
DCNDS Project:

NRSE

Network Resource Scheduling Entity
for multi-domain QoS reservation scheduling & QoS signaling

part of the GRID Resource Scheduling project

Andy Liow
Keiko Tada

Richard Smith
Toshihiro Aiyoshi

Supervisor

Saleem Bhatti

September 1, 2003

Acknowledgements

We would like to acknowledge our supervisor, Saleem Bhatti, who provided
invaluable support and advice. The project would not have been possible
without the GRS group who conceived the NRSE architecture in [BSCC03]:
Saleem Bhatti, Søren-Aksel Sørensen, Peter Clarke, Jon Crowcroft. We
are also grateful to Yangcheng Huang, who worked on implementing the
hardware-level part of the system.

i

Summary

The GRS (GRID Resource Scheduling) project aims to enable GRID users to
micro-manage QoS reservations at the edges of their networks on a per-flow
basis. We have designed and implemented the NRSE (Network Resource
Scheduling Entity) component of GRS. The NRSE provides a service inter-
face, specifying an XML-based signalling protocol for service level requests
and notifications. The service levels provided are a subset of IETF DIFF-
SERV; the NRSE requires a router that implements DIFFSERV. The NRSE
also performs admission control functions to ensure there is sufficient capac-
ity at the local router for every reservation. Reservations across multiple
domains are made using two NRSEs, one at each end, with the assumption
that the core network is over-provisioned.

ii

Contents

1 Introduction 1
1.1 The problem . 1
1.2 The state of the art . 2

1.2.1 INTSERV (Integrated Services) 2
1.2.2 DIFFSERV (Differentiated Services) 2
1.2.3 GARA (General-purpose Architecture for Reservation

and Allocation) . 3
1.3 Our solution . 3

1.3.1 Service level . 4
1.3.2 Service interface . 4
1.3.3 Admission control . 4
1.3.4 Scheduling mechanisms within the network 5

2 Requirements Analysis 6
2.1 GRID user . 6
2.2 NRSE administrator . 7
2.3 GRID programmer . 7
2.4 Non-functional requirements 8
2.5 Resource Management . 8

2.5.1 Linux Traffic Control 8
2.5.2 XML and Schemas . 8
2.5.3 Apache Xerces XML parser 9
2.5.4 Java GUI, JUnit, Java and many of its related packages 9
2.5.5 PGP authentication 9
2.5.6 PostgreSQL database 10
2.5.7 GNU XEmacs editor 10
2.5.8 Apache Jakarta log4j 10
2.5.9 UML tools . 10
2.5.10 Mr Project project management 10
2.5.11 CVS . 11
2.5.12 BEEP . 11

iii

CONTENTS iv

3 Project Management 12
3.1 Methodology . 12
3.2 Schedule . 12
3.3 CMM . 14
3.4 Risk Management . 14

3.4.1 Schedule delay . 15
3.4.2 Cost Overrun . 15
3.4.3 Intellectual Property Right 15
3.4.4 Specification Comprehension 15
3.4.5 Specification Changes 16
3.4.6 Existing software bugs 16
3.4.7 Testbed . 16
3.4.8 Individual skills and experiences 17

4 Design 18
4.1 Metaphor . 18
4.2 User Stories . 18
4.3 Usecases . 19
4.4 Task cards . 20

4.4.1 XML Schema Design 20
4.4.2 BEEP functionality . 20
4.4.3 GUI . 21
4.4.4 GUI Query . 21
4.4.5 GUI Add User . 21
4.4.6 Request SLA . 22
4.4.7 Process SLS . 22
4.4.8 Software installation 24
4.4.9 NRSE delete SLS . 24
4.4.10 Logging . 25
4.4.11 BEEP Authentication 25
4.4.12 PGP Authentication 25
4.4.13 Notification . 26
4.4.14 NRSE adds a new QoS reservation to the database . . 26
4.4.15 NRSE checks resource availability (Real-time, Single

domain) . 27
4.4.16 NRSE checks resource availability (Non-real-time, Sin-

gle domain) . 27
4.4.17 NRSE checks resource availability (Real-time, Multi

domain) . 27
4.4.18 NRSE deletes a QoS reservation from the database . . 28
4.4.19 Database user management 28

CONTENTS v

5 Implementation 29
5.1 Protocol behaviour . 29
5.2 NRSE package . 32
5.3 Client package . 33
5.4 Utility package . 34
5.5 Test package . 35
5.6 Client classes . 36

5.6.1 QoS class . 36
5.6.2 QosAddSLA class . 37
5.6.3 QosDeleteSLA class . 37
5.6.4 QosAddUser class . 37
5.6.5 Client class . 38
5.6.6 ClientProfile class . 38
5.6.7 Abandoned classes . 38

5.7 Utility classes . 40
5.7.1 BeepClient class . 40
5.7.2 Config class . 40

5.8 NRSE classes . 41
5.8.1 SLS class . 41
5.8.2 SLSactivator class . 41
5.8.3 NRSE class . 41
5.8.4 NRSEProfile class . 42
5.8.5 TCRouter class . 42
5.8.6 MyCanvas class and ReservationQuota class 42
5.8.7 IPerf class . 43
5.8.8 Notification . 43
5.8.9 CreateTable . 43
5.8.10 QueryRequest . 43
5.8.11 QueryResults . 43

5.9 Database class . 44
5.9.1 QoS rsv table . 44
5.9.2 QoS user table . 44
5.9.3 ScheduleI table . 45
5.9.4 ER model (Entity-Relationship model) 45
5.9.5 Non-Real-time reservation 46
5.9.6 Selection of Database Management System 48
5.9.7 PostgreSQL . 48
5.9.8 Transaction . 49
5.9.9 Future work . 49

5.10 Blocks Extensible Exchange Protocol Core 54
5.10.1 Rationale . 54

CONTENTS vi

5.10.2 Use of Beepcore . 54
5.11 Logging . 55

6 Testing 56
6.1 Unit Tests . 56

6.1.1 Test details . 58
6.1.2 Test results . 59

6.2 Functional test scenarios . 59
6.2.1 Testbed . 59
6.2.2 Single-domain test . 59
6.2.3 Multi-domain test . 61

7 Evaluation 64
7.1 Database . 64
7.2 Networking . 65
7.3 Authentication . 65
7.4 Testbed . 66
7.5 Performance . 67

8 Conclusion 68

A User Manual 70
A.1 Main Screen . 70
A.2 Add SLA . 71
A.3 Query/Delete . 72
A.4 Add User . 72

B Administrator manual 74
B.1 Troubleshooting . 74
B.2 Installation . 74

B.2.1 Requirements . 74
B.3 Running the NRSE . 75
B.4 Running the client . 75
B.5 Configuration . 76

C Demonstration 78
C.1 Before running the program 78
C.2 Single-Domain . 78
C.3 Multi-Domain . 79
C.4 After running the program . 79

D Glossary 80

CONTENTS vii

E XML documents 82
E.1 SLS request . 82
E.2 Deletion request . 84
E.3 Query request . 84

F Miscellany 86

List of Figures

1.1 NRSE architecture . 4

3.1 Gantt chart . 13

5.1 Relationship between packages 30
5.2 Sequence Diagram . 31
5.3 NRSE class diagram . 32
5.4 Client class diagram . 33
5.5 Utility class diagram . 34
5.6 Test class diagram . 35
5.7 Entity-Relationship Diagram for NRSE database 47

6.1 Successful JUnit test . 57
6.2 Unsuccessful JUnit test . 57
6.3 JUnit choice of tests . 58
6.4 Testbed (diagram courtesy of Yangcheng Huang) 60
6.5 Single-domain network performance 62
6.6 Multi-domain network performance 63

A.1 Client Main Screen . 71
A.2 Add SLA . 71
A.3 Add User . 73

F.1 Early draft of usecase diagram 87

viii

Chapter 1

Introduction

1.1 The problem

Packet based IP networks are inherently unreliable. They only provide “best
effort” service, which means they do not guarantee that a packet will be de-
livered at all, let alone delivered on time. Protocols used by the end systems,
such as TCP/IP, are able to mitigate this problem somewhat, and provide
some basic assurance that packets will eventually arrive.

Unfortunately, this is not good enough for many applications. For ex-
ample, TCP cannot be used for realtime video communications, because the
TCP retransmissions will introduce unacceptable jitter which can only be
avoided by equally unacceptable buffering delays. Instead we use protocols
built on UDP that are able to tolerate some lost packets. Nevertheless, we
can only tolerate so much loss, and we would like the network to provide a
guaranteed quality of service (QoS). We would like the network to guarantee
that is has sufficient bandwidth for our video stream, that it will not drop
more than a certain percentage of packets, that our packets will be delivered
with less than a certain delay, etc.

Another example, more familiar to most users, is that of file transfer. In
this case we don’t care about packet loss or delay. We only care that there
is sufficient bandwidth available to transfer our file within a certain amount
of time. However, we are more flexible than the realtime user, because we
can vary the datarate to suit the needs of the network. We might be able to
accept a guarantee of very high bandwidth for a short period, rather than
mediocre bandwidth for a longer period, as long as the file transfer finishes
before our deadline.

The problem of guaranteeing QoS in IP based networks is fairly well un-
derstood. The IETF first attempted to solve it via INTSERV, which allowed

1

CHAPTER 1. INTRODUCTION 2

the user to reserve bandwidth on a per-flow basis, but unfortunately required
all routers along the path to support INTSERV. For this and other reasons
it has not been widely adopted.

DIFFSERV is a more lightweight approach that marks packets with a tag
as they leave the network to indicate the service level they should receive.
The problem with this is that once a DIFFSERV service has been configured
by the administrator, all flows are aggregated together, and it is not possible
for him to allocate bandwidth to individual user flows as they need it.

GARA is a general purpose resource allocation protocol, but it is not
specialised for network resources, and we hope we can improve on it.

INTSERV, DIFFSERV and GARA are examined in more detail below.
(These descriptions are taken from those in [BSCC03]).

1.2 The state of the art

1.2.1 INTSERV (Integrated Services)

The present IP services uses a best-effort approach. Using the IETF INTSERV
and the signalling protocol RSVP(reservation Protocol), two service-level
specifications are defined, namely controlled-load service, and guaranteed
service. A controlled-load service approximates the QoS received from an
unloaded, best effort network and a guaranteed service delivers a guaranteed
throughput and delay for a flow. RSVP is a signalling protocol that allows
messages to be sent between applications, which are then used by the net-
work elements en-route. INTSERV, together with the use of RSVP, has its
disadvantages. The Qos guarantee is provided for a single flow. A lot of soft
state has to be held for each flow. The effect is compounded as more flows
pass through the routers and goes into the core network. There are some
other disadvantages, just to name a few, like the extra traffic generated due
to the soft state refreshes and the possibility of router failures.

1.2.2 DIFFSERV (Differentiated Services)

DIFFSERV is a class based system where packets are marked with a well-
known value. It treats marked packets with a different QoS and allows flows
to be aggregated. Aggregated flows receive the same service level producing a
coarser granularity of service. Packets within the same class share the same
resources. Service classes are divided into Premium and Assured classes.
Premium service provides a low delay service using EF (Expedited Forward-
ing). AF (Assured Forwarding) service provides a low loss service using As-

CHAPTER 1. INTRODUCTION 3

sured Forwarding with different drop precedence assignments. DIFFSERV
attempts to provide a simpler and coarse-grained Qos control mechanism
without the need to change the end systems. Whereas INTSERV provides
a per application/flow end-to-end resource reservation, DIFFSERV aims to
provide an SLA-based contract between service networks.

1.2.3 GARA (General-purpose Architecture for Reser-

vation and Allocation)

GARA is one of the projects undertaken for QoS reservations. It is imple-
mented by the Globus Project to integrate Qos into Globus even though it
only lightly relies on Globus. It is a general purpose platform used to reserve
numerous resources including disk space and CPU cycles. It is widely in used
and it offers some core network resource reservation. It has two advantages.
Firstly, Qos reservations can be made in advance or immediately at the time
you need it. Secondly, you can use the same API to make and monitor a
reservation regardless of the type of the underlying resource, thus simpli-
fying the implementation of Qos reservations of multiple types of resources.
However, it is not without limitations. Some network resources like disk space
are fundamentally very different from network capacity. These resources are
localised to certain end-systems and reservations can be made at the remote
end-systems where such resources are located. Network capacity is a dis-
tributed resource requiring reservations at the local and remote end-systems
as well as the network path between the local and remote systems.

1.3 Our solution

In [BSCC03], the GRID Resource Scheduling project proposes a system to
solve the QoS scheduling problem. The NRSE architecture uses the ex-
isting DIFFSERV EF service. DIFFSERV can be thought of as a virtual
pipe of protected capacity, and the NRSE is an agent that allows users to
micro-manage individual flows within that pipe. The NRSE also acts as a
‘bandwidth broker’, allocating a portion of the DIFFSERV pipe to a user’s
flow on-demand, something that is not practical for an administrator to do
manually. It has a similar role to GARA, but without GARA’s limitations.
The NRSE is able to automatically negotiate a multi-domain reservation by
communicating with its counterpart on the remote network, on behalf of its
client. Thus the system is highly scalable.

Figure 1.1 provides an overview of the system architecture.

CHAPTER 1. INTRODUCTION 4

An integrated services architecture requires four components ([BSCC03]).
The NRSE is positioned in the integrated services model as follows.

1.3.1 Service level

The service levels supported by the NRSE are provided by the DIFFSERV
service, implemented in the routers. NRSE users chose from a subset of
DIFFSERV parameters. Therefore defining new service levels is not part of
the NRSE project - we are merely using what already exists.

1.3.2 Service interface

The NRSE provides a signalling protocol. This is an open, human-readable
protocol based on XML that enables users to request that the NRSE add,
modify and delete QoS reservations. This client-NRSE protocol is repre-
sented by the red arrows on the diagram.

1.3.3 Admission control

The NRSE also provides admission control. Each NRSE maintains a database
of reservations and only accepts a new reservation if it has sufficient band-

NRSENRSE

Figure 1.1: NRSE architecture

CHAPTER 1. INTRODUCTION 5

width unallocated. For non-realtime requests, such as file transfers, it may
suggest an alternative booking that still results in the file being transfered
before the user’s specified deadline.

The NRSE must also have an inter-NRSE protocol, which should be as
similar to the client protocol as possible, and this represented by the green
arrows on the diagram. This is necessary because each subnet has its own
NRSE, and admission control must be performed at both the source and
destination networks. (Having the client communicate with both local and
remote NRSEs would not scale well, because every NRSE would need to be
able to authenticate every client.)

1.3.4 Scheduling mechanisms within the network

The NRSE does not provide scheduling mechanisms within the network. It
relies on the routers of the networks supporting DIFFSERV. However, the
NRSE does instruct the network on what QoS filtering should be performed.
The blue arrow on the diagram represent the NRSE informing the network
router of the DIFFSERV parameters required for a particular reservation.

For more information on this design, see [BSCC03].

Chapter 2

Requirements Analysis

From the RUP perspective, there are three ‘actors’ in our system.

GRID user - runs our client software to make reservations with his local
NRSE.

NRSE administrator - installs, configures and administrates an NRSE on
his network.

GRID programmer - creates GRID applications that are able to make
reservations with the local NRSE.

The following functional requirements are based on those in the [BSCC03]
document, which contains a specification of the system wanted by our client.
We have arranged the requirements according to actor.

We did not prioritise requirements initially. Prioritisation was performed
later, by the customer (our supervisor) during ‘the planning game’ in each
development phase. The programmers estimated how much work it would
take to meet each requirement and the customer decided how much ‘business
value’ each feature would create.

2.1 GRID user

• The user is able to make reservations of network capacity across mul-
tiple domains based on SLAs.

• The user may delete and modify his own reservations.

• Reservations for non-realtime service-requests are flexible, i.e. the
NRSE will adjust them to meet specified deadlines.

6

CHAPTER 2. REQUIREMENTS ANALYSIS 7

• The NRSE uses a localised polling mechanism for the application hold-
ing the reservation (keep-alive) so that resources can be reclaimed in
an application fails.

• The user may elect to receive notification of violations of the SLA.

• The user may specify service class, directionality and policing in the
SLA.

• The user specifies network flows using standard TCP/IP header fields.

• The system scales to a large number of NRSEs and users.

• The system is portable across a large number of different platforms.

2.2 NRSE administrator

• The administrator may query, modify and delete users’ reservations.

• The administrator may add, modify and delete entries in the database
of users.

• The system has a hierarchical trust model, so access control mechanisms
are localised. This means the administrator only needs to configure
access for his own users, and for remote NRSEs, but not for remote
users.

• The administrator can configure local policies that control operation of
his NRSE, with such policies being autonomously managed.

2.3 GRID programmer

• The format used by the client-NRSE protocol is open and well-defined
to enable third-party re-implementations.

• Client code is separated into its own module so that it can be called
from other applications.

• It is easy for application to receive notifications from the NRSE.

CHAPTER 2. REQUIREMENTS ANALYSIS 8

2.4 Non-functional requirements

• In order to scale well, the NRSE stores reservation state in a decen-
tralised manner. Reservation state is only held at end-sites which are
involved in the reservation.

• The NRSE should run on as many platforms as possible. Therefore the
customer has recommended it is written in Java.

• The customer has suggested the use of XML and BEEP (see [Ros01])for
the protocol, to meet the openness requirements.

• The customer has specified the format of some the XML documents.
(See Appendix E on page 82).

• The program must be tested on the provided testbed, and therefore uses
Linux routers. Any Linux-specific code is kept in a module accessed
via a well defined interface, so it may be easily replaced with code for
another router operating system, such as Cisco IOS.

2.5 Resource Management

There follows an overview of the tools and technologies used in the project.
Some of these were specified in the requirements, some were recommended
by our supervisor, and some were chosen by us.

2.5.1 Linux Traffic Control

Our project coordinates substantially with another student Yang Cheng’s
project, even though it was designed to operate without conflicts if either one
of the two projects was modified. Yang Cheng’s project implements an EF
service with a chosen priority queueing mechanisms from Linux DIFFSERV/
Traffic Control. Traffic Control is chosen as specified by our supervisor and
at the same time was developed by another student. Other operating system
routing are also available for routing the packets through the network, e.g.
Solaris, FreeBSD, IOS. To list a few advantages of using Linux TC for routing
the network packets, TC is fast, mature, and small in size.

2.5.2 XML and Schemas

The clients and the NRSE communicate and establish a SLS between them. A
Qos request comes in the form of a SLA. These SLA are valid and well-formed

CHAPTER 2. REQUIREMENTS ANALYSIS 9

XML documents. XML is used for the application-level signalling protocol,
used for managing the SLS as defined by DIFFSERV. XML provides for the
integration and collation of any data and information irrespective of storage
environment or document type. It is in fact the industry standard for human-
readable markup language. There are many documents that have to be sent
between the clients and NRSE, e.g. Notifications and Add user. They are
all XML documents. Schemas have been written to test the data structure
of the XML documents.

2.5.3 Apache Xerces XML parser

Apache Xerces java package have been utilised to parse the XML elements
and serialising them so that elements in the XML elements can be read,
validated and verified by the program and stored as objects.

2.5.4 Java GUI, JUnit, Java and many of its related
packages

Java GUI is manually implemented with its own AWT and Swing packages
without using any other GUI constructing toolkit. We think that the whole
layout and structure of the GUI can be better controlled and understood this
way even though it takes much more time to implement it. JUnit is being used
to test the program code developed. JUnit has a regression testing framework
that facilitates programmers to implement unit tests in Java. Tests can be
written before the application code, which can lead to code that is both
tested and only loosely coupled.

2.5.5 PGP authentication

PGP is used for the authentication of the users. PGP can be used to establish
the confidentiality of the communications between users, guarantee the reli-
ability of the source information, and guarantee the message integrity. The
project uses PGP to generate a set of private and public keys for each user
for authentication purposes. The private keys will be stored as credentials of
the users in the database. Other security alternatives have been taken into
account of like BEEP, Java, and OpenSSL X509 certificates. PGP is chosen
because one of our group members is familiar with it and it will be easier
and faster to implement in PGP compared to the others. Our project is also
programmed in such a way that alternative authentication method is also
allowed.

CHAPTER 2. REQUIREMENTS ANALYSIS 10

2.5.6 PostgreSQL database

PostgreSQL database is being used to store the data created by the project.
Initially, we thought that We can use PostgreSQL and then port to MySQL
later in the project if possible, or port to Oracle is possible. MySQL was
slightly more desired by our supervisor, but we continued with PostgreSQL
since we have already started on it. We tried to keep SQL statements to
conform to SQL99 so that porting to other databases will be easier.

2.5.7 GNU XEmacs editor

GNU XEmacs was chosen as the editor as it is a highly customisable open
source text editor and application development system. Its emphasis is on
modern graphical user interface support and an open software development
model, similar to Linux.

2.5.8 Apache Jakarta log4j

Apache Jakarta log4j is being used for enabling logging at runtime with-
out modifying the application program. The log4j package is designed so
that these statements can remain in shipped code without incurring a heavy
performance cost. Logging behaviour can be controlled by editing a configu-
ration file, without touching the application program.

2.5.9 UML tools

Simple UML diagrams like use cases and sequence diagrams are being used
for specifying, visualising, constructing, and documenting the artifacts of
software systems. It attempts to simplify the complex process of our software
design, making a ”blueprint” for construction. However, it is not extensively
used since XP methodology approach does not emphasise on using UML.
UML diagrams are used to guide us along our design of the project. We are
using Visio and Dia to produce these diagrams.

2.5.10 Mr Project project management

Mr Project was selected to produced a Gantt chart for our project to show the
schedule for the group. Mr Project is simple enough to use and is sufficient
enough for our project development. Moreover, it comes with the Linux
system which facilitates development and viewing without having to install
additional project management tools.

CHAPTER 2. REQUIREMENTS ANALYSIS 11

2.5.11 CVS

CVS is used for version control throughout our project. Work can be dele-
gated to different member working on different files simultaneously without
having file conflicts. Any undesirable effects can be undone by reversing the
work to a previous version of the file or work. CVS is largely used for such
purposes and we made a few releases with it.

2.5.12 BEEP

BEEP is used to transmit messages between the NRSE and clients for com-
munication through SLA transmission. BEEP is generally used for the
application-level communications using the Beepcore-java library. This was
also specified by our supervisor. There are other message exchange protocol
for exchanging messages in the transport layer like HTTP. HTTP is already
deployed and is mature in many ways. However, BEEP is more sophisticated
compared to HTTP. BEEP is more suited for transport for XML-structured
messages or documents. BEEP can carries multiple channels on the same
TCP connection and the channels are independent of each other. Messages
can be originated by either peer. Most importantly, BEEP is an IETF spec-
ification, many more IETF specs based on BEEP will emerge soon in the
future.

Chapter 3

Project Management

3.1 Methodology

We chose the Extreme Programming (XP) methodology to manage our project.
XP is an agile, lightweight methodology that is well suited to a small team
working on a small project, because it dispenses with much of the paper-
work that is necessary to manage a large project but which would be an
unnecessary burden on a team as small as ours.

Further information on how the project was managed can be found in
individual reports.

3.2 Schedule

We planned and scheduled the project work using the MrProject tool to
produce Gantt charts. These were constantly refined and updated through
the project. The final Gantt chart is shown in figure 3.1

We initially planned to have four phases of development with one or two
major milestones to mark the end of each phase. (These are not shown on
the diagram because there wasn’t space.)

Phase 1 Define protocol. Choose which aspects of DIFFSERV SLS to sup-
port and and an XML format. Define a protocol for the client to
communicate with the NRSE. An inter-NRSE protocol will be defined
later.1

1This was not actually necessary, because we were able to define a single protocol for
both functions.

12

CHAPTER 3. PROJECT MANAGEMENT 13

Figure 3.1: Gantt chart

CHAPTER 3. PROJECT MANAGEMENT 14

Phase 2 Single domain scenario. Implement the NRSE to work for a single
domain. A client must also be developed concurrently. Concurrent en-
gineering will continue throughout the remainder of the project. The
client application will create, delete and edit SLAs. The first milestone
is met when the two applications can communicate using the proto-
col specified in Phase 1 and agree a SLA. For the second milestone,
the NRSE must activate a token bucket filter2 on the router and per-
form admission control. This is the largest and most risky phase, and
determines the feasibility of the rest of the project.

Phase 3 Multi-domain homogeneous scenario. Extend the system so that
two NRSE can negotiate a reservation across multiple domains. Other
more advanced features may also be added at this stage, such as au-
thentication, and a GUI for the client application3.

Phase 4 Multi-domain heterogeneous Scenario.4

3.3 CMM

We are aimed to reach CMM level 4. Unfortunately, the XP methodology
does not map easily into the CMM level system, so we achieved a ’vertical
slice’ of targets with some from each of the levels. A thorough discussion of
where XP fits into the CMM scale can be found in [Jef00].

3.4 Risk Management

In the process of developing a software, one of the key factors for success is
risk management. In our project, expectations of the results and deliverables
are noted and compared with the actual results. In other words, measures of
the possibility of deviation from the expected are done. Before doing this, the
risks and hazards of the project have to be defined first, acting as a discipline
for helping us to deal with the uncertainties that may arise.

Likelihood of a risk multiplied by its impact can be a useful metric for
assessing a risk but we must not neglect very dangerous risks simply because
they rarely occur. We deal with the most likely to occur risks and most
important risks first.

2The requirements were later amended so that this was no longer part of our project.
It was instead to be implemented by Yangcheng Huang.

3Actually these features were added much earlier
4This phase was later dropped since we did not have a heterogeneous testbed available.

CHAPTER 3. PROJECT MANAGEMENT 15

The possible risks foreseen will be described as follows.

3.4.1 Schedule delay

Projects have deadlines but are often delayed as we noticed from real project
developments. Failing to produce the required deliverables can have serious
consequences. Extreme programming helps to mitigate risks because of its
flexibility to overcome unforeseen problems by developing the project incre-
mentally. As a general rule, we have done the most important work first.
Less important work are left out or placed less effort in it, trading off for
more time dealing with the more important work. Our key risk management
was to make the risk cards(see section ??User Stories)). Every task that
should be implemented was written on the task card and we estimate the
risks of each card. Furthermore, we allow more time than possible for some
components rather than trying very hard to meet tight deadlines which is
unrealistic. We allow time for some delays since every member will have
their difficulty in dealing with their own time management.

3.4.2 Cost Overrun

Cost does not affect our project much but it is worth mentioning since it
is always an important component in every project. Our project uses many
of the equipments and software that are readily available to us, including
some open source software. Equipments and materials are available from the
department, our supervisor, and the Internet without incurring additional
costs. But using all the software bundled together leads to another problem
being addressed in the next section.

3.4.3 Intellectual Property Right

Software copyright are mainly concerned here. We use many open source
software with the licenses available to the public. However, using them alto-
gether as a whole for this project seems inappropriate. However, since this
project is sponsored by the university and is not disclosed to the public, we
can use the software as we like for now. Work being referenced are noted
down in the report to avoid infringing intellectual property rights as well.

3.4.4 Specification Comprehension

Specification Comprehension is crucial to avoid deviating from the main ob-
jective. For this, group discussions are often held and assistance are often

CHAPTER 3. PROJECT MANAGEMENT 16

offered for certain aspects of the project. In resolving design issues, we dis-
cuss and agreed upon certain issues. On implementing it, comprehension
of what the program component should do exactly is important. On the
project as a whole, a global perspective is crucial to help to understand what
we should actually achieve. Help was sought from another member when
confusion or problems arose. Frequent communication is essential and was
done for understanding and resolving issues.

3.4.5 Specification Changes

As the specification changes in the project, we tried to refactor to the changes
in development according to our supervisor specifications. As we were us-
ing XP programming methodology by developing the project incrementally,
we mitigate this risk of changing requirements. We always tried to make
some workable programs before moving onto other programs. Eventually, we
made a few working releases with this method. in this way, we always have
something that is working at any point in time. If this was not done, we
can make a lot of programs without designing and programming it properly,
many design issues and program bugs will arise. Redesigning it can then be a
big problem and debugging becomes extremely tedious since we do not know
where the bug could be in the many programs already developed.

3.4.6 Existing software bugs

We have used many software to produce this final project. The software we
utilised are not perfect and there are existing bugs and failures in certain parts
of it. For example, we used many fixed Java libraries like the BEEP, Log4J,
PostgreSQL database. An attempt on implementing BEEP authentication
was done but failed since we could only get a poor manual on it. Eventually,
we changed our plan and used PGP instead since one of our members is
familiar with it and authentication is not as important as other issues we
were dealing with. This also saves time which is linked to the schedule delay
risk as mentioned. These problems encountered are being documented in the
latter section (see section ??Evaluation)).

3.4.7 Testbed

The Testbed is being developed by a PhD student called Yang Cheng. Col-
laboration is needed to integrate the two different systems even though we
programmed the project in a ways such that there is an interface in between
the two systems. This interface means that at any point in time, a different

CHAPTER 3. PROJECT MANAGEMENT 17

system developed can replaced one of the two current systems and still works
in collaboration successfully. Whoever, we were not sure about the availabil-
ity of the testbed and when we can get to utilise it. In this case, we made a
test environment in the CS department. Currently, it is possible to run the
program in both environments by changing some configuration parameters
and options.

3.4.8 Individual skills and experiences

Each of our members skills vary. This happens to all the groups, affecting
the project development with the different skills required and the different
skills available to develop it. The same applies to the experience of each team
member. Some of us are more familiar with C programming instead of Java,
whereas others are more familiar with Java. Some of us are more familiar
with Windows programming environment whereas others are more familiar
with Linux programming environment. XP programming mitigate the risks
by allowing pair programming. As a result, the skills required to develop the
project are resolved to a certain extent, with the benefit that the less familiar
programmer in a certain aspect can learn from a more familiar programmer
in the same aspect by carrying out pair programming.

Chapter 4

Design

4.1 Metaphor

In Extreme Programming, there is no lengthy design phase before program-
ming can begin. We simply chose a metaphor to explain how the system will
behave, then begin the first phase of writing user stories (explained below),
tests and code.

We chose the simple metaphor of an airline booking agent. The agent
receives requests from passengers who specify where they want to fly from
and to (source and destination IP addresses) and what time they want to
fly. The passenger also specifies what class of seat he would like (QoS service
level). The agent checks whether there are sufficient seats available on the
flight. If there are, he issues the tickets. If the flight is fully booked, but
passenger’s journey is not urgent (non-realtime), the agent may be able to
suggest an alternative flight. If the agent has to contact another agent to
arrange the tickets, this is done transparently without involving the customer.

The travel agent is not concerned with actually flying the aeroplanes, just
as we are not concerned with how the router meets our QoS specifications.

4.2 User Stories

In Extreme Programming we specify the functional requirements of the sys-
tem by writing user stories. In a commercial project there would be compli-
cated procedures governing the creation of these stories. For example, the
stories might be written by the customer with the help of the programmers.
The programmers would then estimate how long it would take to implement
the functionality in each story, and the customer would prioritise the stories
according to which provide the most ‘business value’. There are different

18

CHAPTER 4. DESIGN 19

variation on this ‘planning game’.
Each story describes one feature that the system should possess. The sto-

ries were written onto ‘task cards’ and each card was given to the program-
mer responsible for implementing that story. If the programmer estimated
the task would take a long time, it was broken up into several sub-tasks. The
programmer would usually begin by writing a unit test for the functionality
of the story. Then he would implement the story, and he would know that
his implementation was correct as soon as it passed the unit test. Then he
would mark the task card ‘completed’.

In our case we were fortunate to be working on an academic project.
We had a supervisor rather a real customer 1 and so initially we wrote user
stories based on our interpretation of the requirements document given to us
by our customer-supervisor, and set our own priorities in conjunction with
our supervisor. XP is a living, iterative process and so the stories frequently
changed during implementation. Sometimes we required clarification of how
a requirement should be implemented, or our supervisor would notice that
one of our prototypes did not behave as he had envisioned, so then he would
request changes to the stories. Towards the end of the project when the
deadline was approaching, we did prioritise which stories would make it into
the final build according to the customer’s wishes.

4.3 Usecases

Readers familiar with UML and usecases should note that there are some
important differences between usecases and user stories.

• Stories are smaller and more specific than usecases - a story must be
implemented within a few days.

• Stories do not model the concept of actors. On a system of this small
scale it should be obvious who is doing what.

• Stories are modified during implementation

• New stories are created to add to and improve on the functionality
of already-implemented stories. For example, the GUI story specifies
the creation of a basic GUI as a feature of the client, but later stories
improve the GUI with more features.

1This was very different from a business customer who would be like to sue us if we
didn’t deliver the project on schedule

CHAPTER 4. DESIGN 20

As part of our design work, we drew a usecase diagram, which, for com-
pleteness, can be seen in Appendix F. However, we went on to develop XP
user stories, and we did not continue with usecase development.

4.4 Task cards

Here we present the contents of the task cards we made from the user stories.
Please note that we programmed in pairs. Only one partner from each pair
was listed as responsible for each task, even if in practice the other partner
did a greater share of the work.

4.4.1 XML Schema Design

Write a schema to describe the XML format of a SLS request. The NRSE
could use this schema to validate the XML.

Assigned to: Andy

Start: 12/5/03

Estimate: 5 days

Completed: 5 days

Notes:

4.4.2 BEEP functionality

Make a simple test program to send and receive BEEP messages which can
be used as the basis for NRSEProfile. (This is prerequisite for task 4.4.6.)

Assigned to: Keiko

Start: 19/5/03

Estimate: 10 days

Completed: 10 days

Notes:

CHAPTER 4. DESIGN 21

4.4.3 GUI

The client application has a GUI in addition to console-based operation.
Initially, the GUI provides the user with these abilities:

• Add reservation

• Delete reservation

• Modify reservation

Assigned to: Andy

Start: 19/5/03

Estimate: 5 days

Completed: 10 days

Notes: Modify function was deemed unnecessary at this stage.

4.4.4 GUI Query

GUI can send a simple query to the NRSE, and display the results. One of
the results may be selected for deletion. This function will subsequently be
useful for reservation modification as well.

Assigned to: Andy

Start: 20/6/03

Estimate: 5 days

Completed: 5 days

Notes:

4.4.5 GUI Add User

GUI is capable of adding a user to the database. Initially this will be direct
access via the Database class, but later administration functions should be
handled through the NRSE.

Assigned to: Andy

Start: 16/6/03

CHAPTER 4. DESIGN 22

Estimate: 5 days

Completed: 8 days

Notes:

4.4.6 Request SLA

User sends SLS to NRSE via BEEP which replies with ‘OK’.
This requires the creation of a simple console-based client which is able

to open a BEEP channel to the NRSE’s BEEP server. An empty message
is sent (later this will contain the SLS) and the NRSE’s BEEP response of
‘OK’ is displayed to the user.

Assigned to: Keiko

Start: 19/5/03

Estimate: 5 days

Completed: 10 days

Notes: Modify function was deemed unnecessary at this stage.

4.4.7 Process SLS

When the NRSE receives the user’s SLS, it no longer automatically replies
with ‘OK’. Instead it creates an SLS object and runs TC to implement the
reservation. The response sent back to the client depends on the success of
the operation.

This task builds upon the Request SLA task, and when these two tasks
have been completed, the first milestone has been met.

Client produces XML

The console based client is able to take a reservation that has been input by
the user and convert it into an XML document. Now, when the client sends
a BEEP message to the server, the message contains this document, rather
than being empty as it was before.

Assigned to: Richard

Start: 26/5/03

CHAPTER 4. DESIGN 23

Estimate: 5 days

Completed: 10 days

Notes:

NRSE reads XML

When the NRSE receives a request from the client containing a SLS in XML
format, it parses the SLS and constructs a SLS object.

Assigned to: Andy

Start: 26/5/03

Estimate: 10 days

Completed: 10 days

Notes:

NRSE runs TC

After creating the SLS object, the NRSE runs the Linux TC command
with data from SLS object, thereby activating the reservation. Note that
at this stage of development reservations are activated immediately rather
than stored in a database. Also, there is a requirement that the NRSE is
running on the same machine as the router.

Assigned to: Richard

Start: 15/6/03

Estimate: 5 days

Completed: 7 days

Notes:

CHAPTER 4. DESIGN 24

4.4.8 Software installation

There are some software packages which are likely to require but which are
not pre-installed, so we must download, compile and install them ourselves.

• PostgreSQL

• Xemacs

• Dia 0.91

• MrProject

• GTK+ 2.2

• Jikes

Assigned to: Richard

Start: 19/5/03

Estimate: 5 days

Completed: 10 days

Notes: Dia and MrProject could not be installed because they will not run
on a 256 colour display, and unfortunately all the machines at UCL are
limited to 256 colours.

4.4.9 NRSE delete SLS

The NRSE will process XML requests to delete reservations.

Assigned to: Richard

Start: 1/7/03

Estimate: 5 days

Completed: 5 days

Notes: .

CHAPTER 4. DESIGN 25

4.4.10 Logging

All actions of the NRSE will be logged. It will be possible for the admin-
istrator to configure the level of logging required. During development, the
programmers will want to see all actions. During production, only errors will
be logged. The log4j package ought to be able to provide this functionality.

Assigned to: Keiko

Start: 10/6/03

Estimate: 5 days

Completed: 5 days

Notes:

4.4.11 BEEP Authentication

Investigate and implement authentication of user requests using BEEP’s TLS
feature.

Assigned to: Keiko

Start: 29/6/03

Estimate: 5 days

Completed:

Notes: Task was abandoned and rewritten. See following task and also
section 7.3 on page 65.

4.4.12 PGP Authentication

Database stores usernames and PGP public keys. (For convenience, the client
program should be able to generate keys when a user is added to database.)
When the user sends a SLS request, he enters his PGP private key and
password. The client uses these to generate a signature which is added to
the XML document when the SLS is serialised. On receiving the request, the
NRSE looks up the user in its database, locates his public key, and uses this
to validate the signature. The SLS will only be added to the database if the
signature is valid.

Assigned to: Richard

CHAPTER 4. DESIGN 26

Start: 7/7/03

Estimate: 5 days

Completed: 10 days

Notes:

4.4.13 Notification

If requested by the user, the NRSE will send a notification message via
BEEP to warn the user in realtime about the impending start and end of a
reservation.

Assigned to: Richard

Start: 10/7/03

Estimate: 5 days

Completed: 5 days

Notes:

4.4.14 NRSE adds a new QoS reservation to the database

NRSE adds new SLA to the QoS rsv table and sets a schedule to the Schedule
table. Does not (yet) check whether there is sufficient bandwidth to meet
the request.

Assigned to: Toshi

Start: 5/06/03

Estimate: 10 days

Completed: 10 days

Notes:

CHAPTER 4. DESIGN 27

4.4.15 NRSE checks resource availability (Real-time,

Single domain)

When NRSE receives a QoS reservation request, it checks the Schedule table
in the database to decide whether the request can be accepted or not.

Assigned to: Toshi

Start: 20/6/03

Estimate: 5 days

Completed: 5 days

Notes:

4.4.16 NRSE checks resource availability (Non-real-

time, Single domain)

If the request as it stands cannot be met, but the request is a non-realtime
one, the NRSE searches for space for the request with a new flow specification
which has different data rate to the original one between start time and end
time. This new SLS is returned.

Assigned to: Toshi

Start: 28/6/03

Estimate: 5 days

Completed: 5 days

Notes:

4.4.17 NRSE checks resource availability (Real-time,

Multi domain)

In addition to 4.4.15, a local NRSE asks a remote NRSE if the QoS request
is acceptable or not.

Assigned to: Toshi

Start: 20/7/03

CHAPTER 4. DESIGN 28

Estimate: 5 days

Completed: 5 days

Notes:

4.4.18 NRSE deletes a QoS reservation from the database

If the reservation has not been activated, NRSE does the following steps:
Firstly, NRSE confirms that the request really exists in the QoS rsv table.
Secondly, NRSE deletes the reservation from QoS rsv table and ScheduleI
table.

If the reservation has already been activated, NRSE tells traffic control
to cancel the current reservation.

Assigned to: Richard

Start: 16/5/03

Estimate: 5 days

Completed: 5 days

Notes: This story has not been fully implemented. Section 5.9.9 explains
more details.

4.4.19 Database user management

Database class is able to perform tasks related to management of users.

• Add user to database (return error if username is not unique)

• Delete user from database

• Update user’s PGP key

Assigned to: Toshi

Start: 1/7/03

Estimate: 10 days

Completed: 10 days

Notes:

Chapter 5

Implementation

The system was implemented as four packages.

Utility - library functions for use of NRSE and Client (not dependent on
any other package).

NRSE - the NRSE server itself (depends on Utility).

Client - examples of client programs that control the NRSE (depends on
Utility1).

Test - JUnit tests that exercise the functions of the other three packages.

The relationship between the packages is shown in Figure 5.1.

5.1 Protocol behaviour

Figure 5.2 shows how the system makes a multi-domain reservation and the
protocol actions involved (with some simplification).

The NRSE class has already been launched, which started a BEEP server
listening for requests with the NRSEProfile.

The user enters the parameters for the reservation he would like to book
into his client program. (Or the user’s application decides the parameters
automatically and sends them to the client module.) The client creates an
instance of the SLS class and initialises it with these parameters.

The SLS is then serialised into an XML document, which serves as reser-
vation request. The format for this document, and the parameters required
by the SLS, can be found in Appendix E on page 82.

1In practice there are some dependencies to NRSE code as well, but it will be trivial
to eliminate these

29

CHAPTER 5. IMPLEMENTATION 30

Test

UtilClient NRSE

1 1

1
1

1

*

1 *

1

*

Figure 5.1: Relationship between packages

Using BeepClient, the XML is transmitted to the NRSE, and processed
by NRSEProfile. First the SLS is de-serialised to form a copy of the SLS
object at the NRSE. Then the credentials field of the SLS is used to authenti-
cate the request by the database of users. If successful, the Database class
checks to see whether there is sufficient bandwidth available for the reser-
vation. If so, it formulates its own SLS request, and sends it to the remote
NRSE, which is at the site specified as the destination in the SLS.

The remote NRSE performs the same checks as the local NRSE, except it
authenticates the local NRSE, not the user. If everything is successful, then
both NRSEs add the reservation to their databases. The local NRSE sends
a BEEP reply back to the client to indicate success.

When it becomes time to actually activate the reservation, a notification
message is sent, again using BEEP, to the BEEP server specified by the
client.

The administrator must also run a separate process called SLSactiva-
tor. This is the process which actually configures the router to filter and
mark traffic flows as requested. Usually this is run on the same machine as
the NRSE, but it does have to be. It could be run on any machine that
has access to the database. We provide the Router interface, and different
low-level router implementations are possible. We have created TCRouter,
which configures a Linux router using TC. Therefore SLSactivator must
be run on the Linux router, while the NRSE may be on a different machine.
It would be possible to create another class to control, for example, a Cisco
IOS router.

In the following sections, we provide a summary description of the func-
tionality of each package, and then each class. Readers who desire a more
thorough understanding are advised to turn to the Javadoc generated docu-

C
H

A
P

T
E

R
5
.

IM
P

L
E

M
E

N
T
A
T

IO
N

31

Client

Local NRSE
Remote NRSE

User

SLS

Reservation request

serialize

<<create>>

Reservation Request

deserialize

Resouse Database

capacity check

SLA request

reservation reply

Add

reservation reply

request reply

Notification

Notification

User Database

UserAuthentication

SLS

<<create>>

F
igu

re
5.2:

S
eq

u
en

ce
D

iagram

CHAPTER 5. IMPLEMENTATION 32

+SetActive()
+setStartedNotify()
+setEndedNotify()
+deleteSLS()
+addSLS()
+createDatabase()
+addUser()
+deleteUser()
+authenticate()
-getSLS()
-querByUserFromQoSuser()
-getPGPKey()

Database

+main()
+ICanvas()

-tcp
-udp1
-udp2

IPerf
+main()
+NRSE()

-port
-profileRegistry

NRSE

+init()
+startChannel()
+closeChannel()
+advertiseProfile()
+receiveMSG()
+procesRequest()

+NRSE_URI : String

NRSEProfile

+activateSLS()
+getInterface()

-config

TCRouter

+main()
+run()

-router
-database
-config

SLSactivator

+main()

WipeDatabase

+createNotify()
+serialize()

-dest
-startNotify
-endNotify
-svcQosViolation
-userQosViolation
-abnormalTermination
-adminIntervention

Notification

**

1

1

1..*

1

0..*

1

0..*

1

0..*1

1

1

<<interface>>
Router

+init()

<<interface>>
Profile

Util
1

1

Figure 5.3: NRSE class diagram

mentation in the appendix, or even to consult the source-code itself2. (On the
other hand, casual readers not interested in gory details may wish to skip
to the next chapter.) The Database section is of particular importance
because this is where much of the reservation logic is implemented.

5.2 NRSE package

The NRSE package includes the NRSE server program and is shown in figure
5.3. NRSE class is the main class and it uses Database and NRSEPro-
file classes. SLSactivator class runs in a separate thread and polls the
database for reservations to activate at regular intervals. TCRouter im-
plements the Router interface and SLSactivator uses TCRouter to
activate an SLS. The Database class handles the all method to manipulate
the PostgreSQL. IPerf is a stand alone class to monitor the traffic.

2available on CD-ROM or on the web

CHAPTER 5. IMPLEMENTATION 33

+clearSLA()
+defaultSLA()

QoSAddSLA

+inputSLS()
+sendSLS()

Client

+init()
+startChannel()
+closeChannel()
+advertizeProfile()
+receiveMSG()
+processRequest()

+CLIENT_URI : String

ClientProfile

QosAddUser QosQuery

QoS-GUI

1

11
1

+init()

<<interface>>
Profile

1

1

Util

*
*

*
*

1

*
1

*
1

*

Figure 5.4: Client class diagram

5.3 Client package

The Client package (see figure5.4) includes the GUI and the client code.
QoS class is the entry point of our client and it creates function classes
such as QoSAddSLA, QoSAddUser and QoSQuery. These functions
will compose XML and send the XML file by launching Client(which uses
BeepClient). ClientProfile implements Profile using Beepcore.

CHAPTER 5. IMPLEMENTATION 34

Request

DeletionRequest

+sign()
+authenticate()
+generateKey()
+processDeletion()

-timestamp
-reqNo : int
-user : String
-credentials : String
-source
-dest
-start : Date
-end : Date
-peakRate
-tokenRate
-bucketSize
-minPolicedUnit
-maxPacketSize
-quality
-action
-direction
-type
-startNotify
-endNotify

SLS

+serialize()

-user
-credentional

QueryRequest

+add ()
+toArray()

-

QueryResults

+sendRequest()

BeepClient

+config()

+mazMessageSize : int
+port : int
+remoteNRSEport : int
+server : String
+remoteNRSEserver : String
+JDBCconnection : String
+JDBCuser : String
+JDBCpasswd : String
+DBMS : String
-bandwidth : int
-ifaceDirections : String
-ifaceNames : String
-ifaceRemote : String
-useRemote : bool
-operationSystem : String

Config

*

*

Figure 5.5: Utility class diagram

5.4 Utility package

This package includes the classes which are used by both client and server.
(See figure5.5) SLS object, BeepClient, Query Deletion and Config
are included.

CHAPTER 5. IMPLEMENTATION 35

+suite()

TestAll

+setUp()
+testCloneEquals()
+testDeleteSLS()
+testReadSLS()
+testWriteSLS()

TestUtil

+setUp()
+testDatabaseDelete()
+testQuery()
+testDatabaseAdd()
+testDatabaseCheck()
+testDatabaseQosUser()
+testDatabaseAddSLS()

TestDatabase

+testClientSendSLS()
+testClientDelete()

TestClient

+setUp()
+testAuthenticate()
+testSign()
+testVerify()

TestAuth

+sendRequest()

TestNotify

1

*

1

*

1

*

1

*

1

*

Figure 5.6: Test class diagram

5.5 Test package

This package include test cases (see figure 5.6). TestAll calls all the test
classes. Test classes are used to test the functions and they are separated
into client, utility, authentication, notify and database.

CHAPTER 5. IMPLEMENTATION 36

5.6 Client classes

5.6.1 QoS class

QoS class is the main program that executes the whole client program through
a GUI interface. The QoS class utilises many programs from its own client
package as well as other packages. QoS class layouts the fields of user name,
password, and credentials/private key for user authentication. It also con-
tains fields of server address and port so that the user can connect to the
NRSE server.

QoS class enables the user to add a new SLA for a new QoS request,
modify an existing SLA, delete an existing SLA, and add a new user. These
functions will be discussed in details next. On start up, QoS class attempts
to read the user’s private key from the .qoskey file from the user’s home
directory classpath, which will then be displayed in the credentials field. On
exit, the program attempts to store the user’s private key in the same .qoskey
file again.

Add SLA

Add SLA function simply calls the QosAddSLA class for creating a blank
standard SLA request form.

Modify SLA

Modify SLA function is not enabled as it is not complete. However, it is
foreseen that it will use many functions similar to that of the Delete SLA
function such as QueryRequest, and QueryResults.

Delete SLA

Delete SLA function connects the client to the server and search for all the
SLA that belong to the current user. It utilises QueryRequest and QueryRe-
sults classes in the NRSE package to do the search through the database.
The results will then be displayed through the QoDeleteSLA class. If the
user is the administrator with the username admin, all the SLA that exists
in the database will be displayed.

Add User

Add User function simply calls the QosAddUser class for creating a blank
standard Add User form. In addition, it contains methods to clear the SLA

CHAPTER 5. IMPLEMENTATION 37

form and to set a default SLA format on some fixed fields for facilitating
tests easier without retyping the whole form.

5.6.2 QosAddSLA class

QosAddSLA class simply display the format of a SLA request form.

Send SLS

Send SLS function attempts to send the SLS from the client to the NRSE
server to reserve the QoS desired. In addition, it formats all the fields into
an appropriate SLS class object.

Even though PGP key generation and authentication are implemented in
the program, there are no credential checks currently. The credentials field
can contain ’cheat’ for overcoming the credential check for now. It should
not be left there as a loophole when the application is put to real use.

5.6.3 QosDeleteSLA class

QoSDeleteSLA class displays a SLA request one at a time, being navigating
by the previous and next buttons. The fields are updates on navigation.

An attempt was made on creating a different format of displaying the
QosSeleteSLA form. This approach places all the SLA requests together to
be displayed all at once at a glance in a table. Navigation switches to the
scrollbars. However, this attempt failed and we focused our attention to
other parts of the project to keep up with the planned schedule.

Delete

Delete function attempts to delete the SLA request currently being displayed.
Deletion involves communication to the NRSE server through BEEP connec-
tion and deletion of the request in the database. On successful deletion, the
deleted SLA request will not be displayed. When all the SLA requests of the
current user are deleted, all the fields will be blank and disabled.

5.6.4 QosAddUser class

QosAddUser class display the format of a Add User form.

CHAPTER 5. IMPLEMENTATION 38

Generate Key

This function generates a set of PGP private and public keys for the new
user to be added.

Add

This function adds the new user to the database, together with its private
and public keys generated. Non-standardise or altered private and public
keys will not be accepted. Existing users will also not be allowed to add the
same username to the database.

5.6.5 Client class

Client class us used to start a client program. It takes the server address,
server port, and default configuration from the nrse.properties data file and
starts a connection to the NRSE server using BEEP. If no server information
is available, the default server settings is used.

Without using the GUI function, this client program can be executed for
a simple console QoS application. It accepts user choice of adding, deleting or
querying the QoS requests. It also reads from user input for the information
to be entered. The default information will be taken in for the SLS request
if nothing is entered on the console for simple and efficient testing. It also
contains methods to store these information, serialising it for transmission to
the NRSE server through BEEP.

5.6.6 ClientProfile class

ClientProfile class contains the BEEP profile implementation for NRSE, using
the default configuration settings form the Config class.

It contains functions to start and end a BEEP channel. It is also able
to listen to a channel and then reply with a response to confirm whether
the SLS request, sent through BEEP, has been received successfully by the
NRSE server or not.

5.6.7 Abandoned classes

There are some abandoned classes like QosMenu, QosLayout, QosQuery
classes. Initially, the design of the QoS application was made such that there
is a menubar on top of the application which was later removed. QoSQuery
class was programmed to handle a general query frame which was redesigned
such that both delete and modify SLA functions will perform queries using

CHAPTER 5. IMPLEMENTATION 39

programs written in the NRSE package. QosMenu and QosLayout classes
was programmed to design the modify and delete frames to be similar with
similar methods and layout. Thus, QosModifySLA and QosDeleteSLA class
can then inherit from QoSLayout class. This was later removed since the
delete SLA screen and modify SLA screen was foreseen to be quite different.
QosModifySLA class is not updated and currently the function of modifying
an SLA is not completed yet.

CHAPTER 5. IMPLEMENTATION 40

5.7 Utility classes

5.7.1 BeepClient class

BeepClient class does all the actual BEEP connections, connecting and trans-
mitting messages between the client and NRSE server. The BeepClient firstly
needs to set up the configuration using the server address and port, config
file properties, and the NRSE URI. Otherwise, the default settings of these
configurations will be used.

BeepClient deals with the connection of the client to the NRSE server
using the configuration provided. After establishing a session with the NRSE,
a channel is started to send the request over to the NRSE. A reply is then
expected to be provided by the NRSE and is then checked to see that the
reply is the same as the request sent. After that, the channel is closed followed
by the closing of the session.

After establishing the session, the TLS was initially started for privacy
protection. This was then commented out since we do not find it necessary.
Furthermore, it had conflicts with the JUnit testing codes we wrote for it.
Currently, we return error codes even for local errors which should be done
by throwing exceptions instead. Error codes include errors like the reply
message is not correct. This part still remains unfixed. The reply message
received seems to have an extra byte attached to it which is ignored for now.

5.7.2 Config class

Config class generally consists of the configurable options used to operate
the BeepClient class. Configuration properties include local and optionally
remote NRSE server connection details, certain message properties, database
properties, and interface details.

CHAPTER 5. IMPLEMENTATION 41

5.8 NRSE classes

5.8.1 SLS class

SLS class takes in SLS field inputs and creates a SLS object, in a number
of different forms because there can be many different formats needed by
different parts of the application. This basically means a few constructors
are created. Firstly, the SLS information are read up from a XML document
and parsed element by element to be stored as an SLS object. There are also
functions to serialise the SLS object into an XML document for transmission
through BEEP. There are specific methods to create a delete SLA request
and modify SLA request in the form of XML document. The modify method
is not completed yet.

In addition, SLS class provides authentication functions for generating a
set of PGP private and public keys for a single user. It also authenticates a
user against his provided private key. Other authentication functions include
making a signature to the message to be sent with the related PGP keys,
and verifying whether the PGP generated keys are up to standard or not.

5.8.2 SLSactivator class

SLSactivator class periodically checks from the database to see if there are
any reservation to activate. TCRouter will be called if the results is positive.
Notifications checking are also done periodically. Start Qos notification and
end Qos notification messages will be sent to the client from the NRSE.

5.8.3 NRSE class

An NRSE object represents an actual NRSE server. Running this class cre-
ates an instance of NRSE, which then launches a BEEP server using NRSE-
Profile. All of the functionality of the NRSE is in NRSEProfile. By default,
configuration options are loaded from a file named ‘nrse.properties’ in the
classpath, but a different configuration file may be specified on the command
line.

This class was originally based on the code for the BEEP Daemon launcher,
but we found that to be an order of magnitude more complicated than we
needed, because it it supported launching multiple BEEP servers with mul-
tiple profiles. We only need one server with one profile.

CHAPTER 5. IMPLEMENTATION 42

5.8.4 NRSEProfile class

NRSEProfile class is the BEEP profile implementation for NRSE server. It
handles the establishment and termination of BEEP connections depending
on the configuration from the Config file. After it receives a message from
the client, it attempts to send back to the client a reply of the message
received. Upon receiving a SLA request, it will coordinate with the database
and process the request accordingly. Currently, it processes SLA addition
requests, SLA deletion requests, and query requests. On adding a new SLA
request, the authentication code checking is skipped by using cheat in it. This
is because authentication is implemented but not checked in the application.

5.8.5 TCRouter class

TCRouter class sends TC commands to provide for Qos request. Deacti-
vating Qos request method may be useful in certain circumstances but it is
not implemented yet. There are methods to find the appropriate network
interface used for route to IP, getting the interface name, doing IP lookups
for the appropriate interface, and getting the masked IP address depending
on the length of its prefix.

5.8.6 MyCanvas class and ReservationQuota class

MyCanvas class is useful for a quick glance on all the reservations made and
bandwidth used up as well as available bandwidth. To do this, queries are
made to the database on all the reservations made and plotted on the screen,
updated on every few seconds.

MyCanvas class attempts to read all the Qos reservations from the database
and plot the reservations in terms of bandwidth, with the bandwidth plot-
ted vertically in the y-axis and time plotted horizontally in the x-axis. The
bandwidth is scaled, such that there is always only 10,000Kbps available at
all time, in relatively 10 units.

However MyCanvas class crashes when the start time of a reservation is
too early or the end-time of a reservation is too late. ReservationQuota class
attempts to overcome this effect by scaling the time such that the earliest
start time and the latest end time of all the reservations are taken into account
and scaled accordingly. However, scaling is done in terms of seconds and if
one reservation lasts for a minute, another reservation lasts for a day, and yet
another reservation lasts for many days. This would make the short-lasting
reservation that lasts for a minute looked very insignificant and probably not

CHAPTER 5. IMPLEMENTATION 43

visible using ReservationQuota class display. This is yet another problem to
be solved.

5.8.7 IPerf class

IPerf class monitors TCP and UDP packet flows. Currently, there is a TCP
flow that attempts to simulate the transmission of the Qos requested data.
The other 2 UDP flows attempts to take up the rest of the available band-
width for the same NRSE. The result of these transmissions are shown on the
screen, plotting the three flows with the bandwidth as the y-axis vertically
against time along the x-axis horizontally.

5.8.8 Notification

Notification class handles the notifications to be sent from the NRSE to
the client when commands are executed. The start and end times of the
notifications are stored. There are triggers for service violations, user Qos
violations, abnormal termination, and administrator interventions. If these
triggers are on, notifications will be sent to the client whenever there are
any of the triggered events as mentioned. Additionally, there are methods to
handle the creation and parsing of the XML documents to form a notification
object, and serialising the notification object to form an XML document for
transmission through BEEP from the client to the NRSE.

5.8.9 CreateTable

CreateTable class simply creates two tables, namely the QoS rsv and QoS user,
to be utilised by the database class later on.

5.8.10 QueryRequest

QueryRequest class reads from an XML document for a query, stores the
details into a query object, and then serialises it to an XML document for
transmission through BEEP from the client to the NRSE.

5.8.11 QueryResults

After processing a database query, the query results will be stored using this
QueryResults class. It is able to take an XML document that contains the
results of a query , which holds more than one SLA request. These SLA
requests are then read and stored as a QueryResults object as a whole.

CHAPTER 5. IMPLEMENTATION 44

5.9 Database class

The NRSE needs to manage information about SLSs, user and network re-
sources. The Database class is charge of this management. It stores lists of
SLSs, user information and network resource reservation schedules, and also
offers methods to manage the information.

A relational database management system (RDBMS) is used in order
to manage this information. Using the RDBMS, our system can keep the
crucial information which affects the system’s reliability and return to its
normal operating state even if the NRSE is accidentally terminated or suffers
hardware failure. We adopted PostgreSQL as a RDBMS for the reasons
described later.

The database consists of three tables: QoS rsv, QoS user, and ScheduleI.
Each table is independent of one another. Only an NRSE administrator can
access these tables manually.

In this section, we describe the details of these three tables with an Entity-
Relationship diagram for the whole database. Next, we explain Non-Realtime
reservation and database transaction. Then, our selection of the RDBMS is
justified. Finally, we will briefly explain some issues for the future.

5.9.1 QoS rsv table

The QoS rsv table is used to store all information on accepted SLAs. It stores
received SLA on an “as is” basis. The only modification is that a unique ID
value is added to each SLA.

This table has thirty fields shown in table 5.9.1.
The SLSactivator class and the Notification class referenced this

table.
The ID fields is the primary key.

Check Constraints

SQL allows us to define constraints on columns. A check constraint allows
us to specify that the value in a certain column must satisfy an arbitrary
expression. Table5.9.1 shows a list of check constraints which are used in the
QoS rsv table.

5.9.2 QoS user table

The QoS user table is used to authenticate users. The table holds information
of user name and user’s public PGP key, therefore it has two columns: NAME

CHAPTER 5. IMPLEMENTATION 45

and PGPKEY, and NAME is a primary key. Both NAME and PGPKEY are
TEXT data type[Pos03]. The TEXT data type is given a detailed explanation
in 5.9.7.

5.9.3 ScheduleI table

The ScheduleI table is used to check whether a requested QoS is bookable
or not. The table stores the amount of remaining bandwidth as it changes
over time for each network interface; therefore it has three columns: TIME,
BANDWIDTH, and IFACE which means ’network interface’.

The table is initialised with values of the maximum free bandwidth for
each network interface, as configured by the administrator. TIME is specified
”2003-01-01 00:00:00” as the epoch time. Table5.9.3 shows an initialised
ScheduleI table. It shows that the NRSE server administers two network
interfaces and the maximum bandwidths are 10000 Kbps for both interfaces.

The following paragraphs explain how the table is updated.
When it is confirmed that enough bandwidth is available to allocate for

a requested QoS SLA, the NRSE first adds (or updates) two rows into the
ScheduleI table: one has the TIME value equal to start time in the SLS and
the other has the TIME value equal to end time in the SLS. BANDWIDTH
value of the row which has the TIME value equal to start time is calculated
by subtracting peak rate from BANDWIDTH value of the previous row in
time order. The same procedure is done for the other row.

Second, the NRSE updates BANDWIDTH values in all rows which have
TIME values being between the start time and the end time of the requested
SLA. New BANDWIDTH values are calculated by subtracting peak rate
from the original BANDWIDTH values.

Table 5.9.3 shows a state of the ScheduleI after one reservation (start time:
25-08-2003 10:00:00, end time: 25-08-2003 14:00:00, peak rate: 2000) was
made. If we focus attention on the interface eth1, we see that free bandwidth
is 10000 Kbps at the start time, i.e. 2003-01-01 00:00:00. It is reduced by 8000
Kbps at 2003-08-25 10:00:00 and this state lasts until 2003-08-25 14:00:00.
Then free bandwidth returns to 10000 Kbps at 2003-08-25 14:00:00.

If another reservation which starts at 2003-08-25 12:00:00 and ends at
2003-08-26 12:00:00 with 3000 Kbps peak rate on the interface eth1 is made,
then the ScheduleI table will become a table shown in 5.9.3.

5.9.4 ER model (Entity-Relationship model)

When we designed the database, Entity-Relationship (ER) modelling tech-
nique was used to organise the information about NRSE system. Entity-

CHAPTER 5. IMPLEMENTATION 46

Relationship diagrams can be used to represent a model, which is then re-
alised as database tables. The E-R diagram is shown in figure 5.9.4. Entities
(’user’, ’SLS’, ’PGP key’, etc.) are used to define database structures and
attributes. Relationships (’owns’) are defined between entities.

We designed a detailed database structure based on the ER diagram. In
our actual database, some attributes are expanded and divided into many
smaller attributes.

5.9.5 Non-Real-time reservation

There are two reservation types in the NRSE: realtime and non-realtime.
Some network applications such as video conferencing require a fixed data
rate and an appointed start time and end time. On the other hand, some
other network applications such as file transfer are tolerant of data rate
changes within the appointed start time and end time. This means that
realtime transmission is not always required. We may find space for such
non-realtime transmissions by changing start time, end time, and transmis-
sion rate within the limits of the application’s requirement. ([BSCC03])

The Database class first tries to make fixed rate reservation for non-
realtime transmission just as in the case of realtime transmissions. If the
reservation can be made, then it is done and finished.

If there is not enough network capacity available for fixed rate transmis-
sion, then the Database object searches for free space in the ScheduleI table
which is sufficient to contain the requested SLS’s total amount of transmit-
ting data. If enough space can be found, the database object makes a new
reservation with new start time, end time and transmission rate, and then
returns the new SLS to the client. If the client cannot accept the new SLS,
it must cancel the SLS.

Alternatively, if space cannot be found, the database object returns an
error message to the client.

Our strategy for finding space is simple and load balancing. Generally,
there are many possible spaces that would be acceptable. However, we do
not search all possible spaces. One reason is that even if we list all spaces
it is hard to decide which space is best to use. Another reason is that the
amount of calculation required is projected to increase rapidly as the number
of reservations increases, so our system would not scale well.

In the actual implementation, when a free rectangular space that can
contain the total amount of transmitting data is found in the ScheduleI table,
we stop searching for other free spaces and set new flow parameters which
fit within the gap. If the rectangle found is bigger than the request requires,
we set the data rate parameter as small as possible to flatten the data rates.

CHAPTER 5. IMPLEMENTATION 47

User

SLS

1

*

owns

namePGP key

ID

user name

time stamp

start notify

end notify

credentials
service QoS violation

user QoS violation

abnormal ermination

admin intervention

Notification information

Flow information

User information

start time

end time

source address

destination address

source port number

destination port number

peak rate

token rate

bucket size

min policed unit

max packet size

quality

action

direction

type

Schedule

bandwidthinterface

time

2

1

enters

Figure 5.7: Entity-Relationship Diagram for NRSE database

CHAPTER 5. IMPLEMENTATION 48

We planed to provide an interface for changing the non-realtime reserva-
tion mechanism in order to allow administrators select the best algorithm for
their local site policies. However, we regret that we could not complete this
because of lack of development time.

5.9.6 Selection of Database Management System

There are many options for us when we use a relational database manage-
ment system (DBMS). For instance, PostgreSQL, MySQL, Oracle, Firebird,
mSQL, etc. Great attention should be given to interchangeability, scala-
bility and availability of our system because they enhance the value in the
real world. Viewing the database management system from this perspective,
widespread availability and compliance with SQL99 standard become the cri-
teria for evaluation. Taking these points into account, we chose PostgreSQL
as the DBMS for our project. We discuss this decision in a little more detail
in 7.1.

5.9.7 PostgreSQL

We tried with care not to use PostgreSQL specific commands. However,
some advanced features in PostgreSQL are used for creating a higher quality
system. They are basically transposable to other SQL expressions which are
compliant with SQL99 standard at the expense of a decline in the quality.
These features are enumerated below:

Character Types

Although SQL defines two primary character types: character(n) and char-
acter varying(n), where n is a positive integer, both of these types have
limitation in length. Some DBMSs truncate strings that are too long with-
out so much as raising an error. PostgreSQL supports the text type which
stores strings of any length. It does not require an explicit declared upper
limit on the size of the string with no performance penalty ([Pos03]). The
type text deviates from the SQL99 standard, however, many other DBMS
packages with the exception of MySQL have it as well.

Network Address Data Types

We use network address data type inet for an IPv4 network address. The
reason why we adopted the type inet rather than fixed length string is that
the type inet offers input error checking and several specialised operators and

CHAPTER 5. IMPLEMENTATION 49

functions ([Pos03]). When we port the Database class to other DBMSs, the
type inet should be replaced by type character varying(n) and some error
checking functions should be added.

5.9.8 Transaction

Transaction is an essential function especially for a multi-domain QoS reser-
vation to maintain data integrity. Transaction is a unit of interaction with a
DBMS and it must be treated in a coherent and reliable way. A local NRSE
does not commit a transaction until a remote NRSE returns successful reply.
If a remote NRSE does not accept a SLS request, the local NRSE aborts the
transaction and reverts data in a database to an earlier state.

Although PostgreSQL provides “Multiversion Concurrency Control” func-
tion which maintains data consistency for concurrent data access[HCF97], we
used only the least complex functions, that is, lock and rollback, because we
placed great value on conformity with the standard.

5.9.9 Future work

Multi-domain issues

Non-realtime reservation. Currently, Multi-domain non-realtime reser-
vations are left unsupported, though single-domain non-realtime reser-
vations are supported. The realisation of the non-real-time reservation
is technically possible and is not too difficult. This will be accomplished
by changing a return value of the addSLS method, which checks net-
work resource availability and adds a new SLA into the database, so
that it returns the modified SLA. The new SLA will be returned to
the remote NRSE in a result document. Further negotiation may be
necessary if the remote NRSE also needs to modify the SLS.

Authentication among NRSEs is one of the essential functions for secure,
credible and scalable multi-domain system. It is not a good idea that
NRSE authenticates a remote user, otherwise each NRSE will need to
deal with a large amount of user information and this will weaken the
scalability of our system. Therefore a remote NRSE has an entry in the
user table and is authenticated similarly to a local user. This must be
configured by the administrator at present, but we would like to add
some automation to the process.

CHAPTER 5. IMPLEMENTATION 50

Common issues

Deleting and modifying reservations. Because of the limitation of the
Linux Traffic Control (TC), this Database class cannot delete a selected
SLA which has already been activated. Once all filters have to be
deleted by TC utility and all filters need to be added again except for
the filter which should be deleted in order to realise deletion function.

Modifying is not much different than deleting. Only difference is adding
the modified new SLA at the last step.

Accounting. Information which will be required for accounting such as
reservation rate by hour or by bandwidth has not been built in to
the database yet.

One idea is that adding a new column into the QoS user table. The
new column holds a sum of charges per user and values of the column
are calculated by using a newly created table of charges and QoS rsv
table.

Inter-domain tariff structure will be determined by contracts between
domains.

CHAPTER 5. IMPLEMENTATION 51

Column name data type description

ID INTEGER unique ID for a SLA
TSTAMP TIMESTAMP time stamp when the SLA is made
START TIME TIMESTAMP transmission start time
END TIME TIMESTAMP transmission end time
SRC IPV4 INET source IPv4 address
DST IPV4 INET destination IPv4 address
SRC PORT INTEGER source port number
DST PORT INTEGER destination port number
PEAK RATE INTEGER packets of a flow which exceeds this

limit will be dropped
BUCKET SIZE INTEGER bucket size of the token bucket
MIN POLICED UNIT INTEGER minimum packet size which is policed
MAX PKT SIZE INTEGER maximum packet size which can be

sent
TOKEN RATE INTEGER token rate of the token bucket
QUALITY CHAR CHECK EF or best effort
ACTION CHAR queue management
DIRECTION CHAR uni- or bi-direction
TYPE CHAR real-time or non-real-time
USER NAME TEXT user name
CREDENTIALS TEXT user’s credentials
IFACE IN INTEGER inbound network interface
IFACE OUT INTEGER outbound network interface
START NOTIFY INT number of seconds before reservation start
END NOTIFY INT number of seconds before reservation end
SVC QOS VIOLATION BOOL service QoS violation
USER QOS VIOLATION BOOL user QoS violation
ABNORMAL TERMINATION BOOL abnormal termination
ADMIN INTERVENTION BOOL administor intervention
ACTIVE BOOLEAN SLS is activated or not

Table 5.1: Columns in a QoS rsv table

CHAPTER 5. IMPLEMENTATION 52

Check Constraints

START TIME > EPOCH TIME
START TIME < END TIME

SRC PORT > 0 AND SRC PORT < 65535
DST PORT > 0 AND DST PORT < 65535

MIN POLICED UNIT > 0
MIN POLICED UNIT > 0

TOKEN RATE > 0
DIRECTION IN (’u’,’b’,’m’)

TYPE IN (’r’,’n’)

Table 5.2: Check Constraints of a QoS rsv table

NAME PGPKEY

Toshi Aiyoshi temporary key
Andy Liow temporary key

Table 5.3: A sample of a QoS user table

TIME BANDWIDTH IFACE

2003-01-01 00:00:00 10000 eth0
2003-01-01 00:00:00 10000 eth1

Table 5.4: Initial state of a sample ScheduleI table

TIME BANDWIDTH IFACE

2003-01-01 00:00:00 10000 eth0
2003-01-01 00:00:00 10000 eth1
2003-08-25 10:00:00 8000 eth1
2003-08-25 14:00:00 10000 eth1

Table 5.5: ScheduleI table after making one reservation

CHAPTER 5. IMPLEMENTATION 53

TIME BANDWIDTH IFACE

2003-01-01 00:00:00 10000 eth0
2003-01-01 00:00:00 10000 eth1
2003-08-25 10:00:00 8000 eth1
2003-08-25 12:00:00 5000 eth1
2003-08-25 14:00:00 7000 eth1
2003-08-26 12:00:00 10000 eth1

Table 5.6: ScheduleI table after making one reservation

CHAPTER 5. IMPLEMENTATION 54

5.10 Blocks Extensible Exchange Protocol Core

5.10.1 Rationale

BEEP(Blocks Extensible Exchange Protocol Core) is used to exchange mes-
sages between NRSE server and the client, as well as between NRSEs. There
are two reasons why we choose BEEP. One is that BEEP allows developers
to focus on the important aspects of their applications rather than wasting
time with the detail of establishing communication channels. The other is
that BEEP is now standardised and supports multiple platforms. There are
also open source implementations available for many different languages in-
cluding like Java, C and C++. We used the Beepcore library (version 0.9.07)
for Java, available from [Sou02].

5.10.2 Use of Beepcore

Beepcore is used to send both client requests (e.g. add SLS, delete SLS) and
notifications.

The NRSE server launches a BEEP server which listens for connections
from the client. To send a service level specification to the server, a client
application will launch the BeepClient class. For the notification, the
NRSE client launches the BEEP server and waits for the notification. The
NRSE server then sends a notification when the reservation is ready to be
activated or the reservation has finished completely.

BEEP provides a framework for the message exchange allowing the user to
specify a ‘profile’ which defines the message syntax and semantics. BEEP has
features like transport security (message encryption) and user authentication
([Die99], [Ros02]). The messages can be plain text, and structured with XML.

Three styles of exchange are allowed:

• MSG/RPY for one to one exchange

• MSG/ERR for error report

• MSG/ANS for one to many exchange

A somewhat out-of-date but still informative tutorial that gives an overview
of how these exchanges work is [Dum01].

CHAPTER 5. IMPLEMENTATION 55

5.11 Logging

In the NRSE, we used Jakarta Log4j (see [jak03]) to allow logging. The
logfiles will be useful in a production system, e.g. for auditing procedures, as
well as diagnosing problems. For us, the logs were an invaluable debugging
aid.

• Log4j can be configured at runtime without modifying the application
binary and is controlled by the runtime command options or a config-
uration file. We used the convention of loading the log4j configuration
from a file called log4j.properties. This file can be anywhere in the
classpath. By using the logger.setLevel() method, one can change
the level of logging. We can classify the logging information to five
different levels of severity:

1. debug

2. info

3. warn

4. error

5. fatal

Debugging information is only of interest to developers, while fatal
errors should concern all users.

• Log4j provides an ‘appender’ object which can print to multiple desti-
nations. For example, the console appender enables us to display the
debug messages on the console while file appender enables us to store
the messages in a file.

• Log4j also has the PatternLayout class. This class enables us to
set a prefix message in front of the log message. For example, if you
create PatternLayout with the options ("%c [%t] %L %x : %m"),
you can store the information category of the logging event, name of
the thread, output line number, fixed debug message, debug message
correspondingly. (The message which will be shown by %x option can
be used in a very similar way to a message in a stack.)

Chapter 6

Testing

Testing is an essential part of the XP methodology. We used two compli-
mentary testing strategies: automated unit testing, and manual functional
testing.

6.1 Unit Tests

Unit tests are automated tests. Whenever a programmer begins to program
a new feature, he should first write some code to test whether the new feature
works. To aid in this process, we used the JUnit package. This made creating
tests very simple.

We created test classes in a separate package. These test classes are
subclasses of JUnit classes, and we call JUnit methods to assert that the
results of each are as expected. JUnit includes several programs to run
the tests. Figure 6.2 shows the graphical tester. Here, the red bar clearly
shows one of the tests has failed, and information is provided to enable the
programmer to see exactly what went wrong. This failure must be corrected
before the code is checked in. Figure 6.1 shows a successful test run.

As figure 6.3 shows, the programmer may choose which test suites to
run. After the programmer has succeeded in testing his newly added feature,
he should re-run all the test suites to ensure that he has not inadvertently
broken some other part of the system. This enables the programmer to
confidently refactor code in other parts of the system without worrying that
he is introducing additional bugs.

56

CHAPTER 6. TESTING 57

Figure 6.1: Successful JUnit test

Figure 6.2: Unsuccessful JUnit test

CHAPTER 6. TESTING 58

Figure 6.3: JUnit choice of tests

6.1.1 Test details

Suite Test Description

Auth Sign Sign SLS and verify signature
Authenticate Sign SLS and authenticate user from database
Verify Create and verify good and bad signatures - bad signa-

ture must fail
Client SendSLS Reads SLS parameters (from file) to client which should

then create and send SLS to NRSE
Delete Creates request for deletion and uses client to it send to

NRSE
Database Delete Adds SLS to database, deletes it, checks it has gone

Query Adds two SLSs to database, then queries for them.
QueryXML Processes XML query and executes it
Add Adds some SLSs into database, pulls them out, checks

they are the same as before they went in.
Check Adds lots SLSs into database, some of which exceed

bandwidth limits. Check method should notice this.
User Checks behaviour correct for adding, deleting and query-

ing users.
Non-realtime Ensures database makes correct changes to SLS to meet

a non-realtime request.
Notify Notify Launches a client and sends it a notification.
Util Clone Tests that SLS.clone() works

DeleteSLS Processes deletion request XML and checks against
known correct values

ReadSLS Reads XML format SLS from file and compare to known-
correct values.

WriteSLS Write SLS to XML format file and read it back again.

CHAPTER 6. TESTING 59

6.1.2 Test results

All tests passed.

6.2 Functional test scenarios

It is very difficult to test the system in the large with unit tests. While it
would be possible to write automated tests that make use of the GUI and
run on multiple machines at the same time, it is not really worth the time to
do so. Therefore we use a human being to test that we have met our major
milestones. In a commercial project these tests would be provided by the
customer, to ensure the system meets his needs. Similarly, we created these
tests in conjunction with our supervisor.

The most important of these milestones are single-domain operation and
multi-domain operation. Complete instructions for the human performing
these tests can be found in Appendix C.

6.2.1 Testbed

A testbed was provided for us, consisting of three routers and three clients,
configured as shown in figure 6.4. All machines were running Redhat Linux 9,
but the hardware and configuration varied slightly from machine to machine.
We did not have physical access to the testbed - all access was via the network,
through a secure connection to the gateway machine.

6.2.2 Single-domain test

We configured a NRSE to run on Router3, and a client to run on Client3.
We used the IPerf tool to monitor network performance. We ran IPerf clients
on Client3, which sent packets to IPerf servers running on Router3. We used
one TCP flow, one flow of large (1470 byte) UDP packets and one flow of
small (40 byte) UDP packets. The UDP flows were designed to completely
fill the pipe’s 10 Mbps capacity, leaving very little for the TCP, which would
never get out of slow start mode.

We used our client software to request a reservation of 5 Mbps. We set
the source address to Client3 and the destination address to Router3. We
specified the reservation should be activated immediately.

CHAPTER 6. TESTING 60

Figure 6.4: Testbed (diagram courtesy of Yangcheng Huang)

CHAPTER 6. TESTING 61

Results

We wrote a program to plot the bandwidth used by IPerf in realtime. The
output can be seen in figure 6.5.

The blue plots represent the bandwidth used by the TCP flow. The other
colours are UDP flows. The graph is scaled to 10 Mbps on the Y-axis. Each
plot represents one second of time on the X-axis. As can be seen, initially the
UDP flows completely swamped the TCP flow. When it made the reservation
request, it took the NRSE a few seconds to process it. Then the reservation
was activated and the router immediately began dropping UDP packets to
give priority to the TCP flow. The test was a success.

In fact slightly more bandwidth was allocated to the TCP flow than we
requested, but this is a flaw in Linux’s traffic shaping implementation and
not in the NRSE.

6.2.3 Multi-domain test

The nature of the test was the same as for the single-domain, but this time
we used had two domains, each containing a router with an NRSE (on the
router machine) and a client node.

Client3 wished to make a reservation to guarantee 5 Mbps of bandwidth
for a TCP flow to Client2. We ran the same IPerf client and server processes
as before, but this time running from Client3 to Client2. All the packets were
forwarded through machines in this order:

1. Client3

2. Router3

3. Router1

4. Router2

5. Client2

Thus our TCP flow was actually traversing three different networks.

Results

The results, shown in figure 6.6, are very similar to those for the single domain
test. After the reservation is made, the TCP flow gets about 5.7 Mbps of
bandwidth.

During some of our earlier tests, the plots for the multi-domain test ap-
peared more scattered than they did for the single domain test. This was not

CHAPTER 6. TESTING 62

Time

Data rate

TCP 1470 bytes per packet

UDP 7Mbps 1470 bytes per packet

UDP 3Mbps 40 bytes per packet

0

5

[Mbps]

Figure 6.5: Single-domain network performance

CHAPTER 6. TESTING 63

Time

Data rate

TCP 1470 bytes per packet

UDP 7Mbps 1470 bytes per packet

UDP 3Mbps 40 bytes per packet

0

5

[Mbps]

Figure 6.6: Multi-domain network performance

evident towards the end, so we suspect it may have been caused by a miscon-
figuration in the testbed that was later corrected. (The testbed configuration
was not under our control and changed constantly.)

Chapter 7

Evaluation

Here we evaluate the design of the system as well as the wisdom of some of
our design choices. We also suggest improvements for future development.
Further evaluation can be found in our personal reports, and an evaluation
of the overall success of the project in in Chapter 8 on page 68.

7.1 Database

We wanted our system to be usable by as many people as possible, therefore
we could not make it dependent on a proprietary database such as the indus-
try standard Oracle. The most popular Free database is MySQL, and this is
what our supervisor suggested we use. However, we had some debates about
this because while MySQL has a reputation for being fast, it is also known
to lack many of the advanced features of Oracle. We had some prior expe-
rience using another Free database, PostgreSQL, which is very full-featured.
Therefore we decided to develop using PostgreSQL, but port to MySQL later
in the project. Eventually, we would also like to port to Oracle, and Firebird
(another Free database which has a small user-base but is fast gaining an
impressive reputation and may soon challenge PostgreSQL.)

We took care to avoid using any of PostgreSQL’s advanced features, and
to keep to the SQL99 standard as far as possible, in order to make it as easy as
possible to port to other databases. However, when we did finally attempt to
port to MySQL, we found many problems. MySQL is not an ACID compliant
database, and is missing many important features such as transactions, views
and subselects, all of which are used by our system. (After some work we
discovered it is possible to use an alternative MySQL database engine that
does support some form of transactions, but the syntax is not standard.) We
also had to do extensive work to convert some of our datatypes to the more

64

CHAPTER 7. EVALUATION 65

limited set available in MySQL.
Therefore we abandoned the port to MySQL. Porting to Oracle, Firebird

and mSQL remains a possibility for future work.

7.2 Networking

The choice here was between Java’s implementation of TCP sockets, or a
higher level third party library. BEEP was suggested by our supervisor as a
cross platform, peer-to-peer, XML-based framework for authentication com-
munications.

However, in practice we were not greatly impressed by BEEP. The promise
of authentication proved, for us, to be an empty one. (See section 7.3.)

The fact that BEEP uses XML internally is irrelevant to the application
developer. The messages sent by BEEP are simple plain text. We used that
text to contain XML, but BEEP provided no more features to support the
sending of XML than is provided by simply TCP sockets.

BEEP appears to have brought as very few advantages over TCP sock-
ets, and cost us several weeks of development time to overcome the lack of
documentation.

7.3 Authentication

We intended to use BEEP’s TLS security feature. This ought to have pro-
vided us the verification based on X.509 certificates as well as encryption (if
we wanted privacy). Unfortunately, we could find no documentation on how
to use this feature. BEEP’s entire documentation consists of some very basic
Javadoc.1 There are no tutorials, and no working example to prove that the
touted TLS feature is actually implemented.

We considered using X.509 certificates without BEEP. There is some sup-
port for them in the Java library. We decided against this, because it would
have been like re-inventing the wheel. None of the team has experience of
X.509 and we feared it would be necessary to implement an entire security
infrastructure on top of X.509 akin to TLS. We planned to investigate this
further if there was time later.

For the moment, we decided to implement authentication using PGP mes-
sage signing. We considered using the Free GnuPG implementation, but we

1We are referring here to the Java implementation of BEEP, Beepcore. The BEEP
protocol itself is well documented, but creating our own BEEP implementation using the
specification would have been well beyond the scope of this project.

CHAPTER 7. EVALUATION 66

thought it’s easier to use the OpenPGP Java library implementation provided
by Cryptix. Some of the team already had experience with this product, and
we were confident that we could quickly create a working implementation.2

Cryptix has improved a lot since when we used it in the past, and generally
worked well. Unfortunately there was a strange incompatibility with Sun’s
JCE (Java Cryptography Extension) that prevented us from repackaging the
Cryptix libraries into a single archive on certain platforms. This problem was
worked around by using the original Cryptix packages and by removing Sun’s
JCE, but it was a bit of an inconvenience. We are not sure whether this was
caused by a bug in the JCE, or in Cryptix, or, more likely, whether we were
incorrectly signing the archives. Future work could be done to determine
this.

Cryptix, like all public key systems, suffers from excessive CPU require-
ments. A hybrid system would be more practical for a large-scale NRSE. If
the requirement to use BEEP is dropped, then we would suggest investigating
using a TLS implementation such as OpenSLS.

7.4 Testbed

The testbed is shown in figure 6.4 on page 60.
Not having direct control over the testbed caused problems and unneces-

sary delays. The testbed was setup and maintained by other students who
had far less experience with Linux networking than we did. We eventually
obtained root access, and from then on we found it quicker to do the sysad-
min work ourselves. It was still very inconvenient sharing the testbed with
other experiments, however. The design of the testbed was quite different
from the design of a real internet. The routing was deliberately convoluted to
introduce extra hops, thereby simulating a larger internet than we actually
had. This caused unexpected problems - we could not rely on the standard
output of the ’route’ command to tell us where a packet would actually be
routed.

The hardware configuration and software installed varied slightly from
machine to machine. This meant it wasn’t possible to compile a program
on one machine and then simply transfer it to the others - everything had
to be re-compiled on each machine. There was so no sharing of files, user
logins, or time synchronisation across machines. (Indeed we wasted many

2Time management was critical throughout the project, so we preferred to get a working
proof-of-concept implementation rather than waste weeks evaluating unfamiliar technolo-
gies.

CHAPTER 7. EVALUATION 67

hours looking for a bug that proved to be caused by one of the machine’s
having a clock that was 7 months slow.)

The greatest problem with the testbed was that it used a private subnet
that was not part of our LAN. The only access was via a multi-homed gate-
way machine. This was because of security concerns, and made testing very
cumbersome and difficult.

We recommend that, if possible, programmers are given responsibility for
creating a testbed that meets their own needs. On the final day of writing
this report, when we came to add in the functional test results, we found
the testbed had been reconfigured so that our tests would no longer run.
If we had control of the testbed, we not make any changes to a working
configuration at such a crucial time. However, In practice, we realise that
resource constraints and bureaucracy will rarely allow this.

7.5 Performance

Java allowed relatively rapid development, and the large standard library was
a great benefit. The performance of Java was a little disappointing though.
Setting up a BEEP connection took several seconds, even using the loopback
network interface. Executing the cryptographic functions also introduced
some delay. Ultimately, however, this is not a huge problem. Users will
usually be booking reservations for several hours or days in advance, and so
a delay of a few seconds during the booking will not be a problem for them.

Immediately we found Sun’s compiler implementation was too slow to use
effectively on our old workstations. Therefore we used IBM’s open source
Jikes compiler instead, which was more than fast enough. We stuck with
Sun’s JRE, however, because it was already installed on our machines and it
was guaranteed to be compatible with all the third party libraries we chose
to use. It might be worth considering a switch to use IBM’s JRE to improve
run-time performance of the NRSE.

The main reason for choosing Java as our platform (other than our exist-
ing familiarity with the language) was to enable the NRSE to be run on as
many different systems as possible. With hindsight, it may have been possi-
ble to achieve similar portability by using C++ with cross-platform libraries
such as wxWindows.

Chapter 8

Conclusion

We successfully implemented a working prototype of the NRSE. There are
still a number of rough edges that should be polished off before the code
is ‘production ready’. For instance, Java’s DOM implementation is rather
messy; a higher level, cleaner solution to processing XML would be prefer-
able. Many parts of the system use numerical error codes (modelled after
those in HTTP), but we intend to replace these with XML error documents.
Indeed, this will be a requirement for negotiating multi-domain non-realtime
reservation.

We solved the problem of resource reservation for a single domain for
realtime and non-realtime reservations. We also implemented multi-domain
reservations for two domains for realtime requests.

Multi-domain non-realtime requests are a simple evolution and would not
be difficult to implement given more time.

Most requirements were met. However, we did not implement a keep-alive
mechanism, nor notification for policy violations1. We also did not have time
to do much investigation of how the local NRSE can discover a remote NRSE.
At present, remote NRSEs are entered by the administrator. We believe a
simple entry in the DNS records should be used to automate the process.
(Alternatively, there could be an LDAP database system holding details of
NRSEs.) We also recommend that the administration and query features be
expanded on.

A more serious problem is that of three or more domains. We ensure there
is sufficient bandwidth available for a reservation at the local gateway, and
also at the gateway to the destination network. We also mark the packets
as EF, to give them priority throughout their journey. However, our packets
may be forwarded through several other networks as they traverse the core

1We need to investigate whether this is even possible using a Linux router

68

CHAPTER 8. CONCLUSION 69

of Internet. We can not guarantee enough bandwidth is available in all these
networks. At present, core networks are usually over provisioned, so this is
not a problem. Nevertheless, we suggest this aspect deserves further study.

Appendix A

User Manual

This chapter presents the manuals for users.

A.1 Main Screen

Firstly, execute the NRSE server with the following command.
java nrse.NRSE
Then, executes the client host with the following command.
java client.Qos
NRSE is the main program that runs the NRSE server and Qos is the

main program that runs the main program of the client.
The very first client screen that shows is as below.
Enter the user name and password as required, as well as the credentials/

private key of the same user. The server address and port are set to default
at the moment, but will be required if they changes.

Then the following options follows, each of them links to a new window
with the exceptional Modify SLA option. modify SLA option is not imple-
mented yet and thus is left disabled at the moment.

• Add SLA

• Modify SLA

• Query/Delete

• Add User

70

APPENDIX A. USER MANUAL 71

A.2 Add SLA

This screen is illustrated as below.

Figure A.1: Client Main Screen

Figure A.2: Add SLA

APPENDIX A. USER MANUAL 72

It simply shows all the fields that are necessary to set up a Qos request.
The default values are used currently. Simply enter all the provided fields
and click send to send the Qos request. The request will then be sent to the
NRSE server.

A.3 Query/Delete

This screen queries and displays all the Qos requests made by the user referred
to on the main screen. These Qos requests can then be modified or deleted.
Currently, only the delete function works and the modify option is disabled.
Just navigate using the previous and next buttons to the desired Qos request
and click delete to delete it.

A.4 Add User

This option is only applicable for the administrator even though it is not the
restriction is not implemented yet. For administrators, please refer to imple-
mentation - how to run section on more details. This screen creates a new
user account. Enter the new user name and password. Then, click Generate
to generate a new set of PGP private and public key. After generating them,
click the Add to add the new user with the password and the generated keys.

APPENDIX A. USER MANUAL 73

Figure A.3: Add User

Appendix B

Administrator manual

B.1 Troubleshooting

Cryptix library sometimes does not work if you have Sun’s jce.jar in your java
libs directory. If you get SecurityExceptions, remove jce.jar. (This seems to
be because we have not signed our library jar correctly. So you could also
fix it by using the original signed jar files from cryptix.org rather than our
library bundle.)

B.2 Installation

The easiest way to install is to copy or download the jar archive, nrse.jar,
onto any machine that you wish to act as a router, an NRSE, or a client.
Extract the file nrse.properties from the jar file - you will need to edit this
file if you do not want the default configuration. See B.5 for details.

B.2.1 Requirements

• A router running Linux 2.4.

• Beepcore http://sourceforge.net/projects/beepcore-java

• JUnit (only for running tests) http://www.junit.org

• Xerces http://xml.apache.org/xerces2-j

• log4j http://jakarta.apache.org/log4j

• Jikes (only to compile) http://oss.software.ibm.com/developerworks/opensource/jikes/

74

APPENDIX B. ADMINISTRATOR MANUAL 75

• Cryptix http://www.cryptix.org

• PostgreSQL database and JDBC driver http://www.postgresql.org

For your convenience we have provided a jar archive containing all the
necessary libraries. If you do not use this, it will be necessary to install them
all separately and add them all to your classpath.

B.3 Running the NRSE

First, it is necessary to initialise the PostgreSQL database.

java -cp .:nrse.jar:libs1.jar nrse.WipeDatabase

Then, you may wish to run the test suite:

java -cp .:nrse.jar:libs1.jar -Dlog4j.ignoreTCL=true \

junit.swingui.TestRunner test.TestAll

To launch the NRSE itself:

java -cp .:nrse.jar:libs1.jar nrse.NRSE

You may run the NRSE on the same machine that is doing the routing. You
must run the activator program on the router:

java -cp .:nrse.jar:libs1.jar nrse.SLSactivator

We also have a couple of very basic, very alpha viewers that are able to
display the reservations in the database graphically. These probably need a
lot more work before they are useful.

java -cp .:nrse.jar:libs1.jar nrse.MyCanvas

java -cp .:nrse.jar:libs1.jar nrse.ReservationQuota

B.4 Running the client

To launch the example graphical client:

java -cp .:nrse.jar:libs1.jar client.Qos

For instructions on how to use the client, refer to the manual on page 70.
There is also an older console based client:

java -cp .:qos.jar:libs1.jar client.Client

APPENDIX B. ADMINISTRATOR MANUAL 76

B.5 Configuration

Edit nrse.properties and put it somewhere in your classpath. If you wish to
use a file with a different name, you can specify that on the launch command-
line. To configure logging options, edit the log4j.properties file.

APPENDIX B. ADMINISTRATOR MANUAL 77

Option Description Examples value(s)

interval How long interval is needed to search
and activate the available reservation

1000

maxMessageSize The MAX length of BEEP Message
which the client can receive

10000

port The port number used by BEEP con-
nection

10999

server Host name which is used by BEEP con-
nection

localhost

JDBCconnection Database Server Location and the
database name

jdbc:postgresql:
//URL/DatabaseName
1

JDBCuser The UserName which is registered to
use the database

rsmith

JDBCpassword Password to use the database none
DBMS Database Software Name PostgreSQL 2

noOfIface Number of the Network Interface 6
bandwidthX available bandwidth for interface num-

ber X
10000

ifaceNameX Corresponding network interface name
which should be given by the result of
ip command.

ethX

ifaceDirectionX The direction of the network packet
flow

in/out

ifaceRemoteX Used to check whether the SLS is from
remote site or local site.

true/false

useRemote true for single domain, false for multi
domain

true/false

remoteNRSEserverX Address of the BEEP Server 127.0.0.1
remoteNRSEportX Port Number for the BEEP connection 10289
operatingSystem Which test environment you will use. 3 test/Linux

1In CS Computer, jdbc:postgresql://kennedy.cs.ucl.ac.uk/XXX is used. Kennedy is for
the CS department computer and it starts postgresql every morning. In the test bed,
jdbc:postgresql://localhost/XXX is used.

2MySQL option is no longer used. Reason is in the evaluation section.
3SLS activation is not possible on the Solaris machines used for development and testing

Appendix C

Demonstration

These instructions can be used by a human tester to replicate our demon-
stration on our testbed.

C.1 Before running the program

• copy libs1.jar and release.jar to each computer. libs1.jar contains all jar
libraries which are used in our program. release.jar contains all NRSE
program which we made.

• run PostgreSQL on Router3 if PostgreSQL isn’t yet running. (com-
mand : service postgresql restart)

• verb|tc-off|.

C.2 Single-Domain

1. change the nrse.properties useRemote value to false.

2. At router3, wipe out all the data in the database.(command : java -cp
libs1.jar:release.jar nrse.WipeDatabase)

3. Run the NRSE server on Router3. (command : java -cp libs1.jar:release.jar
nrse.NRSE)

4. Run IPerf Server as a Graphic Mode on router1. (command : java -cp
libs1.jar:release.jar nrse.IPerf)

5. Run the iperf-client on Client3. (command : ./iperf-client(run the
batch file))

78

APPENDIX C. DEMONSTRATION 79

6. Run the SLS Activator on Router3. (command : java -cp libs1.jar:release.jar
nrse.SLSactivator)

7. Run the NRSE Client on Client3. (command : java -cp libs1.jar:release.jar
client.Qos nrse.properties)

8. Send SLS using GUI. src is 10.3.0.2(Router3), dst is 10.3.0.1(Router1).
Reservation time must be the future time.

9. Wait until reservation time.

C.3 Multi-Domain

According to the user story scenario, data is to be sent from client3 to client2.
Client3 send the data to Router3, Router3 will send the data to Router1, and
Router1 will forward the data to Router2. Then Client2 will receive the data.

1. change the nrse.properties useRemote value to true.

2. At Router2, wipe out all the data in the database.

3. At Router3, wipe out all the data in the database.

4. Run the NRSE server on Router2.

5. Run the NRSE server on Router3.

6. Run IPerf Server as a Graphic Mode on Client2.

7. Run the SLS Activator on Router2.

8. Run the SLS Activator on Router3.

9. Run the NRSE Client on Client3.

10. Send SLS using GUI from Client3 to Client2.

11. Wait until reservation time.

C.4 After running the program

• verb|tc-off| to manually remove all TC filters.

• kill iperf process (command : killall iperf)

Appendix D

Glossary

AF - DIFFSERV Assured Forwarding service

BEEP - Blocks Extensible Exchange Protocol

CMM - Capability Maturity Model

CVS - Concurrent Versions System

DIFFSERV - Differentiated Services

EF - DIFFSERV Expedited Forwarding service

GRS - Grid Resource Scheduling

GARA - General-purpose Architecture for Reservation and Allocation

GUI - Graphical User Interface

IETF - Internet Engineering Task Force

INTSERV - Integrated Services

IP - Internet Protocol

NRSE - Network Resource Scheduling Entity

OO - Object-Oriented

PGP - Pretty Good Privacy

QoS - Quality of Service

RSVP - ReSerVation Protocol

80

APPENDIX D. GLOSSARY 81

RUP - Rational Unified Process

SLA - Service Level Agreement

SLS - Service Level Specification

SQL - Structured Query Language

TC - Traffic Control

TCP - Transport Control Protocol

UDP - User Datagram Protocol

UML - Unified Modelling language

XML - eXtensible Markup Language

XP - eXtreme Programming

Appendix E

XML documents

Here are examples of the XML documents processed by the NRSE (based on
those in [BSCC03]. We have not included PGP signatures here.

E.1 SLS request

<?xml version = "1.0"?>

<!-- sla_user_nrse.xml -->

<!-- Course: MSc DCNDS 2002/3 -->

<!-- Authors: Richard, Andy, Keiko, Toshi -->

<!-- GRS (GRID Resource Sharing) -->

<!-- Service Level Agreement -->

<!-- User - NRSE -->

<sla_user_nrse xmlns = "x-schema:sla_user_nrse-schema.xml">

<!-- Request identification -->

<id>

<timestamp>2003-05-19-22080000</timestamp>

<req_no>1</req_no> <!-- e.g. 32 bit random number -->

</id>

<!-- Administrative information -->

<user_info>

<user_name>Andy Liow</user_name>

<user_credentials></user_credentials>

</user_info>

82

APPENDIX E. XML DOCUMENTS 83

<!-- Optional. If this is not present,

SLA should remain in place until explicitly removed. -->

<time_span>

<start_time>2003-05-19-0000</start_time> <end_time>2003-05-20-0000</end_time>

</time_span>

<!-- Could also have level 3 or 4 header fields other than these -->

<filter>

<src_ipv4>128.16.10.1</src_ipv4>

<src_port>1284</src_port>

<dst_ipv4>128.16.10.11</dst_ipv4>

<dst_port>8080</dst_port>

</filter>

<!-- Traffic specifications -->

<tspec>

<!-- All rates in Kbps -->

<peak_rate>1000</peak_rate>

<token_rate>800</token_rate>

<!-- All rates in bytes -->

<bucket_size>2048</bucket_size>

<min_policed_unit>48</min_policed_unit>

<max_pkt_size>1024</max_pkt_size>

</tspec>

<!-- Service specifications -->

<qos>

<quality>premium</quality> <!-- ’premium’ = EF, ’low’ = LBE -->

<policing>

<action>drop</action> <!-- For future. "delay" or "remark" possible -->

</policing>

<direction_mode>bidirectional</direction_mode> <!-- {uni|bi}directional -->

<!-- multicast in future -->

<flow_type>real_time</flow_type> <!-- {real|non_real}time -->

</qos>

<notifications>

<!-- Multiple instances of this are possible -->

APPENDIX E. XML DOCUMENTS 84

<notification_sink>

<dst_ipv4>127.0.0.1</dst_ipv4>

<dst_port>4000</dst_port>

</notification_sink>

<!-- Optional. Number of seconds before reservation start -->

<start_notification>1</start_notification>

<!-- Optional. Number of seconds before reservation end -->

<end_notification>1</end_notification>

<notification_flags service_qos_violation = "on"

user_qos_violation = "on"

abnormal_termination = "on"

administrator_intervention = "on"/>

</notifications>

</sla_user_nrse>

E.2 Deletion request

<?xml version = "1.0"?>

<delete>

<id>

<req_no>1</req_no>

</id>

<user_info>

<user_name>Andy Liow</user_name>

<user_credentials></user_credentials>

</user_info>

</delete>

E.3 Query request

<?xml version = "1.0"?>

APPENDIX E. XML DOCUMENTS 85

<simple_query>

<user_info>

<user_name>Andy Liow</user_name>

<user_credentials></user_credentials>

</user_info>

</simple_query>

Appendix F

Miscellany

86

APPENDIX F. MISCELLANY 87

User

Add SLA

Modify SLA

Delete SLA

Add To User Database

Add User

create Private/Public key

Create Database

Send Data Using Beep

Launch beep server

Launch beep client

Activate Reservation

Search Available Reservation

Send Notification

<<uses>>

<<uses>>

<<uses>>

1
*

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Commit to the Database

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

NRSE Server

<<uses>>

<<uses>>

<<uses>>

Figure F.1: Early draft of usecase diagram

Bibliography

[Bec00] Kent Beck. eXtreme Programming eXplained. Embrace Change.
Addison-Wesley, 2000.

[BSCC03] Saleem Bhatti, Søren-Aksel Sørensen, Peter Clarke, and Jon
Crowcroft. Network qos for grid systems. 2003.

[Die99] T. Dierks. RFC2246. http://www.ietf.org/rfc/rfc2246.txt?number=2246,
1999.

[Dum01] Edd Dumbill. Bird’s-eye BEEP. http://www-
106.ibm.com/developerworks/xml/library/x-
beep/?dwzone=xml, 2001.

[HCF97] Graham Hamilton, Rick Cattell, and Maydene Fisher. JDBC
Database Access with Java. A Tutorial and Annotated Reference.
Addison-Wesley, 1997.

[jak03] jakarta. Log4j. http://jakarta.apache.org/log4j/docs/index.html,
1999-2003.

[Jef00] Ron Jeffries. Extreme programming and the capability maturity
model. http://www.xprogramming.com/xpmag/xp and cmm.htm,
2000.

[LC01] Laura Lemay and Rogers Cadenhead. SAMS Teach Yourself
Java 2 in 21 Days Professional Reference Edition Second Edition.
Sams, 2001.

[Pos03] PostgreSQL Global Development Group. PostgreSQL 7.3 Docu-
mentation, 2003.

[Ray01] Erik T. Ray. Learning XML. O’Reilly, 2001.

[Ros01] M. Rose. FRC3080. http://www.ietf.org/rfc/rfc3080.txt?number=3080,
2001.

88

BIBLIOGRAPHY 89

[Ros02] M. Rose. BEEP. O’Reilly, 2002.

[Sou02] SourceForge. Java BEEP Core Java 0.9.07.
http://www.beepcore.org, 2002.

