
PPP Driver
The PPP packet driver is a set of libraries in Dynamic C that allows the user to establish a PPP
(Point-to-Point Protocol) link over a full-duplex serial line between a Rabbit-based controller and
another system that supports PPP. You may also establish PPP links over Ethernet (PPPoE).

A common use of the PPP protocol is the transfer of IP packets between a remote host and an
Internet Service Provider (ISP) over a modem connection. The PPP packet driver supports the
transfer of Internet Protocol (IP) data and is compatible with all TCP/IP libraries for the Rabbit.

Establishing PPP links has become easier and more flexible. You can have as many different PPP
interfaces as you have available serial (and Ethernet) ports. You can also run PPP (over serial
and/or Ethernet) at the same time as ordinary non-PPPoE Ethernet.

1.0 PPP Libraries
The PPP driver is in three library files.

PPP.LIB

Contains routines to handle the link negotiation (LCP), authentication (PAP) and IP ne-
gotiation (IPCP). These are the three main sub-protocols of PPP. PPP.LIB calls rou-
tines in the other two libraries to handle the lower level (physical) layer. There are no
application-callable functions in any of the PPP libraries; PPP is mainly controlled via
the ifconfig() function and friends.

PPPLINK.LIB

Contains handlers for the asynchronous serial physical layer, namely the interrupt ser-
vice routine for transmitting and receiving characters over the serial link. It also handles
the insertion and detection of escape characters and CRC generation and checking.

PPPOE.LIB

Contains handlers for the PPPoE physical layer, which is mainly the access concentra-
tor discovery mechanism, and the addition of the PPPoE header to Ethernet packets.
This library calls the Ethernet driver library to handle the Ethernet physical layer.
PPP Driver Module 020-0062 Rev. A 1

A fourth library, MODEM.LIB, contains functions for controlling an external modem through a
full RS232 link. MODEM.LIB should not be required for most ISP connections, since most ISPs
these days auto-detect the use of PPP and do not require any special logon screen navigation.
Basic dial-up to an ISP is handled directly by ifconfig() settings, which do not require any
special modem control (providing that your modem has a Hayes-compatible interface).

MODEM.LIB is not directly related to PPP. It allows ASCII strings to be sent to and received from
the modem. Typically, these strings are AT commands and modem responses.

If you have special requirements for establishing communications with an ISP that cannot be han-
dled by the default PPP library methods, you will need to explicitly include MODEM.LIB and
write a program to establish the communications link. The program will typically need to com-
mand the modem to dial out; wait for a valid connection; send a user ID and password to the ISP
and validate the response. After this has completed successfully, PPP can be started using the
ifup() function. For a complete description of ifup() and other Dynamic C TCP/IP func-
tions, please see the Dynamic C TCP/IP User’s Manual..

NOTE: MODEM.LIB is currently limited to controlling a single modem. The modem
serial port and control lines are defined using macro constants, which should match
with the definitions of the PPP interface.

The sample program Samples\PPP\modem_test.c shows the general idea for using
MODEM.LIB.

2.0 Operation Details for PPP over Serial
The first step is to configure whatever transport medium will be used for the PPP connection. For
directly connecting a serial line to the peer, the two serial data lines TX and RX may be adequate.
The most common situation, however, will be some sort of modem.

2.1 The Modem Interface
The interface between a modem and a controller is either a true RS232 interface or a variation on
RS232 that uses TTL voltage levels for all of the signals. The latter are used by board-mounted
modem modules. If an external modem is used, an RS232 transceiver chip is needed to convert
RS232 voltages to logic signals and vice versa. A full RS232 connection has 3 outputs and 5
inputs from the controller’s point of view. In RS232 terminology, the controller is referred to as
the DTE (Data Terminal Equipment). Modems and other peripherals are referred to as DCE’s
(Data Communications Equipment).

The specifics of a dial-up PPP connection are dependent on the modem hardware and the ISP.
PPP Driver Module 020-0062 Rev. A 2

2.1.1 Rabbit Pin Connections to Modem
The modem control library, MODEM.LIB, defines default connections to the Rabbit as follows:

2.2 Flow Control
Hardware flow control is implemented for the Rabbit PPP system. It follows the RS232 conven-
tion of using Ready To Send (RTS) and Clear To Send (CTS) lines.

Flow control is not required for speeds up to and including 115200 bps. The internal character pro-
cessing is fast enough that the controller does not have to throttle incoming data flow. However,
the modem or peer may need to throttle transmitted data. It is recommended that the RTS (modem
to controller) line be connected for modems that cannot handle a continuous data stream at the
specified rate. You can also connect the CTS (controller to modem) line, but the controller will
merely assert this line continuously. To enable or disable hardware flow control, call
ifconfig() with the IFS_PPP_FLOWCONTROL parameter identifier. You should also specify
IFS_PPP_RTSPIN and IFS_PPP_CTSPIN parameter identifiers.

3.0 Operation Details for PPPoE
PPPoE avoids most of the complexities of PPP over serial. This is because the hardware (Ethernet)
is easy to set up, and no modems are involved. Actually, you might have something called a DSL
modem (or similar), but this type of modem does not have to do “dial-up” in the usual sense.

PPPoE is selected by defining the symbol USE_PPPOE to be a non-zero value. Currently, the only
value supported is ‘1’ with ‘2’ reserved for future controller boards that have a second Ethernet
chip. If you define USE_PPPOE, then you should also define IFCONFIG_PPPOE0 to contain
initialization options passed to ifconfig(). When PPPoE is specified, the interface is referred
to by IF_PPPOE0. (IF_PPPOE1 is reserved for future boards.)

Table 1. Rabbit Pin Assignments for Modem Connection

RS232 Signal Rabbit Pin Direction

DTR PB6 out

RTS PB7 out

CTS PB0 in

DCD PB2 in

RI PB3 in

DSR PB4 in

TD PC2 out

RD PC3 in
PPP Driver Module 020-0062 Rev. A 3

4.0 Link Control Protocol Options
Link Control Protocol is the first sub-protocol used on a PPP link. The following LCP options are
supported by the Rabbit PPP system:

For more information on these options, refer to RFC 1661: The Point-to-Point Protocol (PPP) at:

http://www.faqs.org/rfcs/rfc1661.html

5.0 Configuring PPP
Since multiple interfaces are supported, your application should call ifconfig() to change PPP
interface parameters at run-time, or define suitable IFCONFIG_PPP* macros for boot-time con-
figuration of each PPP interface (both serial and PPPoE).

You select serial port hardware to use with PPP by defining USE_PPP_SERIAL before including
dcrtcp.lib. Similarly, you select PPPoE by defining USE_PPPOE.

5.1 Serial Port Selection
PPP over asynchronous serial requires a suitable Rabbit serial port to be selected. You can use any
of the available ports, since they all support asynchronous communications.

The serial port selection is entirely dynamic, however there is a fixed mapping between interface
numbers and serial port hardware. IF_PPP0 always represents serial port A. IF_PPP1 is always
serial port B, and so on.

Table 2. Configuration Options

LCP Configuration
Option Type Field

Meaning of Option Type

01 MRU (Maximum-Receive-Unit)

02 ACCM (Async-Control-Character-Map)

03 Auth (Authentication-Type): PAP only

05 Magic Number

07 PFC (Protocol-Field-Compression)

08 ACFC (Address-and-Control-Field-Compression)
PPP Driver Module 020-0062 Rev. A 4

http://www.faqs.org/rfcs/rfc1661.html

The serial port hardware to use is determined by the USE_PPP_SERIAL macro, which your
application defines in order to specify PPP serial interfaces. USE_PPP_SERIAL is set to a bit-
wise OR combination of numbers representing the desired serial port(s). Ports are assigned
according to the following table.

The Rabbit 3000 supports an additional two serial ports, SERE and SERF, however the TCP/IP
library does not fully support use of these ports for PPP.

If multiple PPP serial interfaces are required, use (for example)

#define USE_PPP_SERIAL 0x0C

which, as the bitwise combination of 0x04 and 0x08, specifies SERC (IF_PPP2) and SERD
(IF_PPP3).

5.2 PPPoE Port Selection
Since all Z-World controller boards currently have at most a single Ethernet driver chip, only a
single PPPoE interface is available (however it can be shared with non-PPPoE Ethernet over the
same hardware - non-PPPoE Ethernet will use interface IF_ETH0 while PPPoE will use
IF_PPPOE0).

5.3 ifconfig() Options for PPP
The ifconfig() parameter identifiers described in this section pertain to any PPP interface,
whether serial or Ethernet. There are a considerable number of options (detailed in the Dynamic C
TCP/IP User’s Manual) pertinent to PPP over asynchronous serial. PPPoE does not, as yet, require
any special configuration options because of its relative simplicity.

The parameter identifiers listed here are passed to the ifconfig() function. They can also be
used in the appropriate IFCONFIG_PPP* macro definitions, to ensure that the interface(s) are
initialized correctly at boot time. For example, a run-time change to the userid and password might
be coded as follows:

ifconfig (IF_PPP2,
IFS_PPP_REMOTEAUTH, “myUserid”, “myPassword”,
IFS_END);

Table 3. Bitmap Values for USE_PPP_SERIAL

Interface Number Serial Port Bitmap Value

IF_PPP0 SERA 0x01

IF_PPP1 SERB 0x02

IF_PPP2 SERC 0x04

IF_PPP3 SERD 0x08
PPP Driver Module 020-0062 Rev. A 5

The same definition, for boot-time initialization, might be coded as

#define IFCONFIG_PPP2 \
other parameters \
IFS_PPP_REMOTEAUTH, “myUserid”, “myPassword”, \
other parameters

The general PPP properties set during initialization are:

All of these IFS_PPP_* macros (except the initialization and callback) have IFG_PPP_* ver-
sions that allow an application to look at the properties that have been set.

Table 4. Macros for PPP Initialization (Serial and Ethernet)

Macro Name Macro Description
Data Type(s) for

Macro Parms

IFS_PPP_ACCEPTIP Accept peer's idea of our local IP address. bool

IFS_PPP_REMOTEIP Try to set IP address of peer. longword

IFS_PPP_ACCEPTDNS Accept a DNS server IP address from peer. bool

IFS_PPP_REMOTEDNS
Set DNS server IP addresses for peer
(primary and secondary).

longword,
longword

IFS_PPP_AUTHCALLBACK
Called when a peer attempts to
authenticate.

int (*)()

IFS_PPP_INIT Sets up PPP with default parameters. none

IFS_PPP_REMOTEAUTH
Sets username and password to give to
peer.

char *, char *

IFS_PPP_LOCALAUTH
Required username and password for
incoming peer

char *, char *
PPP Driver Module 020-0062 Rev. A 6

5.4 ifconfig() Options for Serial PPP
The ifconfig() parameter identifiers described in this section pertain to serial PPP interfaces
only. (You can specify these options for PPPoE interfaces, but they will be quietly ignored.) They
may also be used in the appropriate IFCONFIG_PPP* macro definitions for boot-time initializa-
tion.

All of these IFS_PPP_* macros have IFG_PPP_* versions that allow an application to look at
the properties that have been set.

The parameter for the IFS_PPP_SENDEXPECT option is a string containing a send/expect script
to run when the PPP connection comes up. It is a series of tokens separated by spaces, alternating
between a string to transmit, and a string to expect back.

Table 5. Macros for PPP Initialization (for Serial)

Macro Name Macro Description
Data Type(s)

for Macro
Parms

IFS_PPP_SPEED Set serial PPP speed (bps) longword

IFS_PPP_RTSPIN Define the RTS pin. int, char *, int

IFS_PPP_CTSPINf Define the CTS pin. int, int

IFS_PPP_USEPORTD
Use parallel port D instead of parallel port C for
serial ports A and B.

bool

IFS_PPP_FLOWCONTROL Turn hardware flow control on or off bool

IFS_PPP_HANGUP
An optional string to send to the modem after
PPP shuts down.

char *

IFS_PPP_MODEMESCAPE

When enabled, sends modem escape sequences
before send/expect or hangup sequence is:
‘<delay>+++<delay>’ This is recognized by
almost all modems to force them into command
mode.

bool

IFS_PPP_SENDEXPECT
A formatted send and expect sequence for
dialing and shell login.

char *

IFS_PPP_USEMODEM Specify whether to use modem dialout string. bool
PPP Driver Module 020-0062 Rev. A 7

For example:

SEscript = “ATDT5551212 CONNECT ‘’ ogin: ‘Joe User’
word: secret PPP”;

The sequence is:

1. Send ATDT5551212 - dials up an ISP.

2. Wait for the word CONNECT.

3. An empty send string, ‘’ means don’t send anything and wait for the next expect string.

4. Wait for “login:” or “Login:” By leaving off the ‘L’ either one will match.

5. Send ‘Joe User’ Note that this token is contained in single quotes, because it contains a
space within it.

6. Wait for “password:” or “Password:”

7. Send the password.

8. Wait for the sequence ‘PPP’ This indicates a PPP session has started.

5.4.1 Additional Rules for Send/Expect Scripts
• A carriage return character (ASCII 13) is automatically sent after each send token

• An ampersand(&) at the start of an expect token indicates that the driver should wait indef-
initely for that token to be received. This is useful when waiting to answer a call, e.g., To set
the modem to answer and wait indefinitely for a connection “ATS0=1 &CONNECT”

• As mentioned above, an empty token ‘’ is immediately skipped. This allows for a chain of
expect tokens to be used.

• The macro PSS_MODEM_CONNECT_WAIT determines the total time for the script. If this
is exceeded, a timeout failure will occur and the interface will fail to come up. Using the
ampersand modifier resets this timeout.

Note that the IFS_PPP_USEMODEM specifies that PPP assumes that it is talking to a modem.
When the interface is being brought up, it will first run through the send/expect script. After the
script completes, PPP will assume that it can launch straight into LCP. If this is not appropriate, do
not use IFS_PPP_SENDEXPECT or IFS_PPP_USEMODEM. Instead, use the facilities of
MODEM.LIB to perform an appropriate login to the ISP. Only when this is complete should you
call ifup().

Use of MODEM.LIB entails some limitations:

• Only one PPP serial interface can use MODEM.LIB.

• You need to configure MODEM.LIB to match the serial port you are using for PPP.

• Ensure that you specify an IFCONFIG_PPP* default such that the interface remains
“down” at boot-time. In other words, do not append IFS_UP to the IFCONFIG_PPP*
definition.
PPP Driver Module 020-0062 Rev. A 8

5.5 Starting and Stopping PPP Interfaces
The details of establishing and tearing down PPP links are handled by sock_init() and
tcp_tick(), as are all other TCP/IP functions.

To start a PPP interface ifup() is used, just as it is for non-PPPoE Ethernet interfaces. One dif-
ference that you should note is that the interface will not usually be up after ifup() returns.
ifup() only sets the process in motion, which takes much longer for PPP than it does for non-
PPPoE Ethernet.

Your application should be aware of this, since you will not be able to open sockets on an interface
that is not fully enabled. If necessary, you can poll the interface to wait for it to come up. While
polling, you must call tcp_tick() regularly. This is because it is actually the processing driven
from tcp_tick() that drives the whole PPP negotiation machinery.

The correct way to poll an interface is given by the following code fragment. This code includes
tests for the possibility that the interface may not be able to come up (e.g., because of a time-out).

ifup(IF_PPP2);

while (ifpending(IF_PPP2) == 1) tcp_tick();

if (!ifstatus(IF_PPP2))
printf(“Failed!\n”);

A similar consideration applies for bringing the interface down:

ifdown(IF_PPP2);

while (ifpending(IF_PPP2) == 3) tcp_tick();

Note that there is no need to test for an interface “failing to come down,” however the tear-down
process may take a short time. If you wait for the interface to come down before restarting it then
there is a better chance that the link will come back up successfully, since the peer will have been
notified properly.

NOTE: For PPP links with IFS_PPP_USEMODEM in effect, the process of bringing
the interface up and down will include the modem dial-out and hang-up procedure. If
you had USEMODEM in effect when connecting, but turned it off during the connection,
then ifdown() will not perform modem hang-up. You will need to “manually” hang
up the modem (or possibly just renegotiate from the LCP phase, if this is what you
intended, by calling ifup()).
PPP Driver Module 020-0062 Rev. A 9

6.0 API Functions
This section describes the functions for modem control.

ModemClose

void ModemClose(void);

DESCRIPTION

Closes the serial driver down.

LIBRARY

MODEM.LIB

ModemConnected

int ModemConnected(void);

DESCRIPTION

Returns true if the DCD line is asserted, meaning the modem is connected to a remote
carrier.

RETURN VALUE

1: DCD line is active.
0: DCD inactive (nothing connected).

LIBRARY

MODEM.LIB
PPP Driver Module 020-0062 Rev. A 10

ModemExpect

int ModemExpect(char *send_string, unsigned long timeout);

DESCRIPTION

Listens for a specific string to be sent by the modem.

PARAMETERS

send_string A NULL-terminated string to listen for.

timeout Maximum wait in milliseconds for a character.

RETURN VALUE

1: The expected string was received.
0: A timeout occurred before receiving the string.

LIBRARY

MODEM.LIB

ModemHangup

int ModemHangup(void);

DESCRIPTION

Sends "ATH" and "ATZ" commands

RETURN VALUE

1: Success.
0: Modem not responding.

LIBRARY

MODEM.LIB
PPP Driver Module 020-0062 Rev. A 11

ModemInit

int ModemInit(void);

DESCRIPTION

Resets modem with AT, ATZ commands.

RETURN VALUE

1: Success.
0: Modem not responding.

LIBRARY

MODEM.LIB

ModemOpen

int ModemOpen(unsigned long baud);

DESCRIPTION

Starts up communication with an external modem.

PARAMETERS

baud The baud rate for communicating with the modem.

RETURN VALUE

1: External modem detected
0: Not connected to external modem

LIBRARY

MODEM.LIB
PPP Driver Module 020-0062 Rev. A 12

ModemReady

int ModemReady(void);

DESCRIPTION

Returns true if the DSR line is asserted.

RETURN VALUE

1: DSR line is active.
0: DSR inactive (nothing connected).

LIBRARY

MODEM.LIB

ModemRinging

int ModemRinging(void);

DESCRIPTION

Returns true if the RI line is asserted, meaning that the line is ringing.

RETURN VALUE

1: RI line is active.
0: RI inactive (nothing connected).

LIBRARY

MODEM.LIB

ModemSend

void ModemSend(char *send_string);

DESCRIPTION

Sends a string to the modem.

PARAMETERS

send_string A NULL-terminated string to be sent to the modem.

LIBRARY

MODEM.LIB
PPP Driver Module 020-0062 Rev. A 13

ModemStartPPP

void ModemStartPPP(void);

DESCRIPTION

Hands control of the serial line over to the PPP driver.

LIBRARY

MODEM.LIB

PPPactive

int PPPactive(void);

DESCRIPTION

Returns boolean value indicating if there is currently an active link to a peer.

RETURN VALUE

>0: Active link to peer.
0: No active link.

LIBRARY

PPP.LIB

PPPnegotiateIP

void PPPnegotiateIP(unsigned long local_ip, unsigned long
remote_ip);

DESCRIPTION

Sets PPP driver to negotiate IP addresses for itself and the remote peer. Otherwise, the
system will rely on the remote peer to set addresses.

PARAMETERS

local_ip IP number to use for this PPP connection.

remote_ip IP number that the remote peer should be set to.

LIBRARY

PPP.LIB
PPP Driver Module 020-0062 Rev. A 14

PPPSerialGetErrors

word PPPSerialGetErrors(void);

DESCRIPTION

Gets a bit field with flags set for any errors that occurred. These flags are then cleared,
so that a particular error will only cause the flag to be set once.

RETURN VALUE

A bit field with flags for various errors. The errors along with their bit masks are as fol-
lows:

• PPP_NOBUFFER 0x01

• PPP_RXOVERRUN 0x02

• PPP_BUFFEROVERFLOW 0x08

The high byte of the return value contains the number of CRC errors since the last call
to this function (0-255).

LIBRARY

PPPLINK.LIB

PPPsetAuthenticatee

void PPPsetAuthenticatee(char *username, char *password);

DESCRIPTION

Sets the driver up to send a PAP authentication message to a peer when requested.

PARAMETERS

username The username to send to the peer. The argument string is not cop-
ied, so the argument string must stay constant.

password The password to send to the peer. The argument string is not cop-
ied, so the argument string must stay constant.

LIBRARY

PPP.LIB
PPP Driver Module 020-0062 Rev. A 15

PPPsetAuthenticator

void PPPsetAuthenticator(char *username, char *password);

DESCRIPTION

Sets the driver up to require a PAP authentication message from a peer. Negotiation will
fail unless the peer sends the specified username/password pair. This function is gener-
ally used when the Rabbit is acting as a dial-in server.

PARAMETERS

username The user name that the peer must match for the link to proceed.

password The password that the peer must match for the link to proceed.

LIBRARY

PPP.LIB

PPPshutdown

int PPPshutdown(unsigned long timeout);

DESCRIPTION

Sends a Link Terminate Request packet. Waits for link to be torn down.

PARAMETERS

timeout Number of milliseconds to wait before giving up on a response
from the peer.

RETURN VALUE

1: Shutdown succeeded.
0: Shutdown timed-out.

LIBRARY

PPP.LIB
PPP Driver Module 020-0062 Rev. A 16

	PPP Driver
	1.0 PPP Libraries
	2.0 Operation Details for PPP over Serial
	2.1 The Modem Interface
	2.2 Flow Control

	3.0 Operation Details for PPPoE
	4.0 Link Control Protocol Options
	5.0 Configuring PPP
	5.1 Serial Port Selection
	5.2 PPPoE Port Selection
	5.3 ifconfig() Options for PPP
	5.4 ifconfig() Options for Serial PPP
	5.5 Starting and Stopping PPP Interfaces

	6.0 API Functions
	ModemClose
	ModemConnected
	ModemExpect
	ModemHangup
	ModemInit
	ModemOpen
	ModemReady
	ModemRinging
	ModemSend
	ModemStartPPP
	PPPactive
	PPPnegotiateIP
	PPPSerialGetErrors
	PPPsetAuthenticatee
	PPPsetAuthenticator
	PPPshutdown

