

COMPACT FIRMWARE UPGRADER FOR ROBOT

SYSTEM BASED ON IAP METHODOLOGY

A Design Project Report

Presented to the School of Electrical and Computer Engineering of

Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by

Wancheng Zhou (wz233)

MEng Field Advisor: Prof. Bruce Robert Land

Degree Date: May 2015

ABSTRACT

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Compact Firmware Upgrader for Robot System Based on IAP Methodology

Author: Wancheng Zhou

Abstract:

This project is designed to realize fast, easy firmware upgrade for complex robot

systems. It explores a solution for convenient firmware upgrade process based on In

Application Programing (IAP) method. With this system, engineers are able to

upgrade the whole complex system by simply pressing a button instead of using

different kinds of programmers. It can be further connected to GIT software version

management system so that the latest, stable firmware can be upgrade anytime. In this

way, engineers can avoid unnecessary time lost on finding correct firmware during the

R & D process.

iii

EXECUTIVE SUMMARY

A Cortex-M4 based MCU is selected to perform the firmware upgrade operation.

It is equipped with abundant hardware communication interface and hardware DMA

resources, meanwhile, it also contains hardware encryption, decryption and CRC

modules which can secure and validate the firmware data stream very efficiently.

Also, it owns USB OTG and SDIO interface which provides a convenient way to fetch

firmware from PC via mounting a USB Virtual Disk using with FAT16/32.

Appropriate hardware platform is clearly not enough to realize stable firmware

upgrading. A lightweight communication protocol must also be designed which

should be able to realize handshake, normal request and response functionalities for

both master and slave. Considering that it is impossible to connect all internal modules

to a single, lumped upgrade interface since they may be installed in different locations

due to structural design considerations. In other words, internal modules may be

connected to the upgrade interface either directly or indirectly. This means that the

protocol should support indirect firmware upgrade via other modules.

To expand, a simple user interface is presented by TFT-LCD with touch panel to

allow users to observe firmware upgrade status including all connected modules’

status (online / offline / upgradable etc.). In order verify the system functionality,

USART and CAN bootloaders for AVR and STM32 platform are created. The final

results show that the system can successfully upgrade both AVR and STM32 platform.

This project is designed to realize fast, easy firmware upgrade for complex robot

systems. It explores a solution for convenient firmware upgrade process based on In

Application Programing (IAP) method. With this system, engineers are able to

upgrade the whole complex system by simply pressing a button instead of using

different kinds of programmers. It can be further connected to GIT software version

management system so that the latest, stable firmware can be upgrade anytime. In this

way, engineers can avoid unnecessary time lost on finding correct firmware during the

R & D process.

iv

Table of Contents

ABSTRACT ... i

EXECUTIVE SUMMARY ... iii

Table of Contents ... iv

1. Introduction .. 1

1.1 Problems and Motivation ... 1

1.2 IAP Technology ... 2

2. Design and Implementation ... 4

2.1 Hardware Design ... 4

2.1.1 Hardware Platform Selection ... 4

2.1.2 Level Conversion Circuit Design ... 5

2.2 Software Design ... 6

2.2.1 Smart Link Protocol Design ... 6

2.2.2 Master Upgrader Firmware Design .. 10

A. Interface Driver Design ... 10

B. USB Virtual Disk with FAT 16/32 Driver Design 11

2.2.3 Slave Bootloader Design (AVR) .. 15

2.2.4 Simple GUI Design using TFT-LCD with Touch Function 17

3. Testing and Results ... 20

3.1 Internal SD card R/W Test... 20

3.2 Firmware Transmission Speed (PC to Upgrader) .. 21

3.3 Interface Speed Test... 22

4. Conclusions ... 23

4.1 Future Work ... 23

5. Acknowledgements ... 24

6. Reference ... 25

7. Appendix ... 26

Smart Link (Draft Version).. 26

v

 Traditional Firmware Upgrade Process .. 1

 Block Diagram of Firmware Upgrader Application System 2

 Bootloader and IAP Rationale .. 3

 Hardware Block Diagram ... 5

 Voltage level conversion using an NPN bipolar transistor 5

 Bi-directional level shifter [7] .. 6

 Protocol Version – A (BUS) ... 7

 Protocol Version – B (P2P) ... 7

 Test Outputs from VC Test Bench .. 8

 Smart Link Decode State Machine ... 9

 Bootloader based on Smart Link with AVR Studio (GCC Compiler) 10

 Driver Infrastructure ... 10

 USB host and device library organization[3] ... 12

 Different speed class of SD card ... 13

 Fat-Fs Module Implementation ... 14

 SDIO Read Write Speed Test ... 15

 ATmega1284p Flash Region Assignment .. 16

 Bootloader size configuration ... 16

 AVR Studio GNU Linker Configuration .. 17

 Simple GUI Design for Firmware Upgrader ... 18

 FSMC Bank Address Map .. 19

 RA8875 Address Definition.. 19

 SD Read Write Speed Test.. 20

 Multiple Pressure Testing Results... 20

 Firmware Transmission Speed Test .. 21

 Different Interface Speed Test .. 22

1

1. Introduction

1.1 Problems and Motivation

With the development of robot technology, robotic systems are becoming more

and more complex with various kinds of embedded components such as sensor,

camera, motion control etc. From the perspective of R & D engineers, it is often

difficult to implement complete software version control because of different test

firmware versions, not to mention the Firmware Upgrading Process, even if we can

take good care of software version management. On the other hand, it is also hard to

make sure each component in every robotic system has the same software / firmware

version.

In complex Robot System design, software version control is vital, since these

components are not totally independent with each other, and we need to make sure that

every embedded component has the workable firmware to cooperate with other

components. Figure 1.1 shows the traditional way to upgrade complex system.

 Traditional Firmware Upgrade Process

Assume that we own a good version control system, firmware upgrading process

is also a problem, since each component may have different hardware programming

interface or different IAP protocols. What’s more, we need to take the robot system

 2

apart in order to upgrade some internal “tiny” modules which is definitely suffering

for engineers.

Note that all components are connected with each other via serial ports (USART /

SPI / I2C / USB etc.), we can design a cost-effective device connected to all modules

inside the robotic system which is only responsible for firmware upgrading, and once

the upgrading task finishes, it can be removed as if it never exists. From Figure 1.2 we

can see that the upgrader totally remove human factors from the Firmware Upgrade

process. In this way, a convenient and safe firmware upgrade process can be

guaranteed.

 Block Diagram of Firmware Upgrader Application System

1.2 IAP Technology

In Application Programming (IAP) is widely applied in embedded systems. The

rationale of IAP is pretty simple. However, it needs hardware support (allow self-

programming, allow users to change the program counter any time). Currently, most

intelligent devices support IAP with extra support such as independent bootloader

flash section, software reset function etc. The IAP rationale is be shown in Figure 1.3.

Normally, MCUs execute the program in application region, when it receives an

upgrade request message from HOST (upgrader), it will clean internal registers and

 3

jump to bootloader region, then execute the bootloader program. If the HOST receives

the response message sending from bootloader, it will begin to transmit RAW

firmware data continuously. After the bootloader receives a complete firmware

package, it then programs itself. Specifically, it begins to program the raw firmware

data into application region. After the whole firmware is completely programmed into

the application region, bootloader either performs a software reset or directly modify

the program counter to run program in application region.

 Bootloader and IAP Rationale

 4

2. Design and Implementation

The system design involves in hardware design (hardware platform selection,

hardware interface level conversion) and software design (including communication

protocol design, master firmware design, slave bootloader design and simple GUI

design). After the hardware platform is selected, the first step is to design the

communication protocol, and then use the simplest hardware interface to verify its

basic functionality. Then the bootloader for AVR is designed to quickly check the

stability of communication. The final step is to finalize the protocol and exploit high

speed data transmission via DMA.

2.1 Hardware Design

The hardware design includes core MCU selection and interface level conversion

circuit design. Note that in this project, to save time, a development board is used to

implement the firmware upgrader, but it can definitely re-designed in the future to

reduce cost and size.

2.1.1 Hardware Platform Selection

The hardware of this firmware upgrader should own many common

communication interface, meanwhile, it must own fast storage interface such as SDIO,

USB HOST. In this case, the storage media will be SDHC / TF card since it is very

common, and can be embedded on-board. A good product should put user experience

as the most important factor, even though it may be tough for hardware and firmware

design.

Based on considerations above, the core MCU / Micro-controller is chosen from

ST-Cortex M4 Series, take STM32F407IGH for example, it has abundant peripheral

devices, except for the common communication interface above, it owns USB-OTG

(Host / Slave), FSMC (Flexible Static Memory Interface), DMA (Direct Memory

Access – makes data transmission more efficient), not to mention that it also owns

hardware encrypt / decrypt units which are definitely essential for firmware release.

See Figure 2.1 for more information.

 5

Note that, Ethernet is not a common firmware upgrade interface, furthermore, the

Ethernet physical chip is large and expensive. From the “Cost-Effective” purpose, it is

excluded from the block diagram, but it can be added at any time since STM32F4

itself owns hardware Ethernet even though it needs external PHY.

 Hardware Block Diagram

2.1.2 Level Conversion Circuit Design

Considering that the voltage level of different modules inside the complex system

may differ from each other, normal TTL voltage levels are 5V and 3.3V. For instance,

the firmware upgrader works with 3.3V power supply, while the target AVR platform

is powered with 5V. The rationale of the level conversion circuit is pretty simple. With

discrete bipolar transistor, we can easily realize voltage level conversion.

 Voltage level conversion using an NPN bipolar transistor

 6

Figure 2.2 can convert a voltage swing of 0-3V to a voltage swing of 0-5V. This

method was applied earlier in this project since it is very simple. Note that the pull-up

resistor value will affect the switching speed. The defect of this circuit is that it can

only perform unidirectional level conversion. To solve this problem, MOS-FETs with

backward diode between D and G was implemented to realize voltage level shift. This

level shifter (Figure 2.3) is also widely applied in I2C circuit to realize voltage

conversion.

 Bi-directional level shifter [7]

2.2 Software Design

As mentioned in previous section, the software design contains communication

protocol design (SMARTLINK Protocol), master upgrader firmware design and slave

bootloader design. This section will merge design and software evaluation (if exists

any) together to describe each software part in detail.

2.2.1 Smart Link Protocol Design

The communication protocol should be able to perform basic master and slave

messages (functionalities) described below:

 Request / Response firmware upgrade

This message is used to check device connection or device status, when slave

receive this message, it should response to master based on specific command.

 7

 Request / Response firmware transmission

This message tells slave device that the firmware data is about to transmit, when

slave receives this message, it should respond with the maximum firmware

segment size (internal RAM size) it supports.

 Request / Response firmware raw data transmission

Master send this message to inform slave device to prepare to receive firmware

data. After slave successfully receives the data and program the firmware data

into flash, it should response to the master to report the programming results.

Note that the difference between Master and Slave is not absolute. If module B is

connected to the upgrader indirectly via Module A, then Module A should be able to

perform all master functionalities to Module B in order to perform indirect firmware

upgrade.

Now that all the basic functionalities are defined, the protocol package format

must be carefully designed to meet encryption and package checksum requirements.

Also, it must be able to be applied in either Peer-to-Peer or Bus connection. The

package anatomy is shown in Figure 2.4 and Figure 2.5.

 Protocol Version – A (BUS)

 Protocol Version – B (P2P)

Protocol Version A is suitable for those interfaces which support “Multi-Host”

and the low-layer protocol itself can distinguish different communication peers. For

instance, CAN low-layer protocol contains “Arbitration Field” which is composed of

“Identifier” and “RTR (Remote Transmission Request) bit”. With this field, we can

easily identifier the message sender even though this field is actually used for

communication arbitration (CAN Specification 2.0B).

 8

Compared to protocol version A, version B is kind of verbose. However, this

kind of protocol format is necessary for those “Peer-to-Peer” communication

interfaces. Furthermore, this protocol can be used for “Sub-Module” Firmware

Upgrade. For instance, if a module (module X) is impossible to be connected to the

external interface, but it communicates with one of the modules (module Y) that

connects to the upgrader. In this way, upgrader can send X firmware to Y, and Y

upgrades X indirectly.

Both Protocol A and Protocol B are implemented with CRC-8 / 16 checksum

filed to enhance the communication safety. What’s more, it is also designed for

software convenience: if the “Header CRC8” is wrong, the whole package can be

ignored.

After the package format and functionalities are defined. It must be verified to

make sure that all request / response message can be correctly generated. To achieve

this, a software Test-Bench based on Visual Studio VC++ is created to explicitly

verify Smart Link.

 Test Outputs from VC Test Bench

 9

Figure 2.6 shows the results of P2P message (Protocol Version B) validation, As

soon as it passed the validation, the next step is to utilize the Smart-Link: It must be

lightweight, be compatible to most popular C compilers and be efficient. To achieve

this, a “Header File Only” Smart Link is further designed to meet these requirements.

Specifically, inline functions are widely used in Smart Link. The purpose of inline

functions is to achieve the same performance as macro function, and it can also be

further utilized based on different C compilers. For instance, to avoid the compiler not

to inline the functions, some C compilers let users to use some special assignments to

force the function to be inlined (__attribute__((always_inline))). The core function that

will affect the protocol efficiency would be the function which is used to decode the

message. Considering the compatibility and mobility, the function should be called

continuously as long as the interface receive buffer is not empty. The state-machine of

decode function is shown in Figure 2.7.

 Smart Link Decode State Machine

To verify real bootloader application size with Smart Link, a AVR bootloader

based on Smart Link is designed to explicitly validate the protocol from the

perspective of generated code size and RAM consumption (Smart Link need buffer for

package decoding and bootloader needs buffer to program internal flash). Figure 2.8

shows the compiler output information with ATMEL Studio v6.2.1563. Note that the

firmware data buffer size is 512 bytes while package segment buffer size is 256 bytes,

plus the debug buffer (256 bytes), exclude these buffer consumption, Smart Link

roughly use 435 bytes. Note that implementing software encryption / decryption

 10

functions will make the bootloader size exceed boot region limitation, so it is not

included.

 Bootloader based on Smart Link with AVR Studio (GCC Compiler)

2.2.2 Master Upgrader Firmware Design

The master upgrader firmware is composed of interface driver design, USB

Virtual Disk with FAT 16/32 driver design and simple GUI design.

A. Interface Driver Design

The interface driver should be designed with a good structure. To guarantee the

firmware transmission efficiency, a interrupt based architecture is implemented,

meanwhile, considering that all communication interfaces can be mapped to RX and

TX subject interfaces, and most MCUs contain separate Transmit and Receive ISRs

(Interrupt Service Routine), including DMA (contains TX DMA and RX DMA).

Based on this point of view, the driver architecture is shown in Figure 2.9, left block

diagram shows abstracted interface for user while the right block diagram provides

data source for the abstracted layer.

 Driver Infrastructure

 11

As shown in Figure 2.9, the driver layer and BSP (Board Support Package) layer

are clearly separated. All user functions are named as “Drv_xx_cbISR()” which

means it is a call-back function from low-layer ISR. Except for considerations above,

there still exists many notes for different interfaces.

 SPI and USART are the most common communication interface. And the

DMA function is pretty easy to be implemented with buffer pointer and user

specified data length. For implementation purpose, all the hardware

addresses are defined in macro, which can be easily ported to any platform.

 I2C is a well-known illness for STMicroelectronics, and this “illness” started

from CM3 (famous STM32F103). Even though CM4 platform fixed this

problem, official I2C library (CPAL) is not so efficient for firmware

upgrading. In this project, I2C and DMA interrupt are combined together to

achieve high performance.

 CAN is largely used in industrial embedded applications, plus, it supports

“Multi-Host”, thus, it is a very important firmware upgrade interface. In this

project, cooperated with PC-Client Software, user can freely assign CAN-ID

to the upgrader, target board components with CAN interface. It is very

flexible and stable due to its robust low-layer communication protocol.

 USB and FSMC (Flexible Static Memory Controller) are two famous

interfaces in STM32F series, and these two interfaces are very important in

this project. USB is responsible for data transmission between PC client and

storage media while FSMC is responsible for fast display (TFT). USB

interface is assigned with DMA channels to ensure transmission speed (will

be further verified). FSMC has no DMA support, therefore, software

utilization (mainly on memory operation) is essential.

B. USB Virtual Disk with FAT 16/32 Driver Design

Considering the system integrity and user experience – user don’t need to pull the

SD card out of upgrader in order to store latest firmware, instead, just connect the

upgrader to PC, and drag raw firmware file into it! Furthermore, in the future, eMMC

 12

can be directly embedded (SDIO 8-bit interface) to upgrader. Obviously, users would

not like to spend a lot of time to store firmware to upgrader, thus, high-speed R/W

performance of USB Virtual Disk implementation is very important.

STMicroelectronics provide an easy way to implement USB Device or Host

functionalities. In this project, USB is implemented as a device. Specifically, USB

Device MSC (Mass Storage Class) is used in this project. Also, a FAT 16/32 is

implemented so that the on-board SD card can be directly mounted as a disk. This is

designed to make user can store the latest firmware to upgrader’s on-board SD card

easily. It also provides the possibility to let the upgrader to be able to connected to

GIT software management system and retrieve the latest stable firmware

automatically. Figure 2.10 shows the USB host and device library organization.

 USB host and device library organization[3]

Note that the USB interface speed selected in this project is USB-FS (Full Speed

12.0 Mbps), since for STM32F407, if we want to achieve USB-HS (High Speed

480Mbps), an external ULPI chip (such as Microchip - USB3300) must be

implemented. However, it is not necessary in this project, even though we obviously

want to store the firmware from PC to upgrader quickly, it is not the bottleneck of

upgrade speed. 12Mbps is fast enough for normal firmware size (less than 12MB).

 13

Note that the original USB library should be modified to increase USB transmission

speed (Refer to Section 3.2 for details). Furthermore, we can turn on DMA (DMA2 –

Stream 6) acceleration for SDIO to dramatically improve the SDIO performance.

Another important note is actual USB-VBUS hardware design. STM32 offers the

ability to trigger USB initialization process via enabling the hardware VBUS sensing

function. But it is an ignorable function even though it can avoid un-necessary USB

connection polling process, the reason is that the SDIO interface is only enabled when

the upgrader is connected to PC, it is definitely fine to check PC connection via

polling method since it is the only running task.

Now that we have USB hardware support, the next important step is to

implement the Fat-Fs open-source file system using SDIO 4-bit interface. Compared

to normal SPI interface, SDIO is much faster and it consumes more CPU resource.

Compared to SPI operation mode, the biggest advantage to use SDIO is that it

separates command line and data lines. With SDIO interface, commands can be sent

concurrently with data, it is definitely much faster than SPI. The speed class of SD is

as important as interface speed. Shows different speed class of different SD cards.

 Different speed class of SD card

From this table, there actually exists a difference between the maximum SDIO

interface speed and actual SD card speed. In other words, the actual data transmission

 14

speed is limited by SDIO interface. Since the SDIO clock frequency of STM32F407 is

fixed at 48MHz, this means that SD card must support SDIO high speed (50MHz).

The SD card chosen in this project is manufactured by Kingston UHS-I SD card

(SDHC Class 4: speed > 4MB/s). Please note that the clock speed doesn’t stands for

actual data transmission speed, we can quickly forward the data stream via SDIO, but

SD card still need time to program the data stream into internal storage.

After the SDIO configuration, the next step is to implement low level SDIO

control with Fat-Fs hardware layer. The FatFs version used in this project is R0.10b.

It is fairly easy to transplant the Fat-Fs module, the only thing needs to do is change

the low layer file “diskio.h”, specifically, re-map the SD_disk_initialize(),

disk_initialize(), disk_read() and disk_write() functions to corresponding

STM32F4 SDIO functions. The mapping table is shown in Figure 2.12.

 Fat-Fs Module Implementation

As soon as the Fat-Fs is implemented and SD card can be successfully initialized,

a speed test function is designed to explicitly validate the performance of SDIO 4-bit

mode when the upgrader is connected to PC. Figure 2.13 shows the SD card Read /

Write Speed Test results.

 15

 SDIO Read Write Speed Test

The result shown above is expected, the reason that write speed is much slower

than read is because Write operation requires file system to search free space to store

new data which consumes a lot of time. What’s more the write operation also needs to

read file allocation table, and perform verification process after the write operation is

over.

2.2.3 Slave Bootloader Design (AVR)

To verify the upgrader, a test bootloader must be designed. In this project, the

AVR board (ATmega16) used in ECE4760 to verify the basic functionalities of

firmware upgrader. This AVR bootloader is also a demonstration on how to use Smart

Link protocol.

To start with, the AVR bootloader region and size must be clarified. The flash

region allocation for ATmega1284p is shown in Figure 2.14.

 16

 ATmega1284p Flash Region Assignment

From the figure above, we can see that the boot flash section is at the bottom of

the flash. All we need to do is to make sure the bootloader code is within appropriate

size. Once we define the bootloader start address, memory location should be assigned

for ISP programming. According to ATmega1284p datasheet, the maximum

bootloader size is 4096 bytes (4KB), this means that the size of bootloader application

cannot exceed 4KB. It is a good way to validate the Smart Link protocol to see

whether it is “light” enough or not. Figure 2.15 shows the FUSE configuration for

bootloader size selection.

 Bootloader size configuration

Note that, if we program the BOOTRST fuse bit to “0”, the program counter after

reset will always be the start address of bootloader. To make sure that the AVR Studio

can correctly program the bootloader into configured flash region, its linker must be

 17

configured to bootloader start address. Also, note that Figure 2.15 shows the address

in WORD format, and GNU linker use BYTE address to specify programming

location, so if the boot reset address is 0xF000, then corresponding linker byte address

is 0x1E000. The linker configuration is shown in Figure 2.16.

 AVR Studio GNU Linker Configuration

The last problem needs to solve is how to jump from bootloader to application.

There exists two ways to perform this action. One way is to use assembly function

“asm("jmp 0x0000\n")”, another way is to define a null application function which

starts from “0x0000”. These two ways are both valid, except for that the second

solution actually performs a function call which will push intermediate variables into

stack, and it will also slightly increase the bootloader size. In this project, the first

solution is applied. An important note here is that all initialized peripherals must be

de-initialized to perform a clean jump so that the application will run without register

contamination. After the bootloader is set up, a simple test application which simply

blinks the LED is created to verify the bootloader functionality.

2.2.4 Simple GUI Design using TFT-LCD with Touch Function

To make it much easier to use, a simple GUI is created to allow users to operate

the firmware upgrader easily. The basic functionalities designed in this demo includes

“Browse SD”, “Connect PC”, “SD Speed Test”, “Connect Device” and “Upgrade

Device”. The whole GUI’s color scheme is designed based on WinXP style. Shows

the simple GUI interface.

 18

 Simple GUI Design for Firmware Upgrader

The TFT-LCD main controller used in this project is RA8875 which owns

768KB DDRAM. Generally, operating the LCD equals to operating the display RAM.

STM32F407 owns hardware FSMC (Flexible Static Memory Interface) which can be

used to efficiently write to or read from the DRAM. All we need to do is to assign the

address for the display RAM. The address for display RAM is actually defined by

hardware connection and the BANK region of FSMC mapped memory.

In this project, the RS signal (write register or write RAM data) of RA8875 is

connected to FSMC_A18, note that in 16-bit mode, the internally generated hardware

address HADDR [25:1] is actually the value of hardware FSMC address line A [24:0]

(See Figure 2.18). In this scenario, FSMC_A18 is corresponding to the address

HADDR [19]. Also, we selected address 0x6C00_0000 of FSMC Bank 1 (starts from

0x6000_0000) for display address (STM32F4xx User Manual Table 168 Note). Then

the actual address for RA8875 registers is 0x6C00_0000 + (1 << (18 + 1)).

 19

 FSMC Bank Address Map

In actual programming, we can simply define the register / RAM RW operation

address shown in Figure 2.19.

 RA8875 Address Definition

With this kind of definition, we can simply RW either RA8875’s RAM or

registers by simply reading or writing to corresponding address. There still exists so

many utilization that can be applied to efficiently operate the LCD, which will not be

further discussed due to document space limitation.

 20

3. Testing and Results

To fully verify the whole system, appropriate testing is also very important. The

test includes: Internal SD card R/W Test, PC to upgrader R/W speed test, UART to

AVR firmware upgrading test and CAN to STM32 firmware upgrading test.

3.1 Internal SD card R/W Test

This test aims to validate both SDIO (4-bit mode) and Fat-FS performance. The

test program is designed to recursively write natural numbers to SD card by creating a

test text file (2MB), and then read it out. By using internal System Tick to count the

read, write time, RW speed can be explicitly calculated in a very accurate way. As

mentioned above, user can test SD card any time. Figure 3.1 shows the one of the

testing results.

 SD Read Write Speed Test

Multiple tests are executed to fully validate the SD RW performance. The results is

shown in Figure 3.2.

 Multiple Pressure Testing Results

Test # Read Speed (KB/s) Write Speed (KB/s)

0 4196 1356
1 4213 1391
2 4205 1270
3 4213 1396

Average 4206.75 1353.25

 21

3.2 Firmware Transmission Speed (PC to Upgrader)

This test is an enhanced test that covers the test in previous section, plus the USB

transmission speed test. The firmware transmission speed can directly impact user

experience. The expected write and read speed should be lower than direct SDIO R/W

speed since USB is involved. In real test, the R / W speed is actually limited by the

FS-USB interface (12Mbps). Before doing this test, the SD card is formatted with

official formatting tool to guarantee the accuracy of testing results. The test includes

single file and scattered files R/W test with different size. The result is shown in

Figure 3.3.

 Firmware Transmission Speed Test

Note that, the STM32 USB library is modified to achieve this performance, original

library can only achieve 33KB/s (EP-OUT: Master to Slave) performance. By

modifying the maximum transfer size from 64 to 65536 (Increase internal data buffer

size) and use PING-PONG buffer strategy to implement BULK transmission, the USB

transmission speed can be increased up to 1215 KB/s.

Read Speed (KB/s) Write Speed (KB/s) Read Speed (KB/s) Write Speed (KB/s)

512 KB 924 652 785 450
1 MB 985 671 797 502
2 MB 1017 695 812 519
4 MB 1123 704 907 517

Single File Scattered Files (8 Files)
Size

 22

3.1 Interface Speed Test

This test aims to verify the firmware upgrading efficiency, in this test, USART,

USART with DMA and CAN interface are tested with different firmware size. Shows

the testing results.

 Different Interface Speed Test

From the result above we can see that, DMA can indeed save time. If the receiver

(AVR Board) also support DMA, then the performance would definitely be better.

Note that STM32 USART can achieve 10.5Mbps transmission speed while the

maximum BAUD configuration for ATmega1284p is only 115200bps. From This

point of view, the firmware transmission speed is actually limited by target device.

This limitation can also be observed from the comparison of USART and CAN

(10Mbps). Note that, there also exists a factor that may affect transmission speed –

CRC8 / CRC16 package verification and decryption. If the target device has no

corresponding hardware units, then software solution must be applied, thus it will also

hurt firmware upgrade efficiency.

3 6 11.8 24.7
UART 275 600.5 1265.74 2450.82
UART-DMA 272.37 593.42 1234.28 2395.82
CAN 30.62 79.612 131.675 275.392

0

500

1000

1500

2000

2500

3000

U
pg

ra
de

 T
im

e
(m

s)

Interface Speed Test

UART UART-DMA CAN

 23

4. Conclusions

In this project, an efficient firmware upgrader was designed and could perform

firmware upgrade to target device based on IAP methodology. Multiple interface

drivers are designed to verify system efficiency. From this project, I learned that a

good embedded system is not only composed of high-quality hardware, firmware

design is also important. Good firmware design sometimes can make up hardware

defects while slight hardware modifications can make the software design easier. For

embedded system design, both hardware and software are scalable. Even though this

system can perform required standard firmware upgrade process, it still exists some

defects and so much space for further modifications and improvements.

4.1 Future Work

Currently, when multiple device are connected to this system, it can only perform

firmware upgrade process in order. However, it is possible to upgrade all connected

systems simultaneously using interrupt-based data transmission strategy. Once the

protocol version, target device ID and firmware segment size is identified, firmware

data transmission can be automatically triggered by interface transmission interrupt.

However, with this kind of architecture, the software design will become much more

complicate since there exists multiple interrupt service routine to be handled, and

current Smart-Link may need to be modified to cooperate with this kind of design.

As mentioned in the abstract, a PC Client application can be designed to achieve

“Hardware Customization”, user can define system module inter-connection, interface

type and more important, automatically fetch the latest, stable firmware from GIT

software management system. It indeed needs to be carefully designed to make the

upgrader much more easy to use.

Another improvement is upgrader’s own GUI design. Current project

implemented a TFT-LCD to improve user experience, it can be replaced with small

OLED module and simple buttons.

 24

5. Acknowledgements

I would like to thank my advisor – Professor Bruce Land for his trust and

encouragement. His trust always give me power to overcome one difficulty after

another, also, he gave me so many valuable suggestions that make this project much

easier to finish. I also learned a lot from his class, his bottomless knowledge always

brings me to an unknown field. I feel so lucky to be one of his students.

I also want to thank Cornell ECE for providing me with such a great place to

learn, share and move forward. Learning in Cornell would be an indelible experience

for me. Sincere thanks to all my professors and excellent classmates.

 25

6. Reference

[1]. STMicroelectronics. STM32F4 Series User Manual Rev 2, http://www.st.com;

[2]. STMicroelectronics. “Production programming solutions for the STM32”;

[3]. STMicroelectronics. “USB On-The-Go host and device library User Manual”;

[4]. RA8875 Character / Graphic TFT LCD Controller Specification;

[5]. SD Group, and SD Card Association. "SD Specifications Part 1 Physical Layer

Specification";

[6]. SD Group, and SD Card Association. "SD Specifications Part E1 SDIO

Specification";

[7]. NXP Semiconductors. “Level shifting techniques in I2C-bus design” “v.01”;

[8]. Specification, Universal Serial Bus. "Rev. 2.0." ARM, http://www.arm.com

(2000).

[9]. FatFs Module Specification, http://elm-chan.org;

[10]. Specification, C. A. N. "v2. 0." Common Public Radio Interface (CPRI)

(2004): 1-75.

http://www.st.com/
http://www.arm.com/
http://elm-chan.org/

 26

7. Appendix

Smart Link (Draft Version)

#ifndef _SMARTLINK_H_
#define _SMARTLINK_H_

/**

**
**
 * @file smartlink.h
 * @author Wancheng Zhou
 * @version beta
 * @date 08-November-2014
 * @brief This file provides firmware functions to manage the following
 * functionalities of Firmware Upgrader.
 * + Package Request Message from Master
 * + Package Response Message to Slave
 * + Decode Firmware Upgrade Message
 *
 * @verbatim
 *

**
**
 **/

/* Includes --
--*/

#include <stdint.h>
#include "crc_check.h"

#ifdef __cplusplus
extern "C" {
#endif

/*
* SMTLINK Protocol Definition
*
* P2P Interface Protocol (Such as USART / SPI etc.)
*

* | SOF | VERLEN | HDRCRC8 | SND | RCV | SEQ | CMDTP | CMDID | DAT |
PKGCRC16 |
*
|__1__|____2___|____1____|__1__|__1__|__2__|___1___|___1___|__n__|____2_____
|
*
* Message Length (Byte): 12 + n
*
* BUS Interface Protocol (Such as CAN)

 27

* ___
* | SOF | VERLEN | HDRCRC8 | CMDID | DAT | PKGCRC16 |
* |__1__|____2___|____1____|___1___|__n__|____2_____|
*
* Message Length (Byte): 7 + n
*/

/* Private define --
--*/

#define SMTLINK_HOST_ID 0xE5
#define SMTLINK_CRC8_KEY 0xFE
#define SMTLINK_CRC16_KEY 0xFEFE
#define SMTLINK_STX
0x55
#define SMTLINK_STX_LOC 0
#define SMTLINK_VER_LEN_LOC 1

#define SMTLINK_VER_WIDTH 6
 /*!> Version:
6-Bit */
#define SMTLINK_LEN_WIDTH 10
 /*!> Length: 10-Bit
*/
#define SMTLINK_GET_VER(dat) (dat & 0xFC00) >> 10
 /*!> "dat" is 16-Bit VERLEN region */
#define SMTLINK_GET_LEN(dat) (dat & 0x03FF)
 /*!> "dat" is 16-Bit VERLEN region */

#define SMTLINK_HDR_CRC8_LOC 3
#define SMTLINK_SNDR_LOC 4
#define SMTLINK_RCVR_LOC 5
#define SMTLINK_SEQ_NUM_LOC 6
#define SMTLINK_CMD_TP_LOC 8

#define SMTLINK_P2P_CMD_ID_LOC 9
#define SMTLINK_BUS_CMD_ID_LOC 4

#define SMTLINK_P2P_DAT_START_LOC 10
#define SMTLINK_BUS_DAT_START_LOC (SMTLINK_P2P_DAT_START_LOC
- 5)

#define SMTLINK_P2P_FWUPDREQMSG_LEN 21
#define SMTLINK_BUS_FWUPDREQMSG_LEN
(SMTLINK_P2P_FWUPDREQMSG_LEN - 5)
#define SMTLINK_P2P_FWUPDRESPMSG_LEN 13
#define SMTLINK_BUS_FWUPDRESPMSG_LEN
(SMTLINK_P2P_FWUPDRESPMSG_LEN - 5)

#define SMTLINK_P2P_FWRCVREQMSG_LEN 25
#define SMTLINK_BUS_FWRCVREQMSG_LEN
(SMTLINK_P2P_FWRCVREQMSG_LEN - 5)
#define SMTLINK_P2P_FWRCVRESPMSG_LEN 15
#define SMTLINK_BUS_FWRCVRESPMSG_LEN
(SMTLINK_P2P_FWRCVRESPMSG_LEN - 5)

#define SMTLINK_P2P_FWDAT_START_LOC (SMTLINK_P2P_DAT_START_LOC
+ 7)
#define SMTLINK_BUS_FWDAT_START_LOC (SMTLINK_BUS_DAT_START_LOC
+ 7)

#define SMTLINK_P2P_FWTXREQMSG_LEN(segsz) (12 + 7 + segsz)
#define SMTLINK_P2P_FWTXRESPMSG_LEN 13
#define SMTLINK_BUS_FWTXREQMSG_LEN(segsz)

 28

#define SMTLINK_P2P_FWDAT_START_LOC (SMTLINK_P2P_DAT_START_LOC
+ 7)
#define SMTLINK_BUS_FWDAT_START_LOC (SMTLINK_BUS_DAT_START_LOC
+ 7)

#define SMTLINK_P2P_FWTXREQMSG_LEN(segsz) (12 + 7 + segsz)
#define SMTLINK_P2P_FWTXRESPMSG_LEN 13
#define SMTLINK_BUS_FWTXREQMSG_LEN(segsz)
SMTLINK_P2P_FWTXREQMSG_LEN(segsz) - 5
#define SMTLINK_BUS_FWTXRESPMSG_LEN
SMTLINK_P2P_FWTXRESPMSG_LEN - 5

typedef enum {
 SMTLINK_BUS_VER = (0),
 SMTLINK_P2P_VER = (1),
 SMTLINK_ERR_VER = (3)
} SMT_Ver_TypeDef;

typedef enum {
 SMTLINK_CMD_REQ_FW_UPD = (0),
 SMTLINK_CMD_REQ_FW_DAT = (1),
 SMTLINK_CMD_TX_FW_DAT = (2),
 SMTLINK_CMD_TX_FW_DONE = (3)
} SMT_CmdID_TypeDef;

typedef enum {
 FW_UPD_CHECK_STX = (0),
 FW_UPD_CHECK_HDR_CRC = (1),
 FW_UPD_CHECK_PKG_CRC = (2)
} FW_PkgCheck_TypeDef;

typedef enum {
 SMTLINK_PKG_TP_REQ = (0),
 SMTLINK_PKG_TP_RESP = (1)
} SMT_Pkg_TypeDef;

typedef enum {
 SMTLINK_PKG_NO_ACK = (0),
 SMTLINK_PKG_NEED_ACK = (1)
} SMT_PkgAck_TypeDef;

typedef struct {
 SMT_Ver_TypeDef pkg_ver;
 uint8_t sender;
 SMT_CmdID_TypeDef cmd_id;
} SMTLINK_MsgInfo_TypeDef;

__inline SMT_Ver_TypeDef SMTLINK_GetPkgVer(uint16_t pkg_verlen) {
 return (SMT_Ver_TypeDef)((pkg_verlen & 0xFC00) >> 10);
}

__inline uint16_t SMTLINK_GetPkgLen(uint16_t pkg_verlen) {
 return (pkg_verlen & 0x03FF);
}

 29

__inline uint16_t SMTLINK_PackVerLen(SMT_Ver_TypeDef version,
uint16_t len) {
 return (uint16_t)(((version & 0x1F) << 10) | (len & 0x3FF));
}

__inline SMT_Pkg_TypeDef SMTLINK_GetPkgType(uint8_t cmd_tp) {
 return (SMT_Pkg_TypeDef)(cmd_tp & (1 << 7));
}

__inline SMT_PkgAck_TypeDef SMTLINK_GetPkgAckType(uint8_t cmd_tp) {
 return (SMT_PkgAck_TypeDef)(cmd_tp & (1 << 6));
}

__inline uint8_t SMTLINK_PackPkgAckTp(SMT_Pkg_TypeDef pkg_tp,
SMT_PkgAck_TypeDef ack_tp) {
 return (uint8_t)((pkg_tp << 7) | (ack_tp << 5));
}

__inline void SMTLINK_PackMsgHead(
 SMT_Ver_TypeDef smt_ver,
 SMT_Pkg_TypeDef pkg_tp,
 SMT_PkgAck_TypeDef ack_tp,
 SMT_CmdID_TypeDef cmd_id,
 uint8_t sdr_id,
 uint8_t rcv_id,
 uint8_t *msg_buff,
 uint16_t msg_len)
{
 uint16_t pkg_verlen;
 uint8_t pkg_ack_tp;
 uint16_t pkg_seqnum;
 uint8_t cmd_id_loc;

 pkg_verlen = SMTLINK_PackVerLen (SMTLINK_P2P_VER, msg_len);
 pkg_ack_tp = SMTLINK_PackPkgAckTp (pkg_tp, ack_tp); /* Request Package,
Need ACK */
 cmd_id_loc = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_CMD_ID_LOC) :
(SMTLINK_BUS_CMD_ID_LOC);
 pkg_seqnum = 0x0000;

 msg_buff[SMTLINK_STX_LOC] = SMTLINK_STX;
 (uint16_t)(&msg_buff[SMTLINK_VER_LEN_LOC]) = pkg_verlen;
 msg_buff[SMTLINK_HDR_CRC8_LOC] = crc8_update(SMTLINK_CRC8_KEY, msg_buff,
3);

 if (smt_ver == SMTLINK_P2P_VER) {
 msg_buff[SMTLINK_SNDR_LOC] = sdr_id;
 msg_buff[SMTLINK_RCVR_LOC] = rcv_id;
 msg_buff[SMTLINK_SEQ_NUM_LOC] = (pkg_seqnum & 0xFF00) >> 8;
 msg_buff[SMTLINK_SEQ_NUM_LOC + 1] = pkg_seqnum & 0x00FF;
 msg_buff[SMTLINK_CMD_TP_LOC] = pkg_ack_tp;
 }

 msg_buff[cmd_id_loc] = cmd_id;

 30

 return;
}

/*
* SMTLINK Firmware Update Request Message
*

* | SOF | VERLEN | HDRCRC8 | SND | RCV | SEQ | CMDTP | CMDID | DAT |
PKGCRC16 |
*
|__1__|____2___|____1____|__1__|__1__|__2__|___1___|___1___|__9__|____2_____
|
*
* Request Message Length (Byte): 12 + 9
*/

__inline void SMTLINK_PackFWUpdReqMsg
(
 SMT_Ver_TypeDef smt_ver,
 uint8_t sdr_id,
 uint8_t rcv_id,
 uint8_t *msg_buff
)
{
 uint8_t idx;
 uint16_t pkg_crc16;
 uint16_t pkg_len;
 uint8_t dat_st_loc;

 pkg_len = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_FWUPDREQMSG_LEN) :
(SMTLINK_BUS_FWUPDREQMSG_LEN);
 SMTLINK_PackMsgHead(smt_ver, SMTLINK_PKG_TP_REQ, SMTLINK_PKG_NEED_ACK,
SMTLINK_CMD_REQ_FW_UPD, sdr_id, rcv_id, msg_buff, pkg_len);
 dat_st_loc = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_DAT_START_LOC) :
(SMTLINK_BUS_DAT_START_LOC);

 for (idx = 0; idx < 9; idx++)
 msg_buff[dat_st_loc + idx] = 0x5E; /* Reserved for
other requirements */

 pkg_crc16 = crc16_update(SMTLINK_CRC16_KEY, msg_buff, pkg_len - 2);
 // msg_buff[pkg_len - 2] = pkg_crc16 & 0x00FF; /*
LSB Firstly */
 // msg_buff[pkg_len - 1] = (pkg_crc16 & 0xFF00) >> 8;
 (uint16_t)(&msg_buff[pkg_len - 2]) = pkg_crc16;

 return;
}

/*
* SMTLINK Firmware Update Response Message

 31

*

* | SOF | VERLEN | HDRCRC8 | SND | RCV | SEQ | CMDTP | CMDID | DAT |
PKGCRC16 |
*
|__1__|____2___|____1____|__1__|__1__|__2__|___1___|___1___|__1__|____2_____
|
*
* Request Message Length (Byte): 12 + 1
*/
__inline void SMTLINK_PackFWUpdRespMsg
(
 SMT_Ver_TypeDef smt_ver,
 uint8_t sdr_id,
 uint8_t rcv_id,
 uint8_t *msg_buff
)
{
 uint16_t pkg_crc16;
 uint16_t pkg_len;
 uint8_t dat_st_loc;

 dat_st_loc = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_DAT_START_LOC) :
(SMTLINK_BUS_DAT_START_LOC);
 pkg_len = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_FWUPDRESPMSG_LEN) :
(SMTLINK_BUS_FWUPDRESPMSG_LEN);

 SMTLINK_PackMsgHead(smt_ver, SMTLINK_PKG_TP_RESP, SMTLINK_PKG_NO_ACK,
SMTLINK_CMD_REQ_FW_UPD, sdr_id, rcv_id, msg_buff, pkg_len);

 msg_buff[dat_st_loc] = 0x00;

 pkg_crc16 = crc16_update(SMTLINK_CRC16_KEY, msg_buff, pkg_len - 2);
 // msg_buff[pkg_len - 2] = pkg_crc16 & 0x00FF; /* LSB
Firstly */
 // msg_buff[pkg_len - 1] = (pkg_crc16 & 0xFF00) >> 8;
 (uint16_t)(&msg_buff[pkg_len - 2]) = pkg_crc16;

 return;
}

/*
* SMTLINK Firmware Data Receive Request Message
*

* | SOF | VERLEN | HDRCRC8 | SND | RCV | SEQ | CMDTP | CMDID | DAT |
PKGCRC16 |
*
|__1__|____2___|____1____|__1__|__1__|__2__|___1___|___1___|__13__|____2____
_|
*
* Request Message Length (Byte): 12 + 13
*/
__inline void SMTLINK_PackFWDataRcvReqMsg
(
 SMT_Ver_TypeDef smt_ver,

 32

 uint8_t sdr_id,
 uint8_t rcv_id,
 uint32_t fw_size,
 uint8_t *msg_buff
)
{
 uint8_t idx;
 uint16_t pkg_crc16;
 uint16_t pkg_len;
 uint8_t dat_st_loc;

 dat_st_loc = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_DAT_START_LOC) :
(SMTLINK_BUS_DAT_START_LOC);
 pkg_len = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_FWRCVREQMSG_LEN) :
(SMTLINK_BUS_FWRCVREQMSG_LEN);

 SMTLINK_PackMsgHead(smt_ver, SMTLINK_PKG_TP_REQ, SMTLINK_PKG_NEED_ACK,
SMTLINK_CMD_REQ_FW_DAT, sdr_id, rcv_id, msg_buff, pkg_len);

 msg_buff[dat_st_loc] = 0x00; /* DAT[0] is
reserved for encryption type */
 (uint32_t)(&msg_buff[dat_st_loc + 1]) = fw_size; /* DAT[1] -
DAT[4] is firmware size */
 for (idx = 0; idx < 8; idx++) /* DAT[5] -
DAT[12] reserved */
 msg_buff[dat_st_loc + 5 + idx] = 0x00; /* Handshake
validation for further extension */

 pkg_crc16 = crc16_update(SMTLINK_CRC16_KEY, msg_buff, pkg_len - 2);
 (uint16_t)(&msg_buff[pkg_len - 2]) = pkg_crc16;

 return;
}

/**
* SMTLINK Firmware Data Receive Response Message
*

* | SOF | VERLEN | HDRCRC8 | SND | RCV | SEQ | CMDTP | CMDID | DAT |
PKGCRC16 |
*
|__1__|____2___|____1____|__1__|__1__|__2__|___1___|___1___|__3__|____2_____
|
*
* Request Message Length (Byte): 12 + 3
*/
__inline void SMTLINK_PackFWDataRcvRespMsg
(
 SMT_Ver_TypeDef smt_ver,
 uint8_t sdr_id,
 uint8_t rcv_id,
 uint16_t fw_seg_size,
 uint8_t *msg_buff
)

 33

{
 uint16_t pkg_crc16;
 uint16_t pkg_len;
 uint8_t dat_st_loc;

 dat_st_loc = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_DAT_START_LOC) :
(SMTLINK_BUS_DAT_START_LOC);
 pkg_len = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_FWRCVRESPMSG_LEN) :
(SMTLINK_BUS_FWRCVRESPMSG_LEN);
 SMTLINK_PackMsgHead(smt_ver, SMTLINK_PKG_TP_RESP, SMTLINK_PKG_NO_ACK,
SMTLINK_CMD_REQ_FW_DAT, sdr_id, rcv_id, msg_buff, pkg_len);

 msg_buff[dat_st_loc] = 0x00;
 (uint16_t)(&msg_buff[dat_st_loc + 1]) = fw_seg_size;

 pkg_crc16 = crc16_update(SMTLINK_CRC16_KEY, msg_buff, pkg_len - 2);
 (uint16_t)(&msg_buff[pkg_len - 2]) = pkg_crc16;

 return;
}

__inline uint16_t SMTLINK_GetFWData_SegmentSize(SMT_Ver_TypeDef smt_ver,
uint8_t *msg_buff) {
 uint8_t dat_st_loc;
 uint16_t fw_seg_size;

 dat_st_loc = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_DAT_START_LOC) :
(SMTLINK_BUS_DAT_START_LOC);
 fw_seg_size = *(uint16_t*)(&msg_buff[dat_st_loc + 1]);

 return fw_seg_size;
}

/**
* SMTLINK Firmware Data Transmit Request Message
*

* | SOF | VERLEN | HDRCRC8 | SND | RCV | SEQ | CMDTP | CMDID | DAT |
PKGCRC16 |
*
|__1__|____2___|____1____|__1__|__1__|__2__|___1___|___1___|__n__|____2_____
|
*
* Request Message Length (Byte): 12 + n (n = 7 + fw_seg_size)
*
* NOTE: Prepare firmware data before calling this function and make sure the
* buffer size is sufficient.
*/
__inline void SMTLINK_PackFWDataTXReqMsg
(
 SMT_Ver_TypeDef smt_ver,
 uint8_t sdr_id,
 uint8_t rcv_id,
 uint16_t fw_seq_num,

 34

 uint16_t fw_seg_size,
 uint8_t *msg_buff
)
{
 uint16_t pkg_crc16;
 uint16_t pkg_len;
 uint8_t dat_st_loc;

 dat_st_loc = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_DAT_START_LOC) :
(SMTLINK_BUS_DAT_START_LOC);
 pkg_len = (smt_ver == SMTLINK_P2P_VER) ?
(SMTLINK_P2P_FWTXREQMSG_LEN(fw_seg_size)) :
(SMTLINK_BUS_FWTXREQMSG_LEN(fw_seg_size));
 SMTLINK_PackMsgHead(smt_ver, SMTLINK_PKG_TP_REQ, SMTLINK_PKG_NEED_ACK,
SMTLINK_CMD_TX_FW_DAT, sdr_id, rcv_id, msg_buff, pkg_len);

 msg_buff[dat_st_loc] = 0x00;
 (uint32_t)(&msg_buff[dat_st_loc + 1]) = fw_seq_num;
 (uint16_t)(&msg_buff[dat_st_loc + 5]) = fw_seg_size;

 pkg_crc16 = crc16_update(SMTLINK_CRC16_KEY, msg_buff, pkg_len - 2);
 (uint16_t)(&msg_buff[pkg_len - 2]) = pkg_crc16;

 return;
}

__inline void SMTLINK_PackFWData_StuffBuff
(
 SMT_Ver_TypeDef smt_ver,
 uint8_t *msg_buff,
 uint8_t *data_pool,
 uint16_t fw_seg_size
)
{
 uint16_t idx;
 uint8_t fw_dat_st_loc;

 fw_dat_st_loc = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_DAT_START_LOC
+ 7) : (SMTLINK_BUS_DAT_START_LOC + 7);
 for (idx = 0; idx < fw_seg_size; idx++) {
 msg_buff[fw_dat_st_loc + idx] = data_pool[idx];
 }

 return;
}

/**
* SMTLINK Firmware Data Transmit Response Message
*

* | SOF | VERLEN | HDRCRC8 | SND | RCV | SEQ | CMDTP | CMDID | DAT |
PKGCRC16 |
*
|__1__|____2___|____1____|__1__|__1__|__2__|___1___|___1___|__1__|____2_____
|
*

 35

* Request Message Length (Byte): 12 + 1
*
* NOTE: Prepare firmware data before calling this function and make sure the
* buffer size is sufficient.
*/

__inline void SMTLINK_PackFWDataTXRespMsg
(
 SMT_Ver_TypeDef smt_ver,
 uint8_t sdr_id,
 uint8_t rcv_id,
 uint8_t *msg_buff
)
{
 uint16_t pkg_crc16;
 uint16_t pkg_len;
 uint8_t dat_st_loc;

 dat_st_loc = (smt_ver == SMTLINK_P2P_VER) ? (SMTLINK_P2P_DAT_START_LOC) :
(SMTLINK_BUS_DAT_START_LOC);
 pkg_len = (smt_ver == SMTLINK_P2P_VER) ? (12 + 1) : (7 + 1);
 SMTLINK_PackMsgHead(smt_ver, SMTLINK_PKG_TP_RESP, SMTLINK_PKG_NO_ACK,
SMTLINK_CMD_TX_FW_DAT, sdr_id, rcv_id, msg_buff, pkg_len);

 msg_buff[dat_st_loc] = 0x00;

 pkg_crc16 = crc16_update(SMTLINK_CRC16_KEY, msg_buff, pkg_len - 2);
 (uint16_t)(&msg_buff[pkg_len - 2]) = pkg_crc16;

 return;
}

__inline bool SMTLINK_UnPackMsg
(
 uint8_t rcv_dat,
 uint8_t *msg_buff,
 uint16_t *buff_ptr,
 SMTLINK_MsgInfo_TypeDef *msg_info
)
{
 static uint16_t
 pkg_len;
 static SMT_Ver_TypeDef pkg_ver;
 static FW_PkgCheck_TypeDef pkg_chk_stage = FW_UPD_CHECK_STX;

 bool check_reslt = false;

 uint16_t pkg_verlen;
 uint16_t pkg_crc16;

 switch (pkg_chk_stage) {

 case FW_UPD_CHECK_STX:
 if (rcv_dat == SMTLINK_STX) pkg_chk_stage = FW_UPD_CHECK_HDR_CRC;
 else *buff_ptr = 0;

 36

 break;

 case FW_UPD_CHECK_HDR_CRC:
 if (*buff_ptr == 4) {
 if (rcv_dat == crc8_update(SMTLINK_CRC8_KEY, msg_buff, 3)) {
 pkg_verlen = *(uint16_t*)(&msg_buff[1]);
 pkg_len = SMTLINK_GetPkgLen(pkg_verlen);
 pkg_ver = SMTLINK_GetPkgVer(pkg_verlen);
 msg_info->pkg_ver = pkg_ver;
 pkg_chk_stage = FW_UPD_CHECK_PKG_CRC;
 }
 else {
 *buff_ptr = 0;
 pkg_chk_stage = FW_UPD_CHECK_STX;
 }
 }
 break;

 case FW_UPD_CHECK_PKG_CRC:
 if (*buff_ptr == pkg_len) {
 pkg_crc16 = crc16_update(SMTLINK_CRC16_KEY, msg_buff, pkg_len - 2);

 if (*(uint16_t*)(&msg_buff[pkg_len - 2]) == pkg_crc16) {

 check_reslt = true;
 if (pkg_ver == SMTLINK_P2P_VER) {
 msg_info->sender = msg_buff[SMTLINK_SNDR_LOC];
 msg_info->cmd_id =
(SMT_CmdID_TypeDef)msg_buff[SMTLINK_P2P_CMD_ID_LOC];
 }
 else msg_info->cmd_id =
(SMT_CmdID_TypeDef)msg_buff[SMTLINK_BUS_CMD_ID_LOC];
 }

 *buff_ptr = 0;
 pkg_len = 0;
 pkg_chk_stage = FW_UPD_CHECK_STX;
 }
 break;

 default:
 break;
 }

 return check_reslt;
}

#ifdef __cplusplus
}
#endif

#endif

/************************ (C) COPYRIGHT Wancheng Zhou ******END OF FILE****/

	ABSTRACT
	EXECUTIVE SUMMARY
	Table of Contents
	1. Introduction
	1.1 Problems and Motivation
	Figure 1.1 Traditional Firmware Upgrade Process
	Figure 1.2 Block Diagram of Firmware Upgrader Application System

	1.2 IAP Technology
	Figure 1.3 Bootloader and IAP Rationale

	2. Design and Implementation
	2.1 Hardware Design
	2.1.1 Hardware Platform Selection
	Figure 2.1 Hardware Block Diagram

	2.1.2 Level Conversion Circuit Design
	Figure 2.2 Voltage level conversion using an NPN bipolar transistor
	Figure 2.3 Bi-directional level shifter [7]

	2.2 Software Design
	2.2.1 Smart Link Protocol Design
	Figure 2.4 Protocol Version – A (BUS)
	Figure 2.5 Protocol Version – B (P2P)
	Figure 2.6 Test Outputs from VC Test Bench
	Figure 2.7 Smart Link Decode State Machine
	Figure 2.8 Bootloader based on Smart Link with AVR Studio (GCC Compiler)

	3. Testing and Results
	3.1 Internal SD card R/W Test
	Figure 3.1 SD Read Write Speed Test
	Figure 3.2 Multiple Pressure Testing Results

	3.2 Firmware Transmission Speed (PC to Upgrader)
	Figure 3.3 Firmware Transmission Speed Test

	3.1 Interface Speed Test
	Figure 3.4 Different Interface Speed Test

	4. Conclusions
	4.1 Future Work

	5. Acknowledgements
	6. Reference
	7. Appendix
	Smart Link (Draft Version)

