

The For Loop..64
While and Repeat Statements...65
Examples of Loops...66

The With Statement..67
Summary...70

Chapter 6:
 Procedures and Functions...71

Pascal Procedures and Functions..71
Reference Parameters...73
Constant Parameters...74
Open Array Parameters...75

Type-Variant Open Array Parameters...76
Delphi Calling Conventions..78
What Is a Method?..79
Forward Declarations..79
Procedural Types...81
Function Overloading...83
Default Parameters...85
Summary...87

Chapter 7:
 Handling Strings...89

Types of Strings...89
Traditional Pascal Strings...90
Using Long Strings..91
Looking at Strings in Memory..92
Delphi Strings and Windows PChars..94
Formatting Strings..96
Summary...98

Chapter 8:
 Memory..99

Global Memory..99
The Stack Memory..100
The Heap Memory...100
Dynamic Arrays...101
Summary...103

Chapter 9:
 Windows Programming...105

Windows Handles...106
External Declarations..107

Marco Cantù, Essential Pascal

10 - Table Contents

A Windows Callback Function..108
 A Minimal Windows Program..110
Summary...111

Chapter 10:
 Variants...113

Variants Have No Type..113
Variants in Depth...115
Variants Are Slow!...116
Summary..117

Chapter 11:
 Program and Units...119

Units...119
Units and Scope...122
Units as Namespaces...123
Units and Programs...124
Summary..125

Chapter 12:
 Files in the Pascal Language...127

Routines for Working with Files...128
Handling Text Files...130
A Text File Converter...131
Summary..133

PostFace...135

Appendix:
 Examples...136

Index..137

Marco Cantù, Essential Pascal

Chapter 1: Short History of the Pascal Language - 11

Chapter 1:

 Short History Of

The Pascal

Language

The Object Pascal programming language we use in Delphi wasn't invented
in 1995 along with the Borland visual development environment. It was sim-
ply extended from the Object Pascal language already in use in the Borland
Pascal products. But Borland didn't invent Pascal, it only helped make it very
popular and extended it a little.

Marco Cantù, Essential Pascal

12 - Chapter 1: Short History of the Pascal Language

Wirth’s Pascal
The Pascal language was originally designed in 1971 by Niklaus Wirth3, pro-
fessor at the Polytechnic of Zurich, Switzerland. Pascal was designed as a
simplified version, for educational purposes, of the Algol language, which
dates from 1960.

When Pascal was designed, many programming languages existed, but few
were in widespread use: FORTRAN, Assembler, COBOL. The key idea of the
new language was order, managed through a strong concept of data types,
declaration of variables and structured program controls. The language was
also designed to be a teaching tool.

Turbo Pascal
Borland's world-famous Pascal compiler, called Turbo Pascal, was intro-
duced in 1983, implementing "Pascal User Manual and Report" by Jensen
and Wirth. The Turbo Pascal compiler has been one of the best-selling series
of compilers of all time, and made the language particularly popular on the
PC platform, thanks to its balance of simplicity and power.

Turbo Pascal introduced an Integrated Development Environment (IDE)
where you could edit the code (in a WordStar compatible editor), run the
compiler, see the errors, and jump back to the lines containing those errors.
It sounds trivial now, but previously you had to quit the editor, return to
DOS; run the command-line compiler, write down the error lines, open the
editor and jump to the error lines.

Moreover Borland sold Turbo Pascal for 49 dollars, where Microsoft's Pascal
compiler was sold for a few hundred. Turbo Pascal's many years of success
contributed to Microsoft eventual dropping its Pascal compiler product.

You can actually download a copy of the original version of Borland's Turbo
Pascal from the Museum section of the CodeGear's Developer Network:
http://dn.codegear.com/museum

3 See the official Wirth biography at http://www.cs.inf.ethz.ch/~wirth/

Marco Cantù, Essential Pascal

Chapter 1: Short History of the Pascal Language - 13

Delphi’s Pascal
After 9 versions of Turbo and Borland Pascal compilers, which gradually
extended the language into the Object Oriented Programming (OOP) realm,
Borland released Delphi in 1995, turning Pascal into a visual programming
language. Delphi extends the Pascal language in a number of ways, including
many object-oriented extensions which are different from other flavors of
Object Pascal, including those in the Borland Pascal with Objects compiler
(the last incarnations of Turbo Pascal).

With Delphi 2, Borland brought the Pascal compiler to the 32-bit world,
actually re-engineering it to provide a code generator common with the C++
compiler. This brought many optimizations previously found only in C/C++
compilers to the Pascal language.

In Delphi 3 Borland added to the language the concept of interfaces, making
a leap forward in the expressiveness of classes and their relationships. With
Kylix, Borland made a further step and opened to Pascal/Delphi program-
mers the Linux operating system (even if only in its Intel-based incarnation).
Most of the examples of this book can be executed almost unchanged on
Linux.

With the release of version 7 of Delphi (and version 3 of Kylix) Borland has
formally started to call the Pascal (or Object Pascal) language the Delphi lan-
guage. So Delphi 7 uses the Delphi language, Kylix 3 supports both the
Delphi and the C++ languages, and Borland ships a Delphi language com-
piler for the Microsoft’s .NET architecture. This is mainly a cosmetic and
marketing change, probably due to the fact that the Pascal language was
never popular in the US as it used to be (and still is) in Europe and other
areas of the world.

Delphi 8 for .NET has introduced a new breed of Delphi IDE and added
extensive support in the language and libraries for Microsoft’s .NET archi-
tecture. Delphi 8, released at the end of 2003, marked the most extensive
and dramatic set of changes to the Object Pascal-Delphi language since the
introduction of Delphi 1 in 1995, changes that were also adopted in the
Win32 Delphi compiler.

At the time of this writing, the latest version of Delphi is RAD Studio 2007,
which is now produced by CodeGear, a Borland subsidiary. Among other
changes, CodeGear brought back the original name of the language, which is
now once again officially called Object Pascal. Most notably, CodeGear pro-

Marco Cantù, Essential Pascal

14 - Chapter 1: Short History of the Pascal Language

duced a solid Delphi 2007, after a “not-so-great” Delphi 2005 and a some-
what unstable Delphi 2006.

Among other Delphi dialects, the two most commonly used are FPC (Free
Pascal Compiler) and Chrome (a .NET-based language by RemObjects). I'll
often mention these two dialects in the book. The respective web sites are:
http://www.freepascal.org
http://www.remobjects.com/chrome

Marco Cantù, Essential Pascal

Chapter 2: Coding in Pascal - 15

Chapter 2:
 Coding In

Pascal

This chapter describes the element of a Pascal program, like keywords, white
spaces, and expressions. Here you'll find the basic building blocks of Pascal.

 As a starting point, I'm going to show you the code of a simple Hello, World
application showing some of the structural elements of a Pascal program. I
won't explain what these elements mean just yet, as that is the purpose of
the first few chapters of the book. Here is the code:
program EssHello;
{$APPTYPE CONSOLE}

var
 strMessage: string;
begin
 strMessage := 'Hello, Small World';
 writeln (strMessage);
 // wait until Enter is pressed
 readln;
end.

Marco Cantù, Essential Pascal

16 - Chapter 2: Coding in Pascal

You can see the program name in the first line, a compiler directive, a vari-
able declaration, and three lines of code (plus a comment) within the main
begin-end block. Again, we'll learn about all of these elements soon, this
serves only to give you an idea of what a small but complete Pascal program
looks like.

Syntax and Style
Before we move on to the subject of writing Pascal language statements, it is
important to highlight a couple of elements of Pascal coding style. The ques-
tion I'm addressing here is this: Besides the syntax rules, how should you
write code? There isn't a single answer to this question, since personal taste
can dictate different styles. However, there are some principles you need to
know regarding comments, uppercase, spaces, and the so-called pretty-
printing (pretty for us human beings, not the computer).

In general, the goal of any coding style is clarity. The style and formatting
decisions you make are a form of shorthand, indicating the purpose of a
given piece of code. An essential tool for clarity is consistency-whatever style
you choose, be sure to follow it throughout a project and across projects.

Comments
In traditional Pascal, comments were enclosed in either braces or parenthe-
ses followed by a star. Modern versions also accept the C++ style comments,
double slash, which can span to the end of the line and has no symbol to sig-
nal the end the comment:
{this is a comment}
(* this is another comment *)
// this is a comment up to the end of the line

The first form is shorter and more commonly used. The second form was
often preferred in Europe because many European keyboards lacked the
brace symbol. The third form of comment has been borrowed from C++ and

Marco Cantù, Essential Pascal

Chapter 2: Coding in Pascal - 17

was added in Delphi 2. Comments up to the end of the line are very helpful
for short comments and for commenting out a single line of code4.

Notice that in the code listings in the book, I'll try to typeset comments in
italics and keywords in bold, to be consistent with the default Delphi syntax
highlighting (and that of most other editors).

Having three different forms of comments can be helpful for marking nested
comments. If you want to comment out several lines of source code to dis-
able them, and these lines contain some real comments, you cannot use the
same comment identifier:
{ ... code
{comment, creating problems}
... code }

With a second comment identifier, you can write the following code, which is
correct:
{ ... code
// this comment is OK
... code }

Note that if the open brace or parenthesis-star is followed by the dollar
sign($), it becomes a compiler directive, as in5:
{$X+}

Valid compiler directives are listed in the compiler documentation or help.
They generally affect the way the compiler generates code and are compiler
specific, certainly not part of the language as such, and too advanced to be
covered here.

Use of Uppercase
Unlike other languages, including all those derived from C like C++, Java,
and C#, the Pascal compiler ignores case, the capitalization of characters.

4 Since Delphi 2006 and Turbo Delphi you can comment or uncomment a line (or a
group of lines) with a direct keystroke. This is Ctrl+/ on the US keyboard and a
different combination (with the physical / key) on other keyboards.

5 Actually, compiler directives are still comments. For example, {$X+ This is a
comment} is legal. It's both a valid directive and a comment, although any sane
programmers will probably tend to separate directives and comments.

Marco Cantù, Essential Pascal

18 - Chapter 2: Coding in Pascal

Therefore, the identifiers Myname, MyName, myname, myName, and MYNAME
are all exactly the same. In my opinion, case-insensitivity is definitely a posi-
tive feature, as syntax errors and other subtle mistakes can be caused by
incorrect capitalization in case-sensitive languages6.

There are a couple of subtle drawbacks, however. First, you must be aware
that these identifiers really are the same, so you must avoid using them as
different elements. Second, you should try to be consistent in the use of
uppercase letters, to improve the readability of the code.

A consistent use of case isn't enforced by the compiler, but it is a good habit
to get into. A common approach is to capitalize only the first letter of each
identifier. When an identifier is made up of several consecutive words (you
cannot insert a space in an identifier), every first letter of a word should be
capitalized:
MyLongIdentifier
MyVeryLongAndAlmostStupidIdentifier

This is often called “Pascal-casing”, to contrast it with the so-called “Camel-
casing” of Java and C-derived languages, which capitalizes internal words
but requires an initial lowercase letter, like in
myLongIdentifier

White Space
Other elements completely ignored by the compiler are the spaces, new
lines, and tabs you add to the source code. All these elements are collectively
known as white space. White space is used only to improve code readability;
it does not affect the compilation in any way.

Unlike traditional BASIC, Pascal allows you to write a statement on several
lines of code, splitting a long instruction on two or more lines. The drawback
(at least for many BASIC programmers) of allowing statements on more than
one line is that you have to remember to add a semicolon to indicate the end

6 In Delphi there is only one exception to the case-insensitive rule of Pascal: the
Register procedure of a components' package must start with the uppercase R,
because of a C++Builder compatibility issue. Of course, when you refer to identifiers
exported by other languages (like a native Win32 function or a .NET class) you might
have to use the proper capitalization.

Marco Cantù, Essential Pascal

Chapter 2: Coding in Pascal - 19

of a statement, or more precisely, to separate a statement from the next one.
The only restriction in splitting programming statements on different lines is
that a string literal may not span several lines.

Again, there are no fixed rules on the use of spaces and multiple-line state-
ments, just some rules of thumb:

The Delphi editor and many others have a vertical line you can place after
60 or 70 characters. If you use this line and try to avoid surpassing this
limit, your source code will look better when you print it on paper. Other-
wise long lines may get broken at any position when you print them.

When a function or procedure has several parameters, it is common prac-
tice to place the parameters on different lines.

You can leave a line completely white (blank) before a comment or to
divide a long piece of code in smaller portions. Even this simple idea can
improve the readability of the code, both on screen and when you print it.

Use spaces to separate the parameters of a function call, and maybe even
a space before the initial open parenthesis. Also keep operands of an
expression separated. I know that some programmers will disagree with
these ideas, but I insist: Spaces are free; you don't pay for them.

Pretty-Printing
The last suggestion on the use of white spaces relates to the typical Pascal
language-formatting style, known as pretty-printing. This rule is simple:
Each time you need to write a compound statement, indent it two spaces
(not a tab, like a C programmer would generally do!) to the right of the cur-
rent statement. A compound statement inside another compound statement
is indented four spaces, and so on:
if ... then
 statement;

if ... then
begin
 statement1;
 statement2;
end;

Marco Cantù, Essential Pascal

20 - Chapter 2: Coding in Pascal

if ... then
begin
 if ... then
 statement1;
 statement2;
end;

The above formatting is based on pretty-printing, but programmers have dif-
ferent interpretations of this general rule. Some programmers indent the
begin and end statements to the level of the inner code, some of them
indent begin and end and then indent the internal code once more, other
programmers put the begin in the line of the if condition (in a C-like fash-
ion). This is mostly a matter of personal taste.

There are Delphi add-in programs you can use to convert an existing source
code to the indentation format you prefer. A similar indentation format is
often used for lists of variables or data types:
type
 Letters = set of Char;

var
 Name: string;

Indentation is also used for statements that continue from the previous line:
MessageDlg ('This is a message',
 mtInformation, [mbOk], 0);

Of course, any such convention is just a suggestion to make the code more
readable to other programmers, and it is completely ignored by the compiler.
I've tried to use this rule consistently in all of the samples and code frag-
ments in this book. Delphi source code, manuals, and Help examples use a
similar formatting style.

Syntax Highlighting
To make it easier to read and write Pascal code, the Delphi editor and many
others have a feature called color syntax highlighting. Depending on the
meaning in Pascal of the words you type in the editor, they are displayed
using different colors. By default, keywords are in bold, strings and com-
ments are in color (and often in italic), and so on.

Marco Cantù, Essential Pascal

Chapter 2: Coding in Pascal - 21

Reserved words, comments, and strings are probably the three elements that
benefit most from this feature. You can see at a glance a misspelled keyword,
a string not properly terminated, and the length of a multiple-line comment.

In Delphi, you can easily customize the syntax highlight settings using the
Editor Colors page of the Environment Options dialog box. If you are the
only person using your computer to look to Pascal source code, choose the
colors you like. If you work closely with other programmers, you should all
agree on a standard color scheme. I find that working on a computer with a
different syntax coloring than the one I am used to is really difficult.

Error Insight and Coding Helpers
Recent versions of the Delphi editor have many more features to help you
write correct code. The most obvious is Error Insight, that places a red
squiggle under source code elements it doesn't understand in the same fash-
ion a word processor marks spelling mistakes.

Other features, like Code Completion, help you write code by providing a list
of legal symbols in the place where you are writing. However, these are edi-
tor specific features that I don't want to delve into in detail, as I want to
remain focused on the language and not discuss the Delphi editor (even if
the Delphi editor is one of the most common tools used for writing Pascal
code).

Language Statements
Once you have defined some identifiers, you can use them in statements and
in the expressions that are part of some statements. Pascal offers several
statements and expressions. Let's look at keywords, expressions, and opera-
tors first.

Marco Cantù, Essential Pascal

22 - Chapter 2: Coding in Pascal

Keywords
Keywords are all the identifiers reserved by the Pascal (or Object Pascal) lan-
guage. These are symbols that have a predefined meaning and role. Delphi's
Help distinguishes between reserved words and directives: Reserved words
cannot be used as identifiers, while directives should not be used as such,
even if the compiler will accept them. In practice, you should not use any
keyword as an identifier.

The following is a complete list of the identifiers, including keywords and
other reserved words. Some of them have multiple meanings, some are com-
monly used, other rather obscure. Even if you are an experienced Delphi
programmer you might find one or two you've never heard about. Look them
up in the help!
absolute abstract and
array as asm
assembler at automated
begin case cdecl
class const constructor
contains default destructor
dispid dispinterface div
do downto dynamic
else end except
export exports external
far file finalization
finally for forward
function goto if
implementation implements in
index inherited initialization
inline interface is
label library message
mod name near
nil nodefault not
object of on
or out overload
override package packed
pascal private procedure
program property protected
public published raise
read readonly record
register reintroduce repeat
requires resident resourcestring
safecall set shl
shr stdcall stored
string then threadvar

Marco Cantù, Essential Pascal

Chapter 2: Coding in Pascal - 23

to try type
unit until uses
var virtual while
with write writeonly
xor

FreePascal has a few extra reserved words7:
dispose exit false
new true

Literal Values
A literal value is a value you type directly in the program source code. If you
need a number with the value of two, you simply enter:
2

This will be the literal value for an integer number. If you want the same
value but for a floating point literal value, you generally add an empty deci-
mal after it:
2.0

Literal values are not limited to numbers. You can also have characters and
strings. Both use single quotes:
// literal characters
'K'

// literal string
'Marco'

You can also indicate characters by their ASCII number, prefixing the num-
ber with the # symbol, as I'll show in more details in the section about the
Char data type in the next chapter.

In case you need to have a quote within a string, you'll have to double it. So if
I want to have my first and last name (spelled with a final quote rather than
an accent) I can write:
'Marco Cantu'''

7 Source: http://www.freepascal.org/docs-html/ref/refsu3.html.

Marco Cantù, Essential Pascal

24 - Chapter 2: Coding in Pascal

The two quotes stand for a quote within the string, while the third consecu-
tive quote marks the end of the string. Also note that a string literal must be
written on a single line.

Expressions and Operators
There isn't a general rule for building expressions, since they mainly depend
on the operators being used, and Pascal has a number of operators. There
are logical, arithmetic, Boolean, relational, and set operators, plus some oth-
ers:
// sample expressions
20 * 5
30 + n
a < b
c = 10

Expressions are common to most programming languages. An expression is
any valid combination of constants, variables, literal values, operators, and
function results. Expressions can be used to determine the value to assign to
a variable, to compute the parameter of a function or procedure, or to test
for a condition. Every time you are performing an operation on the value of
an identifier, rather than using an identifier by itself, you are using an
expression.

Showing the Result of an
Expression (a First Program)

If you want to make a few experiments with expressions, there is nothing
better than writing a simple program. As for most demos of this book, create
a console application, and use writeln function statements to display
something on the console output screen8. At the end of the program, it is

8 In Pascal parameters passed to a function or procedures are enclosed in parenthesis.
Some other languages (notably Rebol and Ruby) let you pass parameters simply by
writing them after the function or procedure name.

Marco Cantù, Essential Pascal

Chapter 2: Coding in Pascal - 25

common to add a readln function call, so that the program will wait until
you press the Enter key, and not close immediately, in which case you might
not see the output.

Here is the complete program of the demo program, EPExpressions:
program EPExpressions;

{$APPTYPE CONSOLE}

begin
 writeln (20 * 5);
 writeln (30 + 222);
 writeln (3 < 30);
 writeln (12 = 10);

 readln;
end.

From now on I'll generally show only the relevant code, skipping some of the
details like the readln call and the APPTYPE directive. The source code
examples available with the book will have complete and running programs,
though. This is the output of the program:
100
252
TRUE
FALSE

Operators and Precedence
If you have ever written a program in your life, you already know what an
expression is, as they constitute the base building blocks of any program-
ming language. Here, I'll highlight specific elements of Pascal operators. You
can see a list of the operators of the language below, grouped by precedence:

Unary Operators (Highest Precedence)

@ Address of variable or function (returns a pointer)

not Boolean or bitwise not

Multiplicative and Bitwise Operators

* Arithmetic multiplication or set intersection

/ Floating-point division

div Integer division

Marco Cantù, Essential Pascal

26 - Chapter 2: Coding in Pascal

mod Modulus (the remainder of integer division)

as Allows a type-checked conversion at runtime

and Boolean or bitwise and

shl Bitwise left shift

shr Bitwise right shift

Additive Operators

+ Arithmetic addition, set union, string concatenation,
pointer offset addition

- Arithmetic subtraction, set difference, pointer offset
subtraction

or Boolean or bitwise or

xor Boolean or bitwise exclusive or

Relational and Comparison Operators (Lowest Precedence)

= Test whether equal

<> Test whether not equal

< Test whether less than

> Test whether greater than

<= Test whether less than or equal to, or a subset of a set

>= Test whether greater than or equal to, or a superset
of a set

in Test whether the item is a member of the set

is Test whether object is compatible with a specified
type definition (which is only of use in object ori-
ented programming.)

Contrary to most other programming languages, the and and or operators
have higher precedence than comparison ones. So if you write:
a < b and c < d

the compiler will do the and operation first, resulting in a compiler error. So
you should enclose each of the < expressions in parentheses:
(a < b) and (c < d)

Some of the common operators have different meanings when used with dif-
ferent data types. For example, the + operator can be used to add two

Marco Cantù, Essential Pascal

Chapter 2: Coding in Pascal - 27

numbers, concatenate two strings, make the union of two sets, and even add
an offset to a PChar pointer. However, you cannot add two characters, as is
possible in C.

Another unusual operator is div. In Pascal, you can divide any two numbers
(real or integers) with the / operator, and you'll invariably get a real-number
result. If you need to divide two integers and want an integer result, use the
div operator instead. Here are two sample assignments (this code will
become clearer as we cover data types in the next chapter):
realVal := 123 / 12;
intergerVal := 123 div 12;

Set Operators
The set operators include union (+), difference (-), intersection (*), mem-
bership test (in), plus some relational operators. To add an element to a set,
you can make the union of the set with another one that has only the ele-
ments you need. Here's a Delphi example related to font styles:
Style := Style + [fsBold];
Style := Style + [fsBold, fsItalic] - [fsUnderline];

As an alternative, you can use the standard Include and Exclude proce-
dures, which are much more efficient (but cannot be used with component
properties of the set type):
Include (Style, fsBold);

Conclusion
Now that we know the basic layout of a Pascal program, we are ready to start
exploring its meaning. We'll start by looking at predefined and user defined
data types, then we'll start using keywords to form programming statements.

Marco Cantù, Essential Pascal

28 - Chapter 2: Coding in Pascal

Marco Cantù, Essential Pascal

Chapter 3: Types, Variables, and Constants - 29

Chapter 3:
 Types,

Variables, And
Constants

The original Pascal language introduced some new notions, which have now
become quite common in programming languages. The first then revolution-
ary notion is that of data type. The type determines the values a variable can
hold, and the operations that can be performed on it.

The concept of type is stronger in Pascal than in C, where the arithmetic data
types are almost interchangeable, and much stronger than in the original
versions of BASIC, which had no similar concept. That's why programmers
refer to Pascal as a strongly-typed language.

Marco Cantù, Essential Pascal

30 - Chapter 3: Types, Variables, and Constants

Variables
Pascal requires all variables to be declared before they are used. Every time
you declare a variable, you must specify a data type. Here are some sample
variable declarations:
var
 Value: Integer;
 IsCorrect: Boolean;
 A, B: Char;

The var keyword can be used in several places in a program, such as at the
beginning of a function or procedure, to declare variables local to a routine,
or inside a unit to declare global variables. After the var keyword comes a
list of variable names, followed by a colon and the name of the data type. You
can write more than one variable name on a single line, as A and B in the last
statement of the previous code snippet.

Once you have defined a variable of a given type, you can only perform the
operations supported by its data type on it. For example, you can use the
Boolean value in a test and the integer value in a numerical expression. You
cannot mix Booleans and integers (as you can with the C language).

Using simple assignments, we can write the following code (which is part of
the Variables example9):
Value := 10;
IsCorrect := True;

Given the previous variable declarations, these two assignments are correct.
The next statement, instead, is not correct, as the two variables have differ-
ent data types:
Value := IsCorrect; // error

If you try to compile this code, the compiler issues an error with a descrip-
tion like this:
[DCC Error]: Incompatible types: 'Integer' and 'Boolean'

Usually, errors like these are programming errors, because it does not make
sense to assign a True or False value to a variable of the Integer data
type. You should not blame the compiler for these errors. It only warns you
that there is something wrong in your code.

9 The EPVariables example has the variable declarations and the assignments listed in
this section, plus a couple of writeln statements to display something on screen.

Marco Cantù, Essential Pascal

Chapter 3: Types, Variables, and Constants - 31

Of course, it is often possible to convert the value of a variable from one type
to another type. In some cases, the conversion is automatic, but usually you
need to call a specific system function that changes the internal representa-
tion of the data.

In Pascal, you can assign an initial value to a global variable while you
declare it. For example, you can write:
var
 Value: Integer = 10;
 Correct: Boolean = True;

This initialization technique works only for global variables, not for variables
declared inside a procedure or function.

Constants
Pascal also allows the declaration of constants allowing you to give meaning-
ful names to values that do not change during program execution. To declare
a constant you don't need to specify a data type, but only assign an initial
value. The compiler will look at the value and automatically use its proper
data type. Here are some sample declarations (from the EPConstants exam-
ple):
const
 Thousand = 1000;
 Pi = 3.14;
 AuthorName = 'Marco Cantu';

Pascal determines the constant data type based on its value. In the example
above, the Thousand constant is assumed to be of type SmallInt, the
smallest integral type which can hold it. If you want to tell Pascal to use a
specific type you can simply add the type name in the declaration, as in:
const
 Thousand: Integer = 1000;

When you declare a constant, the compiler can choose whether to assign a
memory location to the constant, and save its value there, or to duplicate the
actual value each time the constant is used. This second approach makes
sense particularly for simple constants.

Marco Cantù, Essential Pascal

32 - Chapter 3: Types, Variables, and Constants

Like Turbo Pascal, the 16-bit version of Delphi allowed you to change the
value of a typed constant at run-time, as if it was a variable. The 32-bit ver-
sions still permits this behavior for backward compatibility when you enable
the $J compiler directive, or use the corresponding Assignable typed con-
stants check box of the Compiler page of the Project Options dialog box. This
setting was on by default until Delphi 6, but in any case you are strongly
advised not to use this trick as a general programming technique. Assigning
a new value to a constant disables all the compiler optimizations on con-
stants. In such a case, simply declare a variable instead.

Resource String Constants
When you define a string constant, instead of writing a standard constant
declaration you can use a specific directive, resourcestring, that indicates
to the compiler and linker to treat the string like a Windows resource:
const
 sAuthorName = 'Marco';

resourcestring
 strAuthorName = 'Marco';

In both cases you are defining a constant; that is, a value you don't change
during program execution. The difference is only in the implementation. A
string constant defined with the resourcestring directive is stored in the
resources of the program, in a string table.

To see this capability in action, you can look at the EPConstants example,
which includes the following code:
resourcestring
 strAuthorName = 'Marco Cantù';
 strBookName = 'Essential Pascal';

begin
 writeln (strBookName + ' ' + strAuthorName);

The output of the two strings appears with a space in between. The interest-
ing aspect of this program is that if you examine it with a resource explorer
(there is one available among the examples that ship with Delphi) you'll see
the new strings in the resources. This means that the strings are not part of

Marco Cantù, Essential Pascal

Chapter 3: Types, Variables, and Constants - 33

the compiled code, but stored in a separate area of the executable file (the
EXE file)10.

In short, the advantages of using resources are more efficient memory han-
dling performed by Windows and a better way of localizing a program
(translating the strings to a different language) without having to modify its
source code. As a rule of thumb, you should use resourcestring for any
text that is shown to users and might need translating, and internal con-
stants for every other internal program string, like a configuration file name.

Data Types
In Pascal there are several predefined data types, which can be divided into
three groups: ordinal types, real types, and strings. We'll discuss ordinal
and real types in the following sections, while strings are covered later in this
chapter11.

Delphi also includes a non-typed data type, called variant, discussed in
Chapter 10. Strangely enough a variant is a type without proper type-check-
ing. It was introduced in Delphi 2 to handle Windows OLE Automation, but
found its way to other areas of the Delphi libraries.

Ordinal Types
Ordinal types are based on the concept of order or sequence. Not only can
you compare two values to see which is higher, but you can also ask for the
next or previous values of any value and compute the lowest and highest
possible values.

The three most important predefined ordinal types are Integer, Boolean,
and Char (character). However, there are other related types that have the
same meaning but a different internal representation and support a different

10 Although this might sound odd, resource strings are available also on Kylix.

11 I'll also introduce some types defined by the Delphi libraries (not predefined by the
compiler), which can be considered as predefined types for all practical purposes.

Marco Cantù, Essential Pascal

34 - Chapter 3: Types, Variables, and Constants

range of values. The following table lists the ordinal data types used for rep-
resenting numbers:

Size Signed Unsigned

8 bits ShortInt: -128 to 127 Byte: 0 to 255

16 bits SmallInt: -32768 to 32767 Word: 0 to 65,535

16/32
bits

Integer Cardinal

32 bits LongInt: -2,147,483,648 to
2,147,483,647 LongWord: 0 to 4,294,967,295

64 bits Int64: -9223372036854775808
to 9223372036854775807

As you can see, these types correspond to different representations of num-
bers, depending on the number of bits used to express the value, and the
presence or absence of a sign bit. Signed values can be positive or negative,
but have a smaller range of values, because one less bit is available for the
value itself. You can refer to the Range example, discussed in the next sec-
tion, for the actual range of values of each type.

The last group (marked as 16/32) indicates values having a different repre-
sentation in the 16-bit and 32-bit versions of Delphi. Integer and Cardinal
are frequently used, because they correspond to the native representation of
numbers in the CPU. I'll explain the benefits of using Integer and Cardinal
later.

Integer Types
In Delphi 2 and 3, the 32-bit unsigned numbers indicated by the Cardinal
type were actually 31-bit values, with a range up to 2 gigabytes. Delphi 4
introduced a new unsigned numeric type, LongWord, which uses a truly 32-
bit value up to 4 gigabytes. The Cardinal type is now an alias of the
LongWord type. LongWord permits 2GB more data to be addressed by an
unsigned number, as mentioned above. Moreover, it corresponds to the
native representation of numbers in the CPU.

Another new type introduced in Delphi 4 is the Int64 type, which represents
integer numbers with up to 18 digits. This new type is fully supported by

Marco Cantù, Essential Pascal

Chapter 3: Types, Variables, and Constants - 35

some of the ordinal type routines (such as High and Low), numeric routines
(such as Inc and Dec), and string-conversion routines (such as IntToStr).12

Boolean
Boolean values other than the Boolean type are seldom used. Some Boolean
values with specific representations are required by Windows API functions
(and COM libraries). The types are ByteBool, WordBool, and LongBool.

In Delphi 3 for compatibility with Visual Basic and OLE automation, the
data types ByteBool, WordBool, and LongBool were modified to represent
the value True with -1, while the value False is still 0. The Boolean data type
remains unchanged (True is 1, False is 0), although the actual numeric val-
ues should be irrelevant and should not be abused (like in C).

Characters
Finally there are two different representation for characters: ANSIChar and
WideChar. The first type represents 8-bit characters, corresponding to the
ANSI character set traditionally used by Windows; the second represents 16-
bit characters, corresponding to the new Unicode characters supported
(alongside with the traditional ones) by recent versions of Windows.

Most of the time you'll simply use the Char type, which from Delphi 3 to
Delphi 2007 corresponds to ANSIChar. Keep in mind, anyway, that the first
256 Unicode characters correspond exactly to the ANSI characters.

Constant characters can be represented with their symbolic notation, as in
'k', or with a numeric notation, as in #78. The latter can also be expressed
using the Chr function, as in Chr (78). The opposite conversion can be
done with the Ord function. It is generally better to use the symbolic nota-
tion when indicating letters, digits, or symbols.

When referring to special characters, like those below #32, you'll generally
use the numeric notation. The following list includes some of the most com-
monly used special characters:

12 There are also functions which can convert strings to these 64 bit integers. I'll cover
moving data from strings to integers and vice versa later in the book.

Marco Cantù, Essential Pascal

36 - Chapter 3: Types, Variables, and Constants

#8 backspace

#9 tabulator

#10 newline

#13 carriage return

#27 escape

Displaying Ordinal Ranges
To give you an idea of the different ranges of some of the ordinal types, I've
written a simple Delphi program named EPRange. The EPRange program
displays the name, size, and range of some data types, separating the values
belonging to the same data type with tabulators:
program EPRange;

{$APPTYPE CONSOLE}

begin
 write ('Integer');
 write (#9);
 write (SizeOf (Integer));
 write (#9);
 write (Low (Integer));
 write (#9);
 write (High (Integer));
 writeln;

 write ('SmallInt');
 write (#9);
 write (SizeOf (SmallInt));
 write (#9);
 write (Low (SmallInt));
 write (#9);
 write (High (SmallInt));
 writeln;

 write ('Int64');
 write (#9);
 write (SizeOf (Int64));
 write (#9);
 write (Low (Int64));
 write (#9);
 write (High (Int64));
 writeln;

Marco Cantù, Essential Pascal

Chapter 3: Types, Variables, and Constants - 37

 write ('Char');
 write (#9);
 write (SizeOf (Char));
 write (#9);
 write (Ord(Low (Char)));
 write (#9);
 write (Ord(High (Char)));
 writeln;

 readln;
end.

The code is somewhat repetitive, and it could have been written in a much
nicer way13, but I didn't want to introduce too many concepts at once.

This is the output (slightly reformatted for clarity):
Integer 4 -2147483648 2147483647
SmallInt 2 -32768 32767
Int64 8 -9223372036854775808

9223372036854775807
Char 1 0 255

The program uses three functions: SizeOf, High, and Low. The result of the
SizeOf function is an integer indicating the number of bytes required to
represent values of the given type.

The results of the last two functions are ordinals of the same type as that of
the value supplied to them, indicating the valid range of values represented
by the type itself. To display the range of the Char type, the program con-
verts the character into its numeric representation, using Ord, as character
#0 is non-printable and character #255 is a white space.

The size of the Integer type varies depending on the CPU and operating
system you are using. In 16-bit Windows (that is, using Delphi 1 for
example), an Integer variable is two bytes wide. In 32-bit Windows
(including all later versions of Delphi, until now), an Integer is four bytes
wide.

The different representations of the Integer type are not a problem, as long
as your program doesn't make any assumptions about the size of integers. If
you happen to save an Integer to a file using one version and retrieve it
with another, though, you're going to have some trouble. In this situation,

13 Delphi has a rich support for Run Time Type Information (RTTI) you can use to
operated on directly on data types at runtime, but this topic, as you can probably
guess, is quite advanced and way outside of the scope of this book..

Marco Cantù, Essential Pascal

38 - Chapter 3: Types, Variables, and Constants

you should choose a platform-independent data type (such as LongInt,
SmallInt, or Int64).

For mathematical computation or generic code, your best bet is to stick with
the standard integer representation for the specific platform--that is, use the
Integer type--because this is what the CPU likes best.

The Integer type should be your first choice when handling integer num-
bers. Use a different representation only when there is a compelling reason
to do so.

Ordinal Types Routines
There are some system routines (routines defined in the Pascal language and
in the Delphi system unit) that work on ordinal types. They are shown in the
following table:

Dec Decrements the variable passed as parameter, by one or by
the value of the optional second parameter.

Inc Increments the variable passed as parameter, by one or by
the specified value14.

Odd Returns True if the argument is an odd number.

Pred Returns the value before the argument in the order deter-
mined by the data type, the predecessor.

Succ Returns the value after the argument, the successor.

Ord Returns a number indicating the order of the argument
within the set of values of the data type.

Low Returns the lowest value in the range of the ordinal type
passed as its parameter.

High Returns the highest value in the range of the ordinal data
type.

Notice that some of these routines, when applied to constants, are automati-
cally evaluated by the compiler and replaced with their value. For example, if

14 C++ programmers should notice that the two versions of the Inc procedure, with one
or two parameters, correspond to the ++ and += operators (the same holds for the
Dec procedure).

Marco Cantù, Essential Pascal

Chapter 3: Types, Variables, and Constants - 39

you call High(X) where X is defined as an Integer, the compiler replaces
the expression with the highest possible value of the Integer data type.

Real Types
Real types represent floating-point numbers in various formats. Here is a list
of floating-point data types:

Single The smallest storage size is given by Single numbers, which
are implemented with a 4-byte value.

Double These are floating-point numbers implemented with 8 bytes.

Extended These are numbers implemented with 10 bytes.

These are all floating-point data types with different precision, which corre-
spond to the IEEE standard floating-point representations, and are directly
supported by the CPU, for maximum speed.

In Delphi 2 and Delphi 3 the Real type had the same definition as in the 16-
bit version; it was a 48-bit type. But its usage was deprecated by Borland,
who suggested that you use the Single, Double, and Extended types
instead. The reason for their suggestion is that the old 6-byte format is nei-
ther supported by the Intel CPU nor listed among the official IEEE real
types. To completely overcome the problem, Delphi 4 modified the definition
of the Real type to represent a standard 8-byte (64-bit) floating-point num-
ber15.

In addition to the advantage of using a standard definition, this change
allows components to publish properties based on the Real type, something
Delphi 3 did not allow. Among the disadvantages there might be compatibil-
ity problems. If necessary, you can overcome the possibility of
incompatibility by sticking to the Delphi 2 and 3 definition of the type; do
this by using the following compiler option:
{$REALCOMPATIBILITY ON}

There are also two strange non-ordinal data types16:

15 A new type called Real48 was introduced for backward compatibility with the Real
type of older Borland Pascal compilers.

Marco Cantù, Essential Pascal

40 - Chapter 3: Types, Variables, and Constants

Comp describes very big integers using 8 bytes (which can hold
numbers with 18 decimal digits)

Currency (not available in 16-bit Delphi) indicates a fixed-point deci-
mal value with four decimal digits, and the same 64-bit
representation as the Comp type. As the name implies, the
Currency data type has been added to handle very precise
monetary values, with four decimal places.

We cannot build a program similar to the EPRange example with real data
types, because we cannot use the High and Low functions or the Ord func-
tion on real-type variables. Real types represent (in theory) an infinite set of
numbers; ordinal types represent a fixed set of values.

Let me explain this better. when you have the integer 23 you can determine
which is the following value. Integers are finite (they have a determined
range and they have an order). Floating point numbers are infinite even
within a small range, and have no order: in fact, how many values are there
between 23 and 24? And which number follows 23.46? Is it 23.47, 23.461, or
23.4601? That's really impossible to know!

For this reason, whilst it makes sense to ask for the ordinal position of the
character 'w' in the range of the Char data type, it makes no sense at all to
ask the same question about 7143.1562 in the range of a floating-point data
type. Although you can indeed know whether one real number has a higher
value than another, it makes no sense to ask how many real numbers exist
before a given number (this is the meaning of the Ord function).

Real types have a limited role in the user interface portion of the code (the
Windows side), but they are fully supported by Delphi, including the
database side. The support of IEEE standard floating-point types makes the
Object Pascal language completely appropriate for the wide range of pro-
grams that require numerical computations. If you are interested in this
aspect, you can look at the arithmetic functions provided by the compiler's
system unit (see the compiler documentation or use the help system for
more details).

Delphi and FreePascal also have a Math unit that defines advanced mathe-
matical routines, covering trigonometric functions (such as the ArcCosh
function), finance (such as the InterestPayment function), and statistics

16 Both FreePascal and GNU Pascal include the Comp data type. It is correctly
considered an Integer type in GNU Pascal. FreePascal includes the Currency data
type.

Marco Cantù, Essential Pascal

Chapter 3: Types, Variables, and Constants - 41

(such as the MeanAndStdDev procedure). There are a number of these rou-
tines, some of which sound quite strange to me, such as the MomentSkew-
Kurtosis function (I'll let you find out what this is).

Date and Time
Pascal implementations typically use floating-point data types to handle date
and time information. To be more precise both Delphi and FreePascal define
a specific TDateTime data type17.

These are a floating-point type, because the type must be wide enough to
store years, months, days, hours, minutes, and seconds, down to millisecond
resolution in a single variable. Dates are stored as the number of days since
1899-12-3018 (with negative values indicating dates before 1899) in the inte-
ger part of the TDateTime value. Times are stored as fractions of a day in the
decimal part of the value.

TDateTime is not a predefined type the compiler understands, but it is
defined in the system unit as:
type
 TDateTime = type Double;

Using the TDateTime type is quite easy, because Delphi includes a number
of functions that operate on this type. Here you can find a list with some of
these functions:

Now Returns the current date and time into a date/time
value.

Date Returns only the current date.

Time Returns only the current time.

17 GNU Pascal adopts a different approach to storing dates and times. It defines a
TimeStamp record (more about records later) which stores each element of the date
and time separately. It has a comparatively limited number of routines for handling
dates and times as individual elements of the date and time, such as Hour, can be
directly accessed. Whilst this approach is simpler and slightly faster, the penalty for
using it is that it uses much, much more memory.

18 Delphi 1.0 used a different zero-point for TDateTime values.

Marco Cantù, Essential Pascal

42 - Chapter 3: Types, Variables, and Constants

DateTimeToStr Converts a date and time value into a string, using
default formatting; to have more control on the con-
version use the FormatDateTime function instead.

DateTimeToString Copies the date and time values into a string buffer,
with default formatting.

DateToStr Converts the date portion of a date/time value into a
string.

TimeToStr Converts the time portion of a date/time value into a
string.

FormatDateTime Formats a date and time using the specified format;
you can specify which values you want to see and
which format to use by providing a complex format
string.

StrToDateTime Converts a string with date and time information to a
date/time value, raising an exception in case of an
error in the format of the string. Its companion func-
tion, StrToDateTimeDef returns the default value
in case of an error rather than raising an exception.

StrToDate Converts a string representing a date into a date/time
value.

StrToTime Converts a string representing a time into a
date/time value.

DayOfWeek Returns the number corresponding to the day of the
week of the date/time value passed as parameter.

DecodeDate Retrieves the year, month, and day values from a
date value.

DecodeTime Retrieves the hours, minutes, seconds, and millisec-
onds from a date value.

EncodeDate Turns year, month, and day values into a date/time
value.

EncodeTime Turns hour, minute, second, and millisecond values
into a date/time value.

To show you how to use this data type and some of its related routines, I've
built a simple example, named TimeNow. When the program starts it auto-
matically computes and displays the current time and date.

Marco Cantù, Essential Pascal

Chapter 3: Types, Variables, and Constants - 43

 StartTime := Now;
 writeln (TimeToStr (StartTime));
 writeln (DateToStr (StartTime));

The first statement is a call to the Now function, which returns the current
date and time. This value is stored in the StartTime variable, declared as a
global variable as follows:
var
 StartTime: TDateTime;

The next two statements display the time portion of the TDateTime value,
converted into a string, and the date portion of the same value. This is the
output of the program:
6:33:14 PM
10/7/2007

To compile this program you need to refer to functions that are part of a
commonly used Pascal unit (a source code file), called SysUtils. To accom-
plish this you have to write19:
uses
 SysUtils;

Besides calling TimeToStr and DateToStr you can use the more powerful
FormatDateTime function, as I've done in the last method above (see the
Help file or documentation for details on the formatting parameters).

Notice that time and date values are transformed into strings depending on
the system's international settings. The runtime reads these values from the
system and copies them to a number of global variables declared in the
SysUtils unit. Some of them are:
DateSeparator: Char;
ShortDateFormat: string;
LongDateFormat: string;
TimeSeparator: Char;
TimeAMString: string;
TimePMString: string;
ShortTimeFormat: string;
LongTimeFormat: string;
ShortMonthNames: array [1..12] of string;
LongMonthNames: array [1..12] of string;
ShortDayNames: array [1..7] of string;
LongDayNames: array [1..7] of string;

19 Units and uses statements are covered in detail in Chapter 11.

Marco Cantù, Essential Pascal

44 - Chapter 3: Types, Variables, and Constants

More global variables relate to currency and floating-point number format-
ting. You can find the complete list in the Help file or documentation.

Specific Windows Types
The predefined data types we have seen so far are part of the Pascal lan-
guage. Delphi and FreePascal also include other data types defined by
Windows. These data types are not an integral part of the language, but they
are part of the Windows libraries. Windows types include new common
types (such as DWORD or UINT), many records (or structures), several pointer
types, and so on.

Among Windows data types, the most important type is represented by han-
dles, discussed in Chapter 9.

Typecasting and Type Conversions
As we have seen, you cannot assign a variable to one of a different type.
When you need to do this, there are two choices.

The first choice is typecasting, which uses a simple functional notation, with
the name of the destination data type:
var
 N: Integer;
 C: Char;
 B: Boolean;

begin
 N := Integer ('X');
 C := Char (N);
 B := Boolean (0);

You can typecast between data types having the same size. It is usually safe
to typecast between ordinal types, or between real types, but you can also
typecast between pointer types (and also objects) as long as you know what
you are doing.

Marco Cantù, Essential Pascal

Chapter 3: Types, Variables, and Constants - 45

Casting, however, is generally a dangerous programming practice, because it
allows you to access a value as if it represented something else. Since the
internal representations of data types generally do not match, you risk acci-
dentally creating hard-to-track errors. For this reason, you should generally
avoid typecasting.

The second choice is to use a type-conversion routine. The routines for the
various types of conversions are summarized in the following list:

Chr Converts an ordinal number into an ANSI character.

Ord Converts an ordinal-type value into the number indi-
cating its order.

Round Converts a real-type value into an Integer-type value,
rounding its value.

Trunc Converts a real-type value into an Integer-type value,
truncating its value.

Int Returns the Integer part of the floating-point value
argument.

IntToStr Converts a number into a string.

IntToHex Converts a number into a string with its hexadecimal
representation.

StrToInt Converts a string into a number, raising an exception
if the string does not represent a valid integer.

StrToIntDef Converts a string into a number, using a default value
if the string is not correct.

Val Converts a string into a number (traditional Turbo
Pascal routine, available for compatibility).

Str Converts a number into a string, using formatting
parameters (traditional Turbo Pascal routine, avail-
able for compatibility).

StrPas Converts a null-terminated string into a Pascal-style
string. This conversion is automatically done for
AnsiStrings in 32-bit Delphi. (See the section on
strings later in this chapter.)

StrPCopy Copies a Pascal-style string into a null-terminated
string. This conversion is done with a simple PChar

Marco Cantù, Essential Pascal

46 - Chapter 3: Types, Variables, and Constants

cast in 32-bit Delphi. (See the section on strings later
in this chapter.)

StrPLCopy Copies a portion of a Pascal-style string into a null-
terminated string.

FloatToDecimal Converts a floating-point value to record including its
decimal representation (exponent, digits, sign).

FloatToStr Converts a floating-point value to its string represen-
tation using default formatting.

FloatToStrF Converts a floating-point value to its string represen-
tation using the specified formatting.

FloatToText Copies a floating-point value to a string buffer, using
the specified formatting.

FloatToTextFmt As the previous one, copies the floating-point value
to a string buffer, using the specified formatting.

StrToFloat Converts a Pascal string to a floating-point value.

TextToFloat Converts a null-terminated string to a floating-point
value.

Some of these routines work on the data types that we'll discuss in the fol-
lowing sections. Notice that the table doesn't include routines for special
types (such as TDateTime or variant) or routines specifically intended for
formatting, like the powerful Format and FormatFloat routines.

In recent versions of Delphi's Pascal compiler20, the Round function is based
on the native implementation offered by the CPU. This processor adopts the
so-called "Banker's Rounding", which rounds middle values (such as 5.5 or
6.5) up and down depending whether they follow an odd or an even number.

Summary
In this chapter we explored the basic notion of type in Pascal. But the lan-
guage has another very important feature: It allows programmers to define
new custom data types, called user-defined data types, which are covered in
the next chapter.

20 And in the FreePascal Compiler

Marco Cantù, Essential Pascal

Chapter 4: User-Defined Data Types - 47

Chapter 4:
 User-Defined

Data Types

Along with the notion of type, one of the great new ideas introduced by the
Pascal language was the ability to define new data types in a program. Pro-
grammers can define their own data types by means of type definitions, such
as subrange types, array types, record types, enumerated types, pointer
types, and set types. The most important user-defined data type is the class,
which is part of the object-oriented extensions of Object Pascal, not covered
in this book.

If you think that type constructors are common in many programming lan-
guages, you are right, but Pascal was the first language to introduce the idea
in a formal and very precise way.

Marco Cantù, Essential Pascal

48 - Chapter 4: User-Defined Data Types

Named and Unnamed Types
User-defined data types can be given a name for later use or applied to a
variable directly. The convention in Delphi is to use a letter T prefix to
denote any data type, including classes but not limited to them. I strongly
suggest you to stick to this rule, even if might not feel natural at first.

When you give a name to a type, you must provide a specific section in the
code, such as the following:
type
 // subrange definition
 TUppercase = 'A'..'Z';

 // array definition
 TDayTemperatures = array [1..24] of Integer;

 // record definition
 TMyDate = record
 Month: Byte;
 Day: Byte;
 Year: Integer;
 end;

 // enumerated type definition
 TColors = (Red, Yellow, Green, Cyan, Blue, Violet);

 // set definition
 TLetters = set of Char;

Similar type definitions can be used directly to define a variable without an
explicit type name, as in the following code:
var
 DecemberTemperature: array [1..31] of Byte;
 ColorCode: array [Red..Violet] of Word;
 Palette: set of Colors;

In general, you should avoid using unnamed types as in the code above,
because you cannot pass them as parameters to routines or declare other
variables of the same type.

The type compatibility rules of Pascal, in fact, are based on type names, not
on the actual definition of the types. Two variables of two identical types are
still not compatible, unless their types have exactly the same name, and
unnamed types are given internal names by the compiler. Get used to defin-

Marco Cantù, Essential Pascal

Chapter 4: User-Defined Data Types - 49

ing a data type each time you need a variable with a complicated structure,
and you won’t regret the time you’ve spent doing it.

But what do these type definitions mean? I’ll provide some descriptions for
those who are not familiar with Pascal type constructs. I’ll also try to under-
line the differences from the same constructs in other programming
languages, so you might be interested in reading the following sections even
if you are familiar with the kind of type definitions listed above. Finally, I’ll
show some examples and introduce some tools that will allow you to access
type information dynamically.

Subrange Types
A subrange type defines a range of values within the range of another type
(hence the name subrange). For example, you can define a subrange of the
Integer type, from 1 to 10 or from 100 to 1000, or you can define a sub-
range of the Char type with uppercase characters only, as in:
type
 TTen = 1..10;
 TOverHundred = 100..1000;
 TUppercase = 'A'..'Z';

In the definition of a subrange, you don’t need to specify the name of the
base type. You just need to supply two constants of that type. The original
type must be an ordinal type, and the resulting type will be another ordinal
type. When you have defined a variable as a subrange, you can then assign it
any value within that range. This code is valid:
var
 UppLetter: TUpperCase;

begin
 UppLetter := 'F';

But this one is not:
var
 UppLetter: TUpperCase;

begin
 UppLetter := 'e'; // compile-time error

Marco Cantù, Essential Pascal

50 - Chapter 4: User-Defined Data Types

Writing the code above results in a compile-time error, "Constant expres-
sion violates subrange bounds." If you write the following code instead:
var
 UppLetter: TUppercase;
 Letter: Char;

begin
 Letter :='e';
 UppLetter := Letter;

Delphi will compile it. At run-time, if you have enabled the Range Checking
compiler option (in the Compiler page of the Project Options dialog box),
you’ll get a Range check error message.

I suggest that you turn on this compiler option while you are developing a
program, so it'll be more robust and easier to debug, as in case of errors
you'll get an explicit message and not an undetermined behavior. You can
eventually disable this option for the final build of the program, so that it will
run a little faster. However, the increase in speed is so little that I suggest
you leave all these run-time checks turned on, even when a shipping pro-
gram. The same holds true for other run-time checking options, such as
overflow and stack checking.

Enumerated Types
Enumerated types (usually referred to as “enums”) constitute another user-
defined ordinal type. Instead of indicating a range of an existing type, in an
enumeration you list all of the possible values for the type. In other words,
an enumeration is a list of values. Here are some examples:
type
 TColors = (Red, Yellow, Green, Cyan, Blue, Violet);
 TSuit = (Club, Diamond, Heart, Spade);

Each value in the list has an associated ordinality, starting with zero. When
you apply the Ord function to a value of an enumerated type, you get this
“zero-based” value. For example, Ord (Diamond) returns 1.

Enumerated types can have different internal representations. By default,
Delphi uses an 8-bit representation, unless there are more than 256 different
values, in which case it uses the 16-bit representation. There is also a 32-bit

Marco Cantù, Essential Pascal

Chapter 4: User-Defined Data Types - 51

representation, which might be useful for compatibility with C or C++
libraries21.

The Delphi VCL (Visual Component Library) uses enumerated types in many
places. For example, the style of the border of a form is defined as follows22:
type
 TFormBorderStyle = (bsNone, bsSingle, bsSizeable,
 bsDialog, bsSizeToolWin, bsToolWindow);

Set Types
Set types indicate a group of values, where the list of available values is indi-
cated by the ordinal type the set is based onto. These ordinal types are
usually limited, and quite often represented by an enumeration or a sub-
range. If we take the subrange 1..3, the possible values of the set based on it
include only 1, only 2, only 3, both 1 and 2, both 1 and 3, both 2 and 3, all the
three values, or none of them.

A variable usually holds one of the possible values of the range of its type. A
set-type variable, instead, can contain none, one, two, three, or more values
of the range. It can even include all of the values. Here is an example of a set:
type
 TLetters = set of TUppercase;

Now I can define a variable of this type and assign to it some values of the
original type. To indicate some values in a set, you write a comma-separated
list, enclosed within square brackets. The following code shows the assign-
ment to a variable of several values, a single value, and an empty value:
var
 Letters1, Letters2, Letters3: TLetters;

begin
 Letters1 := ['A', 'B', 'C'];
 Letters2 := ['K'];
 Letters3 := [];

21 You can change the default representation of enumerated types, asking for a larger
one, by using the $Z compiler directive.

22 When the value of a property is an enumeration, you can choose its value from the list
displayed in the Object Inspector.

Marco Cantù, Essential Pascal

52 - Chapter 4: User-Defined Data Types

You can revise the operations you can make on a set (which comprise the
Include and Exclude statements) in “Set Operators” section of Chapter 2.

In Pascal, a set is generally used to indicate nonexclusive flags. For example,
the following two lines of code (which are part of the Delphi library) declare
an enumeration of possible icons for the border of a window and the corre-
sponding set type23:
type
 TBorderIcon = (biSystemMenu, biMinimize,
 biMaximize, biHelp);
 TBorderIcons = set of TBorderIcon;

In fact, a given window might have none of these icons, one of them, or more
than one. Another property based on a set type is the style of a font. Possible
values indicate a bold, italic, underline, and strike-through font. Of course
the same font can be both italic and bold, have no attributes, or have them
all. For this reason it is declared as a set. You can assign values to this set in
the code of a program as follows:
Font.Style := []; // no style
Font.Style := [fsBold]; // bold style only
Font.Style := [fsBold, fsItalic]; // two styles

You can also operate on a set in many different ways, including adding two
variables of the same set type (or, to be more precise, computing the union
of the two set variables):
Font.Style := OldStyle + [fsUnderline]; // merge two sets

Array Types
Array types define lists of a fixed number of elements of a specific type. You
generally use an index within square brackets to access one of the elements
of the array. Square brackets are also used to specify the possible values of
the index when the array is declared. For example, you can define a group of
24 integers with this code:
type
 TDayTemperatures = array [1..24] of Integer;

23 When working with the Object Inspector in Delphi, you can provide the values of a set
by expanding the selection (double-click on the property name or click on the plus
sign on its left) and toggling on and off the presence of each value.

Marco Cantù, Essential Pascal

Chapter 4: User-Defined Data Types - 53

In the array definition, you need to pass a subrange type within square
brackets, or define a new specific subrange type using two constants of an
ordinal type. This subrange specifies the valid indexes of the array. Since you
specify both the upper and the lower index of the array, the indexes don’t
need to be zero-based, as is necessary in C, C++, Java, and other languages.

Since the array indexes are based on subranges, Pascal can check their range
as we’ve already seen. An invalid constant subrange results in a compile-
time error; and an out-of-range index used at run-time results in a run-time
error if the corresponding compiler option is enabled.

Using the array definition above, you can set the value of a DayTemp1 vari-
able of the TDayTemperatures type as follows:
type
 TDayTemperatures = array [1..24] of Integer;

var
 DayTemp1: TDayTemperatures;

procedure AssignTemp;
begin
 DayTemp1 [1] := 54;
 DayTemp1 [2] := 52;
 ...
 DayTemp1 [24] := 66;
 DayTemp1 [25] := 67; // compile-time error

An array can have more than one dimension, as in the following examples:
type
 TMonthTemps = array [1..24, 1..31] of Integer;
 TYearTemps = array [1..24, 1..31, Jan..Dec] of Integer;

These two array types are built on the same core types. So you could also
declare them using the preceding data types, as in the following code:
type
 TMonthTemps = array [1..31] of TDayTemperatures;
 TYearTemps = array [Jan..Dec] of TMonthTemps;

This declaration inverts the order of the indexes as presented above, but it
also allows assignment of whole blocks between variables. For example, the
following statement copies January’s temperatures to February:
var
 ThisYear: TYearTemps;

begin
 ThisYear[Feb] := ThisYear[Jan];

Marco Cantù, Essential Pascal

54 - Chapter 4: User-Defined Data Types

You can also define a zero-based array, an array type with the lower bound
set to zero. Generally, the use of more logical bounds is an advantage, since
you don’t need to use the index 2 to access the third item, and so on. Win-
dows, Linux and Mac OS X, however, invariably uses zero-based arrays
(because they are based on the C language) and, for this reason Delphi and
many other component libraries tend to do the same.

If you need to work on an array, you can always test its bounds by using the
standard Low and High functions, which return the lower and upper bounds.
Using Low and High when operating on an array is highly recommended,
especially in loops, since it makes the code independent of the range of the
array. Later, you can change the declared range of the array indexes, and the
code that uses Low and High will still work. If you write a loop hard-coding
the range of an array you’ll have to update the code of the loop when the
array size changes. Low and High make your code easier to maintain and
more reliable24.

Pascal uses arrays mainly in the form of array properties. I’ll show you some
more examples of array properties in the next chapter, when discussing Pas-
cal loops.

Delphi 4 introduced dynamic arrays, arrays that can be resized at runtime
allocating the proper amount of memory, into Object Pascal . Using dynamic
arrays is easy, but I felt it better to cover them later in the discussion of how
Pascal handles memory in Chapter 8.

Record Types
Record types define fixed collections of items of different types. Each ele-
ment, or field, has its own type. The definition of a record type lists all these
fields, giving each a name you’ll use later to access it.

Here is a small listing with the definition of a record type, the declaration of
a variable of that type, and few statements using this variable:

24 Incidentally, there is no run-time overhead for using Low and High with arrays. They
are resolved at compile-time into constant expressions, not actual function calls. This
compile-time resolution of expressions and function calls also happens for many
other simple system functions.

Marco Cantù, Essential Pascal

Chapter 4: User-Defined Data Types - 55

type
 TMyDate = record
 Year: Integer;
 Month: Byte;
 Day: Byte;
 end;

var
 BirthDay: TMyDate;

begin
 BirthDay.Year := 1997;
 BirthDay.Month := 2;
 BirthDay.Day := 14;
end;

Classes and objects can be considered an extension of the record type25. Del-
phi libraries tend to use class types instead of record types, but there are
many record types defined by the Windows API.

Record types can also have a variant part; that is, multiple fields can be
mapped to the same memory area, even if they have a different data type.
(This corresponds to a union in the C language.) Alternatively, you can use
these variant fields or groups of fields to access the same memory location
within a record, but considering those values from different perspectives.
The main uses of this type were to store similar but different data and to
obtain an effect similar to that of typecasting (something used in the early
days of Pascal, when direct typecasting was not allowed). The use of variant
record types has been largely replaced by object-oriented and other modern
techniques, although Delphi uses them internally in some special cases.

The use of a variant record type is not type-safe and is not recommended
programming practice, particularly for beginners. Expert programmers can
indeed use variant record types, and the core of the Delphi libraries makes
use of them. You won’t need to tackle them until you are really a Delphi
expert, anyway.

Before using variant record types, consider also that the .NET version of Del-
phi doesn't fully support them, as they can be used only in “unsafe” portions
of code. These features, in fact, are not considered safe by the .NET runtime
(and for a good reason).

25 In recent versions of Delphi, records can also have methods (that is, functions
associated with them) and support the overloading of language operators. These
topics are covered in my “Delphi 2007 Handbook” (see my web site for details).

Marco Cantù, Essential Pascal

56 - Chapter 4: User-Defined Data Types

Pointers
A pointer type defines a variable that holds the memory address of another
variable of a given data type (or an undefined type). So a pointer variable
indirectly refers to a value. The definition of a pointer type is not based on a
specific keyword, but uses a special character, the caret (^):
type
 TPointerToInt = ^Integer;

Once you have defined a pointer variable, you can assign to it the address of
another variable of the same type, using the @ operator:
var
 P: ^Integer;
 X: Integer;

begin
 P := @X;
 // change the value in two different ways
 X := 10;
 P^ := 20;

When you have a pointer P, with the expression P you refer to the address of
the memory location the pointer is referring to, and with the expression P^
you refer to the actual content of that memory location. For this reason in
the code fragment above P^ corresponds to X.

Instead of referring to an existing memory location, a pointer can refer to a
new memory block dynamically allocated (on the memory heap26) with the
New procedure27. In this case, when you don't need the value accessed by the
pointer anymore, you’ll also have to get rid of the memory you’ve dynami-
cally allocated, by calling the Dispose procedure.

If you don't dispose of the memory after using it, your program may eventu-
ally use up all the available memory and crash. This is known as a Memory
Leak.

26 Memory management in general and the way the heap works in particular are covered
in Chapter 8. In short, the heap is a (large) area of memory in which you can allocate
and release blocks of memory in no given order.

27 As an alternative to New and Dispose you can use GetMem and FreeMem. According
to the Delphi help, however, “it is considered preferable to use the New and Dispose
procedures”.

Marco Cantù, Essential Pascal

Chapter 4: User-Defined Data Types - 57

Here is a code snippet28:
var
 P: ^Integer;
begin
 // initialization
 New (P);
 // operations
 P^ := 20;
 writeln (P^);
 // termination
 Dispose (P);
end;

If a pointer has no value, you can assign the nil value to it. Then you can
test whether a pointer is nil to see if it currently refers to a value.

This is often used, because dereferencing (that is accessing the value in the
address stored in the pointer) an invalid pointer causes an access violation
(also known as a general protection fault):
var
 P: ^Integer;
begin
 P := nil;
 writeln (P^);

You can see an example of the effect of this code by running the Pointers
example after uncommenting the last few lines of code. The error you'll see
should be similar to:
Exception EAccessViolation in module Pointers.exe at
000083AC. Access violation at address 004083AC in module
'Pointers.exe'. Read of address 00000000.

One of the ways to make pointer data access safer, is to add a “pointer is not
null” safe-check like the following:
 if P <> nil then
 writeln (P^);

An alternative way, generally preferable for readability reasons, is to use the
Assigned pseudo-function29:

28 This code should indeed use a try-finally block, a topic I decided not to introduce
in this book, because despite its relevance it was not part of the traditional Pascal
language or its Turbo Pascal extensions.

29 Assigned is not a real function, because it is “resolved” by the compiler producing
the proper code.

Marco Cantù, Essential Pascal

58 - Chapter 4: User-Defined Data Types

 if Assigned(P) then
 writeln (P^);

Delphi also defines a Pointer data type, which indicates untyped pointers
(such as void* in the C language). If you use an untyped pointer you should
use GetMem instead of New. The GetMem procedure is required each time the
size of the memory variable to allocate is not defined.

The fact that pointers are seldom necessary in Pascal is an interesting advan-
tage of this environment. Nonetheless, understanding pointers is important
for advanced programming and for a full understanding of Delphi object
model, which use pointers "behind the scenes."

File Types
Another Pascal-specific type constructor is the file type. File types represent
physical disk files, certainly a peculiarity of the Pascal language. You can
define a new file data type as follows30:
type
 IntFile = file of Integer;

Then you can open a physical file associated with this structure and write
integer values to it or read the current values from the file.

The use of files in Pascal is quite straightforward, but in Delphi there are also
some components that are capable of storing or loading their contents to or
from a file. There is some serialization support, in the form of streams, and
there is also database support.

Conclusion
This chapter discussing user-defined data types completes our coverage of
the Pascal type system. Now we are ready to look into the statements the lan-
guage provides to operate on the variables we've defined.

30 Files-based examples are covered in Chapter 12. Notice, however, that the file type is
not available in Delphi for .NET.

Marco Cantù, Essential Pascal

Chapter 5: Statements - 59

Chapter 5:
 Statements

If the data types are one of the foundations of Pascal programming, the other
are statements. In its time, this idea was clarified by Nicklaus Wirth's out-
standing book “Algorithms + Data Structures = Programs”, published by
Prentice Hall in February 1976 (a classic book, still reprinted and available).

Statements of the programming language are based on keywords and other
elements which allow you to indicate to a compiler a sequence of operations
to perform. Statements are often enclosed in procedures or functions, as
we'll see in the next chapter. Now we'll just focus on the basic types of com-
mands you can use to create a program.

Simple and Compound Statements
A Pascal statement is simple when it doesn't contain any other statement.
Examples of simple statements are assignment statements and procedure
calls. Simple statements are separated by a semicolon:
X := Y + Z; // assignment
Randomize; // procedure call

Marco Cantù, Essential Pascal

60 - Chapter 5: Statements

Usually, statements are part of a compound statement, bracketed within the
words begin and end. A compound statement can appear anywhere a sim-
ple Pascal statement can appear. Here is an example:
begin
 A := B;
 C := A * 2;
end;

The semicolon after the last statement of the compound statement (that is,
before the end) isn't required, as in the following:
begin
 A := B;
 C := A * 2
end;

Both versions are correct. The first version has a useless (but harmless)
semicolon. This semicolon is, in fact, a null statement or an empty state-
ment; that is, a statement with no code31.

Although these final semicolons serve no purpose, I tend to use them and
suggest you do the same. Sometimes after you've written a couple of lines
you might want to add one more statement. If the last semicolon is missing
you have to remember to add it, so it is usually better to add it in the first
place.

Assignment Statements
Assignments in Pascal use the colon-equal operator (:=), an odd notation for
programmers who are used to other languages32. The = operator, which is
used for assignments in many other languages, in Pascal is used to test for
equality.

By using different symbols for an assignment and an equality test, the Pascal
compiler (like the C compiler) can translate source code faster, because it

31 Notice that, at times, null statements can be specifically used inside loops or in other
particular cases:

while condition_with_side_effect do
 ; // null or empty statement

32 Except people, like the book editor, whose first introduction was Algol and first
professional language was PL/1...

Marco Cantù, Essential Pascal

Chapter 5: Statements - 61

doesn't need to examine the context in which the operator is used to deter-
mine its meaning. The use of different operators also makes the code easier
for people to read. Truly Pascal picked two different operators than C (and
syntactic derivatives like Java, C#, JavaScript), which uses = for assignment
and == for equality test.

The two elements of an assignment are often called rvalue and lvalue, for
right value (the variable or memory location you are assigning from) and left
value, the value of the expressions being assigned.

The result of the expression is generally copied to the variable. When you
copy a record or an array, for example, the entire data structure is copied to
a new memory location, an operation that might be time-consuming. As we'll
see in Chapter 7, strings are managed in a different way.

Conditional Statements
A conditional statement is used to execute either one of the statements it
contains or none of them, depending on a specified test. There are two basic
flavors of conditional statements: if statements and case statements.

If Statements
The if statement can be used to execute a statement only if a certain condi-
tion is met (if-then) or to choose between two different alternatives (if-
then-else). The condition is described with a Boolean expression.

A simple Pascal example will demonstrate how to write conditional state-
ments. In this program we'll ask the user for input, by using the read
function with a single character as parameter:
var
 aChar: Char;

begin
 write ('Enter a character: ');
 readln (aChar);

 if aChar = 'a' then
 writeln ('You pressed [a]');

Marco Cantù, Essential Pascal

62 - Chapter 5: Statements

If you enter the a character (lowercase A), the program will show a simple
message. Otherwise nothing happens. In a case like this, it would probably
be better to make this more explicit, as with the following code snippet,
which uses an if-then-else statement:
 // if-then-else statement
 if aChar = 'b' then
 writeln ('You pressed [b]')
 else
 writeln ('You pressed something else than [b]');

Notice that you cannot have a semicolon after the first statement and before
the else keyword or the compiler will issue a syntax error. The if-then-
else statement is, in fact, a single statement, so you cannot place a semi-
colon in the middle of it.

An if statement can be quite complex. The condition can be turned into a
series of conditions (using the and, or, and not Boolean operators), or the
if statement can nest a second if statement. The last part of the IfTest
example demonstrates these cases:
 // statement with a double condition
 // checks for a lowercase char
 if (aChar >= 'a') and (aChar <= 'z') then
 writeln ('lowercase');

 // compound if statement
 if aChar >= Char(32) then
 begin
 if (aChar >= '0') and (aChar <= '9') then
 writeln ('a number')
 else
 writeln ('not a number');
 end
 else
 writeln ('non-printable char');

Look at the code carefully and run the program to see if you understand
everything (you can use the Tab key to enter a non printable character).
When you have doubts about a programming construct, writing a very sim-
ple test program such as this can help you learn a lot. You can consider more
options and Boolean expressions and increase the complexity of this small
example, making any test you like.

Marco Cantù, Essential Pascal

Chapter 5: Statements - 63

Case Statements
If your if statements become very complex, at times you can replace them
with case statements. A case statement consists of an expression used to
select a value, a list of possible values, or a range of values. These values are
constants, and they must be unique and of an ordinal type. Eventually, there
can be an else statement that is executed if none of the labels correspond to
the value of the selector. Here are two simple examples (part of the CaseTest
project):
case Number of
 1: Text := 'One';
 2: Text := 'Two';
 3: Text := 'Three';
end;

case aChar of
 '+' : Text := 'Plus sign';
 '-' : Text := 'Minus sign';
 '*', '/': Text := 'Multiplication or division';
 '0'..'9': Text := 'Number';
 'a'..'z': Text := 'Lowercase character';
 'A'..'Z': Text := 'Uppercase character';
else
 Text := 'Unknown character: ' + aChar;
end;

It is considered a good practice to include the else part to signal an unde-
fined or unexpected condition.

Loops in Pascal
The Pascal language has the typical repetitive statements of most program-
ming languages, including for, while, and repeat statements. Most of
what these loops do will be familiar if you've used other programming lan-
guages, so I'll only cover them briefly.

Marco Cantù, Essential Pascal

64 - Chapter 5: Statements

The For Loop
The for loop in Pascal is strictly based on a counter, which can be either
increased or decreased each time the loop is executed. Here is a simple
example of a for loop used to add the first ten numbers.
var
 total, I: Integer;

begin
 total := 0;
 for I := 1 to 10 do
 total := total + I;

This same for statement could have been written using a reverse counter:
var
 total, I: Integer;

begin
 total := 0;
 for I := 10 downto 1 do
 total := total + I;

The for loop in Pascal is less flexible than in other languages (it is not possi-
ble to specify an increment different than one), but it is simple and easy to
understand. If you want to test for a more complex condition, or to provide a
customized counter, you need to use a while or repeat statement, instead
of a for loop.

The counter of a for loop doesn't need to be a number. It can be a value of
any ordinal type, such as a character or an enumerated type. Here is an
example with characters:
var
 aChar: Char;

begin
 for aChar := 'a' to 'z' do
 begin
 write (aChar);
 write (' ');
 end;

Here is another example with an enumeration:
type
 TSuit = (Club, Diamond, Heart, Spade);

Marco Cantù, Essential Pascal

Chapter 5: Statements - 65

var
 aSuit: TSuit;

begin
 for aSuit := Club to Spade do
 ...

All these code fragments are part of the ForTest example. The last loop can
also be written to explicitly operate on each element of the enumeration by
writing:
 for aSuit := Low (TSuit) to High (TSuit) do

Recent versions of Delphi introduce a new form of loop, called for-in,
which resembles the traditional Visual Basic for-each loop. In this kind of
for loop the cycle operates on each element of an array, a list, or some other
form of container.33

While and Repeat Statements
The difference between the while-do loop and the repeat-until loop is
that the code of the repeat statement is always executed at least once. You
can easily understand why, by looking at a simple example:
while (I <= 100) and (J <= 100) do
begin
 // use I and J to compute something...
 I := I + 1;
 J := J + 1;
end;

repeat
 // use I and J to compute something...
 I := I + 1;
 J := J + 1;
until (I > 100) or (J > 100);

If the initial value of I or J is greater than 100, the statements inside the
repeat-until loop are executed once anyway.

The other key difference between these two loops is that the repeat-until
loop has a reversed condition. This loop is executed as long as the condition
is not met. When the condition is met, the loop terminates. This is the oppo-
site of a while-do loop, which is executed while the condition is true. For

33 The details of the for-in loop are covered in my “Delphi 2007 Handbook”.

Marco Cantù, Essential Pascal

66 - Chapter 5: Statements

this reason I had to reverse the condition in the code above to obtain a simi-
lar effect.34

Examples of Loops
To explore the details of loops, let's look at a small Pascal example. The
LoopsTest program highlights the difference between a loop with a fixed
counter and a loop with an almost random counter. The first loop displays a
number of strings:
var
 I: Integer;
begin
 for I := 1 to 20 do
 writeln ('String ' + IntToStr (I));
end;

The second fragment is slightly more complex. In this case, there is a while
loop based on a counter, which is increased randomly. To accomplish this,
I've called the Randomize procedure, which resets the random number gen-
erator, and the Random function with a range value of 100. The result of this
function is a number between 0 and 99, chosen randomly. The series of ran-
dom numbers control how many times the while loop is executed.
var
 I: Integer;
begin
 Randomize;
 I := 0;
 while I < 1000 do
 begin
 I := I + Random (100);
 writeln ('Random Number: ' + IntToStr (I));
 end;
end;

Each time you run the program, the numbers are different, because they
depend on the random-number generator. The following is the output of two
separate executions, in parallel:
Random Number: 25 Random Number: 82
Random Number: 68 Random Number: 130
Random Number: 131 Random Number: 140

34 This property is formally known as the “De Morgan's” laws (found
herehttp://en.wikipedia.org/wiki/De_Morgan%27s_laws)

Marco Cantù, Essential Pascal

Chapter 5: Statements - 67

Random Number: 192 Random Number: 186
Random Number: 263 Random Number: 195
Random Number: 347 Random Number: 196
Random Number: 379 Random Number: 214
Random Number: 437 Random Number: 311
Random Number: 531 Random Number: 403
Random Number: 583 Random Number: 429
Random Number: 660 Random Number: 468
Random Number: 683 Random Number: 515
Random Number: 689 Random Number: 608
Random Number: 751 Random Number: 628
Random Number: 775 Random Number: 722
Random Number: 798 Random Number: 776
Random Number: 888 Random Number: 824
Random Number: 910 Random Number: 889
Random Number: 948 Random Number: 967
Random Number: 970 Random Number: 1062
Random Number: 1019

Notice that not only are the generated numbers different each time, but so is
the number of items. This while loop is executed a random numbers of
times. If you execute the program several times in a row, you'll see that the
output has a different number of lines.

You can alter the standard flow of a loop's execution using the Break and
Continue system procedures. The first interrupts the loop; the second is
used to jump directly to the loop test or counter increment, continuing with
the next iteration of the loop (unless the condition is zero or the counter has
reached its highest value)35. Two more system procedures, Exit and Halt,
let you immediately return from the current function or procedure or termi-
nate the program.

The With Statement
The last kind of Pascal statement I'll focus on is the with statement, which
used to be peculiar to this programming language (although it has since been
introduced in JavaScript and Visual Basic) and can be very useful in Pascal
programming.

35 I find it preferable to use standard conditional statements (if) rather than Break
and Continue, as the code will generally be more clear.

Marco Cantù, Essential Pascal

68 - Chapter 5: Statements

The with statement is nothing but a shorthand. When you need to refer to a
record type variable (or an object), instead of repeating its name every
time, you can use a with statement. For example, while presenting the
record type, I wrote this code:
type
 TMyDate = record
 Year: Integer;
 Month: Byte;
 Day: Byte;
 end;

var
 BirthDay: TMyDate;

begin
 BirthDay.Year := 2007;
 BirthDay.Month := 2;
 BirthDay.Day := 14;

Using a with statement, I can improve the final part of this code, as follows:
 with BirthDay do
 begin
 Year := 2008;
 Month := 2;
 Day := 14;
 end;

This approach can be used in Pascal programs to refer to components and
other class types. When you work with components or classes in general, the
with statement allows you to skip writing some code, particularly for nested
fields.

For example in Delphi VCL code, suppose that you need to change the Width
and the Color of the drawing pen for a form. You can write the following
code:
Form1.Canvas.Pen.Width := 2;
Form1.Canvas.Pen.Color := clRed;

But it is certainly easier to write this code:
with Form1.Canvas.Pen do
begin
 Width := 2;
 Color := clRed;
end;

When you are writing complex code, the with statement can be effective and
spares you the declaration of some temporary variables, but it has a draw-

Marco Cantù, Essential Pascal

Chapter 5: Statements - 69

back. It can make the code less readable, particularly when you are working
with different enums, records and objects that have similar or corresponding
properties. A further drawback is that using the with statement can allow
subtle logic errors in the code that the compiler will not detect. This example
shows how a logic error can be correctly missed by the compiler when with is
used in conjunction with derived objects:
with Button1 do
begin
 Width := 200;
 Caption := 'New Caption';
 Color := clRed;
end;

This code changes the Caption and the Width of the button, but it affects
the Color property of the form, not that of the button! The reason is that the
TButton components don't have the Color property, and since the code is
executed for a form object (we are writing a method of the form) this object
is accessed by default. If we had instead written:
Button1.Width := 200;
Button1.Caption := 'New Caption';
Button1.Color := clRed; // error!

the compiler would have issued an error. In general, we can say that since
the with statement introduces new identifiers in the current scope, we
might hide existing identifiers, or wrongfully access another identifier in the
same scope (as in the first version of this code fragment). Even considering
this kind of drawback, I suggest you get used to with statements, because
they can be really very handy, and at times even make the code more read-
able. You should, however, avoid using multiple with statements, such as:
with ListBox1, Button1 do...

The code following this would probably be highly unreadable, because for
each property defined in this block you would need to think about which
component it refers to, depending on the respective properties and the order
of the components in the with statement.

Speaking of readability, Pascal has no endif or endcase statement. If an if
statement has a begin-end block, then the end of the block marks the end
of the statement. The case statement, instead, is always terminated by an
end. All these end statements, often found one after the other, can make the
code difficult to follow. Only by tracing the indentations can you see which
statement a particular end refers to. A common way to solve this problem

Marco Cantù, Essential Pascal

70 - Chapter 5: Statements

and make the code more readable is to add a comment after the end state-
ment indicating its role, as in:
end; // if

Summary
This chapter has described how to code conditional statements and loops.
Instead of writing long lists of such statements, programs are usually split
into routines, procedures or functions. This is the topic of the next chapter,
which also introduces some advanced elements.

Marco Cantù, Essential Pascal

Chapter 6: Procedures and Functions - 71

Chapter 6:
 Procedures And

Functions

Another important idea emphasized by Pascal is the concept of the routine,
basically a series of statements with a unique name, which can be activated
many times by using their name. This way you avoid having to write the
same statements over and over, and will have a single version of the code
used in many places through the program. From this point of view, you can
think of routines as a basic code encapsulation mechanism. I'll get back to
this topic with an example after I introduce the Pascal routines syntax.

Pascal Procedures and Functions
In Pascal, a routine can assume two forms: a procedure and a function. In
theory, a procedure is an operation you ask the computer to perform, a func-
tion is a computation returning a value. This difference is emphasized by the

Marco Cantù, Essential Pascal

72 - Chapter 6: Procedures and Functions

fact that a function has a result, a return value, while a procedure doesn't.
Both types of routines can have multiple parameters of specified data types.

In practice, however, the difference between functions and procedures is
very limited: you can call a function to perform some work and then skip the
result (which might be an optional error code or something like that) or you
can call a procedure which passes back a result within its parameters (more
on reference parameters later in this chapter).

Here are the definitions of a procedure and two versions of the same func-
tion, using a slightly different syntax:
procedure Hello;
begin
 writeln ('Hello world!');
end;

function Double (Value: Integer) : Integer;
begin
 Double := Value * 2;
end;

// or, as an alternative
function Double2 (Value: Integer) : Integer;
begin
 Result := Value * 2;
end;

The use of Result instead of the function name to assign the return value of
a function is becoming quite popular, and tends to make the code more read-
able. Once these routines have been defined, you can call them one or more
times. You call the procedure to make it perform its task, and call a function
to compute the value:
 // call the procedure
 Hello;

 // call the function
 X := Double (100);
 Y := Double (X);
 writeln (IntToStr (Y));

This is the encapsulation code concept I've introduced before in practice.
When you call the Double function, you don't need to know the algorithm
used to implement it. If you later find out a better way to double numbers,
you can easily change the code of the function, but the calling code will
remain unchanged (although executing it will be faster!). The same principle
can be applied to the Hello procedure: We can modify the program output by

Marco Cantù, Essential Pascal

Chapter 6: Procedures and Functions - 73

changing the code of this procedure, and the main program code will auto-
matically change its effect. Here is how we can change the code:
procedure Hello;
begin
 writeln ('Hello world, again!');
end;

When you call an existing Pascal function or procedure you need to remem-
ber the number and type of the parameters36.

Reference Parameters
Pascal routines allow parameter passing by value and by reference. Passing
parameters by value is the default: the value is copied on the stack and the
routine uses and manipulates the copy, not the original value.

Passing a parameter by reference means that its value is not copied onto the
stack in the formal parameter of the routine (avoiding a copy often means
that the program executes faster). Instead, the program refers to the original
value, also in the code of the routine. This allows the procedure or function
to change the value of the parameter. Parameter passing by reference is
expressed by the var keyword.

This technique is available in most programming languages. It isn't present
in C, but has been introduced in C++, where you use the & (pass by refer-
ence) symbol. In Visual Basic every parameter not specified as ByVal is
passed by reference. Here is an example of passing a parameter by reference
using the var keyword:
procedure DoubleTheValue (var Value: Integer);
begin
 Value := Value * 2;
end;

In this case, the parameter is used both to pass a value to the procedure and
to return a new value to the calling code. When you write:
var
 X: Integer;

36 Delphi editor helps you by suggesting the parameters list of a function or procedure
with a fly-by hint as soon as you type its name and the open parenthesis. This feature
is called Code Parameters and is part of the Code Insight technology.

Marco Cantù, Essential Pascal

74 - Chapter 6: Procedures and Functions

begin
 X := 10;
 DoubleTheValue (X);

the value of the X variable becomes 20, because the function uses a reference
to the original memory location of X, affecting its initial value.

Passing parameters by reference makes sense for ordinal types, for old-fash-
ioned strings, and for large records37. Delphi strings have a slightly different
behavior: they behave as references, but if you change one of the string vari-
ables referring to the same string in memory, this is copied before updating
it. A long string passed as a value parameter behaves as a reference only in
terms of memory usage and speed of the operation. But if you modify the
value of the string, the original value is not affected. On the contrary, if you
pass the long string by reference, you can alter the original value.

Delphi 3 introduced a new kind of parameter, out. An out parameter has no
initial value and is used only to return a value. These parameters should be
used only for COM procedures and functions; in general, it is better to stick
with the more efficient var parameters. Except for not having an initial
value, out parameters behave like var parameters.

Constant Parameters
As an alternative to reference parameters, you can use a const parameter.
Since you cannot assign a new value to a constant parameter inside the rou-
tine, the compiler can optimize parameter passing. The compiler can choose
an approach similar to reference parameters (or a const reference in C++
terms), but the behavior will remain similar to value parameters, because
the original value won't be affected by the routine.

In fact, if you try to compile the following (silly) code, Delphi will issue an
error:
function DoubleTheValue (const Value: Integer): Integer;
begin
 Value := Value * 2; // compiler error

37 Pascal objects, in fact, are invariably passed by value, because they are references
themselves. For this reason passing an object by reference makes little sense (apart
from very special cases), because it corresponds to passing a "reference to a
reference."

Marco Cantù, Essential Pascal

Chapter 6: Procedures and Functions - 75

 Result := Value;
end;

Open Array Parameters
Unlike C, a Pascal function or procedure always has a fixed number of
parameters. However, there is a way to pass a varying number of parameters
to a routine using an open array. The basic definition of an open array
parameter is that of a typed open array. This means you indicate the type of
the parameter but do not know how many elements of that type the array is
going to have. Here is an example of such a definition:
function Sum (const A: array of Integer): Integer;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(A) to High(A) do
 Result := Result + A[I];
end;

Using High(A) we can get the upper bound of the array. Notice also the use
of the return value of the function, Result, to store temporary values. You
can call this function by passing to it an array-of-Integer expression:
X := Sum ([10, Y, 27*I]);

Given an array of Integer, of any size, you can pass it directly to a rou-
tine requiring an open array parameter or, instead, you can call the Slice
function to pass only a portion of the array (as indicated by its second
parameter). Here is an example, where the complete array is passed as
parameter:
var
 List: array [1..10] of Integer;
 X, I: Integer;
begin
 // initialize the array
 for I := Low (List) to High (List) do
 List [I] := I * 2;
 // call
 X := Sum (List);

Marco Cantù, Essential Pascal

76 - Chapter 6: Procedures and Functions

If you want to pass only a portion of the array to the Sum function, simply
call it this way using the standard Slice function:
X := Sum (Slice (List, 5));

Did you notice how the parameter to one function can be the result of
another? You can find all the code fragments presented in this section in the
OpenArr example.

Typed open arrays are fully compatible with dynamic arrays (introduced in
Delphi 4 and covered in Chapter 8). Dynamic arrays use the same syntax as
open arrays, with the difference that you can use a notation such as array
of Integer to declare a variable, not just to pass a parameter.

Type-Variant Open Array Parameters
Besides these typed open arrays, Delphi allows you to define type-variant or
untyped open arrays. This special kind of array has an undefined number of
values, which can be handy for passing parameters.

Technically, the construct array of const allows you to pass an array
with an undefined number of elements of different types to a routine at once.
For example, here is the definition of the Format function (we'll see how to
use this function in Chapter 7, covering strings):
function Format (const Format: string;
 const Args: array of const): string;

The second parameter is an open array, which gets an undefined number of
values. In fact, you can call this function in the following ways:
N := 20;
S := 'Total:';
writeln (Format ('Total: %d', [N]));
writeln (Format ('Int: %d, Float: %f', [N, 12.4]));
writeln (Format ('%s %d', [S, N * 2]));

Notice that you can pass a parameter as either a constant value, the value of
a variable, or an expression. Declaring a function of this kind is simple, but
how do you code it? How do you know the types of the parameters? The val-

Marco Cantù, Essential Pascal

Chapter 6: Procedures and Functions - 77

ues of a type-variant open array parameter are compatible with the TVarRec
type elements38.

The TVarRec record has the following structure:
type
 TVarRec = record
 case Byte of
 vtInteger: (VInteger: Integer; VType: Byte);
 vtBoolean: (VBoolean: Boolean);
 vtChar: (VChar: Char);
 vtExtended: (VExtended: PExtended);
 vtString: (VString: PShortString);
 vtPointer: (VPointer: Pointer);
 vtPChar: (VPChar: PChar);
 vtObject: (VObject: TObject);
 vtClass: (VClass: TClass);
 vtWideChar: (VWideChar: WideChar);
 vtPWideChar: (VPWideChar: PWideChar);
 vtAnsiString: (VAnsiString: Pointer);
 vtCurrency: (VCurrency: PCurrency);
 vtVariant: (VVariant: PVariant);
 vtInterface: (VInterface: Pointer);
 end;

Each possible record has the VType field, although this is not easy to see at
first because it is declared only once, along with the actual Integer-size data
(generally a reference or a pointer). Using this information we can actually
write a function capable of operating on different data types. In the SumAll
function example, I want to be able to sum values of different types, trans-
forming strings to integers, characters to the corresponding ordinal value,
and adding 1 for True Boolean values.

The code is based on a case statement, and is quite simple, although we have
to dereference pointers quite often:
function SumAll (const Args: array of const): Extended;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(Args) to High (Args) do
 case Args [I].VType of
 vtInteger: Result :=

38 Do not confuse the TVarRec record with the TVarData record used by the Variant
type itself. These two structures have a different aim and are not compatible. Even the
list of possible types is different, because TVarRec can hold Delphi data types, while
TVarData can hold Windows OLE data types.

Marco Cantù, Essential Pascal

78 - Chapter 6: Procedures and Functions

 Result + Args [I].VInteger;
 vtBoolean:
 if Args [I].VBoolean then
 Result := Result + 1;
 vtChar:
 Result := Result + Ord (Args [I].VChar);
 vtExtended:
 Result := Result + Args [I].VExtended^;
 vtString, vtAnsiString:
 Result := Result + StrToIntDef ((
 Args [I].VString^), 0);
 vtWideChar:
 Result := Result + Ord (Args [I].VWideChar);
 vtCurrency:
 Result := Result + Args [I].VCurrency^;
 end; // case
end;

I've added this code to the OpenArr example, which calls the SumAll func-
tion with the following code:
var
 X: Extended;
 Y: Integer;
begin
 Y := 10;
 X := SumAll ([Y * Y, 'k', True, 10.34, '99999']);
 writeln (Format (
 'SumAll ([Y*Y, ''k'', True, 10.34, ''99999'']) => %n',
 [X]));
end;

You can see the output of this call below:
SumAll ([Y*Y, 'k', True, 10.34, '99999']) => 10,217.34

Delphi Calling Conventions
The 32-bit version of Delphi introduced a new approach to passing parame-
ters, known as fastcall: Whenever possible, up to three parameters can be
passed in CPU registers, making the function call much faster. The fast call-
ing convention (used by default since Delphi 3) is indicated by the register
keyword.

Marco Cantù, Essential Pascal

Chapter 6: Procedures and Functions - 79

The problem is that this is the default convention, and functions using it are
not compatible with Windows: the functions of the Win32 API must be
declared using the stdcall calling convention, a mixture of the original
pascal calling convention of the Win16 API and the cdecl calling conven-
tion of the C language.

There is generally no reason not to use the new fast calling convention,
unless you are making external Windows calls or defining Windows callback
functions. We'll see an example using the stdcall convention before the
end of this chapter. You can find a summary of Delphi calling conventions in
the Calling conventions topic under Delphi help.

What Is a Method?
If you have already worked with Delphi or read the manuals, you have prob-
ably heard about the term "method". A method is a special kind of function
or procedure that is related to a data type, a class. In Delphi, every time we
handle an event, we need to define a method, generally a procedure. In gen-
eral, however, the term method is used to indicate both functions and
procedures related to a class.

Here is an empty method automatically added by Delphi to the source code
of a form:
procedure TForm1.Button1Click(Sender: TObject);
begin
 {here goes your code}
end;

Forward Declarations
When you need to use an identifier (of any kind), the compiler must have
already seen some sort of declaration to know what the identifier refers to.
For this reason, you usually provide a full declaration before using any rou-
tine. However, there are cases in which this is not possible. If procedure A
calls procedure B, and procedure B calls procedure A, when you start writing

Marco Cantù, Essential Pascal

80 - Chapter 6: Procedures and Functions

the code, you will need to call a routine for which the compiler still hasn't
seen a declaration.

If you want to declare the existence of a procedure or function with a certain
name and given parameters, without providing its actual code, you can write
the procedure or function followed by the forward keyword:
procedure Hello; forward;

Later on, the code should provide a full definition of the procedure, but this
can be called even before it is fully defined. Here is a silly example, just to
give you the idea:
procedure DoubleHello; forward;

procedure Hello;
begin
 if MessageDlg ('Do you want a double message?',
 mtConfirmation, [mbYes, mbNo], 0) = mrYes then
 DoubleHello
 else
 ShowMessage ('Hello');
end;

procedure DoubleHello;
begin
 Hello;
 Hello;
end;

This approach allows you to write mutual recursion: DoubleHello calls
Hello, but Hello might call DoubleHello, too. Of course there must be a
condition to terminate the recursion, to avoid a stack overflow. You can find
this code, with some slight changes, in the DoubleH example.

Although a forward procedure declaration is not very common in Pascal,
there is a similar case that is much more frequent. When you declare a pro-
cedure or function in the interface portion of a unit (more on units in the
next chapter), it is considered a forward declaration, even if the forward key-
word is not present. Actually you cannot write the body of a routine in the
interface portion of a unit. At the same time, you must provide in the same
unit the actual implementation of each routine you have declared39.

39 The same holds for the declaration of a method inside a class type that was
automatically generated by the Delphi IDE (as you added an event to a form or its
components). The event handlers declared inside a TForm class are forward
declarations: the code will be provided in the implementation portion of the unit.

Marco Cantù, Essential Pascal

Chapter 6: Procedures and Functions - 81

Procedural Types
Another unique feature of Object Pascal is the presence of procedural types.
These are really an advanced language topic, which only a few Delphi pro-
grammers will use regularly. However, since we will discuss related topics in
later chapters (specifically, method pointers, a technique heavily used by
Delphi), it's worth a quick look at them here. If you are a novice program-
mer, you can skip this section for now, and come back to it when you feel
ready.

In Pascal, there is the concept of procedural type (which is similar to the C
language concept of function pointer). The declaration of a procedural type
indicates the list of parameters and, in the case of a function, the return type.
For example, you can declare a new procedural type, with an Integer param-
eter passed by reference, with this code:
type
 TIntProc = procedure (var Num: Integer);

This procedural type is compatible with any routine having exactly the same
parameters (or the same function signature, to use C jargon). Here is an
example of a compatible routine40:
procedure DoubleTheValue (var Value: Integer);
begin
 Value := Value * 2;
end;

Procedural types can be used for two different purposes: you can declare
variables of a procedural type or pass a procedural type (that is, a function
pointer) as parameter to another routine. Given the preceding type and pro-
cedure declarations, you can write this code:
var
 IP: TIntProc;
 X: Integer;
begin
 IP := DoubleTheValue;
 X := 5;
 IP (X);
end;

This code has the same effect as the following shorter version:

40 In the 16-bit version of Delphi, routines must be declared using the far directive in
order to be used as actual values of a procedural type.

Marco Cantù, Essential Pascal

82 - Chapter 6: Procedures and Functions

var
 X: Integer;
begin
 X := 5;
 DoubleTheValue (X);
end;

The first version is clearly more complex, so why should we use it? In some
cases, being able to decide which function to call and actually calling it later
on can be useful. It is possible to build a complex example showing this
approach. However, I prefer to let you explore a fairly simple one, named
ProcType. This example is more complex than those we have seen so far to
make the situation a little more realistic.

This example is based on two procedures. One procedure is used to double
the value of the parameter. This procedure is similar to the version I've
already shown in this section. A second procedure is used to triple the value
of the parameter, and therefore is named TripleTheValue:
procedure TripleTheValue (var Value: Integer);
begin
 Value := Value * 3;
 writeln ('Value tripled: ' + IntToStr (Value));
end;

Both procedures display what is going on, to let us know that they have been
called. This is a simple debugging feature you can use to test whether or
when a certain portion of code is executed, instead of using a breakpoint.

Instead of calling this functions directly, to demonstrate the use of procedu-
ral types, I've instead used a longer but more interesting approach. Each
time a user enters 2 or 3 on the keyboard, one of the procedures is stored in
a variable:
var
 ch: Char;
 IP: TIntProc;
 X: Integer;

begin
 // initial defaults
 X := 10;
 IP := DoubleTheValue;

 while True do
 begin
 // read and call
 read (ch);

Marco Cantù, Essential Pascal

Chapter 6: Procedures and Functions - 83

 case ch of
 '2': IP := DoubleTheValue;
 '3': IP := TripleTheValue;
 'x': Break;
 else
 IP (X);
 end;
end;

When the user presses any other key (the else branch of the case above),
the procedure we have stored is executed. You can see a more practical
example of the use of procedural types in Chapter 9, in the section A Win-
dows Callback Function.

Function Overloading
The idea of overloading is simple: The compiler allows you to define two
functions or procedures using the same name, provided that the parameters
are different. By checking the parameters, in fact, the compiler can deter-
mine which of the versions of the routine you want to call. Consider this
series of functions extracted from the Math unit of the VCL:
function Min (A,B: Integer): Integer; overload;
function Min (A,B: Int64): Int64; overload;
function Min (A,B: Single): Single; overload;
function Min (A,B: Double): Double; overload;
function Min (A,B: Extended): Extended; overload;

When you call Min (10, 20), the compiler easily determines that you're
calling the first function of the group, so the return value will be an Integer.

The basic rules are two:

● Each version of the routine must be followed by the overload key-
word.

● The differences must be in the number or type of the parameters, or
both. The return type cannot be used to distinguish among two rou-
tines.

Here are three overloaded versions of a ShowMsg procedure I've added to the
OverDef example (an application demonstrating overloading and default
parameters):

Marco Cantù, Essential Pascal

84 - Chapter 6: Procedures and Functions

procedure ShowMsg (str: string); overload;
begin
 writeln ('Message: ' + str);
end;

procedure ShowMsg (FormatStr: string;
 Params: array of const); overload;
begin
 writeln ('Message: ' + Format (FormatStr, Params));
end;

procedure ShowMsg (I: Integer; Str: string); overload;
begin
 ShowMsg (IntToStr (I) + ' ' + Str);
end;

The three functions show a message box with a string, after optionally for-
matting the string in different ways. Here are the three calls41 of the
program:
ShowMsg ('Hello');
ShowMsg ('Total = %d.', [100]);
ShowMsg (10, 'MBytes');

And this is their effect:
Message: Hello
Message: Total = 100.
Message: 10 MBytes

The fact that each version of an overloaded routine must be properly marked
implies that you cannot overload an existing routine of the same unit that is
not marked with the overload keyword. (The error message you get when
you try is:
Previous declaration of '<name>' was not marked with the
'overload' directive.

However, you can overload a routine that was originally declared in a differ-
ent unit42. This is for compatibility with previous versions of Delphi, which
allowed different units to reuse the same routine name. Notice anyway, that
this special case is not really an extra feature of overloading as it seems to
have little effect.

41 Delphi IDE's Code Parameters technology works very nicely with overloaded
procedures and functions. As you type the open parenthesis after the routine name,
all the available alternatives are listed. As you enter the parameters, Delphi uses their
type to determine which of the alternatives are still available.

42 For more information on units see Chapter 11.

Marco Cantù, Essential Pascal

Chapter 6: Procedures and Functions - 85

For example, you can add to a program (in this case the OverDef example)
the following code:
procedure MessageBox (str: string); overload;
begin
 Windows.MessageBox (0, PChar(str), 'Title', MB_OK);
end;

This code doesn't overload the original MessageBox routine of the Windows
API at all. In fact if you try to call the original version with:
MessageBox (0, 'Message', 'Title', MB_OK);

you'll get a nice error message indicating that some of the parameters are
missing. The only way to call the official version instead of the local one is to
refer explicitly to the unit, something that defeats the idea of overloading:
Windows.MessageBox (0, 'Message', 'Title', MB_OK);

Default Parameters
Another feature related to overloading, is that you can give a default value to
the parameter or parameters of a function, so that you can call the function
with or without the parameter. If the parameter is missing in the call, it will
take the default value.

Let me show an example. We can define the following encapsulation of the
write call, providing two default parameters:
procedure NewMessage (Msg: string;
 Caption: string = 'Message';
 Separator: string = sLineBreak);
begin
 write (Caption);
 write (': ');
 write (Msg);
 write (Separator);
end;

With this definition, we can call the procedure in each of the following ways:
NewMessage ('Something wrong here!');
NewMessage ('Something wrong here!', 'Attention');
NewMessage ('Hello', 'Message', '--');

Marco Cantù, Essential Pascal

86 - Chapter 6: Procedures and Functions

This is the output:
Message: Something wrong here!
Attention: Something wrong here!
Message: Hello--

Notice that Delphi doesn't generate any special code to support default
parameters; nor does it create multiple copies of the routines. The missing
parameters are simply added by the compiler to the calling code. There is
one important restriction affecting the use of default parameters: You cannot
"skip" parameters. For example, you can't pass the third parameter to the
function after omitting the second one.

This is the main rule for default parameters: In a call, you can only omit
parameters starting from the last one. In other words, if you omit a parame-
ter you must also omit the following ones.

There are a few other rules for default parameters as well:

● Parameters with default values must be at the end of the parameters
list.

● Default values must be constants. Obviously, this limits the types you
can use with default parameters. For example, a dynamic array or an
interface type cannot have a default parameter other than nil;
records cannot be used at all.

● Default parameters must be passed by value or as const. A refer-
ence (var) parameter cannot have a default value.

Using default parameters and overloading at the same time can cause quite a
few problems, as the two features might conflict. For example, if I add to the
previous example the following new version of the NewMessage procedure:
procedure NewMessage (Str: string; I: Integer = 0);
 overload;
begin
 writeln (Str + ': ' + IntToStr (I))
end;

then the compiler won't complain, as this is a legal definition. However, the
call:
NewMessage ('Hello');

is flagged by the compiler as:
NewMessageTest.dpr(24):
E2251 Ambiguous overloaded call to 'NewMessage'

Marco Cantù, Essential Pascal

Chapter 6: Procedures and Functions - 87

Notice that this error shows up in a line of code that compiled correctly
before the new overloaded definition. In practice, we have no way to call the
NewMessage procedure with one string parameter, as the compiler doesn't
know whether we want to call the version with only the string parameter or
the one with the string parameter and the integer parameter with a default
value. When it has a similar doubt, the compiler stops and asks the program-
mer to state his or her intentions more clearly.

Summary
Writing procedure and functions is a key element of programming, and even
methods (their OOP counterpart) share most of the features with them.
Instead of moving on to object-oriented features, however, the next few
chapters give you some details on other Pascal programming elements, start-
ing with strings.

Marco Cantù, Essential Pascal

88 - Chapter 6: Procedures and Functions

Marco Cantù, Essential Pascal

Chapter 7: Handling Strings - 89

Chapter 7:
 Handling Strings

String handling in Pascal looks fairly simple, but behind the scenes the situa-
tion is quite complex. Pascal has a traditional way of handling strings,
Windows has its own way, borrowed from the C language, and modern ver-
sions of Pascal include a powerful long string data type, which is now the
default string type in Delphi.

Types of Strings
In the early days of Borland's Turbo Pascal and in 16-bit Delphi, the typical
string type was a sequence of characters with a length byte at the beginning,
indicating the current size of the string. Because the length is expressed by a
single byte, it cannot exceed 255 characters, a very low value that creates
many problems for string manipulation. Each string is defined with a fixed
size (which by default is the maximum, 255), although you can declare
shorter strings to save memory space.

Marco Cantù, Essential Pascal

90 - Chapter 7: Handling Strings

A string type is similar to an array type. In fact, a string is almost an array of
characters. This is demonstrated by the fact that you can access a specific
string character using the [] notation, similar to the C language.

To overcome the limits of traditional Pascal strings, modern versions of Pas-
cal support long strings. There are actually three string types:

● The ShortString type corresponds to the original Pascal strings, as
described before. These strings have a limit of 255 characters and
correspond to the strings in the 16-bit version of Delphi. Each ele-
ment of a short string is of type ANSIChar (the standard character
type).

● The ANSIString type corresponds to the new variable-length long
strings. These strings are allocated dynamically, are reference
counted (which means that you don't need to worry about releasing
the memory that they use), and use a copy-on-write technique. The
size of these strings is almost unlimited (they can store up to two bil-
lion characters!). They are also based on the ANSIChar type.

● The WideString type is similar to the ANSIString type but is
based on the WideChar type (it stores Unicode characters). It is not
as powerful and efficient as the standard string types, as its support
for reference counting is not as complete.

Traditional Pascal Strings
Traditional Pascal strings are a very simple and effective data structure. You
can declare a string holding a maximum of 20 characters by declaring:
var
 strShortName: ShortString [20];43

begin
 strShortName := 'marco';

The data will be allocated locally (on the stack, the memory area used by
procedures and functions for their local variables) and not dynamically44. In

43 You can write this also with the classic notation, strShortName: string [20];

44 The string location holds the data itself, and not a pointer to the actual data as for
long strings.

Marco Cantù, Essential Pascal

Chapter 7: Handling Strings - 91

this specific case you'll end up using 21 bytes, 20 for the characters and one
for the length. This is traditionally called the “length byte” and is stored at
the beginning of the string data. Notice, in fact, that the string has a maxi-
mum size of 20 characters, but during its lifetime the length of the string it
stores might vary. Given the assignment above, the actual length will be five
and it will consume 6 bytes.

By declaring their dimension upfront, you are limited to a specific maximum
size and cannot exceed it for any reason. Moreover, the maximum size you
can declare is 255, simply because the length byte is a byte, so it can only
represent a number ranging from 0 to 255.

On the other hand, short strings are very fast (as there is no dynamic alloca-
tion, cleanup, and no reference counting involved). With a fixed size, they
can easily be stored in records and other data structures. Indeed, a fixed
string size is a limitation, but one that a database developer, for example,
will easily live with.

Short strings are not heavily used in Pascal these days, although they are cer-
tainly a key data structure of traditional Pascal. That's why in this chapter I
prefer to focus on long strings.

Using Long Strings
If you simply use the string data type, you get either short strings or ANSI
strings, depending on the value of the $H compiler directive. $H+ (the
default) stands for long strings (the ANSIString type), which is what is used
by the components of the Delphi library.

Pascal long strings are based on a reference-counting mechanism, which
keeps track of how many string variables are referring to the same string in
memory. This reference-counting is used also to free the memory when a
string isn't used anymore-that is, when the reference count reaches zero.

If you want to increase the size of a string in memory but there is something
else in the adjacent memory, then the string cannot grow in the same mem-
ory location, and a full copy of the string must therefore be made in another
location. When this situation occurs, run-time support reallocates the string
for you in a completely transparent way. You simply set the maximum size of

Marco Cantù, Essential Pascal

92 - Chapter 7: Handling Strings

the string with the SetLength procedure, effectively allocating the required
amount of memory:
SetLength (String1, 200);

The SetLength procedure performs a memory request, not an actual mem-
ory allocation. It reserves the required memory space for future use, without
actually using the memory. This technique is based on a feature of the Win-
dows operating systems and is used by Delphi for all dynamic memory
allocations. For example, when you request a very large array, its memory is
reserved but not allocated.

Setting the length of a string is seldom necessary. The only case in which you
must allocate memory for the long string using SetLength is when you have
to pass the string as a parameter to a Windows API function (after the
proper typecast), as I'll show you shortly.

Looking at Strings in Memory
To help you better understand the details of memory management for
strings, I've written the simple StrRef example. In this program I declare two
global strings: Str1 and Str2. The program assigns a constant string to the
first of the two variables and then assigns the second variable to the first:
Str1 := 'Hello';
Str2 := Str1;

Besides working on the strings, the program shows their internal status in a
list box, using the following StringStatus function:
function StringStatus (const Str: string): string;
begin
 Result := 'Address: ' +
 IntToStr (Integer (Str)) +
 ', Length: ' +
 IntToStr (Length (Str)) +
 ', References: ' +
 IntToStr (PInteger (Integer (Str) - 8)^) +
 ', Value: ' + Str;
end;

It is vital in the StringStatus function to pass the string parameter as a
const parameter. Passing this parameter by copying will cause the side
effect of having one extra reference to the string while the function is being

Marco Cantù, Essential Pascal

Chapter 7: Handling Strings - 93

executed. By contrast, passing the parameter via a reference (var) or con-
stant (const) parameter doesn't imply a further reference to the string. In
this case I've used a const parameter, as the function is not supposed to
modify the string.

To obtain the memory address of the string (useful to determine its actual
identity and to see when two different strings refer to the same memory
area), I've simply made a hard-coded typecast from the string type to the
Integer type. Long strings are references-in practice, they're pointers: Their
value holds the actual memory location of the string not the string itself.

To extract the reference count, I've based the code on the little-known fact
that the length and reference count are actually stored in the string, before
the actual text and before the position the string variable points to. The (neg-
ative) offset is -4 for the length of the string (a value you can extract more
easily using the Length function) and -8 for the reference count45.

By running this example, you should get two strings with the same content,
the same memory location, and a reference count of 2:
Str1 - Address: 13419088, Length: 5,
 References: 2, Value: Hello
Str2 - Address: 13419088, Length: 5,
 References: 2, Value: Hello

Now if you change the value of one of the two strings (it doesn't matter
which one), the memory location of the updated string will change. This is
the effect of the copy-on-write technique. We can actually produce this effect
by writing the following code:
 Str1 [2] := 'a';
 writeln ('Str1 [2] := ''a''');
 writeln ('Str1 - ' + StringStatus (Str1));
 writeln ('Str2 - ' + StringStatus (Str2));

This is the corresponding output:
Str1 - Address: 13419112, Length: 5,
 References: 1, Value: Hallo
Str2 - Address: 13419088, Length: 5,
 References: 1, Value: Hello

You can freely extend this example and use the StringStatus function to
explore the behavior of long strings in many other circumstances.

45 Keep in mind that this internal information about offsets might change in any future
version of Delphi; there is also no guarantee that similar undocumented features will
be maintained in the future.

Marco Cantù, Essential Pascal

94 - Chapter 7: Handling Strings

Delphi Strings and Windows
PChars

Another important point in favor of using long strings is that they are null-
terminated. This means that they are fully compatible with the C language
null-terminated strings used by Windows. A null-terminated string is a
sequence of characters followed by a byte that is set to zero (or null). This
can be expressed in Delphi using a zero-based array of characters, the data
type typically used to implement strings in the C language. This is the reason
null-terminated character arrays are so common in the Windows API func-
tions (which are based on the C language). Since Pascal's long strings are
fully compatible with C null-terminated strings, you can simply use long
strings and cast them to PChar when you need to pass a string to a Windows
API function46.

For example, to copy the name of the current Windows user into a PChar
string (using the API function GetUserName) and then display it:
var
 Str1: string;
 nSize : Cardinal = 20;

begin
 SetLength (Str1, nSize);
 GetUserName(PChar (Str1), nSize);
 writeln (str1);
end;

You can find this code in the StringAndPChar example. Note that if you write
this code without first allocating memory for the string with SetLength, the
program will probably crash. If you are using a PChar to pass a value (and
not to receive one, as in the code above), the code is simpler, because there is
no need to define a temporary string and initialize it.

Having presented the nice picture, now I want to focus on the pitfalls. There
are some problems that might arise when you convert a long string into a
PChar. Essentially, the underlying problem is that after this conversion, you
become responsible for the string and its contents, and Pascal won't help you

46 When you need to cast a WideString to a Windows-compatible type, you have to
use PWideChar instead of PChar for the conversion. Wide strings are often used for
COM programs.

Marco Cantù, Essential Pascal

Chapter 7: Handling Strings - 95

any more. Consider the following small change in the StringAndPChar exam-
ple, with some text added to the output string:
 GetUserName(PChar (Str1), nSize);
 writeln (str1 + '*');

This program compiles, but when you run it, you are in for a surprise: the
output string will be:
Marco *

(This is my name, followed by 15 spaces, and followed by the *). The problem
is that when Windows writes to the string (within the GetUserName API
call), it doesn't set the length of the long Pascal string properly. Pascal can
still use this string for output and can figure out when it ends by looking for
the C-language null terminator (added by Windows), but it will append fur-
ther text at the very and and (in other examples) skip any text you add after
the null terminator.

How can we fix this problem? The solution is to tell the system to convert the
string returned by the GetUserName API call back to a Pascal string. How-
ever, if you write the following code:
Str1 := String (Str1);

the system will ignore it, because converting a data type back into itself is a
useless operation. To obtain the proper long Pascal string, you need to recast
the string to a PChar and let Pascal convert it back again properly to a string:
Str1 := String (PChar (Str1));

Actually, you can skip the string conversion, because PChar-to-string con-
versions are automatic in Pascal, so you can write:
GetUserName(PChar (Str1), nSize);
Str1 := PChar (Str1);
writeln (Str1 + '*');

and obtain the expected output:
Marco*

An alternative is to reset the length of the Pascal string, using the length of
the PChar string, by writing:
SetLength (Str1, StrLen (PChar (Str1)));

You can find most of this code snippets in the StringAndPChar example.

Marco Cantù, Essential Pascal

96 - Chapter 7: Handling Strings

Formatting Strings
Using the plus (+) operator and some of the conversion functions (such as
IntToStr) you can indeed build complex strings out of existing values.
However, there is a different approach to formatting numbers, currency val-
ues, and other strings into a final string. You can use the powerful Format
function or one of its companion functions.

The Format function requires as parameters a string with the basic text and
some placeholders (usually marked by the % symbol) and an array of values,
one for each placeholder. For example, to format two numbers into a string
you can write:
Format ('First %d, Second %d', [n1, n2]);

where n1 and n2 are two Integer values. The first placeholder is replaced by
the first value, the second matches the second, and so on. If the output type
of the placeholder (indicated by the letter after the % symbol) doesn't match
the type of the corresponding parameter, a runtime error occurs. Having no
compile-time type checking is actually the biggest drawback of using the
Format function. Similarly, not passing enough parameters causes a run-
time error.

The Format function uses an open-array parameter (a parameter that can
have an arbitrary number of values, as covered in Chapter 6). Besides using
%d, you can use one of many other placeholders defined by this function and
briefly listed the following table. These placeholders provide a default output
for the given data type. However, you can use further format specifiers to
alter the default output. A width specifier, for example, determines a fixed
number of characters in the output, while a precision specifier indicates the
number of decimal digits. For example,
Format ('%8d', [n1]);

converts the number n1 into an eight-character string, right-aligning the text
(use the minus (-) symbol to specify left-justification) filling it with white
spaces. Here is the list of formatting placeholders:

d (decimal) The corresponding integer value is converted to a
string of decimal digits.

x (hexadecimal) The corresponding integer value is converted to a
string of hexadecimal digits.

Marco Cantù, Essential Pascal

Chapter 7: Handling Strings - 97

p (pointer) The corresponding pointer value is converted to a
string expressed with hexadecimal digits.

s (string) The corresponding string, character, or PChar value
is copied to the output string.

e (exponential) The corresponding floating-point value is converted
to a string based on scientific notation.

f (floating point) The corresponding floating-point value is converted
to a string based on floating point notation.

g (general) The corresponding floating-point value is converted
to the shortest possible decimal string using either
floating-point or exponential notation.

n (number) The corresponding floating-point value is converted
to a floating-point string but also uses thousands sep-
arators.

m (money) The corresponding floating-point value is converted
to a string representing a currency amount. The con-
version is based on regional settings-see the Delphi
Help file under Currency and date/time formatting
variables.

The best way to see examples of these conversions is to experiment with for-
mat strings yourself. To make this easier I've written the FmtTest program,
which allows a user to provide formatting strings for integer and floating-
point numbers. This program has much more interaction than most pro-
grams in this book. It first asks whether to perform either Integer of Floating
number formatting, calling one of two specific routines depending on the
input. This is the main portion of the program:
begin
 Done := False;
 while not Done do
 begin
 writeln ('Work with [I]nteger or [F]loating' +
 ' point numbers? [I or F or X to exit]');
 readln (chInput);

 case Upcase (chInput) of
 'I': TestFormatInteger;
 'F': TestFormatFloat;
 'X': Done := True;
 else

Marco Cantù, Essential Pascal

98 - Chapter 7: Handling Strings

 writeln ('Wrong selection');
 end;
 end;
 writeln ('Bye');
 readln;
end.

Each of the routines asks for a numeric input and a format string, providing
some suggestions:
procedure TestFormatInteger;
var
 n: Integer;
 strFmt: string;
begin
 writeln ('Enter value');
 readln (n);

 writeln ('Enter a format string: (examples below)');
 // suggestions omitted
 readln (strFmt);

 writeln (Format ('%d %s => %s',
 [n, strFmt, Format (strFmt, [n])]));
end;

The code basically does the formatting operation using the second input as
format string and the value of the first input request for the value. The float-
ing point number formatting is similar.

Summary
Strings are certainly a very common data type. Although you can safely use
them in most cases without understanding how they work, this chapter
should have made the exact behavior of strings clear, making it possible for
you to use all the power of this data type.

Strings are handled in memory in a special dynamic way, as happens with
dynamic arrays. This is the topic of the next chapter.

Marco Cantù, Essential Pascal

Chapter 8: Memory - 99

Chapter 8:
 Memory

This chapter covers memory handling, the various memory areas you can
use in an application, and introduces dynamic arrays.

Global Memory
The global memory is the memory area for global variables. As you declare a
global Integer variable, for example, the compiler will reserve 4 bytes of
global memory for it. Regardless of the visibility of this global data (see
Chapter 11 for units and their related visibility restrictions), it allocates
global memory.

Global variables are allocated when the program starts in a specific global
data memory, whose size and layout are defined by the compiler and linker.
Global variables remain in that global memory area until the program termi-
nates, even if they are used for a much more limited amount of time. This is
why global memory usage is generally very limited in Pascal and Delphi
applications, favoring the two dynamic memory areas applications can use,
the heap and the stack.

Marco Cantù, Essential Pascal

100 - Chapter 8: Memory

The Stack Memory
The term Stack indicates a portion of memory available to a program, which
is dynamic, but is allocated and deallocated in a strict sequence. Stack alloca-
tion is LIFO (Last In, First Out). This means that the last memory object
you've allocated will be the first to be deleted. Stack memory is typically used
by routines (procedure, function, and method calls) for parameters and local
variables.

When you call a routine, its parameters and return type are placed on the
stack (unless you optimize the call, as Delphi does by default). Also the vari-
ables you declare within a routine (using a var block before the begin
statement) are stored on the stack, so that when the routine terminates
they'll be automatically removed (before getting back to the calling routine,
in LIFO order).

Pascal uses the stack for routine parameters and return values (unless you
set the default register calling convention), for local routine variables, for
Windows API function calls, and so on.

Applications can reserve a large amount of memory for the stack. In Delphi
you set this in the linker page of the project options, however, the default is
generally sufficient. If you ever receive a stack full error message this is
probably because you have a function recursively calling itself forever, not
because the stack space is too limited.

The Heap Memory
The term Heap indicates a portion of memory available to a program, also
called the dynamic memory area. The heap is the area in which the alloca-
tion and deallocation of memory happens in random order. This means that
if you allocate three blocks of memory in sequence, they can be destroyed
later on in any order. The heap manager (or memory manager) takes care of
all the details for you, so you simply ask for new memory with GetMem or by
calling a constructor to create an object, and the runtime will return you a
new memory block (optionally reusing memory blocks already discarded).

Marco Cantù, Essential Pascal

Chapter 8: Memory - 101

Pascal uses the heap for allocating the memory of each and every object, the
text of the strings, the content of dynamic arrays, and for specific custom
requests of dynamic memory. Windows, for example, allows an application
to have up to 2 GigaBytes of address space, most of which can be used by the
heap.

Dynamic Arrays
Traditionally, the Pascal language has always had fixed-size arrays. When
you declare a data type using the array construct, you have to specify the
number of elements of the array. As expert programmers probably know,
there were a few techniques you could use to implement dynamic arrays,
typically using pointers and manually allocating and freeing the required
memory.

Delphi 4 introduced a very simple implementation of dynamic arrays, mod-
eling them after the dynamic long string type I've just covered. As long
strings, dynamic arrays are dynamically allocated and reference counted, but
they do not offer a copy-on-write technique. You can deallocate an array by
setting its variable to nil or its length to zero.

You can simply declare an array without specifying the number of elements
and then allocate it with a given size using the SetLength procedure. The
same procedure can also be used to resize an array without losing its con-
tent. There are also other string-inspired procedures, such as the Copy
function, that you can use on arrays. Here is a small code excerpt, under-
scoring the fact that you must both declare and allocate memory for the
array before you can start using it:
var
 Array1: array of Integer;
begin
 Array1 [1] := 100; // error
 SetLength (Array1, 100);
 Array1 [99] := 100; // OK
end;

As you indicate only the number of elements of the array, the index invari-
ably starts from 0. Generic arrays in Pascal allow a non-zero low bound and
non-integer indexes, two features that dynamic arrays don't support. To
learn about the status of a dynamic array, you can use the Length, High,

Marco Cantù, Essential Pascal

102 - Chapter 8: Memory

and Low functions, as with any other array. For dynamic arrays, however,
Low always returns 0, and High always returns the length minus one. This
implies that for an empty array High returns -1 (which, when you think
about it, is a strange value, as it is lower than that returned by Low).

 After this short introduction I can show you a simple example, called
DynArr. It is indeed simple because there is nothing very complex about
dynamic arrays. I'll also use it to show a few possible errors programmers
might make. The program declares two global arrays and initializes the first
as it starts:
var
 Array1, Array2: array of Integer;

begin
 // allocate
 SetLength (Array1, 100);

This sets all the values to zero. The initialization code makes it possible to
start reading and writing values of the array right away, without any fear of
memory errors. (Assuming, of course, that you don't try to access items
beyond the upper bound of the array.) For an even better initialization, the
program has further code that writes into each cell of the array:
var
 I: Integer;
begin
 for I := Low (Array1) to High (Array1) do
 Array1 [I] := I;

By calling SetLength again, you can modify the size of the array without
losing its contents. You can test this reading a value:
 // grow keeping existing values
 SetLength (Array1, 200);

 // extract
 writeln(IntToStr (Array1 [99]));

The only slightly complex code is in the final part of the program, which
copies one array to the other one with the := operator, effectively creating an
alias (a new variable referring to the same array in memory). At this point,
however, if you modify one of the arrays, the other is affected as well, as they
both refer to the same memory area:
 // alias
 Array2 := Array1;

Marco Cantù, Essential Pascal

Chapter 8: Memory - 103

 // change one (both change)
 Array2 [99] := 1000;

 // show the other
 writeln (IntToStr (Array1 [99]));

At this point the sample program does two more operations. The first is an
equality test on the arrays. This doesn't tests the actual elements of the
structures, but rather the memory areas the arrays refer to, checking
whether the variables are two aliases of the same array in memory:
 if Array1 = Array2 then
 Beep;

 // truncate first array
 Array1 := Copy (Array2, 0, 10);

The second is a call to the Copy function, which not only copies data from
one array to the other, but also replaces the first array with a new one cre-
ated by the function. The effect is that the Array1 variable now refers to an
array of 11 elements, so that asking for value 99 again will produce a memory
error and raise an exception (unless you have range-checking turned off, in
which case the error remains but the exception is not displayed).

Summary
This chapter introduced the role of different memory areas and covers
dynamic arrays, an important element for memory management. The next
Chapter will focus on bare-bone Windows applications, the following covers
an extension to the core Pascal language, the Variant data type.

Marco Cantù, Essential Pascal

104 - Chapter 8: Memory

Marco Cantù, Essential Pascal

Chapter 9: Windows Programming - 105

Chapter 9:
 Windows

Programming

Delphi provides complete encapsulation of the low-level Windows API using
Object Pascal and the Visual Component Library (VCL)47. It is rarely neces-
sary to build Windows applications using plain Pascal and calling Windows
API functions directly. Nevertheless, programmers who want to use some
special techniques not supported by the VCL or who don't want to use a
visual environment still have that option.

As this book focuses on Pascal, I'll show you how you could build a Pascal
Windows application, an excuse for learning some of the core features of the
operating system, something useful even when using a high-level frame-
work. You can build Pascal Linux and Mac OS X applications in a similar
fashion by accessing a different API such as GTK 2 under Linux and Carbon
for Mac OSX. The principles are the same but I'm going to concentrate on
Windows in this chapter.

47 FreePascal does something similar with Lazarus Component Library (LCL), which is
on many counts a sort of a clone of the VCL.

Marco Cantù, Essential Pascal

106 - Chapter 9: Windows Programming

Similarly, the principal of accessing the Windows API from FreePascal or
GNU Pascal is the same as accessing it from Delphi, a few of the details may
vary. You can check them out in the FreePascal and GNU Pascal documenta-
tion. So, I'm actually going to concentrate on Windows and Delphi in this
chapter.

Windows Handles
Among the data types introduced by Windows in Delphi, handles represent
the most important group. The name of this data type is THandle, and the
type is defined in the Windows unit as:
type
 THandle = LongWord;

Handle data types are implemented as numbers, but they are not used as
such. In Windows, a handle is a reference to an internal data structure of the
system. For example, when you work with a window (or a form in Delphi
terms), the system gives you a handle to the window. The system informs
you that the window you are working with is window number 142, for exam-
ple. From that point on, your application can ask the system to operate on
window number 142—moving it, resizing it, reducing it to an icon, and so on.
Many Windows API functions, in fact, have a handle as the first parameter.
This doesn't apply only to functions operating on windows; other Windows
API functions have as their first parameter a GDI handle, a menu handle, an
instance handle, a bitmap handle, or one of the many other handle types.

In other words, a handle is an internal code (a sort of ID) you can use to
refer to a specific element handled by the system, including a window, a
bitmap, an icon, a memory block, a cursor, a font, a menu, and so on. In Del-
phi, you seldom need to use handles directly, since they are hidden inside
forms, bitmaps, and other Delphi objects. They become useful when you
want to call a Windows API function that is not directly supported by Delphi.

Marco Cantù, Essential Pascal

Chapter 9: Windows Programming - 107

External Declarations
Another important element for Windows programming is represented by
external declarations. Originally used to link the Pascal code to external
functions that were written in assembly language, external declarations are
used in Windows programming to call a function from a DLL (a dynamic
link library). In Delphi, there are a number of such declarations in the Win-
dows unit:
// forward declaration
function GetUserName(lpBuffer: PChar;
 var nSize: DWORD): BOOL; stdcall;

// external declaration (instead of actual code)
function GetUserName; external advapi32
 name 'GetUserNameA';

You seldom need to write declarations like the one just illustrated, since they
are already listed in the Windows unit and many other Delphi system units.
The only reason you might need to write this external declaration code is to
call functions from a custom DLL, or to call undocumented Windows func-
tions.

This declaration means that the code of the function GetUserName is stored
in the advapi32 dynamic library (advapi32 is a constant associated with the
full name of the DLL, 'advapi32.dll') with the name GetUserNameA, as this
function has both an ASCII and a WideString version. Inside an external
declaration, in fact, we can specify that our function refers to a function of a
DLL that originally had a different name48.

48 In the 16-bit version of Delphi, the external declaration used the name of the library
without the extension, and was followed by the name directive (as in the code above)
or by an alternative index directive, followed by the ordinal number of the function
inside the DLL. The change reflects a system change in the way libraries were
accessed: Although Win32 allows access to DLL functions by number, Microsoft has
stated this won't be supported in the future. Notice also that the Windows unit
replaced the WinProcs and WinTypes units of the 16-bit version of Delphi.

Marco Cantù, Essential Pascal

108 - Chapter 9: Windows Programming

A Windows Callback Function
We've seen in Chapter 6 that Pascal supports procedural types. A common
use of procedural types is to provide callback functions to a Windows API
function.

First of all, what is a callback function? The idea is that some API functions
perform a given action over a number of internal elements of the system,
such as all of the windows of a certain kind. Such a function, also called an
enumeration function, requires the action to be performed on each of the
elements as a parameter, which is passed as a function or procedure compat-
ible with a given procedural type. Windows uses callback functions in other
circumstances, but we'll limit our study to this simple case.

Let's consider the EnumWindows API function, which has the following pro-
totype (in the Pascal language definition):
function EnumWindows (
 lpEnumFunc: TFNWndEnumProc;
 lParam: LPARAM): BOOL; stdcall;

Consulting the help file, we find that the function passed as a parameter
should be of the following type (again in the Pascal version):
type
 EnumWindowsProc = function (Hwnd: THandle;
 Param: Pointer): Boolean; stdcall;

The first parameter is the handle of each main window in turn, while the sec-
ond is the value we've passed when calling the EnumWindows function.
Actually in Pascal the TFNWndEnumProc type is not properly defined; it is
simply a pointer. This means we need to provide a function with the proper
parameters and then use it as a pointer, taking the address of the function
instead of calling it. Unfortunately, this also means that the compiler will
provide no help in case of an error in the type of one of the parameters.

Windows requires us programmers to follow the stdcall calling convention
every time we call a Windows API function or pass a callback function to the
system. Delphi, by default, uses a different and more efficient calling con-
vention, indicated by the register keyword.

Here is the definition of a proper compatible function, which reads the title
of the window into a string, then lists it on screen:
function GetTitle (Hwnd: THandle;
 Param: Pointer): Boolean; stdcall;

Marco Cantù, Essential Pascal

Chapter 9: Windows Programming - 109

var
 Text: string;
begin
 SetLength (Text, 100);
 GetWindowText (Hwnd, PChar (Text), 100);
 Text := PChar (Text);
 // skip windows with empty titles
 if Text <> '' then
 writeln (IntToStr (Hwnd) + ': ' + Text);
 Result := True;
end;

The program calls the EnumWindows API function, passing the GetTitle
function as its parameter:
var
 EWProc: TFNWndEnumProc;
begin
 EWProc := @GetTitle;
 EnumWindows (EWProc, 0);
end;

I could have called the function without storing the value in a temporary
procedural type variable first, but I wanted to make clear what is going on in
this example. The effect looks like the following (with dozen of lines I've
omitted):
66762: ClamWin
66602: Interwise Push Client
66700: SkypeÖ - marco.cantu
66696: TrayIconManager
66676: HP ProtectToolsSystemTrayWindowInstance
66390: Windows Sidebar
66382: Apache Service Monitor
262732: TaskEng - Task Scheduler Engine Process
66022: HiddenFaxWindow
66018: BluetoothNotificationAreaIconWindowClass
131128: MMDEVAPI Device Window
196902: Battery Meter
131346: TSVNCacheWindow
133024: EnumTitles - CodeGear RAD Studio for Microsoft
 Windows - EnumTitles.dproj
132950: EssentialPascalv3.odt - OpenOffice.org Writer
262650: Wintech Italia Srl - Inbox (4) - Mozilla Firefox
133642: XanaNews 1.18.1.6
65780: Program Manager

This is a portion of the list of all the existing main windows running in my
system. Most of them are hidden windows you usually never see (and there
are also many with no caption that the program omits).

Marco Cantù, Essential Pascal

110 - Chapter 9: Windows Programming

 A Minimal Windows Program
To complete the coverage of Windows programming and the Pascal lan-
guage, I want to show you a very simple but complete application built
without using the VCL. The program simply takes the command-line param-
eter (stored by the system in the cmdLine global variable) and then extracts
information from it with the ParamCount and ParamStr Pascal functions.
The first of these functions returns the number of parameters; the second
returns the parameter in a given position.

Although users seldom specify command-line parameters in a graphical user
interface environment, the Windows command-line parameters are impor-
tant to the system. For example, once you have defined an association
between a file extension and an application, you can simply run a program
by selecting an associated file. In practice, when you double-click on a file,
Windows starts the associated program and passes the selected file as a com-
mand-line parameter.

Here is the complete source code of the project:
program Strparam;

uses
 Windows;

begin
 // show the full string
 MessageBox (0, cmdLine,
 'StrParam Command Line', MB_OK);

 // show the first parameter
 if ParamCount > 0 then
 MessageBox (0, PChar (ParamStr (1)),
 '1st StrParam Parameter', MB_OK)
 else
 MessageBox (0, PChar ('No parameters'),
 '1st StrParam Parameter', MB_OK);
end.

The output code uses the MessageBox API function, simply to avoid includ-
ing the entire VCL into the project. A pure Windows program as the one
above, in fact, has the advantage of a very small memory footprint: The exe-
cutable file of the program is about 18 KB.

Marco Cantù, Essential Pascal

Chapter 9: Windows Programming - 111

To provide a command-line parameter to this program, you can use Delphi's
Run > Parameters menu command. Another technique is to open the Win-
dows Explorer, locate the directory that contains the executable file of the
program, and drag the file you want to run onto the executable file. The Win-
dows Explorer will start the program using the name of the dropped file as a
command-line parameter.

Summary
In this chapter we've seen an introduction to low-level Windows program-
ming, discussed handles and a very simple Windows program. For normal
Windows programming tasks, you'll generally use the visual development
support provided by Delphi, based on the VCL. But that is beyond the scope
of this book, which is the Pascal language.

Next chapter covers variants, a very strange addition to the Pascal type sys-
tem, originally introduced to provide full Windows OLE support49.

49 OLE (and COM) are far too complex to be covered in this text. For some years they
were core Windows technologies, and they are still heavily used, although Microsoft is
phasing them out to adopt the .NET architecture.

Marco Cantù, Essential Pascal

112 - Chapter 9: Windows Programming

Marco Cantù, Essential Pascal

Chapter 10: Variants - 113

Chapter 10:
 Variants

To provide full Windows OLE support, the 32-bit version of Delphi includes
the Variant data type50. Here I want to discuss this data type from a general
perspective. The Variant type, in fact, has a pervasive effect on the whole
language, and the Delphi components library also uses them in ways not
related to OLE programming.

Variants Have No Type
In general, you can use variants to store any data type and perform numer-
ous operations and type conversions. Notice that this goes against the
general approach of the Pascal language and is an implementation of a kind
of dynamic typing such as employed in Smalltalk, Objective-C and may pop-
ular scripting languages including JavaScript, PHP, Python, and Ruby51. A

50 FreePascal mimics Delphi's variant type.

51 I demonstrated this “dynamic language extension” approach in a a talk I gave for the
first time at the CodeRage II virtual conference in November 2007, covering “Domain
Specific Languages in Delphi”.

Marco Cantù, Essential Pascal

114 - Chapter 10: Variants

variant is type-checked and computed at run time. The compiler won't warn
you of possible errors in the code, which can be caught only with extensive
testing. On the whole, you can consider the code portions that use variants to
be interpreted code, because, as with interpreted code, many operations can-
not be resolved until run time. In particular this affects the speed of the
code.

Now that I've warned you against the use of the Variant type, it is time to
look at what it can do. Basically, once you've declared a variant variable such
as the following:
var
 V: Variant;

you can assign to it values of several different types:
V := 10;
V := 'Hello, World';
V := 45.55;

Once you have the variant value, you can copy it to any compatible-or incom-
patible-data type. If you assign a value to an incompatible data type, Delphi
performs a conversion, if it can. Otherwise it issues a run-time error. In fact,
a variant stores type information along with the data, allowing a number of
run-time operations; these operations can be handy but are both slow and
unsafe.

Consider the following example (called VariTest), which is an extension of
the code above:
var
 V: Variant;
 s: string;
begin
 V := 10;
 s := v;
 writeln (s);
 V := 'Hello, World';
 s := v;
 writeln (s);
 V := 45.55;
 s := v;
 writeln (s);

Funny, isn't it? Besides assigning a variant holding a string to the s variable,
you can assign to it a variant holding an integer or a floating-point number.
Even worse, you can use the variants to compute values, as you can see in
the following code:

Marco Cantù, Essential Pascal

Chapter 10: Variants - 115

var
 V: Variant;
 N: Integer;
 s: string;
begin
 V := s;
 N := Integer(V) * 2;
 V := N;
 s := V;

Writing this kind of code is risky, to say the least. If the string contains a
number, everything works. If not, an exception is raised. Again, you can
write similar code, but without a compelling reason to do so, you shouldn't
use the Variant type; stick with the traditional Pascal data types and type-
checking approach. In Delphi and in the VCL (Visual Component Library),
variants are basically used for OLE support and for accessing database fields.

Variants in Depth
Delphi and FreePascal include a variant record type, TVarData, which has
the same memory layout as the Variant type. You can use this to access the
actual type of a variant. The TVarData structure includes the type of the
Variant, indicated as VType, some reserved fields, and the actual value.

The possible values of the VType field correspond to the data types you can
use in OLE automation, which are often called OLE types or variant types.
Here is a complete alphabetical list of the available variant types:

varArray varBoolean varByRef
varCurrency varDate varDispatch
varDouble varEmpty varError
varInteger varNull varOleStr
varSingle varSmallint varString
varTypeMask varUnknown varVariant

You can find descriptions of these types in the Values in variants topic in the
Delphi Help system. There are also many functions for operating on variants
that you can use to make specific type conversions or to ask for information
about the type of a variant (see, for example, the VarType function). Most of
these type conversion and assignment functions are actually called automati-
cally when you write expressions using variants. Other variant support

Marco Cantù, Essential Pascal

116 - Chapter 10: Variants

routines (look for the topic Variant support routines in the Help file) actu-
ally operate on variant arrays.

Variants Are Slow!
Code that uses the Variant type is slow, not only when you convert data
types, but also when you add two variant values holding integers. They are
almost as slow as the interpreted code of Visual Basic! To compare the speed
of an algorithm based on variants with that of the same code based on inte-
gers, you can look at the VSpeed example.

This program runs a loop, timing its speed and showing the status in a
progress bar. Here is the first of the two very similar loops, based on integers
and variants:
var
 time1, time2: TDateTime;
 n1, n2: Variant;
begin
 time1 := Now;
 n1 := 0;
 n2 := 0;

 while n1 < 5000000 do
 begin
 n2 := n2 + n1;
 Inc (n1);
 end;

 // we must use the result
 writeln (n2);
 time2 := Now;
 writeln ('Variants: ' + FormatDateTime (
 'ss.hhh', Time2-Time1) + ' seconds');

The timing code is worth looking at, because it's something you can easily
adapt to any kind of performance test. As you can see, the program uses the
Now function to get the current time and the FormatDateTime function to
output the time difference, asking only for the seconds ("ss") and millisec-
onds ("hhh") in the format string. As an alternative, you can use the
Windows API's GetTickCount function, which returns a very precise indi-
cation of the milliseconds elapsed since the operating system was started.

Marco Cantù, Essential Pascal

Chapter 10: Variants - 117

In this example the speed difference is actually so great that you'll notice it
even without a precise timing:
Variants: 00.922 seconds
Integers: 00.005 seconds

The actual values depend on the computer you use to run this program, but
the relative difference won't change much.

Summary
Variants are so different from traditional Pascal data types that I've decided
to cover them in this short separate chapter. Although their primary role is
in OLE programming, they can be handy to write quick and dirty programs
without having even to think about data types. As we have seen, this has a
severe performance penalty.

Now that we have covered most of the language features, let me discuss the
overall structure of a program and the modularization offered by units.

Marco Cantù, Essential Pascal

118 - Chapter 10: Variants

Marco Cantù, Essential Pascal

Chapter 11: Program and Units - 119

Chapter 11:
 Program And

Units

Pascal applications make extensive use of units, or program modules. Units,
in fact, were the basis of the modularity in the language before classes were
introduced. In a Delphi application, every form has a corresponding unit
behind it. When you add a new form to a project (with the corresponding
toolbar button or the File > New Form menu command), Delphi actually
adds a new unit, which defines the class for the new form.

Units
Although every form is defined in a unit, the reverse is not true. Units do not
need to define forms; they can simply define and make available a collection
of routines. By selecting the File > New menu command and then the Unit
icon in the New page of the Object Repository, you add a new blank unit to

Marco Cantù, Essential Pascal

120 - Chapter 11: Program and Units

the current project. This blank unit contains the following code, delimiting
the sections a unit is divided into:
unit Unit1;

interface

implementation

end.

The concept of a unit is simple. A unit has a unique name corresponding to
its filename, an interface section declaring what is visible to other units,
and an implementation section with the real code and other hidden decla-
rations. Finally, the unit can have an optional initialization section with
some startup code, to be executed when the program is loaded into memory;
it can also have an optional finalization section, to be executed on pro-
gram termination.

The general structure of a unit, with all its possible sections, is the following:
unit unitName;

interface

// other units we refer to in the interface section
uses
 A, B, C;

// exported type definitions
type
 newType = TypeDefinition;

// exported constants
const
 Zero = 0;

// global variables
var
 Total: Integer;

// list of exported functions and procedures
procedure MyProc;

implementation

// other units we refer to in the implementation
uses
 D, E;

Marco Cantù, Essential Pascal

Chapter 11: Program and Units - 121

// hidden global variable
var
 PartialTotal: Integer;

// all the exported functions must be coded
procedure MyProc;
begin
 // ... code of procedure MyProc
end;

initialization
 // optional initialization part

finalization
 // optional clean-up code

end.

The uses clause at the beginning of the interface section indicates which
other units we need to access in the interface portion of the unit. This
includes the units that define the data types we refer to in the definition of
other data types, such as the components used within a form we are defin-
ing.

The second uses clause, at the beginning of the implementation section,
indicates more units we need to access only in the implementation code.
When you need to refer to other units from the code of the routines and
methods, you should add elements in this second uses clause instead of the
first one. All the units you refer to must be present in the project directory or
in a directory of the search path (you can set the search path for a project in
the Directories/Conditionals page of the project’s Options dialog box).

C++ programmers should be aware that the uses statement does not corre-
spond to an include directive. The effect of a uses statement is to import just
the pre-compiled interface portion of the units listed. The implementation
portion of the unit is considered only when that unit is compiled. The units
you refer to can be both in source code format (PAS) or compiled format
(DCU with Delphi), but the compilation must have taken place with the same
version of the Pascal compiler.

The interface of a unit can declare a number of different elements, includ-
ing procedures, functions, global variables, and data types. In Delphi
applications, data types are probably used the most. Delphi automatically
places a new class data type in a unit each time you create a form. However,
containing form definitions is certainly not the only use for units in Delphi.

Marco Cantù, Essential Pascal

122 - Chapter 11: Program and Units

You can continue to have traditional units, with functions and procedures,
and you can have units with classes that do not refer to forms or other visual
elements.

Units and Scope
In Pascal, units are the key to encapsulation and visibility, and they are
probably even more important than the private and public keywords of a
class52. The scope of an identifier (such as a variable, procedure, function, or
a data type) is the portion of the code in which the identifier is accessible.
The basic rule is that an identifier is meaningful only within its scope—that
is, only within the block in which it is declared. You cannot use an identifier
outside its scope. Here are some examples.

● Global hidden variables: If you declare an identifier in the imple-
mentation portion of a unit, you cannot use it outside the unit, but
you can use it in any block and procedure defined within the unit.
The memory for this variable is allocated as soon as the program
starts and exists until it terminates. You can use the initialization
section of the unit to provide a specific initial value.

● Local variables: If you declare a variable within the block defining
a routine or a method, you cannot use this variable outside that pro-
cedure. The scope of the identifier spans the whole procedure,
including nested routines (unless an identifier with the same name
in the nested routine hides the outer definition). The memory for
this variable is allocated on the stack when the program executes the
routine defining it. As soon as the routine terminates, the memory
on the stack is automatically released.

● Global variables: If you declare an identifier in the interface por-
tion of the unit, its scope extends to any other unit that uses the one
declaring it. This variable uses memory and has the same lifetime as
the first group; the only difference is in its visibility.

Any declarations in the interface portion of a unit are accessible from any
part of the program that includes the unit in its uses clause. Variables of

52 In fact, even the effect of the private keyword for a class is not enforced within the
scope of the unit containing the class.

Marco Cantù, Essential Pascal

Chapter 11: Program and Units - 123

form classes are declared in the same way, so that you can refer to a form
(and its public fields, methods, properties, and components) from the code
of any other form. Of course, it’s poor programming practice to declare
everything as global. Besides the obvious memory consumption problems,
using global variables makes a program harder to maintain and update. In
short, you should use the smallest possible number of global variables.

Units as Namespaces
The uses statement is the standard technique to access the scope of another
unit. At that point you can access the definitions of the unit. But it might
happen that two units you refer to declare the same identifier; that is, you
might have two classes or two routines with the same name.

In this case you can simply use the unit name to prefix the name of the type
or routine defined in the unit. For example, you can refer to the
ComputeTotal procedure defined in the given Totals unit as
Totals.ComputeTotal. This should not be required very often, as you are
strongly advised against using the same name for two different things in a
program.

However, if you look into the VCL library and the Windows files, you’ll find
that some Delphi functions have the same name as (but generally different
parameters than) some Windows API functions available in Delphi itself. An
example is the simple Beep procedure. If you create a new Delphi program,
add a button, and write the following code:
procedure TForm1.Button1Click(Sender: TObject);
begin
 Beep;
end;

then as soon as you press the button you’ll hear a short sound. Now, move to
the uses statement of the unit and change the code from this:
uses
 Windows, Messages, SysUtils, Classes, ...

to this very similar version (simply moving the SysUtils unit before the Win-
dows unit):
uses
 SysUtils, Windows, Messages, Classes, ...

Marco Cantù, Essential Pascal

124 - Chapter 11: Program and Units

If you now try to recompile this code, you’ll get a compiler error: "Not
enough actual parameters." The problem is that the Windows unit defines
another Beep function with two parameters. Stated more generally, what
happens in the definitions of the first unit you include in the uses statement
might be hidden by corresponding definitions of later units. The safe solu-
tion is actually quite simple:
procedure TForm1.Button1Click(Sender: TObject);
begin
 SysUtils.Beep;
end;

This code will compile regardless of the order of the units in the uses state-
ments. There are few other name clashes in Delphi, simply because Delphi
code is generally hosted by methods of classes. Having two methods with the
same name in two different classes doesn’t create any problem.

Units and Programs
A Delphi application consists of two kinds of source code files: one or more
units and one program file. The units can be considered secondary files,
which are referred to by the main part of the application, the program. In
theory, this is true. In practice, the program file is usually an automatically
generated file with a limited role. It simply needs to start up the program,
running the main form. The code of the program file, or Delphi project file
(DPR), can be edited either manually or by using the Project Manager and
some of the Project Options related to the application object and the forms.

The structure of the program file is usually much simpler than the structure
of the units. Here is the source code of a sample program file:
program Project1;

uses
 Forms,
 Unit1 in ‘Unit1.PAS’ {Form1};

begin
 Application.Initialize;
 Application.CreateForm (TForm1, Form1);
 Application.Run;
end.

Marco Cantù, Essential Pascal

Chapter 11: Program and Units - 125

As you can see, there is simply a uses section and the main code of the appli-
cation, enclosed by the begin and end keywords. The program’s uses
statement is particularly important, because it is used to manage the compi-
lation and linking of the application.

Summary
Units were the Pascal (actually Turbo Pascal, as Wirth added the concept in
the Modula-2 language53) technique for modular programming. Even if they
were later followed by objects and classes, they still play a key role for encap-
sulation, for the definition of some sort of name space, and for the overall
structure of Delphi programs. Also, units have influence on scope and global
memory allocations.

53 For more information see http://www.modula2.org/modula-2.php and
http://en.wikipedia.org/wiki/Modula-2

Marco Cantù, Essential Pascal

126 - Chapter 11: Program and Units

Marco Cantù, Essential Pascal

Chapter 12: Files in the Pascal Language - 127

Chapter 12:
 Files In The

Pascal Language

One of the unique aspects of Pascal compared to other programming lan-
guages is its built-in support for files. The language has a file keyword54,
which is a type specifier, like array or record. You use file to define a
new type, and then you can use the new data type to declare new variables:
type
 IntFile = file of Integers;
var
 IntFile1: IntFile;

It is also possible to use the file keyword without indicating a data type, to
specify an untyped file. Alternatively, you can use the TextFile type,
defined in the System units to declare files of ASCII characters. Each kind of
file has its own predefined routines, as we will see later in this chapter.

54 Notice that the file of language construct doesn't work in Delphi for .NET, as it is
bound to the physical size of the date types it manages.

Marco Cantù, Essential Pascal

128 - Chapter 12: Files in the Pascal Language

Routines for Working with Files
Once you have declared a file variable, you can assign it to an actual file in
the file system using the AssignFile method. The next step is usually to
call Reset to open the file for reading at the beginning, Rewrite to open (or
create) it for writing, and Append to add new items to the end of the file
without removing the older items. Once the input or output operations are
done, you should call CloseFile.

As an example look at the following code (the IntegersToFile demo), which
simply saves some numbers to a file:
type
 IntFile = file of Integer;

var
 IntFile1: IntFile;
 n: Integer;

begin
 AssignFile (IntFile1, 'test.my');
 Rewrite (IntFile1);
 n := 1;
 Write (IntFile1, n);
 n := 2;
 Write (IntFile1, n);
 CloseFile (IntFile1);
end;

The CloseFile operation should typically be done inside a finally block,
to avoid leaving the file open in case the file handling code generates an
exception. Actually file based operations generate exceptions or not depend-
ing on the $I compiler settings. In case the system doesn't raise exceptions,
you can check the standard IOResult global variable to see if anything went
wrong
 res := IOResult;
 if res = 0 then
 writeln ('File test.my created correctly')
 else
 begin
 write ('File test.my creation failed with error: ');
 writeln (res);
 end;

Marco Cantù, Essential Pascal

Chapter 12: Files in the Pascal Language - 129

There are two rules to consider in the code snippet above. The first is that
you don't need to call IOResult for every output operation. After a failure,
following output calls will be ignored. The second is that the call to
IOResult resets it value, which is why we need to call it once and keep the
result value around to report it (by calling IOResult again for the reporting
code will get a 0 result, meaning no error).

Delphi includes many other file management routines, some of which are in
the list below:

Append FileClose Flush

AssignFile FileCreate GetDir

BlockRead FileDateToDateTime IOResult

BlockWrite FileExists MkDir

ChangeFileExt FileGetAttr Read

CloseFile FileGetDate Readln

DateTimeToFileDate FileOpen Rename

DeleteFile FilePos RenameFile

DiskFree FileRead Reset

DiskSize FileSearch Rewrite

Eof FileSeek RmDir

Eoln FileSetAttr Seek

Erase FileSetDate SeekEof

ExpandFileName FileSize SeekEoln

ExtractFileExt FileWrite SetTextBuf

ExtractFileName FindClose Truncate

ExtractFilePath FindFirst Write

FileAge FindNext Writeln

Not all of these routines are defined in standard Pascal, but many of them
have been part of Turbo Pascal since the early days. You can find detailed
information about these routines in Delphi's Help files. Here, I'll show you
two simple examples based on text files, to demonstrate how some of these
features can be used. The second example will include command line pro-
cessing and is possibly the most complete example of the entire book.

Marco Cantù, Essential Pascal

130 - Chapter 12: Files in the Pascal Language

Handling Text Files
One of the most commonly used file formats is that of text files. As I men-
tioned before, Pascal has some specific support for text files, most notably
the TextFile data type defined by the System unit. In the StringsToFile
example, I create a file (the filename must be passed as parameter) with
some textual content:
var
 OutputFile: TextFile;
 I: Integer;
 Filename: string;
begin
 filename := ParamStr (1);
 if filename = '' then
 begin
 writeln ('Missing file name');
 end
 else
 begin
 // output the text to a file
 AssignFile (OutputFile, FileName);
 Rewrite (OutputFile);

 for I := 1 to 10 do
 writeln (OutputFile, 'item ' + IntToStr (I));

 CloseFile (OutputFile);
 writeln ('done');
 end;

 readln;
end.

Instead of being connected to a physical file, Pascal text files can be hooked
directly to the printer, so that the output will be printed instead of being
saved to a file. To accomplish this, simply use the AssignPrn procedure. For
example, in the code above you could replace the line:
AssignFile (OutputFile, FileName);

with the line:
AssignPrn (OutputFile);

Marco Cantù, Essential Pascal

Chapter 12: Files in the Pascal Language - 131

A Text File Converter
Up to now we've seen simple examples of creating new files. In our next
example, we'll process an existing file, creating a new one with a modified
version of the contents. The program, named Filter, can convert all the char-
acters in a text file to uppercase, capitalize only the initial word of each
sentence, or ignore the characters from the upper portion of the ASCII char-
acter set (those with a value of 128 or more).

The program takes two file names (for the input and output file) as parame-
ters, plus one of these extra flags:
-U (uppercase)
-C (capitalize)
-R (remove symbols)

At the beginning the program parses the command line parameters, looking
for the flags and for the input and output file names:
 for I := 1 to ParamCount do
 begin
 if ParamStr(i) [1] = '-' then
 Flag := ParamStr(i) [2]
 else
 if inputFile = '' then
 inputFile := ParamStr(i)
 else
 outputFile := ParamStr(i);
 end;

As parameters are compulsory, before executing the actual operation
required, the program has this test on the input parameters:
 if (inputFile = '') or (outputFile = '') or
 not (Flag in ['U', 'R', 'C']) then
 begin
 writeln ('Missing or wrong parameters');
 readln;
 Exit;
 end;

The real code of the example is in the three conversion routines that are
called depending on the parameters. The routines are in a secondary unit,
FilterRoutines.pas. These calls take place inside a case statement, part
of the DoConvert procedure:
 case Flag of
 'U': ConvUpper;

Marco Cantù, Essential Pascal

132 - Chapter 12: Files in the Pascal Language

 'C': ConvCapitalize;
 'R': ConvSymbols;
 end;

Once again, you can see the entire source code among the download sample
programs of the book. The DoConvert procedure does most of the work
related to handling the files;it opens the input file as a file of bytes (a file
storing data as plain bytes) the first time, so that it can use the FileSize
procedure, which is not available for text files. Then this file is closed and
reopened as a text file.

The routine manages the input and output files, and then calls one of the
three processing routines. Now, let's take a look at one of the conversion rou-
tines in detail. The simplest of the three conversion routines is ConvUpper,
which converts every character in the text file to uppercase. Here is its code:
procedure ConvUpper;
var
 Ch: Char;
 Position: LongInt;
begin
 Position := 0;
 while not Eof (FileIn) do
 begin
 Read (FileIn, Ch);
 Ch := UpCase (Ch);
 Write (FileOut, Ch);
 Inc (Position);
 end;
end;

This method reads each character from the source file until the program
reaches the end of the file (Eof). Each single character is converted and
copied to the output file. As an alternative, it is possible to read and convert
one line at a time (that is, a string at a time) using string handling routines.
This will make the program significantly faster. The approach I've used here
is reasonable only for an introductory example.

The conversion procedure for removing symbols is very simple:
while not Eof (FileIn) do
begin
 Read (FileIn, Ch);
 if Ch < Chr (127) then
 Write (FileOut, Choose);
 ...

Marco Cantù, Essential Pascal

Chapter 12: Files in the Pascal Language - 133

The procedure used to capitalize the text, in contrast, is really a complex
piece of code, which you can find in the example code. The conversion is
based on a case statement with four branches:

● If the letter is uppercase, and it is the first letter after an ending
punctuation mark (as indicated by the Period Boolean variable), it
is left as is; otherwise, it is converted to lowercase. This conversion is
not done by a standard procedure, simply because there isn't one for
single characters. It's done with a low-level function I've written,
called LowCase.

● If the letter is lowercase, it is converted to uppercase only if it was at
the beginning of a new sentence.

● If the character is an ending punctuation mark (period, question
mark, or exclamation mark), Period is set to True.

● If the character is anything else, it is simply copied to the destination
file, and Period is set to False.

The following output shows an example of the transformation produced by
this program:
// inputtext.txt
this is a red brown fox. the fox is
under a tree. GOOD for the fox.

// outputtext.txt
This is a red brown fox. The fox is
under a tree. Good for the fox.

This program is far from adequate for professional use, but it is a first step
toward building a full-scale case conversion program. Its biggest drawbacks
are that it frequently converts proper nouns to lowercase, and capitalizes any
letter after a period (even if it's the first letter of a filename extension).

Summary
Although direct handling of files, using the traditional Pascal-language
approach is certainly still an interesting technique, I strongly urge you to use
streams (the TStream and derived classes) to handle any complex files in
Object Pascal. Streams represent virtual files, which can be mapped to physi-

Marco Cantù, Essential Pascal

134 - Chapter 12: Files in the Pascal Language

cal files, to a memory block, to a socket, or any other continuous series of
bytes. You can find more on streams in the Delphi help file and in my Mas-
tering Delphi book series.

Files management is a very large topic, and even sticking to the traditional
Pascal techniques for managing files, one could write an entire book on this
subject. But I'm out of space. This is, in fact, the last chapter of the book.

Marco Cantù, Essential Pascal

PostFace - 135

PostFace

At least for the moment, this chapter on files is the last of the book. Feel free
to send me feedback as suggested in the introduction (newsgroup or email),
sending me your comment and requests. If after this introduction on the
Pascal language you want to delve into the object-oriented elements of
Object Pascal in Delphi, you can refer to my printed book of the Mastering
Delphi series (like Mastering Delphi 7 or Mastering Delphi 2005), published
by Sybex, and my Delphi 2007 Handbook, available on Lulu.com.

Buying the printed version of this book or any of my other printed books
(maybe directly on Lulu or through the Amazon links on my web site) is the
best way to support my writing and push me to write more on Pascal, Delphi
and also other topics in the future.

Helping me with updates, corrections and suggestions, is another very good
way to contribute.

For more information on the latest edition of Mastering Delphi, the compan-
ion “Essential Delphi”, and more advanced books of mine (and of other
authors as well) you can refer to my web site:
http://www.marcocantu.com.

Happy Pascal coding!

Marco Cantù, Essential Pascal

136 - Appendix: Examples

Appendix:
 Examples

This is a list of the examples which are part of the Essential Pascal book and
available for download in a single zip file (EPasCodev3.zip, about 30 KB) on:
http://www.marcocantu.com/epascal

Here is the list of examples by chapter55:

● Chapter 2: EssHello, EPExpressions

● Chapter 3: EPConstants, EPRange, TimeNow, Variables

● Chapter 4: Pointers

● Chapter 5: CaseTest, ForTest, IfTest, LoopsTest

● Chapter 6: OpenArr, OverDef

● Chapter 7: StrRef, FmtTest, StringAndPChar

● Chapter 8: NewMessageTest

● Chapter 9: EnumTitles, StrParam

● Chapter 10: VSpeed

● Chapter 12: Filter, IntegersToFile, StringsToFile

55 For more Pascal language demos and source code I suggest you look at the SWAG
archive, currently located at: http://www.bsdg.org/SWAG/index.html

Marco Cantù, Essential Pascal

Index - 137

Index

Acknowledgments.....................................5
Algorithms+Data Structures=Programs.59
ANSIChar...35
ANSIString..90
Append...128
Array..52
Assignable typed constants.....................32
Assigned...57
AssignFile..128
Assignment..60
AssignPrn...130
Banker's Rounding..................................46
Beep..123
Blog..6
Boolean..33, 35
Break..67
Byte..34
Callback functions.................................108
Calling Conventions................................78
Camel-casing...18
Cardinal...34
Caret..56
Case..63
Casting...45
Cdecl..79
Char...33
Characters..35
Chr...35, 45
Chrome...3, 14

CloseFile..128
CmdLine...110
Colon-equal operator..............................60
Command line parameters....................131
Comments..16
Comp...40
Compiler directives..................................17
Conditional..61
Const..74
Constant characters.................................35
Constants...31
Continue..67
Copyright...4
Currency..40
Data Types...33
Date..41
DateTimeToStr..42
DayOfWeek..42
Dec...38
DecodeDate...42
Default...85
Delphi...3, 13
Delphi 2007 Handbook.........................135
Dereferencing..57
Dispose..56
Double...39
Downto..64
DPR..124
DWORD...44

Marco Cantù, Essential Pascal

138 - Index

Dynamic Arrays......................................101
Dynamic link library..............................107
Else..62
EncodeDate...42
End..70
Enumerated...50
EnumWindows......................................108
Eof..132
Example...

CaseTest...63
DoubleH...80
DynArr..102
EPConstants....................................31p.
EPExpressions....................................25
EPRange.......................................36, 40
Filter..131
FmtTest..97
ForTest...65
IfTest..62
IntegersToFile..................................128
LoopsTest...66
OpenArr..76, 78
OverDef..83, 85
Pointers...57
ProcType..82
Range..34
StringAndPChar..............................94p.
StringsToFile....................................130
StrRef...92
TimeNow..42
Variables..30
VariTest...114
VSpeed..116

Exit...67
Extended..39
External declarations.............................107
Fastcall...78
Feedback..5
File..58, 127
FileSize...132
Finalization..120
FloatToDecimal.......................................46
FloatToStr..46
For...64
For-in...65

Format...96
FormatDateTime..............................42, 116
Formatting placeholders.........................96
Forward Declarations..............................79
Free Pascal...14
FreeMem...56
FreePascal..3

And...26
As..26
Constants..31
Conversion..31
Div...25, 27
Exclude...27
Expressions..24
In...26p.
Include..27
Is...26
Keywords..23
Mod..26
Not..25
Operators..25
Or..26
Precedence of Operators....................25
Readln..25
Set Operators......................................27
Shl...26
Shr..26
Var..30
Variables..30
Writeln...24
Xor..26
@...25

Function...71
Function pointer......................................81
GetMem...56, 58
GetTickCount...116
GetUserName..................................94, 107
Global memory..99
GNU Pascal..3
Halt..67
Handles..106
Heap..100
Hello, World...15
High...38, 54
If...61

Marco Cantù, Essential Pascal

Index - 139

Implementation.....................................120
Inc..38
Initialization..120
Int..45
Int64..34
Integer..33p., 37
Interface..120p.
IntToHex...45
IntToStr...45
IOResult...128
Keywords...22
Kylix...13
Length byte..91
LIFO...100
Literal Values...23
Long Strings...91
LongInt..34
LongWord..34
Low..38, 54
Lulu.com..135
Lvalue...61
Mastering Delphi...............................3, 135
Math..40
Memory...99
Memory Leak...56
MessageBox......................................85, 110
Method...79
Microsoft..12
Museum...12
Namespaces...123
New..56, 58
Nicklaus Wirth..59
Nil...57
Now..41
Null-terminated character arrays...........94
Object Oriented Programming................13
Odd..38
Open array...75
Open-array parameter............................96
Ord...35, 38, 45
Ordinal Types..33
Overload..86
Overloading...83
ParamCount...110
Parameter passing...................................73

Parameters...
Constant...74
Out..74
Reference..73
Value...73

ParamStr..110
Pascal...12, 79
Pascal Strings..90
Pascal-casing...18
PChar...94
Pointers..56
Pred...38
Pretty-Printing...19
Printer..130
Procedural Types.....................................81
Procedure...71
Program...124
Random...66
Range Checking.......................................50
Real..39
Real Types...39
Real48..39
Record..54
Reference count.......................................93
Reference-counting.................................91
Register..78
Repeat..65
Reset..128
Resourcestring...32
Result...72
Rewrite...128
Round...45p.
Routine...71
RTTI...37
Rvalue..61
Scope..122
Semicolon...59p.
Set...51
SetLength...92, 101
ShortInt...34
ShortString..90
Single...39
SizeOf...37
Slice..75
SmallInt...34

Marco Cantù, Essential Pascal

140 - Index

Source code..5
Stack..100
Statement..59
Statements...21
Stdcall..79, 108
Str..45
Strings...89
StrPas...45
StrPCopy..45
StrToFloat..46
StrToInt...45
Subrange..49
Succ..38
SWAG...136
Syntax...16
Syntax Highlighting................................20
SysUtils..43
T prefix..48
TDateTime...41
TextFile...127, 130
TextToFloat...46
THandle...106
Then...61
Time...41
Trunc..45
Turbo Pascal..12
TVarData..115

TVarRec...77
Type compatibility rule...........................48
Type-Variant Open Array Parameters....76
Typecasting..44
UINT..44
Units...119
Unnamed types.......................................48
Uppercase...17
User-defined data types..........................48
Uses..121
Val..45
Var..73
Variant..113
Variant record..55
VCL..105
While..65
White Space...18
WideChar...35
WideString..90
Windows API...105
Windows Types.......................................44
Wirth, Niklaus..12
With...67
Word..34
Www.marcocantu.com..........................135
Zero-based array.....................................54
@ operator...56

Marco Cantù, Essential Pascal

