
U N IVERSITI TEKNOTOGI MALAYSIA

DECTARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

Aulhor's fullnome :

Dote of birth :

Title : JTAG ANALYZER FOR ATMEL AVR

AcodemicSession: 2011/2012

that this thesis is clossified os :

CONFIDENTIAL (Contoins confidentiol informotion under the Officiol Secrel
Act 1972)"

RESTRICTED (Conloins restricted informotion os specified by the
orgonizotion where reseorch wos done)*

OPEN ACCESS logree thot my thesis to be published os online open occess
(fulliext)

I ocknowledged thot UniversitiTeknologi Moloysio reseryes the right os follows:

i. The thesis is the property of UniversitiTeknologiMoloysio.
2. The Librory of UniversitiTeknologi Moloysio hos ihe right to moke copies for the purpose

of reseorch only.
3. The Librory hos the right to moke copies of the thesis for ocodemic exchonge.

EN. ZULFAKAR ASPAR

BEANT SINGH A/L DEVINDER SINGH

9rh JUNE 1988

declore

n
I]
n

(NEW tC NO. /PASSPORT NO.)

Dote : 2Un Jvne,2012

NAME OF SUPERVISOR

Dote:29th Jvne,2012

ATURE

NOTES : * lf the thesis is CONFIDENTAL or RESTRICTED, pleose ottoch with ihe lelter from
the orgonizotion with period ond reosons for confidentiolity or restriction.

“I hereby declare that I have read this thesis and in

my opinion this thesis is sufficient in terms of scope and quality

for the award of the degree of

Bachelor of Electrical Engineering (Electronic)”

 Signature : ________________________

 Name of Supervisor : En, Zulfakar Aspar

 Date : 28
th

 June, 2012

JTAG ANALYZER FOR ATMEL AVR

BEANT SINGH A/L DEVINDER SINGH

A report submitted in partial fulfilment of the

requirement for the award of the degree of

Bachelor of Engineering (Electric - Electronic)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2012

ii

I declare that this thesis entitled “JTAG analyzer for Atmel AVR” is the result of my

own research except as cited in the references. The thesis has not been accepted for

any degree and is not concurrently submitted in candidature of any other degree.

 Signature : ..

 Name : BEANT SINGH A/L DEVINDER SINGH

 Date : 28
TH

 JUNE 2012

iii

To my beloved fiancé Jasvin Kaur,

Who has always been there for me through thick and thin

iv

ACKNOWLEDGEMENTS

 In preparing this thesis, I was in contact with many people, researchers, and

lecturers who have contributed towards my understanding and preparation for this

project. First of all, I wish to express my sincere appreciation to my undergraduate

project supervisor, Mr. Zulfakar Aspar for his guidance, encouragement, comments

and advice during the duration of this project. Without my supervisor’s support and

interest, this report would not have been what it is today.

 I would also like to send out my sincere appreciation to Vishnu Nambiar,

who was a very big help to me in understanding the core theories and details that

allowed me to pursue and complete this thesis. Without his guidance, I would not

have been able to successfully complete this project.

 Finally, to all my friends who have provided assistance at various occasions

in completing this project, as well as my fiancé and family members who have been

supportive of me from the beginning of this project, I would like to express my up

most gratitude to them for being there when I needed it the most.

v

ABSTRACT

 A JTAG analyzer is normally used to program or debug a target board that

uses microcontroller that supports JTAG functions. A JTAG has a primary function

of on chip debugging using boundary -scanning. Besides that, a JTAG can also be

used as a programmer to program target microcontrollers. The objective of this

project was to be able to create a JTAG analyzer using an ATMEGA324p

microcontroller that could read and display the IDCODE of other Atmel AVR

microcontrollers. Using C programming, the source code was developed to allow the

IDCODE to be read and displayed using the Wise AVR Mice SDK board. Win

AVR-GCC was the compiler used to compile the code into .hex files and also to be

burned into the microcontroller. Proteus was also used in this project to simulate data

and output to make sure the correct outputs were generated. However, that is limited

to the output of the first microcontroller and will not be able to simulate the data

returned by the target microcontroller. This is where actual board functions are

required where the program is burned into the microcontroller and the process is

done and data was displayed via an LED array.

vi

ABSTRAK

 Penganalisa JTAG biasanya digunakan untuk memprogram atau meganalisa

suatu projek yang menggunakan micropengawal yang menyokong fungsi JTAG.

JTAG secara amnya digunakan untuk menguji micropengawal menggunakan

boundary-scanning. Selain itu, JTAG juga boleh digunakan untuk memprogramkan

suatu micropengawal. Objektif projek ini adalah untuk membina penganalisa JTAG

menggunakan micropengawal ATMEGA324p yang boleh membaca dan

memaparkan nilai IDCODE bagi micropengawal Atmel AVR yang lain.

Menggunakan perisai pemprogram C, kod untuk membolehkan IDCODE dibaca dan

dipaparkan dicipta dan diimplementasikan menggunakan Wise SDK board. Win

AVR-GCC digunakan dalam projek ini untuk membina file .hex dan juga untuk

memasukkan program ke dalam micropengawal. Perisai proteus juga digunakan

dalam projek ini intuk membolehkan simulasi data dan keluaran untuk memastikan

data yang diperoleh adalah yang betul. Walaubagaimanapun, simulasi ini terhad

kepada micropengawal pertama sahaja dan tidak dapat menunjukkan data yand patut

dipulangkan oleh micropengawal kedua. Oleh it, fungsi Wise AVR Mice SDK board

digunakan dimana program yang dicipta dimasukkan ke dalam micropengawal dan

prosesnya dilakukan dan semua data dan keluaran dipaparkan melalui paparan LED.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xiii

 LIST OF SYMBOLS xiv

 LIST OF APPENDICES xv

 1 INTRODUCTION

 1.1 Project Background 1

 1.2 Problem Statement 2

 1.3 Objectives 3

 1.4 Scope of the Project 4

 1.5 Project Flow 5

 2 LITERATURE REVIEW

 2.1 Introduction 6

 2.2 Joint Test Action Group 7

viii

 2.2.1 Debugging 8

 2.2.2 Programming 9

 2.2.3 Boundary Scan Testing 9

 2.2.4 Electrical Characteristic 10

 2.2.5 TAP Controller 12

 2.3 Atmel AVR 15

 2.3.1 Device Architecture 17

 2.3.2 Atmel AVR ATmege 324p 19

 3 PROPOSED DESIGN OF A JTAG ANALYZER

 3.1 Introduction 21

 3.2 The JTAG Protocol 22

 3.3 JTAG TAP Controller Flow 24

 4 IMPLEMENTATION OF THE PROPOSED JTAG ANALYZER

 4.1 Introduction 29

 4.2 Setting up the Compilation and Programming Environment 30

 4.3 Electrical Design of JTAG Analyzer 33

 4.4 Software Development for Manipulating TAP Controller 35

 5 RESULTS AND DISCUSSION

 5.1 Introduction 39

 5.2 Simulation Results 40

 5.3 Actual Board 43

 5.3.1 ATmega 644p 47

 5.3.2 ATmega 16L 48

ix

 6 CONCLUSION AND RECOMMENDATIONS

 6.1 Conclusion 49

 6.2 Recommendations 50

REFERENCES 51

APPENDIXES 52

x

LIST OF TABLES

TABLE NO. TITLE PAGE

 2.1 AVR Families’ Specification 16

 3.1 JTAG Protocol Example as in ATmega 324p Datasheet 23

 5.1 Connection Between JTAG board and Target Board 46

 5.2 IDCODE of ATmega Microcontroller 46

 5.3 Table of JTAG ID Values for ATmega 644p 47

 5.4 Table of JTAG ID Values for ATmega 16 L 48

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

 1.1 JTAG Usage 2

 1.2 Project Flow 5

 2.1 Detailed JTAG Block Diagram for Generic Hardware 7

 2.2 Electrical Characteristic of JTAG 11

 2.3 TAP Controller 12

 2.4 Block Diagram for Atmel AVR 17

 2.5 Pin Out for ATMega 324p 19

 2.6 Block Diagram for ATmega 324p 20

 3.1 Proposed Design for JTAG Analyzer 22

 3.2 Block Diagram of a Simple TAP Controller Connection 24

 3.3 Data Function General Flowchart 25

 3.4 Instruction Function General Flowchart 27

 4.1 Tool Chain for AVR-GCC Compiler 30

 4.2 Example Makefile 32

 4.3 Example AVR-GCC Compiling 33

 4.4 Proteus Design 34

xii

FIGURE NO. TITLE PAGE

 4.5 Flow for IDCODE Program 35

 4.6 IDCODE for ATmega 644p 36

 4.7 IDCODE for ATmega 16L 37

 5.1 Proteus Design for Simulation 40

 5.2 Simulation Output 40

 5.3 Excerpt of Program Showing Intended Binary Output 41

 5.4 Flowchart for Simulation 42

 5.5 Flowchart for final JTAG program 43

 5.6 Actual Board Connections 45

 5.7 Actual Board Output 45

 C1 Makefile 61

 C2 Command Prompt Example 62

 D1 Picking a Component in Proteus 64

 D2 Setting Program into Microcontroller 65

 D3 Final Design and Output 65

xiii

LIST OF ABBREVIATIONS

 JTAG - Joint Test Action Group

 IEEE - Institute of Electrical and Electronic Engineers

 IC - Integrated Circuit

 PC - Personal Computer

 PCB - Printed Circuit Board

 CPU - Central Processing Unit

 FPGA - Field Programmable Gate Array

 CPLD - Complex Programmable Logic Device

 ROM - Read Only Memory

 EPROM - Erasable Programmable Read Only Memory

 EEPROM - Electrically Erasable Programmable Read Only

 Memory

 SRAM - Static Random Access Memory

 I/O - Input or Output

 VCC - Voltage Input

 GND - Ground

 XTAL - External Crystal

 SDK - Software Development Kit

xiv

LIST OF SYMBOLS

kB - Kilobits

Mhz - Megahertz (frequency symbol)

Mbits/s - Megabits per second (Bit transfer speed symbol)

V - Voltage

xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Program for Simulation 52

B Program for full JTAG function (IDCODE) 54

C User Manual for Win AVR-GCC 60

D User Manual for Proteus 63

CHAPTER 1

 INTRODUCTION

1.1 Project Background

 Joint Test Action Group (JTAG), which is the common name for what will later

be standardized as the IEEE 1149.1 Standard Test Access Port and Boundary-Scan

Architecture
[1]

 was initially devised for testing printed circuit boards using boundary

scan and is still widely used for this application. Today, JTAG is also widely used

for IC debug ports. In the embedded processor market, essentially all modern processors

support JTAG when they have enough pins. Embedded systems development relies

on debuggers talking to chips with JTAG to perform operations like single

stepping and break pointing. Digital electronics products such as cell phones or a wireless

access point all generally do not have other debug or test interfaces.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Boundary_scan
http://en.wikipedia.org/wiki/Boundary_scan
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Debug_port
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Stepping_(debugging)
http://en.wikipedia.org/wiki/Stepping_(debugging)
http://en.wikipedia.org/wiki/Breakpoint
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Wireless_access_point
http://en.wikipedia.org/wiki/Wireless_access_point

2

Figure 1.1: JTAG usage

 JTAG will be connected to the PC and used to debug any target board containing

microprocessors as shown in the figure above. The JTAG cable in modern application

can also be used to program boards.

1.2 Problem Statement

 With the advancement of technology, microprocessors have reduced in size

significantly and this in turn reduces the size of the PCB involved. This will increase the

number of possible errors that may occur on the PCB. As the size decreases, it increases

the difficulty in finding the problem. Besides that, the programs that are used will

increase and become more complicated.

 This will need very long and tedious process of finding and going through the

program to locate any error or problem that might occur. Getting a program right in the

first development process is very tough and errors are expected. Therefore debugging

tools are very important. A JTAG analyzer can be used to debug the problems as well as

transfer programs to the target board. Errors can be found on PCB level by debugging the

board using single stepping and boundary-scanning.

3

 Finally, JTAG analyzers are very expensive on the market. Therefore, JTAG

usage is not practical in smaller scaled applications. However, a cheaper JTAG analyzer

can minimize the cost for small scale projects while maintaining the capabilities of the

JTAG analyzer.

1.3 Objectives

 The objectives of this project are:

1. To create JTAG analyzer that is able to capture and display the IDCODE of a

Atmel AVR microcontroller on the targeted board

2. To create a JTAG analyzer that is compatible with Atmel AVR processor. The

JTAG analyzer is to be compatible with all microprocessors from ATMEL AVR

family.

3. To design a simple and user friendly device that is compact and economical.

4

1.4 Scope of Project

 There are always limitations or restrictions when it comes to completing a task.

For this project, the processor that is going to be used will only be an ATMEL AVR

microprocessor. The target of this is to be able to get and display the IDCODE of a

microprocessor that is of the ATMEL AVR family emphasizing on the ATMEGA.

 Besides that, the programming language that will be used will be c-language.

Besides that, this project will be utilizing Win AVR-GCC as the compiler and any other

boot loader that can be compatible to the ATMEL AVR.

 This project will also utilize Proteus, which is a simulation program to simulate

the inputs and outputs of microcontrollers.

5

1.5 Project Flow

Figure 1.2: Project Flow

 The flow chart above shows the flow that this project takes from the start up until

the end of the project when the desired results are obtained. The project starts with the

literature research, technique choosing, and coding creation, testing as well as

troubleshooting to get the final desired results that will be discussed in the next chapter.

 The project flow involves all the methods mentioned above from choosing the

microcontroller to be used, learning of the programming language, and usage of the

compiler as well as all software’s involved from the start to the end of the project The

desired results of this project is obtaining the IDCODE of a target microcontroller.

Choose the

best technique

Find technique

and software used

for JTAG coding

Literature research

about JTAG

analyzer

Create the

JTAG coding

Test the coding

to get the

intended results

Troubleshoot if

required

Optimization

of results

Test the coding

onto an actual

Atmel AVR board

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 JTAG is mainly used in boundary scanning applications on PCB boards. It also

has the ability to program target microcontrollers besides being able to perform

debugging functions. In this chapter, the various aspects are reviewed towards being able

to create a JTAG analyzer. The main target is to be able to get the IDCODE of a target

microcontroller. Besides that the programming language used, the microcontroller used

as well as the various programs that are applied to be able to get the results needed to call

this project a success is also discussed.

7

2.2 Joint Test Action Group

 JTAG or also known as Joint Test Action Group is a device that is used for

programming and debugging at a PCB level using boundary scanning. These days, JTAG

is widely used for IC debug ports as most modern processors supports JTAG when they

have enough pins. JTAG performs single step functions and break pointing which is

important in embedded system development. Below is a figure of the JTAG block

diagram inside a microcontroller
[1]

:

Figure 2.1: Detailed JTAG Block Diagram for Generic Hardware

8

2.2.1 Debugging

 JTAG was originally designed for testing printed circuit board assemblies
[2]

. In

current years, it has become an essential mechanism for debugging embedded systems

which may not support other debug-capable devices. Target CPU will have debug

modules which is accessible through the JTAG used as the transport mechanism.

Through these modules, software developers may debug the software of an embedded

system directly at the machine instruction level when needed.

 Using JTAG to debug, processors can normally be let run freely; single stepped,

or halted according to the need of the debugger or the programmer. Most design support

‘halt mode debugging’, but some allow for debuggers to access data busses and registers

without the need for the core to be stopped. FPGA developers also use JTAG from time

to time. The same technique used to debug the software inside CPU can be used to debug

other digital design blocks inside a FPGA such as reading registers or providing visibility

for behaviours which are invisible to boundary scan operations.

9

2.2.2 Programming

 Programming is another function that can be performed by a JTAG other than the

ability to perform debugging. Some devices can be programmed using the JTAG port

normally during the development period.

 JTAG programmers are usually used to transfer data to internal non-volatile

memory such as CPLDs. Besides that, JTAG programmers are also used to write

software and data into flash memory. This is usually done using data bus access like CPU

in cases where the memory chip do not have JTAG interface them self
[3]

.

2.2.3 Boundary Scan Testing

 In many integrated circuits today, all pins that connect to electronic logic are

linked together in a set known as the boundary scan chain. By using JTAG to manipulate

the chip’s external interfaces such as the inputs and outputs to other chips, it is possible to

test for certain faults. The combinational logic can also be tested when the JTAG

manipulates the internal interfaces of the chip such as the on chip registers
[5]

.

10

 In both internal and external manipulation, the testing is done after it is mounted

onto a finished board and possibly while it is in a functioning system. When JTAG is

combined with the internal test known as the built in self test, the JTAG scan chain will

testing an IC for certain static faults such as shorts, opens and logic errors. Test cases are

usually provided in standardized formats and are used in production testing which is

essential in today’s products as faults can be detected on finished boards before it is

shipped out
[7]

.

2.2.4 Electrical Characteristics

 A JTAG interface is a special four or five pin interface that is added to a chip and

designed. This is so that if multiple chips are used on a board, the JTAG lines can be

daisy-chained together so that only a single JTAG port is needed to have access to all

chips on a circuit board. The five pins are TDI (Test Data In), TDO (Test Data Out), TCK

(Test Clock), TMS (Test Mode Select), and TRST (Test Reset which is optional)
[8]

. The

figure below shows all the connection of the above pins except the reset pin in the JTAG

chain.

11

Figure 2.2: Electrical Characteristic of JTAG

 Only one data line is available, hence making the JTAG a serial protocol device.

For input data as well as the output data, both transfers data in serial. The TCK pin is the

clock input for the JTAG functions. Clocking and changes on TMS causes steps through

a standardized JTAG state machine known as the TAP controller which will be discussed

next. During each TCK pulse, one bit of data is transferred at the TDI and TDO pin.

Different instructions can be loaded such as reading of the id of a target microcontroller

or to sample inputs and outputs.

12

2.2.5 TAP Controller

 To be able to understand and manipulate the JTAG analyzer, the TAP controller

must first be understood. The TAP controller is a state machine within the

microcontroller. It controls the different states that can be manipulated to be able to gain

JTAG function in that microcontroller.

 The TAP controller is basically divided into two parts, the data and instruction

parts. Before entering either part, there is the reset and ideal states. From the reset state

(initial start up), the controller will enter the ideal state until further instructions direct it

to the next state. The next part is divided into two, the instruction and data functions.

Both data and instruction functions have seven states that are the same in name for both,

that are select, capture, shift, exit, pause, exit2 and update which will then either return to

ideal state or back to the select for the data or instruction register.

Figure 2.3: TAP Controller

13

 The movement between states and the selection of the next state is controlled by

TMS (Test Mode Select) and TCK (Test Clock Input). On every rising edge of the TCK,

TMS will be read and will move accordingly. The state diagram of the TAP controller is

shown in figure 2.3.

 The first state is the Test Logic Reset. This is the state where all the registers are

reset and the controller starts from the beginning of the state cycle. If there is any initial

condition on the controller, the 5 cycles of TMS high is needed to return the state

controller to the reset position. Alternatively, the TRST (reset) can be set low to allow the

controller to return to the reset state. The next state is the ideal state. This is the state

where the controller is in ideal mode and does not run any function unless certain special

instructions are present such as the RUNBIST which will cause a self test on the target

chip.

 The first states are the scan-DR and scan-IR states. During the scan-DR, the

controller will acknowledge the value of TMS on the rising edge of TCK to see the next

route, weather to go into the capture-DR (TMS=0) or scan-IR (TMS=1) state. When in

the scan-IR state, the controller will acknowledge the value of TMS to check whether to

proceed into the capture-IR (TMS=0) or back to the reset state (TMS=1).

 The following state is the capture state. In the capture-IR state, a set of

instructions is moved into the instruction register. For the capture-DR state, data is

moved in parallel into the selected data register according to the instruction set. Next is

the shift state. In the shift-IR, the shift register is connected between TDI and TDO to

shift data out while in the shift-DR state, the test data register is connected between TDI

and TDO to shift out data regarding the test.

14

 The exit-DR and exit-IR is a temporary state in which the value of TMS will

choose the next path whether it be pause (TMS=0) or update (TMS=1). The pause–DR

and pause-IR states will allow for movement of the serial data between TDI and TDO to

be temporarily be halted. Then comes the exit2-DR and exit2-IR which is another

temporary state where the value of TMS will select the next path whether it be update

(TMS=1) or back to shift (TMS=0).

 Finally, the final state is the update-IR and update-DR. In this state, the register

will latch the next instruction or data that is to be captured in the following capture state.

In this state, when TMS is held high for a rising edge of TCK, the controller will proceed

to the select states. If TMS is set to low, the state will return to the ideal state.

 For both Instruction and Data functions, the general flow is as described above,

that it moves from scan to capture, shift, exit2, pause, exit2 update and back to scan or

idle. This is the general state movement. However, this movement can be manipulated by

manipulating the values of TMS as will be done in this project.

 As an example, the values of TMS can be manipulated to obtain the IDCODE of

the microcontroller that is being tested. To get the IDCODE, the TAP must go through

the Instruction function first. This is to send the input data to the instruction register. Next

is to go through the Data register to obtain the IDCODE.

15

 Referring to the TAP controller diagram in figure 2.3, the values 0, 1, 1, 0, and 0

is inserted to TMS to go through the instruction register up to the shift state. Then, to

shift the data in from TDI, TMS is held low for four TCK cycles to remain at the shift

state. Then, the values 1, 1, and 1 is inserted to TMS to exit and update and go to the next

function that is the Data function. At the data function, the same process as above is

repeated. This time, TMS is held low for 32 cycles at the shift state because the output is

a 32-bit data.

2.3 Atmel AVR

 These microcontrollers are a modified Harvard architecture 8-bit RISC single chip

microcontroller. These chips were developed by Atmel in 1996 and were the first

microcontroller to use on-chip flash memory. This is as opposed to one time

programmable memories such as ROM, EPROM or EEPROM that were being used by

other microcontrollers at that time. These microcontrollers have separated physical

memory systems. These memories appear in different address spaces to store data and

programs but have special instructions to read data from program memories.

16

 There are six basic families in the AVR which are listed in the table below with

its specifications:

Table 2.1: AVR Families’ Specification

AVR family Specifications

tinyAVR – ATtiny series - 0.5-8kB program memory

- 6-32 pin package

- Limited peripheral set

megaAVR – Atmega series - 4-256kB program memory

- 28-100 pin package

- Extended instruction set

- Extensive peripheral ser

XMEGA – Atsmega series - 16-384kB program memory

- 44-64-100 pin package

- Extended performance features such as DMA, ‘Event

System’ and cryptography support

- Extensive peripheral set with DACs

Application – Specific AVR - MegaAVRs with special features not found on other

members of the AVR family such as LCD controller,

USB controller advanced PWN CAN etc.

FPSLIC – AVR with FPGA - FPGA 5K to 40K gates

- SRAM for the AVR program code

- AVR core can run up to 50MHz

32-bit AVRs - Consists of several micro-architectures

- Cost sensitive application

17

2.3.1 Device Architecture

 For Atmel AVRs, Flash, SRAM, and EEPROM are all integrated onto a single

chip. This removes the need for external memory in most applications. Some devices

allow additional data memory or memory-mapped devices by having parallel external bus

option. Below is a block diagram of the AVR architecture
[6]

:

Figure 2.4: Block Diagram for Atmel AVR

18

 Program instructions are saved in non-volatile flash memory. The size of the

program memory is usually indicated by the name of the device itself. For example,

ATmega64x has 64kB of flash memory to be utilized. Internal data address space consists

of the I/O registers, SRAM and register file. In most AVRs, the working registers are

mapped in the first 32 memory addresses, followed by the 64 I/O registers, which is

followed by the SRAM.

 Almost all AVR also have EEPROM for semi-permanent data storage which can

be maintained even without electrical power. In most AVRs, this EEPROM has to be

accessed like accessing an external peripheral by using special pointer register and

read/write instructions which makes access to EEPROM much slower.

 Atmel AVRs are made with a two stage, single pipeline design. This means that

when the current instruction is being executed, the next instruction is already being

fetched. Most instructions take only one or two clock instruction which makes AVRs

relatively fast. These processors were developed with the efficient execution of compiled

C code in mind and therefore have many built-in pointers for this task
[6]

.

19

2.3.2 Atmel AVR ATmega 324p

 The microcontroller used for this project was the Atmel AVR ATmega 324p. This

microcontroller was chosen because it is one of the easiest to use and easiest to be

purchased for this project purpose. This microcontroller has some desirable features such

as 32 general purpose registers, high endurance non-volatile memory, and JTAG

interface compliant (which was important for this project). Another ATmega 624p as

well as an ATmega 16L were chosen at random to be the target microcontroller.

 The first part of the project was to learn the many instruction set of this

microcontroller as to be able to program it to be used to the need of this project. The

block diagram
[9]

 for this microcontroller as well as the pin out
[9]

 is shown in figure 2.5

and figure 2.6 respectively:

Figure 2.5: Pin out for ATmega 324p

20

Figure 2.6: Block Diagram for ATmega 324p

 For this project, the most important pins are those at port b, and port c. Port b will

be the port that is used to send the JTAG instructions to the target board. Port c is the port

that has the function specific pins for the JTAG functions that are the TCK, TMS, TDI

and TDO pins. The VCC, GND, and XTAL are also used for the external cock as well as

for powering up the microcontroller.

 The Atmel AVR microcontroller supports C language as well as assembly

language. However, for this project purpose, the C language is preferred. This is because

of its simplicity and previous experience using this language to be able to create the

required program to get the IDCODE through the JTAG interface.

CHAPTER 3

PROPOSED DESIGN OF A JTAG ANALYZER

3.1 Introduction

 This chapter discusses the development of a JTAG analyzer for this project.

All the problems faced and the solutions to overcome them are also discussed in this

chapter. Figure 4.1 shows a proposed design of a JTAG analyzer. The outputs from

PortB from the JTAG are connected to the JTAG pins on the target microcontroller

22

3.2 The JTAG Protocol

 Literature review on JTAG was done on all previous work. This includes all past

projects, online solutions as well as specification and technical papers. However, at this

step, the first hurdle presented itself. For JTAG, the only clear documentation available

was the technical and specification datasheet. All online solutions or past projects were

giving out the final solution and did not provide inside towards creating a JTAG analyzer

on its own.

 This, coupled with the fact that most JTAG protocol and instructions set found in

Atmel AVR datasheets are kept private, meant that the only valid source of information

was from the technical datasheet. The table below shows an excerpt from an ATmega

644p datasheet with the JTAG protocols. All other journals and books only provided

Microcontroller 2 (Target Board)

PORT B 1

PORT B 2

PORT B 5

PORT B 7

PROT C 0

VCC

GND

TMS

TRST

TDI

TCK

TDO

VCC

GND

Figure 3.1: Proposed Design for JTAG Analyzer

Microcontroller 1(JTAG Analyzer)

23

information on the JTAG analyzer or on its architecture. This only led to the

understanding of the functions of JTAG and its uses. However, this did not help much in

the development of the software which had to be done from scratch.

Table 3.1: JTAG Protocol Example as in ATmega 324p Datasheet

JTAG Instructions Function Done

PRIVATE 0x8 Private JTAG instruction

PRIVATE 0x9 Private JTAG instruction

PRIVATE 0xA Private JTAG instruction

PRIVATE 0xB Private JTAG instruction

 Therefore, it became important to understand the technical and specification

documents. This took a large amount of time as the papers had to be understood and a lot

of trial and error had to be done in the process of obtaining a clear understanding of the

internal functions of JTAG namely the TAP controller.

 The specifications and technical documents mention on the internal functions of

the JTAG as well as all the registers that are at hand. However, these papers do not

mention the relevant codes and syntaxes to be used in writing the source code that is to

do a JTAG function. Therefore, trial and error method had to be implemented to

understand the papers and decipher them to make a working source code.

24

 Actual output from an industrial based JTAG was also needed as to be able to

cross reference the output from an actual JTAG with the output obtained in this project.

The JTAGICE MKII was used for this purpose. The JTAGICE requires external power

and therefore the SDK board being tested needed to be powered using a USB tiny. This

JTAGICE was used to program the board as well as to obtain the IDCODE to gain some

data to cross reference the actual output of the JTAG analyzer that is designed

3.3 JTAG TAP Controller Flow

 The figure below shows a block diagram of a simple TAP Controller. The general

movement between the states in a TAP function to run the various functions of a JTAG.

The flowcharts show the movement is states through the data registers (figure 3.3) and

instruction registers (figure 3.4).

TMS
TCK

TDI

TDO

TRST

TAP Controller

Registers to be

manipulated
JTAG

interface

Boun

dary

Scan

Chain

Figure 3.2: Block Diagram of a Simple TAP Controller connection

Atmel AVR Microcontroller

25

START

Enter Select DR-Scan

TMS

= 1?

Enter Capture DR

TMS

= 1?

Enter Shift DR

TMS

= 1?

Enter Exit1

TMS

= 1?

Enter Ideal State

Go to IR flow

NO

YES

YES

NO

YES

NO

YES

NO

YES

NO

From TMS

selector of

IR Flow

(NO)

From TMS

selector of

IR Flow

(YES)

26

Figure 3.3: Data Function General Flowchart

Enter Pause DR

TMS

= 1?

Enter Exit2

TMS

= 1?

TMS

= 1?

Enter Update DR

TMS

= 1?

YES

NO

YES

NO

YES

NO

27

TMS

= 1?

Enter Capture IR

Enter Shift IR

Enter Select IR-Scan

TMS

= 1?

TMS

= 1?

Enter Exit1

Enter Pause IR

TMS

= 1?

Back to Reset YES

NO

YES

NO

YES

NO

YES

NO

From Data

Flow

28

Figure 3.4: Instruction Function General Flowchart

Enter Exit2

TMS

= 1?

TMS

= 1?

Enter Update IR

TMS

= 1?

YES

NO

YES

NO

Back to Data

Flow (Ideal)

Back to Data

Flow (Select

DR-Scan)

YES

NO

CHAPTER 4

IMPLEMENTATION OF THE PROPOSED JTAG ANALYZER

4.1 Introduction

 This chapter discusses the implementation of the theories of designing a JTAG

analyzer. The compilation and programming environment as well as the electrical design

and software development are discussed in detail. This chapter also discusses the output

that will be used to cross reference with the output from the JTAG analyzer that is to be

created.

30

4.2 Setting up the Compilation and Programming Environment

 For this project, Win AVR-GCC was used as the compiler. Win AVR-GCC is an

open source C compiler and assembler. For this project, it is used in command prompt

format and is not linked to any other software such as AVR Studio. This software is used

in this project as a compiler to compile the C program to a .hex file. Besides that, it is

also used to instruct the programmer to burn the .hex file into the microcontroller to be

used.

 The tool chain of this software starts at the compiler. This turns the C code into

assembly language files. This software has an avr-libc which is the C library for the

AVR. This includes all the header files that contain all the floating point library, AVR-

specific macros, addresses of port and register names as well as the AVR start-up code.

This is why this compiler is preferred to a standard C compiler which would not have all

this information for the AVR. Therefore, it would require the user to write a start up code

and so on to initialize the address of ports and names of registers and so on.

Figure 4.1: Tool Chain for AVR-GCC Compiler

31

 Figure 4.1 shows the tool chain flow of a creation of a .hex file from the C code

and header files that are inputs from the user. As mentioned above, all these files will be

converted to assembly files. Once these assembly files are obtained, they are converted to

object files. These object files are a level of code that the AVR could run itself, however

there are many files. Here, a linker will take all these files and cross-reference the names

between files to create one object file. This will be created as an .elf format file, so an

object copy is done to generate the .hex file. The compiler, linker, assembler and library

form the core of the tool chain.

 This software runs in command prompt. To create a .hex file, the word ‘make’ is

typed into the command prompt at the directory where there is a c is saved. When this

command is inserted, the tool chain that was explained above is run and a .hex file is

created. All this is governed by a makefile. An example of a makefile is shown in figure

4.2. The name of the file to be compiled is specified at the target. Besides, the

microcontroller used also has to be specified. In this makefile, all the functions that can

be handled by the AVR-GCC are listed.

 Referring to figure 4.2, inserting ‘make’ will create a .hex file. Inserting ‘make

clean’ will clear the .hex file that was previously created. Inserting ‘make fuse’ will allow

the programmer to set fuses values to the microcontroller according to the specifications

set by the user in the makefile. Inserting ‘make flash’ will burn the .hex file previously

created into the microcontroller.

32

 Figure 4.3 is an example of using the AVR-GCC in the command prompt format.

This figure shows the process of going to the directory where the C code is present. It

then lists all the files in that directory and finally using the ‘make’ instruction to creates

the .hex file

 For this project, the programmer used is the AVR ISP programmer. This

programmer is compatible with the AVR-GCC compiler and will be used to set the fuses

(‘make fuse’) as well as to program the board with the created program (‘make flash’).

Figure 4.2: Example Makefile

33

 Figure 4.3: Example AVR-GCC Compiling

4.3 Electrical Design of JTAG Analyzer

 For simulation purposes, Proteus was the software used in this project. This

Proteus software was made to be used for microprocessor simulation, schematic capture,

and printed circuit board design. In this project, this software is used to draw the

microcontroller connection and do the simulations. This is to confirm that the generated

output match the intended output before going to the actual board implementation.

 Proteus consists of drawing circuits from set devices in the library and connection

as intended. After this is done, various ways of simulation can be done after the .hex file

is inserted into the microcontroller in the settings. This software can then simulate the

34

outputs at all pins involved with the simulation that is being done. This software also

supports creation of timing diagrams to show the outputs of pins according to the user’s

needs which is one of the features that will be used in this project.

 Figure 4.4 shows an example of a connection between two microcontroller and

the probes that are in place to generate the timing diagram (more of which will be

discussed in the following chapter). However, Proteus can only generate the output of the

first microcontroller and is not able to get an output from the second microcontroller

because this software does not simulate the JTAG functions of the microcontroller.

Figure 4.4: Proteus Design

35

4.4 Software Development for Manipulating TAP Controller

 A flowchart is designed by manipulation the values of the TMS to go through the

TAP controller to obtain the IDCODE. The figure below shows the flow of the program

to obtain the IDCODE from a target microcontroller.

IDEAL STATE

SELECT DR-SCAN

SELECT IR-SCAN

CAPTURE IR

SHIFT IR

EXIT1

UPDATE IR

SELECT DR-SCAN

CAPTURE DR

SHIFT DR

EXIT1

36

Figure 4.5: Flow for IDCODE Program

 The next step was to use the actual industry based JTAG which is the JTAG ICE

MKII. This device is used to check the output of the IDCODE to later e cross referenced

with the output of the JTAG created for this project. Below are two figures that show the

output of the IDCODE. Figure 4.6 shows the IDCODE for an ATmega644p and figure

4.7 shows the IDCODE for an ATmega16L. Both these IDCODE are found to be correct

according to the datasheet and therefore will be used as a base to compare with the actual

output of the JTAG for this project (discussed in the next chapter).

Figure 4.6: IDCODE of ATmega 644p

UPDATE DR

37

Figure 4.7: IDCODE of ATmega 16L

 The program was written in C language because it is simpler compared to

assembly language. The first step was to create a source code to simulate the outputs

required. This source code that was created (Appendix A) was tested using Proteus

(Results discussed in next chapter) and the output of the simulation was checked with the

required inputs.

 The first hurdle that was faced in this process was the output generated. The

program was tweaked several times by changing the delay and placements of several

codes in the source code to finally obtain the intended output. Once the accurate output

has been obtained, the remaining part of the program could be created. This was the part

that included the process in the TAP controller and the sending of instruction and

receiving of data from the registers. The data to be sent and received were placed all in

38

the rising edge of TCK portion in the program. This program was then tested on the

actual board.

 This is where the next problem occurred. The outputs were not as expected. The

results obtained were nowhere close to the expected results. Further research on the

technical papers proposed a solution. The output portion of the program, which is the part

where TDO sends the output back to the JTAG (first microcontroller), was wrong. All

outputs from target were to be in the falling edge of the TCK. After rectifying this

problem, the output was still found to be incorrect. At this point, various trial and error

methods were implemented. First, the portion of the program that received the data from

TDO was shifted up and down the timing cycle. This means, that the program was

modified to receive that data earlier or later that the original program. However, this did

not solve the problem.

 Next, the program was shifted by several bits to see if any similarities were found

in the output compared to the intended data in the datasheet. When this failed, the output

was analyzed with a different method. The position of the output data was analyzed.

Finally, it was found that the arrangement of the display in the program was reverse.

After rectifying this problem, the output of the JTAG was found to be correct. To make

sure that this was correct data, the JTAG function was tested on a second microcontroller

and the output was also found to match the intended output in the datasheet (discussed in

the next chapter).

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Introduction

 This chapter will be discussing all the results that were acquired and analyzed

throughout this project. This chapter will cover all the results from the simulations done

as well as the actual data that was tested onto the WISE SDK board. All this data were

analyzed and compared to the intended data to be verified as will be discussed in this

chapter.

40

5.2 Simulation Results

 The simulations for this project were done using Proteus software as was

described in the methodology section of this report. The simulation was done to gain the

output data from the microcontroller that will assume the role of JTAG to make sure that

all the data that were sent by that microcontroller was correct in value. Figure 5.1 shows

the connections of the microcontroller in Proteus and figure 5.2 shows the results of the

simulation:

Figure 5.1: Proteus Design for Simulation

Figure 5.2: Simulation Output

41

 Figure 5.1 shows the microcontroller that is to function as the JTAG (U1) with the

pins from port b being connected to the JTAG input pins of the second microcontroller.

However, Proteus is not able to simulate the JTAG functions and therefore this

simulation is done just to verify that the outputs of the microcontroller to simulate the

JTAG are as expected. The source code that is to be tested is loaded into the first

microcontroller and then the simulation is done. The source code is located in the

appendix (Appendix A).

 In the simulation, the four pins act as an output (TMS, TCK, TDI and TRST)

from the microcontroller are tested by attaching a probe to the wire lines of the pins that

are to be tested. Then a digital analysis chart is opened and the values of the lines that are

attached to the probe will be displayed when the simulation is done. This information is

then cross checked with the intended output to make sure that the data is correct.

 Below is the figure that shows the portion of the program that is used (attached in

the appendix) for this simulation. This figure shows the intended output of the

microcontroller as described in the program and it is found that the output in figure 5.2

corresponds to the intended output.

Figure 5.3: Excerpt of Program Showing Intended Binary Output

42

 Below is the flowchart for the simulation of the output for the microcontroller that

is to function as a JTAG:

Figure 5.4: Flowchart for Simulation

START

INITIALIZE VALUES

(TMS, TDI, TDO, TCK, TRST)

SEND VALUES TO PORT

DISPLAY VALUES

END

43

5.3 Actual Board

 After the verification is correct, the program is burned onto the actual board

which is the WISE AVR Mice SDK board. The program was done with C programming

on notepad and then compiled using Win AVR-GCC to compile the program into a hex

file and then to burn it onto the board. Below is a figure of the flowchart to send the data

from the JTAG microcontroller and to receive the output:

Figure 5.5: Flowchart for the Final JTAG Program

START

INITIALIZE VALUES

(TMS, TDI, TDO, TCK, TRST)

SEND VALUES TO SECOND

MICROCONTROLLER

DISPLAY TDO VALUE ON LED

GET RETURN TDO VALUE

SEND TDO VALUE TO PORT

END

44

 The microcontroller that has been burned with the program is the main

microcontroller that will function as the JTAG. This microcontroller is then connected to

the second microcontroller that is to be tested. The output pins are connected to the JTAG

pins of the microcontroller that is to be tested on the second board and the program will

be executed.

 The main board, that is the JTAG board, will be powered by the ISP programmer

and the common VCC and GND that is connected between the two boards will power the

second board. Below are two pictures (figure 5.6 and figure 5.7) that show the connection

and the output of the actual board.

 When the program runs, the JTAG values as was verified in the simulations will

be sent to the JTAG pins on the second board. This will then enter the TAP controller of

the second microcontroller. The JTAG instructions as in the TAP controller will run as

previously described (Chapter 2). When the JTAG functions are completed, the output

will be sent to the L.E.D port. The output is a 32-bit data. Therefore the data will be

shown on the 8 L.E.D on the SDK board in four blinks that last 1 second each. This

duration can however be adjusted in the program that is burned into the microcontroller.

The source code for this portion is located in the appendix (Appendix B).

 These values that are shown at the L.E.D are cross referenced with the intended

values that are in the datasheet that shows all the IDCODES for the microcontroller in

question.

45

Figure 5.6: Actual Board Connections

Figure 5.7: Actual Board Outputs

46

 The connections between the first microcontroller (JTAG) and the second

microcontroller (Target) are shown in the table below:

Table 5.1: Connections Between JTAG Board and Target Board

JTAG BOARD

 CONNECTION

TARGET BOARD

CONNECTION

PORT B PIN 1 TMS

PORT B PIN 2 RESET

PORT B PIN 5 TDI

PORT B PIN 7 TCK

PORT C PIN 0 TDO

VCC VCC

GND GND

 The JTAG function is tested on two separate microcontrollers that are ATmega

644p and ATmega 16L. The output from both this microcontroller were recorded and

then cross referenced with the intended IDCODE listed in the datasheet of each

microcontroller. Below is a table that shows the meaning of the data that is to be verified.

The first nibble (4bit) is the version type, the next 2 bytes (16bits) is the part number of

the device and the last 11 bits is the manufacturer ID. The final bit is always 1.

Table 5.2: IDCODE of ATmega Microcontroller

47

5.3.1 ATmega 644p

 The output after the JTAG functions is as follows:

0110 1001 0110 0000 1010 0000 0011 1111 = 6960A03F

 From the above, the data is shown in binary, and the value on the right is in

hexadecimal. By cross referencing the data with the below table, the data can be verified

to be correct. The first, which is 0110 or 6 in hexadecimal, represents the version of the

microcontroller.

 Next, the value 960A is the part number. As shown in the table below, this

verifies that the microcontroller that is being tested is indeed an ATmega 644p. Finally,

the manufacturing ID is supposed to be 01F. However, due to parity error, an extra 1 has

entered the data to make to manufacturer ID 03F instead for the output of this project.

Table 5.3: Table of JTAG ID Values for ATmega 644p

48

5.3.2 ATmega 16L

 The output after the JTAG functions is as follows:

0000 1001 0100 0000 0011 0000 0011 1111 = 0940303F

 From the above, the data is shown in binary, and the value on the right is in

hexadecimal. By cross referencing the data with the below table, the data can be verified

to be correct. The first, which is 0000 or 0 in hexadecimal, represents the version of the

microcontroller. From the table below, the version for this microcontroller is revision A.

Table 5.4: Table of JTAG ID Values for ATmega 16L

 Next, the value 9403 is the part number. As shown in the table above, this verifies

that the microcontroller that is being tested is indeed an ATmega 16 L. Finally, the

manufacturing ID for this microcontroller is 03F.

CHAPTER 6

 CONCLUSION AND RECOMENDATION

6.1 Conclusion

 As a conclusion, the objectives of this project were achieved. The correct

IDCODE was able to be extracted from the Atmel AVR microcontroller. Two different

Atmel AVR microcontrollers were used ATmega 644p and ATmega 16L so as to make

sure that two different set of results could be obtained. Using simulations and actual

board applications, it was found that the programming and actual applications produced

the intended IDCODE from an Atmel AVR microcontroller.

 The project followed the flow of creating a C program before running simulations

confirm the outputs of the program. Then the verified program was burned onto an Atmel

AVR microcontroller and the JTAG function was tested on other Atmel AVR

microcontrollers. At the end of this project, the all the objectives were completed and the

50

correct IDCODE was extracted and displayed at the outputs. The program created was

user friendly and can be easily understood and edited to do more functions in the future.

6.1 Recommendations

 At the end of this project, a few improvements can be done for future students or

future studies on JTAG as listed below:

1. This project can be used as a stepping stone for future studies about JTAG.

2. The various private functions in the list of JTAG protocols can be deciphered by

using logic analyzer to analyze the communication between JTAG ICE and Atmel AVR

microcontroller.

3. By using this project as the first step, and together with the analyzed information

from the logic analyzer, advancements can be made to make a more user friendly and

complete JTAG analyzer.

4. Further verifications for the IDCODE can be done by using microcontrollers form

different manufacturers such as ALTERA, ARM or any other device that supports JTAG

functions.

51

REFERENCE

1. Institute of Electrical and Electronics Engineers. Standard Test Access Port and

Boundary-Scan Architecture. United States of America, 1993.

2. Be Van Ngo, P.Law and A.Sparks. Use of JTAG boundary-scan for testing electronic

circuit boards and systems. AUTOTESTCON 2008

3. Ping Zhang, Yanmin Song, Jianmin Zhang, Zuocheng Xing. Design of Testing

Structure in Microprocessor Based on JTAG. ISCID 2009. Vol. 1, 223 - 226

4. K.Rosenfeld, R.Karri. Attacks and Defenses for JTAG. Design & Test of Computers.

IEEE. 2009

5. Shen Xu Baang, Liang Song Hai. Design and Implementation of a JTAG boundary-

scan interface controller. Proceedings of the second Asian Test Symposium. 1993

215 – 218.

6. Korbel, S. Interesting Applications of Atmel AVR Microcontrollers. Euromicro

Symposium on Digital System Design. Czech Tech University. IEEE. 2004. 499-506

7. Dettmer, R. JTAG-Setting the Standard for Boundary-Scan Testing, IEE Review.

IEEE. 1989. 49-52

8. Maunder, C. Joint Test Action Group, Computer-Aided Engineering Journal. British

Telecom, United Kingdom. IEEE. 1986. 121-122

9. Atmel Corporation. 8-bit Microcontroller Datasheet for ATmega 164p,324p,644p.

United States of America.2010

10. Mitra, S. Design for Testability and Testing of IEEE 1149.1 TAP Controller. VLSI

Test Symposium. Intel Corp. Sacramento CA. IEEE. 2002. 247-252

11. Pierce, L. Multi-Level Secure JTAG Architecture, On-Line Testing Symposium.

Department of Electric and Computer Engineering. Carbondale, IL. IEEE. 2011. 208-

209

52

APPENDIX A

Program for Simulation

// Program to get the idcode of the target board

#define F_CPU 20000000UL

#define setb(port, pin) port|=(1<<pin)

#define offb(port, pin) port&=~(1<<pin)

#define togb(port, pin) port^=(1<<pin)

#include <stdio.h>

#include <avr/io.h>

#include <util/delay.h>

int main ()

{

int x[56] =

{1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,1,1,0,

0,0,0,0,1,1,1,1,1};

int i,TMS,TDI,TRST;

DDRB = 0xFF;

PORTB = 0x00;

DDRC=0x00;

_delay_ms(0.1);

for(i=0;i<56;i++)

{ setb(PORTB,7);

53

TMS=x[i];

if (i==0)

{ TRST=1;

TDI=0; }

else if(i==13)

{ TRST=0;

TDI=1; }

else

{ TRST=0;

TDI=0; }

if (TMS==0)

{ offb(PORTB,1); }

else

{ setb(PORTB,1); }

if (TDI==0)

{ offb(PORTB,5); }

else

{ setb(PORTB,5); }

if (TRST==0)

{ setb(PORTB,2); }

else

{ offb(PORTB,2); }

_delay_ms(0.5);

togb(PORTB,7);

_delay_ms(0.5);

}

return 0;}

54

APPENDIX B

Program for Full JTAG Function (IDCODE)

// Program to get the idcode of the target board

#define F_CPU 20000000UL

#define setb(port, pin) port|=(1<<pin)

#define offb(port, pin) port&=~(1<<pin)

#define togb(port, pin) port^=(1<<pin)

#include <stdio.h>

#include <avr/io.h>

#include <util/delay.h>

int main ()

{

int x[56] =

{1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,1,1,0,

0,0,0,0,1,1,1,1,1};

int i,TMS,TDI,TRST;

DDRB = 0xFF;

PORTB = 0x00;

DDRC=0x00;

_delay_ms(0.1);

for(i=0;i<56;i++)

{ setb(PORTB,7);

55

TMS=x[i];

if (i==0)

{ TRST=1;

TDI=0; }

else if(i==13)

{ TRST=0;

TDI=1; }

else

{ TRST=0;

TDI=0; }

if (TMS==0)

{ offb(PORTB,1); }

else

{ setb(PORTB,1); }

if (TDI==0)

{ offb(PORTB,5); }

else

{ setb(PORTB,5); }

if (TRST==0)

{ setb(PORTB,2); }

else

{ offb(PORTB,2); }

_delay_ms(0.5);

togb(PORTB,7);

if(i==19)

{ a=(PINC & 0x01); }

if(i==20)

56

{a=(a<<1);

a=a+(PINC & 0x01); }

if(i==21)

{ a=(a<<1);

a=a+(PINC & 0x01); }

if(i==22)

{ a=(a<<1);

a=a+(PINC & 0x01); }

if(i==23)

{ a=(a<<1);

a=a+(PINC & 0x01); }

if(i==24)

{ a=(a<<1);

a=a+(PINC & 0x01); }

if(i==25)

{ a=(a<<1);

a=a+(PINC & 0x01); }

if(i==26)

{ a=(a<<1);

a=a+(PINC & 0x01); }

if(i==27)

{ b=(PINC & 0x01); }

if(i==28)

{ b=(b<<1);

b=b+(PINC & 0x01); }

if(i==29)

{ b=(b<<1);

57

b=b+(PINC & 0x01); }

if(i==30)

{ b=(b<<1);

b=b+(PINC & 0x01); }

if(i==31)

{ b=(b<<1);

b=b+(PINC & 0x01); }

if(i==32)

{ b=(b<<1);

b=b+(PINC & 0x01); }

if(i==33)

{ b=(b<<1);

b=b+(PINC & 0x01); }

if(i==34)

{ b=(b<<1);

b=b+(PINC & 0x01); }

if(i==35)

{ c=(PINC & 0x01); }

if(i==36)

{ c=(c<<1);

c=c+(PINC & 0x01); }

if(i==37)

{ c=(c<<1);

c=c+(PINC & 0x01); }

if(i==38)

{ c=(c<<1);

c=c+(PINC & 0x01); }

58

if(i==39)

{ c=(c<<1);

c=c+(PINC & 0x01); }

if(i==40)

{ c=(c<<1);

c=c+(PINC & 0x01); }

if(i==41)

{c=(c<<1);

c=c+(PINC & 0x01); }

if(i==42)

{ c=(c<<1);

c=c+(PINC & 0x01); }

if(i==43)

{ d=(PINC & 0x01); }

if(i==44)

{ d=(d<<1);

d=d+(PINC & 0x01); }

if(i==45)

{ d=(d<<1);

d=d+(PINC & 0x01); }

if(i==46)

{ d=(d<<1);

d=d+(PINC & 0x01); }

if(i==47)

{ d=(d<<1);

d=d+(PINC & 0x01); }

if(i==48)

59

{ d=(d<<1);

d=d+(PINC & 0x01); }

if(i==49)

{ d=(d<<1);

d=d+(PINC & 0x01); }

if(i==50)

{ d=(d<<1);

d=d+(PINC & 0x01); }

_delay_ms(0.1); }

PORTB=d;

_delay_ms(1000);

PORTB=c;

_delay_ms(1000);

PORTB=b;

_delay_ms(1000);

PORTB=a;

_delay_ms(1000);

PORTB=0x04;

return 0;

}

60

APPENDIX C

User Manual for WIN AVR-GCC

 WIN WVR-GCC is an open source software development tools for Atmel AVR

series of microcontroller hosted on Windows platform. It includes CNU compiler for C

and C++ programming. WIN AVR includes all tools for developing on AVR which

includes compiler, programmer, debugger and more. This software can be found at

http://winavr.sourceforge.net/.

 This software is free to download from the above mentioned website. The

installation process is simple. First, download the executable file. To be installed, just run

the .exe file and follow the installation process.

 This software is easy to use. It is a command prompt based program. To be used,

the command prompt is open in the directory where the .c program to be compiled is

saved. Using the command prompt, several instructions can be used to compile the

program, burn it into the microcontroller and many more. All this functions are governed

by a makefile. Below are two figures that shows example of a make file and the usage of

the command prompt for compiling.

http://winavr.sourceforge.net/

61

Appendix C1: Makefile

 The above figure shows an example of a makefile. To use WIN AVR, avr-gcc is

written in the CC part of the makefile (first line in the above figure). The name of the

program to be compiled is inserted in the target portion of the makefile (line four). The

commands used are ‘make clean’, ‘make flash’ and ‘make fuse’. Clean is used to delete

the .hex file that exists in the particular directory. Flash is used to burn the program into

the microcontroller. Fuse is used to set the fuses into the microcontroller. The main

function is ‘make’. When ‘make’ is typed into the command prompt, the .hex file is

created.

62

Appendix C2: Command Prompt Example

 The above figure is of an example of the command prompt using WIN AVR-

GCC. To use the compiler and programmer functions, the command prompt must be in

the directory where the C file is saved. Then by using the commands as mentioned above,

the program can be compiled and burned into the microcontroller.

63

APPENDIX D

User manual for Proteus

 Proteus is software that is required to be bought. This trial version of this software

may be downloaded on www.download.cnet.com. This will be a version that has

limitations on the time that it can be used as well as the functions that can be done by the

software. Once the trial or full version has been obtained, the software can then be

installed by just running the .exe file and follow the installation process till the end.

 This software is easy to use. Once installed, there will be two programs, ARES

and ISIS. For the microcontroller design, ISIS is used. The first step is to open the

program. To begin the design, simply click on the pick component from library button

and choose the required component and place it in the workplace (figure Appendix D1).

Once the design is done, double click on the microcontroller to set the program file into

the microcontroller (figure Appendix D2). Logic analyzing can be done by attaching

probes to the wires, opening the logic analyzer and running the program. The data will be

displayed as a timing diagram. (Appendix D3).

http://www.download.cnet.com/

64

Appendix D1: Picking a Component in Proteus

Set to component

mode

Click to open the

component library
Pick the desired

component

65

Appendix D2: Setting Program into Microcontroller

Appendix D3: Final Design and Output

Double-click to open

the component

settings

Browse and select the

.hex file to insert the

program

Probes

Logic

analyzer

with the

output

