Becker & Hickl GmbH dec_dll.doc
Nahmitzer Damm

12277 Berlin

Tel. +49 30787 56 32

Fax. +49 3078757 34

email: info@becker-hickl.de

http://www.becker-hickl.de

DCC
32 Bit Dynamic Link Libraries

User Manual

Version 1.0 August 2002

Introduction

The DCC 32 bits Dynamic Link Library contains all functions to control the DCC modules.
The functions work under Windows 9x/NT/ME/2K/XP. The program which calls the DLLs
must be compiled with the compiler option 'Structure Alignment' set to 'l Byte'.

The distribution disks contain the following files:

DCC.DLL dynamic link library main file

DCC.LIB import library file for Microsoft Visual C/C++, Borland C/C++,
Watcom C/C++ and Symantec C/C++ compilers

DCC DEF.H Include file containing types definitions, functions prototypes and pre-
processor statements

DCC100.INI DCC DLL initialisation file

DCC DLL.DOC This description file

USE DCC.C A simple example of using DCC DLL functions.

(Please choose the correct import library file to link in your compiler)

There is no special installation procedure required. Simply execute the setup program from
the 1st distribution diskette and follow its instructions.

DCC-DLL Functions list
The following functions are implemented in the DCC-DLL:

Initialisation functions:

DCC _init

DCC test if active
DCC get init_status
DCC get mode
DCC_set mode
DCC_get module_info
DCC get error_string

Setup functions:

DCC _get parameter
DCC set parameter
DCC _get parameters
DCC_set parameters
DCC_get eeprom data
DCC_write_eeprom_data
DCC get gain HV limit
DCC set _gain HV limit

Status functions:
DCC enable outputs
DCC clear overload
DCC get overload state
DCC_get curr Imt state

The functions listed above must be called with the C calling convention which is default for C
and C++ programs.

An identical set of functions is available for environments like Visual Basic which requires
_stdcall calling convention. Names of these functions have ‘std’ letters after ‘DCC’,
for example, DCCstd_get parameter is the stdcall version of DCC_get parameter.

The description and the behaviour of these functions are identical to the functions from the
first (default) set — the only difference is the calling convention.

Application Guide
Initialisation of the DCC Measurement Parameters

Before the DCC module can be used the parameter values must be written into the internal
structures of the DLL functions (not directly visible from the user program) and sent to the
control registers of the DCC module. This is accomplished by the function DCC _init.

The DCC DLL Functions are able to control up to eight DCC modules on or several PCI
bus(es).

The DCC _init function

- reads the parameter values from a specified initialisation file
- sends the parameter values to the DCC control registers in an active DCC module
- performs a hardware test (EEPROM checksum test) of active DCC module

The initialisation file is an ASCII file with a structure shown in the table below. We
recommend either to use the file DCC100.INI or to start with DCC100.INI and to introduce
the desired changes.

; DCCI100 initialisation file

; DCC parameters have to be included in .ini file only when parameter

;. value is different from default.

; module section (dcc_modulel-8) is required for each existing DCC module

[dcc_base]
simulation = 0 ; 0 - hardware mode(default) ,
; >0 - simulation mode (see dcc_def.h for possible values)
[decc_modulel] ; DCC module 1 hardware parameters
active =1 ; module active - can be used (default =0 - not active)
cl p5V =0 ; Connector 1 +5V On (1)/ Off (0), default = 0 (Of¥)
cl m5V =0 ; Connector 1 -5V On (1)/ Off (0), default = 0 (Off)
cl pl2v=0 ; Connector 1 +12V On (1)/ Off (0), default = 0 (Off)
cl gain HV =0.0 ; Connector 1 Gain/HV : 0 - ¢c1_gain HV_limit % (default 0%)
; ¢l _gain HV limit (0 - 100(default) %) is stored in module EEPROM
c2 p5V =0 ; Connector 2 +5V On (1)/ Off (0), default = 0 (Of¥)
c2 m5V =0 ; Connector 2 -5V On (1)/ Off (0), default = 0 (Off)
c2 pl2v =0 ; Connector 2 +12V On (1)/ Off (0), default = 0 (Off)
c2_digout = 0x0 ; Connector 2 Digital Outputs State, 0 - ff(hex) , default 0
; each bit of the value represents one output
c3 p5V =0 ; Connector 3 +5V On (1)/ Off (0), default = 0 (Off)
c3 m5V =0 ; Connector 3 -5V On (1)/ Off (0), default = 0 (Off)
c3 pl2v=0 ; Connector 3 +12V On (1)/ Off (0), default = 0 (Off)
c3 cooling=0 ; Connector 3 Cooler On (1) / Off(0), default 0 (Off)
c3_coolVolt=0.0 ; Connector 3 Cooler Voltage 0 - 5V , default 0 V
c3_coolCurr =0.0 ; Connector 3 Cooler Current Limit O - 2 Amperes , default 0

3

c3 gain HV =0.0 ; Connector 3 Gain/HV : 0 - ¢3_gain HV_limit % (default 0%)
; ¢3_gain HV_limit (0 - 100(default) %) is stored in module EEPROM

[dcc_module2] ; DCC module 2 hardware parameters
active =1 ; module active - can be used (default =0 - not active)
[dcc_module3] ; DCC module 3 hardware parameters
active =1 ; module active - can be used (default =0 - not active)
[dcc_module4] ; DCC module 4 hardware parameters
active =1 ; module active - can be used (default =0 - not active)

After successful initialisation the module is locked to prevent that other application can
access it. Therefore a DCC module can only be initialised if it is not in use (i.e. locked) by
another application. If, for any reason, a locked module must be initialised, it can be done by
using the function DCC_set_mode with the parameter ‘force use’ =1.

After an DCC _init call we recommend to call the DCC test if active function to check
whether (and which) DCC module is active. Only active modules can be operated further. It is
recommended (but not required) to check also the initialisation status (by
DCC _get init_status) of the used module. If the initialisation was not successful for any
reason the initialisation status shows the error (see dcc_def.h for possible values).

If several DCC modules are present the modules are numbered in the order of their serial
numbers, i.e. module 1 is the module with the lowest serial number.

Additional information about DCC modules can be obtained by calling
DCC _get module _info function. The function fills the DCCModInfo structure which is
described below:

short module_type module type : 100- DCC-100

short bus_number PCI bus number

short slot_number slot number on PCI bus

short in_use -1 used and locked by other application, 0 - not used,
1 -inuse

short init set to initialisation result code

unsigned short base adr base I/O address

char serial no[12] module serial number

After calling the DCC _init function the measurement parameters from the initialisation file
are present in the module control registers and in the internal data structures of the DLLs. For
safety reasons all outputs are disabled.

To enable the outputs of the DCC_enable_outputs function must be called.

To give the user access to the parameters, the function DCC_get parameters is provided.
This function transfers the parameter values from the internal structures of the DLLs into a
structure of the type ‘DCCdata’ (see dcc_def.h) which has to be declared by the user. The
parameter values in this structure are described below:

unsigned short base_adr base I/O address on PCI bus

short active most of the library functions are executed
only when module is active (not 0)

short c1_p5V Connector 1 +5V On/Off

short c1_m5V Connector 1 -5V On/Off

float cl_gain HV Connector 1 Gain/HV [%]

short cl_pl2V Connector 1 +12V On/Off

short c2_p5V Connector 2 +5V On/Off

short c2 m5V Connector 2 -5V On/Off

short c2_p12V Connector 2 +12V On/Off

short c2_digout Connector 2 Digital Outputs State, 0 - ff(hex)

short ¢c3_p5V Connector 3 +5V On/Off

short c3_m5V Connector 3 -5V On/Off

short c3 pl12V Connector 3 +12V On/Off

float c3_coolVolt Connector 3 Cooler Voltage (0 - 5V)

float ¢3_coolCurr Connector 3 Cooler Current Limit (0 - 2A)

float c3_gain HV Connector 3 Gain/HV [%]

short ¢3_cooling Connector 3 Cooler On/Off

To send the complete parameter set back to the DLLs and to the DCC module (e.g. after
changing parameter values) the function DCC_set_parameters is used. This function checks
and - if required - recalculates all parameter values due to cross dependencies and hardware
restrictions. Therefore, it is recommended to read the parameter values after calling
DCC _set_parameters by DCC_get parameters.

Single parameter values can be transferred to or from the DLL and module level by the
functions DCC_set_parameter and DCC get parameter. To identify the desired
parameter, the parameter identification par_id is used. The parameter identification keywords
are defined in dcc_def.h.

Error Handling

Each DCC DLL function returns an error status. Return values >= 0 indicate error free
execution. A value < 0 indicates that an error has occurred. The meaning of a particular error
code can be found in the dcc_def.h file and can be read using DCC_get error_string. We
recommend to check the return value after each function call.

Using DLL functions in LabView environment

Each DLL function can be called in LabView program by using ‘Call Library’ function node.
If you select Configure from the shortcut menu of the node, you see a Call Library Function
dialog box from which you can specify the library name or path, function name, calling
conventions, parameters, and return value for the node.

You should pay special attention to choosing correct parameter types using following
conversion rules:

Type in C programs Type in LabView

char signed 8-bit integer, byte (I8)

unsigned char unsigned 8-bit integer, unsigned byte (U8)
short signed 16-bit integer, word (116)

unsigned short unsigned 16-bit integer, unsigned word (U16)

5

long, int signed 32-bit integer, long (132)

unsigned long, int unsigned 32-bit integer, unsigned long (U32)
float 4-byte single, single precision (SGL)

double 8-byte double, double precision (DBL)

char * C string pointer

float * pass Pointer to Value (Numeric, 4-byte single)

For structures defined in include file xxx_def.h user should build in LabView a proper cluster.
The cluster must contain the same fields in the same order as the C structure.

If a pointer to a structure is a function parameter, you connect to the node the proper cluster
and define parameter type as ‘Adapt to Type’ (with data format = ‘Handles by Value”).

Connecting clusters with the contents which do not exactly correspond to the C structure
fields can cause the program crash.

Problems appear if the structure and the corresponding cluster contain string fields - due
to the fact that LabView sends to the DLL handles to LabView string instead of the C string
pointers for strings inside the cluster.

In such case special version of the DLL function must be used which is prepared especially
for use in LabView. Such functions have ° LV’ letters after ‘XXX’ (for example
XXX LV _get module info), and if found in xxx_def.h file they should be used in ‘Call
Library’ function node instead of the standard function.

Another solution is to write extra C code to transform these data types, create .Isb file and use
it in 'Code Interface' node (CIN) instead of 'Call Library'.

Experienced LabView and C users can prepare such CINs for every external code.

Safety Note

Please stay alert that the program you develop possibly control an external high voltage
power supply or a detector that can be damaged by exceeding the maximum operation voltage
or the maximum output current. In particular, if you control a high voltage power supply,
make sure that it is safe to turn on or increase the voltage. Although the DCC-100 contains
some safety features, such as detector shutdown at power-on or overload, it cannot be made
safe in terms of software glitches or operator errors, such as turning on HV power supplies
with open or wrong connected output cables, or exceeding the maximum operating voltage
for a given detector. bh will not take responsibility for accidents or detector damage resulting
from software glitches, unintentional output enable, or setting or loading values exceeding
maximum values for a given experiment setup.

Description of the DCC DLL Functions

short CVICDECL DCC _init (char * ini_file);

Input parameters:

*ini_file: pointer to a string containing the name of the initialisation file in use (including
file name and extension)

Return value:

0 no errors, <0 error code

Description:

Before the DCC module can be used the parameter values must be written into the internal
structures of the DLL functions (not directly visible from the user program) and sent to the
control registers of the DCC module. This is accomplished by the function DCC_init. The
DCC init function

- reads the parameter values from a specified initialisation file
- sends the parameter values to the DCC control registers on active DCC module
- performs a hardware test (EEPROM checksum test) of active DCC module

The initialisation file is an ASCII file with a structure shown in the table below. We
recommend either to use the file DCC100.INI or to start with DCC100.INI and to introduce
the desired changes.

;. DCCI100 initialisation file

; DCC parameters have to be included in .ini file only when parameter

;. value is different from default.

; module section (dcc_module1-8) is required for each existing DCC module

[dcc_base]
simulation =0 ; 0 - hardware mode(default) ,
; >0 - simulation mode (see dec_def.h for possible values)
[dcc_modulel] ; DCC module 1 hardware parameters
active =1 ; module active - can be used (default = 0 - not active)
cl p5V =0 ; Connector 1 +5V On (1)/ Off (0), default = 0 (OfY)
cl m5V =0 ; Connector 1 -5V On (1)/ Off (0), default = 0 (Off)
cl pl2Vv=0 ; Connector 1 +12V On (1)/ Off (0), default = 0 (Off)
cl gain HV =0.0 ; Connector 1 Gain/HV : 0 - ¢l gain HV_limit % (default 0%)
; ¢l _gain HV_ limit (0 - 100(default) %) is stored in module EEPROM
c2 p5V =0 ; Connector 2 +5V On (1)/ Off (0), default = 0 (Of¥)
c2 m5V =0 ; Connector 2 -5V On (1)/ Off (0), default = 0 (Off)
c2 pl2v=0 ; Connector 2 +12V On (1)/ Off (0), default = 0 (Off)
c2_digout = 0x0 ; Connector 2 Digital Outputs State, 0 - ff(hex) , default 0
; each bit of the value represents one output
c3 p5V =0 ; Connector 3 +5V On (1)/ Off (0), default = 0 (Of¥)
c3 m5V =0 ; Connector 3 -5V On (1)/ Off (0), default = 0 (Off)
c3 pl2v=0 ; Connector 3 +12V On (1)/ Off (0), default = 0 (Off)

7

c3_cooling=0 ; Connector 3 Cooler On (1) / Off(0), default 0 (Off)

c3_coolVolt=0.0 ; Connector 3 Cooler Voltage 0 - 5V, default 0 V
c3_coolCurr =0.0 ; Connector 3 Cooler Current Limit 0 - 2 Amperes , default 0
c3 gain HV=0.0 ; Connector 3 Gain/HV : 0 - ¢3_gain HV_limit % (default 0%)
; €3 _gain HV_ limit (0 - 100(default) %) is stored in module EEPROM
[decc_module2] ; DCC module 2 hardware parameters
active =1 ; module active - can be used (default = 0 - not active)
[decc_module3] ; DCC module 3 hardware parameters
active =1 ; module active - can be used (default = 0 - not active)
[decc_module4] ; DCC module 4 hardware parameters
active =1 ; module active - can be used (default = 0 - not active)

After successful initialisation the module is locked to prevent that other application can
access it. Therefore a DCC module can only be initialised if it is not in use (i.e. locked) by
another application. If, for any reason, a locked module must be initialised, it can be done by
using the function DCC_set_mode with the parameter ‘force use’ =1.

After an DCC _init call we recommend to call the DCC test if active function to check
whether (and which) DCC module is active. Only active module can be operated further. It is
recommended (but not required) to check also the initialisation status (by
DCC _get init_status) of the used module. In case of a wrong initialisation the initialisation
status shows the reason of the error (see dcc_def.h for possible values).

If several DCC modules are present the modules are numbered in the order of their serial
numbers, i.e. module 1 is the module with the lowest serial number.

Additional information about the DCC modules can be obtained by calling
DCC_get_module_info function. The function fills DCCModInfo structure (see dcc_def.h
for definition).

short CVICDECL DCC _test_if active (short mod no);

Input parameters:

mod no module number (0 - 7)
Return value:

0 - module not active (cannot be used) , 1 - module active
Description:

The procedure returns information whether the DCC module ‘mod no’ is active or not. As a
result of a wrong initialisation (DCC _init function) a module can be deactivated. To find out
the reason of deactivating the module, run the DCC_get init_status function.

short CVICDECL DCC _get init_status(short mod no, short * ini_status);

Input parameters:

mod no module number (0 — 7)

*ini_status pointer to the initialisation status
Return value: 0 no errors, <0 error code (see dec_def.h)
Description:

The procedure loads the ini_status variable with the initialisation result code set by the
function DCC init for module ‘mod no’. The possible values are shown below (see also
dec_deflh):

INIT _OK 0 no error

INIT NOT DONE -1 init not done

INIT WRONG_EEP_CHKSUM -2 wrong EEPROM checksum
INIT CANT OPEN PCI CARD -3 cannot open PCI card

INIT MOD IN USE -4 module already in use

short CVICDECL DCC_get_mode(void);

Input parameters:
none

Return value: current mode of DLL operation

Description:

The procedure returns the current mode of the DLL operation (hardware or simulation).
Possible ‘mode’ values are defined in the dcc_def.h file:

#define DCC_HARD 0 hardware mode
#define DCC_SIMUL100 100 simulation mode of DCC-100

short CVICDECL DCC _set_mode(short mode, short force use, short *in_use);

Input parameters:

mode: mode of DLL operation

force use force using the modules if they are locked (in use)

*In_use pointer to the table with information which module must be used
Return value: 0 no errors, <0 error code (see dec_def.h)
Description:

The procedure is used to change the mode of the DLL operation between the ‘hardware’
mode and the ‘simulation’ mode. It is a low level procedure and not intended to normal use. It
is used for software test and demonstration, and to switch the DLL to the simulation mode if
hardware errors occur during the initialisation.

The table ‘in_use’ should contain entries for all 8 modules but only one can be set to 1:
0 — means that the module will be unlocked and not used longer
1 — means that the module will be initialised and locked

When the Hardware Mode is requested for one of 8 possible modules:

-if ‘in_use’ entry = 1 : the proper module is locked and initialised (if it wasn’t) with
the initial parameters set (from ini_file) but only when it was not locked by another
application or when ‘force use’ = 1.

-if ‘in_use’ entry = 0 : the proper module is unlocked and can be used further.
When one of the simulation modes is requested for each of 8 possible modules:

-if ‘in_use’ entry = 1 : the proper module is initialised (if it wasn’t) with the initial
parameters set (from ini_file).

-if ‘in_use’ entry = 0 : the proper module is unlocked and can be used further.
Errors during the module initialisation can cause that the module is excluded from use.

Use the function DCC_get init_status and/or DCC get module info to check which modules
are correctly initialised and can be use further.

Use the function DCC_get mode to check which mode is actually set. Possible ‘mode’ values
are defined in the dcc_def.h file.

10

short CVICDECL DCC _get _module_info (short mod no , DCCModInfo * mod _info);

Input parameters:

mod no module number (0 - 7)

* mod_info pointer to the result structure
Return value: 0 no errors, <0 error code (see dec_def.h)
Description:

After calling the DCC _init function (see above) the internal ‘DCCModInfo’ structures for all
8 modules are filled. This function transfers the contents of the internal structure of the DLL
into a structure of the type DCCModInfo (see dcc_def.h) which has to be defined by the user.
The parameters in this structure are described below.

short module type module type : 100- DCC-100

short bus_number PCI bus number

short slot number slot number on PCI bus

short in_use -1 used and locked by other application, O - not used,
1 -inuse

short init set to initialisation result code

unsigned short base adr base I/O address

char serial no[12] module serial number

short CVICDECL DCC_get_error_string(short error id, char * dest string,
short max_length);

Input parameters:
error_id DCC DLL error id (0 — number of DCC errors-1) (see dcc_def.h file)
*dest_string pointer to destination string
max_length max number of characters which can be copied to ‘dest_string’
Return value: 0: no errors, <0: error code

The procedure copies the string which contains the explanation of the DCC DLL error with
the id equal ‘error_id’ to ‘dest_string’. Up to ‘max_length characters will be copied.

Possible ‘error_id’ values are defined in the dcc_def.h file.

11

short CVICDECL DCC _get parameter(short mod no, short par_id, float * value);

Input parameters:

mod no module number (0 - 7)
par_id parameter identification number (see dcc def.h)
*value pointer to the parameter value

Return value: 0 no errors, <0 error code (see dec_def.h)

The procedure loads ‘value’ with the actual value of the requested parameter from the DLL-
internal data structures of the DCC module ‘mod no’. The par id values are defined in
dcc_def.h file as DCC_PARAMETERS KEYWORDS.

short CVICDECL DCC _set_parameter(short mod no, short par id,
short send to_hard, float value);

Input parameters:
mod no module number (-1 .. 7)
par_id parameter identification number
send to hard send value to hardware (1) , or not (0)
value new parameter value

Return value:
0 no errors, <0 error code (see dcc_def.h)

The procedure sets the specified hardware parameter. The value of the specified parameter is
transferred to the internal data structures of the DLL functions and to the DCC module
‘mod no’ (if ‘send to hard’ parameter =1).

If ‘mod_no’ = -1, the parameter is set on all active modules.

The new parameter value is recalculated according to the parameter limits and hardware
restrictions. Furthermore, cross dependencies between different parameters are taken into
account to ensure the correct hardware operation. It is recommended to read back the
parameters after setting to get their real values after recalculation.

The par_id values are defined in dcc_def.h file as DCC_PARAMETERS KEYWORDS.

12

short CVICDECL DCC _get parameters(short mod no, DCCdata * data);

Input parameters:

mod no module number (0 - 7)

*data pointer to result structure (type DCCdata)
Return value: 0 no errors, <0 error code (see dec_def.h)
Description:

After calling the DCC init function (see above) the measurement parameters from the
initialisation file are present in the module and in the internal data structures of the DLLs. To
give the user access to the parameters, the function DCC_get parameters is provided. This
function transfers the parameter values of the DCC module ‘mod no’ from the internal
structures of the DLLs into a structure of the type DCCdata (see dcc_def.h). A suitable
structure has to be defined by the user. The parameter values in this structure are described
below.

unsigned short base_adr base I/O address on PCI bus

short active most of the library functions are executed
only when module is active (not 0)

short c1_p5V Connector 1 +5V On/Off

short c1_m5V Connector 1 -5V On/Off

float c1_gain HV Connector 1 Gain/HV [%]

short cl_pl2V Connector 1 +12V On/Off

short c2_p5V Connector 2 +5V On/Off

short c2 m5V Connector 2 -5V On/Off

short c2_p12V Connector 2 +12V On/Off

short c2_digout Connector 2 Digital Outputs State, 0 - ff(hex)

short ¢c3_p5V Connector 3 +5V On/Off

short c3_m5V Connector 3 -5V On/Off

short c3 pl12V Connector 3 +12V On/Off

float c3_coolVolt Connector 3 Cooler Voltage (0 - 5V)

float ¢3_coolCurr Connector 3 Cooler Current Limit (0 - 2A)

float c3_gain HV Connector 3 Gain/HV [%]

short ¢3_cooling Connector 3 Cooler On/Off

short CVICDECL DCC _set_parameters(short mod no, short send to hard,
DCCdata * data);

Input parameters:

mod no module number (0 - 7)

send to hard send value to hardware (1) , or not (0)

*data pointer to parameters structure (type DCCdata, see dcc_def.h)
Return value: 0 no errors, <0 error code (see dec_def.h)

13

The procedure sends all parameters from the ‘DCCdata’ structure to the internal DLL
structures and, if ‘send to hard’ is equal 1, to the control registers of the DCC module
‘mod no’.

The new parameter values are recalculated according to the parameter limits and hardware
restrictions. Furthermore, cross dependencies between different parameters are taken into
account to ensure the correct hardware operation. It is recommended to read back the
parameters after setting to get their true values after recalculation. The values of ‘base adr’
and ‘active’ are not changed. They can be changed only by a new ini_file an a DCC init call.

If an error occurs for a particular parameter, the procedure does not set the rest of the
parameters and returns with an error code.

short CVICDECL DCC _get eeprom_data(short mod no, DCC_EEP Data *eep data);

Input parameters:

mod no module number (0 - 7)
*eep data pointer to result structure
Return value: 0 no errors, <0 error code (see dec_def.h)

The structure "eep data" is filled with the contents of the EEPROM of the DCC module
‘mod no’. The EEPROM contains the production data of the module. The structure
"DCC_EEP_Data" is defined in the file dcc_def.h.

short CVICDECL DCC_write_eeprom_data(short mod no, unsigned short write_enable,
DCC_EEP Data *eep_ data);

Input parameters:

mod no module number (0 - 7)
write_enable write enable password
*eep data pointer to result structure
Return value: 0 no errors, <0 error code (see dec_def.h)

The function is used to write data to the EEPROM of an DCC module ‘mod no’ by the
manufacturer. To prevent corruption of the data by not allowed access the function writes the
EEPROM only if the ‘write _enable’ password is correct.

14

short CVICDECL DCC _get gain_ HV_limit (short mod no, short lim_id, short * value);

Input parameters:

mod no module number (0 - 7)
lim id 0 — Connector 1, 1 — Connector 3 gain HV limit
*value pointer to the parameter value

Return value: 0 no errors, <0 error code (see dec_def.h)

The procedure loads ‘value’ with the actual value of the gain HV limit from the EEPROM of
the DCC module ‘mod no’. Depending on ‘lim_id’ Connector 1 or Connector 3 gain HV
will be used.

Gain_HV limits are expressed in % of the maximum voltage which can be sent to gain HV
outputs.

short CVICDECL DCC_set_gain_HV _limit (short mod_no, short lim_id, short * value);

Input parameters:

mod no module number (0 - 7)
lim id 0 — Connector 1, 1 — Connector 3 gain HV limit
*value pointer to the limit value, 0 - 100

Return value: 0 no errors, <0 error code (see dcc_def.h)

The procedure sets the gain HV limit of the DCC module ‘mod no’ to the value taken from
parameter ‘value’. Depending on ‘lim_id” Connector 1 or Connector 3 gain HV will be used.

The limits are stored in the module EEPROM of the DCC module. Then corresponding
parameter C1_GAIN HV or C3_GAIN HV will be recalculating according to the limit.

On return the ‘value’ variable is set to the current limit value read from EEPROM.

In case of errors during writing or reading to/from DCC EEPROM gain HV limit is set to the
default value of 100. Therefore, please make sure that no error occurred and use the function
DCC get gain HV limit to check that the correct limit is set.

15

Gain_HV limits are expressed in % of the maximum voltage which can be sent to gain HV
outputs.

Caution: This function limits the detector operation voltage essentially by software. It gives
reasonable safety against unintentional overload of detectors or other connected devices. The
function is not safe in terms of human safety, and it cannot be used to exclude hazard by the
output voltage of externally connected high voltage power supplies. Please make sure that a
connected high voltage power supply, the devices to which the high voltage is connected, or
other devices connected to the DCC are safe for the full output voltage range.

short CVICDECL DCC _enable_outputs (short mod no, short enable);

Input parameters:

mod no module number (-1 .. 7)
enable 0 — disable, 1 — enable outputs
Return value: 0 no errors, <0 error code (see dcc_def.h)

The DCC _enable outputs function is used to enable/disable outputs of the DCC module
‘mod no’.

If ‘mod no’ = -1, the outputs on all active modules are enabled/disabled.

Outputs should be disabled during connecting cables or setting up devices controlled with
DCC module.

Caution: Please stay alert that the function may control an external high voltage power
supply or a detector that can be damaged by exceeding the maximum operation voltage or the
maximum output current. In particular, if you control a high voltage power supply, make sure
that it is safe to turn on the voltage. Switching off a high voltage power supply by the
function DCC_enable_outputs is not safe in terms of human safety, and disabling the outputs
cannot be used to exclude hazard by the output voltage of externally connected high voltage
power supplies.

short CVICDECL DCC_clear_overload (short mod no);

Input parameters:
mod no module number (-1 .. 7)
Return value: 0 noerrors, <0 error code (see dcc_def.h)
The DCC_ clear_overload function clears overload hardware flags on DCC module
‘mod no’. It will enable again the outputs disabled by overload.

If ‘mod no’ = -1, overload will be cleared on all active DCC modules.

16

Caution: Please stay alert that the function may control an external high voltage power
supply or a detector that can be damaged by exceeding the maximum operation voltage or the
maximum output current. In particular, if you control a high voltage power supply, make sure
that it is safe to turn the voltage.

short CVICDECL DCC _get overload_state (short mod no , short *state);

Input parameters:

mod no module number (0 .. 7)
*state pointer to result variable
Return value: 0 no errors, <0 error code (see dec_def.h)

The procedure is used to check whether an overload occurred on the DCC module ‘mod_no’.
Bit 0 of the ‘state’ variable is set when Connector 1 Overload is present, otherwise it is 0.

Bit 1 of the ‘state’ variable is set when Connector 3 Overload is present, otherwise it is 0.

short CVICDECL DCC _get_curr_Imt_state (short mod no , short *state);

Input parameters:

mod no module number (0 .. 7)
*state pointer to result variable
Return value: 0 no errors, <0 error code (see dcc_def.h)

The procedure is used to check whether the current limit is reached (for cooling device on
Connector 3) on the DCC module ‘mod no’.

‘state’ variable is set to 0 or 1 according to the Current limit flag.

17

