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Abbreviations 
 
w.r. to with respect to 
DOF degree of freedom 
UKL University of Kassel, Department of Civil Engineering, 

Laboratory of Lightweight Structures and Structural Mechanics 
FEM finite element method 
MATLAB high performance numeric computation and visualization software, 

The MATHWORKS Inc. Natick, MA, USA 
MDB MATFEM data basis 
BNP basic nodal point 
LNP local nodal point 
X, Y, Z, 
XX, YY, ZZ DOF direction w.r. to the global coordinate system 
x, y, z, 
xx, yy, zz DOF direction w.r. to the local coordinate system 
 
UX, UY, UZ translational DOF 
UXX, UYY, UZZ rotational DOF 
FX, FY, FZ nodal forces 
FXX, FYY, FZZ nodal forces (moments) 
σx, σy, σz normal stresses 
σxy, σxz, σyz shear stresses 
NP nodal point 
CS coordinate system 
 
 
Frequently used MATFEM Fixed Name Variables 
 
nbalk overall number of beam elements 
nshel overall number of shell elements (nshel = nshel3 + nshel4) 
nshel3  overall number of 3 node shell elements 
nshel4  overall number of 4 node shell elements 
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Right-handed screw rule 

 
Fig. 0.1: Right-handed triple of vectors, right-handed screw rule, [Kreyszig 1] 
 
 
 
 
General 
 
Generally, the term ‘nodal forces’ can either imply nodal forces or nodal moments. The term 
‘degree of freedom DOF’ can imply translational and/or rotational degrees of freedom. 
 
One-dimensional arrays must generally be specified as row vectors. 
 
 
 
Due to the original program development of MATFEM is done by German authors and 
therefore variable names used in MATFEM are often based on German expressions, this 
documentation uses both German and English terms where helpful. 
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Main New Features of MATFEM02 
 
 
preprocessor: 
 
 
analysis: 
• calculation of non-linear frequency dynamic response using modal condensation during 

response calculation to speed up the calculation time (wahl = 8) (using the ‘Harmonic 
Balancing’ linearization approach) 

• dynamic condensation has been improved for non-linear response calculation (wahl = 8) 
(using the ‘Harmonic Balancing’ linearization approach) 

• additional non-linear elements (Friction type, clearance type, arctan-stiffness, arcsinh-
stiffness, Gaul element (2 parameters)) (wahl = 8) (using the ‘Harmonic Balancing’ 
linearization approach) 

 
 
postprocessor: 
 
 
general: 
 
• the subdirectory \issp has been removed from the MATFEM path. All former functions of 

this subdirectory are now included in the MATFEM main path \src 
 
• the subdirectory \toolbox has been removed from the MATFEM path. All former 

functions of this subdirectory are now included in UKL's TBOX software package. The 
TBOX is general UKL toolbox used by different UKL software packages like ISSPA and 
UPDATE 

 
 
 
 
 
 
The user can use the input file structure of older MATFEM versions but it is recommended to 
use the actual input file structure, as given in the template directory, for future applications. 



MATFEM 04 User’s Guide  0-6 

Main New Features of MATFEM04 
 
 
preprocessor: 
 
 
analysis: 
• real and complex eigensolutions 
• MATLAB build-in eigensolution solver eigs is now available for dynamic analysis 

(ieig=5)  
• eigenvector 'blowup' feature now available for external data (real or complex 

eigensolutions) given in Universal File format (type 15, 82,55) 
• BNP labels 
• accumulation of damping input (damptyp= 4 ) in the case of proportional damping 

  and direct matrix specification (e.g. used for dashpot dampers) D K= α + βM D
 
 
postprocessor: 
• The MATFEM Plot Panel helps to easily modify the plot of the undeformed structure and 

to gain detailed information about nodes, elements, boundary conditions, etc. 
• complex mode visualization (animation) 
 
 
general: 
 
• the UKL TBOX is now divided into the subdirectory  \src, \exe, \pcode . Some new 

routines have been added to handle data given in Universal File Format. The TBOX is a 
general toolbox used by different UKL software packages like ISSPA and UPDATE 

 
 
 
 
 
 
The user can use the input file structure of older MATFEM versions but it is recommended to 
use the actual input file structure, as given in the template directory, for future applications. 
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Upgrading from earlier MATFEM releases: Changes and Enhancements 
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1. MATFEM Installation
 
MATFEM requires that MATHWORKS/MATLAB Version 5.3 or higher is installed on the 
computer (PC  or UNIX workstation). 
 
MATFEM is distributed on a media using the following directory structure: 
 
           ukl\matfem  
  --------------------------------------I--------------------------------- 
     I                  I                    I                 I                I                 I 
   src           demo            template     docu          pcode         link 
 
 
contents: 
 
src MATFEM main source  (MATLAB script files) 
demo MATFEM input files for several demonstration examples (ref. Appendix D) 
template Templates of MATFEM input files ( ref. Appendix C) 
docu MATFEM Documentation    (Microsoft WORD 97 documents) 
pcode Precompiled MATFEM source files to be used within MATLAB5.3 or higher 
link Special MATLAB script files to link MATFEM to different UKL software 
 packages e.g. UKL/UPDATE_B 
 
 
 
In addition the media includes the UKL TBOX , a special software package which includes 
general data handle tools which are commonly used by several UKL software packages. The 
UKL TBOX has the following directory structure: 
 
 
           ukl\tbox 
                                  --------------I---------------- 
                                      I                  I                    I 
                                    src           pcode             exe 
contents: 
 
src TBOX main source  (MATLAB script files) 
pcode Precompiled  TBOX source files to be used within MATLAB5.3 or higher 
exe TBOX FORTRAN executables 
 
 
 
Note: 
Your implementation of MATFEM and the UKL TBOX may differ from this general 
directory structure due to individual requirements. 
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To run MATFEM within MATLAB the MATLABPATH has to be extended to include at 
least the following directories: 
• ukl\matfem\src or ukl\matfem\pcode 
• ukl\tbox\src  or  ukl\tbox\pcode 
 
 
Note: 
If only the pcode edition or the limited edition of MATFEM is available the user must link 
\pcode directory to the MATLABPATH. 
 
 
Refer to the MATLAB User’s Guide to set the MATLABPATH. 
 
 
The user must also set the operating system program search path to include ukl\tbox\exe. 
Refer to the User's Manual of your computer to properly set the program search path. 
 
 
 
To check the MATFEM installation it is recommend to copy the demo directory to a 
temporary working directory and start the auto-sequence of demonstration examples by 
calling  demo_all  within  MATLAB  from the actual demo directory. 
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Setting the MATFEM editor 
 
The user must set the MATFEM editor in the file  ed.m  in the ukl\tbox\src or the 
ukl\tbox\pcode directory. The editor is invoked by the preprocessor to edit the MATFEM 
input files or directly from the MATFEM main window to edit the MATFEM listing file 
*.aus. The user must edit the ed.m file and set the correct destination of the editor of his 
system w.r. to the operating system of his computer. 
 
 
 
% Edit a MATLAB m-file with a system Editor. 
 
function ed(filename) 
 
system = computer; 
 
if (nargin == 0) 
 
  [filename,curpath] = uigetfile('*.m','Please select a m-file'); 
 
  if isstr(filename) 
    if ~strcmp(system,'VAX_VMSD') 
      curpath  = lower(curpath(1:length(curpath)-1)); 
    end 
    filename = lower(filename); 
  else 
    return 
  end 
 
else 
 
  curpath = cd; 
  curpath = lower(curpath); 
 
  if isempty(find(filename=='.')) 
    filename = lower([filename,'.m']); 
  end 
 
end 
 
if     strcmp(system,'PCWIN')                                % PC with Windows 
  eval(['!notepad ',curpath,'\',filename]) 
 
elseif strcmp(system,'IBM_RS')                               % IBM RS6000 
%  eval(['!nedit ',curpath,'/',filename]) 
  eval(['!xedit ',curpath,'/',filename]) 
 
elseif strcmp(system,'SGI')                                  % Silicon Graphics 
%  eval(['!ieditor ',curpath,'/',filename]) 
  eval(['!editor ',curpath,'/',filename]) 
 
elseif strcmp(system,'SOL2')                                 % DLR Sun Solaris 2 
  eval(['!textedit ',curpath,'/',filename]) 
 
elseif strcmp(system,'VAX_VMSD')                             % VAX 
  eval(['!edit ',curpath,filename]) 
 
else 
  error('Please add your system''s editor to file: ed.m !') 
end 
 
return 

 
Fig. 1.1: Setting the MATFEM editor in the file ukl\tbox\src\ed.m or ukl\tbox\pcode\ed.m 
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2. General
 
MATFEM is a Finite Element code for linear static and dynamic analysis. It is developed by 
the department of lightweight structures and structural mechanics at the department of civil 
engineering at the University of Kassel (UKL), Prof. Dr. Ing. M. Link. MATFEM is written 
using MATHWORKS/MATLAB [MATLAB 1] computation and visualization software. 
MATFEM is aimed to be used within the fields of research and education to solve low to 
medium scaled static and dynamic problems up to ≈ 8000 degrees of freedom (DOF) which 
yields reasonable CPU times for Pentium IV PC’s. The developers of MATFEM put more 
emphasis on the solution algorithms and the variety of applications than on graphical user 
interface programming and the evaluation of routines to check the conformity and 
completeness of input data specification. Due to this, the user has to take a high share on 
specifying all needed input data correctly. 
MATFEM expects the user to be a so called ‘friendly user’, i.e. 

- he/she has a basic knowledge in mechanics and FEM to supply the needed input data and 
interpret the output results 

 - he/she has a basic knowledge in using MATHWORKS/MATLAB 
MATFEM is certainly not designed for users who want to proof how stupid software can be. 
 
 
Like any FEM program MATFEM consists of three main modules: 
 

preprocessor  (editing of input files, no graphical support) 
analysis 
postprocessor (visualization of analysis results) 

 
 
To specify the input for a MATFEM analysis a maximum of 20 ASCII input files can be 
provided. These files are standard MATLAB script files. They all share a common file name 
(marked by  *  throughout this documentation) but have different  file extensions.  The 
common file name is specified by the user and may be any name, e.g:  demo1 . The file 
extensions are fixed to  *.m01 ... *.m20, e.g: 
 
  demo1.m01 
        ... 
        ... 
  demo1.m20 
 
It is recommended to use the MATFEM input file templates to specify all needed data. 
MATFEM is started within MATLAB by using the command:  matfem   or   mfstart 
 
For very special purposes (e.g. data debugging) it may be helpful to start  MATFEM  using 
the command:  mfein .  If so, the user has direct access to some main MATFEM variables 
after the analysis has terminated. 
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The commands  matfem  or  mfstart  invoke the main MATFEM menu from which the three 
main modules 

preprocessor (editing of input files) 
analysis 
postprocessor  (visualization of analysis results) 

are accessible. 
 
At each analysis run an ASCII file is created in which parts of the input data, information 
about the program flow and the analysis results are listed. This file serves as the major results 
listing file and is accessible directly from the MATFEM main window ( button: edit .aus). 
The common file name is assigned to this file and the file extension is fixed to *.aus, e.g: 
demo1.aus . 
In addition, MATFEM creates data files which include additional and intermediate results. 
These files also carry the common file name but with different file extensions depending on 
the contents of each file, e.g. 

demo1.mtx  (system matrices) 
demo1.mod (modal parameters) 

 
The files serve as a data basis for the interface analysis/postprocessor or provide access to 
analysis results for further user defined calculations. These files are referred as the MATFEM 
data basis (MDB). In general, these files are not used by the user. For detailed information 
about the contents, type and structure of the files refer to Appendix B. The files are written in 
MATLAB *.mat binary format. Refer to the MATLAB User’s Guide for detailed information 
about the *.mat file format. 
 
Using the command matfem or mfstart, all variables used in MATFEM are local variables, 
which are cleared after the analysis has terminated. However, the variables defined in any of 
the input files will be treated as local variables of the MATFEM analysis and therefore be part 
of the analysis. Therefore, care should be taken to properly choose variable names and define 
input parameters within the input files. Refer to chapter 4 and Appendix A for more details. 
 
 
 
 
 
 
NOTE: 
The user must take care about the unit system used for input and output data. Therefore it is 
strongly recommended to specify all input data in SI units i.e. mass [kg], dimensions [m], 
time [s], force [N]. Hence, all output quantities will also be in SI units i.e displacement [m], 
stresses [N/m2], eigenfrequency [Hz], ... etc. 
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3. Input Data Files
 
The input parameters of a MATFEM analysis can be specified in up to 20 ASCII input files. 
These files share a common file name but have different file extensions (*.m01 ... *.m20) and 
must be within the same directory. For detailed information about the contents of the input 
files, refer to Appendix C and D and also to the templates and examples given in the 
TEMPLATE and DEMO directory. 
 
Contents of input data file 
 
*.m01 general MATFEM control parameters 
*.m02 ---  user defined  --- 
*.m03 ---  user defined  --- 
*.m04 meshing parameters 
*.m05 ---  user defined  --- 
 
*.m06 material properties 
*.m07  beam     properties 
*.m08 shell      properties 
*.m09 boundary conditions 
*.m10 static condensation/ CRAIG-BAMPTON substructure coupling 
*.m11 grounded spring elements 
*.m12 ---  user defined  --- 
*.m13 static analysis, loads 
*.m14 dynamic analysis, loads, response 
*.m15 ---  user defined  --- 
*.m16 ---  user defined  --- 
*.m17 ---  user defined  --- 
*.m18 ---  user defined  --- 
*.m19 ---  user defined  --- 
*.m20 direct element parameter and matrix modification.  Only to be used by highly 

experienced MATFEM users and MATFEM program developers) 
 
 
This input file structure is different to older MATFEM releases where always sixteen input 
files had to be specified for any application. In addition, all of the MATFEM input variables 
had to be specified, regardless of the application type or whether they were needed or not. In 
MATFEM04 all variables are automatically set to initial values and the user only has to 
specify the input needed for the actual application. However, input files according the old 
input file structure can be used with MATFEM04 and should run without any modifications. 
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Due to the input file handling of MATFEM, the structures of the input files can be specified 
by the user to a large extend. The input files are read in ascending order in a two step 
procedure. 
1. Input files *.m01 - *.m05 are read. They must contain some basic control parameters 

(e.g.  wahl, iplt ) and all meshing parameters. The files are read one by one and there is 
no data processing of any kind during the read process.  Input file *.m01 must always 
exist. If one of the other input files does not exists the read process skips to the next 
file. Therefore it would be possible to specify all needed input in a single input file 
(e.g. *.m01), but this would be rather confusing. After reading these five input files the 
mesh is generated and plotted, if specified. 

2. Input files *.m06 - *.m20 are read. These files contain all other MATFEM input (e.g. 
element properties, loads,...) The files are read one by one and there is no data 
processing of any kind during the read process.  If any of the input files does not exist 
the read process skips to the next file. Again, it would be possible to specify all needed 
input in a single input file (e.g. *.m06), but this would be even more confusing. 

 
 
To gain a clear structure for the input data it is best to use the file structure presented in the 
TEMPLATE directory. The MATFEM preprocessor supports this file structure in first place. 
But it also supports the older file structure by demand. However, it is up to the user to modify 
this file structure if needed, as long as the two step input file read procedure is kept. 
 
 
 
 
 
 
Using already existing  input files as templates for a new application 
 
For a new application it is always recommended to fill out the respective template files of 
TEMPLATE directory. But it is also possible to use already existing input files of a different 
application, e.g. of the DEMO directory, as templates for a new application. This can be 
managed in two different ways: 

 

1. a.) Copy the template input files or the already existing input files to the actual working 
directory using the respective tools of the operating system, e.g. WINDOWS Explorer 

b.) Rename these files so that they all share  the common file name of the new application 

c.) Edit the input files using the MATFEM Preprocessor and specify/modify all needed 
input for the new application. 
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2. a.) Start MATFEM and select an already existing application as the actual model file (e.g. 
from the TEMPLATE or DEMO directory). 

 

b.) Start the MATFEM Preprocessor so that the main MATFEM Preprocessor window 
becomes accessible 

 
Fig. 3.1: Main window of the MATFEM preprocessor 

 

c.) Press the “Copy/Rename MATFEM Input Files” button. The “MATFEM Copy/ 
Rename Input Files” window and a status window will appear. 

 

 
 Fig. 3.2: The MATFEM Copy/Rename Input Files main and status window 
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d.) Select a source file by pressing the source button. The actual model file is selected by 
default 

 

e.) Select the destination i.e. the new model file name and the respective directory by 
pressing the destination button (the actual model file is selected by default). At this 
destination the new input files will be created. They will all share the specified 
common file name. 

 

f.) Press the copy button to start the copy/rename task. The status window will notify the 
status of the copy task. 

 
Fig. 3.3: The MATFEM Copy/Rename Status window after the successful termination 

of the copy task 

 

g.) Exit from the copy/rename task by 

1. pressing the exit button.  The original working directory and model file is 
not altered i.e. the actual working directory and model file is retained as it 
was set for the MATFEM preprocessor. 

2. pressing one of the select model file buttons (fig. 3.2). The actual working 
directory and model file will be altered to the respective destination: 

a.) upper button - source file specification 

b.) lower button - destination file specification 

 

d.) Edit the input files using the MATFEM Preprocessor and specify/modify all needed 
input for the new application. 

 
 

Note: The user must take high care to specify/modify all needed input for the new 
application properly. If he/she uses a copy of already existing input files chances are high 
that he/she will miss the setting of at least one important parameter. So the MATFEM 
listing file *.aus of the new application should always be checked first in every detail that 
all settings of the new application are correct. To keep this error source in mind will 
definitely save a large amount of time in the error localization process if the MATFEM 
analysis fails or the MATFEM results are obviously incorrect. 
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4. Fixed Name Variables used within MATFEM 
 
 
MATFEM uses a large number of variables which names are fixed and must not be modified 
by the user. To specify the input for a MATFEM analysis the parameters of some of these 
variables must be assigned. The input is assigned directly to the fixed name variables within 
the twenty input files. The input files are treated as standard MATLAB *.m script files. Hence 
it is possible to perform additional computing of any kind within the input files. But this 
additional computing is restricted: 

The user must not assign or delete MATFEM fixed name variables for subsequent 
computing in any other context than the assignment of MATFEM input. 

 
However, in any application it is advisable to use the MATLAB programming language 
intensively to create or modify the input data conveniently. This implies the call of user 
specified subroutines or MATLAB script files within the input files. If applied, the user has to 
take high care that the user defined variable names do not match any of the fixed name 
variables of MATFEM. Therefore, it is recommended to use special characters in the user 
defined variable names, e.g  h__up   or   m_j_k. The user should also check the table in 
Appendix A which summarizes the most important fixed name variables used in MATFEM. 
The list is not complete and subject to change with every future MATFEM update. 
 
Note 
It is recommended that the user should not use the MATLAB load command in the MATFEM 
input files as the user will not be notified which variables are actually read in. This is 
especially important if the user imports data from an existing MATFEM data basis in a 
MATFEM input file via the MATFEM load command. In this special case the user should use 
the special MATFEM input routines which exist for every file of the data basis, e.g mf_r_mtx, 
mf_r_pld. 
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5. Meshing 
 
Generally, it requires three basic steps to generate a FEM mesh 

1. Allocation of nodal points and elements 
2.  Allocation of a material and geometrical property data base 
    (e.g. YOUNG’s modulus, thickness, cross section, torsional moment of inertia) 
3. Assignment of material and geometrical data to elements 

 
To create a FEM mesh MATFEM first uses geometry elements which in a second step will be 
broke up into a number of structural FEM elements like beams and shells. 
 
 

 

geometry element shell elements 
break up 

 
 
Fig. 5.1: Geometry element / FEM element 
 
 
In MATFEM a FEM mesh is created according the following steps 
 
1. Allocation of nodal points and elements (specified in *.m04) 
 
a)  Allocation of basic nodal points (BNP), which will be used to define the geometry 

elements (Bereichskoordinaten) 
 
b)  Allocation of the geometry elements (e.g. fla9, linien) which then will be broken up to 

generate nodal points and structural FEM elements (beam, shell). Geometry elements are 
defined by BNP’s. There are 

• patches 
• axis-symmetry areas 

 
• grillages 
• axis-symmetry grillages 
• rib areas 
• lines. 

 
Generally, patches and axis-symmetry areas are related to 3 and/or 4 node shell elements. 
Grillages, axis-symmetry grillages, rib areas and lines are related to beam elements. 
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c)  Specification of fraction ratios to break up the overall geometry of each geometry element 
into a set of refined subdivisions which finally yield the structural FEM elements 
(beams, shells). The fraction ratios refer to the local coordinate system (η and ξ axis) of 
each geometry element. In addition, special parameter vectors are defined to specify 
general geometry element parameter and element break up rules. 

 
d)  Specification of the coincidence of geometry elements and element cards by vectors 

ec_*_koi. Therefore all elements derived from a geometry element are assigned to the 
same element card. There is an assignment vector for each type of geometry element (e.g. 
fla9 patch:  ec_f_koi,   ribs:  ec_rip_koi) 

 
 
 The overall mesh is then derived from the geometry elements and their respective 

refinement. MATFEM automatically manages node and element numbering from input a)-
c). 

 
 
 
2. Allocation of a material and geometrical property data base 
 (specified in *.m06, *.m07, *.m08) 
 MATFEM uses parameter vectors to define geometrical and material properties, e.g. 

YOUNG’s modulus E, shell element thickness dicke. They serve as a kind of data base 
which will be referenced in step 3. The user may even specify parameters which are not 
needed in the actual application. 

 
 
 
3. Assignment of material and geometrical properties to element cards 
 (specified in *.m07, *.m08) 
 MATFEM uses the matrices ec_beam and ec_shell to specify element cards for beam and 

shell elements respectively. Each column represents an element card which is assigned to 
the beam and shell elements by the geometry element coincidence vector ec_*_koi. 

 
Previous MATFEM releases used beam and shell assignment vectors for each element 
property, e.g. ihooke,  idicke.  The introduction of element cards does not change this basic 
idea. In fact, all properties assigned in an element card are assigned automatically to the 
corresponding beam and shell assignment vectors. The element cards are especially useful 
for a mesh refinement of a model which consists of several beam and shell areas with 
different properties. However, the user may either use the beam and shell assignment 
vectors or the element cards. 
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5.1. Allocation of nodal points and elements (specified in *.m04) 
 
5.1a) Allocation of basic nodal points (BNP) 
The only coordinates of nodal points a user has to specify are those of the BNP’s 
(Bereichskoordinaten). These nodal points are common to any subsequent meshing. The 
BNP’s are specified in a (n,3) matrix called berkoord  (file *.m04), where n specifies the 
overall number of BNP’s . The user may also specify berkoord  as a (n,4) cell array where the 
4-th column is the BNP label. The coordinates refer to a global Cartesian coordinate system. 
Each row specifies the X,Y,Z coordinates of a BNP. The row number of berkoord is 
automatically assigned to the BNP as the nodal number. So the first row in berkoord defines 
nodal point #1, the second nodal point #2, ... etc. The BNP label is automatically set to BNP 
1,  BNP 2, ...etc,  if not specified. The user may also specify more BNP's then actually needed 
to define the element geometry. BNP's may also be coincident, i.e. may have equal X,Y,Z 
coordinates. 
The mesh generating routines independently create the matrix of node coordinates koord from 
the geometry elements i.e. the specified BNP’s will not generally be included into koord. 
However koord will include nodal points which coordinates coincide with the BNP’s of 
berkoord, if the BNP’s are consistent with the geometry element break up rule. 
The user can force MATFEM to renumber the nodal points of koord so that the nodal points 
of berkoord are kept by setting bkeep in *.m04. 
 
Note: All nodal referred input and output, e.g forces or displacement, refer to the nodal 
points and numbering of koord. The BNP’s and berkoord are only used to generate the 
mesh. 
 
Therefore the user always has to check that all nodal assignment is specified properly. The 
listing file *.aus provides detailed information about the nodal point coincidence. It is also 
recommended to set bkeep= 1 in *.m04 to keep the BNP numbering of berkoord in koord. 
Any modifications of the original BNP sequence will then be prompted to the user and listed 
in detail in the *.aus file. 
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5.1b) Allocation of geometry elements 
 
There are eight types of geometry elements in MATFEM to conveniently support complex 
meshing: 
 
• fla9         patch to generate 3 and 4 node shell elements 
• flarot      axis-symmetry area to generate 3 and 4 node shell elements 
• tria6       patch to generate 3  node shell elements 
• triarot    axis-symmetry areas to generate 3  node shell elements 
 
• roste       grillage to generate linear 2 node spring and beam elements and  
 non-linear 2DOF truss elements 
• rostrot    axis-symmetry grillage to generate linear 2 node spring and beam elements and  
 non-linear 2DOF truss elements 
• linien      line to generate linear 2 node spring and beam elements and  
 non-linear 2DOF truss elements 
• rippen     rib to generate linear 2 node spring and beam elements and  
 non-linear 2DOF truss elements 
 
Note: It is recommended to use linien for definition of non-linear 2DOF truss elements ! 
 
The edges and respectively the generating lines of the geometry elements can generally be 
specified as straight or parabolic curved lines 
 
Note: Do not use parabolic curved lines for definition of non-linear 2DOF truss elements ! 
 
 
- fla9 patch 
 

fla9 patches are defined by a (mp ,9) matrix of BNP numbers called fla9, where mp 
specifies the overall number of fla9 patches. fla9 may also be defined as a (mp ,9) cell 
array, if BNP labels are used. Each patch is defined by 1...9 local nodal points (LNP) 
which are selected by the user as a subset of the BNP’s. 
Note: Patches are used to generate 3 and/or 4 node shell elements. 

 
Note: The partition geometry /structural element is set by xsif, etaf , refer to chapt. 5.1.c 

 
Fig. 5.2: a single fla9 patch specified by LNP 1 ... LNP9 
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A fla9 patch can represent a parabolic curved surface in 3-D space. A quadrilateral 
patch is defined by specifying LNP ( 1 2 3 4 ) only and setting LNP ( 5 6 7 8 9 ) to 
zero. For a patch with parabolic shaped edges the LNP ( 5 6 7 8 )  of the 
corresponding edge must be specified. LNP 9 may be used to distort the mesh 
perpendicular to its curved surface. If LNP ( 5 6 7 8 ) are zero the LNP’s are located in 
the middle of the edges. If LNP (9) is zero LNP (9) is located at the coordinate 
average of the 4 corner nodes. 
 
Note: A fla9 patch must always be numbered in counterclockwise direction. 
 
Specific parameters for the element generation e.g. type of elements are set for each 
element of fla9 by specifying the parameter matrix fla9par: 

 
       fla9par(:,1)    element type 
                               = 3   3- node element 
                               = 4   4- node element (default) 
       fla9par(:,2)    type of 3 node break up pattern for the fla9 patch 
                                  = 0   none 
                                  = 1   quadrant 
                                  = 2   line by line w.r. to xsi/eta coordinate system 
        fla9par(:,3:6) 4 element integer vector to specify the pattern design 
                                     for each quadrant. Each integer specifies the left (1) 
                                     or right hand (2) break up rule of the corresponding 
                                     4 node sub patch 
 
                                        4-------3  yields                     4-------3  yields 
                                        ! #       !  triangles:                 !       # !  triangles: 
                                  1    !    #    !   1 2 4                2     !    #    !   1 3 4 
                                        !       # !    and                        ! #       !    and 
                                       1-------2   2 3 4                      1-------2   1 2 3 
 
 
Example 5.1: 
 
Generate a fla9 patch of a given structure: 
 

1) a plane patch between BNP( 11 15 18 22) = LNP( 1 2 3 4), 
4 node shell elements 

 
fla9     = [ 11  15  18  22  0   0   0   0   0 ] 
fla9par = [ 4  0   0 0 0 0] 

 
2) a patch between BNP( 11 15 18 22) = LNP( 1 2 3 4) with curved edges and the 

center point 21 above the average of the 4 corner points, as in fig. 5.2 , 
4 node shell elements 
 

fla9     = [ 11  15  18  22   23   17  20   32   21 ] 
fla9par = [ 4  0   0 0 0 0] 
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3) a plane patch between BNP(( 1 2 3 4) = LNP( 1 2 3 4),  3 node shell elements, 
quadrant break up pattern,  acc. fig. 5.3 
 

fla9     = [ 1 2 3 4 0 0 0 0 0] 
fla9par = [ 3  1  1  2  1  2 ] 

 

 
Note: The partition geometry /structural element is set by xsif, etaf, refer to chapt. 5.1.c 

 
   Fig 5.3: A plane patch to generate 3 node shell elements, quadrant break up pattern. 
 
 

4) a plane patch between BNP(( 1 2 3 4) = LNP( 1 2 3 4),  3 node shell elements, 
line by line break up pattern,  acc. fig. 5.4 
 

fla9     = [ 1 2 3 4  0 0 0 0 ] 
fla9par = [ 3  2  1  2  1  2 ] 

 

 

I 

II 

III 

IV

line by line

Note: The partition geometry /structural element is set by xsif, etaf , refer to chapt. 5.1.c 
 

Fig 5.4: A plane patch to generate 3 node shell elements, line by line break up 
pattern 
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- flarot axis-symmetry area 
 

flarot axis-symmetry areas are defined by a (ma ,3) matrix of BNP numbers called 
flarot, where ma specifies the overall number of axis-symmetry areas. . flarot may also 
be defined as a (ma ,3) cell array, if BNP labels are used. Each area is defined by 1...3 
local nodal points (LNP) which are selected by the user as a subset of the BNP’s. 
These nodal points specify the contour of the area. 
 
Note: flarot axis-symmetry areas are used to generate 3 or/and 4 node shell elements. 
 
 

 

P2 

P1  
                 Note: The partition geometry /structural element is set by xsimantel, etaumfang , refer to chapt. 5.1.c 

 
Fig. 5.5: a single flarot axis-symmetry area specified by LNP1 .. LNP3 
 
An flarot axis-symmetry area can represent a curved surface in 3-D space. A straight 
contour is defined by specifying LNP ( 1 2 ) only and setting LNP ( 3 ) to zero.  A 
parabolic shaped contour can be defined using LNP ( 1 2 3 ). 
Specific parameters for the element generation e.g. rotation axis, type of element are 
set for each element of flarot by specifying the parameter matrix flarotpar: 
 

flarotpar(:,1)  X coordinate of P1 to define rotation axis 
flarotpar(:,2)  Y     "            of P1  "   "       "      " 

       flarotpar(:,3)  Z     "             of P1  "   "       "      " 
       flarotpar(:,4)  X coordinate of P2 to define rotation axis 
       flarotpar(:,5)  Y     "             of P2  "   "       "      " 
       flarotpar(:,6)  Z     "              of P2  "   "       "      " 
 
       flarotpar(:,7)  assignment direction of element node coincidence 
                              = 0   negative to  flarot( :,1) ->  flarot( :,2) direction 
                              = 1   in           flarot( :,1) ->  flarot( :,2) direction 
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       flarotpar(:,8:10)  -- reserved for future use -- 
       flarotpar(:,11)    element type 
                               = 3   3- node element 
                               = 4   4- node element (default) 
       flarotpar(:,12)    type of 3 node break up pattern for the flarot patch 
                                  = 0   none 
                                  = 1   quadrant 
                                  = 2   line by line w.r. to xsi/eta coordinate system 
                                  Note: For the definition of the pattern the flarot patch is treated 
                                             as unrolled and thereby equivalent to a fla9 patch, ref. 
                                             figs. 5.3, 5.4 
        flarotpar(:,13:16) 4 element integer vector to specify the pattern design 
                                     for each quadrant. Each integer specifies  the left (1) 
                                     or right hand (2) break up rule of the corresponding 
                                     4 node sub patch 
 
                                        4-------3  yields                     4-------3  yields 
                                        ! #       !  triangles:                 !       # !  triangles: 
                                  1    !    #    !   1 2 4                2     !    #    !   1 3 4 
                                        !       # !    and                        ! #       !    and 
                                       1-------2   2 3 4                      1-------2   1 2 3 
 
P1 is the origin of the rotation axis. 
 
 
Example 5.2: 
 
Generate a flarot axis-symmetry area of a given structure: 
 

1) a flarot axis-symmetry area with a plane contour between 
BNP( 11 15 ) = LNP( 1 2 ),  rotation axis: global Z axis, 4 node elements 

 
flarot   =  [  11   15    0 ] 

   flarotpar = [ 0 0 0  0 0 1   1   0 0 0   4   0   0 0 0 0] 
 

2)   a flarot axis-symmetry area with a parabolic contour between 
 BNP( 11 15  18) = LNP( 1 2 3) , as in fig. 5.5 
rotation axis: global Z axis, 4 node elements 
 

flarot   =  [  11   15    18 ] 
     flarotpar = [ 0 0 0  0 0 1   1   0 0 0   4   0   0 0 0 0] 
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3)   a flarot axis-symmetry area with a parabolic contour between 
BNP( 11 15  18) = LNP( 1 2 3) ,  rotation axis: global Z axis, 3 node shell    
elements, quadrant break up pattern,  acc. fig. 5.6 
 

flarot   =  [  11   15    18 ] 
     flarotpar = [ 0 0 0  0 0 1   1   0 0 0   3   1   1 2 1 2] 
 

 

P2 

P1  
 
                 Note: The partition geometry /structural element is set by xsimantel, etaumfang , refer to chapt. 5.1.c 
 
   Fig 5.6: A flarot patch to generate 3 node shell elements, quadrant break up pattern 
 
 

4) a flarot axis-symmetry area with a parabolic contour between 
BNP( 11 15  18) = LNP( 1 2 3) ,  rotation axis: global Z axis, 3 node shell    
elements, line by line break up pattern,  acc. fig. 5.7 
 

flarot   =  [  11   15    18 ] 
     flarotpar = [ 0 0 0  0 0 1   1   0 0 0   3   2   1 2 1 2] 
 

 

 

P2 

P1  
 
                Note: The partition geometry /structural element is set by xsimantel, etaumfang, refer to chapt. 5.1.c 
 

 Fig 5.7: A flarot patch to generate 3 node shell elements, line by line break up 
pattern 
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- tria6 patch 
 

tria6 patches are defined by a (mp ,6) matrix of BNP numbers called tria6, where mp 
specifies the overall number of tria6 patches. tria6 may also be defined as a (mp ,6) cell 
array, if BNP labels are used. Each patch is defined by 1...6 local nodal points (LNP) 
which are selected by the user as a subset of the BNP’s. 
 
Note: tria6 patches are used to generate 3 node shell elements. They are especially 
designed to allow local mesh refinements i.e. to link coarse mesh areas to fine mesh 
areas. 
 

 
                      Note: The partition geometry /structural element is set by xsit, refer to chapt. 5.1.c 

 
Fig. 5.8: a single tria6 patch specified by LNP 1 ... LNP6 
 
A tria6 patch can represent a parabolic curved surface in 3-D space. A plane patch is 
defined by specifying LNP ( 1 2 3 ) only and setting LNP (  4 5 6  ) to zero. For a 
patch with parabolic shaped edges the LNP ( 4 5 6 ) of the corresponding edge must 
be specified. If LNP (  4 5 6  ) are zero the LNP’s are located in the middle of the 
edges. 
 
Note: A tria6 patch must be numbered in counterclockwise direction. 

 
Example 5.3: 
 
Generate a tria6 patch of a given structure: 
 

1)  a plane patch between BNP( 11 15 18 ) = LNP( 1 2 3 ) 
 

tria6= [ 11  15  18   0   0   0   ] 
 

2)  a patch between BNP( 11 15 18 ) = LNP( 1 2 3 ) with curved edges, as in fig. 5.8 
. 

tria6= [ 11  15  18  22   23   17 ] 
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- triarot axis-symmetry area 
 

triarot axis-symmetry areas are defined by a (ma ,3) matrix of BNP numbers called 
triarot, where ma specifies the overall number of axis-symmetry areas. triarot may 
also be defined as a (ma ,3) cell array, if BNP labels are used. Each area is defined by 
1...3 local nodal points (LNP) which are selected by the user as a subset of the BNP’s. 
These nodal points specify the contour of the area. 
Note: triarot axis-symmetry areas are used to generate 3 node shell elements. They 
are especially designed to allow local mesh refinements i.e. to link coarse mesh areas 
to fine mesh areas. 
 

P2 

 
P1

Note: The partition geometry /structural element is set by eta_triarot_umfang, refer to chapt. 5.1.c 
 
Fig. 5.9: a single triarot axis-symmetry area specified by LNP1 .. LNP3 
 
A triarot axis-symmetry area can represent a curved surface in 3-D space. A straight 
contour   is defined by specifying LNP ( 1 2 ) only and setting LNP ( 3 ) to zero.  A 
parabolic shaped contour can be defined using LNP ( 1 2 3 ). 
Specific parameters for the element generation, e.g. rotation axis, are set for each 
element of triarot by specifying the parameter matrix triarotpar: 
 

triarotpar(:,1)  X coordinate of P1 to define rotation axis 
triarotpar(:,2)  Y     "            of P1  "   "       "      " 

       triarotpar(:,3)  Z     "             of P1  "   "       "      " 
       triarotpar(:,4)  X coordinate of P2 to define rotation axis 
       triarotpar(:,5)  Y     "             of P2  "   "       "      " 
       triarotpar(:,6)  Z     "              of P2  "   "       "      " 
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       triarotpar(:,7)  assignment direction of element node coincidence 
                              = 0   negative to  triarot( :,1) ->  triarot( :,2) direction 
                              = 1   in                 triarot( :,1) -> triarot( :,2) direction 
 
 
 
 
 
 
Example 5.4: 
 
Generate a triarot axis-symmetry area of a given structure: 
 

1) a triarot axis-symmetry area with a straight contour between 
 BNP( 11 15 ) = LNP( 1 2 ), as in fig. 5.19, rotation axis: global Z axis 

 
triarot     = [  11   15    0 ] 
triarotpar = [  0  0  0  0  0  1    1] 

 
2)   a triarot axis-symmetry area with a parabolic contour between 

 BNP( 11 15  18) = LNP( 1 2 3) , as in fig. 5.9, rotation axis: global Z axis 
 

triarot = [  11   15    18 ] 
triarotpar = [  0  0  0    0  0  1    1] 
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- grillage 
 

Grillages are defined by a (mg,4) matrix of BNP numbers called roste, where mg 
specifies the overall number of grillages. roste may also be defined as a (mg,4) cell 
array, if BNP labels are used. Each grillage is defined by 1...4 local nodal points 
(LNP) which are selected by the user as a subset of the BNP’s. 
Note: roste grillages are used to generate beam elements. 
 

 
                       Note: The partition geometry /structural element is set by xsir and etar, refer to chapt. 5.1.c 
 

Fig. 5.10: A single roste grillage specified by LNP1 ... LNP4 
 
 
A grillage can represent a skew surface in 3-D space. Grillages are generally not 
curved. The edges along LNP (2 3) and LNP ( 3 4) will not be included in the beam 
allocation process to allow for appending grillages without duplicating beam elements 
at these edges. However, if at these edges beam elements are required the user must 
use the line geometry element. 
 
 
 
Example 5.5: 
 
Generate a roste grillage of a given structure 
 
1)  between BNP( 8 12 13 15),  acc. fig 5.10 
 

roste =  [ 8 12 13 15 ] 
 

Note: It is recommended to define non-linear 2DOF truss elements using lines ! 
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- rostrot axis-symmetry grillage 
 

rostrot axis-symmetry grillages are defined by a (ma ,3) matrix of BNP numbers called 
rostrot, where ma specifies the overall number of axis-symmetry areas. rostrot may 
also be defined as a (ma ,3) cell array, if BNP labels are used. Each area is defined by 
1...3 local nodal points (LNP) which are selected by the user as a subset of the BNP’s. 
These nodal points specify the contour of the area. 
 
Note: rostrot axis-symmetry grillages are used to generate beam elements. 
 

 

P2 

P1  
Note: The partition geometry /structural element is set by xsimantelrost and etaumfangrost, refer to 

chapt. 5.1.c 
 
Fig. 5.11: a single rostrot axis-symmetry area specified by LNP1 .. LNP3 
 
An axis-symmetry grillage can be defined on a curved surface in 3-D space. A plane 
contour   is defined by specifying LNP ( 1 2 ) only and setting LNP ( 3 ) to zero.  A 
parabolic shaped contour can be defined using LNP ( 1 2 3 ). 
 
Specific parameters for the element generation, e.g. rotation axis, are set for each 
element of rostrot by specifying the parameter matrix rostrotpar: 
 

rostrotpar(:,1)  X coordinate of P1 to define rotation axis 
rostrotpar(:,2)  Y     "            of P1  "   "       "      " 

       rostrotpar(:,3)  Z     "             of P1  "   "       "      " 
       rostrotpar(:,4)  X coordinate of P2 to define rotation axis 
       rostrotpar(:,5)  Y     "             of P2  "   "       "      " 
       rostrotpar(:,6)  Z     "              of P2  "   "       "      " 
 

rostrotpar(:,7)  switch to generate ribs 
rostrotpar(:,8)  switch to generate stringers 
 
rostrotpar(:9-10) = 0   (reserved) 
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Example 5.6: 
 

Generate a rostrot axis-symmetry grillage of a given structure: 
 

1) an axis-symmetry grillage with a plane contour between 
BNP( 11 15 ) = LNP( 1 2 ),  rotation axis: global Z axis, ribs and stringers 

 
rostrot     =  [  11   15    0 ] 
rostrotpar =  [  0  0  0  0  0  1    1 1  0 0  ] 

 
2)   an axis-symmetry grillage with a parabolic contour between 

 BNP( 11 15  18) = LNP( 1 2 3) , as in fig. 5.11, 
 rotation axis: global Z axis, ribs and stringers 

 
rostrot   =  [  11   15    18 ] 
rostrotpar  =  [  0  0  0  0  0  1    1 1  0 0  ] 
 

Note: Do not define non-linear 2DOF truss elements using parabolic contour! 
 

3)   an axis-symmetry grillage with a parabolic contour between 
 BNP( 11 15  18) = LNP( 1 2 3) , as in fig. 5.12, 
 rotation axis: global Z axis, ribs only 
 

rostrot     =  [  11   15    0 ] 
rostrotpar =  [  0  0  0  0  0  1    1 0  0 0  ] 
 

Note: Do not define non-linear 2DOF truss elements using parabolic contour! 
 

 

P2 

P1  
Note: The partition geometry /structural element is set by xsimantelrost and etaumfangrost, 

refer to chapt. 5.1.c 
 
Fig. 5.12: Axis-symmetry grillage, ribs only 
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4)   an axis-symmetry area with a parabolic contour between 
 BNP( 11 15  18) = LNP( 1 2 3) , as in fig. 5.13, 
 rotation axis: global Z axis, stringers only 
 

rostrot     =  [  11   15    0 ] 
rostrotpar =  [  0  0  0  0  0  1    0 1  0 0  ] 

 
Note: Do not define non-linear 2DOF truss elements using parabolic contour! 
 

 

 

P2 

P1 
 

Note: The partition geometry /structural element is set by xsimantelrost and etaumfangrost, 
refer to chapt. 5.1.c 

 
Fig. 5.13: Axis-symmetry grillage, stringers only 
 
 
 

Note: It is recommended to define non-linear 2DOF truss elements using lines ! 
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- line 
 

Lines are defined by a (ml ,3)  matrix of BNP numbers called linien, where ml specifies 
the overall number of lines. linien may also be defined as a (ml,3) cell array, if BNP 
labels are used. Each line is defined by 1...3 local nodal points (LNP) which are 
selected by the user as a subset of the BNP’s. 
Note: linien lines are used to generate beam elements. 
 
 
 

 
Note: The partition geometry /structural element is set by xsil, refer to chapt. 5.1.c 

 
Fig. 5.14: A single linien line specified by LNP1 ... LNP3 

 
A line can represent a parabolic curved connection line in 3-D space. If the LNP 3 is 
set to zero the connection line between LNP 1 and 2 is a straight line. 
 
 
 
Example 5.7: 
 
Generate a linien line of a given the structure 

 
1) a straight line between BNP  ( 8  12  ) 

linien = [ 8   12     0   ] 
 

1) a parbolic connection line between BNP ( 8  12  ), acc. fig 5.14. 
linien = [ 8   12    13   ] 
 
 

Note: Do not define non-linear 2DOF truss elements using parabolic connections! 
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- rib area 
 
Rib areas are defined by a (mr,6)  matrix of BNP numbers called rippen, where mr 
specifies the overall number of rib areas. rippen may also be defined as a (mr ,3) cell 
array, if BNP labels are used. Each rib area is defined by 1...6 local nodal points 
(LNP) which are selected by the user as a subset of the BNP’s. 
Note: rippen rib areas are used to generate beam elements. 
 

 
Note: The partition geometry /structural element is set by xsirip and etarip, refer to chapt. 5.1.c 

 
Fig. 5.15: A single rippen rib area specified by LNP1 ... LNP6 
 
A rib area is defined by two straight or curved lines representing the first rib between 
LNP(1...3) and the last rib between LNP( 4...6). If LNP( 3, 6)  are set to zero the 
connection lines between LNP( 1 , 2)  and  LNP( 4 , 5) are straight lines. 
 

 
Example 5.8: 
 
Generate a rippen rib area of a given structure: 
 

1) a plane rib area between BNP (11  15  22  23) 
 

rippen= [ 11   15     0    22    23    0   ] 
 

2) a  rib area between BNP (11  15  22  23) with parabolic curved edges, 
acc. fig. 5.15 

 
rippen= [ 11   15     18    22    23    17   ] 
 

Note: Do not define non-linear 2DOF truss elements using parabolic curved edges! 
Note: It is recommended to define non-linear 2DOF truss elements using lines! 
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5.1c)  Specification of fraction ratios for geometry elements 
 
A local ξ,η coordinate system is assigned to each geometry element to conveniently support 
mesh refinement. The overall dimensions along each edge of the geometry elements are 
scaled to unity and can be partitioned in arbitrarily fractions, e.g. 

ξ = [ 0  .25  .5  .75  1  NaN], 
η = [ 0   .33  1  NaN] . 

 
NaN (Not a Number) is generally used as the terminator of the fraction ratio specification. 
 
To each type of geometry element up to two corresponding partition vectors are assigned: 

fla9  -> xsif, etaf 
flarot  -> xsimantel, etaumfang 
tria6  -> xsit 
triarot  -> eta_triarot_quot, eta_triarot_umfang 
grillages   -> xsir, etar 
rostrot  -> xsimantelrost, etaumfangrost 
rostrot  -> xsimantelrost, etaumfangrost 
linien   -> xsil 
rib  -> xsirip, etarip 
 
 

Each element of a geometry element must have its own fraction ratio specification, e.g. for 
two fla9 patches 
 
   fla9= [ 12  11  23  24  0  0  0  0  0 
                 9  16  23  17  0  0  0  0  0] 
 
each fraction ratio vector must comprise two ranges 

 
xsif = [ 0  .25  .5  .75  1  NaN    0  1  NaN] 
etaf = [ 0  .25              1  NaN    0  1  NaN] 

 
Each range is terminated by NaN. 
If no refinement is required ξ,η are set to ξ = [ 0  1 NaN],  η = [ 0  1 NaN] 
 
 
Note: 
The fraction ratios ξ , η for each type of geometry element are generally specified in a single 
row vector where the fraction ratios for each element are terminated by NaN. This is different 
to the specification of the geometry elements where matrices are used (e.g. rippen, linien). 
Each row of those matrices specifies an element of the geometry elements. 
 
The partitions of the ξ,η axis are independent in general. Each cross point of fraction line / 
fraction line or fraction line / edge defines the location of a nodal point which will be further 
used for element allocation. 
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Generally, the user will use fraction ratios which vary within the range of 0 and 1. But the 
specification of fraction ratios is not restricted to this range. The user may even specify e.g. 
xsif= [ –1  ... 2 ] or  even xsif= [ 2  ... 4].  In these cases the left and right borders are beyond 
the definition range of the geometry element which is given by the spatial distribution of the 
respective BNP’s. This definition is possible because the BNP’s are used to define the 
geometry element only and are not used to define the structural FEM elements like beams and 
shells. 
The partitioning of the geometry element determines the extend of mesh refinement. The 
overall mesh is derived from the geometry elements and their respective refinement. 
MATFEM automatically manages node and element numbering. The user then only has to 
assign geometry and material properties to each element (specified in *.m07, *.m08). 
 
Note:  It is recommended to specify a fraction ratio of [0:1 NaN] for non-linear 2DOF truss 

elements ! 
 
Note: 
 
MATFEM allocates shell elements from geometry elements in the following order 
 
 fla9   (patch)       3 and/or 4 node shell elements 
 flarot     (axis-symmetry area)      3 and/or 4 node shell elements 
 tria6   (patch)       3 node shell elements 
 triarot    (axis-symmetry area)     3 node shell elements 
 
Therefore shell elements specified using flarot always have a higher element number than 
those specified by fla9. 
 
 
MATFEM allocates beam elements from geometry elements in the following order 
 
 roste    (grillage) 
 rostrot  (axis-symmetry grillage ) 
 linien   (line) 
 rippen  (rib area) 
 
Therefore beam elements specified using linien always have a lower element number than 
those specified by rippen. But they have a higher element number than those generated by 
rostrot. 
 
 
MATFEM allocates shell elements first followed by the allocation of beam elements. 
Therefore shell elements always have a lower element number than beam elements. 
 
 
For detailed examples about meshing please refer to Appendix D and to the MATFEM 
demonstration examples given in the DEMO directory. 
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- fla9 patch 
 

 
 
Fig. 5.16: fraction ratios ξ and η of a fla9 patch 
 
The local  ξ axis of  each patch (row) of  fla9 is specified by LNP 1 and LNP 2  i.e. 
fla9(:,1)  and  fla9(:,2) . The local η axis of  each patch area of fla9 is specified by 
LNP 1 and LNP 4  i.e. fla9 (:,1)  and  fla9(:,4) . 
The fraction ratios of the ξ and η axis are specified in the row vectors xsif and etaf.  
For each patch of matrix fla9 two fraction ratios e.g. 0 and 1 have to be specified at 
least. If no partitioning is required, xsif and etaf only consist of mp * 3 elements 
[ 0 1  NaN  0 1 NaN  ....]. In this case each patch represents a single shell element. 
Generally, the partitioning of xsif can be different to etaf 
 
Note: fla9 patches are used to generate 3 and/or 4 node shell elements 
 
 
Example 5.9: 
 
Generate shell elements from a given fla9 patch acc. fig 5.16: 
 

ξ  divided into 4 elements    η  divided into 2 elements 
 

xsif = [ 0 .25 .50  .75    1    NaN ] 
 
etaf = [ 0       .50              1    NaN ] 
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-flarot axis-symmetry area 
 

 
Fig. 5.17: fraction ratios ξ and η of a flarot axis-symmetry area 

 
The local  ξ axis of each axis-symmetry area (row) of flarot is specified by LNP 1, 
LNP 2 and LNP 3 i.e. flarot(:,1 : 3). The local η axis of each axis symmetry area of 
flarot is specified counterclockwise in circumferential direction. 
The fraction ratios of the ξ and η axis are specified in the row vectors xsimantel 
(Teilung in Mantelrichtung) and etaumfang (Teilung in Umfangsrichtung).  For each 
axis-symmetry area of matrix flarot two fraction ratios e.g. 0 and 1 have to be 
specified at least. If  no partitioning is required,  xsimantel  and etaumfang  only 
consist of  mp * 3  elements [ 0 1  NaN  0 1 NaN  ....]. In this case each axis-symmetry 
area represents a single shell element, which for axis-symmetry purposes does not 
make much sense. Therefore etaumfang should comprise at least 4 elements to 
represent a circumferential contour, e.g. etaumfang = [ 0  .25  .5   .75  1]. However, 
from the point of structural mechanics, eta_triarot_umfang should at least comprise 8 
elements to represent a shell structure. 
Generally, the partitioning of xsimantel can be different to etaumfang. 
 
Note: flarot axis-symmetry areas are used to generate 3 and/or 4 node shell elements 

 
Example 5.10: 
 
Generate shell elements from a given flarot axis-symmetry area acc. fig 5.17: 
 
ξ  divided into   4 elements (Mantelrichtung)  
η divided into 12 elements (Umfangsrichtung) 
 

xsimantel =  [ 0 .25 .50  .75    1  NaN ] 
 
etaumfang = [ 0 : 1/ 16  :  .75       NaN ] 
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- tria6 patch 
 

 

 
Fig. 5.18: fraction ratios ξ of a tria6 patch 
 
The local ξ axis of each patch (row) of  tria6 is specified by LNP 1 and LNP 2  i.e. 
tria6(:,1)  and  tria6(:,2). 
The fraction ratios of the ξ axis are specified in the row vectors xsit. The fraction 
ratios of the η axis are automatically set equal to the ξ axis. For each patch of matrix 
tria6 two fraction ratios e.g. 0 and 1 have to be specified at least. If no partitioning is 
required, xsit only consist of   mp * 3 elements [ 0 1  NaN  0 1 NaN  ....]. In this case 
each patch represents a single shell element. 
 
Note: tria6 patches are used to generate 3 node shell elements 
 
Example 5.11: 
 
Generate shell elements from a given tria6 patch acc. fig 5.18: 
 

ξ  divided into 10 elements  
 

xsit = [ 0 :   0.1  : 1    NaN ] 
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-triarot axis-symmetry area 
 
 

 
Fig. 5.19: fraction ratios η of a triarot axis-symmetry area 
 
 
The local η axis of each axis symmetry area of triarot is specified counterclockwise in 
circumferential direction. 
The fraction ratios of the η axis are specified in the row vector eta_triarot_umfang 
(Teilung in Umfangsrichtung). The fraction ratios of the xsi axis are even spaced and 
derived automatically from the partition ratio of eta w.r. to the upper and lower edge 
of the triarot element. The partition ratios must be of power 2 and are specified by the 
vector eta_triarot_quot. 
Example acc. fig. 5.19: eta_triarot_quot = 8 :  one fraction at the lower edge  yields 
eight fractions at the upper edge. 
 
For each axis-symmetry area of matrix triarot two fraction ratios e.g. 0 and 1 have to 
be specified at least. If no partitioning is required, eta_triarot_umfang only consist of 
mp * 3 elements [ 0 1  NaN  0 1 NaN  ....]. In this case each axis-symmetry area 
represents a single shell element, which for axis-symmetry purposes does not make 
much sense. Therefore eta_triarot_umfang should comprise at least 4 elements to 
represent a closed circumferential contour, e.g. 

eta_triarot_umfang = [ 0  .25  .5   .75  1   NaN]. 
However, from the point of structural mechanics, eta_triarot_umfang should at least 
comprise 8 elements to represent a shell structure. 
 
Note: triarot patches are used to generate 3 node shell elements 
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Example 5.12: 
 
Generate shell elements from a given triarot axis-symmetry area acc. fig 5.19: 
 
η divided into 7 elements (Umfangsrichtung) at the lower edge and into 

80 elements at the upper edge. There are (7+1) nodes at the lower edge and 
(8*7 + 1) nodes at the upper edge 

 
 

eta_triarot_umfang = [ 0 : .1:  .7  NaN]; 
 

eta_triarot_quot   =  [ 8 ]; 
 
   The respective fraction ratios of the ξ-axis for this example are automatically set to 

ξ = [ 0: 1/3: 1] 
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- grillage 
 

 

 
Fig. 5.20: fraction ratios ξ and η of a roste grillage 
 
The local  ξ axis of  each grillage (row) of  roste is specified by LNP 1 and LNP 2  i.e. 
roste(:,1)  and  roste(:,2) . The local η axis of each grillage of roste is specified by 
LNP 1 and LNP 4  i.e. roste (:,1)  and  roste(:,4) . 
The fraction ratios of the ξ and η axis are specified in the row vectors xsir and etar.  
For each grillage of matrix roste the fraction ratios 0 and 1 have to be specified at 
least. If no partitioning is required, xsir and etar only consist of  mg * 3  elements 
 [ 0  1  NaN      0  1  NaN ....]. 
Generally, the partitioning of xsir can be different to etar 
 
Note: roste grillages are used to generate beam elements 
 
 
 
Example 5.13: 
 
Generate beam elements from a given roste grillage acc. fig 5.20: 
 

ξ  divided into 3 elements    η  divided into 2 elements 
 

xsir  = [ 0  1/3   2/3     1     NaN ] 
 
etar  = [ 0      .50            1     NaN ] 
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-rostrot axis-symmetry grillage 
 

 
Fig. 5.21: fraction ratios ξ and η of a rostrot axis-symmetry area 

 
The local ξ axis of each axis-symmetry grillage (row) of rostrot is specified by LNP 1, 
LNP 2 and LNP 3 i.e. rostrot(:,1 : 3). The local η axis of each axis symmetry area of 
rostrot is specified counterclockwise in circumferential direction. 
The fraction ratios of the ξ and η axis are specified in the row vectors xsimantelrost 
(Teilung in Mantelrichtung) and etaumfangrost (Teilung in Umfangsrichtung). 
For each axis-symmetry grillage of matrix rostrot two fraction ratios e.g. 0 and 1 have 
to be specified at least. If no partitioning is required,  xsimantelrost  and etaumfangrost  
only consist of  mp * 3  elements [ 0 1  NaN  0 1 NaN  ....]. In this case each axis-
symmetry grillage represents a single beam element, which for axis-symmetry 
purposes does not make much sense. Therefore etaumfangrost should comprise at least 
4 elements to represent a closed circumferential contour, e.g. etaumfangrost = [ 0  .25  
.5   .75  1  NaN ]. 
Generally, the partitioning of xsimantelrost can be different to etaumfangrost. 
 
Note: rostrot axis-symmetry grillages are used to generate beam elements 
 
 
 
Example 5.14: 
 
Generate beam elements from a given rostrot axis-symmetry grillage acc. fig 5.21: 
 
ξ  divided into 4 elements (Mantelrichtung)  
η divided into 12 elements (Umfangsrichtung) 
 

xsimantelrost  = [ 0    .25    .5    .75   1  NaN] 
 
etaumfangrost = [ 0   :   1/ 16   :   .75     NaN] 
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- line 
 

 
Fig. 5.22: fraction ratio ξ of  a linien line 
 
 
The local  ξ axis of  each line (row) of  linien is specified by LNP 1 and LNP 2  i.e. 
linien(:,1)  and  linien(:,2) . The fraction ratio of the ξ axis of each line is specified in 
the row vector xsil. For each line of matrix linien the fraction ratios 0 and 1 have to be 
specified at least. If  no partitioning is required,  xsil only consists of  ml * 3  elements  
[ 0 1  NaN    0 1 NaN ....]. 
 
Note: linien lines are used to generate beam elements 
 
 
Example 5.15: 
 
Generate beam elements from a given linien line acc. fig 5.22: 
 

ξ  divided into 3 elements  
 

xsil = [ 0  .25    .5    1   NaN] 
 
 
 

Note: For non-linear 2DOF truss elements it is recommended to define xsil= [ 0  1   NaN]! 
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- rib area 
 

 
 
Fig. 5.23: fraction ratios ξ and η of a rippen rib area 
 
 
The local  ξ axis of  each rib area (row) of  rippen is specified by LNP 1 and LNP 2  
i.e. rippen(:,1)  and  rippen(:,2) . The local η axis of  each rib area of  rippen is 
specified by LNP 1 and LNP 4  i.e. rippen(:,1)  and  rippen(:,4) . 
The fraction ratios of the ξ and η axis are specified in the row vectors xsirip and 
etarip. For each rib area of matrix rippen the fraction ratios 0 and 1 have to be 
specified at least. If no partitioning is required,  xsirip  and etarip only consist of 
mr  * 3  elements   [ 0 1  NaN   0 1  NaN   ....]. 
Generally, the partitioning of xsirip can be different to etarip 
 

 
Note: rippen rib areas are used to generate beam elements 

 
 

 
Example 5.16: 
 
Generate beam elements from a given rippen rib area acc. fig 5.23: 
 

ξ divided into 4 elements   
η divided into 2 elements 

 
 

xsirip = [ 0 .25 .50 .75 1     NaN ] 
 
etarip = [ 0   .50   1      NaN] 
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To illustrate the mesh generating process consider the structure of the demonstration example 
demo1: 
 

 
 
Fig. 5.24a: Illustration of mesh generating process, demo01 
 
 
The mesh of this structure is generated as follows: 
 
step 1:  Nodes 1, 2, 3, 4, 5, 6, 7, 8  are specified as BNP’s . 
 

a = .5; % Parameter for overall structure width and length dimensions 
   h = .1; % Parameter for overall structure height dimension 
 
               % ------------- X --- Y ------- Z -------------------global coordinates 
   berkoord = [   0      0       h      %  BNP 1 
        a      0       h      %  BNP 2 
        0      a       h      %  BNP 3 
        a      a       h      %  BNP 4 
        0    .5*a     h      %  BNP 5 
        a    .5*a     h      %  BNP 6 
        0    .5*a     0      %  BNP 7 
        a    .5*a     0      %  BNP 8   ] 
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step 2:  A fla9 patch is defined using BNP( 1, 2, 3, 4) . 
 
    fla9   = [ 1 2 4 3  0 0 0 0  0 ] 
    fla9par  = [ 4  0   0 0 0 0] 
 

The partition vectors xsif and etaf of this patch are set to 
 
    xsif= [ 0 .25 .5 .75 1   NaN ] 
    etaf= [ 0 .25 .5 .75 1   NaN ] 
 

This yields a 4 by 4 mesh of 4 node shell elements. The total number of shell 
elements is nshel = 16 . 

 
 
 
step3: Two straight lines are defined using BNP( 5, 7) and BNP( 6, 8) 
 

linien = [ 7 5 0 ; 
                8 6 0 ] 
 

   The partition vector xsil of the two lines is set to 
 

   xsil= [ 0  .5  1   NaN      0  .5   1  NaN] 
 
   This yields 2 beam elements for each line.  The total number of beam elements is 
   nbalk= 4 . 
 

 
 
Fig. 5.24b: Nodes of the generated mesh 

The overall structure is made of np = 29 nodal points: 
 Nodes 1 ... 8 correspond to BNP 1 ...8.  
The BNP label is automatically set to 'BNP 1'  ... 'BNP 8' . 
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Fig. 5.24c: Elements of the generated mesh: 

The overall structure is made of  20 elements: 
16 shell elements( 1 ...16),  4 beam elements(17 ...20) 

 
 
 
 
Due to the mesh generating process used in MATFEM it is recommended to follow a three 
step procedure 
 
1. The user should first generate the BNP’s, the geometry elements and their respective 

fraction ratios. The program flow parameter iplt specified in *.m03 should be set to 
iplt = 4 (generate FEM mesh , plot) 

 
2. The user should then start the analysis process which will terminate after the mesh is 

generated. No further calculations will be performed. The generated mesh can then be 
checked using the MATFEM postprocessor. Thereby the user can find out about node and 
element numbering, which is automatically performed by MATFEM. 

 
3. The user can then supply all further needed input and start the analysis specifying the 

program flow parameter iplt 
iplt = 2 (generate FEM mesh , plot, analysis) 

 
During all steps the user should use the listing file *.aus to check all input settings the 
program flow and the analysis results. 
 
The complete set of MATFEM input files for demo01.m01, demo01.m04, ... is listed in the 
appendix D and is given in the \demo directory. 
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6. Element Types
 
MATFEM supports the following element types: 

beam element 
- general 2 node; 12 DOF,  beam element (Timoshenko, Bernoulli) 
- 2 node, 12 DOF spring element with user defined stiffness and mass properties 
- 2 node, 12 DOF spring element (realized by decoupled beam element stiffness) 
- non-linear 2DOF truss element (for non-linear dynamic response calculation only) 
 
shell element 
- 3 node, 18 DOF shell element 
- 4 node, 24 DOF shell element 

 
 
 
General: 
 
All analysis results viewed in the postprocessor, listed in the *.aus file or stored in the MDB 
is given node by node or element by element respectively w.r. to the global or local 
coordinate system: 
Displacements, mode shapes and nodal forces are given w.r. to the global coordinate system. 
Stresses are given w.r. to the local element coordinate system. The local element coordinate 
system of each element can be viewed within the MATFEM postprocessor. 
 
 
The required input for beam and shell element properties is managed as follows: 
 
The geometrical and material properties (e.g. YOUNG’s modulus, mass density) of either 
beam or shell elements are specified in parameter vectors in the input files *.m06, *.m07 and 
*.m08. They serve as a kind of general data basis. There must be at least one parameter 
specified in each parameter vector. But parameter vectors may also include additional 
parameters which are not referenced in the actual application. 
 
 
Example 6.1: 
 
 
    % --- YOUNG’S Modulus  Ek(1,:) --------------------- 
 
                %    steel    aluminum 
           Ek = [  2.10e+11    .7e+11   ]; 

 
 
Fig. 6.1: Parameter vector Ek to specify the YOUNG’S Modulus for beam elements in input 

file *.m06 
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The user then has to assign the parameters of the parameter vectors to each shell or beam 
element. For this MATFEM uses the matrices ec_beam (file *.m07) and ec_shell (file *.m08) 
to specify element cards for beam and shell elements respectively. 
 
Example 6.2: 
 
% --- matrix of beam element cards  EC_beam( 21,:) ----------------------------- 
% 
%     EC_beam( 1, :) =  element type 
% 
%                       = 100    linear    2 node, 12 DOF general spring element, 
nodes may coincide 
%    
%                       = 101    linear    2 node, 12 DOF beam  element (BERNOULLI  
beam theory) 
%                       = 102    linear    2 node, 12 DOF beam  element (TIMOSHENKO 
beam theory) 
% 
%                       = 105    linear    2 node, 12 DOF spring element, nodes 
must not coincide 
% 
%                       = 111    nonlinear 2 node,  2 DOF truss element, 
nonlinearity of 'power' type 
%                       = 112    nonlinear 2 node,  2 DOF truss element, 
nonlinearity of 'Signum/Coulomb' type 
%                       = 113    nonlinear 2 node,  2 DOF truss element, stiffness 
nonlinearity of 'arctan' type 
%                       = 114    nonlinear 2 node,  2 DOF truss element, stiffness 
nonlinearity of 'arcsinh' type 
%                       = 115    nonlinear 2 node,  2 DOF truss element, 
nonlinearity of 'clearance' type 
%                       = 116    nonlinear 2 node,  2 DOF truss element, Gaul 
element (2 Parameters) 
% 
% 
%     Type 100    linear    2 node, 12 DOF spring element, coinciding nodes 
% 
%             EC_beam(  2, :) = auxiliary node            ( beam100_auxnode index 
no.) 
%             EC_beam(  3, :) = CS for element stiffness matrix input 
%                             = 0 global Cs 
%                             = 1 local element Cs          
%             EC_beam(  4, :) = element stiffness matrix ( beam100_k       index 
no.) 
%             EC_beam(  5, :) = CS for element mass matrix input 
%                             = 0 global Cs 
%                             = 1 local element Cs          
%             EC_beam(  6, :) = element mass matrix      ( beam100_m       index 
no.) 
%             EC_beam(  7, :) = CS for equivalent element force vector input 
%                             = 0 global Cs 
%                             = 1 local element Cs 
%             EC_beam(  8, :) = equivalent element force vector 
%             EC_beam(  9, :) = angle dgamma of principal axis w.r. to beam 
reference system (radian)  
%             EC_beam( 10, :) = reserved 
%             EC_beam( 11. :) = reserved 
% 
%                               eccentric nodal point connections 
%                               node A: 
%             EC_beam( 12, :) = distance y-direction: eccentric nodal point/ center 
of gravity 
%             EC_beam( 13, :) = distance z-direction: eccentric nodal point/ center 
of gravity 
%             EC_beam( 14, :) = distance y-direction: eccentric nodal point/ shear 
center 
%             EC_beam( 15, :) = distance z-direction: eccentric nodal point/ shear 
center 
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%                               node B: 
%             EC_beam( 16, :) = distance y-direction: eccentric nodal point/ center 
of gravity 
%             EC_beam( 17, :) = distance z-direction: eccentric nodal point/ center 
of gravity 
%             EC_beam( 18, :) = distance y-direction: eccentric nodal point/ shear 
center 
%             EC_beam( 19, :) = distance z-direction: eccentric nodal point/ shear 
center 
% 
%                               hinges at local nodes A and/or B  (A=1 or B=2) 
%             EC_beam( 20, :) = hinges w.r. to local y axis 
%             EC_beam( 21, :) = hinges w.r. to local z axis 
% 
% 
%     Type 101, 102, 105    linear 2 node, 12 DOF beam element 
% 
%             EC_beam(  2, :) = material law (Ek index no.) 
%             EC_beam(  3, :) = cross section (Ak index no.) 
%             EC_beam(  4, :) = shear modulus (Gk index no.) 
%             EC_beam(  5, :) = maximum moment of inertia (I1) (Jk  index no.) 
%             EC_beam(  6, :) = minimum moment of inertia (I2) (Jkk index no.) 
%             EC_beam(  7, :) = centroidal torsional moment of inertia (Tk index 
no.) 
%             EC_beam(  8, :) = mass density (Roh index no.) 
%             EC_beam(  9, :) = angle dgamma of principal axis w.r. to beam 
reference system (radian) 
% 
%                               distance: center of gravity / shear center 
%             EC_beam( 10, :) = y-direction 
%             EC_beam( 11. :) = z-direction 
% 
%                               eccentric nodal point connections 
%                               node A: 
%             EC_beam( 12, :) = distance y-direction: eccentric nodal point/ center 
of gravity 
%             EC_beam( 13, :) = distance z-direction: eccentric nodal point/ center 
of gravity 
%             EC_beam( 14, :) = distance y-direction: eccentric nodal point/ shear 
center 
%             EC_beam( 15, :) = distance z-direction: eccentric nodal point/ shear 
center 
%                               node B: 
%             EC_beam( 16, :) = distance y-direction: eccentric nodal point/ center 
of gravity 
%             EC_beam( 17, :) = distance z-direction: eccentric nodal point/ center 
of gravity 
%             EC_beam( 18, :) = distance y-direction: eccentric nodal point/ shear 
center 
%             EC_beam( 19, :) = distance z-direction: eccentric nodal point/ shear 
center 
% 
%                               hinges at local nodes A and/or B  (A=1 or B=2) 
%             EC_beam( 20, :) = hinges w.r. to local y axis 
%             EC_beam( 21, :) = hinges w.r. to local z axis 
% 
% 
%     Type 111    nonlinear 2 node, 2 DOF beam element, nonlinearity of 'power' 
type                     
% 
%                               nonlinear stiffness parameters w.r. to local 
coordinate system 
%             EC_beam(  2, :) = type of nonlinear stiffness  
%             EC_beam(  3, :) = kx 
%             EC_beam(  4, :) = ky 
%             EC_beam(  5, :) = kz 
%             EC_beam(  6, :) = kxx 
%             EC_beam(  7, :) = kyy 
%             EC_beam(  8, :) = kzz 
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%  
%                               nonlinear damping parameters w.r. to local 
coordinate system  
%             EC_beam(  9, :) = type of nonlinear damping  
%             EC_beam( 10, :) = dx 
%             EC_beam( 11, :) = dy 
%             EC_beam( 12, :) = dz 
%             EC_beam( 13, :) = dxx 
%             EC_beam( 14, :) = dyy 
%             EC_beam( 15, :) = dzz 
% 
%             EC_beam( 16, :) = angle dgamma of principal axis w.r. to beam 
reference system (radian) 
% 
%             EC_beam( 17 : 21, :) = 0    reserved 
% 
% 
%     Type 112    nonlinear 2 node, 2 DOF beam element, nonlinearity of 
'Signum/Coulomb' type 
% 
%                               nonlinear stiffness parameters w.r. to local 
coordinate system 
%             EC_beam(  2, :) = 0   (reserved) 
%             EC_beam(  3, :) = kx 
%             EC_beam(  4, :) = ky 
%             EC_beam(  5, :) = kz 
%             EC_beam(  6, :) = kxx 
%             EC_beam(  7, :) = kyy  
%             EC_beam(  8, :) = kzz 
% 
%                               nonlinear damping parameters w.r. to local 
coordinate system 
%             EC_beam(  9, :) = 0   (reserved) 
%             EC_beam( 10, :) = dx 
%             EC_beam( 11, :) = dy 
%             EC_beam( 12, :) = dz 
%             EC_beam( 13, :) = dxx 
%             EC_beam( 14, :) = dyy 
%             EC_beam( 15, :) = dzz 
% 
%             EC_beam( 16, :) = angle dgamma of principal axis w.r. to beam 
reference system (radian) 
% 
%             EC_beam( 17 : 21, :) = 0    reserved 
% 
% 
%     Type 113    nonlinear 2 node, 2 DOF beam element, stiffness nonlinearity of 
'arctan' type 
% 
%                               nonlinear stiffness parameters w.r. to local 
coordinate system 
%             EC_beam(  2, :) = 0   (reserved) 
%             EC_beam(  3, :) = kx 
%             EC_beam(  4, :) = ky 
%             EC_beam(  5, :) = kz 
%             EC_beam(  6, :) = bx 
%             EC_beam(  7, :) = kyy 
%             EC_beam(  8, :) = kzz 
% 
%                    horizontal deformation factor for arctan(factor*displacement) 
%             EC_beam(  9, :) = 0   (reserved) 
%             EC_beam( 10, :) = bx 
%             EC_beam( 11, :) = by 
%             EC_beam( 12, :) = bz 
%             EC_beam( 13, :) = bxx 
%             EC_beam( 14, :) = byy 
%             EC_beam( 15, :) = bzz 
% 
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%             EC_beam( 16, :) = angle dgamma of principal axis w.r. to beam 
reference system (radian)  
% 
%             EC_beam( 17 : 21, :) = 0    reserved 
% 
% 
%     Type 114    nonlinear 2 node, 2 DOF beam element, stiffness nonlinearity of 
'arcsinh' type 
% 
%                               nonlinear stiffness parameters w.r. to local 
coordinate system 
%             EC_beam(  2, :) = 0   (reserved)  
%             EC_beam(  3, :) = kx 
%             EC_beam(  4, :) = ky 
%             EC_beam(  5, :) = kz 
%             EC_beam(  6, :) = bx 
%             EC_beam(  7, :) = kyy 
%             EC_beam(  8, :) = kzz 
% 
%                    horizontal deformation factor for arcsinh(factor*displacement) 
%             EC_beam(  9, :) = 0   (reserved) 
%             EC_beam( 10, :) = bx 
%             EC_beam( 11, :) = by 
%             EC_beam( 12, :) = bz  
%             EC_beam( 13, :) = bxx  
%             EC_beam( 14, :) = byy 
%             EC_beam( 15, :) = bzz 
% 
%             EC_beam( 16, :) = angle dgamma of principal axis w.r. to beam 
reference system (radian)  
% 
%             EC_beam( 17 : 21, :) = 0    reserved 
% 
% 
%     Type 115    nonlinear 2 node, 2 DOF beam element, stiffness nonlinearity of 
'clearance' type 
% 
%                               nonlinear stiffness parameters w.r. to local 
coordinate system 
%             EC_beam(  2, :) = 0   (reserved) 
%             EC_beam(  3, :) = kxo - gap open 
%             EC_beam(  4, :) = kxc - gap closed   
%             EC_beam(  5, :) = bx  - half gap length [m] 
%             EC_beam(  6, :) = kyo - gap open 
%             EC_beam(  7, :) = kyc - gap closed 
%             EC_beam(  8, :) = by  - half gap length [m] 
%             EC_beam(  9, :) = kzo - gap open 
%             EC_beam( 10, :) = kzc - gap closed 
%             EC_beam( 11, :) = bz  - half gap length [m] 
% 
%             EC_beam( 12 : 15, :) = 0    reserved 
% 
%             EC_beam( 16, :) = angle dgamma of principal axis w.r. to beam 
reference system (radian) 
% 
%             EC_beam( 17 : 21, :) = 0    reserved 
% 
% 
%     Type 116    nonlinear 2 DOF truss element, Gaul element (2-Parameters) 
% 
%                               nonlinear spring stiffnesses w.r. to local 
coordinate system 
%             EC_beam(  2, :) = 0   (reserved) 
%             EC_beam(  3, :) = kx 
%             EC_beam(  4, :) = ky 
%             EC_beam(  5, :) = kz 
%             EC_beam(  6, :) = kxx 
%             EC_beam(  7, :) = kyy 
%             EC_beam(  8, :) = kzz 
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% 
%                               nonlinear friction forces w.r. to local coordinate 
system 
%             EC_beam(  9, :) = 0   (reserved) 
%             EC_beam( 10, :) = hx 
%             EC_beam( 11, :) = hy 
%             EC_beam( 12, :) = hz 
%             EC_beam( 13, :) = hxx 
%             EC_beam( 14, :) = hyy 
%             EC_beam( 15, :) = hzz 
% 
%             EC_beam( 16, :) = angle dgamma of principal axis w.r. to beam 
reference system (radian) 
% 
%             EC_beam( 17 : 21, :) = 0    reserved 
 
 
% ----------     linear 2 node, 12 DOF --    non-linear 2node, 2 DOF 
 
EC_beam =  [      102  102  102  102         111    111    111        %  1 
                   1    1    1    1           3      0      2         %  2 
                   1    2    3    4           0      0     1e7        %  3 
                   1    1    1    1           0      0      0         %  4 
                   1    2    3    4          1e11    0      0         %  5 
                   1    2    3    4           0      0      0         %  6 
                   1    2    3    4           0      0      0         %  7 
                   1    2    3    4           0      0      0         %  8 
                   0    0    0    0           0      2      3         %  9 
                   0    0    0    0           0     10      5         % 10 
                   0    0    0    0           0      0      0         % 11 
                   0    0    0    0           0      0      0         % 12 
                   0    0    0    0           0      0      0         % 13 
                   0    0    0    0           0      0      0         % 14 
                   0    0    0    0           0      0      0         % 15 
                   0    0    0    0           0      0      0         % 16 
                   0    0    0    0           0      0      0         % 17 
                   0    0    0    0           0      0      0         % 18 
                   0    0    0    0           0      0      0         % 19 
                   0    0    0    0           0      0      0         % 20 
                   0    0    0    0           0      0      0         % 21 
                 ]; 
 
Fig. 6.2: Matrix of beam element cards EC_beam as specified in input file *.m07 for linear 

and non-linear beam elements. In this example there are 4 (= no. of columns) 
element cards specified for linear beam elements (type 102) and three element cards 
specified for non-linear 2DOF truss elements (type 111). 
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Example 6.3: 
 
% --- matrix of shell element cards  EC_shell(5,:) ----------------------------- 
% 
%     EC_shell(    1, :)   element concept 
%                          = 1 plane anisotropic shell element, constant thickness 
%                              Reissner/Mindlin plate theory 
%     EC_shell( 2: 3, :)   index no. of respective parameter vector 
%     EC_shell(    5, :)   shell reference input CS 
%                          = 1 local element Cs 
%                          = 2 uniform local/global element Cs 
%                          = 3 uniform local element Cs 
 
      EC_shell = [ [1 1];   % element concept 
                   [1 1];   % material law (Es index no.) 
                   [1 2];   % shell thickness  (dicke index no.) 
                   [3 2];   % mass density  (Roh index no.) 
                   [1 1];   % shell reference input CS 
                 ]; 

Fig. 6.3: Matrix of shell element cards EC_shell as specified in input file *.m08. In this 
example there are 2 (= no. of columns) element cards specified. 

 
Element cards comprise complete sets of assignments to parameters. They comprise 
assignments to parameter vectors, e.g. material law, and in addition some parameters are set 
directly, e.g. angle of principal axis. Each column of the element card matrices represents a 
different element card. They are assigned to elements during meshing. The beam and shell 
properties specified in ec_beam and ec_shell are assigned to all the structural elements 
generated within the geometry elements via a coincidence vector ec_*_koi specified in file 
*.m04. There is a coincidence vector for each type of geometry element, e.g. ec_flarot_koi for 
flarot geometry elements, ec_l_koi for linien geometry elements. 
 
Previous MATFEM releases used beam and shell assignment vectors for each element 
property, e.g. ihooke, idicke.  The introduction of element cards does not change this basic 
idea. In fact, all properties assigned in an element card are assigned automatically to the 
corresponding beam and shell assignment vectors. The assignment vectors assign the 
beam/shell elements in ascending order to the corresponding parameters of the parameter 
vectors. Therefore, an assignment vector always has nbalk or nshel elements respectively. 
 
Note:  The user may either use the element cards or the beam and shell assignment vectors 
but he must not use them both in the same application. 
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6.1 Beam Element 
 

 
 
Fig. 6.1.1: General beam element with eccentric junction points A,B  in 3-D-space 
 
 
 
general: solid beam of constant cross section in 3-D space, eccentric nodal points, St 

Venant torsion 
 
     Beam types applicable to statics and dynamics: 
 
  BERNOULLI beam theory (no shear deformation)    beam_type 101 
  TIMOSHENKO beam theory (shear deformation)     beam_type 102 
  Two Node Spring Element  

(realized by decoupled beam stiffness terms)      beam_type 105 
  Two Node Spring Element with user specified stiffness 

 and mass properties                beam_type 100 
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Non-linear 2DOF truss elements (non-linear dynamic response analysis only): 
    nonlinearity of 'power' type          beam_type 111 
    nonlinearity of 'Signum/Coulomb' type      beam_type 112 
 stiffness nonlinearity of 'arctan' type       beam_type 113 
 stiffness nonlinearity of 'arcsinh' type       beam_type 114 
 nonlinearity of 'clearance' type         beam_type 115 
 Gaul element (2 Parameters)          beam_type 116 
 
 
 
reference: [Link 1], [Gruber 1], [Meyer 1] 
number of nodes: 2 
number of DOF: 12 
degrees of freedom: x, y, z  translational DOF’s 
 xx, yy, zz  rotational DOF’s 
beam orientation in 
3-D space: local element coordinate system: 

 x- axis along the beam from node A to B 
 y, z- axis coincide with the principal axis of the cross section 
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Fig. 6.1.2:  beam cross section, principal axis, local beam xyz- axis 
 
 
The principal axis and their respective principal moments of inertia I1, I2 are defined by 
 

-      y axis ,              'starke Achse, Biegung um y, Biegung um y verursacht 
Verschiebung Uz und Verdrehung Uyy in der xz Ebene '  

 'strong axis, bending w.r. to the y axis causes displacement Uz 
and rotation Uyy in xz plane' 

 I1 = Iyy = Imax     maximum moment of inertia (MATFEM parameter vector:  Jk) 
  

-      z axis ,  'schwache Achse, Biegung um z verursacht Verschiebung Uy 
und Verdrehung Uzz in der xy Ebene ' 

 'weak axis, bending w.r. to the z axis causes displacement Uy 
and rotation Uzz in xy plane' 

 I2 = Izz = Imin minimum moment of inertia (MATFEM parameter vector:  Jkk) 
 
Due that the y and z axis are the principal axis of inertia the respective centrifugal moment is 
zero (!). For each beam element the user must specify I1, I2 and the angle dgamma, which 
specifies the orientation of the local/global coordinate system, and thereby specifies the 
spatial orientation of the cross section. He can check the orientation of each beam in 
MATFEM postprocessor, where I1 and I2 are displayed using the 'double T (H)' section 
symbol according fig. 6.1.2. 
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The beam element stiffness matrix in local coordinates is assembled from the longitudinal, 
bending and torsion stiffnesses as shown in fig. 6.1.3 .  
 
1            7             2          6            8         12               3           5           9          11                  4      10 
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where 

 xK
l

EAc ==  longitudinal stiffness 

 xx
T K

l
GId ==   torsional stiffness 

   bending stiffness matrix w.r. to xy plane xyK
  (bending w.r. to z-axis, shear forces in y axis direction) 
 
BERNOULLI beam theory (no shear deformation) 
 
         Kbxy = (E*Imin/l^3)*[ 12       6*l      -12       6*l 
                                6*l     4*l^2    -6*l      2*l^2 
                              -12      -6*l       12      -6*l 
                                6*l     2*l^2    -6*l      4*l^2 ]; 
      

 
TIMOSHENKO beam theory (shear deformation) 
 
         phiy = 12*E*Imin/G/A(2)/l^2;  % A(2) == Asy (Schubfläche) 
         h1   = (1+phiy); 
 
         Kbxy = (E*Imin/l^3/h1)*[ 12       6*l         -12         6*l 
                                  6*l   (4+phiy)*l^2   -6*l     (2-phiy)*l^2 
                                 -12      -6*l          12        -6*l 
                                  6*l   (2-phiy)*l^2    -6*l    (4+phiy)*l^2 ]; 
 
 

 
Fig. 6.1.3:  Element stiffness matrix of a beam element in local coordinates. Node 

numbering w.r. to fig. 6.1.1. 
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   bending stiffness matrix w.r. to xz plane  xzK
  (bending w.r. to y-axis, shear forces in z axis direction) 
 
BERNOULLI beam theory (no shear deformation) 
 
         Kbxz = (E*Imax/l^3)*[ 12      -6*l      -12      -6*l 
                               -6*l     4*l^2     6*l      2*l^2 
                              -12       6*l       12       6*l 
                               -6*l     2*l^2     6*l      4*l^2 ]; 

 
TIMOSHENKO beam theory (shear deformation) 
 
         phiz = 12*E*Imax/G/A(3)/l^2;   % A(3) == Asz (Schubfläche) 
         h1   = (1+phiz); 
 
         Kbxz = (E*Imax/l^3/h1)*[ 12      -6*l          -12      -6*l 
                                  -6*l   (4+phiz)*l^2     6*l   (2-phiz)*l^2 
                                 -12       6*l           12       6*l 
                                  -6*l   (2-phiz)*l^2     6*l   (4+phiz)*l^2 ]; 
 

 
 
 
 
 A cross section 
 Axy shear area where shear forces in y direction apply, the x axis is perpendicular to this 

area 
 Axz shear area where shear forces in z direction apply the x axis is perpendicular to this 

area 
  A, Axy, Axz are set in the MATFEM parameter vector  Ak(:, 1), Ak(:,2), Ak(:,3) 
 
 E YOUNG’s modulus,   set in the MATFEM parameter vector Ek 
 G shear modulus,                             "                          "  Gk 
 I torsional moment of inertia,        "                          "   Tk 
 Imax maximum area moment of inertia,    "                    "   Jk 
 Imin minimum area moment of inertia,     "                          "   Jkk 
 l element length (calculated automatically from node distance A,B) 
 
Fig. 6.1.3, continued:  Element stiffness matrix of a beam element in local coordinates. Node 

numbering w.r. to fig. 6.1.1. 
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Two node spring element (beam_type 105): 
 
The general beam element can also be used as a two node spring element with decoupled 
stiffness terms for longitudinal, torsional, bending and shear stiffness. Thereby the two node 
spring element can be used to model 
 a longitudinal spring with respect to the local x direction 
 a torsional spring with respect to the local xx direction  
 two bending springs with respect to the local yy and zz direction respectively  
 two shear springs with respect to the local y and z direction.  
 
Therefore the stiffness matrix of the general beam element is modified acc. fig. 6.1.4. 
 
 
 
Note: 
All rotation related terms of fig. 6.1.4 which are affected by the shear stiffness Kxy and Kxz are 
needed to fulfill the equilibrium conditions of the element. 
 
 
Note: 
The stiffness terms of the two node spring element beam_type 105 can not be specified 
directly as for beam_type 100. They have to be specified by the equivalent beam parameters 
like beam length, cross section, shear area, YOUNG’s modulus, etc. The nodal points A,B of 
the two node spring element must not coincide. 
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where 

 xK
l

EAc ==     longitudinal stiffness 

 xy
xy K

l
GA

e ==    shear stiffness (xy- plane) 

 xz
xz K

l
GAf ==    shear stiffness (xz-plane) 

 zz
max K
l

EIb ==    bending stiffness w.r. to local element z-axis 

 yy
min K
l

EIa ==    bending stiffness w.r. to local element y-axis 

 xx
T K

l
GId ==    torsional stiffness 

 
 A cross section 
 Axy shear area where shear forces in y direction apply, the x axis is perpendicular to this area 
 Axz shear area where shear forces in z direction apply the x axis is perpendicular to this area 
  A, Axy, Axz are set in the MATFEM parameter vector  Ak(:, 1), Ak(:,4), Ak(:,5) 
 E YOUNG’s modulus,   set in the MATFEM parameter vector Ek 
 G shear modulus,                             "                          "  Gk 
 IT torsional moment of inertia,        "                          "   Tk 
 Imax maximum area moment of inertia,    "                    "   Jk 
 Imin minimum area moment of inertia,     "                          "   Jkk 
 l element length (calculated automatically from node distance A,B) 
 
Fig. 6.1.4:  Element stiffness matrix of a two node spring element. Node numbering w.r. to 

fig. 6.1.1. 
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Two node spring element with user specified stiffness and mass properties (beam_type 100): 
 
For beam_type 100 the element stiffness and mass matrices and the equivalent element forces 
must totally be specified by the user. These quantities are set in the beam100_k, beam100_m 
and beam100_f parameter matrices of input file *.m07. Each column of beam100_k represents 
the 144 elements (12*12) of an element stiffness matrix. The columns of beam100_m 
represent different element mass matrices. The element forces at the 12 DOFs are specified as 
columns in the matrix beam100_f. The quantities in the parameter matrices can be given w.r. 
to the local or global coordinate system. The orientation of the element in 3 D space is 
equivalent to the general beam element. The local x-axis is determined as the straight line 
connection from node A to B. If nodes A and B coincide, an auxiliary node must be specified 
from the beam100_auxnode parameter vector to define the local x axis. The specification of 
the local y and z axis follows the definition for the general beam element. With respect to 
transformation, eccentric nodal points and hinges the element is also treated as a general beam 
element. 
 
 
 
 
Note: The user must very carefully specify the parameter matrices, so that the equilibrium 
requirement is fulfilled for every beam_type100 element. 
 
 
% --- beam type [ 100 ] parameters ( 2 node, 12 DOF general spring element, nodes 
may coincide) 
 
      % --- auxiliary node coordinates in global CS, to specify the local element  
      %     x axis, if element nodes coincide:      beam100_auxnode( :, 3) 
 
            beam100_auxnode = [ berkoord( 5,:)+ [ 0 0 .1];  
                                berkoord( 6,:)+ [ 0 0 .1] ]; 
 
      % --- element stiffness matrix ------------------------------------------- 
      %     beam100_k( 144, :) 
       
            beam100_k = 1.0E8*[    eye( 6, 6)    -eye( 6, 6);  ... 
                                  -eye( 6, 6)     eye( 6, 6)  ];   
            beam100_k = reshape( beam100_k, 144, 1); 
 
 
      % --- element mass matrix ------------------------------------------------ 
      %     beam100_m( 144, :) 
       
            beam100_m= []; 
 
 
      % --- equivalent element force vector ------------------------------------ 
      %     beam100_f( 12, :) 
 
            beam100_f = []; 
 

 
Fig. 6.1.4b:  Parameter vectors to specify the element stiffness and mass matrices, the 

equivalent element forces and the auxiliary node coordinates to specify the beam 
orientation. Here, six springs are set to couple each respective DOF of Node A 
and B. The spring mass is zero. 
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Non-linear 2DOF truss element (beam_type: 111 - 116): 
 
The geometrical definitions of the location of the general beam element in 3-D space can also 
be used to define non-linear 2DOF truss elements, with decoupled local non-linear stiffness 
and damping for the three translational and rotational DOF’s. The stiffness and damping 
factors of these local non-linear elements can be specified directly in EC_beam. They do not 
depend on cross section parameters. The length of the element is only needed in case of local 
non-linear shear elements (local y-direction and local z-direction) where equilibrium is only 
obtained if additional moments are introduced at the nodal points. The nodal points A,B of the 
2DOF truss element must not coincide.  
 
 
As an example, the element stiffness matrices of a non-linear 2DOF truss element with non-
linear stiffness defined for all coordinate directions are shown in Fig. 6.1.5. 
 
 
local x-direction: local xx-direction: local yy-direction: local zz-direction:
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local y-direction:  local z-direction:
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l element length (calculated automatically from node distance A,B) 
 
 
Fig. 6.1.5:  Element stiffness matrices of a non-linear 2DOF truss element. Node numbering 

w.r. to fig. 6.1.1. 
 
 
 
Note: These elements are only available in case of a non-linear dynamic response calculation 
(wahl = 8) but not for the calculation of static displacements (wahl = 3) or a linear dynamic 
response calculation (wahl = 2). 
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input data: 
element allocation: specified in *.m04 
material data: specified in *.m06 
geometrical data: specified in *.m07 
 
beam theory: general beam:      BERNOULLI,   beam_type 101 
           TIMOSHENKO   beam_type 102 
 two node spring element isoparametric beam with one point 
           integration of shear energy [ Link 1] 
            beam_type 105 

two node spring element user defined element stiffness and mass 
matrices, coinciding nodes  

 beam_type 100 
 non-linear 2DOF truss element [Meyer 1]   beam_type 111 - 116 
 
 
Beam theory selection: 
The beam theory selection of the general beam element is controlled by cross section 
parameter matrix Ak: 
 
 
 

BERNOULLI beam theory (no shear effects). Ak has to be specified as a (5, na) matrix, 
where rows 2,3,4,5 are set to zero 
 
 Ak = [  A(1,1)  ...  A(1,na) ; 
      0          ...            0  ; 
      0          ...            0  ; 
      0          ...            0  ; 
      0          ...            0 ] 
 
where 
    na   number of different cross sections 
  A(1,i)  cross section 
 
If for a given application only BERNOULLI beams are present it is sufficient to specify 
only the first row of Ak. 
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TIMOSHENKO beam theory (shear effects). Ak has to be specified as a (5, na) matrix, 
where  rows 4,5 are set to zero 
 
 Ak = [  A(1,1)  ...  A(1,na) ; 
    A(2,1)  ... A(2,na) ; 
    A(3,1)  ...  A(3,na) ; 
     0        ...       0     ; 
      0        ...       0        ] 
 
where 
    na    number of different cross sections 
   A(1,i)  cross section 

A(2,i)  shear area Axy , where shear forces in y-direction (local coordinate 
system) apply 

A(3,i)  shear area Axz , where shear forces in z-direction (local coordinate 
system) apply 

 
If for a given application only TIMOSHENKO and BERNOULLI beams are present it 
is sufficient to specify only the first three rows of Ak. 
 
 
 
two node spring element. Ak has to be specified as a (5, na) matrix, where the two 
rows ( row 2 and row 3, which are related to the shear areas of the TIMOSHENKO 
beam) must be set to zero 
 
  Ak = [ A(1,1)  ...  A(1,na) ; 
       0          ...  0  ; 
       0          ...  0  ; 
     A(4,1)  ... A(4,na) ; 
     A(5,1)  ...  A(5,na)  ] 

 
where 

  
na    number of different cross sections 
 
A(1,i) cross section area. The longitudinal spring stiffness will be calculated by 

 
l

EA
K i,1

x =  

 
A(4,i) shear area Axy, where shear forces in y direction apply . The shear spring 
stiffness in xy will be calculated by 
 

 
l

GA
K i,4

xy =  
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A(5,i) shear area Axz, where shear forces in z direction apply . The shear spring 
stiffness in xz will be calculated by 
 

 
l

GA
K i,5

xz =  

 
The bending stiffnesses of the two node spring element will be calculated by 
 

 
l

EIK min
zz =    

l
EI

K max
yy =  

 
and the torsional stiffness by 
 

 
l

GI
K T

xx =  

 
NOTE: The user should be aware that the parameter l is common to all stiffness terms, 
(fig.6.1.4). The parameter l is the distance between the nodal points A,B (length of 
beam) which is automatically assigned within MATFEM. 
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Example 6.3: 
A given structure with  BERNOULLI beams, TIMOSHENKO  beams and two node spring 
elements of beam_type 105: 
 
   Ak = [ A(1,1) A(1,1) A(1,3)  ; 
       0       A(2,2)     0      ; 
       0       A(3,2)  0      ; 
       0   0  A(4,3)  ; 
       0   0  A(5,3)      ] 
 
 
 
 
Parameter vectors: 
material law:
Ek YOUNG’s modulus 
Gk shear modulus 
 
geometry 
Ak cross section 
Jk maximum moment of inertia Imax, inertia moment w.r. to the local yy axis of the 

principal axis coordinate system, ref. fig. 6.1.2 
Jkk minimum moment of inertia Imin inertia moment w.r. to the local zz axis of the 

principal axis coordinate system, ref. fig. 6.1.2 
Tk  torsional area moment of inertia ( ≡ IT ) 
 
mass 
Roh mass density 
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Beam element cards: 
 
Beam element cards are specified in the matrix EC_beam( 21, :). Each column of EC_beam 
represents a different element card which comprises assignments to parameter vectors, e.g. 
material law or a direct parameter input, e.g. angle of principal axis. Linear and non-linear 
elements can be defined. 
 
a.) linear beam elements 
 
EC_beam ( 1, :) element type  here: linear: 101,102 or 105 
  ( 2, :)  material law    (Ek index no.) 
 ( 3, ;) cross section   (Ak index no.) 
 ( 4, :) shear modulus  (Gk index no.) 
 ( 5, :) maximum moment of inertia Imax  (Jk index no.) 
 ( 6, :) minimum moment of inertia Imin   (Jkk index no.) 
 ( 7, :) centroidal torsional IT  moment of inertia  (Tk index no.) 
 ( 8. :)  mass density   (Roh index no.) 
 ( 9. :)  angle of principal axis w.r. to beam reference system (radians) 
 
  distance: center of gravity / shear center: 
 ( 10. :)  y-direction 
 ( 11. :)  z-direction 
 
  eccentric nodal point connections 
  node A: 
 ( 12. :)  distance y-direction: eccentric nodal point/ center of gravity 
 ( 13. :)  distance z-direction: eccentric nodal point/ center of gravity 
 ( 14. :)  distance y-direction: eccentric nodal point/ shear center 
 ( 15. :)  distance z-direction: eccentric nodal point/ shear center 
 

  node B: 
 ( 16. :)  distance y-direction: eccentric nodal point/ center of gravity 
 ( 17. :)  distance z-direction: eccentric nodal point/ center of gravity 
 ( 18. :)  distance y-direction: eccentric nodal point/ shear center 
   ( 19. :)  distance z-direction: eccentric nodal point/ shear center 
 
  hinges at local nodes A or B or A,B ( 1= A, 2= B, 3 = A and B ) 
 ( 20. :)  hinges w.r. to local z axis 
   ( 21. :)  hinges w.r. to local y axis 
 
 
All input of EC_beam( 10:21, :) for linear beam elements w.r. to the local coordinate system 
according fig 6.1.1 
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b.) linear two node spring element with user defined element stiffness and mass matrices 
 
EC_beam ( 1, :) element type  here:  100 
  ( 2, :) auxilary node            ( beam100_auxnode index no.) 
 ( 3, ;) CS for element stiffness matrix input 
  = 0 global Cs 
  = 1 local element Cs 
 ( 4, :) element stiffness matrix ( beam100_k index no.) 
 ( 5, :) CS for element mass matrix input 
  = 0 global Cs 
  = 1 local element Cs 
 ( 6, :) element mass matrix      ( beam100_m index no.) 
 ( 7, :) CS for equivalent element force vector input 
  = 0 global Cs 
  = 1 local element Cs 
 ( 8. :)  equivalent element force vector 
 ( 9. :)  angle of principal axis w.r. to beam reference system (radians) 
 ( 10. :)  reserved 
 ( 11. :)  reserved 
 
  eccentric nodal point connections 
  node A: 
 ( 12. :)  distance y-direction: eccentric nodal point/ center of gravity 
 ( 13. :)  distance z-direction: eccentric nodal point/ center of gravity 
 ( 14. :)  distance y-direction: eccentric nodal point/ shear center 
 ( 15. :)  distance z-direction: eccentric nodal point/ shear center 
 

  node B: 
 ( 16. :)  distance y-direction: eccentric nodal point/ center of gravity 
 ( 17. :)  distance z-direction: eccentric nodal point/ center of gravity 
 ( 18. :)  distance y-direction: eccentric nodal point/ shear center 
 ( 19. :)  distance z-direction: eccentric nodal point/ shear center 
 
  hinges at local nodes A or B or A,B ( 1= A, 2= B, 3 = A and B )  
 ( 20. :)  hinges w.r. to local z axis  
 ( 21. :)  hinges w.r. to local y axis  
 
All input of EC_beam( 12:21, :) w.r. to the local coordinate system according fig 6.1.1 
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c.) non-linear beam elements (2DOF truss elements) 
 
Beam_type = 111 
 
EC_beam ( 1, :) element type  here: non-linear: 111 
 
 nonlinear stiffness parameters w.r. to local coordinate system 
 (  2, :) = type of nonlinear stiffness 
 (  3, :) = kx 
 (  4, :) = ky 
 (  5, :) = kz 
 (  6, :) = kxx 
 (  7, :) = kyy 
 (  8, :) = kzz 
 
 nonlinear damping parameters w.r. to local coordinate system 
 (  9, :) = type of nonlinear damping 
 ( 10, :) = dx 
 ( 11, :) = dy 
 ( 12, :) = dz 
 ( 13, :) = dxx 
 ( 14, :) = dyy 
 ( 15, :) = dzz 
 
 ( 16, :) = angle dgamma of principal axis w.r. to beam reference system (radian) 
 
 ( 17 : 21, :) = 0    reserved 
 
Beam_type = 112 
 
EC_beam ( 1, :) element type  here: non-linear: 112 
 
 nonlinear stiffness parameters w.r. to local coordinate system 
 (  2, :) = 0  (reserved) 
 (  3, :) = kx 
 (  4, :) = ky 
 (  5, :) = kz 
 (  6, :) = kxx 
 (  7, :) = kyy 
 (  8, :) = kzz 
 
 nonlinear damping parameters w.r. to local coordinate system 
 (  9, :) = 0  (reserved) 
 ( 10, :) = dx 
 ( 11, :) = dy 
 ( 12, :) = dz 
 ( 13, :) = dxx 
 ( 14, :) = dyy 
 ( 15, :) = dzz 
 
 ( 16, :) = angle dgamma of principal axis w.r. to beam reference system (radian) 
 
 ( 17 : 21, :) = 0    reserved 
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Beam_type = 113 
 
EC_beam ( 1, :) element type  here: non-linear: 113 
 
 nonlinear stiffness parameters w.r. to local coordinate system 
 (  2, :) = 0  (reserved)  
 (  3, :) = kx 
 (  4, :) = ky 
 (  5, :) = kz 
 (  6, :) = kxx 
 (  7, :) = kyy 
 (  8, :) = kzz 
 
 horizontal deformation factor for arctan(factor*displacement) 
 (  9, :) = 0  (reserved) 
 ( 10, :) = bx 
 ( 11, :) = by 
 ( 12, :) = bz 
 ( 13, :) = bxx 
 ( 14, :) = byy 
 ( 15, :) = bzz 
 
 ( 16, :) = angle dgamma of principal axis w.r. to beam reference system (radian) 
 
 ( 17 : 21, :) = 0    reserved 
 
Beam_type = 114 
 
EC_beam ( 1, :) element type  here: non-linear: 114 
 
 nonlinear stiffness parameters w.r. to local coordinate system 
 (  2, :) = 0  (reserved)  
 (  3, :) = kx 
 (  4, :) = ky 
 (  5, :) = kz 
 (  6, :) = kxx 
 (  7, :) = kyy 
 (  8, :) = kzz 
 
 horizontal deformation factor for arcsinh(factor*displacement) 
 (  9, :) = 0  (reserved) 
 ( 10, :) = bx 
 ( 11, :) = by 
 ( 12, :) = bz 
 ( 13, :) = bxx 
 ( 14, :) = byy 
 ( 15, :) = bzz 
 
 ( 16, :) = angle dgamma of principal axis w.r. to beam reference system (radian)  
 
 ( 17 : 21, :) = 0    reserved 
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Beam_type = 115 
 
EC_beam ( 1, :) element type  here: non-linear: 115 
 
 nonlinear stiffness parameters w.r. to local coordinate system  
 (  2, :) = 0  (reserved)  
 (  3, :) = kxo - gap open 
 (  4, :) = kxc - gap closed 
 (  5, :) = bx  - half gap length [m] 
 (  6, :) = kyo - gap open 
 (  7, :) = kyc - gap closed 
 (  8, :) = by  - half gap length [m] 
 (  9, :) = kzo - gap open 
 ( 10, :) = kzc - gap closed 
 ( 11, :) = bz  - half gap length [m] 
 
 ( 12 : 15, :) = 0  (reserved)  
 
 ( 16, :) = angle dgamma of principal axis w.r. to beam reference system (radian)  
 
 ( 17 : 21, :) = 0  (reserved) 
 
Beam_type = 116 
 
EC_beam ( 1, :) element type  here: non-linear: 116 
 
 nonlinear stiffness parameters w.r. to local coordinate system  
 (  2, :) = 0  (reserved)  
 (  3, :) = kx 
 (  4, :) = ky 
 (  5, :) = kz 
 (  6, :) = kxx 
 (  7, :) = kyy 
 (  8, :) = kzz 
 
 nonlinear friction forces w.r. to local coordinate system 
 (  9, :) = 0  (reserved) 
 ( 10, :) = hx 
 ( 11, :) = hy 
 ( 12, :) = hz 
 ( 13, :) = hxx 
 ( 14, :) = hyy 
 ( 15, :) = hzz 
 
 ( 16, :) = angle dgamma of principal axis w.r. to beam reference system (radian) 
 
 ( 17 : 21, :) = 0    reserved 
 
All input of EC_beam for non-linear beam elements w.r. to the local coordinate system 
according fig 6.1.1 
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Direct beam assignment vectors: 
 
Beam assignment vectors assign parameter vectors to beam elements or comprise the 
parameters directly for each element. Beam assignment vectors are always of length nbalk. 
 
material law:
ihooke material law  (Ek index no.) 
 
 
geometry:
iflaeche cross section  (Ak index no.) 
ischubmod shear section  (Gk index no.) 
itraegh maximum moment of inertia Imax  (Jk index no.) 
itraeghk minimum moment of inertia Imin   (Jkk index no.) 
itors  torsional area moment of inertia  (Tk index no.) 
dgamma angle of principal axis w.r. to beam reference system  (radians, details see below) 
 
mass:
irohdi mass density 
 
hinges: 
glbalk beam numbers with hinges 
glkmax local node number (A or B) of hinges w.r. to local z axis 
glkmin local node number (A or B) of hinges w.r. to local y-axis 
 
 
eccentric junctions: 
yMk distance y-direction: center of gravity / shear center 
zMk distance z-direction: center of gravity / shear center 
yMa node A distance y-direction: eccentric nodal point/ shear center 
yMb node B distance y-direction: eccentric nodal point/ shear center 
zMa node A distance z-direction: eccentric nodal point/ shear center 
zMb node B distance z-direction: eccentric nodal point/ shear center 
ySa node A distance y-direction: eccentric nodal point/ center of gravity 
ySb node B distance y-direction: eccentric nodal point/ center of gravity 
zSa node A distance z-direction: eccentric nodal point/ center of gravity 
zSb node B distance z-direction: eccentric nodal point/ center of gravity 
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output data (static analysis): 
 
stress resultants at nodal points A and B  w.r. to local coordinate system (fig. 6.1.6) 
 nxA , qyA , qzA , mxxA , myyA , mzzA
 nxB , qyB , qzB , mxxB , myyB , mzzB

 

 

B 

S 

S 

M 

M 
mzzB

mxxB
qyB

qzB
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qyA
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nxA

nxB
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A 

M shear center, S center of gravity   m zdAyy xx= ∫ σ      m ydAzz xx= ∫ σ  

 
Fig. 6.1.6:  Stress resultants of a beam element 
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Beam stresses: 
 
The physical shape of a beam element cannot be specified in MATFEM. So MATFEM does 
not know whether the geometrical and material data refer e.g. to a solid beam with a 
rectangular cross section or to a U-shaped beam or an S-shaped beam with eccentric junction 
points. Therefore stresses can not be calculated within MATFEM. The user must calculate 
beam stresses externally using the beam stress resultants which are available from the MDB. 
 
 
 
Center of gravity/ shear center, eccentric nodal points: 
 
In the general case where the center of gravity S and the shear center M of a beam element do 
not coincide and the junction points are not on the center line of the beam area (like fig. 6.1.1) 
the user has to specify the appropriate distances: 

center of gravity /shear center 
eccentric nodal point/ center of gravity 
eccentric nodal point/ shear center 

In the special case where the center of gravity and the shear center coincide and the junction 
points are on the center line of the beam area these quantities are all set to zero. In all other 
cases the quantities have to be specified for node A and node B of a beam (ref. fig. 6.1.1). 
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Beam orientation: 
 

 
 
Fig. 6.1.7: Definition of angle dgamma to specify the orientation of a beam in 3-D space 
 
 
The orientation of each beam in 3-D space has to be specified. In many FEM software 
packages the local x-axis y-axis and z- axis are specified by means of an auxiliary point 
within the x,y- plane thus fixing the orientation of the beam in 3-D space. In MATFEM the 
specification of the local y-axis and z-axis is made in a different manner: 
 

The local coordinate system of a beam is always the principal axis coordinate system 
 
In order to force the local y-axis and z-axis to coincide with the principal axis of the area 
moment an auxiliary cartesian coordinate systems is introduced. It is referred as the beam 
reference coordinate system (xref , yref , zref). The beam reference coordinate system is defined 
by 

- xref   coincides with the local x-axis. It points from node A to node B 
- yref  is calculated from the vector product xref and the global Z axis. The vector 

product yields yref which is perpendicular to the plane determined by xref and Z 
and therefore parallel to the global XY-plane. yref is sensed so that a right-handed 
screw turned from Z toward xref through the smaller of the angles determined by 
these vectors would advance in the direction of yref . 

- zref is perpendicular to xref , yref. The orientation of zref follows the right-handed screw 
rule. 
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In the special case that the beam is parallel to the global Z axis the beam reference coordinate 
system is defined by 
 - xref    coincides with the local x-axis. It points from node A to node B 
 - yref    coincides with the global Y-axis 

- zref is perpendicular to xref , yref. The orientation of zref follows the right-handed screw 
rule. 

 
Using this definition it is possible to rotate the beam reference coordinate system around the 
local x, xref axis until the yref axis coincides with the y-axis of the principal axis coordinate 
system, i.e. the local beam coordinate system. The angle dgamma defines this rotation in 
radians. The angle dgamma is positive, if this rotation follows a rotation around the local x-
axis in a positive sense. 
 
 

 
 
Fig 6.1.8: Definition of the angle dgamma to specify the orientation of a beam in 3 D space 
 
 
In practice the angle dgamma is often not easy to specify for a given beam element in 3-D-
space due to its rather complex definition which implies to imagine a rotation in 3-D space. 
Therefore it is recommended to always check the angle dgamma using the postprocessor of 
MATFEM where I1 and I2 are displayed using the double T section symbol according fig. 
6.1.2. 
 
NOTE: 
All beam input data e.g. area moments of inertia, off-beam geometry ...etc. refer to the local 
coordinate system. 
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Example 6.4: 
 
Consider the cross section of figure 6.1.9 

 
Fig. 6.1.9: cross section of an extruded beam profile. The cross section is specified in an 
arbitrary x, y coordinate system. 
 
step 1: 
The cross section parameters of this profile are calculated with MATFEM (wahl= 6) 
The results are listed in fig 6.1.10. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.1.10: cross section parameters 
of an extruded beam profile of fig. 
6.1.9. 
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The results are calculated w.r. to the origin of the x,y coordinate system of fig. 6.1.9 and with 
respect to the center of gravity (S). In addition, the principal moments of inertia I1, I2

 and the 
respective angle phi of the principal axis w.r. to the x,y axis of fig. 6.1.9 are calculated. 
 
 
step 2: 
To assign this cross section to a clamped beam structure according fig 6.1.11 the user must 
specify the maximum of principal moments Imax to the parameter vector Jk and the minimum 
of principal moments Imin to Jkk: 
 
  Jk   = I1    ≡ Imax  = 1.51E-01 
  Jkk = I2   ≡ Imin =  0.87E-01 
 
 
 

 
 
Fig. 6.1.11: Beam, clamped at node 1, extruded beam profile 
 
 
The beam reference coordinate system in this case is defined by 
 - xref    coincides with the local x-axis. It points from node A (1) to node B (2) 

- yref  is calculated from the vector product xref and the global Z axis. The vector 
product yields yref which is perpendicular to the plane determined by xref and Z 
and therefore parallel to the global XY-plane. yref is sensed so that a right-handed 
screw turned from Z toward xref through the smaller of the angles determined by 
these vectors would advance in the direction of yref . 

- zref is perpendicular to xref , yref. The orientation of zref follows the right-handed screw 
rule. 

 
To yield the angle dgamma the beam reference coordinate system must now be turned around 
the local x, xref axis until the yref axis coincides with the y-axis of the principal axis coordinate 
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system, i.e. the local beam coordinate system. The angle dgamma defines this rotation in 
radians. In this case 

dgamma = 32.39° * 2* pi / 360° = 0.565 
 
dgamma is positiv because this rotation follows a rotation around the local x-axis in a positive 
sense. 
The user must then supply all other cross section parameters e.g. torsional moment of inertia, 
distance center of gravity/shear center. 
Note: These additional parameters are yet not available from the MATFEM run with wahl = 6 
and therefore must be calculated externally. 
 
 
step 3: 
 
The user can now start the MATFEM static (wahl = 3) or dynamic (wahl = 2) analysis. The 
orientation of the beam and the beam cross section parameters can be checked within the 
MATFEM postprocessor, fig. 6.1.12. The beam orientation is viewed using the double T 
section symbol according fig. 6.1.2. 
 
 
 

 
 
Fig. 6.1.12: Clamped beam with an extruded beam profile. Input of cross section parameters 

View of beam orientation within the postprocessor 
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In the given example a static force in the global -Z direction is applied at the tip of the beam. 
Due to the principal axis of the beam cross section do not coincide with the global XYZ 
coordinate system the resulting displacement has not only a component in the global Z 
direction but components in both Y and Z direction, fig. 6.1.13. 
 
 
 

 
 
 
Fig. 6.1.13: Clamped beam with an extruded beam profile. Displacement due to a static force 

at the tip of the beam in global -Z direction. 
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6.2 Shell Element 
 
MATFEM supports the following shell element types: 

 
- 3 node, 18 DOF shell element 

a)  element concept 1 
plane, anisotropic shell element, with constant thickness, consisting of a plane 
membrane constant strain triangle (CST) element (9 DOF’s) and a plane plate bending 
Discrete Kirchhoff Triangle (DKT) element (9 DOF’s), no coupling between bending 
and membrane forces (no transverse shear deformation) 

 
 
- 4 node, 24 DOF shell element 

a)  element concept 1 
plane, anisotropic shell element, with constant thickness, consisting of a plane 
membrane element (12 DOF’s) including rotational DOF's and a quasi conforming 
plane plate bending element (12 DOF’s), no coupling between bending and membrane 
forces, 

 Reissner-Mindlin plate theory, thermal loading 
 

b)  element concept 2 
plane isoparametric plate element, independent shear formulation 

 
 
 
 
 
 
The different shell types are treated generally as 'shells' and therefore share the same variables 
for parameter vectors (e.g. dicke), element cards (EC_shell) and direct shell assignment 
vectors (e.g. idicke). 
The overall number of shells nshel is given by 
 

nshel = nshel3 + nshel 4 
 

where 
 
nshel3 overall number of  3 node shell elements 
nshel4    overall number of  4 node shell elements 
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6.2.1  4 node Shell Element 

 
 
 
The shell element has 4*6 = 24 local DOF’s  which are assembled in all related output as 
 [  1x  1y  1z  1xx  1yy  1zz  , 2x  2y  2z  2xx  2yy  2zz , 
     3x  3y  3z  3xx  3yy  3zz , 4x  4y  4z  4xx  4yy  4zz ] 
The upper surface of a shell element is defined by the uppermost plane w.r. to the positive z direction of 
the local coordinate system 
The local coordinate system of a shell element can be viewed within the MATFEM postprocessor 
 

Fig. 6.2.1.1: 4-node shell element 
 
 
 
a)  element concept 1 
 
general:   plane, anisotropic shell element, with constant thickness, consisting of 

a plane membrane element (12 DOF’s) including rotational DOF's and 
a quasi conforming plane plate bending element (12 DOF’s), no 
coupling between bending and membrane forces, 

 Reissner-Mindlin plate theory, thermal loading 
 
reference: membrane element: [Long&Xu 1] 
 plate element: [Zou 1] 
number of nodes: 4 
number of DOF: 24 
degrees of freedom: x, y, z   translational DOF’s 
 xx, yy, zz  rotational DOF’s 
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a)  element concept 2 
 
general:   plane, anisotropic shell element, with constant thickness, independent 

shear formulation 
 Assumed Natural Strain (ANS) element, based on the Hughes T1 plate 

element. 
 
reference: M. Fiolka: Entwicklung und Erprobung eines viereckigen ebenen 

Schalenelementes mit Schubverformung, Diplomarbeit, Universität 
Gh Kassel, Fachgebiet Leichtbau, Kassel 2001 

 
      T.J.R. Hughes: Finite Elements Based upon Mindlin Plate Theory 

with Particular Reference to the four Node bilinear isoparametric 
Element Journal of Applied Mechanics (1981) Vol.48 587-596 

 
 A.Tessler: An improved treatment of transverse shear in the Mindlin 
type four-node quadrilateral Element Computer Methods in applied 
Mechanics an Engineering 39 (1983) 311-335 

 
number of nodes: 4 
number of DOF: 24 
degrees of freedom: x, y, z   translational DOF’s 
 xx, yy, zz  rotational DOF’s 
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local coordinate system: 

 
Fig. 6.2.1.2: local coordinate system of a 4-node shell element 
 

The local coordinate system of a 4 node shell element is defined by: 
 

x is given by the straight line between node 1 and node 2 (vec12). It points 
from node1 to node 2. 

z is calculated from the vector product of x and the straight line between node 
1 and node 4 (vec14). The vector product yields z which is perpendicular to 
the plane determined by x and vec14. The z axis is sensed so that a right- 
handed screw turned from x toward vec14 through the smaller of the angles 
determined by these vectors would advance in the direction of z. 

y is calculated from the vector product of x and z. The vector product yields y 
which is perpendicular to the plane determined by x and z. The y axis is 
sensed so that a right-handed screw turned from z toward x through the 
smaller of the angles determined by these vectors would advance in the 
direction of y. 

 
The local coordinate system of each shell element can be viewed within the 
postprocessor 
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The overall shape of the shell element may be quadrilateral. As an extreme shape distortion, a 
triangular shape is possible if one node lies on the straight connection line between two other 
nodes. In this case an increase of the element stiffness must be expected. 
 

  
Fig. 6.2.1.3: Overall shapes of a 4-node shell element 
 
 
 
The specification of the input parameters is given in chap. 6.2.3. 
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output data (static analysis): 
 
stress resultants: at GAUß integration points, w.r. to local coordinate system 
  membrane forces     nxx , nyy , nxy
  bending moments mxx , myy , mxy
  shear forces   qxz , qyz 
 
 Note: All forces are related to a unit shell length (N/m) 
 
 
element stresses: at GAUß integration points, w.r. to local coordinate system 
  membrane stresses (index m)       σxx,m , σyy,m , σxy,m

  bending stresses (index b)        σxx,b ,  σyy,b ,  σxy,b 
  
  stresses at lower surface (index u)      σxx,u , σyy,u ,  σxy,u 
  principal stresses  and angle of 
  principal stresses at lower surface (index u)   σ1,u , σ2,u  , alfau 

  v.-MISES stresses          σv,u
 
  stresses at upper surface (index o)      σxx,o , σyy,o ,  σxy,o 
  principal stresses  and angle of 
  principal stresses at lower surface (index o)   σ1,o , σ2,o  , alfao

  v.-MISES stresses          σv,o
 
Optionally, stresses at nodal points can be calculated. The user has to set the switch mitwert in 
*.m13 to mitwert = 1. The stresses are simply averaged out of adjacent elements. Beam 
elements are not included in the averaging process. However, the results are only reasonable 
if all adjacent elements are defined in the same local coordinate system. The user has to take 
high care whether this simplified assumption is fulfilled for the parts of the structure under 
consideration. The averaged stresses can be viewed graphically on the structure using the 
MATFEM postprocessor. 
 

Note:  All stresses are related to a unit shell length  (
N

m m2 ). 

 The angle of principal stresses is given in degrees. 



MATFEM 04 User’s Guide 6. Element Types 6-41 

The stress resultants are calculated from 
 
 - membrane forces     nxx , nyy , nxy    ( i =  x, y) 
 

 ∫σ=
t

m,iiii dzn       

 
 - bending moments mxx , myy , mxy      ( i =  x, y) 
 
      dzzm

t
b,iiii ∫ σ=

 
 - shear forces  qxz , qyz   ( i =  x, y) 
 

 ∫σ=
t

s,ijij dzn

 
 
 

 
 
Fig. 6.2.1.4: GAUSS integration points of a 4 node shell element in the unit coordinate 
system 
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Due that the forces are calculated w.r. to a unit length and the section modulus 

(Widerstandsmoment) of the edges is given by 
6

t*b 2

, where b specifies the actual edge 

length, the element stresses are calculated from 
 

- stress at upper and lower surface of shell element 
 

σo
n
t

m
t

= +
6

2      at upper surface 

(index o derived from the German term oben) 
 

σu
n
t

m
t

= −
6

2      at lower surface 

(index u derived from the German term unten) 
 
 
where 

n  normal forces 
m  bending forces 

 
 
 
 

- main stresses σ1,2 and main stress angle alfa  (Hauptspannungen und 
Hauptspannungswinkel) 

 

( ) ( ) 2
xy

2
yyxx4
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  - 'von MISES' stresses σv ( Gestaltänderungsenergiehypothese) 
 

σ σ σ σ σ σ σ σ σ σv x y= + − = + − +1
2

2
2

1 2
2 2 23x y xy  
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Fig. 6.2.1.5: Stress resultants of 4 node shell element, membrane forces 
 

 

 
 

Fig. 6.2.1.6: Stress resultants of a 4 node shell element, bending moments and shear forces 
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Fig. 6.2.1.7: Stresses at upper and lower surface of a 4 node shell element 
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6.2.2  3 node Shell Element 
 

 
 

The shell element has 3*6 = 18 local DOF’s which are assembled in all related output as 
 [  1x  1y  1z  1xx  1yy  1zz  , 2x  2y  2z  2xx  2yy  2zz ,  3x  3y  3z  3xx  3yy  3zz  ] 
The upper surface of a shell element is defined by the uppermost plane w.r. to the positive z direction of 
the local coordinate system 
The local coordinate system of a shell element can be viewed within the MATFEM postprocessor 

 
Fig. 6.2.2.1: 3-node shell element 
 
 
general: plane, anisotropic shell element, with constant thickness, consisting of 

a plane membrane constant strain triangle (CST) element (9 DOF’s) 
and a plane plate bending Discrete Kirchhoff Triangle (DKT) element 
(9 DOF’s), no coupling between bending and membrane forces (no 
transverse shear deformation) 

 
reference: [Link 1], [Gröger 1], [Jeych&Kirk 1] 
number of nodes: 3 
number of DOF: 18 
degrees of freedom: x, y, z   translational DOF’s 
 xx, yy, (zz)  rotational DOF’s 
 
 Note: 

The respective stiffness for the rotational DOF zz, which is not defined 
in the element evaluation, is set to 1.0E-12 by default. 
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   local coordinate system: 

 
Fig. 6.2.2.2: local coordinate system of a 3-node shell element 
 

The local coordinate system of a 3 node shell element is defined by: 
 

x is given by the straight line between node 1 and node 2 (vec12). It points 
from node1 to node 2. 

z is calculated from the vector product of x and the straight line between node 
1 and node 3 (vec13). The vector product yields z which is perpendicular to 
the plane determined by x and vec13. The z axis is sensed so that a right- 
handed screw turned from x toward vec13 through the smaller of the angles 
determined by these vectors would advance in the direction of z. 

y is calculated from the vector product of x and z. The vector product yields y 
which is perpendicular to the plane determined by x and z. The y axis is 
sensed so that a right-handed screw turned from z toward x through the 
smaller of the angles determined by these vectors would advance in the 
direction of y. 

 
The local coordinate system of each shell element can be viewed within the 
postprocessor 

 
 
 
The specification of the input parameters is given in chap. 6.2.3. 
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output data (static analysis): 
 
stress resultants: at GAUß integration points, w.r. to local coordinate system 
  membrane forces     nxx , nyy , nxy 
  bending moments mxx , myy , mxy 
  shear forces   qxz , qyz 
 
 Note: All forces are related to a unit shell length (N/m) 
 
 
element stresses: at GAUß integration points, w.r. to local coordinate system 
  membrane stresses (index m)       σxx,m , σyy,m , σxy,m 
  bending stresses (index b)        σxx,b ,  σyy,b ,  σxy,b 
  
  stresses at lower surface (index u)      σxx,u , σyy,u ,  σxy,u 
  principal stresses  and angle of 
  principal stresses at lower surface (index u)   σ1,u , σ2,u  , alfau 

  v.-MISES stresses          σv,u 
 
  stresses at upper surface (index o)      σxx,o , σyy,o ,  σxy,o 
  principal stresses  and angle of 
  principal stresses at lower surface (index o)   σ1,o , σ2,o  , alfao 
  v.-MISES stresses          σv,o 
 
Optionally, stresses at nodal points can be calculated. The user has to set the switch mitwert in 
*.m13 to mitwert = 1. The stresses are simply averaged out of adjacent elements. Beam 
elements are not included in the averaging process. However, the results are only reasonable 
if all adjacent elements are defined in the same local coordinate system. The user has to take 
high care whether this simplified assumption is fulfilled for the parts of the structure under 
consideration. The averaged stresses can be viewed graphically on the structure using the 
MATFEM postprocessor. 
 

Note:  All stresses are related to a unit shell length (
N

m m2 ). 

 The angle of principal stresses is given in degrees. 
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The stress resultants are calculated from 
 
 - membrane forces     nxx , nyy , nxy    ( i =  x, y) 
 

  ∫σ=
t

m,iiii dzn

 
 - bending moments mxx , myy , mxy      ( i =  x, y) 
 
  dzzm

t
b,iiii ∫ σ=

 
 - shear forces qxz, qyz are calculated from the derivatives of the bending moments 
 

 
y
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∂
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=  
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m
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m
q xyy

yz ∂

∂
+

∂

∂
=  

 
 

 
Fig. 6.2.2.3: GAUSS integration points of a 3 node shell element in the unit coordinate 
system 
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Due that the forces are calculated w.r. to a unit length and the section modulus 

(Widerstandsmoment) of the edges is given by  
6

t*b 2

, where b specifies the actual edge 

length, the element stresses are calculated from 
 

- stress at upper and lower surface of shell element 
 

σo
n
t

m
t

= +
6

2      at upper surface 

(index o derived from the German term oben) 
 

σu
n
t

m
t

= −
6

2      at lower surface 

(index u derived from the German term unten) 
 
 
 

- main stresses σ1,2 and main stress angle alfa  (Hauptspannungen und 
Hauptspannungswinkel) 

( ) ( )σ σ σ σ σ σ1 2
1
2

1
4

2 2
, = + ± − +x y x y xy  

alfa = 
1
2

2
arctan

σ
σ σ

xy

x y−

⎛

⎝
⎜

⎞

⎠
⎟  

 
 
  - ‘von MISES’ stresses σv ( Gestaltänderungsenergiehypothese) 

σ σ σ σ σ σ σ σ σ σv x y= + − = + − +1
2

2
2

1 2
2 2 23x y xy  

 
 

 
 
Fig. 6.2.2.6:  Stresses at upper and lower surface of a 3 node shell element 
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6.2.3  Specification of shell input parameter 
 
 
input data: 
 
element allocation:  specified in *.m04 
material data: specified in *.m06 
element type and 
geometrical data: specified in *.m08 
 
 
 
Parameter vectors: 
 material law:
 Ast   symmetric in-plane stiffness matrix 
 

    
n
n
n

Ast Ast Ast
Ast Ast

sym Ast

xx

yy

xy

xx

yy

xy

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( , ) ( , ) ( , )
( , ) ( , )

( , )

11 12 13
2 2 2 3

3 3

ε
ε
γ

 
   where 
    ε  in-plane strain 
    γ  shear strain 
    n  membrane forces 
 
   only input of upper triangle of Ast required: 
 
   Ast(:,1:6) = [  Ast(1,1),  Ast(1,2), Ast(1,3), ... 
        Ast(2,2),  Ast(2,3), Ast(3,3)  ] 
 
 
  Dst  symmetric bending stiffness matrix 
 

    
m
m
m

Dst Dst Dst
Dst Dst

sym Dst

xx

yy

xy

xx

yy

xy

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( , ) ( , ) ( , )
( , ) ( , )

( , )

11 12 13
2 2 2 3

3 3

χ
χ
χ

 
   where 
    χ  plate curvature 
    m  bending moments 
 
   only input of upper triangle of Dst required: 
 
   Dst(:,1:6) = [ Dst(1,1),  Dst(1,2), Dst(1,3), ... 
        Dst(2,2),  Dst(2,3), Dst(3,3)  ] 
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 Sst  symmetric shear stiffness matrix 
 

    
q
q

Sst Sst
sym Sst

xz

yz

xz

yz

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

( , ) ( , )
( , )

11 12
2 2

γ
γ

 
   where 
    γ  shear strain 
    q  shear forces 
 
   only input of upper triangle of Sst required: 
  
   Sst(:,1:3) = [  Sst(1,1),  Sst(1,2), Sst(2,2)  ] 
 
 
 
 
  alfast  symmetric thermal expansion coefficient matrix 
 

     
ε
ε
γ

xx

yy

xy

alfaxx
alfayy

sym alfaxy

t
t
t

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0
0

∆
∆
∆

 
   where 
    ε  in-plane strain 
    γ  shear strain 
    ∆t  temperature 
 
   only input of upper triangle of alfast required: 
   alfast(:,1:3) = [  alfaxx, alfaxx, alfaxy ] 
 

Es   matrix of shell material laws, automatically assembled from parameter vectors 
Ast, Dst, Sst, and alfast: 
 

   Es = [ Ast, Dst, Sst, alfast ] 
 
 
  Each row of Es represents a complete shell material law and will be referenced for 

each shell by the shell element cards EC_shell or by the direct shell assignment 
vector  ishooke. 

 
 
 geometry 
 dicke  shell thickness 
 
 
 mass
 Roh  mass density 
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Shell element cards: 
 
Shell element cards are specified in the matrix EC_shell( 5, :). Each column of EC_shell 
represents a different element card which comprises assignments to parameter vectors, e.g. 
material law. 
 
EC_shell(  1, :)   element concept 
               (  2, :)   material law (Es  index no.) 
               (  3, :)   shell thickness  (dicke index no.) 
               (  4, :)   mass density    (Roh index no.) 
               (  5, :)   shell reference input coordinate system (CS) 
 
 
Direct shell assignment vectors: 
 
Shell assignment vectors assign parameter vectors to shell elements or comprise the 
parameters directly for each element. Shell assignment vectors are always of length nshel. 
 
 shooke material law  (Es index no.) 
 idicke shell thickness   (dicke index no.) 
 irohdis mass density   (Roh index no.) 
 
 
 
 
 
examples for input in file *.m06 : 
 

isotropic material law (e.g: steel) 
 
di      = 0.14;   % shell thickness 
Emod    = 2.1E11;  % YOUNG’s modulus 
nue     = 0.3;   % POISSON ratio 
 
% --- in-plane stiffness  Ast(:,6)=[Ast11 Ast12 Ast13 Ast22 Ast23 Ast33] 
   Ast= Emod*di/(1-nue*nue) * [1 nue  0  1  0  (1-nue)/2 ]  ; 
 
% --- bending stiffness Dst(:,6)= [Dst11 Dst12 Dst13 Dst22 Dst23 Dst33] 
      Bst= Emod/(1-nue*nue) *di^3/12; 
   Dst= Bst* [1 nue  0  1  0  (1-nue)/2 ] ; 
 
% --- shear stiffness Sst(:,3)= [ Sst11 Sst12 Sst22] 
      Sst= di*Emod/2/(1+nue) * [1 0 1] ; 
 
% --- thermal expansion coefficients alfast(:,3)=[alfaxx alfayy alfaxy] 
      alfast=[0 0 0] ; 
 
 
% --- NOTE:  the matrix of shell material laws Es is automatically 
%    assembled from parameter vectors Ast, Dst, Sst, and alfast : 
%   Es = [ Ast, Dst, Sst, alfast ] 
% 
%    Each row represents a complete shell material law and will be 
%   referenced for each shell by the assignment vector ishooke 

 
Fig. 6.2.3.1:  Input file *.m06, isotropic material law 
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orthotropic material law (e.g. CFK) 
 

 given design and material parameters: 
 
 di    = [ 0.009 ];   % shell thickness 
 nue   = [ 0.3];      % POISSON ratio 
 
 %              CFK 
 Exx = [ 2.8115e10 ]; 
 Exy = [ 0.8631e10 ]; 
 Eyy = Exx; 
 Gxy = [ 0.9741e10 ]; 
 Gxz = [ 0.1072e10 ]; 
 Gyz = [ 0.1013e10 ]; 
 
% --- in-plane stiffness  Ast(:,6)=[Ast11 Ast12 Ast13 Ast22 Ast23 Ast33] 
 
   Ast= [ di( 1) * [  Exx( 1)  Exy( 1)   0  ... 
                 Eyy( 1)   0  ... 
                  Gxy( 1)  ] ]; 
 
% --- bending stiffness Dst(:,6)= [Dst11 Dst12 Dst13 Dst22 Dst23 Dst33] 
 
   Dst= [ di( 1)^3/12 * [ Exx( 1)  Exy( 1)   0  ... 
                  Eyy( 1)   0  ... 
                   Gxy( 1)  ] ]; 
 
% --- shear stiffness Sst(:,3)= [ Sst11 Sst12 Sst22] 
 
   Sst= [           di(1) * [ Gxz( 1)   0  .... 
                  Gyz( 1)  ] ]; 
 
% --- thermal expansion coefficients alfast(:,3)=[alfaxx alfayy alfaxy] 
          alfast=[0 0 0] ; 
 
 
% --- NOTE:  the matrix of shell material laws Es is automatically 
%  assembled from parameter vectors Ast, Dst, Sst, and alfast : 
% Es = [ Ast, Dst, Sst, alfast ] 
% 
%      Each row represents a complete shell material law and will be 
%     referenced for each shell by the assignment vector ishooke 
 

 
Fig. 6.2.3.2:  Input file *.m06, orthotropic material law 
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7. Analysis results, listing, MATFEM data basis
 
 
7.1 Analysis results 
 
The type of analysis results is determined by the type of analysis performed (parameter wahl, 
specified in *.m01). The amount of listing in the output file *.aus can be controlled by the 
parameter drucke. The user can also control the run time display by setting sw_display. Both 
parameters are specified in *.m01. 
All mesh information and the analysis results are available from the MATFEM Data Basis 
(MDB). Refer to chapter 7.2 and 7.3 for more information about the output data file and the 
MDB. 
 

 
 
 
Analysis features and results available: 
 

dynamic analysis (wahl = 2) 
- real eigensolutions (natural frequencies, eigenvectors) of undamped structure 
- complex eigensolutions (damped eigenfrequencies , complex eigenvectors) of damped 

structure 
- rigid body mass matrix w.r. to origin of global coordinate system 
- acceleration frequency domain response due to multi- DOF force input and proportionally 

or  non-proportionally damping  
- acceleration, velocity, displacement time domain response due to multi- DOF force input 
and proportionally or non-proportionally damping  

- single mode indicator function (SIF) 
- multivariate indicator function (MIF), if more than one excitation force is applied 
- substructure coupling using CRAIG-BAMPTON model 
- static model order reduction (GUYAN reduction) 

 
 

static analysis (wahl = 3) 
 - nodal displacements and nodal forces due to 

 - concentrated loads at nodal points 
 - uniformly distributed loads 
 - temperature loads ( for shell elements only) 
 - prescribed displacement 

- static model order reduction (GUYAN reduction) 
- stresses at nodal points or GAUS points (shell elements) 
- stress resultants at nodal points for beam elements 
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calculation of cross section parameters (wahl = 6) 
 - cross section parameters 

 
 

test eigenvector expansion ('blow up') (wahl = 7) 
- eigenvectors of the overall model derived from a selected subset (e.g. measurement 

DOF's)  of the overall DOF's 
 
 

non-linear dynamic analysis (wahl = 8) 
- all results of wahl = 2 are available 
- non-linear acceleration frequency domain response due to multi- DOF force input and 

proportionally or non-proportionally damping 
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7.2  MATFEM listing  file *.aus 
 
For each analysis run a listing file *.aus is created which comprises detailed information 
about 
 

- program flow 
- input parameters 
- analysis results 
- error handling 
 
 

The amount of output in the listing file *.aus can be controlled to some extend by the printing 
switch drucke specified in *.m01. However, the switch drucke does not affect the contents of 
the data files of the MDB. 

 
drucke= 0  minimum output, e.g. 

displacement 
nodal forces 
eigenfrequencies, eigenvectors (mode shapes) 
... 

 
drucke=1  extended output, same as drucke= 0 plus e.g. 
 coincidence table of element connectivity 
 boundary conditions 

distributed loads 
master/slave DOF 
grounded spring elements 
parameters for dynamic response analysis 
element forces of beam elements at start and end node 
element forces of shell elements at GAUSS integration points 
... 

 
drucke=2  extended output, same as drucke= 0 and drucke= 1  plus e.g. 

shell element stresses at GAUSS integration points 
... 
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7.3 MATFEM Data Basis (MDB) 
 
The MATFEM Data Basis (MDB) comprises the following MATLAB *.mat files: 
 
general 
*.bcs boundary conditions  
*.bqd beam principal axis parameters 
*.guv Universal Files of mesh contour (ASCII file !) 
*.koi geometry element coincidences: nodes, DOF, shell type, element cards 

coincidence, ... 
*.kos interface DOF coincidence for Craig/Bampton substructure analysis 
*.mtx system matrices: stiffness, mass 
*.pld basic plot parameters: nodal points, connectivity, ueberschrift, ... 
*.prp properties of shell and beam elements 
*.zuo coincidence table of DOF after introduction of boundary conditions 
*.frc excitation forces 
*.ups prescribed DOF, initial conditions 
 
static analysis 
*.sgp beam and shell stress resultants, shell element stresses at GAUß integration 

points
*.sig shell element stresses at nodal points averaged from adjacent elements 
*.ugf nodal displacements and nodal forces 
*.mxx stress resultants intermediate results of 4 node shell elements to be used for the 

recalculation of shell element stresses (internal use only) 
 

dynamic analysis 
*.mod modal parameters: eigensolution, modal mass ... 
*.acc time domain acceleration response 
*.vel time domain velocity response 
*.dis time domain displacement response 
*.rp1 frequency domain mode indicator functions 
*.rp2 real part of frequency response 
*.rp3 imaginary part of frequency response 
*.ctr control parameters for dynamic response: type of damping, frequency axis 

parameter,... 
*.rst data of residual structure for CRAIG/BAMPTON substructure coupling  
 

non-linear dynamic analysis 
*.phd damping matrix transformed to physical coordinates 
*.nlp parameters of local non-linear elements 
*.rp4 real part of non-linear frequency response (calculated in ‘up’ direction) 
*.rp5 imaginary part of non-linear frequency response (calculated in ‘up’ direction) 
*.rp6 real part of non-linear frequency response (calculated in ‘down’ direction) 
*.rp7 imag. part of non-linear frequency response (calculated in ‘down’ direction) 
*.rp8 real part of total non-linear frequency response (calculated in all directions) 
*.rp9 imag. part of total non-linear frequency response (calculated in all directions) 
*.dyc data for dynamic condensation for non-linear response calculation 
 

postprocessor 
*.adr graphic handles 
 

Detailed information about the contents of the files is given in Appendix B. 
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In each file of the MDB the actual MATFEM runtime identifier MF_RUNID is stored. This 
identifier is a global string variable which is set within each analysis run and consists of the 
MATFEM version identifier, the common file name, actual date and time, e.g. 
 MF_RUNID = '99.01.b018__demo01__26-Apr-0__11:8:16.21' 
The MATFEM runtime identifier is also listed in the *.aus file. This identifier helps to assign 
analysis results of different analysis runs. 
 
 
Retrieving data from the MATFEM Data Basis 
 
There are two different ways to load data from the MATFEM data basis 
 
a)  using the MATLAB command load, 
   e.g.:   load  *.mtx  -mat, 
 
 
b) using the MATFEM MDB data retrieve functions, 
  e.g.: [ K, Ke, Kekoin, Kes, Keskoin, Fei, Ffpg, koin, va, vb, EKaa, mkel, ... 
                   M, Me, Mekoin, Mes, Meskoin, EMaa, Mstarr, MF_RUNID_sav  ]= ... 
                   mf_r_mtx( name_bsp, FID_AUS, warn, MF_RUNID_ref) 
 

There is a data retrieve function for each file of the MDB. Press help mf_r_* , e.g. help 
mf_r_mtx,  for detailed information about the syntax. 
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8. MATFEM GUI 
 
MATFEM main window 
  
 
 
 
 
 

  

select common file  

actual common file 
name (name_bsp)  

MATFEM Release 
select MATFEM demo 

 
 
 

 
Exit MATFEM start analysis 

start MATFEM 
postprocessor 

view frequency response data 
(linear / non-linear) 

edit MATFEM listing 
file *.aus 

start MATFEM 
preprocessor 

 
 
 
 
 
 
 
 
Fig. 8.1: MATFEM Main window 
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MATFEM Preprocessor 
 
 
 
 
 
 
 
 

 

  

select input file structure: 
edition2K:   20 input file (default) 
or  previous MATFEM 16 input file 
structure select input file (pull down menu) 

open selected input file 

 
 Exit MATFEM preprocessor  
 
 
Fig. 8.2: MATFEM Preprocessor 
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MATFEM Postprocessor 
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Exit postprocessor 

animated plot 
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1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

origin of global coordinate 
system 

MATLAB figure 
menubar 

Fi
1) drawtools 
 
Rotate 
Zoom 
 
Axis 
  square (3D) 
  auto 
  on/off 
 
Restore 
 
Menubar 
 
b/w plot to printer
b/w plot to paste 
b/w plot bmp file 
 
Keep figure 
 
Print to Printer 
Print to PS  
Print to HPGL 
Print to Paste 
 
toggle xscale 
toggle yscale 
toggle zscale 
 

g. 8.4: MATFEM results plot (deformed) 
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MATFEM Results Plot (undeformed), MATFEM Plot Panel 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F

2

 

2) Properties 
 
Structural 
Elements 
Nodes 
 
Stress Resultants 
 
principal stresses 
 
local CS 
reference CS 
 
 
numbering 
 
 
show nonlinear elements 
 
close 

list element stress resultants of selected elements 
in a separate window (static analysis only) 

view local element coordinate system (CS) 

close all property windows 

list structural, element and node properties  of 
selected elements in separate windows ( fig. 8.6) 

view principal stresses (static analysis only) 

view reference CS (element, uniform 
global/local, uniform user1)  

view element and node numbers  

view nonlinear elements  

ig. 8.5: MATFEM results plot (undeformed), MATFEM Plot Panel 
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MATFEM Element Property Window 
 
 

 
 

 
 
 
 
 
Fig. 8.6: MATFEM property window: shell element, nodal point 
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 linear element non-linear element 
 

 
 
 
Fig. 8.7: MATFEM property windows: beam elements 
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9. Solutions 
 
9.1 Dynamic linear response analysis in the frequency domain 
 
Using the dynamic response analysis feature in MATFEM it is possible to calculate the linear 
acceleration frequency response  U
 

)()( 2 ωω−=ω UU    (9.1.1) 
 
of selective DOF’s due to a harmonic excitation 
 

tje)j()t( ωω= FF  (9.1.2) 
 
with one or several nodal forces (excitation forces), acc. the basic linear equation of motion 
 

)j()j()j( 2 ω=ω+ω+ω− FUKDM  (9.1.3) 
 

where 
KD,M,  physical system matrices 

ω     excitation frequency 
1j −=  imaginary unit 

 
The selected DOF's are referred as MDOF's (measurement degrees of freedom). The 
amplitudes of the excitation forces may be constant and real valued for all the frequency 
points (spectral lines) included in the analysis or the user may specify general non-constant 
complex excitation forces. Within the MATFEM analysis run the results of the dynamic 
analysis are presented in a plot of the real and imaginary parts of the acceleration frequency 
response. All MDOF’s are overlaid onto the same graph. The user can view the frequency 
response in more detail by using the response postprocessor, fig. 8.1. 
In addition, the Single Mode Indicator Function (SIF, Phasenresonanzkriterium) is calculated 
from the response. 

( )∑

∑

+
=

j

im
i,j

re
i,j

j

re
i,j

UU

U
)i(SIF

 (9.1.4) 
 
where 

im
i,j

re
i,j U,U  real and imaginary part of acceleration frequency response for the 

j-th MDOF at excitation frequency ωi 
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If more than one excitation forces are applied, the Multivariate Mode Indicator Function 
(MIF) [BRILLHART 1] is also calculated. Therefore the eigenvalue problem for each 
eigenfrequency is solved: 
 

( ) ( ) ( )T T T
re re im im 1 0i re re 0iH H H H H H 0⎡− + λ ω + α ω⎣ ⎤ =⎦  (9.1.5)

  
 
where 
 
 ω0i   eigenfrequency (i = 1...m) 
   smallest eigenvalue = multivariate mode 
   indicator function value at ω = ω0i 

( )1 0iλ ω

 H ∈ Rn,ne   FRF matrix (re = real-, im = imaginary part) 
 α(ω0i) ∈ Rne,1  eigenvector = appropriate force vector 
 
This multivariate mode indicator function ( )1λ ω shows explicitly whether all desired mode 
shapes can be excited or not. Furthermore the calculation of the multivariate mode indicator 
function provides the determination of optimum excitation configurations (amplitudes) w.r. to 
the applied excitation force locations to excite the respective modes shapes best. This 
excitation force configurations are referred as the optimum excitation vector foptr and is listed 
in the MATFEM listing file *.aus. If the user would apply this optimum excitation vector in 
the response calculation instead of the originally specified excitation vector the overall 
response at an eigenfrequency ω0i would be dominated by a almost pure response of the 
respective mode shape and therefore fulfill the phase resonance criterion ( SIF(ω0i) = 1). 
 
The response analysis parameters and results are stored in the MDB: 

 
*.ctr response control parameters 
*.frc excitation forces, DOF coincidence 
*.rp1 response/reference MDOF identifier, Single Mode Indicator Function, 

 Multivariate Indicator function 
*.rp2 real part of frequency response 
*.rp3 imaginary part of frequency response 

 
 
NOTE: 
The acceleration frequency response is calculated in MATFEM. 
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(4 MDOF’s, 7 modes, 2 constant real valued excitation force, excitation frequency range 0 ... 220 Hz, 
1000 excitation frequency points with eigenfrequencies included) 

 
Fig. 9.1.1: Acceleration frequency response, Single Mode Indicator Function (SIF) and 

Multivariate Mode Indicator function (MIF) of 4 MDOF’s of a given structure 
(demo01). 
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The parameters of a dynamic frequency domain response analysis are specified in the input 
file *.m14 
 

resp_domain   response domain: 
     = 0   no response calculation (suppress response calculation) 
                       = 1   frequency domain 

= 2   time domain (see chapter. 9.4) 
 
 

Specification of modal parameters used for the response calculation: 
 
name_modalresp  name of  a file with already existing modal data 

if  name_modalresp = []   the actually calculated modal data are used 
 
 nresp  total number of modes to be  included in the response calculation. 
    nresp = 0 suppresses response calculation 
 xeffno mode numbers to be included in the response calculation. 
                   The user must take care that xeffno is less or equal to the number of modes, which 

will be calculated from the eigenvalue problem. 
 
 

Specification of the damping matrix: 
 
The damping matrix can be specified in physical or modal coordinates. The damping 
matrices is assumed to be symmetric. The user has to specify one of the following matrices 
C, xsi, xsid, prop_d 

 
 C   upper triangle of physical damping matrix C (na,na), where na = number 
    of  physical DOF’s  ( line-by-line input ) 
 xsi   upper triangle of non-diagonal modal damping matrix xsi(nresp,nresp) 

xsid diagonal of modal damping matrix xsid (nresp). Input in fractions of critical 
damping 

prop_d alpha and beta –factors as multipliers for the stiffness and mass matrix to generate 
a proportional damping matrix, prop_d(1,2) 

  
Specification of dynamic excitation forces: 
 
 nef   total number of  nodal excitation forces 

knr    nodal points at  which the excitation nodal forces apply, knr( 1, nef) 
ril    DOF direction of knr 

 F    - constant excitation forces w.r. to frequency 
real valued force amplitude F( 1, nef) 
example:  Two excitation forces 1N, 1 N: 

  F= [ 1 1 ]; 

 
     - non-constant excitation forces w.r. to frequency 

complex valued force amplitude F( :, 1+ nef). In the first column the 
excitation frequency axis is specified. In columns 2 .. 1+ nef  the nef 
complex excitation forces w.r. to the frequency axis of column 1 are 
specified 
example:   Two linearly increasing  excitation forces: 1N, 1N at 2 Hz and 
     5N and 3 N at 50 Hz 
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  F= [     2  1  1 
50  5  3 ]; 

 
example:   One linearly increasing complex excitation forces  1N at 2 Hz 

and 5N at 50 Hz 
j = sqrt( -1) 

  F= [         2     0+ j* 1 
50     0+ j* 5 ]; 

 
     Note: The force vector is linearly interpolated to the frequency response axis 
 
 
 Specification of frequency response axis: 

stepno number of excitation frequencies to be generated within lower and upper 
frequency bounds 

flow   lower excitation frequency bound [Hz] 
fup   upper excitation frequency bound [Hz] 
addf    numbers of eigenfrequencies to be included as excitation frequencies 

 
 
 Specification of DOF's for the response calculation (MDOF): 
 
 knresp   node numbers for frequency response calculation 

riresp  DOF directions of knresp 
 
 

 Mode indicator functions, plotting: 
 
imif  switch for calculation of Multivariate Indicator Function (MIF) 
plotresp  switch for plotting the frequency response 
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9.2 Substructure coupling using CRAIG/BAMPTON method 
 
In dynamic analysis of complex structures with a large number of DOF’s the 
CRAIG/BAMPTON (CB) method is a well known method to drastically reduce the overall 
number of DOF’s. Therefore the overall structure is divided into two or more parts: 

- main structure 
- residual structure(s) 
 
 

  
 

Fig. 9.2.1: Main and one residual s
 
 
The main structure is totally rep
represented by a number of interfa
main structure and it is also possib
not coupled to the main structure.
related to the residual structure 
represent the dynamic stiffness o
structure ya are transformed to th
(nq,1) modal displacements q relate
 

a m a= +y T y qΦ  

where 

na       number of DO
nm number of ma
nI      number of int
np = nm – nI = ph
nq ≤ na+nm    no. of retained
index I    related to inte
index a    related to resi
index m related to mas
index p related to phy

      (na,nm) static t1
aa am
−= −T K K
r
e
 

tructure 

resented in physical coordinates. A residual structure is 
ce DOF’s (physical coordinates) which are shared with the 
le to define some additional physical coordinates which are 
 In addition a number of modal DOF’s are used which are 
being fixed at the master DOF’s. These modal DOF’s 
f the residual structure. The (na,1) DOF’s of the residual 
e (nm,1) displacements of the master DOF’s ym and to the 
d to the residual structure being fixed at the master DOF’s. 

(9.2-1) 

F’s of restrained residual structure 
ster DOF’s 
erface DOF’s (≤ nm) 
ysical DOF’s 
 modes 

rface DOF’s 
dual structure, fixed at master DOF’s 
ter DOF’s of residual structure 
sical DOF’s of residual structure 
ransformation matrix (Guyan matrix) 
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Φa = [ ϕ1 ...ϕnq]   (na,nq ) modal matrix of the residual structure fixed at the master DOF’s, 

resulting from the solution of the eigenvalue problem 

( )− + ωa aa aa a
2 M K ϕ = 0     (9.2-2) 

 
The eigenvalue problem of the unconstrained residual structure with free interfaces and 
partitioned with respect to the ya and ym displacements can be expressed by the ym and q 
displacement coordinates using the transformation acc. eq. (9.2-1) together with the identity 
ym =   ym  which leads to 
 

( )− + ωR R R R
2 M K ϕ = 0  (9.2-3) 

where 
index R    related to residual structure, free at interface DOF’s, 
index q    related modal DOF’s of residual structure, free at interface DOF’s, 

 
with the (nm + nq , nm + nq ) Craig/Bampton matrices 
 

m
R

a R

0
0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

K
K

γ
  (9.2-4) 

 
m mq

R
qm Raµ

⎡ ⎤
= ⎢
⎢ ⎥⎣ ⎦

M M
M

M ⎥

⎤⎦

 (9.2-5) 

 
related to the displacement vector 
 

R
T T T

mϕ ⎡= ⎣ y q  (9.2-6) 

 
Km and Mm denote the residual matrices of the structure statically condensed to the master 
DOF’s ym by 
 
 Km = TT Kam  + Kmm (9.2-7) 
 
 Mm =  Mmm + TT Mam + Mma T + TT Maa T (9.2-8) 
 
The matrices γa and µa  in eq. 9.2-4,5 represent the modal stiffnesses, the modal masses and 
the eigenfrequencies of the residual structure fixed at its master DOF’s and calculated from 
eq. (9.2-2) 
 

γa =     diag( γi = µi ωai
2 ) =   Φa T Kaa Φa  (9.2-9) 

µa =    diag( µi )               =   Φa T Maa Φa (9.2-10) 
 

where 
ωai  ( i= 1,..nq ) retained circular eigenfrequencies of residual structure fixed at master 

DOF’s 
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The (nm ,nq) matrix 
 
 Mmq  = (Mma  + TT Maa) Φa (9.2-11) 
 
represents the participation matrix which couples the modal and the master DOF’s. 
 
After partitioning the main structure matrices KM and MM with respect to the (ns, 1) 
displacement vector ys and the (nI, 1) interface displacement vector yI the main structure and 
the residual structure can be assembled as usual by coupling the submatrices at the interface 
DOF’s thus yielding the following eigenequation of motion for the coupled system: 
 

, , , ,

, , , , ,2

, ,

0 0 0 0
0 0 0

0
0 0

M ss M sI M ss M sI s

M II R I M II R I R Iq I

R p R p R pq p

R R

K K M M y
K K M M M y

K M M
q

ω

γ µ

+

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥+⎪ ⎪⎢ ⎥ ⎢ ⎥− =⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

,

R

y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

  (9.2-12) 
 
where 

 index M  related to main structure 
  index R  related to residual structure 
 
The matrices γR and µR in eq. 9.2-12 represent the modal stiffnesses, the modal masses and 
the eigenfrequencies of the residual structure free at its interface DOF’s 
 

γR =    diag( γi = µR,i ωR,i
2 ), (9.2-13) 

µR=    diag( µR,i ). (9.2-14) 
 
This equation represents the classical CRAIG/BAMPTON formulation frequently used for 
substructure coupling analysis. Its accuracy is governed by the number nq of the modes of the 
residual structure which are retained in the modal matrix Φa  in eq. 9.2-1. This formulation 
shows that the main structure is totally described by its physical quantities in the stiffness and 
mass matrix whereas the residual structure is described by its modal parameters. In eq. 9.2-12 
only one substructure is coupled, but the same technique can be used to couple many 
(different) substructures to one main structure. 
 
To couple substructures using the Craig/Bampton method two or more (dependent on how 
many substructures are defined) separate MATFEM analysis runs must be performed: 
 
step 1: analysis of the each residual structure with free interfaces 
  

*.m09  boundary conditions 
 no boundary conditions must be specified. 
 i.e.:  Kux = [ ],  Kuy = [ ] ,  Kuz = [ ] ,  Kuxx = [ ] ,  Kuyy = [ ] ,  Kuzz = [ ] 
  
*.m10  static condensation 
 specification of node numbers with master DOF’s is required 

i.e.:  Hux, Huy, Huz, Huxx, Huyy, Huzz 
  
 numbers of modal DOF's to be saved on file *.rst have to be defined: 
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 e.g.:  qrest = [1 2 4 5 6] 
 

 specification of interface DOF's of substructure to link Craig/Bampton 
substructure to main structure is required: 
i.e.:  Kosx, Kosy, Kosz, Kosxx, Kosyy, Koszz 

 
NOTE: interface DOF’s must be equal or less than master DOF’s defined 

 
no file name name_rst must be specified: 

 name_rst = []; 
 

no effective numbers of modal DOF’s of the main structure qeff must be 
specified: 

 qeff = 0  
 

 no interface DOF's of main structure to link Craig/Bampton substructures to 
main structure must be specified: 

 e.g: Kox = [ ],  Koy = [ ] ,  Koz = [ ] ,  Koxx = [ ] ,  Koyy = [ ] ,  Kozz = [ ] 
 
 
 A *.rst data file is created automatically. This file contains all needed 

information about the residual structure and will be used in step 2. 
 
 
step 2: analysis of the coupled structure 
 

*.m09  boundary conditions 
    boundary conditions may be specified as usual. 

 
*.m10  static condensation 
 no specification of: 

- Hux, Huy, Huz, Huxx, Huyy, Huzz 
- qrest 
- Kosx, Kosy, Kosz, Kosxx, Kosyy, Koszz 

 
The vector of the numbers of modal DOF’s of the residual structures qeff to 
be used for the CRAIG/BAMPTON matrices must be specified: 
e.g.:  qeff = [1 2 3 NaN 2 3 4 NaN 1 2 5 NaN]  (in case of 3 substructures) 
qeff can be empty; then only physical DOF’s are coupled and added to main 
structure. Values of qeff must have been defined in qrest of the 
corresponding substructure in step 1. 

 
 The file name name_rst must be specified for each substructure. Each row 

of name_rst contains the name of one substructure. All names need to have 
the same length. The corresponding *.rst-files were generated in step 1. 
They contain the needed input of the residual structures to assemble the 
CRAIG/BAMPTON matrices. 

 
 specification of interface DOF's of main structure to link Craig/Bampton 

substructures to main structure: 
 i.e.:  Kox, Koy, Koz, Koxx, Koyy, Kozz 
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An example for a substructure analysis with one residual structure using the CRAIG/ 
BAMPTON method is given in the demonstration directory demo09. See also demo09 in 
Appendix D for more information. An example with two residual structures is given in 
demo17. See also demo17 in Appendix D for more information. 
 
 
 
 
 
NOTE:
 
The residual structure should always be specified using the same global coordinate system as 
the main structure. However, if the user prefers to use a local coordinate system for the 
residual structure he must take high care that the local and global coordinate system are 
specified using the same axis orientation. 
 
 
 

Fig 9.2.2:  Axis orientation of
must coincide 

 
 
 
 
NOTE: 
 
Using the CRAIG/BAMPTON 
reduced system can be calculated
 

e 
r
 
 

 local coordinate systems for main and residual structure 

method, ONLY eigenfrequencies and eigenvectors of the 
. NO response can be calculated for the reduced system. 
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9.3 Calculation of cross section parameters 
 
In MATFEM it is possible to calculate the parameters of a given cross section. They are 
derived from the rigid mass matrix properties in the special case that the plane thickness and 
the mass density of all elements describing the cross section are set to unity. In MATFEM the 
rigid mass matrix is calculated from the expression 
 
  (9.3.15) M X Mrigid r

T
r= X

 
where  is the vector of rigid body modes, ref. [LINK 1]. X r

 
 

 
Fig. 9.3.1: Calculation of cross section parameters, (demo12) 
 
 
The user has to specify the following parameters 
 
*.m01  wahl = 6 must be set 
*.m04  specifying the cross section by the geometry elements fla9,flarot,tria,triarot only 
 (no beam elements supported). Input in x,y-coordinates only (plane surface) 
 
An example for this type of analysis is given in the demonstration directory demo12. See also 
demo12 in Appendix D for more information. It is strongly recommended that the user should 
use the demo12 input files as templates for his application. In this case the user only has to 
modify the input file *.m04 to represent the actual cross-section. 
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After the analysis has terminated the user can view the cross section and the corresponding 
parameters using the postprocessor. The cross section parameters are also listed in the *.aus 
file: 
 
A cross section area 
xs x-coordinate of center of gravity 
ys y-coordinate of center of gravity 
Ixx moment of inertia w.r. to x-axis of the origin coordinate system 
Iyy moment of inertia w.r. to y-axis of the origin coordinate system 
Ixy centrifugal moment w.r. to the origin coordinate system 
Ixxs moment of inertia w.r. to x-axis of the center of gravity coordinate system 
Iyys moment of inertia w.r. to y-axis of the center of gravity coordinate system 
Ixys centrifugal moment w.r. to the center of gravity coordinate system 
I1 main moment of inertia (max. value) 
I2 main moment of inertia (min. value) 
phi main axis angle  (in degrees) ( measured anti-clockwise w.r. to x-axis) 
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9.4 Dynamic response analysis in the time domain 
 
The dynamic time domain response of a structure for discrete time steps can be calculated 
within MATFEM based on the linear equation of motion 

it

 
)t()t()t()t( FKUUDUM =++  (9.4.1) 

 
where 

KD,M,  physical system matrices 

U,U,U  acceleration, velocity, displacement 
 
There are four classical methods available [Bathe 1], [Brodkorb 1] to calculate the time 
domain response: 

- finite differences 
- WILSON/TETA 
- NEWMARK 
- exact integration 

 
An example for a dynamic response analysis in the time domain is given in the demonstration 
directory demo13. See also demo13 in Appendix D for more information. 
 
 

 
Fig. 9.4.1: Time domain response of an MDOF for a given excitation, amplitude spectrum of 

the response and the excitation, (demo13) 
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The parameters of a dynamic time domain response analysis are specified in the input file 
*.m14 
 

resp_domain   response domain: 
     = 0   no response calculation (suppress response calculation) 

= 1   frequency domain (see chapter. 9.1) 
= 2   time domain 

 
Specification of modal parameters used for the response calculation: 
 
name_modalresp  name of  a file with already existing modal data 

if  name_modalresp = []   the actually calculated modal data are used 
 

nresp  total number of modes to be  included in the response calculation. 
    nresp = 0  suppresses  response calculation 
 xeffno mode numbers to be included in the response calculation. 
                   The user must take care that xeffno is less or equal to the number of modes, which 

will be calculated from the eigenvalue problem. 
 
 

Specification of the damping matrix: 
The damping matrix can be specified in physical or modal coordinates. The user has to 
specify one of the following matrices C, xsi, xsid 

 
 C   upper triangle of physical damping matrix C (na,na), where na = number 
    of  physical DOF’s  ( line-by-line input ) 
 xsi   upper triangle of non-diagonal modal damping matrix xsi(nresp,nresp) 

xsid diagonal of modal damping matrix xsid (nresp). Input in fractions of critical 
damping 

 
 

 Specification of dynamic excitation forces: 
 

 nef   total number of  nodal excitation forces 
knr    nodal points at  which the excitation nodal forces apply, knr( 1, nef) 
ril    DOF direction of knr 
F excitation forces F( :, 1+ nef). In the first column the excitation time axis is 

specified. In columns 2 .. 1+ nef  the nef excitation forces w.r. to the time axis 
of column 1 are specified. 

 example:  Two excitation forces: a half cosine and a constant excitation force 
             A1 =  2        excitation amplitudes 
             A2 = -5 
             om = 2*pi* 10                   circular frequency 
             t_f= 0: pi/om/ 100: pi/om 
    F= [ t_f',  [ A1* cos( om* t_f)]',  A2* ones( length( t_f), 1) ] 

 
 
 Specification of DOF's for the response calculation (MDOF): 
 
 knresp   node numbers for the response calculation 

riresp  DOF directions of knresp 
 

plotresp   switch for plotting the response 
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 Specification of time response calculation method: 
 
 tdr_calc     finite differences, WILSON/TETA, NEWMARK, exact integration 
 wilsonteta_par  parameter of WILSON/TETA method (default 1.4) 
 newmark_par   parameter of NEWMARK method (default 0.5, 0.25) 
 
 
 
 Specification of initial conditions: 
 

initcond_pnt nodal point number with initial conditions different from zero 
initcond_dir DOF direction of initcond_pnt 
initcond   initial conditions 

 
 
 
 Specification of time response axis: 

The specification of the response time axis is limited to an even spaced time axis. 
 
 tdr_time_axis_par lower time limit, upper time limit, time increment 
 
 
The time domain response analysis results are stored in the MDB: 
 

*.acc time domain acceleration response 
*.vel time domain velocity response 
*.dis time domain displacement response 
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9.5 Calculation of eigensolutions using LANCZOS algorithm 
 
There are four algorithms available within MATFEM to solve the eigenvalue problem 
 

( ) 0=+− XKMλ  (9.5.1) 
where 
 M  mass matrix 
 K  stiffness matrix 
 X  eigenvector 
 λ  eigenvalue 
 
The user must choose one of the algorithms by specifying the parameter ieig in the input file 
*.m14 . The choice depends on whether the stiffness matrix is singular, i.e. rigid body modes 
of the structure are present, or regular. The choice also depends on whether all or only a few 
eigensolutions are required: 
 
 
     ieig = 1  M regular,  K regular 
         MATLAB build-in eigensolution solver eig is used 
         all eigensolutions are calculated 
 
     ieig = 2  M regular, K singular 
         MATLAB build-in eigensolution solver eig is used 
         all eigensolutions are calculated 
 
     ieig = 4  MATFEM LANCZOS algorithm 
         only   nr  eigensolutions are calculated 
 
     ieig = 5  MATLAB build-in LANCZOS algorithm (eigs) 
         only   nr  eigensolutions are calculated 
 
 
Known Limitations 
The MATFEM LANCZOS algorithm (ieig= 4) works quiet well for most applications. 
However, the results may be erroneous in the very special case where the stiffness matrix is 
singular and where the stiffness terms of the overall stiffness matrix are totally decoupled 
from other stiffness terms. Consider a single beam element which local x,y,z axis coincides 
with the global coordinate system XYZ. The overall stiffness matrix of the beam is then totally 
decoupled w.r. to the longitudinal, bending and torsional stiffness. In this special case the 
results of the eigenvalue problem with free/free boundaries may be erroneous. To overcome 
this problem 

- use ieig = 1,  ieig = 2 or ieig = 5 instead 
or 
 - restrain the appropriate DOF’s and solve each rigid body mode separately 
or 

- change the local coordinate system of the structure, so that there is no decoupling of the 
overall stiffness matrix 
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9.6  Dynamic non-linear response analysis in the frequency domain using the ‘Harmonic 
Balancing’ approach 

 
9. 6.1 Theoretical background of local non-linear 2DOF truss elements 
 
Investigating the dynamic behaviour of real structures, non-linear effects can often be 
observed. Using classical linear experimental modal analysis procedures in these cases yields 
erroneous results. Therefore, these non-linear effects must be taken into account by using a 
suitable model. In this approach, the equation of motion is extended by additional terms 
describing the influence of non-linear stiffness and non-linear damping. These terms depend 
on powers of the displacement response. If the non-linearities are assumed to be weak, these 
non-linear equations can be linearized and transformed to the frequency domain following the 
procedure of the ‘Harmonic Balance’ method, [ MEYER 1, MEYER 2]. 
 
We will focus here on 2-DOF Elements which enclose the special case of a SDOF Element. 
These local non-linear elements can be assembled into linear finite element models. 
 
The 2-DOF Element consists of two masses connected by linear and non-linear damper(s) and 
linear and non-linear spring(s). Exemplary, a non-linear 2-DOF Spring is shown in Fig. 9.6.1. 
If a harmonic excitation is applied at mass m1 and/or mass m2, the non-linear spring forces at 
DOF 1 and DOF 2 can be expressed as a function of the power of the relative displacement 
between the two masses. This is also valid for non-linear dampers and the corresponding 
damping forces. 

 ( )( ) ( )aa
nl ufuufF ∆=−= 21  (9.6.1) 

 
 m1 m2 
 
   1u 2u
 
 
 m1 m2 
 

Fig. 9.6.1: 2-DOF Non-linear spring 

Modelling approach in the time domain 
The linear equation of motion is extended by additional stiffness and damping matrices which 
depend on powers of the relative displacement between the masses. This yields the non-linear 
equation of motion in the time domain as 
 

 )t()t()t(u)t()t(u)t()t()t(
b

b
b

a

a
a FUKUCKUUCUM =++++ ∑∑ −− 11 ∆∆   

 (9.6.2a) 
with 

 )t(u)t(u)t(u 21 −=∆ , (9.6.2b) 

 )t(u)t(u)t(u 21 −=∆ . (9.6.2c) 
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The values of a and b can be rational and non-rational. Two nodes can be connected by more 
than one local non-linear spring or damper. 
 
Eqn. (9.6.2a) contains the linear element matrices 

 ,   ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

0
0

m
m

M ⎥
⎦

⎤
⎢
⎣

⎡
−

−
⋅=

11
11

cC ,   , (9.6.3a,b,c) ⎥
⎦

⎤
⎢
⎣

⎡
−

−
⋅=

11
11

kK

and the element matrices describing the non-linear properties 

 ⎥
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⎤
⎢
⎣

⎡
−

−
⋅=

11
11

aa cC ,   ⎥
⎦

⎤
⎢
⎣

⎡
−

−
⋅=

11
11

bb kK , (9.6.3d,e) 

ca , kb = damping/stiffness parameter of type a,b.  
 

Transformation to the frequency domain 
Eqn (9.6.2a) is linearized and transformed to the frequency domain assuming that for weak 
non-linearities the displacements  and  are also harmonic (following the 
procedure of the ‘Harmonic Balance’ approach) 

)t(u1 )t(u2

 )tsin(u)tcos(u)t(u im,re, ωω ⋅+⋅= 111 , (9.6.4a) 

 )tsin(u)tcos(u)t(u im,re, ωω ⋅+⋅= 222 . (9.6.4b) 

Inserting Eqns (9.6.4a,b) into Eqn (9.6.2) yields, after some tedious mathematical operations, 
the following linearized equation of motion for the 2-DOF Element in the frequency domain 
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Eqn (9.6.5a) contains the linear dynamic stiffness matrix lẐ  

  (9.6.5b) 
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with the mass and the linear damping and stiffness matrix according to Eqns (9.6.3a-c) and it 
contains also the non-linear dynamic stiffness matrix nlẐ  
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The displacement vector of the two degrees of freedom is given by . [ ] im,re
T

im,re uu 21=U
 
NOTE:  

The stiffness and damping factors have been changed (indicated by the ‘*’) due to the 
linearization using the ‘Harmonic Balance’ approach. For cubic stiffness/damping this 
yields a

*
aa

*
a kk,cc 4

3
4
3 == . In MATFEM, the user has to specify the stiffness/damping 

factors ka and ca directly. The linearization is done automatically by MATFEM. For 
convenience, the ‘*’- symbol will be neglected in the following text. 

 
According to Eqn (9.6.5b), Eqn (9.6.5c) can be divided into damping- and stiffness parts 
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  (9.6.5d) 

The matrices in Eqns (9.6.5c,d) depend on the non-linearity parameters  and  and on the 
squared maximum displacement amplitude between the two degrees of freedom 

bk ac
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where 2
1

2
1

2
1 im,re, uuu +=  and 2

2
2
2

2
2 im,re, uuu +=  denote the square of the absolute 

response amplitudes. 
Eqn (9.6.5e) yields A = 0 if u1 = u2 ≠ 0, that means the non-linear forces depend on the 
relative displacement and not on the absolute displacement of u1 and u2. 
 
The special case of a SDOF Element is achieved when setting the displacement u1 = 0. That 
leads to a linear and non-linear dynamic stiffness matrix as shown in Eqns (9.6.5b,d) where 
the mass, damping and stiffness matrices only contain one element. The squared maximum 
displacement amplitude according to Eqn (9.6.5e) reduces to 
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11
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⎛ +==

b,a

im,re,
b,a uuuA . (9.6.6) 

The derived non-linear elements (SDOF or 2-DOF) may be assembled into linear FE models 
allowing to model complex structures with local non-linearities like those introduced at joints. 
The response of the non-linear system has to be calculated iteratively in the frequency 
domain. Using such a model to predict the measured response requires to assume numerical 
values for the linear and the non-linear model parameters. 
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9.6.2 Some explanations using local non-linear elements 
 
The response of a system with local non-linearities has to be calculated iteratively. This is 
done using the MATLAB function ‘fsolve’ of the optimization toolbox (version 1.5 or 2.0). 
 
Due to stiffness non-linearity, problems of convergence may occur. A big problem is the so 
called ‘jump phenomenon’ which can be seen if the influence of the local stiffness non-
linearity exceeds a certain limit (which can not be specified). A typical shape of the response 
that has to be expected in such cases is shown in Fig. 9.6.2, where the influence of a stiffening 
stiffness non-linearity is shown qualitatively. 
 
 A [m/s²] 
 
 

f [Hz] 

 
 
 
 
 
 
 
 
 
 
 unstable region 
 
Fig. 9.6.2: Typical response shape of a system with stiffening stiffness non-linearity 
 
 
A problem calculating the response of a system with such a non-linear behaviour is the so 
called ‘unstable region’ where three different response amplitudes are in general possible for 
the same excitation frequency. Only one of these three response amplitudes can be calculated 
using MATFEM. It depends on the starting values, what response amplitude is found. In 
general it can be stated, that it is possible to find either the upper branch of the response curve 
or the lower branch, but it will never be possible to find the middle branch. 
To overcome some of the iteration problems, two major strategies are followed. The first is 
called the response calculation in ‘up’-direction, starting with small excitation frequencies and 
going up to higher excitation frequencies. Doing this, the results of the iterative calculation of 
the response are used to extrapolate the starting values for the response calculation at higher 
excitation frequencies. This is done using linear, quadratic and cubic extrapolation. In the 
ideal case this will lead to a response as indicated by the solid line in Fig. 9.6.3. It can be 
seen, that in the ideal case the total upper branch of the response is calculated and the jump 
occurs at point . 
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Fig. 9.6.3: Typical response shape of a system with stiffening stiffness non-linearity 
 (calculated in ‘up’-direction, ideal case) 
 
 
The second strategy is called the response calculation in ‘down’-direction, starting with high 
excitation frequencies and going down to smaller excitation frequencies. Doing this, the 
results of the iterative calculation of the response are used to extrapolate the starting values 
for the response calculation at smaller excitation frequencies. This is done using linear, 
quadratic and cubic extrapolation. In the ideal case this will lead to a response as indicated by 
the solid line in Fig. 9.6.4. It can be seen, that in the ideal case the total lower branch of the 
response is calculated. 
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Fig. 9.6.4: Typical response shape of a system with stiffening stiffness non-linearity 
 (calculated in ‘down’-direction, ideal case) 
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A big problem is, that these ideal cases are almost never met. Especially during the response 
calculation in ‘up’ direction, problems of convergence often do occur. This leads to a jump to 
the lower branch, although the end of the upper branch (point ) is not reached. This leads to 
a possible response curve which is shown in Fig. 9.6.5. Once the response jumps to the lower 
branch, there is almost no possibility to get back to the upper branch. 
 
 A [m/s²] 
 

direction of the 
response calculation 

 
 
 
 
 
 
 
 
 
 

f [Hz]  
 
Fig. 9.6.5: Typical response shape of a system with stiffening stiffness non-linearity 
 (calculated in ‘up’-direction, general case) 
 
 
The location of the jump depends on the parameters which are set during the call of ‘fsolve’. 
Sometimes even for the same parameters of iteration the jump does occur at different 
frequency points. This behaviour should always be kept in mind when dealing with local non-
linearites.  
 
Another problem is the number of equations that have to be minimized using ‘fsolve’. Due to 
the mathematical formulation of the non-linear equation of motion, the imaginary and the real 
parts of the response at all degrees of freedom (DOF’s) are needed. For the demo16 example 
with 5 DOF’s this leads to a total amount of 5*2=10 values to be minimized using ‘fsolve’. 
The higher the number of equations, the more often iteration problems (no convergence) are 
caused. Some experience with a system having 27 DOF’s (= 54 values to be minimized) 
indicates that for a system of that size these kind of problems do occur and cause a sever lack 
of reproductivity of the location of the jump phenomenon. 
 
 
NOTE:  

The non-linear dynamic response calculation in MATFEM should (by now) only be used 
for small order systems. In the future, the Craig-Bampton sub-structure coupling shall be 
used to minimize the number of DOF’s to improve the robustness and the speed of the non-
linear response calculation. 



MATFEM 04 User’s Guide 9. Solutions 9-23 

 
9.6.3 Specification of local non-linearities: 2DOF truss elements 
 
The specification of the geometry of local non-linear 2DOF truss elements is done in *.m04. 
It is recommended to use lines to define the geometry of these elements. The meshing is also 
done in *.m04 using a partitioning vector. Here, the user must use a partition of [0 1 NaN], so 
that the nodes of the truss element correspond with basic nodal points (BNP). 
 
 
example: 
 
 
     linien = [ 1  6 0; 2 7 0; 3  8 0; 4 9 0; 5 10 0; 6 7 0; 7  8 0; 8 9 0; ... 
                9 10 0; 6 8 0; 8 10 0; 3 8 0; 6  7 0; 7 8 0]; 
 
     xsil   = [ 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1]; 
 
     % coincidence line to beam elementcard EC_beam  
     ec_l_koi = [ 1 1 2 1 1 3 3 3 3 4 4 5 6 7]; 
 

 
Fig. 9.6.6: Specification of geometry of a system with 10 BNP, 11 linear linien parts 

consisting of one element and 3 non-linear linien parts consisting of one element 
(demo16). 7 elementcards are defined, No. 1-4 for linear elements and No. 5-7 for 
non-linear elements. 

 
 
 
The properties of the linear and non-linear elements are specified in *.m07. They are assigned 
in EC_beam. For the non-linear 2DOF truss elements only the beam_type (111), the kind of 
local non-linear stiffness and local non-linear damping and the corresponding stiffness and 
damping factors have to be defined. Each elementcard for a beam_type 111-116 can contain 
up to three (115) or six (all others) local non-linear stiffness elements (max. one for each 
DOF). Each elementcard for a beam_type 111-112, 116 can contain up to six local non-linear 
damping elements (one for each DOF). The stiffness and damping factors have to be specified 
directly in EC_beam (all input w.r. to the local coordinate system!!). All local stiffness 
elements of one elementcard are of the same type of non-linearity (the same holds for the 
local damping). The type of local non-linear stiffness and local non-linear damping can be 
different using the same elementcard. 
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example: 
 
 
% -- linear 2 node, 12 DOF --    nonlinear 2node, 2 DOF 
      EC_beam =  [      102  102  102  102         111    111    111         %  1 
                          1    1    1    1           3      0      2         %  2 
                          1    2    3    4           0      0  1.1781*1e7    %  3 
                          1    1    1    1           0      0      0         %  4 
                          1    2    3    4    1.333*1e11    0      0         %  5 
                          1    2    3    4           0      0      0         %  6 
                          1    2    3    4           0      0      0         %  7 
                          1    2    3    4           0      0      0         %  8 
                          0    0    0    0           0      2      3         %  9 
                          0    0    0    0           0     11.781  1.333*5   % 10 
                          0    0    0    0           0      0      0         % 11 
                          0    0    0    0           0      0      0         % 12 
                          0    0    0    0           0      0      0         % 13 
                          0    0    0    0           0      0      0         % 14 
                          0    0    0    0           0      0      0         % 15 
                          0    0    0    0           0      0      0         % 16 
                          0    0    0    0           0      0      0         % 17 
                          0    0    0    0           0      0      0         % 18 
                          0    0    0    0           0      0      0         % 19 
                          0    0    0    0           0      0      0         % 20 
                          0    0    0    0           0      0      0         % 21 
                 ]; 
 

 
Fig. 9.6.7: Specification of properties of linear and non-linear beam elements. Card 5-7 

contain non-linear element properties (beam_type 111). Card 5 defines a local 
non-linear cubic stiffness of value 1.333*1e11 in local z-direction, card 6 defines 
a local non-linear quadratic damper of value 11.781 in local x-direction and card 7 
defines a local non-linear quadratic stiffness of value 1.1781*1e7 in local x-
direction and a local non-linear cubic damper of value 1.333*5 in local x-direction 
(demo16). 

 
NOTE:  

The values of the type of non-linearity can also be non-rational (e.g. 3.1 or 1.74)! 
 
 
9.6.4 Dynamic non-linear frequency response calculation 
 
The parameters of a non-linear dynamic frequency response analysis are specified in the input 
file *.m14. The input parameters are the same as shown in chapter 9.1 for the linear dynamic 
response calculation. One additional parameter has to be defined to specify the direction of 
the non-linear response calculation: 
 
step_dir   iteration step direction 
 0 – ‘up’ 
 1 – ‘down’ 
 2 – ‘up’ + ‘down’ 
 
 
Start analysis by pushing the ’run ...’ – button. For a view of the linear response results click 
on ‘linear response’, for a view of the non-linear response results click on ‘non-linear 
response’. 
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NOTE: 
The response of the underlying linear system is always calculated first during a MATFEM 
non-linear response calculation. Therefore the non-linear elements are neglected. It has to 
be taken great care, that the underlying linear system consist of only one structure which is 
not separated into decoupled substructures when the non-linear elements are neglected 
during the linear response calculation. 

 
NOTE: 

If the iteration procedure has difficulties to find a stable solution for each excitation 
frequency a first step to improve the results is to increase the number of frequency points 
in the selected frequency range. This will yield better starting values for the iterative non-
linear response calculation and therefore possibly lead to better results. 

 
All input and output parameters are specified in *.aus – file. Please use ‘edit.aus’ button to 
take a look at the specified data. 
 
The linear response analysis parameters and results are stored in the MDB as shown in 
chapter 9.1. The parameters and results of the non-linear response calculation are stored in up 
to six files as listed below: 

 
*.phd damping matrix transformed to physical coordinates 
*.nlp parameters of local non-linear elements 
*.rp4 real part of non-linear frequency response, ‘up’ - direction 
*.rp5 imaginary part of non-linear frequency response, ‘up’ - direction 
*.rp6 real part of non-linear frequency response, ‘down’ - direction 
*.rp7 imaginary part of non-linear frequency response, ‘down’ - direction 
 

 
NOTE: 

The non-linear acceleration frequency response is calculated in MATFEM. 
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9.7  Dynamic Condensation for non-linear response calculation (in the frequency domain) 
 
9. 7.1 Theoretical background of dynamic condensation 
 
For the dynamic condensation, master (index u) and slave (index s) DOF’s have to be defined. 
The system matrices are divided according to these DOF’s as shown in the equation of motion 
given in Eqn (9.7.1): 
 

 2 uu us uu us uu us u u

su ss su ss su ss s

ω ω
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪− + + ⋅⎨ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎪ =⎬ ⎢ ⎥
⎪ ⎪ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

M M C C K K U F
M M C C K K U 0

 (9.7.1) 

 
with . , ,T T

us su us su us su= = =K K C C M MT

 
From the lower row of Eqn (9.7.1) the following mathematical expression for the connection 
between the displacements at the slave DOF’s and the master DOF’s can be derived: 
 
 ( ) ( ) ( )12 2 *

s ss ss ss su su su u uω ω ω ω ω
−

= − + − ⋅ + − ⋅ = ⋅U K C M K C M U T U . (9.7.2) 
 
This yields the transformation matrix T*(ω) for the dynamic condensation: 
 
 ( ) ( ) ( )1* 2 2

ss ss ss su su sω ω ω ω ω
−

= − + − ⋅ + −T K C M K C uM . (9.7.3) 
 
The general transformation matrix T(ω)is then given by:  
 

 ( ) ( )*ω
ω

⎡ ⎤
= ⎢
⎣ ⎦

I
T

T ⎥

) F

. (9.7.4) 

 
The condensed equation of motion can now be calculated using T(ω). This yields  
 
  (9.7.5) ( 2

cc cc cc u uiω ω− + + ⋅ =M C K U
 
with 
 
 ( ) ( ) ( )Re T

cc ω ω⎡= ⋅ ⋅⎣M T M T ω ⎤⎦ ,  (9.7.6) 

 ( ) ( ) (Re T
cc )ω ω⎡= ⋅ ⋅⎣C T C T ω ⎤⎦ , (9.7.7) 

 ( ) ( ) ( )Re T
cc ω ω⎡= ⋅ ⋅⎣K T K T ω ⎤⎦ . (9.7.8) 

 
The condensed system matrices M, C and K in general have complex values (due to the 
complex transformation matrix in Eqn (9.7.4)). The complex parts are so small that they can 
be neglected (as indicated in Eqns (9.7.6-8)). 
 
The condensed force vector is given by     T

c = ⋅F T F . (9.7.9) 
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9. 7.2 Dynamic condensation in MATFEM 
 
Dynamic condensation can only be used for wahl == 8 (non-linear response calculation in the 
frequency domain). To calculate a linear response using dynamic condensation, simply set all 
non-linearity factors in *.m07 (EC_beam) to zero. 
 
All input for dynamic condensation is defined in *.m14. There, the master DOF’s have to be 
defined. 
 
example: 
 
Demo18, ECL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
 
T
r
d
T
t
f
p
b
d
m
s
e
[
T
c

% --- DOF numbers of master DOF's for dynamic condensation (only for wahl == 8) 
 
      % --- master node numbers of main structure 
 
            %- in X -direction   Dcx(1,:) 
               Dcx =  []; 
 
            %- in Y -direction   Dcy(1,:) 
               Dcy =  []; 
 
            %- in Z -direction   Dcz(1,:) 
               Dcz =  [2:5 7 8]; 
 
            %- in XX -direction  Dcxx(1,:) 
               Dcxx = []; 
 
            %- in YY -direction  Dcyy(1,:) 
               Dcyy = []; 
 
            %- in ZZ -direction  Dczz(1,:) 
               Dczz = []; 
 
% --- dynamic condensation  dyn_f(1,:) ----------------------------------- 
      %     all or some discrete excitation frequencies are used to calculate 
      %     the dynamic condensation matrix 
      %     special cases:  dyn_f = [0] --> static condensation 
      %                     dyn_f = [ ] --> using each excitation frequency for condensation 
                   
            dyn_f = []; 
 
% --- dynamic condensation  dyn_wc(1,1) ---------------------------------- 
      %     calculation of transformation matrix including damping  
      %     (exact, dyn_wc = 1, default) or without damping (not exact, dyn_wc = 0) 
       
ig. 9.7.1: Input of master DOF’s in demo18.m14 

he initial system has 27 DOF’s, 13 of them are in translational z-direction, 14 of them are in 
otational yy-direction. These 27 DOF’s are condensed to 6 master DOF’s in translational z-
irection (see Fig. 9.7.1 and ‘demo18’). 
he vector dyn_f can be specified. The specified frequencies (in Hz) will be used to calculate 

he dynamic condensation matrices. The condensation will be exact at the specified 
requencies and the calculated response will therefore be exact, too. For all other frequency 
oints, the calculated response will deviate from the exact response. The larger the distance 
etween excitation frequency point and given frequency in dyn_f, the more the response will 
eviate from the exact value. If only one frequency is specified, the dynamic condensation 
atrix is calculated once and is the same for all excitation frequencies. If no frequency is 

pecified, each excitation frequency will be used to calculate a new condensation matrix for 
ach frequency point. The special case of a static condensation is given by setting dyn_f to 
0]. 
he value dyn_wc can be defined to specify, if the damping shall be taken into account when 
alculating the transformation matrix T(ω) (default) 
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NOTE: 
 Take care that no forces are applied at slave DOF’s (or an error message will be shown). 
 
Some information about the numbers of master and slave DOF’s of the unconstrained and the 
constrained system are saved to MATFEM data basis in *.dyc. 
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9.8 Iterative Calculation of non-linear acceleration response 
 
The iterative non-linear response calculation in MATFEM can be done using either physical 
coordinates or modal coordinates. This can be selected in the *.m14 input template (see 
below) 
 

 
 
 
 

% --- kind of non-linear response calculation  kind_it(1,1) 
      %         = 0 physical iterative response calculation (default) 
      %         = 1 modal    iterative response calculation 
 
            kind_it = [--- input ---]; 
 
Fig. 9.8.1: Selection of non-linear iterative response calculation 
 
The general procedure during the iterative response calculation is explained below. The only 
difference is the definition of the force vectors for physical/modal iteration. Whereas for the 
physical response calculation the system matrices and the corresponding external force 
vectors are used directly, the system matrices and the external force vectors are condensed 
into modal space using the eigenvectors of the underlying linear system. Therfore the 
displacement vectors are replaced by  
 
  (9.8.1) ,

T
re im re im= ⋅U Φ q ,

 
The non-linear acceleration response is calculated iteratively. Therefore, the error between 
external excitation forces and the vector of internal forces (resulting from inertia, damping or 
stiffness) is minimized. This is done using the Least-Squares approach. Shown below is the 
response calculation using the physical system matrices and the corresponding external forces 
directly. 
 
The vector of external excitation forces is given by 
 

 ,

,

ex real
ex

ex imag

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

F
F

F
, (9.8.2) 

 
where the imaginary part (corresponding to the sine part) of excitation usually equals zero. 
But that is no necessity of the presented iteration algorithm. 
 
The Vector of internal forces is given by the left part of the equation of motion, if this is 
written in the 2n*2n –size: 
 

 
2

2

( ) ( )
( ) ( )

real
in

imag

U U
U U

ω ω
ω ω

⎡ ⎤⎡ ⎤− + + − −
= ⋅ ⎢ ⎥⎢ ⎥+ + − + +⎣ ⎦ ⎣ ⎦

UM K K C C
F

UC C M K K
 (9.8.3) 

 
where K(U) and C(U) are non-linear stiffness and damping matrices which depend on powers 
of the relative displacement between two DOF’s. These local non-linear elements lead to non-
linear force-parts, which have to be taken into account. That is the reason, why the response 
calculation has to be done iteratively. 
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For a given excitation frequency ω, the arbitrary selection of initial values for the 
displacement response parts Ureal and Uimag, will yield force vectors Fex and Fin which will not 
be the same. (only in the special case where the sought-after displacement response has been 
used as initial values by some coincidence). The residual is defined by 
 
 ex in∆ = −F F F  (9.8.4) 
 
which will, in general, yield a value unequal to zero. Main objective of the iterative 
calculation of the response is the minimization of the residual given by Eqn (9.8.4). That is 
done by a Least-Squares approach. Therefore, the objective function given by 
 
  (9.8.5) minT= ∆ ⋅∆ →J F F
 
is minimized. The model vector Fin is therefore given by a Taylor-series, which is truncated 
after the first element. 
 
 ( )in anaU = + ⋅∆F F G U  (9.8.6a) 
 
where  

ana
ana U U=

=F F  (9.8.6b) 

  
anaU U=

∂
=
∂

FG
U

. (9.8.6c) 

The residual vector of Eqn (9.8.4) is now given by 
 
   (9.8.7a) ex ana a∆ = − − ⋅∆ = − ⋅∆F F F G U r G U
where 
  a ex ana= −r F F . (9.8.7b) 
 
From the request that 0∂ ∂∆ =J U  the minimum of the objective function can be found. 
Then, the changes of the response values are after one iteration step given by 
 

  ( ) 1T T
a

−
∆ = ⋅U G G G r . (9.8.8a) 

 
The number of parameters (response values) equals the number of available equations. 
Therefore, the sensitivity matrix becomes quadratic. The pseudo-inverse can be replaced by 
the normal inverse of the sensitivity matrix G. That yields 
 
  1

a
−∆ = ⋅U G r . (9.8.8b) 

or 

  . (9.8.8c) ,1

,

real a real

imag a imag

−
∆⎡ ⎤ ⎡

= ⋅⎢ ⎥ ⎢∆⎣ ⎦ ⎣

U r
G

U r
⎤
⎥
⎦

 
The sensitivity matrix is calculated by finite differences. Therefore, for each displacement 
DOF ∆U a vector of the sensitivity matrix G is calculated. 
 



MATFEM 04 User’s Guide 9. Solutions 9-31 

  
( , 0.001 ) ( )

0.001
in j j in

j
j

U U
U

+ ⋅ −
=

⋅
F U F U

G  (9.8.9) 

 
After assembling the complete sensitivity matrix 
 

  ( ) 1

n

jn n n⋅ n⎡ ⎤= ⎣ ⎦G G G G  (9.8.10) 

 
the changes of the response values can be found by using Eqn (9.8.8). The response values 
after the i-th iteration step are given by 
 
  , 1 ,ana i ana i i+ = + ∆U U U . (9.8.11) 
 
These will be used as initial values for the next iteration step. The procedure will continue 
until the norm of the residual vector is under a certain threshold. The criterion for the end of 
the iteration is given by 
 
   ( )normε ≤ ∆F . (9.8.12) 
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