


LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

MASTER’S THESIS

IMPLEMENTING GATEWAY MONITORING SERVICE FOR INFRASTRUCTURE 

SENSOR NETWORKS

The topic of Master’s Thesis was approved by the council of the Department of Information 
Technology on 09.12.2009

Supervisors: Professor Jari Porras
D.Sc (Tech) Pekka Jäppinen

Lappeenranta, September 29, 2010

M.Mubeen Khan
Leirikatu 2 A 2
53600 Lappeenranta

Mobile: +358 468949501
mubeen.khan@lut.fi



ABSTRACT

Lappeenranta University of Technology

Department of Information Technology

Khan, Muhammad Mubeen

Implementing Gateway Monitoring Service for Infrastructure Sensor Networks

Thesis for the Degree of Master of Science in Technology

2010

66 pages, 30 figures, 3 tables and 2 appendices.

Examiners: Professor Jari Porras

D.Sc. (Tech) Pekka Jäppinen

Keywords: Web Services, Wireless Sensor Networks, Sensors Monitoring, Gateway 

Application, Wireless Sensor Node, Mobile Client.

Wireless sensor networks and its applications have been widely researched and implemented 

in both commercial and non commercial areas. The usage of wireless sensor network has 

developed its market from military usage to daily use of human livings. Wireless sensor 

network applications from monitoring prospect are used in home monitoring, farm fields and 

habitant monitoring to buildings structural monitoring. As the usage boundaries of wireless 

sensor networks and its applications are emerging there are definite ongoing research, such as 

lifetime for wireless sensor network, security of sensor nodes and expanding the applications 

with modern day scenarios of applications as web services. The main focus in this thesis work 

is to study and implement monitoring application for infrastructure based sensor network and 

expand its usability as web service to facilitate mobile clients. The developed application is 

implemented for wireless sensor nodes information collection and monitoring purpose 

enabling home or office environment remote monitoring for a user. 



TIIVISTELMÄ

Lappeenrannan Teknillinen Yliopisto

Tietotekniikan osasto

Khan, Muhammad Mubeen

Yhdyskäytävällisen valvonta palvelun toteutus infranstruktuurisessa sensoriverkossa

Diplomityö

2010

66 sivua, 30 kuvaa, 3 taulukkoa ja 2 liitettä.

Tarkastajat: Professori Jari Porras

TkT Pekka Jäppinen

Hakusanat: Web-palvelu, langaton sensoriverkko, valvonta-sensori, yhdyskäytävä sovellus, 

langaton sensorisolmu, mobiililaite.

Langattomat sensoriverkot ja niiden sovellukset ovat laajasti tutkittu aihe, joka on otettu 

käyttöön niin kaupallisilla kuin ei-kaupallisilla alueilla. Langattomien sensoriverkkojen käyttö 

on lisääntynyt ja markkina-alue on kasvanut armeijan käytöstä jokapäiväiseen käyttöön 

auttaen ihmisten arkea. Valvonnan näkökulmasta langattomia sensoriverkkoja ja sen 

sovelluksia hyödynnetään muunmuassa kodin ja asukas-seurannassa, viljelys-pelloilla sekä 

rakennusvalvonnassa.  Samaan aikaan kun langattomien sensoriverkkojen ja sovelluksien 

käyttörajat ovat laajentuneet, on tutkimus lisääntynyt. Meneillään olevat tutkimukset koskevat 

muunmuassa sensoriverkkojen elinkaarta, sensorisolmujen tietoturvallisuutta ja sitä kuinka 

laajentaa sensoriverkkojen sovelluksia web-palveluiksi. Diplomityön tarkoituksena on ollut 

toteuttaa infrastuktuuriperusteisen sensoriverkon sovellus ja laajentaa sovelluksen 

käytettävyyttä web-palveluna, jolloin sovellusta voidaan hyödyntää myös mobiililaitteella. 

Toteutettu sovellus on tarkoitettu sensorisolmujen keräämän informaation kokoamiseen ja 

valvontaan sallien täten käyttäjän kodin tai toimistoympäristön valvonnan.



ACKNOWLEDGEMENTS

This thesis is the result of my studies in the department of Information Technology at 

Lappeenranta University of Technology. The thesis work was carried out in department of 

Communication Software Laboratory (ComLab) as partial fulfillment for the requirement of 

the degree of Masters of Science in Technology.

I would like to give my special thanks to LUT international services and people involved in 

admission services for selecting me for the Master’s Degree program. It has been truly 

learning journey this far and it will lead me positively towards better aspect of life. I feel 

myself blessed to have my supportive parents and same way the teachers at university. I will 

always remember my mother words “Teachers are next to your parents: talk to them humble, 

listen to them carefully and respect them as they are working for greater good of spreading the 

knowledge”.

My sincere gratitude I give to Jari Porras and Pekka Jäppinen who have been great teachers 

and supervisors being role models throughout my studies to the completion of this thesis work. 

Their calm support and amicable demeanor is excellent encouragement for students. I also 

want to thank Susanna Koponen who has been great help assisting my study plan. 

My appreciation I give to my brothers Ali, Afaraz, sister Abeer for their encouragement, my 

uncle Ishtiyaq Khan for financial support at time of needs and all the friends whom I have met 

in LUT. Last, but not least Minna Kunttu, Your morale support has been important, especially 

being supportive all the time, without you I don’t think I would have completed the degree on 

time. 

Mubeen Khan



TABLE OF CONTENTS

1. INTRODUCTION .................................................................................................................. 1

1.1 Objective and Outline of Thesis ....................................................................................... 2

2. COMMUNICATIONS IN WIRELESS SENSOR NETWORKS.......................................... 4

2.1 Traditional Sensor Networks and Wireless Sensor Networks .......................................... 4

2.2 WSN Network Topologies ............................................................................................... 5

2.2.1 Star Network (Single Point-to-Multipoint)................................................................ 6

2.2.2 Mesh Network............................................................................................................ 7

2.2.3 Hybrid Star – Mesh Network..................................................................................... 8

2.3 Analyses of WSN Routing Protocols ............................................................................... 9

2.4 Zigbee and IEEE 802.15.4 in Wireless Sensor Networks .............................................. 14

2.5 Applications and Security Aspects of WSN................................................................... 16

3. HARDWARE & SOFTWARE CONSTRAINTS IN SENSOR NETWORK...................... 17

3.1 Component of Sensor Node............................................................................................ 17

3.2. Mote-Micaz and Gateway MIB-520.............................................................................. 19

3.3 SunSPOT ........................................................................................................................ 20

3.4 Software Constraints....................................................................................................... 22

3.5 TinyOS and nesC............................................................................................................ 23

3.6 Squawk (JVM) on SunSPOT.......................................................................................... 26

4. MIDDLEWARE APPROACH TOWARDS SENSOR MONITORING SERVICE ........... 29

4.1 WSN and Middleware’s ................................................................................................. 29

4.2 Semantic Web and Web Services ................................................................................... 31

4.3 Semantic Web Languages............................................................................................... 34

4.4 Service Oriented Architecture for Sensor Networks ...................................................... 35

4.5 WSN Application Approach to Sensor Monitoring Service........................................... 36



5. SYSTEM IMPLEMENTATION.......................................................................................... 39

5.1 Programming Sensor Boards .......................................................................................... 40

5.2 Setting Host Machine & Collecting Data ....................................................................... 41

5.3 Implementing Web Services for Sensor Information ..................................................... 42

5.4 Client Interfaces Web based & Mobile based ................................................................ 43

6. CONCLUSIONS .................................................................................................................. 46

REFERENCES ......................................................................................................................... 48

APPENDIX .............................................................................................................................. 55



ABBREVIATIONS

AES Advanced Encryption Standard    

AODV Ad hoc On-Demand Distance Vector    

API Application Programming Interface    

ARM Advanced RISC Machine    

BT Bluetooth    

CLDC Connected Limited Device Configuration    

CORBA Common Object Request Broker Architecture    

DL Description Logics    

DSDVR Destination-Sequenced Distance-Vector Routing    

DSSS Direct sequence spread spectrum    

ECC Elliptic Curve Cryptography    

EEPROM Electrically Erasable Programmable Read-Only Memory

GEAR Geographic and energy aware routing    

GPRS General Packet radio service    

I/O Input/Output    

IC Integrated Circuit    

IEEE Institute of Electrical and Electronics Engineers    

IP Internet Protocol    

ISM Industrial Scientific and Medical    

J2SE Java 2 Platform Standard Edition    

JVM Java Virtual Machine    

LEACH Low-energy adaptive clustering hierarchy    

LIME Linda in a Mobile Environment    

MAC Medium Access Control    

MANETs Mobile Ad Hoc Networks    

MIDP Mobile Information Device Profile    

MiLAN Middleware Linking Applications and Networks    

MIPS Million Instructions Per Second    

nesC network embedded system C    



OGC OpenGIS Consortium    

OIL Ontology Interchange Language    

OMG Object Management Group   

OOP Object Oriented Programming    

OQPSK Offset Quadrate Phase-Shift keying    

OS Operating System    

OSI Open System Interconnection    

PAN Personal Area Network    

PEGASIS Power-Efficient Gathering in Sensor Information System

PHP Hypertext Preprocessor    

PRB Processor Radio Board    

QoS Quality of Service    

RAM Random Access Memory    

RDF Resource Description Framework    

RF Radio Frequency    

ROM Read Only Memory    

RSA Rivest-Shamir-Adleman encryption algorithm    

SDK Software development kit    

SKEW Self key establishment protocol for wireless sensor    

SLIM Secured Lightweight Interactive Middleware   

SML Sensor Model Language    

SOA Service Oriented Architecture   

SOAP Simple Object Access Protocol    

SPIN Sensor Protocol for Information via Negotiation    

SunSPOT Sun Small Programmable Object Technology    

SWE Sensor Web Enablement    

TinyDB Tiny Database    

TinyOS Tiny Operating System    

TSP Twisted Shielded Pair    

UML Unified Markup Language    

USB Universal Serial Bus    



VM Virtual Machine    

WSDL Web Service Description Language    

WSN Wireless Sensor Network



1

1. INTRODUCTION

Wireless Sensor Network (WSN) is a network consisting of small, battery-powered 

wireless devices which have on-board processing, communication and sensing 

capabilities. WSN uses radio communication method and technologies for 

communication among sensor nodes (MOTES) for low power consumption [1]. Wireless 

sensor nodes are designed with concept of having small electronic device which can 

sense for example environment changes, compute and transmit that data to remote host. 

In recent advancement with the WSN technology the size of the sensor nodes can be 

microscopically small for example in case of surveillance use, so that they can be hidden 

in surrounding environment and deployed for monitoring usage [2]. The usage of WSN 

and its application is widening in industrial and commercial purpose and can be seen in 

cases like remote healthcare, home surveillance or monitoring, industry equipment and 

process monitoring. 

The wireless sensor node heavily relies on the battery power source for communication 

and co-operate data with other sensor nodes to compute and transmit data to root node. 

With the limitation of battery power it is unaffordable if senor node goes down especially 

in extensively sensitive monitoring environment. Different research works has been done 

to overcome this challenge by creating power aware routing protocol. Although this 

research area is interesting but it is beyond scope of this thesis work and mainly the work 

is focusing on monitoring application aspects of WSNs.

The use of WSN and its applications are increasing in general living needs. In an example 

case a user is requiring to know the temperature, humidity, light and position of the 

equipment connected with wireless sensor node at user’s home or office. The challenge 

occurs when added for information monitoring the scenario where user has access only to 

mobile phone instead of desktop system. The challenge of technology concept evolves 

when different kind of wireless sensors using proprietary communication protocol are 

connected to a host computer which facilitates user sensor monitoring requirements. The 

challenge is resolved by using collected sensing data from different wireless sensor nodes 

and processed to gateway computer application, which act as intermediate between 



2

sensor network and client by enabling web services. The gateway computer consists of 

basestation node and gateway application to integrate different sensors node data, 

providing web service to give sensor data access to user anywhere on any device. Figure 

1 shows the architecture scenario of infrastructure wireless sensor network with gateway 

server and possible clients. In Figure 1 white color nodes are wireless sensor nodes and 

black nodes are base station device. The base station device is connected to application 

server which is running sensor information collection application and web server. The 

client can be either a desktop client or mobile client whose requirement is to monitor the 

collected sensor information from deployed wireless sensor networks.   

Figure 1. Network Architecture Diagram of Gateway Monitoring Application for 

Infrastructure Sensor Networks

1.1 Objective and Outline of Thesis

The main objective of this thesis is to explore the wireless sensor networks and their 

application usage in monitoring environment. On top of the work is the realization of web 

services benefits by integrating it with the standard desktop application to facilitate 

mobile client to view sensor node information from anywhere. The purpose of developed 

gateway application is that it serves as an intermediate between wireless sensor networks 



3

and client. The mobile client will have same sensor data information as desktop client. 

Therefore gateway server is not only responsible for collecting sensor data but to also 

provide requested data to browser based and mobile based client. In addition to the WSN 

application development, mobile phone based application monitoring client development 

are taken into account. Programming language for application development for wireless 

sensor node is done with nesC language for Crossbow Inc wireless sensor nodes and Java

for SunSPOT wireless sensor nodes. Different kind of middleware systems are reviewed 

and studied for the development of simple adoptable monitoring system for WSN and 

sensor node information collection. The final application developed is well suited for 

standard infrastructure WSN monitoring and it is possible to apply this system in a home 

or small scale environment monitoring. 

The chapter 2 introduces to the wireless sensor networks, their network topologies and 

wireless sensor network communications with routing protocols. Chapter 3 is focusing on 

the wireless sensor hardware used in the project and the operating system in contrast to 

the programming language for wireless sensor boards. Chapter 4 discuss about the 

different middleware reviewed for WSN followed by Semantic Web, Web Services, 

Languages and approach to create monitoring service for WSN. Chapter 5 describes the 

technical project details about implementing the gateway monitoring for WSN and 

services. Finally the conclusion part summarizes the thesis and future work and possible 

enhancement to the work.



4

2. COMMUNICATIONS IN WIRELESS SENSOR NETWORKS

This chapter presents the WSN topologies and routing protocols following to 

communication methods for wireless sensor node. WSN is normally composed of number 

of sensor nodes scattered in physical space, which sync data to one or more base station 

or root node. The main function of base station in WSN is to query data from sensor 

nodes for example physical sensing information and process that data to required 

application [3]. 

2.1 Traditional Sensor Networks and Wireless Sensor Networks

Earlier in industrial and other special purpose, implementations of sensor networks were 

composed of using simple twisted shielded pair (TSP) implementation for every sensor to 

basestation device. Further these sensor network performances and processing were 

enhanced by Ethernet technology by implementing an industry adopted multi-drop buses 

to a central hub connecting to basestation [4]. This kind of infrastructure is like wired 

server based computing where mass collection of sensing data is aggregated to 

centralized database except on higher tier the connection is to Internet [4]. The cost of 

this kind of infrastructure to wired sensor is highly unfavorable not only in terms of cost, 

but also to power resources and placement of sensor devices and physical limitation of 

wires. Due to the physical limitation of wires with sensor nodes, wireless networking and 

communication module were introduced into the sensor network [5]. Researchers and 

companies have developed the sensor devices with on-board radio communication 

circuits. However better signal processing and marking distance limitation is still part of 

wireless sensor network research group [5]. 

Since the rapid development changes in technologies, the utilization of the true web 

based networks, for example smart home and smart networks are taking its boom in 

research and industry. Although WSN have similar components as traditional networks, 

they have to be designed and implemented differently. This is because WSN and sensor 

nodes have various constraints in their computation power, storage, memory, and 

bandwidth [4]. The major issue in WSN is often the energy resources as wireless sensor 



5

nodes are normally deployed unattended, in a hazardous environment or a physically

non-accessible location. Parameters like latency, bandwidth and accuracy are often trade

offs with this major design consideration to extend the operational lifetime of the network 

[4]. The main difference with Traditional Sensor Networks (TSN) to WSN in terms of 

deployment is that the TSN were deployed in structured way either by hand or having 

limitation of wiring over head, whereas WSN due to its radio communication links can be 

deployed in unattended manner or randomly scatter on location of need [6]. 

Wireless sensor networks can be further differentiated from traditional ad hoc networks 

due to the following reasons. Numbers of sensor nodes are increased from smaller 

compositions to larger composition by connecting thousands of sensor nodes in the 

network to achieve finer granularity and increased robustness to the network [7]. 

Therefore sensor nodes are more densely deployed than in an ad hoc network. In general 

a wireless sensor node is sensitive to failure due to frequent changes of topology which 

are expected in a WSN. In WSN transmission method is used by broadcasting instead of 

point-to-point communication as in ad hoc network [7]. Because of transmission method 

constraints in power, processing power, bandwidth and device memory are different. In 

addition a wireless sensor node may not be uniquely identifiable due to a large number of 

sensor nodes in WSN [6]. 

2.2 WSN Network Topologies

Before deploying a wireless sensor network mainly two things are considered. These are 

the coverage and the connectivity of the whole network [4]. The coverage is related to 

application based information gathered from environment by the sensor node devices [8]. 

The connectivity is related to the network topology on which information routing will 

occur. Power consumption, energy limitation and robustness are depending on wireless 

sensor device selection [8].  The topologies for different kind of radio communication 

between wireless sensor networks are described below.



6

2.2.1 Star Network (Single Point-to-Multipoint)

The star network topology is common network topology in networking. Basically star 

network topology has a single base-station which can send data or receive data from 

connected number of remote nodes. The remote connected nodes are only applicable to 

send data to other nodes if required via the base station [8]. Star network topology is easy 

to form and the advantage of having it in WSN environment is that the remote node 

power consumption can be reduced. Low level latency communication method can be 

used between basestation and remote sensor nodes [6]. The possible disadvantage of star 

network topology is that the basestation should be in radio communication range with the 

remote sensor nodes and failure of basestation will cut off the communication in the 

whole network [9]. The star network topology of WSN with single-hop central 

basestation is shown in Figure 2. Each remote sensor node in this topology communicates 

with its capacity in clear line of site to basestation. This topology formation is feasible 

approach and can radically simplify the design due to the networking concerns of 

minimal set of administration devices [8]. On other hand star network topology lacks in 

scalability and robustness due to its single hop transmission and routing technique. For 

example in larger and dense area the sensor nodes which are at distant from basestation 

have to compromise on poor wireless link. [9]

Figure 2. Star Network Topology [9]



7

2.2.2 Mesh Network

The mesh network topology is one of the most common network topology in which 

devices or nodes are connected to many redundant interconnections. A mesh network lets 

any node in the network to transmit data to other node in the network, which is within its 

communication radio transmission range [3]. This technique is known as multihop 

communication.  In multihop communication if a node needs to send a data to another 

node which can be out of its radio communication range, it can use another intermediate 

connected node to forward the data to the desired node. This message forwarding concept 

evolve from route technique, the internet is simple example of it as message is forward to 

desired node and can use alternative route in case of network or intermediate node 

problem. Mesh network topology is less redundant to network failure compared to star 

network and it is more scalable [8]. Figure 3 shows mesh network topology with the 

concept if an individual node 2 links fails with node 1. A node 1 can still communicate to 

2 via node 3 which is in its communication range; in turn node 3 can forward the message 

to the desired node 2 or base station. In result the scalability of the network in mesh 

network is not compromise to limitation of range except between nodes, however the 

whole network is extendable by adding more nodes and creating multihop 

communication system between them [9].

Figure 3. Mesh Network Topology [9]



8

The disadvantage in mesh network occurs due to power consumption of the nodes. 

Whereas nodes in star network topology tends to be in sleep mode after sending data to 

basestation, in mesh network topology the node has to be active in case of forwarding 

data to other nodes hence decreasing the life time of sensor node battery [8]. Also the 

communication from one node to another node and to desired destination can increase if 

the message has to pass from certain nodes, which will increase the message delivery 

time. Therefore mesh network is considerable choice when compromising of limited 

power resource and message delivery timing. [9]

2.2.3 Hybrid Star – Mesh Network

The hybrid star network is a network between star and mesh network providing more

robust and versatile communication network. The advent feature of hybrid network is to 

keep power consumption of the nodes to minimum [7]. The network topology formation 

is maintained in that manner that node with low power are not enabled to be in state to 

forward messages. This results less power consumption for overall network, but still 

keeping the nodes with the capability of multihop communication by forwarding the 

messages from low power nodes to other network nodes. [8]

Usually the nodes configured with the multihop radio communication capability have 

higher power consumption therefore they are connected with external power source. The 

hybrid network topology is usually implemented by mesh networking standard known as 

Zigbee [9]. Figure 4 shows the hybrid star network diagram where scalability of network 

is increased by having more than one basestation as compared to star or mesh topology 

which relies on single-basestation for the whole network.



9

Figure 4. Hybrid Mesh Network Topology [9]

2.3 Analyses of WSN Routing Protocols

This section focuses on earlier proposed and researched routing protocol for wireless 

sensor network. The typical WSN network formations are flat network and hierarchy 

network [2].  A flat network is more like a star topology network where root node is the

basestation device which is responsible for data gathering and every wireless sensor node 

in network is engage in the same role that is sensing data and sending information back to 

the basestation [3]. Hierarchy network have same network formation as star network but 

the difference is that the sensor nodes in the network is implemented on multihop radio 

data transmission [10]. This means that every sensor node can transfer data to another 

node in order to forward the data to basestation, which in result of using different routing 

protocol.

Routing protocol for WSNs are classified in terms of multipath-based, query-based, 

negotiation based and QoS based depending on flat, hierarchical and location based 

formation of wireless sensor network structure. [4] In flat network all nodes act as the 

same role, therefore any simple protocol or routing technique which is adequate in single 

hop communication is well suited. Hierarchical based network and its protocols aim at 

different routing techniques, for example clustering the nodes in which cluster heads can 



10

reduce the overhead of extra data to save power consumption in WSN [10]. In contrast 

other routing technique as location based protocols relies on information data taken from 

position of specific regions rather then whole network [11].

WSN is closest to Mobile Ad Hoc Networks (MANETs) and therefore in most cases of 

wireless sensor network the topology is not fixed. In most cases star or mesh topology is 

commonly deployed, as wireless sensor node uses broadcast method rather then point-to-

point communication as in ad hoc networks. [6]

The Data Centric Protocol [11] works in condition where large numbers of wireless 

sensor nodes are deployed and then assigned global single identifiers to each node, which 

can result in immense time taking task. The issue arising is that without unique identifier 

it is difficult to query data from wireless sensor node. In addition while transmitting the 

data from every node to redundant link it is in-efficient for energy consumption for WSN 

[2]. Therefore data-centric routing technique is considerable in those network scenarios 

where data is send from sink node to certain node in region. The data is requested in 

queries with name attribute to specific property of sensor node data [3]. Sensor Protocol 

for Information via Negotiation (SPIN) [12] is the data-centric protocol developed to 

eliminate redundant data and process less energy from wireless sensor network. Unlike 

SPIN, earlier protocols in WSN Gossiping and Flooding [11] use more energy resource 

by sending redundant data to whole network. The approach of this problem is resolved in 

SPIN by enabling data negotiation and resource aware and adaptive algorithm. Data on 

sensor nodes running SPIN protocol are assigned as meta-data which perform meta-data 

exchange negotiation between sensor nodes before transmitting, assuring this way that no 

similar data exists in wireless sensor nodes [12]. SPIN protocol deals with energy 

consumption by checking and adapting the remaining energy left in wireless sensor node.

Low-energy adaptive clustering hierarchy (LEACH) [13] is a cluster-based protocol that 

utilizes minimum energy dissipation in WSN by randomly selecting sensor nodes as 

cluster-heads by using hierarchy routing algorithm. The approach is apprehended by 

enabling clusters of wireless sensor nodes based on there signal strength and routing data 

to sink with local cluster heads [13], hence reducing the transmission energy by 



11

transmitting only from cluster head nodes instead of all nodes in the wireless sensor 

network.

Power- Efficient Gathering in Sensor Information System (PEGASIS) [14] is a hierarchy

based protocol. PEGASIS is slightly modified version of LEACH instead of forming 

multiple cluster head between sensor nodes in a network, it forms chains in WSN. The 

basic idea of this protocol is to maximize the network lifetime by allowing wireless 

sensor nodes to communicate absolutely with their closest neighbors forming a chain 

[14]. Therefore each sensor node in WSN can transmit and receive from neighbor sensor 

node. One sensor node from the formed chain is selected to communicate with the 

basestation, making it as turn based strategy to communicate with the basestation [15]. 

Figure 5 shows the aggregated data transmitting from node c0 to c4, where node c2 is 

selected node to communicate only with basestation in PEGASIS.

Figure 5. Chaining in PEGASIS [14]

Geographic and energy aware routing (GEAR) [16] is a location based protocol. Since 

there is no IP-address based identification for wireless sensor node, routing data based on 

location is quite near to energy efficient manner. Figure 6 shows the recursive geographic 

data forwarding in GEAR. The approach of forwarding data to wireless sensor nodes in 

GEAR works in two steps [16]. The first one include forwarding the data to target region

shown as grey colored box in Figure 6, data forwarding is done by using geographic and 

energy aware neighbor selection based on heuristic routes . The next step is when the data 

arrives at target region it is distributed by recursive geographic forwarding algorithm.

Every wireless sensor node in GEAR keeps learning record of destination and neighbor

[17]. 



12

Figure 6. Recursive geographic forwarding in GEAR [16]

Table 1 shows the comparison of studied routing protocols for WSN that are SPIN, 

LEACH, Gossiping, PEGASIS and GEAR. Studied observation of these routing 

protocols is that they are appropriate with WSN performance and provide suitable results.

These protocols have been mainly implemented and tested under network simulation 

environment. However in practical environment the wireless sensor manufacturing 

companies often tend to adopt different routing protocol and communication standards 

like Crossbow technology wireless sensor device uses XMesh routing protocol discussed 

in chapter 3.5 and IEEE 802.15.4 communication standard in case of SunSPOT. XMesh is 

a multihop routing protocol technique and are outcome of research by TinyOS 

community by characterizing different ad-hoc, multi-hop protocol and performance 

issues on Crossbow mote platform [42]. The XMesh protocol stack forms dynamically 

mesh network [42] between nodes. The key advent feature with XMesh is that it uses ad 

hoc routing methods like minimum transmission technology to reduce number of radio 

messages in network extending the lifetime for overall WSN [42].



13

Table 1. WSN Routing Protocol comparison

Flooding SPIN LEACH PEGASIS GEAR XMesh

Scalability Limited Limited Good Good No Good
Lifetime Short Long Long Long Long Long
Meta-Data No Yes No No No Yes
Data 
Diffusion

No No Yes Yes No Yes

Location 
Awareness

No No No No Yes Yes

Power 
Required

High Limited High High Limited Limited

Classifi-
cation

Flat Data-
centric

Hierarchical Hierarchical Location 
based

Hierarchy &
Location

Optimal 
Route

No No No No No Yes

Multi-Hop Yes Yes No No Yes Yes

The selected properties in the Table 1 for comparison between the studied WSN routing 

protocol can be described as; Scalability refer to extending the network formation 

between nodes and basestation, Lifetime refer to power consumption in WSN higher 

power consumption result in short lifetime of WSN. Metadata provides certain element 

resource of sensor information for example instead of broadcasting whole data, sensor 

node can exchange metadata between another sensor nodes. In result this will consume 

less energy for transmitting and receiving data on sensor nodes. Data diffusion is used to 

track route dynamically and compute data based on sensor energy in order to sink data to 

root node. Location awareness provides location of sensor node and region, only GEAR

and XMesh protocol gives this facility. Classification is referring to network and routing 

formation of wireless sensor nodes. Optimal route technique selects the best route to 

destination only XMesh protocol follows this method. Multi-hop communication is used 

to transfer data from sensor node to another sensor node or to base station.   



14

2.4 Zigbee and IEEE 802.15.4 in Wireless Sensor Networks

The radio communication for wireless sensor networks is defined in physical layer 

according with the Open System Interconnection (OSI) reference model [20]. The radio 

layer for WSN consists of operating frequency, modulation methods and interface radio 

scheme to sensor node radio hardware. Integrated Circuit (IC) manufacturing companies 

like Atmel, MicroChip and Chipcon are developing its own standard low power 

proprietary radio scheme for radio layer in WSN [9]. Most of the wireless sensor devices 

are designed with concept of integrating them with other networks and therefore a 

standard communication choice of IEEE 802.15.4 is used in most cases. However in 

some special cases, sensor devices are installed with Bluetooth (IEEE802.15.1 and .2) 

and external GPRS communication boards [9].

Bluetooth (BT) was developed by Ericsson in 1994 as an open wireless standard of 

exchanging data by using short distance radio link by creating personal area network 

(PAN) between communicating nodes [18]. The original implementation was made to 

transfer data between computers to peripheral devices. The network topology for BT is

star network topology refer as Piconet with Master-Salve concept, the master device can 

communicate with seven remote nodes as a single basestation [18]. The operation radio 

frequency used by BT is 2.4GHz which is industrial scientific and medical use 

band(ISM). The frequency range for ISM band is from 2400 MHz to 2483.5 Mhz [18]. 

Although there is some research work and companies have implemented Bluetooth 

communication with sensor network, the reasons like over complex MAC layer, limited 

number of communicating nodes, time synchronization with network and more power 

consumption in returning from sleep mode makes BT protocol less attractive choice for 

wireless sensor applications.  

The IEEE 802.15.4 standard was particularly designed for having the requirements in 

mind of wireless sensing applications. The main emphasize was to create low-cost and 

low-speed communication between different devices [19]. The main features of 

IEEE802.15.4 standard are that it is flexible for multiples data and transmission 

frequency, with supporting topologies like mesh and star. Additionally it has features like 



15

security with AES-128 for encryption while transmitting data with link quality indication 

and using direct sequence spread spectrum (DSSS) for communication [4]. The hardware 

for this standard is designed in this manner that it is able to be in sleep mode in terms of 

radio communication when not required to do any instruction sets, making it less power 

requirement standard and when nodes wake up from sleep mode can synchronize to the 

network in minimum time [5]. The specification allows for system low power supply to 

periodically turn off the radio. The frequencies ranges are 868 MHz, 902-928 MHz up to 

2.48-2.5 GHz with supportive data rate of 20 Kbps on lower frequencies and 250 Kbps 

on higher frequencies [19].

The ZigBee standard is expansion to IEEE 802.15.4 developed by ZigBee Alliance 

companies to enhance network, security, cost-effective, low-power, wirelessly networked 

devices monitoring and controlling on an open global standard [20]. Figure 7 presents the 

IEEE 802.14.5 and ZigBee stack, in which ZigBee alliance specifies the application 

framework and security layer, build on top of physical and Medium Access Control 

(MAC) layer by IEEE standards. The ZigBee network specification supports star network

and hybrid star mesh networks. Later IEEE 802.15.4 standard was named commercially 

ZigBee after forming alliance between IEEE 802.15.4 task group and Zigbee Alliance 

[20]. 

Figure 7.  IEEE 802.14.5 and ZigBee stack [20]



16

The IEEE802.15.4 standard specifies appropriate communication architecture for 

wireless sensor network, although it lacks in specification for sensor interface. IEEE 

1451.5 wireless sensor working group is another standardize to the specification for 

sensor interface on pervious IEEE1415 smart sensor working group standard [21].

2.5 Applications and Security Aspects of WSN

The applications of WSN are designed to serve and facilitate people different needs of 

daily routines. Environmental monitoring is one of the most popular choices in sensor 

networks, such as for monitoring water level, measuring soil quality, fire detection and 

flood warnings. Other well known applications with sensor networks are ‘Great Duck’ a 

bird observation on Great Duck Island [22], Glacier Detection [23], Disaster Operations 

and Monitoring [24], Medical and Monitoring [25] and Military Surveillance [26]. Since 

there is much more applications been developed with WSN, the security issues are 

increasing. The possibilities of security threats in application and wireless sensor 

networks like eavesdropping, forgery of sensor data, denial of service attacks or physical 

tampering with sensor nodes are vital issues. The easiest solution is to analyze the traffic 

and check the behavior of WSN on regular basis. Other possibilities are cryptographic 

algorithm like HIGHT [27] designed to run on 8-bit computing devices keeping the 

resource consumption to limited in WSNs. Hybrid Adaptive Security Framework [28] 

provides security suites on each packet transmission in wireless sensor network. Protocol 

like SKEW [29] works providing security key to wireless sensor network with focusing 

on less storage and computational overheads. Architecture like SLIM [30] shields the 

difference in sensor application layer by having the middleware on mobile as well as on 

wireless sensor nodes.



17

3. HARDWARE & SOFTWARE CONSTRAINTS IN SENSOR NETWORK

In this section, the various components of a wireless sensor node in the wireless sensor 

network are presented. In addition the details on the actual hardware used in the project 

work are discussed. Sensor devices are basically made up of a sensor board and a mote. 

Sensor board are integrated circuit designed to sense event changes, mote is main 

hardware which is composed of a processor, memory, radio transceiver and power 

supply. These components will be briefly discussed in the following paragraphs.

3.1 Component of Sensor Node

The basic building block hardware architecture for a sensor node is presented in Figure 8 

where sensor is referred to the actual sensor circuit, which can have the capabilities of 

sensing light, temperature, accelerometer-degree, motion detection and others based on 

its hardware design. Power supply in common case is given through batteries or in 

advance cases can be provided via solar cells. Memory and processor are part of sensor 

node which gives capability to process information and run the desired application and 

operating system on the device [31]. The communication device is referring to the radio 

communication board by which sensor can communicate to host basestation device. In 

some of the experiments and works even BT and Wireless Local Area Network (WLAN) 

communication board is installed with sensor node [31].

Figure 8. Block Diagram of Sensor Node Components [31]



18

The processor collects data from sensors and processes the data for further actions. It also 

gives capability to sensor device to decide when and where to send data from other 

sensor nodes, and decide on the connected actuator’s alignments and actions. Other 

aspects of processor are to execute the programs, setting up communications protocols 

and signal processing to application and programs [22]. Normally a random access 

memory (RAM) and flash memory is used in sensor mote. Short term data like sensor 

reading and data packets from other motes are stored through RAM. Even though it is 

fast but disadvantage is lost of data in power interrupts. Flash memory tends to store 

program code and for data retained after power interrupts. The disadvantage is that it uses 

high energy and sometimes slowdown the access time to the mote [22]. The idea of 

deploying WSN is to be deployed it in unattended way, for example hazardous 

environment monitoring area physically beyond human reach. Therefore power supply on 

regular basis to sensor node is practically difficult to apply where it leads to solutions like 

using the device on short intervals. Other way to increase the overall lifetime of WSN is 

by providing external power supply like vibration energy, solar cells and temperature 

gradient [31]. In order to exchange data among sensor nodes or to communicate with 

basestation devices, radio frequency (RF) methods are applied in motes for wireless 

sensor networking. The advantages of RF method are that no line of sight needed and 

long distance operational range is achieved with high data transmission rate. The 

frequency ranges from 433 MHz to 2.4 GHz are commonly used in wireless sensor 

networks. The radio boards are built in for bidirectional but in half duplex mode, where 

multiple channels are available for every band and management software are used to 

control the band [31]. The sensors are categorized as active sensors and passive sensors.

Passive sensor works on methodology by measuring changes in environment without 

probing energy into environment [22]. Examples of it are light, humid and vibration 

detection sensors. Active sensor instead provokes self generated energy to measure or 

find changes in respective usage environment [22], such as a seismic sensor system 

which measure earth quake or radar sensor system which generate energy into 

environment to detect changes. The sensors which are used in the project work are 

passive sensors. 



19

3.2. Mote-Micaz and Gateway MIB-520

Micaz is mote developed by Crossbow Technology, presented in Figure 9. Micaz is 

compliant with IEEE 802.15.4 standard making it popular choice in research and 

development in wireless sensor networks. The microprocessor in Micaz is ATmega128L 

chip which operates at 8MHz being capable of a maximum throughput of 8 million

instructions per second (MIPS), using AES-128 security method for encrypted data 

transmission [32]. In addition for radio communication Chipcon CC2420 is embed on 

Micaz. Chipcon CC2420 implements the physical layer as defined by the IEEE 802.15.4 

standard for transmitting data in standard specified 2.4 GHz radio frequency range a 

compatible ISM band for industrial, scientific and medical (ISM) use [33]. Chipcon radio 

transceivers are able to transmit up to a 250 kbps data rate. The flash memory of 128kB is 

reserved for as program memory with 4kB SRAM for variables and data. Micaz also 

implements Offset Quadrate Phase-Shift keying (OQPSK) modulation encoding, with 

direct sequence spread spectrum (DSSS) which gives resistant to RF interference and 

data security. Technical specification of Micaz brief that data can be transmitted up to 

135 meters with line of sight on half-wave dipole antenna [32]. 

Figure 9. Actual MICAz Hardware [32]

Figure 10 shows MIB520 which acts as a gateway and also used for configuration and 

programming applications into MTS400 sensor motes. The MIB520 programming board 

is called gateway because it also serves as the basestation device to transmit and receive 

data to terminal device or host machine from motes. The MIB520 is connected via USB 



20

to computer for communication and device interface with motes. The USB connection to 

host terminal also eliminates the need for power source for the gateway. The Micax-

series connector is dedicated for mote programming and also for communication over 

USB to motes. To work as a basestation a mote is connected to micax-series connector 

and programmed to act as basestation. The on-board processor on MIB520 is that which 

programs MICA Processor Radio Boards (PRB) [32].

Figure 10. MIB520 USB Gateway [33]

3.3 SunSPOT

Sun Small Programmable Object Technology (SunSPOT) is developed by Sun 

Microsystems Laboratories (SunLabs) [34]. The basic Sun SPOT unit includes a 

basestation device and two sensor devices called emote. The platform includes an ARM-

7 with 256Kb of RAM with 2Mb flash and 802.15.4 radio. Sensor board are loaded with 

3D accelerometer, temperature, light sensor, 8 color LEDS and digital input / output pins 

for external device connections [34]. The point of having Sun SPOT basestation software 

is that it allows applications to run on the terminal host machine and to interact with 

applications running on end target SunSPOT sensor. Figure 11 shows the block layout of 

physical arrangement of SunSPOT devices connected to host via basestation to target 

device.



21

Figure 11. Layout of SunSPOT with base station connected to Host [34]

SunSPOT uses a 32 bit ARM-7 CPU with an 11 channel 2.4GHz radio. Sun Labs have 

developed several security technologies for wireless sensor and transducer such as 

public-key cryptography which is essential for boot strapping secure communication 

among nodes. Other security implementations on SunSPOT are Rivest-Shamir-Adleman 

encryption algorithm (RSA) for more optimized performance and Elliptic Curve 

Cryptography (ECC) for having efficiency in resources, as an alternative to RSA [34].

The host application is implemented with Java 2 Platform Standard Edition (J2SE) and 

target application runs in Squawk (Java Virtual Machine) program which simplifies the

development of wireless sensor applications [35]. Development environment like 

Netbeans and Eclipse simplifies the task for developer to build wireless application using 

the sensor board for I/O, over radio communication of IEEE 802.15.4. The host terminal 

machine can be any Windows or Linux supported platform and operating system. 

SunSPOT SDK documentation defines that basestation can be run in either dedicated or 

shared mode [35]. The main difference with both modes is that dedicated mode runs in 

same Java Virtual Machine (JVM) as host application and only that application can use it,

so therefore the host uses the same address as base station. Instead of single JVM in 

shared mode two java virtual machines are launched. In shared mode one JVM manages 

the basestation and another one runs the host application. In shared mode model the 

application running on host have its own address generated from system different from 

the base station device and more than one host application can interact and use base 

station concurrently [35]. The host application uses multiple processes to communicate 

by using the standard defined radio communication stack [34]. Possible disadvantage of 

having shared mode is lack of run-time management of basestation like controlling PAN 

ID, radio channel and output power cannot be implemented [35]. The default mode of 



22

SunSPOT is dedicated mode and can be changed by implementing configuration changes 

in .sunspot.properties file in root directory [35].

3.4 Software Constraints

The operating system of WSN differs from traditional operating system which are more 

multi-threading and multi-process systems. Figure 12 shows the architecture layout for 

WSN where operating systems reside between the actual sensor hardware connecting it to 

the middleware and application. The wireless sensor nodes use less complex operating 

systems and event-driven programming models because of its design constraint and 

limited resources [37]. Therefore the operating systems of wireless sensor node are 

designed with even-driven technology. Also it is noticeable that, wireless sensor nodes

have similar hardware to embedded devices. Therefore it is possible to use embedded 

operating systems such as eCos, uC/OS for sensor networks [36]. 

Figure 12. Architecture Layout for Middleware and Operating System [37]

Operating system is seen as software platform on which other application and program 

can run and interact with the hardware. In WSN an operating system hides the low level 

details of the sensor node by giving a virtual access to the device [36]. Operating system 

tasks of low-level service are processor management, memory management, device 

management, scheduling policies, multi-threading and multitasking [37]. The other 

features of an operating system in WSN are dynamic loading, unloading of modules and 

given application programming interface (API) for accessing the sensor hardware [37]. 

The key features an operating system must provide in WSN are power management, 



23

memory management and bandwidth [38]. Further is discussed about TinyOS which is an 

event driven operating system used on Crossbow Micaz Motes.

3.5 TinyOS and nesC 

TinyOS is an open-source operating system designed for wireless embedded sensor 

networks originally by the University of California Berkeley, featuring component-based 

architecture and enabling rapid development [39]. Figure 13 shows the TinyOS software 

architecture layout. The block referred as Application is component model in TinyOS 

which reacts on events and programmers can supply their commands, on top of it is the 

block referred as Main scheduler model which handles the constrained of given task and 

events [39]. The other blocks are more towards the actual sensor hardware calibration and 

inter-communication by using the properties for example sensing, actuating and handling 

radio communication defined from the component model. The wide popularity of TinyOS 

for WSN application is because of small memory footprint essentials. For low power 

devices TinyOS is perfect fit because of its event driven and object oriented operating 

system approach. The component library of TinyOS includes network protocols, sensor 

drivers, distributed services and data acquisition tools [39]. 



24

Figure 13. Simplified TinyOS Architecture Diagram [39]

The applications in TinyOS are written in necC (network embedded system C) language 

which is a small extension to C Language with consideration of power and resource 

limitation for wireless sensor networks [44]. TinyOS can support the microprocessors 

which can be as small as 8-bit architecture with 2KB RAM to more as 32-bit with 32 MB 

RAM [39]. The well defined sets of APIs reduce the application development from 

variety of system component to developer. The API also gives access to computing 

features of sensor nodes allowing developers to design more intelligent and specific goal 

oriented application to network and needs [40]. For example a node can process sensor 

data and undo unnecessary message before hand transmission to optimize network 

performance and power life time. TinyOS also supports the execution of multiple threads 

and provides a variety of additional extensions like the database TinyDB [41] which is for

cooperative data acquisition. 

Xmesh is a mesh networking protocol developed by CrossBow Inc, for developer access 

with wide sets of flexible networking features [42]. Figure 14 shows the relationship 

layout of TinyOS and XMesh networking protocol developed by Crossbow Technology. 

TinyOS is an open source operating system and therefore any of the OSI layer can be 

modified in TinyOS depending on the requirements of application. Protocol stack of 



25

XMesh is an open-architecture which is flexible and powerful for embedded wireless 

networking and sensor nodes. The stack can be controlled from varied of software 

libraries in XMesh by using TinyOS. The network layer and data link layer block as 

shown in Figure 14 refers where XMesh is used to control time synchronization, sleep 

modes, low-power listening and node-node or basestation-node routing on sensor nodes. 

The rich control platform built of XMesh supports number of applications in TinyOS can 

extendedly give access to developers to write applications for real world. XMesh merge

performance and interoperability with the support of IEEE 802.15.4 protocol in physical 

and MAC Layer [42]. 

Figure 14. Relationship layout between TinyOS and XMesh Protocol [42]

XMesh’s routing techniques are outcome of research by TinyOS community by 

characterizing different adhoc, multi-hop protocol and performance issues with Crossbow 

mote platform [42]. The XMesh stack forms dynamically mesh network between nodes 

with proven ad hoc routing methods like minimum transmission technology to reduce 

number of radio messages in network, vice versa extending the network life time and 

supporting high bandwidth. Low power mesh networking is primary feature of XMesh, 

advance feature of XMesh are implemented with QoS methods [43]. In default mode the 

XMesh performance has displayed better performance compared to other routing 



26

schemes. Even without the use of any of its advanced QoS features, XMesh forms a

reliable deterministic network and the performance is shown to be superior to other 

techniques including shortest-part, Destination-Sequenced Distance-Vector Routing 

(DSDVR) , Ad hoc On-Demand Distance Vector (AODV) and other proprietary routing 

schemes [43].

nesC is a programming language used to program Crossbow Micaz motes and it has 

syntax like C language, but the programming style differs in way as it is more event-

driven programming language. It is therefore used to control sensor hardware and react 

on given events [44]. TinyOS merge an efficient execution model, component model and 

communication mechanism, therefore nesC is referred as modular language that is built 

on smaller component, which performs given functionality. The components are called 

‘Modules’ and are joined together to larger application called ‘Linking’. Conceptually 

Modules are like objects and have encapsulated and couple state as functionality. The 

naming scope in nesC is different from Java and C++ object, which refer to function and 

variable in global namespace, but in nesC component are purely local namespace. This 

means that while declaring the functions, a component must also declare the functions 

that it calls and the name which a component employs to call these functions is purely 

local [44]. An example to understand this would be that a component ‘A’ declares that it 

calls a function ‘B’, it is basically initiating the name ‘A.B’ into a global namespace. As 

well as if a different component ‘C’ that calls a function ‘B’ introduces ‘C.B’ into the 

global namespace. Eventually both A and C refers to the function B, they might be still 

referring to completely different implementations. In summary for this, every component 

has a specification in nesC where a code block declare the functions for which it provides

the implementation and function that is uses to call.

3.6 Squawk (JVM) on SunSPOT

The Squawk [45] is a virtual machine (VM) written in Java which aim is to run small 

devices without operating system. Most of the VM are written in C or assembler instead 

Squawk is written in higher language and uses the same Java language to implement on 

top of VM. The mechanism squawk uses is isolate mechanism, the goals is to refine 



27

applications. The idea is to run multiple isolates in single VM and those isolates can be 

migrated to different instances of VM [45]. The main benefit of squawk is that virtual 

machines is written in java and are easily portable, maintainable and easy to debug. 

Advent feature is that it is compliant with Connected Limited Device Configuration 

(CLDC 1.1) which is meant to be used in devices with limited resources such as mobile 

phones and personal digital assistants. CLDC defines a set of programming interfaces and 

when coupled with Mobile Information Device Profile (MIDP) it provides a Java 

platform for developers to write application for devices with limited memory and 

processing power capacity [46].

At minimum squawk system requires 8K bytes RAM with 32K bytes of EEPROM, also

with 160 Kbytes of ROM to have optimized running with 32-bit processor [47]. Figure 

15 shows the architecture diagram of Squawk extended from Squeak and KelinVM 

architecture. 

Figure 15. Extended from Squeak and KelinVM architecture [47]

The squawk architecture is a split of two VM which have class-file processor called 

translator as one end and execution engine on another end [47]. The translator generates 

a compact version of input Java byte code, generating properties like symbolic reference 

to other classes resolving fields and methods. All local variables are re-allocated so that 

slots can be partitioned to hold pointer or non-pointer values and finally operand stack is 



28

assured to be empty for the instructions which are memory allocated. The final two 

transformations immense ease garbage collector as method and only require a single 

pointer map hence resulting in unnecessary scan of operand stack [45]. Table 2 presents 

the constraints list for Crossbow Micaz sensor and SunSPOT which are used in project. 

Table 2. Constraints list of sensor platform used in project work.

Sensor Platform CrossBow Micaz SunSPOT

Processor ATmega-128L ARM-7

Data-Security AES-128 Public key, RSA, ECC

Communication-Method IEEE 802.15.4 IEEE 802.15.4

Operating Frequency 900 MHz- 2.4 GHz 2.4 GHz

Distance Range (Line of 
Site)

135 Meters 100 Meters

Battery 1.5 AA * 2 3.6v lithium-ion

Operating System TinyOS No (Squawk JVM)

Programming-Lang nesC Java

External board 
Connectivity

Yes Yes



29

4. MIDDLEWARE APPROACH TOWARDS SENSOR MONITORING SERVICE

Middleware is used to reduce gap between application and operating system, creating an 

inner boundary to bridge the complexity and for enhancing the development of 

distributed applications for any system [48]. WSN have same boundary properties and 

share many inheritance from traditional distributed system. Even though distributed 

computing middleware seems suitable for wireless sensor networks. Due to the facts of 

device limitation and energy constraints in the sensor node, middleware for WSN is 

approached in a different manner. In this chapter different middleware systems are 

reviewed and approach to create gateway monitoring service for infrastructure sensor 

network is taken into account.

4.1 WSN and Middleware’s

Middleware resides between the operating system and the application Figure 12 

previously gives example of it in case of a sensor node. The challenge of WSN 

middleware is not limited to network, but also to the sensor devices connected to the 

network [48]. WSN applications are more concerned on real-world data, location and 

physical environment. Considering a scenario where a large number of different sensor 

nodes with different sensing capabilities, power source and computing are scatter in 

heterogeneity. 

The question to arise here is “What if every wireless sensor node has to be operated 

unattended”

Therefore middleware designing is the important factor in WSN system. A middleware 

should provide a mechanism to suppress application knowledge into the WSN 

infrastructure [49]. Hence the middleware will give the support to the development, 

deployment and maintenance of WSN and its application, coordinating and splitting the 

task into sensor nodes and merging data for high level abstraction [48]. The next sections 

present the middleware approaches for distributed computing systems; Jini provides 

interaction between hardware and software, Lime is a middleware system with primary 

function to provide communication between agents, CORBA is one of the most common 



30

middleware system and Milan works on application to indicate policies for managing the 

network and the sensors.

Jini provides a high level of interaction support to both hardware and software services, 

in a distributed computing environment which can offer network plug and play [50]. 

Jini's service discovery protocol and leasing method make use of client applications to 

discover services and handle connections to client-server as set of available services.

Service discovery is useful in cases of dynamic sensor networks to know what sensors 

services are available. Jini specification consist a set of middleware components with 

application programming interface (API) for creating services, component and a pure 

Java middleware implementation as package [50]. Hence by including API into classpath 

as packages the client or service invokes method for Jini middleware protocol for joining 

Jini services and client. 

The Lime (Linda in a Mobile Environment) [48] is a middleware system which primary 

function is to provide communication between agents. Agents are run on host with active 

tuple space managers. The concept is adopted from Linda model where computation is 

represented as globally accessible, namely a shared memory scheme for mobile ad hoc 

components persistent tuple space [48]. The tuple spaces are extended with by notion of 

location and react to states on given program. Neither Jini nor Lime is overlooking the 

limited energy constraints of sensor networks and their supporting protocols are 

heavyweight when compared to protocols tailored to sensor networks [48].

CORBA (Common Object Request Broker Architecture) is one of the most common 

middleware system [51]. The main feature of CORBA is that software components 

written in different computer language or even running on different platform are 

integrated together. These integrated standards are given by Object Management Group 

(OMG) [51]. Further features of CORBA can be classified as it hides the location of 

remote objects by simplifying the application's interactions with these remote objects. By 

allowing all operations to appear as they are local, this approach is applicable to sensor 

networks to provide access to the sensor data as it hides the location of the sensor. On 

other hand the context information of the sensor is lost. Moreover by giving individual 



31

sensor access with object method the energy saving potential with aggregation is mislaid 

[51].

Middleware which have been developed for WSN attends to change the properties of 

network with their own criteria to match the conditions detected within the network. For

example middleware like Limbo and FarGo relocate components by reordering data 

exchanges to respond to changing network conditions such as bandwidth availability or 

link reliability [30]. Lower level middleware like Mobiware [49] enables support to 

various levels of QoS by enabling streams within the network with active filters deployed 

with the routers. Other middleware systems provide hooks to allow the applications to 

adapt from the network. Other examples like Odyssey are platform application which can 

register for alteration of changes in the core network data rate [48]. These approaches are 

feasible to wireless sensor networks, but the drawback is that they does not integrate data 

aggregation protocol of sensor node and sensor network or either take into consideration 

of low-level wireless protocol. 

Milan (Middleware Linking Applications and Networks) works on application to indicate

policies for managing the network and the sensors [48]. The key feature of Milan is that it 

adapts network configuration by stating to sensors to either route data, send data or have 

special requirement on network. SLIM (Secured Lightweight Interactive Middleware)

hides the complexity of sensor technology with the application layer [30]. It inherits data 

acquisition and plug-play capability of middleware to further functionality like secure 

data to unauthorized devices by running middleware on mobile device as a gateway. 

Other approaches as Senceive [52], TinyDB [41], Agilla [53] and Cougar are well fitted 

on there scenarios as well as global approaches like Senseweb [54] and Open Sensor Web 

Architecture and Sensor Web [55]. 

4.2 Semantic Web and Web Services

The World Wide Web is seen as a repository of information containing documents and 

multimedia resources concerning every possible subject [58]. All this data is 

spontaneously reachable to everyone with an internet connection. The major success of 

web based application is due to its decentralized design method where web pages are 



32

hosted by numerous computers and each document can link to other documents, either on 

the same or different domain computers [52]. Initially web pages were taken in account 

as simple display of information and later revolutionary search mechanism has given 

access to user to search information on its need. Search engines are one of the many 

features from Semantic Web. Swoogle is a semantic web search engine that uses 

ontologies to refine search by using existing ontologies and RDF data from the web. It 

provides services to user via browser interface and software agents via Restful web 

services [58]. Another example of semantic web is internet agents acting as autonomous 

programs to request and perceive web pages and execute web services. For example a 

user request for flight booking to some destination, then internet agents perform action 

and provide for user car rental and hotel information to the same destination. These 

agents rely on webpage information and perform its predefined task making them robust 

to semantic of webpage. To be able to make a webpage intelligent, computer must not 

only understand the text but also have ability to understand natural language and its 

process [52]. Researchers and web developers have proposed and given solutions to

enhance the Web with languages that make the meaning of web pages precise [56]. Tim 

Berners-Lee, the inventor of the Web, has coined the term Semantic Web to describe this 

approach. Berners-Lee, Hendler and Lassila [57] give the following definition:

“The Semantic Web is not a separate Web but an extension of the current one, in which 

information is given well-defined meaning, better enabling computers and people to work 

in cooperation.”

Figure 16 shows the Semantic Web layer tower which is composed of metadata, 

ontologies, logic and rules. Metadata is referred to data, a part which gives meaning to all 

data. Ontology defines the concept and meaning of that data with co-relation to other 

terms. Rules are associated with ontology and to obtain stated information. Logic 

provides basis for expressing knowledge and driving new knowledge. Languages to 

represent ontologies such as RDF, OIL are discussed in the next section.



33

Figure 16. The Semantic Web Layer Tower by Tim Berners-Lee [57]

The aim of Semantic Web is to bring machine understandable information on the web and 

change the way how users browse web and also organize its resources connected with 

different data [59]. 

Web Service is an application logic that exceeds network, communication protocols,

programming languages, operating systems and data representation for the Web. Web 

Service provides an infrastructure for deploying and developing distributed applications

for the web [52]. Web Services are used to expose applications consumption for users 

with contemporary Web applications [59]. The industry standard for developing and 

deploying Web Services are eXtensible Markup Language (XML), Simple Object Access 

Protocol (SOAP), Web Services Description Language (WSDL) and Universal 

Description Discovery and Integration (UDDI) [51].

Semantic Web and Web Services convergence provides a powerful Semantic Web 

Services concept [56]. Semantic Web Service gives the prospective to access enhanced

value added services by autonomously discovering and assembling web services to 

accomplish a domain task [54]. The framework for semantic web services is known as 

Service Oriented Computing (SOC) [56].



34

4.3 Semantic Web Languages

The Semantic Web combines all the data from web as RDF schema and its inference 

language as data repository. The Semantic Web uses distributed data objects framework 

and therefore validly fits as an Object Oriented Framework [58]. Both the Semantic Web 

and Object Oriented Programming (OOP) have classes, attributes and instances [59]. The 

Semantic Web is build on with data and languages which are RDF, XML, OIL, DAML, 

WSML and WSDL [57]. 

Resource Description Framework (RDF) [59] is used to describe information and 

resources on the web. The W3C have defined standards and recommendation for XML 

serialization of RDF called syntax in RDF model. The common interchange format in 

Semantic web is RDF/ XML. RDF is generic format and the information maps directly 

and unambiguously to a model [59].

Ontology Inference Layer / Ontology Interchange Language (OIL) was developed by

Dieter Fensel, Frank van Harmelen and Ian Horrocks [61]. It can be regarded as an 

ontology infrastructure for the Semantic Web. Ontologies share common understanding 

of domain and can communicate in different applications and exchange process in 

different domains [60]. OIL is based on concepts developed in Description Logic (DL) 

and frame-based systems and is compatible with RDFS [61]. Figure 17 shows the three 

roots of OIL. Description Logics (DL) describes the knowledge referring as concepts and 

role limitations used to automatically knowledge representation in expressing structured 

knowledge with principled way. The frame-based system refers as central model of 

primitives logics which are classes (frames) with attributes. These frames have attributes 

only valid with defined classes and different values representation when used with 

different classes [61].



35

Figure 17. Three roots of OIL [61]

Web Service Description Language (WSDL) is a way to define XML description with 

programmatic access to Web Services with port and messages. A port is network address 

with defined binding and ports gives the service to requested clients. A message is seen 

as way to exchange data referred as abstract description of document with port types and 

supported operations. In general cases WSDL is used with SOAP by which client can 

request the operation from WSDL operations list [59].

4.4 Service Oriented Architecture for Sensor Networks

Service Oriented Architecture (SOA) defines a distributed software architecture which 

depends on web services for putting together a system [62]. SOA provides a mechanism 

to describe, discover and invoke services from various systems. The common overview 

of SOA is a client application or system lookup for the services which are registered to 

the service directory [62]. The services are referred to not only as software but any 

hardware devices that can enhance the work formation for users.  XML format is 

standard for passing data whereas the web services can be based on protocols such as 

SOAP, WSDL and UDDI [62]. 



36

The actual SOA for sensor network is OpenGIS Consortium (OGC) [63]. OGC defines a 

Sensor Web Enablement (SWE) which is composed set of observation and measurement. 

These observation and measurements are useful for sensor collection service, sensor 

planning service and web notification service [62]. Sensor Model Language Standard

(SensorML) specification is used to write models in XML encoding to provide a 

geometric, dynamic and observational characteristics of sensor systems framework [63].

The key point is that the different sensors are supported by atomic process model and 

process chain. In addition in SensorML all processes and components are programmed as 

application schema of the model in Geographic Model Language which is a part of OGC-

SWE suite standards [64].

The prompt feature of OGC’s SWE is that it allows developers to work with all kind of 

sensors and their data repositories making them discoverable, manageable and useable 

through the Web. OGC’s SWE not just allows developers to create discovery of sensors, 

processes and observations, also it helps developers to stir up tasking to sensors models. 

These sensor models are useful to create controlled access to observations and 

observation streams, by putting up publish-subscribe capabilities for robust sensor system 

and process descriptions [65].

4.5 WSN Application Approach to Sensor Monitoring Service

The approach to build a monitoring service for infrastructure sensor network is taken in 

account through SOA. The development starts from programming the sensor board 

continuing to the development of a desktop host application. The host application named 

gateway collects sensor data and store sensor data in database, gateway is also a web 

server and provides web services for sensor monitoring to the browser based client and 

mobile phone client.

Figure 18 presents the software architecture diagram of the complete system. The ovals 

refer to sensor nodes which sense light, temperature and axis degree accelerometer, 

sensors are connected to the basestation in next level which is running on TinyOS and 

Squawk. The nesC and Java presents programming languages used to control and 



37

program basestation and sensor nodes. J2SE application stores the generated sensor 

information to PostgreSQL database. Lastly the web services are connected to 

PostgreSQL which provides requested sensor information to mobile client.

Figure 18. Software Architecture Diagram for Gateway Monitor Service for Sensor 

Network

SOA based approach is well suited for the project as it supports distributed software 

architecture and service delivery to client relies on by web services. Figure 19 presents 

the SOA based architecture for sensor monitoring service. The general idea is that client 

request for sensor data which is registered in web service Sensor Directory and requests 

the information of selected sensor via service. The service is also used as to describe and 

publish the sensor information to sensor directory. For the communication between client 

and web services is used SOAP protocol and XML as data format. The web service 

architecture is composed of SOAP and WSDL protocol. 



38

Figure 19. Web Service Architecture of Sensor Monitoring Service

Table 3 shows the result of studied and tested web services framework. The web services 

framework was tested on Dell Optilex Desktop system with 2.3 GHz processor, 2GB 

RAM and 80 GB hard-disk running on Windows XP operating system. The numerical 

values in Table 3 represent number of hours spend for testing and studies. Property 

Environment Setting represents installing and configuring framework, Uptime writing 

sample web service and testing. The Resource is referring to the computer memory 

utilization. The reason to select NuSOAP for project work was solely due to less 

computer memory utilization and ease of development with PHP programming language.

Table 3. Tested and Studied Web Service Framework 

Web-Service
Framework

Environment
Setting

Studied Uptime Programming
Language

Resource

Apache Axis 2 1 2 1 Java High

.Net Framework 2 Less then 1 1 C# High

NuSOAP 2 2 1.3 PHP Less



39

5. SYSTEM IMPLEMENTATION

This chapter gives details for developing the application for monitoring service of 

infrastructure wireless sensor networks. Figure 20 shows the finalized solution developed 

for infrastructure sensor network monitoring with used technologies. Initially sensor 

boards are programmed to communicate and send sensing data to basestation device over 

defined default radio link. The database application is directly connected to basestation 

device which is considered as information and data collector hub gateway. Gateway 

application is J2SE application which reads information from COM-7 & 9 port and store 

the information to PostgresSQL database. After collecting the data from sensor and 

storing to database, the Apache Web Server is setup to provide the web client application 

and requests. Web service is written in programming language PHP with extension of 

NuSOAP, in order to facilitate the mobile client request via created WSDL. The client 

application request data from the web service which is returned to client via SOAP 

message exchange. More details about the web service to facilitate mobile client and web 

client are explained later in this chapter and part of programming code is shown to ease 

the understanding of system application. The source code for gateway application and 

web service is given in the appendix 1 and 2.

Figure 20. Details of technologies used in infrastructure wireless sensor network 

monitoring service.



40

5.1 Programming Sensor Boards

Two of the CrossBow Inc sensor devices are used with the basestation. The sensor board 

is XMTS400 shown in Figure 9, which is connected to MIB520 programming board. The 

default sample application with slight modification for XMTS400 is used to send data to

basestation with XMesh routing protocol. The application to collect data from XMTS400 

sensor device is xserve a CrossBow Technology propriety application. In second phase 

the configuration parameters of xserve were changed to store sensor data in PostgreSQL 

8.4 because by default it works only with PostgreSQL 8.0. Finally the application is 

compiled for TinyOS under cygwin and loaded to XMTS400. Cygwin is Linux like 

environment for Windows.  The application for SunSPOT sensor board is written from 

scratch under Netbeans 6.0 editor.  Netbeans 6.0 editor for SunSPOT comes with 

required libraries for developing application for SunSPOT. For the SunSPOT sensor in 

the StartApplication only public class defines the sensor leds, light, temperature 

instances. Figure 21 shows code snippet for StartApplication class for sensor board. 

Figure 21.  Code snippet of class StartApplication.

If the condition is true the sensor broad is set to connect with SunSPOT host application 

on radiogram port 99. Figure 22 shows the code snippet of connection to base station 

hardware address, where hexadecimal address is of base station and port number is 99.



41

Figure 22. Code snippet for Radiogram connection for SunSPOT.

SunSPOT basestation device is more like transparent device to sensors as the main 

application for collecting data is running on desktop computer. Only the base station 

device is allowing radio port communication from sensor and forwarding data to desktop 

computer at COM9 port. Figure 23 shows the class diagram of SunSPOT host application 

for sensor data collection and generating XML files for web client usage and information.

Figure 23. Class diagram of SunSPOT main application.

5.2 Setting Host Machine & Collecting Data

For sensor data collection and storing PostgreSQL 8.4 was database of choice, since it is 

supported by Crossbow Technology default application xserve. For SunSPOT sensor data 

collection the Netbeans editor is configured with Java Database Connectivity (JDBC) 

with PostgresSQL plugin. The database is created with name ‘task’ with two tables. One 

table for the Crossbow sensor named mts400_results and another table spot_results for 

SunSPOT sensor. Both tables have respective fields for sensor data for example nodeid, 

temp, light and degree (xaxis, yaxis and zaxis). Figure 24 shows the code snippet for 

calling the JDBC in SunSPOT host application. 



42

Figure 24. Code snippet for JDBC in HostApplication.

Apache 2.2 web server [66] for Windows, is configured for running web service and web 

application. In addition PHP 5.0 is configured to develop web application. Jpgraph 

library [67] in PHP is configured to generate usage and timing graph of sensor node 

information from database tables.

5.3 Implementing Web Services for Sensor Information

The Web Services are programmed under PHP using NuSOAP [68] which is set of 

classes to develop and consume Web Service in SOAP and WSDL. The defined web 

services performs parameter value requested from mobile client, each parameter value 

runs select query on database table according to requested sensor from client mobile 

interface. Figure 25 shows the message sequence chart (MSC) of mobile client and web 

services. The client initiate connection to the web server as shown in Figure 25, after 

successful connection screen two on mobile interface allows user to select the sensor 

nodes to view its information by sending parameter value for example ‘a’ for sensor 1. 

The web service connects to database and runs the query for specific sensor, and return 

sensor data result to the web service. Final stage of messaging is the web service returns 

the sensor information to mobile client in XML/SOAP format. Figure 29 and 30 gives the 

overview how the result display on mobile client interfaces. 



43

Figure 25. MSC between Mobile client and web services

5.4 Client Interfaces Web based & Mobile based

The interfaces for client to view sensor information are browser based and mobile phone 

based. The web based interface is where client can view all the information from sensor 

database through web browser. Browser based client can also view the generated graph of 

sensor information showing for example temperature changes in week or month on 

specific sensor. The web interface is developed with PHP are login screen page shown in 

Figure 26, view data page shown in Figure 27 and view graph page shown in Figure 28.



44

Figure 26. Login screen for sensor view

Figure 27. Sensor View Page



45

Figure 28. Sensor Graph View Page

Second interface is Mobile client in Windows Mobile (WM) which facilitates mobile 

client users. Mobile client can check only current status of provided sensor through his 

mobile phone as shown in Figure 29 and Figure 30. The programming language used for 

mobile interface and event actions is done in C#.

Figure 29. Mobile Initial Screen Figure 30. Sensor Info Screen



46

6. CONCLUSIONS

The primary objective of the thesis was to develop gateway monitoring application for 

infrastructure sensor networks. Real time monitoring system based on wireless sensor 

networks and its application has been studied. A feasible application has been developed 

which can fit from normal to average use of home or small scale area monitoring.

The overall topic of wireless sensor network has different level of research areas such as 

of MAC layer, nodes and protocol security, routing enhancement protocol to energy 

efficiency. The main focus in this thesis work was to develop monitoring application for 

wireless sensor network. Therefore sensor middlewares are reviewed based on different 

approaches such as Microsoft research project SenseWeb which acts like a common 

sensor data repository and application such as SensorMap that is build on top of it using 

the sensor data. In addition Open GIC Consortium (OGC) has been studied, which 

introduce Sensor Web Enablement (SWE) concept providing actually a set of 

specifications. These specifications include Sensor Markup Language, Observation & 

Measurement, Sensor Collection Service, Sensor Planning Service and Web Notification 

Service to implement the Sensor Web. The Open Sensor Web Architecture (OSWA) 

extends the SWE and integrates the Sensor Web and grid computing by providing 

middleware support for Sensor Web. Also concept of Service Oriented Architecture 

approach is studied and used as key development method in thesis project work, which is 

useful method to describe and invoke services on heterogeneous platform using SOAP 

and XML standard. 

The initial challenge in the project work was faced with setting up development 

environment for SunSPOT, although the technical documentation refer that Netbeans 6.0 

can be configured in Linux for SunSPOT. The basestation doesn’t respond properly 

under Linux although it works better in Windows OS. Another challenge was faced in 

configuring the Crossbow Micaz sensor to store data in PostgreSQL 8.4. This problem 

was tackled by changing the configuration script of XMTS400 sensor board. Finally for 

selecting the web service framework after testing Apache Axis 2 and .Net Framework, 



47

NuSOAP was chosen because it provides yet powerful and simple web service 

framework with easily deployed and development methods.

The developed application suits well for standard infrastructure sensor monitoring and 

applicable in the home or small scale of environment monitoring. In the work is used 

environmental sensors to measure temperature, light, humidity, accelerometer-degree and 

the developed system is excellent example of real time system and its monitoring. This 

thesis work can be further enhanced by creating common protocol for both Micaz and 

SunSPOT sensor networks, making possible to apply single basestation node for both 

sensor networks. Another enhancement could be a middleware test bed to integrate 

different or heterogeneous sensor data and provide common API for all sensors nodes.



48

REFERENCES

[1] Jeremy Elson and Deborah Estrin, Sensor networks: a bridge to the physical world, 
Center for Embedded Networked Sensing, University of California, Wireless Sensor 
Networks, p.p. 3-20, 2004 ACM,  ISBN:1-4020-7883-8.

[2] Shijin Dia, Xiaorong Jing, Lemin Li, Research and analysis on Routing Protocols for 
Wireless Sensor Networks, Proceedings of International Conference on Communications, 
Circuits and Systems, p.p.407-411, University of Electronics Science and Technology of 
China, May 2005 IEEE, ISBN: 0-7803-9025-6.

[3] Chonggang Wang;  Sohraby, K.; Daneshmand, M.;  Bo Li, Yueming Hu, Arkansas 
Univ., AR, USA, A Survey Of Transport Protocols For Wireless Sensor Networks, IEEE 
Network, p.p. 34-40, June 2006 IEEE, ISSN: 0890-8044.

[4] Holger Karl and Andreas Willig , Protocols and Architecture for Wireless Sensor 
Networks,. John Wiley & Sons Ltd 2005. ISBN: 0-470-09510-5.

[5] Chee-Yee Chong,  Kumar, S.P. Booz Allen Hamilton, Sensor networks: evolution, 
opportunities, and challenges, Proceeding of IEEE, p.p. 1247-1256, August 2003 IEEE, 
ISSN: 0018-9219.

[6] Stefano B, Marco C, Silvia G, Ivan S, Mobile Ad Hoc Networking, ‘Mobile ad-Hoc 
networking with a View of 4G Wireless’, John Wiley & Sons Ltd 2004 ,  ISBN: 0-0471-
37313-3

[7] Seapahn Meguerdichian, Farinaz Koushanfar, Miodrag Potkonjak, Mani B. 
Srivastava, Coverage Problems in Wireless Ad-hoc Sensor Networks, Poceedings of 
IEEE. INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and 
Communications Societies. p.p. 1380-1387 vol.3,University of California LA, IEEE 
2001, ISBN: 0-7803-7016-3.

[8] Kyildiz, I.F, Weilian Su, Sankarasubramaniam, Y  Cayirci, A Survey On Sensor 
Networks, IEEE Communications Magazine, p.p. 102-114 vol.40, Atlanta, GA, August 
2002 IEEE, ISSN: 0163-6804.

[9] Chris Townsend, Steven Arms, Sensor Technology Handbook, ‘Principles and 
Applications’. MicroStrain, Inc. Book 2005, ISBN: 0-7506-7729-5.

[10] José Carlos , Teresa Olivares and Luis Orozco-Barbosa, Routing protocols for 
wireless sensor networks-based network, Technical Report, Albacete Research Institute 
of Informatics University of Castilla-La Mancha [pdf: accessed 08.07.2010]
(http://www.dsi.uclm.es/descargas/thecnicalreports/DIAB-07-06-1/tehcnicalreport.pdf)



49

[11] Kemal Akkaya and Mohamed Younis, A Survey On Routing Protocols For Wireless 
Sensor Networks, Ad Hoc Networks, vol 3, Issue 3, May 2005, p.p. 325-349 , Elsevier,
ISSN: 1570-8705

[12] W. Heinzelman, J. Kulik and H. Balakrishnan, Adaptive Protocols for Information 
Dissemination in Wireless Sensor Networks, Proceedings of the 5th annual ACM/IEEE 
international conference on Mobile computing and networking, p.p 174-185, Seattle, 
Washington, USA 1999,ACM, ISBN: 1-58113-142-9.

[13] Md. Habibe Azam, Abdullah-Al-Nahid, Md. Abdul Alim, Md. Ziaul Amin, 
A Survey and Comparison of Various Routing Protocols of Wireless Sensor Network 
(WSN) and a Proposed New TTDD Protocol Based on LEACH, (IJCNS) International 
Journal of Computer and Network Security, Vol. 2, No. 8, August 2010.

[14] Lindsey, S.  Raghavendra, PEGASIS: Power-efficient gathering in sensor 
information systems, Proceedings Aerospace Conference, 2002. IEEE, p.p  3-1125 - 3-
1130 vol.3 , Los Angeles, CA, USA , IEEE 2002, ISBN: 0-7803-7231-X. 

[15] Laiali Almazaydeh, Eman Abdelfattah, Manal Al- Bzoor, and Amer Al- Rahayfeh,
Performance Evaluation of Routing Protocol in Wireless Sensor Networks, 
International Journal of Computer Science and Information Technology, Volume 2, 
Number 2, April 2010.

[16] Yu Y, Govindan R, Estrin D, Geographical and energy aware routing: A recursive 
data dissemination protocol for wireless sensor networks, UCLA Computer Science 
Department Technical Report UCLA/CSDTR-01-0023, Citeseer May 2001.

[17] Yongling Guo;  Qianping Wang;  Hai Huang;  Wei Tan;  Guoxia Zhang,
The Research and Design of Routing Protocols of Wireless Sensor Network in Coal Mine 
Data Acquisition, International Conference on Information Acquisition, 2007. ICIA '07. 
July 2007,p.p. 25 - 28, China ,Xuzhou, July 2007 IEEE, ISBN: 1-4244-1220-X.

[18] McDermott-Wells, P., "What is Bluetooth?," Potentials, IEEE , vol.23, no.5, pp.
33-35, Dec. 2004-Jan. 2005, ISSN: 0278-6648.

[19] Timmons, N.F.;  Scanlon, W.G.;Fac. of Eng., Letterkenny , Analysis of The 
Performance of IEEE 802.15.4 For Medical Sensor Body Area Networking, First Annual 
IEEE Communications Society Conference on Sensor and Ad Hoc Communications and 
Networks, 2004. IEEE SECON 2004. p.p. 16-24, Ireland, IEEE 2004, ISBN: 0-7803-
8796-1.

[20] Bob Heile, “ZigBee Alliance Overview” ZigBee Tutorials,
[http://www.zigbee.org/LearnMore/Tutorials.aspx]. Accessed 22 August 2010



50

[21] Nemeth-Johannes, J.;  Sweetser, V.;  Sweetser, D.; Implementation of an ieee-
1451.0/1451.5 compliant wireless sensor module, IEEE Autotestcon 2007,p.p.364 -
371,Baltimore, MD , IEEE 2007. ISSN: 1088-7725.

[22] Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless
Sensor Networks for Habitat Monitoring”, Proceedings of the 1st ACM international 
workshop on Wireless sensor networks and applications 2002,Atlanta, Georgia, USA, 
p.p. 88 - 97  , ACM, ISBN:1-58113-589-0.

[23] K. Martinez, R. Ong, J. K. Hart, and J. Stefanov, “Glacsweb: a sensor network for 
hostile environments”, First Annual IEEE Communications Society Conference on 
Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004, p.p. 81-
87, IEEE, ISBN: 0-7803-8796-1

[24] F. Michahelles, P. Matter, A. Schmidt, and B. Schiele, “Applying Wearable Sensors
to Avalanche Rescue”, Computers and Graphics, Volume 27, Number 6, pp. 839-847,
December 2003.

[25] H. Baldus, K. Klabunde, and G. Muesch, “Reliable Set-Up of Medical Body-Sensor
Networks”, Proc. EWSN 2004, Berlin, Germany, pp. 353-363, January 19-21, 2004.

[26] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data dissemination model
for large-scale wireless sensor networks”, Proceedings of the 8th Annual International
Conference on Mobile Computing and Networking, September 23-28, 2002, Atlanta,
Georgia, USA, pp. 148–159, ACM Press, 2002.

[27] Woo Kwon Koo, Hwaseong Lee, Yong Ho Kim, Dong Hoon Lee, Implementation 
and Analysis of New Lightweight Cryptographic Algorithm Suitable for Wireless Sensor 
Networks, Proceedings of the 2008 International Conference on Information Security and 
Assurance, p.p. 73-76, Busan 2008, IEEE Computer Society. ISBN:978-0-7695-3126-7.

[28] Taeshik Shon Bonhyun Koo Hyohyun Choi ,Yongsuk Park, U-Convergence Lab., 
Samsung Electron., Security Architecture for IEEE 802.15.4-based Wireless Sensor 
Network, Wireless Pervasive Computing, 2009. ISWPC 2009. 4th International 
Symposium on Suwon, p.p. 1-5,Melbourne 2009, IEEE 2009, ISBN: 978-1-4244-2965-3.

[29] Sharifi, M.;  Ardakani, S.P.;  Kashi, S.S., SKEW: An efficient Self Key 
Establishment protocol for Wireless sensor networks, International Symposium on 
Collaborative Technologies and Systems, 2009. CTS '09, Baltimore, MD, 18-22 May 
2009, p.p. 250-270, IEEE 2009, ISBN: 978-1-4244-4584-4.

[30] Agustinus Borgy Waluyo, Isaac Pek, Xiang Chen, Wee-Soon Yeoh
SLIM: A Secured Lightweight Interactive Middleware for Wireless Body Area Network,
30th Annual International IEEE EMBS Conference Vancouver, British Columbia, 
Canada, August 20-24, 2008, p.p. 1821-1824, IEEE 2008, ISBN: 978-1-4244-1814-5.



51

[31] Holger Karl and Andreas Willig Protocols and Architecture for Wireless Sensor 
Networks, ‘Single-Node Architecture’, John Wiley & Sons Ltd 2005. ISBN: 0-470-
09510-5.

[32] Corssbow 2007 Wireless Product Catlog, PDF (accessed 11.March.2010)
[http://www.investigacion.frc.utn.edu.ar/sensores/Equipamiento/Wireless/Crossbow_Wir
eless_2007_Catalog.pdf]

[33] XServe Users Manual (Crossbow Inc), PDF (accessed 11.March.2010)
[http://www.xbow.com.cn/LinkClick.aspx?fileticket=UjCWY6KXa78%3D&tabid=121]

[34] Sun™ Small Programmable Object Technology (Sun SPOT) Developer's Guide, 
PDF (accessed 05.August.2010),
[http://www.sunspotworld.com/docs/Purple/spot-developers-guide.pdf]

[35] Sun™ Small Programmable Object Technology (Sun SPOT) Theory of Operation,
PDF (accessed 07.August.2010)
[http://sunspotworld.com/docs/Purple/SunSPOT-TheoryOfOperation.pdf]

[36] Vlado Handziski, Joseph Polastrey, Jan Hinrich Hauer, Cory Sharpy, Adam Wolisz 
and David Cullery, Flexible Hardware Abstraction for Wireless Sensor Networks,
Proceedings of the Second European Workshop on Wireless Sensor Networks, 2005,
p.p. 145-157, IEEE 2005, ISBN: 0-7803-8801-1.

[37] Adi Mallikarjuna Reddy V AVU Phani Kumar, D Janakiram, and G Ashok Kumar, 
Operating Systems for Wireless Sensor Networks: A Survey Technical Report ,
International Journal of Sensor Networks (IJSNet), Vol. 5, No. 4 2009, pp. 236 – 255. 
ACM, ISSN: 1748-1279

[38] Mauri Kuorilehto, Timo Alho , Marko Hännikäinen, and Timo D. Hämäläinen,
SensorOS: A New Operating System for Time Critical WSN Applications, Proceedings of 
the 7th international conference on Embedded computer systems: architectures, 
modeling, and simulation, p.p. 431-442, Greece 2007, ACM, ISBN:0302-9743.

[39] P. Levis,S. Madden,J. Polastre,R. Szewczyk,K. Whitehouse,A. Woo,D. Gay,J. 
Hill,M. Welsh,E. Brewer,D. Culler.,TinyOS: An Operating System for Sensor Networks, 
Book: Ambient Intelligence, Springer 2005, ISBN: 978-3-540-27139-0

[40] TinyOS Programming Manual, Philip Levis, PDF accessed (27.07.2010)
[http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf ]

[41] Samuel R. Madden,Michael J. Franklin, Joseph M. Hellerstein,Wei Hong,
TinyDB: an acquisitional query processing system for sensor networks,
ACM Transactions on Database Systems Volume 30, p.p. 122-173, ACM March 2005, 
ISSN: 0362-5915.



52

[42] Teo A,Singh G.,McEachenJ.C., Evaluation of the XMesh Routing Protocol in 
Wireless Sensor Networks, 49th IEEE International Midwest Symposium on Circuits and 
Systems, 2006. MWSCAS '06. San Juan 6-9 Aug 2006, p.p. 1548-3746, IEEE 2007,
ISBN: 1-4244-0172-0.

[43] XMesh User’s Manual, Revision D, April 2007, Crossbow Inc, PDF accessed 
(22.07.2010)
[http://www.memsic.com/support/documentation/wireless-sensor-networks/category/6-
user-manuals.html?download=95%3Axmesh-user-s-manual]

[44] David Gay,Philip Levis,Robert von Behren,Matt Welsh,Eric Brewer,David Culler  ,
The nesC language: A holistic approach to networked embedded systems, Proceedings of 
the ACM SIGPLAN 2003 conference on Programming language design and 
implementation, San Diego USA 2003, p.p. 1-11, ACM 2003, ISBN:1-58113-662-5.

[45] Doug Simon, Cristina Cifuentes, The Squawk Virtual Machine: Java(TM) on the 
Bare Metal, Conference on Object Oriented Programming Systems Languages and 
Applications: Companion to the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications,San Diego, CA, USA 
p.p. 150 - 151, ACM 2005, ISBN:1-59593-332-6. 

[46] Connected Limited Device Configuration (CLDC); JSR 139, web page (accessed 
19.08.2010) [http://java.sun.com/products/cldc/]

[47] The Squawk Project, web page (accessed 19.08.2010)
[http://labs.oracle.com/projects/squawk/]

[48] Heinzelman, W.B, Murphy A.L.,Carvalho H.S.,Perillo M.A., Middleware to support 
sensor network applications, IEEE Network, p.p. 6-14, Jan/Feb 2004, IEEE Feb 2004, 
ISSN: 0890-8044

[49] Kay Römer,Oliver Kasten,Friedemann Mattern, Middleware challenges for wireless 
sensor networks, ACM SIGMOBILE Mobile Computing and Communications, Volume 
6 October 2002, p.p. 59-61, ACM 2002, ISSN:1559-1662

[50] Jan New March, Jini 2 Programming, Apress Inc 2006, ‘Overview of Jini’,
ISBN-10: 1-59059-716.8

[51] Yang Yu,Bhaskar Krishnamachari,Prasanna V.K., Issues in designing middleware 
for wireless sensor networks, IEEE Network, Jan/Feb 2004,Vol 18 ,p.p. 15 - 21,Los 
Angeles, USA, IEEE Feb 2004, ISSN: 0890-8044

[52] Hermann, C. Dargie, W. Tech. Univ. of Dresden, Senceive: A Middleware for a 
Wireless Sensor Network, Dresden, 22nd International Conference on Advanced 
Information Networking and Applications AINA 2008, 25-28 March 2008, Okinawa, p.p. 
612-619 IEEE 2008, ISBN: 978-0-7695-3095-6.



53

[53] Chien-Liang Fok,Gruia-Catalin Roman,Chenyang Lu, Agilla: A mobile agent 
middleware for self-adaptive wireless sensor networks, ACM Transactions on 
Autonomous and Adaptive Systems (TAAS),Volume 4 2009,Article No:16, ACM 2009, 
ISSN:1556-4665. 

[54] Aman Kansal,Suman Nath,Jie Liu,Feng Zhao, Microsoft Research, SenseWeb: An 
Infrastructure for Shared Sensing, IEEE Multimedia, Oct.-Dec. 2007,Vol 14,  Issue:4 
p.p. 8 - 13, IEEE 2007, ISSN:1070-986X .

[55] Mike Botts, George Percivall, Carl Reed and John Davidson,
OGC® Sensor Web Enablement: Overview and High Level Architecture,
GeoSensor Networks Second International Conference, GSN 2006, Boston, MA, USA, 
October 1-3, 2006 p.p. 72-86, Springer 2008, ISBN: 978-3-540-79995-5.

[56] McIlraith, S.A.,Son T.C.,Honglei Zeng, Knowledge Syst. Lab., Stanford Univ., CA, 
USA, Semantic Web services,  IEEE Intelligent Systems, Mar-Apr 2001,Vol 16 ,p.p. 46 -
53, IEEE 2001, ISSN: 1541-1672.

[57] Nigel Shadbolt,Tim Berners-Lee,Wendy Hall, The Semantic Web Revisited,
IEEE Intelligent Systems archive, Vol 21 May 2006, p.p. 96 - 101, ACM 2006, ISSN: 
1541-1672.  

[58] Swoolge Project HomePage, Web Page (accessed 19.08.2010),
[http://pear.cs.umbc.edu/swoogle]

[59] Semantic Web Tools: An Overview, PDF (accessed 07.07.2010)
[http://iam.inflibnet.ac.in:8080/dxml/handle/1944/1030]

[60] Li Ding, Pranam Kolari, Zhongli Ding, Sasikanth Avancha, Tim Finin, Anupam 
Joshi,University of Maryland Baltimore County Baltimore, Using Ontologies in the 
Semantic Web: A Survey, Ontologies A Handbook of Principles, Concepts and 
Applications in Information Systems, Springer 2007, ISBN: 978-0-387-37022-4.

[61] Fensel D.,van Harmelen, F.,Horrocks I.,McGuinness D.L.,Patel-Schneider P.F.,Vrije 
Univ.Amsterdam, Netherlands, OIL: an ontology infrastructure for the Semantic Web,
IEEE Intelligent Systems, Mar-Apr 2001,Vol 16, p. 38 - 45 , IEEE 2001 , ISSN: 1541-
1672.

[62] Xingchen Chu and Rajkumar Buyya, Service Oriented Sensor Web, Sensor 
Networks and Configuration 2007, Springer June 2007, ISBN: 978-3-540-37366-7.

[63] OGC, Sensor Model Language, web page (accessed 06.08.2010)
[http://www.opengeospatial.org/standards/sensorml#overview] 



54

[64] OGC, Introduction of SensorML, web page (accessed 06.08.2010)
[ http://www.ogcnetwork.net/SensorML_Intro ].

[65] OGC, Sensor Web Enablement, web page (accessed 06.08.2010)
[http://www.ogcnetwork.net/SWE ].

[66] Apache HTTP Server Project, web page (accessed 01.12.2009)
[http://httpd.apache.org/download.cgi]

[67] JpGraph , Graph Library for PHP, web page (accessed 25.12.2009)
[http://jpgraph.net/]

[68] NuSOAP, PHP classes for Web Services, (accessed 04.01.2010)
[http://www.scottnichol.com/nusoapintro.htm]



55

APPENDIX 1.

The code below shows the Gateway Application developed in by using J2SE for 
collecting sensor data and generating XML data.

/*
* SunSpotHostApplication.java
*
* Created on 12.10.2009 16:03:27;
*/

package org.sunspotworld;

import com.sun.spot.peripheral.radio.RadioFactory;
import com.sun.spot.peripheral.radio.IRadioPolicyManager;
import com.sun.spot.io.j2me.radiostream.*;
import com.sun.spot.io.j2me.radiogram.*;
import com.sun.spot.util.IEEEAddress;
import com.sun.spot.peripheral.TimeoutException;
import com.sun.spot.util.IEEEAddress;
import javax.microedition.io.*;
import com.sun.spot.*;

import java.io.*;
import java.io.IOException;
import java.io.EOFException;
import javax.microedition.io.*;
import com.sun.spot.io.j2me.radiogram.*;

import javax.swing.*;
import java.lang.*;

import java.sql.*;
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.SQLException;
import org.postgresql.Driver;

/**
* Sample Sun SPOT host application
*/

public class SunSpotHostApplication {

private JTextArea status;
long ourAddr;

public void run() throws Exception {

          long ourAddr = 
RadioFactory.getRadioPolicyManager().getIEEEAddress();
         System.out.println("Our radio address = " + 
IEEEAddress.toDottedHex(ourAddr));



56

         //drawgui();
        /*  insert the sensor data from sunspot class     */
        insertspot();
        //startxserve();
        
}

public void drawgui () {

//creating GUI
             JFrame.setDefaultLookAndFeelDecorated(true);
        JFrame fr= new JFrame("Communication Spot Free Range Sensor ");
        status = new JTextArea();
        //stop = new JButton("STOP");
        JScrollPane sp = new JScrollPane(status);
        fr.add(sp);

        fr.setSize(360, 200);
        fr.validate();
        fr.setVisible(true);
        //fr.add(stop);
}

public void insertspot() throws Exception {
        

         /* Broadcast port on which sensor connect */
RadiogramConnection conn=(RadiogramConnection) 
Connector.open("radiogram://:99");
Datagram dg = conn.newDatagram(conn.getMaximumLength());
Datagram dgreply= conn.newDatagram(conn.getMaximumLength());

while (true)
{
try {

   Class.forName("org.postgresql.Driver");
   conn.receive(dg);
    String RawData = dg.readUTF();

    
/*Print    */
System.out.println(RawData);

/*
status.append("\n"+"Sesnor 
BaseStation:"+"\n"+IEEEAddress.toDottedHex(ourAddr)+"\n"
        +"Remote Sensor Reading"+"\n"+RawData);
* */

//changing the spot hardware address to store in database
String nodea = "0014.4F01.0000.6D45";
String nodeb = "0014.4F01.0000.6A40";

/* splitted String RawData */
String readata = RawData;



57

String[] temp1;
String delimeter = ";";
temp1 = readata.split(delimeter);

for(int i =0; i < temp1.length ; i++)
   
System.out.println(temp1[i]);

// System.out.println(temp1[5]+"VALUE IS THIS"); //debugging

/* DataBase Connection and  Insert  */
    System.out.println("Inserting values to Database");
    Connection c= null;
    c = 
DriverManager.getConnection("jdbc:postgresql://localhost:5432/task",
                                    "postgres", "b0331969");
    Statement select = c.createStatement();

    int update = select.executeUpdate("INSERT INTO spot_result" +
          "(nodeid,xaxis,yaxis,zaxis,temp,light)" +
                        " VALUES(\'" + temp1[0] + "\',\'" + temp1[1] + 
"\',\'" +
                        temp1[2] +"\',\'" +temp1[3]+ "\',\'" +temp1[4]+ 
"\'," +temp1[5]+ ")");

  // System.out.println("Querying insert Error"); //debugging

/* Reset the stream */
dgreply.reset();
dgreply.setAddress(dg);
dgreply.writeUTF("Hello from Base");

conn.send(dgreply);

} catch (IOException e) {
System.out.println ("No route to " + dgreply.getAddress());
}

finally {
     
  org.sunspotworld.spotdata testa = new org.sunspotworld.spotdata();
   org.sunspotworld.crossbowdata testb = new 
org.sunspotworld.crossbowdata();
        testa.run();
        testb.run();

  } //finally

}    }

//Class to run the Crossbow Mote Xserve Application 
//Or either run that application manually from cygwin
/**
public static void startxserve() throws Exception{

    String path = ("C://Crossbow/cygwin/cygwin.bat");
    try {



58

        Runtime rt = Runtime.getRuntime();
        Process pr = rt.exec(path);

    }
    catch (Exception e){
        System.out.println(e.toString());
         e.printStackTrace();}
} **/

    /**
     * Start up the host application.
     *
     * @param args any command line arguments
     */
    public static void main(String[] args) throws IOException, 
ClassNotFoundException, SQLException, Exception {
        SunSpotHostApplication app = new SunSpotHostApplication();
                app.run();

             
    }
}

//END//



59

// CLASS spotdata to generate XML result from database.

package org.sunspotworld;

import com.sun.spot.peripheral.radio.RadioFactory;
import com.sun.spot.peripheral.radio.*;
import com.sun.spot.io.j2me.radiostream.*;
import com.sun.spot.io.j2me.radiogram.*;
import com.sun.spot.util.IEEEAddress;
import com.sun.spot.peripheral.TimeoutException;
import com.sun.spot.util.IEEEAddress;
import javax.microedition.io.*;

import com.sun.spot.*;

import java.io.*; import java.lang.*; import java.net.*;
import java.util.*;
import java.sql.*;
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.SQLException;
import org.postgresql.Driver;

public class spotdata {

public void run() throws Exception{
try {
    Class.forName("org.postgresql.Driver");
    System.out.println("Generating SunSpot XML-DATA of Sensors...");
    
    Connection c= null;
    

    c = 
DriverManager.getConnection("jdbc:postgresql://localhost:5432/task",
                                    "postgres", "b0331969");
    Statement select = c.createStatement();
   
   String sqlxmlquery = "select xmlelement(name Sensor,xmlelement(name 
NodeId, c.nodeid),"+
"xmlelement(name Xaxis, c.xaxis),xmlelement(name Yaxis, c.yaxis),"+
"xmlelement(name Zaxis, c.zaxis),xmlelement(name Temp, c.temp),"+
"xmlelement(name Light, c.light),"+
"xmlelement(name Time, c.modtime)) from spot_result c where 
nodeid='0014.4F01.0000.6A40';";
    
    ResultSet result1 = select.executeQuery(sqlxmlquery);

//Debugging  System.out.println(result1);
    while (result1.next()) {
    String outputsunspot= result1.getString(1);
    System.out.println(outputsunspot);
  
    File spot1 = new File("C:/Documents and 
Settings/Admin/Desktop/webdump/xml_sensor_result/spotresult1.xml");



60

    Writer writer = new BufferedWriter(new FileWriter(spot1));
    writer.write(outputsunspot);
writer.close();

       } //while

    String spotquery2 = "select xmlelement(name Sensor,xmlelement(name 
NodeId, c.nodeid),"+
"xmlelement(name Xaxis, c.xaxis),xmlelement(name Yaxis, c.yaxis),"+
"xmlelement(name Zaxis, c.zaxis),xmlelement(name Temp, c.temp),"+
"xmlelement(name Light, c.light),"+
"xmlelement(name Time, c.modtime)) from spot_result c where 
nodeid='0014.4F01.0000.6D45';";

    ResultSet result2 = select.executeQuery(spotquery2);

//Debugging  System.out.println(result1);
    while (result2.next()) {
    String outputsunspot2= result2.getString(1);
    System.out.println(outputsunspot2);

    File spot2 = new File("C:/Documents and 
Settings/Admin/Desktop/webdump/xml_sensor_result/spotresult2.xml");
    Writer writer = new BufferedWriter(new FileWriter(spot2));
    writer.write(outputsunspot2);
writer.close();

       } //while

}
finally {

} //finally
}

}



61

//CLASS crossbowdata to generate XML data from database.

package org.sunspotworld;

import java.io.*;
import java.io.*;
import java.util.*;
import javax.swing.*;
import java.lang.*;
import java.lang.String;
import java.net.*;
import java.sql.*;
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.SQLException;
import org.postgresql.Driver;

/**
*
* @author Mubeen
*/

public class crossbowdata {

    public void run() throws Exception{
try {
    Class.forName("org.postgresql.Driver");
    System.out.println("Generating CrossBowXML-DATA of Sensors...");
    Connection c= null;
    c = 
DriverManager.getConnection("jdbc:postgresql://localhost:5432/task",
                                    "postgres", "b0331969");
    Statement select = c.createStatement();

   String crossbowquery1 = "select xmlelement(name 
Sensor,xmlelement(name NodeId, c.nodeid),"+
"xmlelement(name Xaxis, c.accel_x),xmlelement(name Yaxis, c.accel_y),"+
"xmlelement(name Humid, c.humid),"+
"xmlelement(name Temp, c.humtemp),"+
"xmlelement(name Time, c.result_time)) from mts400_results c where 
nodeid='1';";

    ResultSet result1 = select.executeQuery(crossbowquery1);

//Debugging  System.out.println(result1);
    while (result1.next()) {
    String outputcross1= result1.getString(1);
    System.out.println(outputcross1);

    File file1 = new File("C:/Documents and 
Settings/Admin/Desktop/webdump/xml_sensor_result/crossbow_result1.xml")
;
    Writer writer = new BufferedWriter(new FileWriter(file1));
    writer.write(outputcross1);



62

writer.close();
       } //while

     String crossbowquery2 = "select xmlelement(name 
Sensor,xmlelement(name NodeId, c.nodeid),"+
"xmlelement(name Xaxis, c.accel_x),xmlelement(name Yaxis, c.accel_y),"+
"xmlelement(name Humid, c.humid),"+
"xmlelement(name Temp, c.humtemp),"+
"xmlelement(name Time, c.result_time)) from mts400_results c where 
nodeid='2';";

ResultSet result2 = select.executeQuery(crossbowquery2);
while (result2.next()) {

    String outputcross2= result2.getString(1);
    System.out.println(outputcross2);

    File file2 = new File("C:/Documents and 
Settings/Admin/Desktop/webdump/xml_sensor_result/crossbow_result2.xml")
;
    Writer writer = new BufferedWriter(new FileWriter(file2));
    writer.write(outputcross2);
writer.close();

       } //while

}
finally {

} //finally
}

}



63

APPENDIX. 2

Below code shows the web service developed in NuSOAP by using PHP.

<?php
//call library
require ("C:/php/nusoap/lib/nusoap.php");

// Instantiate a new soap server object
$server = new soap_server();

//Initiate WSDL Configuration
$server->configureWSDL('Sensorinfo','http://localhost/webservices');

//Desigate the WSDL namespace
$server->wsdl->schemaTargerNamespace =  'urn:Sensorinfo';   // 
'http://localhost/Webservices'

// Function: getNodedata()
// Inputs: None
// Outputs: A string containing information about a nodeid,
// its temperature, and date.

function getNodedata($parms) {

$username = "postgres";
$password = "b0331969";
$database = "task"; 

// Connect to the PGSQL server
$pg = pg_connect("host=localhost user=$username password=$password 
dbname=$database");

if ($parms=='b')
{

// Create and execute the query
$query = "SELECT * FROM spot_result WHERE nodeid='0014.4F01.0000.6A40' 
ORDER BY modtime DESC LIMIT 1";

$result = pg_query($query);

if (!$result) {
return new soap_fault('Server', '', 'Internal server error.');
}

$row = pg_fetch_array($result);



64

// Retrieve, assemble, and return the  data
$nodeid = $row["nodeid"];
$temp = $row["temp"];
$time = $row["modtime"];
$light = $row["light"];
$xaxis = $row["xaxis"];
$yaxis = $row["yaxis"];
$zaxis = $row["zaxis"];

return "$temp, $nodeid, $time, $light, $xaxis,$yaxis,$zaxis";

} 

if ($parms=='b1')
{

// Create and execute the query
$query = "SELECT * FROM spot_result WHERE nodeid='0014.4F01.0000.6D45' 
ORDER BY modtime DESC LIMIT 1";

$result = pg_query($query);

if (!$result) {
return new soap_fault('Server', '', 'Internal server error.');
}

$row = pg_fetch_array($result);

// Retrieve, assemble, and return the  data
$nodeid = $row["nodeid"];
$temp = $row["temp"];
$time = $row["modtime"];
$light = $row["light"];
$xaxis = $row["xaxis"];
$yaxis = $row["yaxis"];
$zaxis = $row["zaxis"];

return "$temp, $nodeid, $time, $light, $xaxis,$yaxis,$zaxis";

} 

if ($parms=='a')
{

// Create and execute the query
$query = "SELECT * FROM mts400_results WHERE nodeid='1' ORDER BY 
result_time DESC LIMIT 1";



65

$result = pg_query($query);

if (!$result) {
return new soap_fault('Server', '', 'Internal server error.');
}

$row = pg_fetch_array($result);

// Retrieve, assemble, and return the  data
$nodeid = $row["nodeid"];
$humtemp = $row["humtemp"];
$light = $row["taosch0"];
$humid = $row["humid"];
$xaxis = $row["accel_x"];
$yaxis = $row["accel_y"];
$time = $row["result_time"];

return "$humtemp, $nodeid, $time, $light,$xaxis,$yaxis,$humid";

} 

if ($parms=='a1')
{

// Create and execute the query
$query = "SELECT * FROM mts400_results WHERE nodeid='2' ORDER BY 
result_time DESC LIMIT 1";

$result = pg_query($query);

if (!$result) {
return new soap_fault('Server', '', 'Internal server error.');
}

$row = pg_fetch_array($result);

// Retrieve, assemble, and return the  data
$nodeid = $row["nodeid"];
$humtemp = $row["humtemp"];
$light = $row["taosch0"];
$humid = $row["humid"];
$xaxis = $row["accel_x"];
$yaxis = $row["accel_y"];
$time = $row["result_time"];

return "$humtemp, $nodeid, $time, $light,$xaxis,$yaxis,$humid";

} 



66

}

// Register the getNodeData() method
$server->register("getNodedata",
array('input' => 'xsd:string'),
array('return' => 'xsd:string'), 
'urn:Sensorinfo',
'urn:Sensorinfo#getNodedata'
//,'rpc',
//'encoded','Return data to mobile client'
);

// Automatically execute any incoming request
$HTTP_RAW_POST_DATA = isset($HTTP_RAW_POST_DATA) ? $HTTP_RAW_POST_DATA: 
'';

$server->service($HTTP_RAW_POST_DATA);

?>


