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Abstract

This paper describes a study on simulating and analyzing interlocking speci�cations in the
Interlocking Speci�cation Language (ISL), using the tool ExSpect. ExSpect is a toolkit based
on the theory of coloured Petri nets.

An approach to translating ISL to ExSpect is suggested. Experimental results of simulating
and analyzing part of an ISL speci�cation in ExSpect are discussed. ExSpect seems to be
useful for simulating and analyzing ISL speci�cations. Furthermore, several interesting topics
for future research are identi�ed.
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1 Introduction

This paper reports on a case study on simulating and analyzing railway interlockings using the tool
ExSpect. A railway interlocking is any system that is used to guarantee safety of train movements.
ExSpect, which is an acronym for Executable Speci�cation tool [1], is a graphical speci�cation and
simulation package developed at Eindhoven University of Technology and commercially available
from Bakkenist Management Consultants.

The study described in this paper has been done in close cooperation with the Dutch railway
company NS, Nederlandse Spoorwegen. To date, railway interlockings are often systems of relays
controlled by computer equipment and/or human operators. In the future, the role of electronics
and computer equipment will become increasingly important. The most important reason for this is
that NS has to guarantee the safety of more passengers, personnel, and goods in an environment that
is changing rapidly from a state monopoly to a dynamic, competitive environment. This requires
high 
exibility at lower cost while maintaining the same high safety requirements as before.

Until recently, interlocking practice was mostly based on experience. The consequences of small
changes in, for example, positioning of signals, signalling protocols, or safety margins were only
understood by some very experienced engineers. Obviously, there is need for a di�erent approach.

In order to adapt to a dynamic environment without creating dangerous situations, a formalism
for describing safety requirements and interlocking behaviour is needed. Such a formalism can be
used for simulating interlocking behaviour and, preferably, for formally verifying safety require-
ments. In addition, if it is possible to simulate or calculate the e�ects of small changes in signalling
protocols or safety margins, the formalism can be used to optimize interlocking behaviour and even
lead to adaptation of the infrastructure and train schedules.

Therefore, NS designed a set of speci�cation languages to describe the behaviour of interlockings
in a formal way. As in [5], the abbreviation ISL, for Interlocking Speci�cation Language, is used to
refer to this set of languages. It is preferred over the name EURIS, which is used by NS and stands
for European Railway Interlocking Speci�cation [3, 4]. The name ISL states more clearly that it is



meant as a speci�cation language. Currently, NS is implementing a simulation package for ISL [9].
Although ISL is an important step towards a more formal approach to building and maintaining
interlockings, it is not yet possible to actually prove any safety properties, mainly because ISL lacks
a �rm mathematical basis.

This paper describes a �rst step towards simulation and veri�cation in ISL based on a math-
ematical theory. For this purpose, a small part of an ISL speci�cation is translated into ExSpect.
ExSpect is a toolkit based on the theory of Petri nets (see for example [11, 14]). It combines
a graphical, easy-to-understand user interface for specifying and simulating many types of infor-
mation systems with some analysis tools for verifying properties of such systems. Therefore, it
overcomes the main shortcomings of ISL. Using the analysis tools of ExSpect, it is shown that the
translation into ExSpect maintains an important assumption of ISL speci�cations.

Note that the approach described in this paper is de�nitely not the only possibility to provide
a mathematical basis for ISL (see [5] for a brief overview of some possibilities). It is also not yet
possible to actually verify any safety properties of an interlocking. The most important reason for
this is that it is not exactly clear what the safety requirements of an interlocking described in ISL
are. Another reason is that the tool ExSpect is not yet powerful enough. However, this is not only
a shortcoming of ExSpect. Systems such as railway interlockings are still too complex for formal
veri�cation using current technology.

Therefore, this paper should be considered as a preliminary study of interlocking speci�cations
in ExSpect with a two-fold goal. First, it is investigated to what extent ExSpect can be used to
improve simulation and veri�cation in ISL. Second, a speci�cation of an interlocking in ISL is an
interesting real-world application that can be used to determine the strong and, more importantly,
weak points of ExSpect.

The paper is organized as follows. The next section describes the Interlocking Speci�cation
Language. It also gives a brief explanation of the current simulation package. Section 3 explains
the basics of Petri-net theory and provides an introduction to the tool ExSpect. In Section 4, it is
explained how an ISL speci�cation can be translated into ExSpect. This section also discusses the
merits and demerits of simulating and verifying ISL speci�cations in ExSpect. Section 5 discusses
some possibilities for future work and Section 6 contains some concluding remarks. Finally, the
appendix describes an ExSpect speci�cation of a fragment of an interlocking speci�cation in ISL.

2 The Interlocking Speci�cation Language

The Interlocking Speci�cation Language is actually a set of languages. It consists of four sublan-
guages: TL for specifying Track Layouts, ECL for Element Connection Layouts, LECL for Logical
Element Connection Layouts, and LSC for Logic Sequence Charts. The �rst three languages are
all used to specify railway yards or routes. They only di�er in level of abstraction. In essence, all
three languages describe how routes are built from generic elements such as signals, points, and
track segments. The LSC language is used to describe such elements. Every generic element is
speci�ed by one or more Logic Sequence Charts.

Although ISL has languages for four levels of abstraction, only two levels are fundamentally
di�erent, namely the level of routes and the level of basic elements. That is, one might be interested
in properties of entire routes or single elements. This means that, in the context of simulation and
veri�cation, only Logical Element Connection Layouts and Logic Sequence Charts are important.
The remainder of this paper, therefore, focusses on these two levels of abstraction in ISL. A full
description of these two languages can be found in [3]. The following is a brief introduction that is
necessary to understand the remaining sections of this paper.
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2.1 Logical Element Connection Layouts

LECL is a simple language that consists of six basic building blocks: signal, point, track, approach-
monitoring element, approach-signalling element, and signal-clearance-delay element. The �rst
three elements need no explanation. The latter three elements are related to warning devices. In
this paper, only the signal and track elements are used.

A fundamental concept in LECLs (and LSCs) is the concept of telegrams. According to [3],
telegrams are used for the following two purposes. First, a telegram represents the 
ow of events
(control 
ow). Second, it is used to exchange information between elements, human operators,
control equipment, and trackside devices (data 
ow). Telegrams are the dynamic component of an
ISL speci�cation.
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Figure 1: The LECL of a simple route.

Figure 1 shows a very simple route in LECL. From left to right, the route contains an entry
signal, one track element, and an exit signal. Each element has its own graphical symbol; each
symbol has a unique reference number which is shown at the top of the element. As can be
seen in the example, a signal symbol has reference number one and a track symbol number three.
Furthermore, every element in a route description has a unique identi�er, which is the bottom
number in the element. The entry signal, for example, has identi�er twelve.

Each element has pins that can be connected to its preceding and succeeding element, the
control level, and the trackside devices. Exchange of information via telegrams takes place through
these pins. Pins to the control level and trackside devices are depicted by the arrows on the upper
and lower side of the element respectively. Pins to which other elements can be connected have an
identi�er which consists of two characters: an \N" or \X" denoting whether it is an eNtry or an
eXit pin, and an \a," \b," \c," or \d" that corresponds to the side of an element. Figure 1 shows
that an element does not necessarily have pins for all possible pin identi�ers. A signal or track
does not have sides \c" or \d." The side from which a telegram enters an element determines the
direction of the telegram inside the element. The behaviour of a telegram may depend upon its
direction.

LECL has rules for connecting elements. Obviously, exit pins of one element must be connected
to entry pins of another. There are also some limitations concerning the side identi�er of pins, but
they are not important in this paper and are, therefore, omitted.

The brief explanation of LECL given here makes clear that it is possible and meaningful to
simulate LECLs. Dynamic behaviour can be simulated, investigating the 
ow of telegrams, timing
properties, and properties about the state of individual elements or the entire route.
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2.2 Logic Sequence Charts
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Figure 2: A fragment of an LSC.

Every element in LECL is described by one or more Logic Sequence Charts. Figure 2 shows a
detailed fragment of an LSC, which is part of the speci�cation of an ordinary track element. It
shows various features of an LSC. The top of an LSC lists all variables and parameters. The left
and right side contain entries and exits for telegrams from and to di�erent directions. The LSC
fragment in Figure 2, for example, has an entry for telegram B01 from either direction \a" or \b."
It has an exit for telegram B02 to either direction. The horizontal and vertical lines in an LSC
depict the 
ow of telegrams. The line of 
ow can be interrupted by several operations on variables
and telegrams; it can branch, and two or more branches can join into a single line.

Most of the variables of an LSC are booleans. Some of the variables are of a special kind. Those
marked with an exclamation mark correspond directly to a trackside device. The variable TSU, for
example, represents whether or not Track Section Unoccupied is true. A variable marked with @
is some kind of timer that, depending on its value, periodically generates telegrams. Both types of
variables occur in Figure 2. A kind of variable that does not occur in Figure 2 is a variable marked
with [ ], denoting that it is a natural number. The special symbol \%" denotes a logical variable
that contains the direction of a telegram.

While a telegram 
ows through an LSC, several explicit and implicit operations on telegrams
and variables can be performed. Operations on variables are always depicted below the variable
on which the operation is performed. Operations on telegrams can occur everywhere. The most
commonly used operations are assignments and tests. A value v is assigned to telegram data t or
variable XXX by \(t : v)" and \> v" in the column below XXX respectively. A test on telegram
data is depicted by inserting \(t = v)" in the line of 
ow; a test on XXX by simply inserting the
value v in the column below XXX. Examples of these operations can be seen in Figure 2. Note
that the boolean values \true" and \false" are denoted by 1 and 0 respectively. Figure 2 does not
contain any operations on telegram data.

Some operations on telegrams or variables may in
uence the 
ow of a telegram. Depending
on the result of a test, for example, a telegram can proceed in di�erent ways. It is also possible
that a telegram terminates. An example of the latter appears in the column below TPO, where
the value 1 is inserted. This means that if TPO is false, then the telegram terminates, otherwise
it proceeds. A telegram also terminates when the line of 
ow ends. Termination of telegrams is an
implicit operation.

There are two other operations on telegrams that do not appear explicitly in an LSC, namely
a change of name or direction of a telegram. The former occurs in Figure 2, where a B01 telegram
changes into a B02 telegram, provided that it does not terminate inside the LSC. Similarly, it may
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happen that a telegram enters an LSC from one particular side and leaves it at another. Such
implicit operations are important in the context of simulation where they must be made explicit.

There is one more important operation, namely telegram generation. As mentioned, a variable
marked with @ is some kind of timer. More in particular, it is a boolean variable that periodically
generates a telegram starting when its value is set to true. It stops when its value is reset to false.
A telegram that is generated in this way enters the LSC at a unique position marked \@>" in
the column below the variable. From there, it follows the line of 
ow as an ordinary telegram.
In Figure 2, the B01 telegram may start several timers. A telegram that is generated in this way
starts in another part of the LSC which is not shown in Figure 2. There are several other types of
timers that are, however, not explained here.

The description of LSCs given here makes clear that, in addition to LECLs, LSCs are a second,
more detailed level of abstraction that can be simulated in a meaningful way. Simulating and
verifying LSCs is useful to determine properties of individual elements instead of entire routes built
from those elements. Ideally, it should be possible to switch between both levels of abstraction in
one simulation session.

At this point, it should be mentioned that ISL makes one important assumption about the
intended dynamic behaviour of systems speci�ed in ISL. It is assumed that, at any point in time, at
most one telegram is active in an LSC. In the context of simulation and veri�cation, this assumption
is essential for determining the correct behaviour of a system. It also means that some priority or
scheduling mechanism is needed for the telegrams entering an LSC from other elements, the control
level, and the trackside level, as well as for the telegrams that are generated internally. ISL itself
does not give any requirements or restrictions for such a scheduling mechanism.

2.3 The ISL Design and Simulation Package

Figure 3 [9] gives an overview of the current ISL design and simulation package. Both LSCs and
LECLs, or routes, are designed using a CAD application package called ACE+. The results are
automatically translated to an intermediate language called IDEAL, the Interlocking Design and
Application Language. The symbols that are used to design LECLs are automatically generated
from the LSC-IDEAL code. That is, the correct number of parameters, pins etcetera is determined
from the speci�cation of an element in terms of LSCs.

A compiler has been developed that translates the IDEAL code of LSCs and LECLs to VHDL.
For the actual simulation, a VHDL simulator is used extended with a graphical user interface based
on the package ACE+. Only LECLs can be simulated. The simulation uses colours to report part
of the state of individual elements. One colour denotes that the element is reserved for a route;
another colour may indicate that it is released. It is also possible to keep track of the value of
individual variables over time. It is, however, not possible to visualize the 
ow of telegrams nor to
simulate individual elements.

In order to guarantee that, at any time, at most one telegram is active in each LSC, a simple
queue has been implemented. In this queue, both external and internal telegrams are stored in the
order in which they arrive or are generated.

3 Petri Nets and ExSpect

This section explains the basics of Petri-net theory and the tool ExSpect which is based upon
this theory. Since Petri nets have unambiguous graphical representations, formal mathematical
de�nitions are omitted. The interested reader is referred to [11, 14]. Instead, a running example of
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Figure 3: The ISL design and simulation package.

a set of tra�c lights at a crossing is used to explain Petri nets and ExSpect. The next subsection
gives a brief introduction to the most fundamental form of Petri nets, called Place/Transition- or
P/T nets. Section 3.2 discusses the tool ExSpect which is based upon a more general type of Petri
nets, so-called high-level Petri nets.

3.1 Place/Transition Nets

Consider a crossing of two streets where each street has a tra�c light. The two lights perform their
green-yellow-red cycle more or less autonomously. However, before turning green a tra�c light
needs an incoming synchronization signal from the other light indicating that it turned red. This is
to guarantee that always one of the two lights is red. Figure 4 show the P/T net for this crossing.

A P/T net is a directed graph that has two basic structural components: places and transitions.
Places are usually depicted by circles and transitions by bars or rectangles. Places and transitions
are connected by arrows. Multiple arrows in either direction are allowed between places and tran-
sitions. If an arrow connects place p to transition t , then p is called an input place of t ; if an
arrow connects t to p, then p is an output place of t . Places and transitions, together with their
interconnections, form the static structure of a net.

Petri nets also have dynamic components, called tokens. Tokens reside in the places of a net.
In a graphical representation of nets, tokens are depicted as black dots. All tokens together are the
marking of a net, which represents its state. The state can change dynamically according to the
following �ring rule:
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Figure 4: The P/T net of tra�c lights at a crossing.

A transition can �re, or is enabled, if each input place has at least as many tokens as
there are arrows from this place to the transition. Upon �ring a transition, for every
arrow from an input place to the transition, one token is taken from the input place.
Furthermore, for every arrow towards an output place, one token is added to the output
place.

The structure of a P/T net, its initial marking, and the above �ring rule uniquely determine
the dynamic behaviour of a P/T net. Tokens that are taken from an input place when �ring a
transition are often called consumed tokens; tokens that are added to the output places are called
produced tokens.

Now, it is easy to understand the behaviour of the net depicted in Figure 4. Initially, there
are tokens in the places red1 and red2, indicating that both tra�c lights are red. Since there is
also a token in s1, the transition r2g2, which should be read as \red-to-green-two," is enabled.
This means that the second tra�c light is allowed to turn green. If the �ring rule is applied, the
tokens in places s1 and red2 are consumed and one token is added to place gre2. The light has
turned green. As a consequence, transition g2y2 is enabled. The second tra�c light may turn
yellow. After applying the �ring rule two more times, the second tra�c light has turned red again:
There is a token in place red2. Upon turning red, also a token was produced in place s2, thus
enabling transition r2g1. This means that the �rst tra�c light can now turn green starting its
green-yellow-red cycle. The behaviour as described above repeats itself periodically, an unbounded
number of times.

Place/Transition nets were introduced as early as 1962 by Petri [13]. Since then, the theory of
Petri nets has been extended in many ways and it has been applied to a wide variety of problems.
The theory has become so popular for a combination of two reasons: �rst, the easy-to-understand
graphical representation of Petri nets, and, second, the possibilities for formal analysis of Petri nets.
In recent years, interest increased even more due to the development of many automated tools based
on Petri nets. The remainder of this subsection explains some simple analysis techniques that can
be applied to P/T nets. As mentioned, the next subsection describes ExSpect which is one of the
tools based on Petri nets.

Since the introduction of Petri nets, many analysis techniques have been developed. A good
survey of the available techniques can be found in [11]. The following brie
y describes two of the
most commonly used analysis techniques.
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Place invariants. A place invariant, or S-invariant, is a weighted set of places, such that the
weighted sum of tokens in these places is constant. That is, the weighted sum of tokens is indepen-
dent of any �ring.

S-invariants can be used to verify many useful properties of system speci�cations. The crossing
in Figure 4 has, for example, the following S-invariants:

gre1 + yel1 + red1 = 1 ;

gre2 + yel2 + red2 = 1 ; and
red1 + red2� s1� s2 = 1 :

The �rst and second invariant show that both lights are either green, yellow, or red. Not really a
surprising result. The third invariant, however, implies that always at least one of the tra�c lights
is red. This is a very useful result: It means that the crossing is safe!

An important result in Petri-net theory is that S-invariants can be calculated in a very straight-
forward way using linear algebra. The details are omitted (see for example [11]). What is important
is that it is relatively easy to implement the calculation of S-invariants in an automated tool. Thus,
it can be used for automatic veri�cation of system properties.

Transition invariants. A transition invariant, or T-invariant, is a weighted set of transitions,
such that all weights are non negative and the marking does not change when all transitions are
�red as many times as their weights. That is, the state of the Petri net does not change.

Again, the example of Figure 4 can be used to clarify the notion of T-invariants. The P/T net
shown in this �gure has

r2g1 + g2y1 + y2r1 + r2g2 + g2y2 + y2r2
as a T-invariant. It means that the tra�c lights return to the initial state each time both lights
have performed their green-yellow-red cycle.

As for S-invariants, T-invariants can be calculated using linear algebra. Therefore, T-invariants
are also well suited for automatic veri�cation.

3.2 ExSpect

ExSpect, the Executable Speci�cation tool [1], is a toolkit that is based on high-level Petri nets.
High-level Petri nets extend P/T nets to data, time, and hierarchy. The basic features of ExSpect
can be best explained using the example of the tra�c lights at a crossing. A detailed description
of the formal framework behind ExSpect can be found in [7].

ExSpect extends P/T nets to data. This means that tokens have types and values, often called
colours in Petri-net literature. In addition, each place in the net also has a type, restricting the
type of tokens allowed in that place. When �ring a transition, the number of tokens produced
and their value may be determined by the value of the consumed tokens. See [7, 8] for a detailed
treatment of the theory of coloured Petri nets.

The tra�c-light example shows simple use of data in Petri nets. It is no longer necessary to
have separate places for each colour that a tra�c light may have. Instead, the colour can be stored
in the tokens in the net. In ExSpect, one could de�ne the type colour and its constants as follows.

type colour := string;

green := 'green' : colour;

yellow := 'yellow' : colour;

red := 'red' : colour;
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ExSpect provides possibilities to hide the implementation of type colour, thus turning it into
an abstract data type. This means that only the constants green, yellow, and red can be used as
elements of type colour. Other strings are not allowed.

col1 col2

s2

s1
y2r1

r2g1

g2y1 g2y2

r2g2

y2r2

Figure 5: A crossing in ExSpect using data.

The tra�c lights at a crossing can now be speci�ed as in Figure 5. It shows two crossed circles,
called stores. A store is a special kind of place that occurs very often in ExSpect speci�cations. It
always contains exactly one token. Every time a transition consumes this token, it must be replaced
by a new token. This requirement is depicted graphically by a bidirectional arrow. Since stores are
places, they must have a type. As expected, the two stores in Figure 5 are of type colour. A store
can be considered a variable as it occurs in, for example, C or Pascal programs or LSCs. The two
other places are of type token, which contains only one value tokenval.

As mentioned, in coloured nets, the number of tokens consumed and produced by a transition
and their values may depend on the value of the input tokens. Therefore, ExSpect generalizes
transitions to so-called processors. Processors are transitions whose exact behavior is speci�ed in a
functional programming language [1, Chapter 4]. This language has functions to test and modify
the value of tokens. It also has a conditional statement which is used to vary behaviour depending
on values of tokens. It is not always necessary to specify every individual processor. For example,
in Figure 5, the two processors y2r1 and y2r2 are instances of the processor y2r which is speci�ed
as follows:

proc y2r

[store col: colour, out s: token |

pre col = yellow] :=

col <- red, s <- tokenval

The speci�cation of y2r states that it is connected to one store col of type colour and one
output place s of type token. It also has a precondition saying that the value of the token in col

must be yellow. If the precondition is satis�ed, the processor may �re, consuming the token in
the store. Upon �ring, it produces two tokens, one in col with value red, and one in s with value
tokenval. Informally, the processor may only �re when the tra�c light is yellow. As a result from
�ring the processor, the tra�c light turns red, at the same time signalling the other tra�c light
that it may turn green.

The speci�cation of the other processors is very similar and, therefore, omitted. It is easy to
verify that the net in Figure 5 properly models the behaviour of the tra�c lights as explained in
the introduction to the previous subsection.

Note that the speci�cation of y2r does not contain a conditional statement. This means that its
behaviour does not depend on the values of the consumed tokens. Consequently, it is very similar
to the transitions known from P/T nets. For this reason, a processor whose behaviour is not
conditional is often called a transition. The class of transitions is important, because the analysis
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techniques described in the previous section can be applied to ExSpect speci�cations consisting
only of transitions. ExSpect has a tool to transform any speci�cation into such a speci�cation with
the same dynamic behaviour.

The second extension to P/T nets is time. In ExSpect, every token is assigned a time stamp,
indicating the time that the token becomes available for consumption. A processor is enabled, only
if in every input place at least one token is available for consumption. A transition �res as soon
as it becomes enabled. The �ring rule is said to be eager. Upon �ring, output tokens to ordinary
places can be given a delay using the delay statement. Tokens to stores may never be delayed,
because it is assumed that there is always exactly one token available in a store.

As an example, the output token in the speci�cation of the processor y2r can be delayed.

proc y2r

[store col: colour, out s: token |

pre col = yellow] :=

col <- red, s <- tokenval delay 2

As a result, when the �rst tra�c light turns red, the second light does not turn green imme-
diately, but only after a delay of two time units. Thus, a margin is built in, allowing all cars that
are still on the intersection to cross safely. It is also possible to specify the amounts of time that a
tra�c light must be green, yellow, or red. However, since tokens in a store may never be delayed,
it is necessary to add extra places. It is left as an exercise for the interested reader.

Note that the extension to timed nets does not a�ect the use of place and transition invariants.
These invariants only depend on the causal relationships between the transitions in the net. They
are independent of the speci�c times at which transitions �re.

Finally, ExSpect adds hierarchy to P/T nets. When designing complex systems, it is essential
that a speci�cation language allows for hierarchical design. Starting from a high level of abstraction,
the system designer can gradually add more detail to a speci�cation, thus limiting the amount of
detail that he or she has to cope with at once.

For example, at a high level of abstraction, a crossing consists of two tra�c lights that each
have a colour and are mutually synchronized to avoid unsafe situations. The exact implementation
of a tra�c light is not yet important at that level of abstraction. The ExSpect speci�cation would
typically be as in Figure 6. It shows one new element of ExSpect, namely systems. Systems are
depicted by squares. A system can be considered as a high-level processor that itself must be
speci�ed in terms of places, processors, and lower-level systems. In the example, tl1 and tl2 are
both instances of the system tl, which models a tra�c light.

s2

s1

tl1 tl2 col2col1

Figure 6: A high-level ExSpect speci�cation of a crossing.

When de�ning a system such as tl, it is important that its interface to the environment is
de�ned. This interface can be speci�ed using so-called pins. Pins have types and must be connected
to places or stores of the corresponding type when a system is used as part of a speci�cation. There
are three types of pins: input pins, output pins, and store pins. They correspond to input places,
output places, and stores respectively. Figure 7 shows the speci�cation of the system tl, which
models a tra�c light. It needs no further explanation.
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Figure 7: A tra�c light in ExSpect.

In order to calculate place and transition invariants, a hierarchical net can be unfolded. Each
system is replaced by its implementation, yielding a net that consists of only processors. The result
can then be transformed to a a net consisting of transitions only, using the tool mentioned earlier.
It is easy to see that the result of unfolding the net in Figure 6 is the net shown in Figure 5.

This concludes the introduction to ExSpect. It is su�cient to understand the remainder of
this paper. For a more detailed explanation of the tool ExSpect, the reader is referred to [1]. An
extensive treatment of the theory behind ExSpect can be found in [7].

4 ISL and ExSpect

The previous two sections introduced ISL and ExSpect respectively. As the observant reader might
have noticed, many constructs in ISL map almost directly to ExSpect constructs. This section
discusses the details of such a translation from ISL to ExSpect. Since ExSpect is a graphical
simulation package based on a formal mathematical theory, a translation from ISL to ExSpect is
useful for analyzing ISL speci�cations of railway interlockings. Thus, signalling practice can be
optimized and possible mistakes can be corrected. In this way, the safety of passengers, trains, and
goods can be further improved. In addition, higher 
exibility in scheduling trains might be achieved.
At the end of this section, the results of simulating and analyzing an experimental implementation
in ExSpect of a fragment of the ISL speci�cations from [3] are discussed.

4.1 A Translation from ISL to ExSpect

As explained in Section 2, ISL has a static component, namely the four languages for specifying
routes and route elements, and a dynamic component, namely telegrams. Obviously, telegrams
correspond to tokens in ExSpect. Furthermore, it seems logical to translate the two fundamentally
di�erent hierarchical levels in ISL, namely the level of Logical Element Connection Layouts and
the level of Logic Sequence Charts to separate hierarchical levels in ExSpect as well. As we will see
shortly, this is a feasible approach provided that an intermediate level is introduced to take care of
scheduling all telegrams in an LSC. The latter is necessary to guarantee that, at any time, at most
one telegram is active within each LSC.

Figure 8 shows an ExSpect speci�cation of the LECL shown in Figure 1. Each generic element
in LECL corresponds to a system in ExSpect. Since LECL has six elements, this yields also six
ExSpect systems. Two of these systems appear in the example; the two signals are instances of
one generic system signal. The pins of the LECL elements translate to ExSpect pins. An entry
pin Na of an LECL element becomes an input pin ain of the corresponding ExSpect system; an
exit pin Xb becomes an output pin bout. These pins must be speci�ed in the system de�nitions.
In Figure 8, they appear implicitly as places. The place bs1 at, for example, connects the output
pin bout of signal1 to pin ain of track.
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Figure 8: A simple route in ExSpect.

LECL elements also have pins to the environment which consists of the control level and track-
side devices. For the sake of simplicity, in Figure 8, no distinction is made between these two parts
of the environment. Each ExSpect system has an external input place for receiving telegrams from
the environment; it has an external output place for telegrams to the environment. If it is desired,
it is straightforward to di�erentiate between control level and trackside devices.

In addition to pins to the environment, the LSCs that implement an LECL element might
have variables that can be changed by the environment. Since these variables are also some form
of communication with the environment, they are translated to store pins of the corresponding
ExSpect systems. In Figure 8, they are shown at the bottom side of each system. A signal has
more store pins than the two pins that are shown; this is depicted by the unconnected bidirectional
arrow. Note that, in ISL, no information of variables is known at the LECL level. In ExSpect,
variables that can be changed by the environment are made visible at the route level, because in
this way all user interaction during a simulation session takes place at the route level.

In LECL, the six generic elements are each implemented by one or more LSCs. Therefore, it
seems logical to implement each of the corresponding ExSpect systems by a lower-level net that is a
translation of the LSCs. However, ISL imposes an important restriction on the dynamic behaviour
of an LECL: At any time, at most one telegram may be active in each of the LSCs. In ExSpect,
this restriction must be enforced explicitly. Therefore, an intermediate level as shown in Figure 9
is necessary.

Figure 9 shows the implementation of the system track. It consists of two systems, interface
and trackLSC. The latter is a translation of the LSCs specifying the LECL-element track. It is
connected to the system interface and to two store pins that are exported to the route level. By
replacing trackLSC by the ExSpect implementation of the LSCs of any of the other �ve LECL
elements, the corresponding ExSpect system is obtained.

System interface provides an interface to the environment of the LSC. It is the same for
all six elements. The tasks of interface are scheduling the telegrams inside track and routing
incoming and outgoing telegrams. It has, among others, input pins ain, bin, cin, and din, one
for each possible side of an LECL element. It also has output pins for each side. Since a track
element only has sides \a" and \b," the pins for these directions are exported to the higher level;
the pins for the other directions are connected to dummy places. System interface also has pins
for communicating to the environment and to trackLSC.

The details of the implementation of interface are not important. It is only important to
know that it has a subsystem scheduler which takes care of its main task, namely scheduling
incoming telegrams and telegrams generated internally such that at most one telegram is active
in trackLSC. ISL does not specify an algorithm. By implementing the scheduling algorithm in a
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separate ExSpect system, it is easy to experiment with di�erent algorithms. See the appendix for
more details about system interface.

In the experimental implementation that has been made to validate the approach discussed
in this paper, the choice was made to give priority to telegrams generated internally and to store
incoming telegrams in a FIFO queue. As explained, inside an LSC and thus inside trackLSC,
telegrams may be generated based on the values of timer variables. The scheduler uses the place
check to test timer variables periodically. If it has the correct value, a telegram is generated and
allowed to proceed immediately until it leaves trackLSC via LSCout or terminated. The latter
indicates that the telegram is terminated inside the LSC and does not need to be redirected to
the environment. It is important that the scheduler knows when a telegram is terminated, because
then another telegram is allowed to enter trackLSC. If a timer variable does not have the correct
value, trackLSC returns a negative acknowledgement via ch neg. If there are no internal telegrams
available, the scheduler allows the �rst external telegram in the queue to enter trackLSC via LSCin,
provided of course that an external telegram is available. Such a telegram proceeds its way through
trackLSC until it leaves either via LSCout or terminated.

The third and �nal part of the translation of ISL to ExSpect is a translation of the LSCs that are
used to build the generic elements. This can be done in a very straightforward way. As explained in
Section 2, an LSC essentially consists of operations on variables and telegrams. Each one of these
operations can be translated to (an instance) of an ExSpect processor. The result of translating
the LSC fragment of Figure 2 is shown in Figure 10.

A telegram enters the LSC via the pin LSCin. The processor InSwitch then tests its name and
moves it to the corresponding place. When a processor receives a telegram from its input place, it
performs an operation on either the telegram or a variable (store), and then moves the telegram
to one of its output places. Since ExSpect often has more than one symbol available for each
element of a speci�cation, di�erent symbols have been used for processors that only test values and
processors that actually change values. The former are depicted by squares with a �lled triangle
in the bottom-right corner; the latter are depicted by triangles. If a processor tests the value of a
variable to determine in what direction the telegram should proceed, by convention, the telegram
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Figure 10: A fragment of an LSC in ExSpect.

follows the solid line if the test yields true, and the dashed line otherwise. A telegram may leave
the LSC either via terminated or via one of the pins NAMEout, where NAME is the name of the
telegram. All pins of the latter type are connected to the place LSCout at the intermediate level.

A few �nal remarks are in order. First, note that before a B01 telegram leaves the LSC,
the name of the telegram is explicitly set to B02. Second, it is in general also necessary to set
the current direction of a telegram to the side at which it must leave the LSC. However, in the
example, this operation does not appear, because the side at which a B02 telegram leaves the LSC
is the same as its current direction. Third, Figure 10 does not show how telegrams are generated in
the LSC. Variables that have a name with su�x \per" may, depending on their value, periodically
generate telegrams. This can be implemented by de�ning a subsystem which has pins connected
to check and ch neg at the intermediate level, the associated variable, and one ordinary output
place. If a token is received via check, this system tests the value of the associated variable and
either generates a telegram or returns a negative acknowledgement via ch neg. The details about
the working of these and the other timer variables can be found in [3]; the details about their
translation to ExSpect can be found in the appendix.

4.2 Simulation and Analysis in ExSpect

In order to validate the approach pursued in this paper, an experimental translation of a fragment of
ISL has been made. This section discusses the results of simulating and analyzing ISL in ExSpect.

Figure 11 shows a snapshot of a simulation session. The window in the center of the screen
shows the route which is also shown in Figure 1. There is one token, or telegram in ISL terminology,
in place bs1 at and there are two tokens in extout s1. Furthermore, each store contains one token.
Since most of the communication is between the two signals and the track segment, the history of
the places bs1 at, bt as2, as2 bt, and at bs1 as well as the last token that resided in these places
are shown in the windows around the center window. The window titled First of bs1 at, for
example, tells us that the token in bs1 at is an A03 telegram, which is represented by the number
3 in the name �eld. Furthermore, it has direction \b," represented by 2, and it has a data set
which consists of only one element RT (Route Type) which is equal to 1, indicating that a normal
route is being set. The window bs1 at shows that this telegram is the only token of the history of
bs1 at. The time at which it becomes availabe for further processing is 4.4 seconds after the start
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Figure 11: A snapshot of a simulation session.
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of the simulation. The clock at the top of the screen shows that the simulation time at the time
of the snapshot was 3.5 seconds. The window in the top-left corner of the screen contains all the
information of the simulation in a textual format.

As the brief explanation above makes clear, ExSpect allows the designer to visualize the 
ow
of telegrams, their timing behaviour, and their contents. In addition, ExSpect has several features
which have not yet been explained but may be very useful for simulating ISL speci�cations. The
contents of an arbitrary token can be shown by just clicking the place in which it resides, provided
that it is the last token that entered the place. The entire history of a place can be accessed
via mouse driven menus. The contents of each of the tokens in the history can then again be
visualized by just clicking the token. It is also possible to add tokens to or delete tokens from
places, thus changing the course of the simulation interactively. Although all these features may
be very handy, perhaps the most important feature of ExSpect is the possibility to switch between
di�erent hierarchical levels at any time during the simulation. By clicking the system track, for
example, its implementation appears in a separate window. In this way, it is possible to switch
between the route level and the LSC level of the simulation any time it is desired.

The previous paragraphs describe simulation of ISL speci�cations in ExSpect. Although sim-
ulation is an important goal, it is not the ultimate goal. The main reason for investigating the
possibility to translate ISL into ExSpect is that ExSpect is based on a solid mathematical theory.
This may be a basis for formal analysis and veri�cation of railway interlockings. As mentioned ear-
lier, however, this is not yet possible for two reasons. First, systems as railway interlockings are still
too complex. Second, safety requirements of railway interlockings have not yet been determined
and formalized. Nevertheless, the analysis tools of ExSpect prove to be useful.

In the previous sections, the analysis technique using place invariants has been explained. It
has also been explained how this technique is implemented in ExSpect. If this technique is applied
to, for example, the system track, one of the invariants that is found has the following form:

sum of places in trackLSC+ some other places = 1 :

This means that there is always exactly one token in any of the places listed in the sum. Since
all the places in the LSC are part of this sum, this means that, at any time, at most one telegram
is active in the LSC. This is a requirement that ISL imposes on speci�cations. ExSpect tools have
been used to show that this requirement is maintained by the translation to ExSpect. Although
this result may appear somewhat trivial, it is important to note that it is based on a purely
mathematical analysis of the ExSpect speci�cation. It may be a basis for further analysis of ISL
speci�cations.

To end this section, we compare ExSpect to the ISL simulation package that is being developed
at NS (see Section 2.3). ExSpect has two major advantages over the ISL package. First, in ExSpect,
it is possible to switch between di�erent levels. Therefore, an ISL speci�cation can be simulated
at both the LECL and the LSC level. Second, ExSpect is based on the theory of Petri nets which
provides techniques for formal analysis of ISL speci�cations. A few minor advantages are that it
is possible to actually visualize the 
ow of telegrams. Furthermore, it is straightforward to replace
elements as the scheduler and thus experiment with di�erent scheduling algorithms. Of course, the
ISL package also has some advantages. The drawing package is better suited to design LSCs than
ExSpect. Furthermore, during the simulation, it uses colours to identify states of elements in a
route. Thus, it presents a higher-level view of the state of a route than ExSpect, which is easier to
understand for non specialists.

Summarizing, the strengths of ExSpect are the theoretical basis and the possibility to simulate a
speci�cation across hierarchical levels; the strength of the ISL package is mainly its customization to
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designing and simulating interlockings. If ExSpect and the existing ISL package can be integrated,
the strengths of both packages can be combined.

5 Future Work

The research described in this paper has raised many interesting questions and problems. In this
section, some of them are discussed brie
y.

An ISL-to-ExSpect compiler. The �rst step towards incorporating ExSpect into the ISL de-
sign and simulation environment is an ISL-to-ExSpect compiler. Such a compiler is the basis for
any future work on using ExSpect for simulating and verifying ISL speci�cations. In [12], the
possibilities for using the ASF+SDF environment [10] to create such a compiler are described. It
appears that the translation proposed in this paper can be automated without too many di�culties.

Coloured invariants. An interesting extension to ExSpect would be, the use of colours, or data,
in invariants. Place and transition invariants as explained in Section 3 cannot handle data. In [8],
invariants are generalized to coloured nets. Design/CPN [6] is a tool that implements coloured
invariants. A disadvantage of coloured invariants is that it is no longer possible to calculate all
invariants using linear algebra. It is only possible to verify whether a speci�cation satis�es a given
invariant.

Hierarchical invariants. As explained, ExSpect unfolds the hierarchy of a speci�cation before
calculating invariants. However, this is not always necessary nor desirable. Consider the hierarchical
net in Figure 12. It is yet another speci�cation of the tra�c lights. At the highest hierarchical
level, only the colour red is visible. The colours green and yellow are hidden at a lower level. If one
only wants to know whether, at any time, at least one light is red, such a speci�cation is feasible.

sout

sinredin
r2g

o

s2

s1

red1 red2
tl1 tl2

y2r
redout

g2y

green

yellow

o

i i

Figure 12: Determining place invariants in a hierarchical way.

It is easy to verify that the tra�c light at the left has the following place invariant:

redin� sin+ redout� sout = c ; (1)

for arbitrary non negative constant c, which is determined by the initial marking of the high-level
net. Note that the set of places in this invariant only contains pins. The question is: \Can this
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information be used to determine invariants of the speci�cation at the highest level?" The answer
is yes. Consider the following equation:

red1+ red2� s1� s2 = 1 ; (2)

If this equation is projected onto the pins of, for example, tl1, we obtain the following equation:

tl1.redin+ tl1.redout� tl1.sin� tl1.sout = 0 ;

which is an invariant of the tra�c light (see (1)). The same result is obtained for tl2. Therefore,
(2) is an invariant of the entire system. We may indeed conclude that, at any time, at least one of
the two tra�c lights is red.

It does not seem di�cult to generalize the example above to arbitrary hierarchical nets. Fur-
thermore, it appears straightforward to implement the strategy outlined here in ExSpect. Since
it is a modular approach, it means that place invariants only need to be calculated once for each
system de�nition, thus speeding up the calculation, and simplifying the presentation of invariants
to the user.

Unfolding �nite colour sets. In ExSpect, data can be used to simplify many speci�cations. A
disadvantage is that data complicates analysis of a speci�cation. However, often it is possible to
transform a speci�cation to an equivalent speci�cation using less data or even no data at all. As
the following example shows, data types that are �nite can often be unfolded.

Consider again the speci�cation of a crossing with tra�c lights in Figure 5. The stores col1
and col2 are of type colour which only contains three values. Therefore, col1 can be unfolded into
three separate places, gre1, yel1, and red1; the same can be done for col2. The transitions that
are connected to any of the stores must also be adapted. For example, the precondition \col =

yellow" of the transition y2r1, whose de�nition is given on Page 9, translates to a connection from
the new place yel1 to y2r1; the output \col <- red" becomes an arrow from y2r1 to place red1.
The same transformations can be made for all other transitions, thus making the stores col1 and
col2 super
uous and removing all data from the speci�cation. It is easy to verify that the result
of these transformations is the P/T net shown in Figure 4.

It is not di�cult to do the transformations sketched above automatically. As a result, it is
possible to calculate many more invariants of a net. In ExSpect, it is not yet possible to verify
formally that the speci�cation in Figure 5 yields a safe crossing. That is, that always one of the
tra�c lights is red. However, by unfolding the type colour, we have proven this property, because
the resulting P/T net has the desired place invariant.

The previous four paragraphs all describe problems that are relatively clear. It seems straight-
forward to solve any remaining theoretical problems and implement the suggested extensions to the
ISL package and ExSpect. The next four paragraphs describe problems that still need a signi�cant
amount of theoretical research.

Formalization of safety requirements. It has been mentioned several times before that, to
date, the safety requirements of an interlocking are not yet formalized. It is a challenging task to
�nd out what it means in the ISL framework that \no two trains may ever collide."

High-level ExSpect speci�cation of interlockings. Logic Sequence Charts are a very low-
level operational speci�cation language for interlockings. This paper shows that it is possible to
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translate LSCs to ExSpect. However, this does not mean that one automatically gets an ExSpect
speci�cation that makes optimal use of the possibilities of ExSpect. In particular for the purpose
of formal analysis, a higher-level ExSpect speci�cation seems to be more useful. It appears to be
an interesting subject for further research to specify an interlocking directly in ExSpect, in such a
way that it is best suited for formal analysis.

Formal veri�cation. The ultimate goal of applying formal techniques to specifying interlockings
is formal veri�cation of their behaviour. Of course, Petri-net theory is not the only theory that
might be useful. There are many other techniques such as process algebra and temporal logic.
Currently, at the department of Computing Science at the Eindhoven University of Technology, a
project is under way to integrate process algebra (ACP [2]) and Petri-net theory. Process algebra
is known for its powerful veri�cation techniques. Applying the new theory to specifying railway
interlockings would be a good opportunity to learn more about the strengths and weaknesses of
the theory. The results might be a step towards formally verifying the complete behaviour of
interlockings.

Fault-tolerance analysis. Another long term goal is fault-tolerance analysis of railway inter-
lockings. In the current ISL speci�cations, some fault-tolerance is already built in on an ad hoc

basis. For example, a track section is only assumed to be unoccupied if the following two conditions
are satis�ed. First, there is no train physically detected on the track section. Second, it is also
logically unoccupied. That is, according to the control logic of the signalling protocol, there is no
train on the section. In the future, a formal approach to fault tolerance seems necessary in order
to maintain the high safety requirements of railway interlockings.

6 Concluding Remarks

The goal of the research described in this paper was to investigate to what extent ExSpect can be
used to improve simulation and analysis of ISL speci�cations of railway interlockings.

The �rst few sections explain all relevant parts of both ISL and ExSpect. Furthermore, an
introduction to Petri-net theory, which is the theory underlying ExSpect, has been given. Section 4
describes an approach to translating ISL into ExSpect. Part of an ISL speci�cation has been
translated to validate this approach. From this, we may conclude that an automated translation
from ISL to ExSpect seems possible without too many di�culties. Furthermore, ExSpect appears
to have two major advantages over the current ISL simulation package. First, it is possible to
simulate both the route level and the LSC level of a speci�cation. Second, since ExSpect is based
on a mathematical theory, ExSpect provides a basis for formal analysis of ISL speci�cations.

The study on translating ISL to ExSpect has raised many questions that deserve to be studied
in the near future. Section 5 describes the most interesting ones. The basis for all future work
is an ISL-to-ExSpect compiler. Furthermore, several short-term extensions to ExSpect have been
suggested, as well as some longer-term research projects on both ISL and ExSpect.
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A A Fragment of an Interlocking Speci�cation in ExSpect

The appendix describes the experimental translation of part of the ISL speci�cations in [3] into
ExSpect. The elements track and signal taken from [3] are translated as far as it concerns the
telegrams A01{A06, B01{B07, and a few telegrams to and from the environment. Section A.1
discusses the ExSpect speci�cation itself. Section A.2 describes a typical simulation session.

A.1 The ExSpect Speci�cation

Figure A-1 shows the ExSpect speci�cation of a simple route. The dashed stores correspond to
variables that can be changed by the control level. In ISL, these variables are marked with black
diamonds. The other store variables visible at the route level are directly related to trackside
devices.
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Figure A-1: System demo.

Figure A-2 shows the contents of the system track. It di�ers from the implementation suggested
in Section 4.1 in several ways. First, the LSC is split into two parts, one for the telegrams A01{A06
and one for the telegrams B01{B07. This is, however, just a technicality to keep the ExSpect sys-
tems manageable. Second, the interface between the system interface and the systems tracklscA
and tracklscB contains one place for each telegram instead of just the place LSCin. The reason
for this is that Interface already determines the name of an incoming telegram and directs it to
a corresponding output pin. The approach explained in Section 4.1 is simpler and yields a uniform
system interface for each of the six generic elements. Third, all store variables of the track LSC
are visible at the intermediate level shown in Figure A-2. As explained, it is more elegant to hide
them as much as possible inside the systems tracklscA and tracklscB.

The system Interface is not discussed here. Below, a system InterfaceProc is discussed
which is used in signal and corresponds exactly to the system interface that is described in
Section 4.1.

Figures A-3 and A-4 show the systems tracklscA and tracklscB. Except for the processor
InSwitch, which is missing here, they are exactly as described in Section 4.1. Note that tracklscB
contains several subsystems genTimerName, where TimerName is the name of a timer variable. These
systems are telegram generators. The details are explained below.

Figures A-3 and A-4 show that the ExSpect speci�cation of an LSC is a fairly complex set
of pictures. In order to improve the readability of such pictures, ExSpect provides the possibility
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Figure A-3: System tracklscA.

23



B05perB05per

ss

TSUTSU

ss

TPConceTPConce

ss

RRXRRX

ss

PERPER

ss

ERLERL

ss

B05per_bB05per_b

ss

B05per_aB05per_a

ss

TSOTSO

ss

TRLTRL

ss

RDIRDI

ss

PSBPSB

ss

SRPSRP

ss

TPOTPO

ss

TPCperTPCper

ss

B04perB04per

ss

PSOPSO

ss

ch_negch_neg

oo

B07outB07out

oo

B05outB05out

oo

B06outB06out

oo

B04outB04out

oo

B03outB03out

oo

B02outB02out
oo

terminatedterminated

oo

B06inB06in
ii

B07inB07in

ii

B05inB05in

ii

checkcheck

ii

B04inB04in

ii

B03inB03in

ii

B01inB01in
ii

SetNameB07SetNameB07

GenB05per_aGenB05per_a

GenB05per_bGenB05per_b

IfSRR.2IfSRR.2

SetB05per_b0SetB05per_b0

SetB05per_a0SetB05per_a0SetB05per0SetB05per0

IfSRRIfSRRGenB05perGenB05per IfTPO.4IfTPO.4

SetTPConce1.2SetTPConce1.2

SetTPConce1SetTPConce1

IfTPO.3IfTPO.3

IfPRIb2a.2IfPRIb2a.2

IfPRIa2b.2IfPRIa2b.2 SetPER1SetPER1
SetTSO0.2SetTSO0.2

SetTSO0SetTSO0

IfTSU.5IfTSU.5

IfPERIfPER

SetRRX0SetRRX0

SetTRL0SetTRL0

SetPER0SetPER0

SetERL0SetERL0TestDir_b.2TestDir_b.2

TestDir_a.2TestDir_a.2

SetDir_b.4SetDir_b.4

SetDir_a.4SetDir_a.4

SetDir_a.3SetDir_a.3

SetDir_b.3SetDir_b.3

IfRDI.4IfRDI.4

IfRDI.3IfRDI.3

SetB05per_b1SetB05per_b1

SetB05per_a1SetB05per_a1

SetB05per1.2SetB05per1.2

SetTSO1.3SetTSO1.3

SetTSO1.2SetTSO1.2 IfTRLIfTRL

IfTSU.4IfTSU.4

IfTSU.3IfTSU.3

IfPRIb2aIfPRIb2a

IfPRIa2bIfPRIa2b

TestDir_bTestDir_b

TestDir_aTestDir_a

Exchange_a_bExchange_a_b

SetNameB06SetNameB06

IfTSU.2IfTSU.2

SetB04per0SetB04per0

SetB04per_1.2SetB04per_1.2SetTPCper1.2SetTPCper1.2IfTPO.2IfTPO.2

SetDir_a.2SetDir_a.2

SetDir_b.2SetDir_b.2

SetDir_aSetDir_a

SetDir_bSetDir_b

IfRDI.2IfRDI.2

IfRDIIfRDI

SetNameB02SetNameB02 SetB05per1SetB05per1

SetB04per_1SetB04per_1SetTPCper1SetTPCper1

GenB04perGenB04per

SetTSO1SetTSO1

IfSRPIfSRP

IfTPOIfTPO

SetSRP0SetSRP0

SetSRP1SetSRP1IfTSUIfTSU

SetPSB1SetPSB1

SetPSB0SetPSB0IfPSOIfPSO

Figure A-4: System tracklscB.
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to decompose pictures into several layers. Figures A-3 and A-4, for example, each consist of four
layers: one layer containing the control logic (the pins check, ch neg, etc.), another layer containing
all store pins (variables), a third layer containing all ordinary places and pins, and �nally a layer
containing all processors and systems. By hiding the appropriate layers, it is possible to focus on
speci�c aspects of a speci�cation. If one, for example, hides the control logic and all the variables in
the ExSpect speci�cation of an LSC, the result is a picture that strongly resembles the corresponding
ISL speci�cations in [3].

Figure A-5 shows the contents of system signal. It is almost as described in Section 4.1. As
explained, InterfaceProc is just the system interface in Section 4.1. The details are explained
below. Again, all store variables of the system signalLSC are visible at the intermediate level; they
should be hidden inside signalLSC.
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Figure A-5: System signal.

Figure A-6 shows the implementation of the system InterfaceProc. It corresponds to the
system interface as described in Section 4.1. System InterfaceProc initializes the direction of
all incoming telegrams. Incoming telegrams are then stored in tin, waiting for the scheduler. The
scheduler is triggered by a place LSCfree. The details of the scheduling algorithm are explained
below. Telegrams that leave the LSC are directed to the correct output pin by the processor
LSCoutSwitch.

Figure A-7 shows the implementation of the system signalLSC. It is completely di�erent from
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Figure A-6: System InterfaceProc.

the implementation suggested in Section 4.1. External telegrams as well as telegrams that are
generated internally by the telegram generators on the right, are copied into place intern tel.
This place is the input place to a processor that implements the signal LSCs. Basically, this
processor is a large conditional statement, which de�nes the e�ect of all possible telegrams on the
state of the LSC. This implementation was chosen for two reasons. First, it served as a test to �nd
out whether it is possible to implement an entire LSC by a single ExSpect processor, using the
expressive power of the functional language of ExSpect. This seems possible, although it appears
di�cult to automate such a translation (see [12]). Second, it saved time, which is a purely pragmatic
reason. A disadvantage of this approach is that it is no longer possible to simulate ISL speci�cations
at the LSC level. An advantage is that simulation of complex routes is faster when compared to
the other approach.
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Figure A-7: System signalLSC.
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Figure A-8 shows an implementation of system Scheduler. The processor NextTelegram can
�re when a token is available in enabled. Tokens that are received via either ch neg or LSCfree
are simply copied to this place. The reason for di�erentiating between ch neg and LSCfree is that
other scheduling algorithms might use this information.

Processor NextTelegram determines the next telegram that may enter the LSC as follows.
First, it checks the store toCheck, which contains identi�ers of telegram generators in the LSC
that still need to be checked for the availability of telegrams. If this store still contains identi�ers,
NextTelegram checks the corresponding telegram generators one by one via the pins check and
ch neg (see also Section 4.1). After checking a generator, its identi�er is removed from toCheck.
If it does not contain any identi�er anymore, NextTelegram picks the �rst telegram from tin,
provided of course that one is available.

Processor ResetCheck periodically produces a token for ToCheck that contains the set of all
identi�ers of telegram generators in the LSC. The time period is a parameter of the system that is
speci�ed in ISL.

tintin

ss

checkcheck

oo

LSCinLSCin

oo

LSCfreeLSCfree

ii

ch_negch_neg

ii

Copy.2Copy.2

enabledenabled

CopyCopy

NextTelegramNextTelegram

ResetCheckResetCheck

timertimer

toChecktoCheck

Figure A-8: System Scheduler.

The only systems that are not yet discussed are the telegram generators. There are three
such systems, namely gen tel once, gen tel per, and gen tel pt. The �rst one corresponds to
some kind of timer which generates a single telegram when the associated variable is true. After
generating a telegram, it resets the associated variable. System gen tel per is the periodic timer
that we have seen several times before. System gen tel pt corresponds to the so-called projected
timer, which is an ordinary timer that is set when its associated variable is set to true and generates
a telegram upon timing out.

Figures A-9 and A-10 show the systems gen tel once and gen tel per respectively. Their
implementation is almost identical. Upon receiving a token with the correct identi�er via check,
depending on the value of the variable ass var, either a telegram is generated that enters the
LSC via tout or a negative acknowledgement is returned to the scheduler via ch neg. The pro-
cessor pgen tel once in system gen tel once resets the variable ass var each time a telegram is
generated. Processor pgen tel per in the periodic timer does not reset the associated variable.

Although several instances of the system gen tel pt occur in signalLSC, they never need to
generate telegrams in the part of the LSC that has been implelemented. Therefore, they are not
completely implemented. A picture of its current implementation is omitted.
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Figure A-9: System gen tel once.
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Figure A-10: System gen tel per.

A.2 A Typical Simulation Session

This section describes a typical simulation session of the ExSpect speci�cation given in the previous
section. It corresponds to the example described in [3, Sections 4.4.1 { 4.5.1]. It is recommended
to use [3] for a better understanding of the session described below.

After starting the simulation of the system demo and loading the default con�guration �le, the
following steps must be taken.

Route proving

� Add token (data: f(RT,1),(ST=0),(C=0),(F=0)g, direction: 1, name: 121) to place
extin s2. The numbers in the direction and name �eld are numerical representations of
\a" and \M01" respectively.

� Open signal2.

� Open InterfaceProc; open Scheduler.

� Simulate until the telegram arrives in the place LSCin in signal2.

� Open signalLSC.
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� Simulate until the telegram appears in LSCout.

� View the token in LSCout. The name �eld now contains a one, indicating that it is an A01
telegram.

� Close signal2.

� Simulate one step; the telegram appears in as2 bt in system demo.

� Open track.

� Simulate one step; a token appears in place check.

� Open tracklscB.

� Hide planes 2 and 3 respectively, and see what happens.

� Hide plane 1 and show plane 2.

� Show planes 1 and 3.

� Simulate until a token appears in place A01 in track; close tracklscB; open tracklscA.

� Simulate one step; the token passes through tracklscA and appears in LSCout; close track.

� Simulate three steps; the token passes at bs1 and ends in extout s1.

� View the token in extout s1; its name indicates that it is a P01 telegram.

Route marking

� Add an M02 token to place extin s2 with the same speci�cations as the M01 telegram above,
except for the name which is 122.

� Simulate until a token appears in as2 bt; the window First of as2 bt shows that it is an
A02 telegram.

� Simulate until the telegram leaves signal1 and appears in extout s1.

� View the �rst token of extout s1; it is a P03 telegram.

Proving for route locking

� Simulate one more step; an A03 telegram appears in bs1 at. This telegram was generated
by a periodic timer which was activated by the A02 telegram.

� Simulate until the telegram appears in as2 bt; it has become an A04 telegram.

Route locking

� Simulate until the telegram disappears in signal1. Another A03 telegram appears in bs1 at.

� Simulate one more step; the A04 telegram changed into an A05 telegram, in the mean while,
setting a periodic timer inside signal1 that is going to generate B01 telegrams.

� Continue the simulation; the A03 telegram proceeds and becomes an A04 telegram. Further-
more, the A05 telegram continues until it terminates inside signal2, setting another periodic
timer.
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Route monitoring

� Continue the simulation. After a while, an A06 telegram appears in as2 bt.

� Simulate until the A06 telegram terminates inside signal1 and a token appears in extout s2.
This token is a W01 telegram, showing the colour and speed indication at the signal.

At this point, the simulation reaches a stable point. If the simulation is continued, A06 telegrams
will appear periodically. Nothing else will happen, until a train arrives at the entry signal.

Train operated route release

� Change the token in TSU1 to false, indicating that a train has arrived at the entry signal.

� Continue the simulation. Another A06 telegram appears, and after a while, also a B01
telegram.

� Continue the simulation until the B01 telegram terminates in track.

At this point, the simulation reaches again a stable point until the train moves onto the track
segment.

� Change the token in TSUt to false, indicating that the train has moved onto the track segment.

� Continue the simulation. The next B01 telegram turns inside track and becomes a B02
telegram. The B02 telegram becomes a B03 telegram in signal1.

� Continue the simulation until a B04 telegram appears in bout.

The speci�cation of the signal element in [4] does not specify the e�ect of a B04 telegram that
enters the signal from side \a." However, in the simulation it does happen. We have found a
mistake in the speci�cations in [3]. This mistake has already been corrected by NS in a more recent
speci�cation of the signal element.

� Change TSU1 to true; the train has passed the entry signal.

� Continue the simulation until a B07 telegram terminates in signal2. No more A06 telegrams
will appear.

� Change TSU2 to false and TSUt to true; the train moves on.

� Continue the simulation. A B05 telegram appears which becomes a B06 telegram in signal2.
After continuing the simulation, the B06 telegram terminates and nothing will happen any-
more.
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