UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

Author's full name : _BEANT SINGH A/L DEVINDER SINGH

Date of birth o 20 JUNE 1988

Title : JTAG ANALYZER FOR ATMEL AVR

Academic Session: _2011/2012

| declare that this thesis is classified as :

CONFIDENTIAL (Contains confidential information under the Official Secret
Act 1972)*

RESTRICTED (Contains restricted information as specified by the
‘ organization where research was done)*

v OPEN ACCESS I agree that my thesis to be published as online open access
‘ (full text)

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows:

The thesis is the property of Universiti Teknologi Malaysia.

The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose
of research only.

The Library has the right to make copies of the thesis for academic exchange.

Certified by :

SIGNATURE SIGNATURE OF SUPERVISOR

880609-56-5043 EN. ZULFAKAR ASPAR
(NEW IC NO. /PASSPORT NO.) NAME OF SUPERVISOR

Date : 28" June, 2012 Date : 28" June, 2012

NOTES : * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from
the organization with period and reasons for confidentiality or restriction.

“I hereby declare that I have read this thesis and in
my opinion this thesis is sufficient in terms of scope and quality
for the award of the degree of
Bachelor of Electrical Engineering (Electronic)”

Signature ; g’j{/

h— Y

Name of Supervisor : En, Zulfakar Aspar

Date 28" June, 2012

JTAG ANALYZER FOR ATMEL AVR

BEANT SINGH A/L DEVINDER SINGH

A report submitted in partial fulfilment of the
requirement for the award of the degree of

Bachelor of Engineering (Electric - Electronic)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2012

I declare that this thesis entitled “JTAG analyzer for Atmel AVR” is the result of my
own research except as cited in the references. The thesis has not been accepted for

any degree and is not concurrently submitted in candidature of any other degree.

Signature S ORE" J . : .. 5

Name : BEANT SINGH A/L DEVINDER SINGH

Date : 28™ JUNE 2012

To my beloved fiancé Jasvin Kaur,

Who has always been there for me through thick and thin

ACKNOWLEDGEMENTS

In preparing this thesis, | was in contact with many people, researchers, and
lecturers who have contributed towards my understanding and preparation for this
project. First of all, 1 wish to express my sincere appreciation to my undergraduate
project supervisor, Mr. Zulfakar Aspar for his guidance, encouragement, comments
and advice during the duration of this project. Without my supervisor’s support and

interest, this report would not have been what it is today.

I would also like to send out my sincere appreciation to Vishnu Nambiar,
who was a very big help to me in understanding the core theories and details that
allowed me to pursue and complete this thesis. Without his guidance, | would not

have been able to successfully complete this project.

Finally, to all my friends who have provided assistance at various occasions
in completing this project, as well as my fiancé and family members who have been
supportive of me from the beginning of this project, | would like to express my up
most gratitude to them for being there when | needed it the most.

ABSTRACT

A JTAG analyzer is normally used to program or debug a target board that
uses microcontroller that supports JTAG functions. A JTAG has a primary function
of on chip debugging using boundary -scanning. Besides that, a JTAG can also be
used as a programmer to program target microcontrollers. The objective of this
project was to be able to create a JTAG analyzer using an ATMEGA324p
microcontroller that could read and display the IDCODE of other Atmel AVR
microcontrollers. Using C programming, the source code was developed to allow the
IDCODE to be read and displayed using the Wise AVR Mice SDK board. Win
AVR-GCC was the compiler used to compile the code into .hex files and also to be
burned into the microcontroller. Proteus was also used in this project to simulate data
and output to make sure the correct outputs were generated. However, that is limited
to the output of the first microcontroller and will not be able to simulate the data
returned by the target microcontroller. This is where actual board functions are
required where the program is burned into the microcontroller and the process is

done and data was displayed via an LED array.

Vi

ABSTRAK

Penganalisa JTAG biasanya digunakan untuk memprogram atau meganalisa
suatu projek yang menggunakan micropengawal yang menyokong fungsi JTAG.
JTAG secara amnya digunakan untuk menguji micropengawal menggunakan
boundary-scanning. Selain itu, JTAG juga boleh digunakan untuk memprogramkan
suatu micropengawal. Objektif projek ini adalah untuk membina penganalisa JTAG
menggunakan micropengawal ATMEGA324p vyang boleh membaca dan
memaparkan nilai IDCODE bagi micropengawal Atmel AVR vyang lain.
Menggunakan perisai pemprogram C, kod untuk membolehkan IDCODE dibaca dan
dipaparkan dicipta dan diimplementasikan menggunakan Wise SDK board. Win
AVR-GCC digunakan dalam projek ini untuk membina file .hex dan juga untuk
memasukkan program ke dalam micropengawal. Perisai proteus juga digunakan
dalam projek ini intuk membolehkan simulasi data dan keluaran untuk memastikan
data yang diperoleh adalah yang betul. Walaubagaimanapun, simulasi ini terhad
kepada micropengawal pertama sahaja dan tidak dapat menunjukkan data yand patut
dipulangkan oleh micropengawal kedua. Oleh it, fungsi Wise AVR Mice SDK board
digunakan dimana program yang dicipta dimasukkan ke dalam micropengawal dan

prosesnya dilakukan dan semua data dan keluaran dipaparkan melalui paparan LED.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION i

DEDICATION i
ACKNOWLEDGEMENTS Y%
ABSTRACT %
ABSTRAK Vi
TABLE OF CONTENTS vii
LIST OF TABLES X
LIST OF FIGURES Xi
LIST OF ABBREVIATIONS Xiii
LIST OF SYMBOLS Xiv
LIST OF APPENDICES XV

1 INTRODUCTION
1.1 Project Background
1.2 Problem Statement
1.3 Obijectives

1.4 Scope of the Project

o B~ W N

1.5 Project Flow

2 LITERATURE REVIEW
2.1 Introduction 6

2.2 Joint Test Action Group 7

viii

2.2.1 Debugging 8

2.2.2 Programming 9
2.2.3 Boundary Scan Testing 9
2.2.4 Electrical Characteristic 10
2.2.5 TAP Controller 12
2.3 Atmel AVR 15
2.3.1 Device Architecture 17
2.3.2 Atmel AVR ATmege 324p 19

PROPOSED DESIGN OF A JTAG ANALYZER

3.1 Introduction 21
3.2 The JTAG Protocol 22
3.3 JTAG TAP Controller Flow 24

IMPLEMENTATION OF THE PROPOSED JTAG ANALYZER
4.1 Introduction 29
4.2 Setting up the Compilation and Programming Environment 30
4.3 Electrical Design of JTAG Analyzer 33

4.4 Software Development for Manipulating TAP Controller 35

RESULTS AND DISCUSSION

5.1 Introduction 39
5.2 Simulation Results 40
5.3 Actual Board 43

5.3.1 ATmega 644p 47

5.3.2 ATmega 16L 48

6 CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion

6.2 Recommendations

REFERENCES

APPENDIXES

49
50

o1

52

LIST OF TABLES

TABLE NO. TITLE PAGE
2.1 AVR Families’ Specification 16
3.1 JTAG Protocol Example as in ATmega 324p Datasheet 23
5.1 Connection Between JTAG board and Target Board 46
5.2 IDCODE of ATmega Microcontroller 46
5.3 Table of JTAG ID Values for ATmega 644p 47

5.4 Table of JTAG ID Values for ATmega 16 L 48

FIGURE NO.

11

1.2

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

LIST OF FIGURES

TITLE PAGE
JTAG Usage 2
Project Flow 5

Detailed JTAG Block Diagram for Generic Hardware 7

Electrical Characteristic of JTAG 11
TAP Controller 12
Block Diagram for Atmel AVR 17
Pin Out for ATMega 324p 19
Block Diagram for ATmega 324p 20
Proposed Design for JTAG Analyzer 22

Block Diagram of a Simple TAP Controller Connection24

Data Function General Flowchart 25
Instruction Function General Flowchart 27
Tool Chain for AVR-GCC Compiler 30
Example Makefile 32
Example AVR-GCC Compiling 33

Proteus Design 34

Xi

Xii

FIGURE NO. TITLE PAGE

4.5 Flow for IDCODE Program 35
4.6 IDCODE for ATmega 644p 36
4.7 IDCODE for ATmega 16L 37
5.1 Proteus Design for Simulation 40
5.2 Simulation Output 40
5.3 Excerpt of Program Showing Intended Binary Output 41
5.4 Flowchart for Simulation 42
55 Flowchart for final JTAG program 43
5.6 Actual Board Connections 45
5.7 Actual Board Output 45
C1 Makefile 61
C2 Command Prompt Example 62
D1 Picking a Component in Proteus 64
D2 Setting Program into Microcontroller 65

D3 Final Design and Output 65

JTAG

IEEE

IC

PC

PCB

CPU

FPGA

CPLD

ROM

EPROM

EEPROM

SRAM

I/0

VCC

GND

XTAL

SDK

LIST OF ABBREVIATIONS

- Joint Test Action Group

- Institute of Electrical and Electronic Engineers
- Integrated Circuit

- Personal Computer

- Printed Circuit Board

- Central Processing Unit

- Field Programmable Gate Array

- Complex Programmable Logic Device

- Read Only Memory

- Erasable Programmable Read Only Memory

- Electrically Erasable Programmable Read Only

Memory

- Static Random Access Memory
- Input or Output

- Voltage Input

- Ground

- External Crystal

- Software Development Kit

xiii

Xiv

LIST OF SYMBOLS

kB - Kilobits
Mhz - Megahertz (frequency symbol)
Mbits/s - Megabits per second (Bit transfer speed symbol)

\Y - Voltage

APPENDIX

A

LIST OF APPENDICES

TITLE
Program for Simulation
Program for full JTAG function (IDCODE)
User Manual for Win AVR-GCC

User Manual for Proteus

PAGE

52

54

60

63

XV

CHAPTER 1

INTRODUCTION

1.1 Project Background

Joint Test Action Group (JTAG), which is the common name for what will later
be standardized as the IEEE 1149.1 Standard Test Access Port and Boundary-Scan
Architecture™ was initially devised for testing printed circuit boards using boundary
scan and is still widely used for this application. Today, JTAG is also widely used
for IC debug ports. In the embedded processor market, essentially all modern processors
support JTAG when they have enough pins. Embedded systems development relies
on debuggers talking to chips with JTAG to perform operations like single
stepping and break pointing. Digital electronics products such as cell phones or a wireless

access point all generally do not have other debug or test interfaces.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Boundary_scan
http://en.wikipedia.org/wiki/Boundary_scan
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Debug_port
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Stepping_(debugging)
http://en.wikipedia.org/wiki/Stepping_(debugging)
http://en.wikipedia.org/wiki/Breakpoint
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Wireless_access_point
http://en.wikipedia.org/wiki/Wireless_access_point

PC AVR JTAG

Figure 1.1: JTAG usage

JTAG will be connected to the PC and used to debug any target board containing
microprocessors as shown in the figure above. The JTAG cable in modern application

can also be used to program boards.

1.2 Problem Statement

With the advancement of technology, microprocessors have reduced in size
significantly and this in turn reduces the size of the PCB involved. This will increase the
number of possible errors that may occur on the PCB. As the size decreases, it increases
the difficulty in finding the problem. Besides that, the programs that are used will

increase and become more complicated.

This will need very long and tedious process of finding and going through the
program to locate any error or problem that might occur. Getting a program right in the
first development process is very tough and errors are expected. Therefore debugging
tools are very important. A JTAG analyzer can be used to debug the problems as well as
transfer programs to the target board. Errors can be found on PCB level by debugging the

board using single stepping and boundary-scanning.

Finally, JTAG analyzers are very expensive on the market. Therefore, JTAG
usage is not practical in smaller scaled applications. However, a cheaper JTAG analyzer
can minimize the cost for small scale projects while maintaining the capabilities of the
JTAG analyzer.

1.3 Objectives
The objectives of this project are:
1. To create JTAG analyzer that is able to capture and display the IDCODE of a

Atmel AVR microcontroller on the targeted board

2. To create a JTAG analyzer that is compatible with Atmel AVR processor. The
JTAG analyzer is to be compatible with all microprocessors from ATMEL AVR
family.

3. Todesign a simple and user friendly device that is compact and economical.

1.4 Scope of Project

There are always limitations or restrictions when it comes to completing a task.
For this project, the processor that is going to be used will only be an ATMEL AVR
microprocessor. The target of this is to be able to get and display the IDCODE of a
microprocessor that is of the ATMEL AVR family emphasizing on the ATMEGA.

Besides that, the programming language that will be used will be c-language.
Besides that, this project will be utilizing Win AVR-GCC as the compiler and any other
boot loader that can be compatible to the ATMEL AVR.

This project will also utilize Proteus, which is a simulation program to simulate

the inputs and outputs of microcontrollers.

1.5 Project Flow

Find technique Choose the
Literature research » and software used -
bout TTAG best technique
for JTAG coding
\4
Test the coding Create the
Troubleshoot if | togetthe |* JTAG coding
required intended results
\ — Test the coding
Optimization
> onto an actual
of results
Atmel AVR board

Figure 1.2: Project Flow

The flow chart above shows the flow that this project takes from the start up until
the end of the project when the desired results are obtained. The project starts with the
literature research, technique choosing, and coding creation, testing as well as

troubleshooting to get the final desired results that will be discussed in the next chapter.

The project flow involves all the methods mentioned above from choosing the
microcontroller to be used, learning of the programming language, and usage of the
compiler as well as all software’s involved from the start to the end of the project The

desired results of this project is obtaining the IDCODE of a target microcontroller.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

JTAG is mainly used in boundary scanning applications on PCB boards. It also
has the ability to program target microcontrollers besides being able to perform
debugging functions. In this chapter, the various aspects are reviewed towards being able
to create a JTAG analyzer. The main target is to be able to get the IDCODE of a target
microcontroller. Besides that the programming language used, the microcontroller used
as well as the various programs that are applied to be able to get the results needed to call

this project a success is also discussed.

2.2 Joint Test Action Group

JTAG or also known as Joint Test Action Group is a device that is used for
programming and debugging at a PCB level using boundary scanning. These days, JTAG
is widely used for IC debug ports as most modern processors supports JTAG when they
have enough pins. JTAG performs single step functions and break pointing which is
important in embedded system development. Below is a figure of the JTAG block

diagram inside a microcontroller!!):

IO PORT O

A
DEVICE BOUNDARY

—’I BOUNDARY SCAN CHAIN

o 4
o - ITAG PROGRAMMING
 TAP NTERFACE
TCK | CONTROLLER
™S » |
' INTERNAL RiRCRY
FLASH Address [€——1 =ray RC
INSTRUCTION MEMORY Data|—»f cHain Instructon
REGISTER

=] |
REGISTER BREAKPOINT

]
" — NI —>{ FLow conTroL>
U BYPASS UNIT
REGISTER 1 b
X DIGITAL ANALOG
- PEI&‘L::HﬁRhL 4 cooiPHERIAL |+ Analog inputs
= . UNITS
BREAKPOINT
SCANCHAIN |*—
JTAG | AVR CORE
— Y COMMUNICATION
ADDRESS R INTERFACE
DECODER OCD STATUS
AND CONTROL
-« Control & Clock lines
1
A
110 PORT n

Figure 2.1: Detailed JTAG Block Diagram for Generic Hardware

2.2.1 Debugging

JTAG was originally designed for testing printed circuit board assemblies®. In
current years, it has become an essential mechanism for debugging embedded systems
which may not support other debug-capable devices. Target CPU will have debug
modules which is accessible through the JTAG used as the transport mechanism.
Through these modules, software developers may debug the software of an embedded

system directly at the machine instruction level when needed.

Using JTAG to debug, processors can normally be let run freely; single stepped,
or halted according to the need of the debugger or the programmer. Most design support
‘halt mode debugging’, but some allow for debuggers to access data busses and registers
without the need for the core to be stopped. FPGA developers also use JTAG from time
to time. The same technique used to debug the software inside CPU can be used to debug
other digital design blocks inside a FPGA such as reading registers or providing visibility

for behaviours which are invisible to boundary scan operations.

2.2.2 Programming

Programming is another function that can be performed by a JTAG other than the
ability to perform debugging. Some devices can be programmed using the JTAG port
normally during the development period.

JTAG programmers are usually used to transfer data to internal non-volatile
memory such as CPLDs. Besides that, JTAG programmers are also used to write
software and data into flash memory. This is usually done using data bus access like CPU
in cases where the memory chip do not have JTAG interface them self!®!.

2.2.3 Boundary Scan Testing

In many integrated circuits today, all pins that connect to electronic logic are
linked together in a set known as the boundary scan chain. By using JTAG to manipulate
the chip’s external interfaces such as the inputs and outputs to other chips, it is possible to
test for certain faults. The combinational logic can also be tested when the JTAG

manipulates the internal interfaces of the chip such as the on chip registers™..

10

In both internal and external manipulation, the testing is done after it is mounted
onto a finished board and possibly while it is in a functioning system. When JTAG is
combined with the internal test known as the built in self test, the JTAG scan chain will
testing an 1C for certain static faults such as shorts, opens and logic errors. Test cases are
usually provided in standardized formats and are used in production testing which is
essential in today’s products as faults can be detected on finished boards before it is

shipped out!".

2.2.4 Electrical Characteristics

A JTAG interface is a special four or five pin interface that is added to a chip and
designed. This is so that if multiple chips are used on a board, the JTAG lines can be
daisy-chained together so that only a single JTAG port is needed to have access to all
chips on a circuit board. The five pins are TDI (Test Data In), TDO (Test Data Out), TCK
(Test Clock), TMS (Test Mode Select), and TRST (Test Reset which is optional)®. The
figure below shows all the connection of the above pins except the reset pin in the JTAG

chain.

TMS

TCK

TODI

TDO

TMS
™ DEVICE 1

TDI TDO

™S
TCK

TDI

DEVICE 2

TDO

T™MS
TCK

TDI

DEVICE 3

TDO

11

Figure 2.2: Electrical Characteristic of JTAG

Only one data line is available, hence making the JTAG a serial protocol device.

For input data as well as the output data, both transfers data in serial. The TCK pin is the

clock input for the JTAG functions. Clocking and changes on TMS causes steps through

a standardized JTAG state machine known as the TAP controller which will be discussed

next. During each TCK pulse, one bit of data is transferred at the TDI and TDO pin.

Different instructions can be loaded such as reading of the id of a target microcontroller

or to sample inputs and outputs.

12

2.25 TAP Controller

To be able to understand and manipulate the JTAG analyzer, the TAP controller
must first be understood. The TAP controller is a state machine within the
microcontroller. It controls the different states that can be manipulated to be able to gain

JTAG function in that microcontroller.

The TAP controller is basically divided into two parts, the data and instruction
parts. Before entering either part, there is the reset and ideal states. From the reset state
(initial start up), the controller will enter the ideal state until further instructions direct it
to the next state. The next part is divided into two, the instruction and data functions.
Both data and instruction functions have seven states that are the same in name for both,
that are select, capture, shift, exit, pause, exit2 and update which will then either return to
ideal state or back to the select for the data or instruction register.

DH- an H- an
0 1 0
! (Capture o)
P = (T
Shift-DR @ Shift-IR @

1 1

Centiion) Cexiti-in
c] o}
Craveeon ¥)o| | CPavee-1n 1o
1 1

1 1
Update-DR Update-1IR
1 (0]

L 1 v0

Figure 2.3: TAP Controller

13

The movement between states and the selection of the next state is controlled by
TMS (Test Mode Select) and TCK (Test Clock Input). On every rising edge of the TCK,
TMS will be read and will move accordingly. The state diagram of the TAP controller is

shown in figure 2.3.

The first state is the Test Logic Reset. This is the state where all the registers are
reset and the controller starts from the beginning of the state cycle. If there is any initial
condition on the controller, the 5 cycles of TMS high is needed to return the state
controller to the reset position. Alternatively, the TRST (reset) can be set low to allow the
controller to return to the reset state. The next state is the ideal state. This is the state
where the controller is in ideal mode and does not run any function unless certain special
instructions are present such as the RUNBIST which will cause a self test on the target

chip.

The first states are the scan-DR and scan-IR states. During the scan-DR, the
controller will acknowledge the value of TMS on the rising edge of TCK to see the next
route, weather to go into the capture-DR (TMS=0) or scan-IR (TMS=1) state. When in
the scan-IR state, the controller will acknowledge the value of TMS to check whether to
proceed into the capture-IR (TMS=0) or back to the reset state (TMS=1).

The following state is the capture state. In the capture-IR state, a set of
instructions is moved into the instruction register. For the capture-DR state, data is
moved in parallel into the selected data register according to the instruction set. Next is
the shift state. In the shift-IR, the shift register is connected between TDI and TDO to
shift data out while in the shift-DR state, the test data register is connected between TDI
and TDO to shift out data regarding the test.

14

The exit-DR and exit-IR is a temporary state in which the value of TMS will
choose the next path whether it be pause (TMS=0) or update (TMS=1). The pause-DR
and pause-IR states will allow for movement of the serial data between TDI and TDO to
be temporarily be halted. Then comes the exit2-DR and exit2-IR which is another
temporary state where the value of TMS will select the next path whether it be update
(TMS=1) or back to shift (TMS=0).

Finally, the final state is the update-IR and update-DR. In this state, the register
will latch the next instruction or data that is to be captured in the following capture state.
In this state, when TMS is held high for a rising edge of TCK, the controller will proceed

to the select states. If TMS is set to low, the state will return to the ideal state.

For both Instruction and Data functions, the general flow is as described above,
that it moves from scan to capture, shift, exit2, pause, exit2 update and back to scan or
idle. This is the general state movement. However, this movement can be manipulated by

manipulating the values of TMS as will be done in this project.

As an example, the values of TMS can be manipulated to obtain the IDCODE of
the microcontroller that is being tested. To get the IDCODE, the TAP must go through
the Instruction function first. This is to send the input data to the instruction register. Next
is to go through the Data register to obtain the IDCODE.

15

Referring to the TAP controller diagram in figure 2.3, the values 0, 1, 1, 0, and 0
is inserted to TMS to go through the instruction register up to the shift state. Then, to
shift the data in from TDI, TMS is held low for four TCK cycles to remain at the shift
state. Then, the values 1, 1, and 1 is inserted to TMS to exit and update and go to the next
function that is the Data function. At the data function, the same process as above is
repeated. This time, TMS is held low for 32 cycles at the shift state because the output is
a 32-bit data.

2.3 Atmel AVR

These microcontrollers are a modified Harvard architecture 8-bit RISC single chip
microcontroller. These chips were developed by Atmel in 1996 and were the first
microcontroller to use on-chip flash memory. This is as opposed to one time
programmable memories such as ROM, EPROM or EEPROM that were being used by
other microcontrollers at that time. These microcontrollers have separated physical
memory systems. These memories appear in different address spaces to store data and

programs but have special instructions to read data from program memories.

16

There are six basic families in the AVR which are listed in the table below with

its specifications:

Table 2.1: AVR Families’ Specification

AVR family

Specifications

tinyAVR — ATtiny series

0.5-8kB program memory
6-32 pin package
Limited peripheral set

megaAVR — Atmega series

4-256kB program memory
28-100 pin package
Extended instruction set

Extensive peripheral ser

XMEGA — Atsmega series

16-384kB program memory

44-64-100 pin package

Extended performance features such as DMA, ‘Event
System’ and cryptography support

Extensive peripheral set with DACs

Application — Specific AVR

MegaAVRs with special features not found on other
members of the AVR family such as LCD controller,
USB controller advanced PWN CAN etc.

FPSLIC — AVR with FPGA

FPGA 5K to 40K gates
SRAM for the AVR program code
AVR core can run up to 50MHz

32-bit AVRs

Consists of several micro-architectures

Cost sensitive application

17

2.3.1 Device Architecture

For Atmel AVRs, Flash, SRAM, and EEPROM are all integrated onto a single
chip. This removes the need for external memory in most applications. Some devices
allow additional data memory or memory-mapped devices by having parallel external bus

option. Below is a block diagram of the AVR architecture®:

Data Bus 8-bit

A
Program Status
Flash < Counter [and Control
Program
Memory -
} Interrupt
2 > 32x8 . Unit
Instruction General
Register Purpose R SPI
€ Registrers < Unit
Instruction Waltchdog
Decoder 4 4 < Timer
@ %{“ RV
w o
l g ?, ALU oo o Analog
Control Lines B 2 Comparator
< ot
© 3 »
g S
a E /O Module1
Data = 0 M)
5 SRAM 'O Module 2
<«—» 11O Module n
EEPROM <
IO Lines <

\4

Figure 2.4: Block Diagram for Atmel AVR

18

Program instructions are saved in non-volatile flash memory. The size of the
program memory is usually indicated by the name of the device itself. For example,
ATmegab64x has 64kB of flash memory to be utilized. Internal data address space consists
of the 1/0 registers, SRAM and register file. In most AVRs, the working registers are
mapped in the first 32 memory addresses, followed by the 64 1/O registers, which is
followed by the SRAM.

Almost all AVR also have EEPROM for semi-permanent data storage which can
be maintained even without electrical power. In most AVRs, this EEPROM has to be
accessed like accessing an external peripheral by using special pointer register and

read/write instructions which makes access to EEPROM much slower.

Atmel AVRs are made with a two stage, single pipeline design. This means that
when the current instruction is being executed, the next instruction is already being
fetched. Most instructions take only one or two clock instruction which makes AVRs
relatively fast. These processors were developed with the efficient execution of compiled

C code in mind and therefore have many built-in pointers for this task!®!,

19

2.3.2 Atmel AVR ATmega 324p

The microcontroller used for this project was the Atmel AVR ATmega 324p. This
microcontroller was chosen because it is one of the easiest to use and easiest to be
purchased for this project purpose. This microcontroller has some desirable features such
as 32 general purpose registers, high endurance non-volatile memory, and JTAG
interface compliant (which was important for this project). Another ATmega 624p as

well as an ATmega 16L were chosen at random to be the target microcontroller.

The first part of the project was to learn the many instruction set of this
microcontroller as to be able to program it to be used to the need of this project. The
block diagram for this microcontroller as well as the pin out!® is shown in figure 2.5

and figure 2.6 respectively:

(PCINT&/XCKQ/TO) PBO O 1 ~ 40 O PAO (ADCO/PCINTO)
(PCINTS/CLKQ/T1) PB1 O 2 39 [0 PA1 (ADC1/PCINTT)
(PCINT10/INT Z/AIND) PB2 O] 3 38 [PAZ (ADC2/PCINTZ)
(PCINT11/OCOA/AINT PB3 O 4 37 O PA3 (ADCIPCINTS)
(PCINT12/OC0B/SS) PB4 [5 36 O PA4 (ADC4/PCINT4)
(PCINT13/MOSI) PBS [6 35 [PAS (ADCS/PCINTS)
(PCINT14/MISO) PBE [7 34 [PAB (ADCE/PCINTE)
(PCINT1S/SCK) PB7 [8 33 [0 PAT (ADCT/PCINTT)
RESET O 9 32 O AREF
VGG O 10 31 [OJ GND
GMD O 11 30 O AVCC
XTAL2 O 12 29 [0 PCT (TOSCZ/PCINTZ3)
XTALY1 O 13 28 [0 PC6 (TOSC1PCINTZ2)
(PCINT24/RXD0} PDO O 14 27 [0 PC5 (TDWPCINT21)
(PCINT25/TXD0) PD1 [15 26 [0 PC4 (TDOVWPCINT20)
(PCINT26/RXD1/INTO) PD2] 16 25 O PC3 (TMS/PCINT19)
(PCINT2T/TXD1INT1) PD3 O 17 24 [PC2 (TCK/PCINT18)
(PCINT28/XCK1/0C1B) PD4 O 18 23 0 PC1 (SDAPCINT1T7)
(PCINT29/0C1A) PDS [18 22 O PCO (SCL/PCINT18)
(PCINT30/0OC2BICP) PDE [20 21 O PD7 (OC2A/PCINTS1)

Figure 2.5: Pin out for ATmega 324p

20

FAT.D FET.1
L
r—— - " -"®r-——-"=-"-=--—\(=- === - —3
e
RS] e n & BORT AE | Pcwra:s:l
I RESET I
= Whchicg >
Py I - |

AD
(Comasriar

e ramy
L | b EEFROM BaNagap Memerence S
= e

Cmrmenbon
== T

» SPU

|
f
A
j

j .

Figure 2.6: Block Diagram for ATmega 324p

For this project, the most important pins are those at port b, and port c. Port b will
be the port that is used to send the JTAG instructions to the target board. Port c is the port
that has the function specific pins for the JTAG functions that are the TCK, TMS, TDI
and TDO pins. The VCC, GND, and XTAL are also used for the external cock as well as

for powering up the microcontroller.

The Atmel AVR microcontroller supports C language as well as assembly
language. However, for this project purpose, the C language is preferred. This is because
of its simplicity and previous experience using this language to be able to create the
required program to get the IDCODE through the JTAG interface.

CHAPTER 3

PROPOSED DESIGN OF A JTAG ANALYZER

3.1 Introduction

This chapter discusses the development of a JTAG analyzer for this project.
All the problems faced and the solutions to overcome them are also discussed in this
chapter. Figure 4.1 shows a proposed design of a JTAG analyzer. The outputs from

PortB from the JTAG are connected to the JTAG pins on the target microcontroller

22

Microcontroller 1(JTAG Analyzer) Microcontroller 2 (Target Board)

PORT B 1 T™S

PORT B 2 TRST

PORT B 5 TDI

PORT B 7 TCK

PROT C 0 TDO

VCC VCC

GND GND

Figure 3.1: Proposed Design for JTAG Analyzer

3.2 The JTAG Protocol

Literature review on JTAG was done on all previous work. This includes all past
projects, online solutions as well as specification and technical papers. However, at this
step, the first hurdle presented itself. For JTAG, the only clear documentation available
was the technical and specification datasheet. All online solutions or past projects were
giving out the final solution and did not provide inside towards creating a JTAG analyzer

on its own.

This, coupled with the fact that most JTAG protocol and instructions set found in
Atmel AVR datasheets are kept private, meant that the only valid source of information
was from the technical datasheet. The table below shows an excerpt from an ATmega
644p datasheet with the JTAG protocols. All other journals and books only provided

23

information on the JTAG analyzer or on its architecture. This only led to the
understanding of the functions of JTAG and its uses. However, this did not help much in

the development of the software which had to be done from scratch.

Table 3.1: JTAG Protocol Example as in ATmega 324p Datasheet

JTAG Instructions Function Done
PRIVATE 0x8 Private JTAG instruction
PRIVATE 0x9 Private JTAG instruction
PRIVATE 0xA Private JTAG instruction
PRIVATE 0xB Private JTAG instruction

Therefore, it became important to understand the technical and specification
documents. This took a large amount of time as the papers had to be understood and a lot
of trial and error had to be done in the process of obtaining a clear understanding of the

internal functions of JTAG namely the TAP controller.

The specifications and technical documents mention on the internal functions of
the JTAG as well as all the registers that are at hand. However, these papers do not
mention the relevant codes and syntaxes to be used in writing the source code that is to
do a JTAG function. Therefore, trial and error method had to be implemented to

understand the papers and decipher them to make a working source code.

24

Actual output from an industrial based JTAG was also needed as to be able to
cross reference the output from an actual JTAG with the output obtained in this project.
The JTAGICE MKII was used for this purpose. The JTAGICE requires external power
and therefore the SDK board being tested needed to be powered using a USB tiny. This
JTAGICE was used to program the board as well as to obtain the IDCODE to gain some

data to cross reference the actual output of the JTAG analyzer that is designed

3.3 JTAG TAP Controller Flow

The figure below shows a block diagram of a simple TAP Controller. The general
movement between the states in a TAP function to run the various functions of a JTAG.
The flowcharts show the movement is states through the data registers (figure 3.3) and

instruction registers (figure 3.4).

Atmel AVR Microcontroller

TMS > Boun

TCK dary

TDI TAP Controller > Scan

TDO Chain
TRST —>

N

Registers to be JTAG
manipulated interface

Figure 3.2: Block Diagram of a Simple TAP Controller connection

From TMS l
selector of NO)
IR Flow " > Enter Ideal State [*
(NO) NO
M
=1?
YES

From TMS
selector of > YES || Enter Select DR-Scan
IR Flow
(YES) l

M YES

v

25

=1?
NO

Enter Capture DR

|

TMS YES

=17

lNO

A

A 4

Enter Shift DR

Enter Exitl

A

Go to IR flow

lYES

Enter Exit2

l

NO

lYES

M YES
=1?
NO
Enter Pause DR
NO

Enter Update DR

Figure 3.3: Data Function General Flowchart

26

From Data
Flow

A 4

Enter Select IR-Scan

l

M YES

27

=1?

NO

Enter Capture IR

TMS YES

A
m
>
—
@D
—_
2]
=
iy
—
PV

A

A

Enter Exitl

™ YES

=1?

NO

Enter Pause IR

v

Back to Reset

Back to Data
Flow (Ideal)

YES

|
?J

Enter Exit2

l

NO

lYES

Enter Update IR [*

NO M

¢

=1?

YES

Back to Data
Flow (Select
DR-Scan)

Figure 3.4: Instruction Function General Flowchart

28

CHAPTER 4

IMPLEMENTATION OF THE PROPOSED JTAG ANALYZER

4.1 Introduction

This chapter discusses the implementation of the theories of designing a JTAG
analyzer. The compilation and programming environment as well as the electrical design
and software development are discussed in detail. This chapter also discusses the output
that will be used to cross reference with the output from the JTAG analyzer that is to be

created.

30

4.2 Setting up the Compilation and Programming Environment

For this project, Win AVR-GCC was used as the compiler. Win AVR-GCC is an
open source C compiler and assembler. For this project, it is used in command prompt
format and is not linked to any other software such as AVR Studio. This software is used
in this project as a compiler to compile the C program to a .hex file. Besides that, it is
also used to instruct the programmer to burn the .hex file into the microcontroller to be

used.

The tool chain of this software starts at the compiler. This turns the C code into
assembly language files. This software has an avr-libc which is the C library for the
AVR. This includes all the header files that contain all the floating point library, AVR-
specific macros, addresses of port and register names as well as the AVR start-up code.
This is why this compiler is preferred to a standard C compiler which would not have all
this information for the AVR. Therefore, it would require the user to write a start up code

and so on to initialize the address of ports and names of registers and so on.

v

Assembler

Object Copy

@ AVR Libc
W GCC

1 GMWU Binutils

B AYRDUDE

O GOE [AVaRICE [Simulavr
O User's Input Files

Debiugger

Figure 4.1: Tool Chain for AVR-GCC Compiler

31

Figure 4.1 shows the tool chain flow of a creation of a .hex file from the C code
and header files that are inputs from the user. As mentioned above, all these files will be
converted to assembly files. Once these assembly files are obtained, they are converted to
object files. These object files are a level of code that the AVR could run itself, however
there are many files. Here, a linker will take all these files and cross-reference the names
between files to create one object file. This will be created as an .elf format file, so an
object copy is done to generate the .hex file. The compiler, linker, assembler and library
form the core of the tool chain.

This software runs in command prompt. To create a .hex file, the word ‘make’ is
typed into the command prompt at the directory where there is a c is saved. When this
command is inserted, the tool chain that was explained above is run and a .hex file is
created. All this is governed by a makefile. An example of a makefile is shown in figure
4.2. The name of the file to be compiled is specified at the target. Besides, the
microcontroller used also has to be specified. In this makefile, all the functions that can
be handled by the AVR-GCC are listed.

Referring to figure 4.2, inserting ‘make’ will create a .hex file. Inserting ‘make
clean’ will clear the .hex file that was previously created. Inserting ‘make fuse’ will allow
the programmer to set fuses values to the microcontroller according to the specifications
set by the user in the makefile. Inserting ‘make flash’ will burn the .hex file previously

created into the microcontroller.

32

Figure 4.3 is an example of using the AVR-GCC in the command prompt format.
This figure shows the process of going to the directory where the C code is present. It
then lists all the files in that directory and finally using the ‘make’ instruction to creates

the .hex file

For this project, the programmer used is the AVR ISP programmer. This
programmer is compatible with the AVR-GCC compiler and will be used to set the fuses

(‘make fuse’) as well as to program the board with the created program (‘make flash’).

@ Makefile - Notepad2 = | 5 S

File Edit View Settings 7

Ry | B AR B e @ R
1CC=avr—gcc

CFLAGS=-g -05 -wall -mcall-prologues -mmcu=atmega324p

OBJ2HEX=avr-objcopy
TARGET=tryd

program : $(TARGET).hex
#.obj : %.0
$(CC) $(CFLAGS) %< -0 3@

@ oo N E WM

El
10 %. hex : %.obj

11 $(OB12HEX) -R .eeprom -0 ihex %< %@
1z

1z clean :

14 rm -f ®.hex *.obj ®.0 ®.out

as

16 Flash :

a7 avrdude -c usbtiny -pm324p -uU flash:w:$(TARGET). hex

is

13 fuse :

20 avrdude -c usbtiny -pm324p -U Tfuse:w:0xdf:m -U hfuse:w:0x99:m -uU efuse:w:0xff:m

21

< [[- 3
Ln1:22 Coll Sel0 406 bytes ANSI LF INS Makefiles

Figure 4.2: Example Makefile

33

@ CWindowsiystem32cmdee

. [Microsoft Windows [Version 6.1.76811] B
Chang|ng 1Copyright (c) 2089 Microsoft Corporation. All rights reserved.

dlreCtory \ C:\Users\JasBeant>cd desktop

C:\Users\JasBeant\Desktop>cd ATTiny2313

LIStIng files C:\Users\JasBeant\Desktop\ATTiny2313>1s
in the folder] Makefile a.out hlink.c
C:\Users\JasBeant\Desktop\ATTiny2313 >make
avr-gcc -g -0s -Wall -mcall-prologues -mmcu=attiny2313 -c -o hlink.o hlink.c
. avr-gcc -9 -0s -Wall -mcall-prologues -mmcu=attiny2313 hlink.o -o hlink.ohj
Complllng iaur-objcopy -R .eeprom -0 ihex hlink.obj hlink.hex
the program / il‘n blink.obj hlink.o
to get the iC:\Users\JasBeant\Desktcp\ﬂTTiny2313>_

hex file)

The hex file

Figure 4.3: Example AVR-GCC Compiling

4.3 Electrical Design of JTAG Analyzer

For simulation purposes, Proteus was the software used in this project. This
Proteus software was made to be used for microprocessor simulation, schematic capture,
and printed circuit board design. In this project, this software is used to draw the
microcontroller connection and do the simulations. This is to confirm that the generated

output match the intended output before going to the actual board implementation.

Proteus consists of drawing circuits from set devices in the library and connection
as intended. After this is done, various ways of simulation can be done after the .hex file

is inserted into the microcontroller in the settings. This software can then simulate the

34

outputs at all pins involved with the simulation that is being done. This software also
supports creation of timing diagrams to show the outputs of pins according to the user’s

needs which is one of the features that will be used in this project.

Figure 4.4 shows an example of a connection between two microcontroller and
the probes that are in place to generate the timing diagram (more of which will be
discussed in the following chapter). However, Proteus can only generate the output of the
first microcontroller and is not able to get an output from the second microcontroller
because this software does not simulate the JTAG functions of the microcontroller.

e L
1— P B0 FINTIN PG INTE PAADCONPC INTO —‘u [T 1— P BO%C FINTIN PC: INTE PAYADCOVPC INTO —‘u
z = i z =
2| PRATIG LKDIPGINTS PAADG PG INT! [2| PRNTIG LKIPGINTS PAIADG PG INT! [
PEZAINKINTZPE INTT PAZADCZPCINTE [PEZAINKINTZPC INTT PAZADCZPEINTE [=
—;— PAZAINIOCOAPCINT A1 PASADCIPCINTI _% To —;— PASAINIOCOAPCINT A1 PAZADCIPCINTI _%
5 PEAES0CO8PC INT 2 PAHADC HPCINT+ = ﬁ? = PEES0CO8PC INT 2 PAHADC HPCINT+ =
= PESTAOEVPCINTII PASADCSPC INTS =T T T PESTAOEVPCINTI3 PASADCSPC INTS =T
= PHSTAEED/PCINT 4 PASADCEPCINTE =T /G’ m PHSTAEED/PCINT I+ PASADCEPCINTS =T
= | parEc PCINTE PATEADCTIPG INTT PRTAEC KPCINT &5 PATEADCTIPC INTY
1+ = 14 =
——=— PDOVRXDOVPC: INTZ24+ PCOES: LIPS INTIS ——— PDORXDOPC INTZ24+ PCOEC: UPCINT IS
i POITHDOPC INTS PCASDASPCINT T = i POVTHDOPC INTS PCASDAPCINT TP =]
11-?— POZINTIPCINTE PCATCEPCINTE ; ih- 11;— PO INTINPCINTE PCATCEPCINTE —g-
J2 1 pozINTHREINT PCITIREPC N T 1S LI e R PGITIREPCINT 15
5| FownC1BiPCINTE PCATIOMPEINTZD [27 | Fownc i8R Tz PCATOOPCINTD |25
= PDEOC ARG INTE PCSTDRPCINTZ = PDSOC AP INT D PCSTONPCINTA |—-
z; POSC PAOGZEPC INTI0 PCSTOEC: PG INTZ2 —E ELS z; POS'N: PAOCGZEPC INTI0 PCSTOEC PG INTZ2 —E
L POTACZAPC INTI PCTMOECEPCINTA —E (1:|:|2]_| == (1::-'1]1 L POTAOCZAPC INTI PCTTOECAPCINTO —E
Z | aner HTALY 2 STERe || STE L | aner HTALY 2
I e TALZ [T] awce TALZ [
2 | we=ET = | me=ET
) v i FTESTE
FTEAT — P A3 AAR=J TAC Prog ' iny hex

Figure 4.4: Proteus Design

35

4.4 Software Development for Manipulating TAP Controller

A flowchart is designed by manipulation the values of the TMS to go through the
TAP controller to obtain the IDCODE. The figure below shows the flow of the program
to obtain the IDCODE from a target microcontroller.

IDEAL STATE

A\ 4

A 4

SELECT DR-SCAN

A 4

SELECT IR-SCAN

SELECT DR-SCAN

CAPTURE DR

36

!

UPDATE DR

Figure 4.5: Flow for IDCODE Program

The next step was to use the actual industry based JTAG which is the JTAG ICE
MKII. This device is used to check the output of the IDCODE to later e cross referenced
with the output of the JTAG created for this project. Below are two figures that show the
output of the IDCODE. Figure 4.6 shows the IDCODE for an ATmega644p and figure
4.7 shows the IDCODE for an ATmegal6L. Both these IDCODE are found to be correct
according to the datasheet and therefore will be used as a base to compare with the actual

output of the JTAG for this project (discussed in the next chapter).

avrdude: safemode: Fuses QK

avrdude done. Thank you.

): warning: OCDEN fuse not programmed, single-byte

Lalized and re y to accept instructions

ER0x 122604
y has been s

v be performec
s feature,

): warning: OCDEN fuse not programmed, single-byte

ding input fi =
input file 5 ected as Intel Hex
writing f1 [3

Figure 4.6: IDCODE of ATmega 644p

37
zerofizero-linux:~/Desktop/ATMeqa324P Wise$ make flash

yte EEPROM updates not possible

avrdude:

Reading

avrdude: Device signature = [RST3LL)

avrdude: NOTE: FLASH memory has been specifiec

ip
nkII_initialize(): warning: OCDEN fuse not programmed, single-byte EEPROM updates no
input file
avrdude: in '

avrdude: wri

Figure 4.7: IDCODE of ATmega 16L

The program was written in C language because it is simpler compared to
assembly language. The first step was to create a source code to simulate the outputs
required. This source code that was created (Appendix A) was tested using Proteus
(Results discussed in next chapter) and the output of the simulation was checked with the
required inputs.

The first hurdle that was faced in this process was the output generated. The
program was tweaked several times by changing the delay and placements of several
codes in the source code to finally obtain the intended output. Once the accurate output
has been obtained, the remaining part of the program could be created. This was the part
that included the process in the TAP controller and the sending of instruction and

receiving of data from the registers. The data to be sent and received were placed all in

38

the rising edge of TCK portion in the program. This program was then tested on the

actual board.

This is where the next problem occurred. The outputs were not as expected. The
results obtained were nowhere close to the expected results. Further research on the
technical papers proposed a solution. The output portion of the program, which is the part
where TDO sends the output back to the JTAG (first microcontroller), was wrong. All
outputs from target were to be in the falling edge of the TCK. After rectifying this
problem, the output was still found to be incorrect. At this point, various trial and error
methods were implemented. First, the portion of the program that received the data from
TDO was shifted up and down the timing cycle. This means, that the program was
modified to receive that data earlier or later that the original program. However, this did

not solve the problem.

Next, the program was shifted by several bits to see if any similarities were found
in the output compared to the intended data in the datasheet. When this failed, the output
was analyzed with a different method. The position of the output data was analyzed.
Finally, it was found that the arrangement of the display in the program was reverse.
After rectifying this problem, the output of the JTAG was found to be correct. To make
sure that this was correct data, the JTAG function was tested on a second microcontroller
and the output was also found to match the intended output in the datasheet (discussed in

the next chapter).

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Introduction

This chapter will be discussing all the results that were acquired and analyzed
throughout this project. This chapter will cover all the results from the simulations done
as well as the actual data that was tested onto the WISE SDK board. All this data were
analyzed and compared to the intended data to be verified as will be discussed in this
chapter.

40

5.2 Simulation Results

The simulations for this project were done using Proteus software as was
described in the methodology section of this report. The simulation was done to gain the
output data from the microcontroller that will assume the role of JTAG to make sure that
all the data that were sent by that microcontroller was correct in value. Figure 5.1 shows
the connections of the microcontroller in Proteus and figure 5.2 shows the results of the

simulation:
):" RET
U7 I
1| penv koTR: T PAOAD GG N [M= 1| peOoe TR NTE RALVADCINRCINTD |

=] B b T =
£ | pENTHELEPCINTE PANADE IREINTY [PEATHGLKDIPG NS RANADE 1REINTY [
3 | pEmANGINTZPCNTT PAZIADCEIRGINT _§ 3 | pezANDNTZFCINTD PAZIADCTIPCINTE _§
3| PEZAINIOCOARCINTH PASANCIPCING [el £ PEIANIDCOVPCINTH PABADCIPCING [
| PEWEECTRPG NTE FAWADG PEINTE == ﬁ | PEMESOCTIONTR PANADG HPGINTY (=
| PESIEIFCINT D PASADCSPCINTS [| FESIDSIRCINTS PAGADCSTCINTS [
| PESMEO/RCINT1 PARANCHPEINTG - o 5| PESMEDFG T4 PARAICEPEINTE -
B | penmc kipc T PATIADETIREINTY = Ei PETECKRCINT S RATADCTIRGINTY |
1 | pomonro Ntz POOEDLIPCINT 1S | I | poomompenTze POOECLIPC INTHS |
{é_ POATHIIACINTS PCAEDARCINTT _.‘,z’r 5 -}g_ PO THDIRC N TS PCAZD ARG INTT —zar
| FOZNTIAEINTE reamekpCINTE [] FOZNTIREINTS PERTCKPEINTE F
T FIAINTHRCNTE PUITIEPGINT1S |5 T FURNTHRCINTE POITIRIPCINTIS 5=
| FOMOCTBRCINTES PG W TDOMPGINTED [T FIMICTRPCINTER PCHTOOPCINTE 5
| PISOCIRFC T FOSTURPEINTE [| PISOE 4G TS FOSTURREINTE =
T FUER HOCZRREINT RCGTOECHRCINTZ |2 T rogiroczame NTD ROGTOREREINTZ 22
EL | pprmczape INT3 POTTOCRRC T = C2 ==11 £ po7ioc2ape NTH PETTORE2IE NTZ =
= 1 i i T 1

AREF HTALY T | | sTEg AREF HTALY
;I T xTALZ [, ’; AU ALz [12,

TEZET — FESET

RTIEGRE 4 ATINEGAR Y

TEAT = P ROGRANJ TAGPrgRT i hes

Figure 5.1: Proteus Design for Simulation

Figure 5.2: Simulation Output

41

Figure 5.1 shows the microcontroller that is to function as the JTAG (U1) with the
pins from port b being connected to the JTAG input pins of the second microcontroller.
However, Proteus is not able to simulate the JTAG functions and therefore this
simulation is done just to verify that the outputs of the microcontroller to simulate the
JTAG are as expected. The source code that is to be tested is loaded into the first
microcontroller and then the simulation is done. The source code is located in the

appendix (Appendix A).

In the simulation, the four pins act as an output (TMS, TCK, TDI and TRST)
from the microcontroller are tested by attaching a probe to the wire lines of the pins that
are to be tested. Then a digital analysis chart is opened and the values of the lines that are
attached to the probe will be displayed when the simulation is done. This information is
then cross checked with the intended output to make sure that the data is correct.

Below is the figure that shows the portion of the program that is used (attached in
the appendix) for this simulation. This figure shows the intended output of the
microcontroller as described in the program and it is found that the output in figure 5.2
corresponds to the intended output.

14 int main ()
15
16 {
o,1,1,0,0,0,0,0,0,1,1,1,0,0
18 |0,0,0,0,0,0,0,0,0,D,0,0,0,0,0,0,0,0,0,1,1,1,1,1},
19
20 int 1,TMS,TDI,TRST;

>
>
5
5
5
"5
=
=
=
=
=
=
=

Figure 5.3: Excerpt of Program Showing Intended Binary Output

42

Below is the flowchart for the simulation of the output for the microcontroller that

is to function as a JTAG:

START

\ 4

INITIALIZE VALUES
(TMS, TDI, TDO, TCK, TRST)

\ 4

SEND VALUES TO PORT

A

DISPLAY VALUES

END

Figure 5.4: Flowchart for Simulation

43

5.3 Actual Board

After the verification is correct, the program is burned onto the actual board
which is the WISE AVR Mice SDK board. The program was done with C programming
on notepad and then compiled using Win AVR-GCC to compile the program into a hex
file and then to burn it onto the board. Below is a figure of the flowchart to send the data

from the JTAG microcontroller and to receive the output:

START

\ 4

INITIALIZE VALUES

(TMS, TDI, TDO, TCK, TRST)

l

SEND VALUES TO SECOND

MICROCONTROLLER

A 4

GET RETURN TDO VALUE

A

SEND TDO VALUE TO PORT

l

DISPLAY TDO VALUE ON LED

l

Figure 5.5: Flowchart for the Final JTAG Program

44

The microcontroller that has been burned with the program is the main
microcontroller that will function as the JTAG. This microcontroller is then connected to
the second microcontroller that is to be tested. The output pins are connected to the JTAG
pins of the microcontroller that is to be tested on the second board and the program will

be executed.

The main board, that is the JTAG board, will be powered by the ISP programmer
and the common VCC and GND that is connected between the two boards will power the
second board. Below are two pictures (figure 5.6 and figure 5.7) that show the connection

and the output of the actual board.

When the program runs, the JTAG values as was verified in the simulations will
be sent to the JTAG pins on the second board. This will then enter the TAP controller of
the second microcontroller. The JTAG instructions as in the TAP controller will run as
previously described (Chapter 2). When the JTAG functions are completed, the output
will be sent to the L.E.D port. The output is a 32-bit data. Therefore the data will be
shown on the 8 L.E.D on the SDK board in four blinks that last 1 second each. This
duration can however be adjusted in the program that is burned into the microcontroller.

The source code for this portion is located in the appendix (Appendix B).

These values that are shown at the L.E.D are cross referenced with the intended
values that are in the datasheet that shows all the IDCODES for the microcontroller in

question.

Figure 5.6: Actual Board Connections

Figure 5.7: Actual Board Outputs

45

46

The connections between the first microcontroller (JTAG) and the second

microcontroller (Target) are shown in the table below:

Table 5.1: Connections Between JTAG Board and Target Board

JTAG BOARD TARGET BOARD
CONNECTION CONNECTION
PORTBPIN1 TMS
PORT B PIN 2 RESET
PORT B PIN 5 TDI
PORT BPIN 7 TCK
PORT CPIN O TDO

VCC VCC

GND GND

The JTAG function is tested on two separate microcontrollers that are ATmega
644p and ATmega 16L. The output from both this microcontroller were recorded and
then cross referenced with the intended IDCODE listed in the datasheet of each
microcontroller. Below is a table that shows the meaning of the data that is to be verified.
The first nibble (4bit) is the version type, the next 2 bytes (16bits) is the part number of
the device and the last 11 bits is the manufacturer ID. The final bit is always 1.

Table 5.2: IDCODE of ATmega Microcontroller

Bl 3 28 27 iz 1 1 o

Devica ID I Varalon Part Humber Manufacturer ID 1 I
4 bits 16 bits 11 bits 1-bit

47

5.3.1 ATmega 644p

The output after the JTAG functions is as follows:

0110 1001 0110 0000 1010 0000 0011 1111 = 6960A03F

From the above, the data is shown in binary, and the value on the right is in
hexadecimal. By cross referencing the data with the below table, the data can be verified
to be correct. The first, which is 0110 or 6 in hexadecimal, represents the version of the

microcontroller.

Next, the value 960A is the part number. As shown in the table below, this
verifies that the microcontroller that is being tested is indeed an ATmega 644p. Finally,
the manufacturing ID is supposed to be 01F. However, due to parity error, an extra 1 has

entered the data to make to manufacturer ID O3F instead for the output of this project.

Table 5.3: Table of JTAG ID Values for ATmega 644p

Table 24-6. Device and JTAG ID
Signature Bytes Address JTAG
Part 0x000 0001 002 Part Number Manufacture 1D
ATmegai1c4P O=1E O=94 D08 S404 Ox1F
ATmegal24pP O=1E O=95 OxD8 o508 Ox1F
ATmegatddpP O=1E O=96 D04 aE0A 0x1F

5.3.2 ATmega 16L

The output after the JTAG functions is as follows:

0000 1001 0100 0000 0011 0000 0011 1111 = 0940303F

48

From the above, the data is shown in binary, and the value on the right is in

hexadecimal. By cross referencing the data with the below table, the data can be verified

to be correct. The first, which is 0000 or 0 in hexadecimal, represents the version of the

microcontroller. From the table below, the version for this microcontroller is revision A.

Table 5.4: Table of JTAG ID Values for ATmega 16L

Yersion is a 4-bit number identifying the revision of the component. The JTAG version number
follows the revision of the device. Revision A is Ox0, revision B is Ox1 and 5o on. Howeaver, somea

raevisions daviate from this rule, and theae relavant varsion numbear is shown in T

Table 87. JTAG VYearsion Numbers

able 87

Wersion JTAG Version Mumber (Hex)
ATmegal1t revision & [05
ATmegals revision H OxE
ATmegals revision | OxEl
ATmegal1s revision .J Ox9
ATmegalt revision K Oeny
ATmegals revision L oOxB

The part number is a 16-bit code identifying the component. The JTAG
ATmegalt is listed in Table 858,

Table 88, AVR JTAG Part Number

Fart Mur

Part Number JTAG Part Number (Hex)

ATmegals OxS302

nber for

Next, the value 9403 is the part number. As shown in the table above, this verifies

that the microcontroller that is being tested is indeed an ATmega 16 L. Finally, the

manufacturing ID for this microcontroller is O3F.

CHAPTER 6

CONCLUSION AND RECOMENDATION

6.1 Conclusion

As a conclusion, the objectives of this project were achieved. The correct
IDCODE was able to be extracted from the Atmel AVR microcontroller. Two different
Atmel AVR microcontrollers were used ATmega 644p and ATmega 16L so as to make
sure that two different set of results could be obtained. Using simulations and actual
board applications, it was found that the programming and actual applications produced
the intended IDCODE from an Atmel AVR microcontroller.

The project followed the flow of creating a C program before running simulations
confirm the outputs of the program. Then the verified program was burned onto an Atmel
AVR microcontroller and the JTAG function was tested on other Atmel AVR

microcontrollers. At the end of this project, the all the objectives were completed and the

50

correct IDCODE was extracted and displayed at the outputs. The program created was

user friendly and can be easily understood and edited to do more functions in the future.

6.1 Recommendations

At the end of this project, a few improvements can be done for future students or

future studies on JTAG as listed below:

1. This project can be used as a stepping stone for future studies about JTAG.

2. The various private functions in the list of JTAG protocols can be deciphered by
using logic analyzer to analyze the communication between JTAG ICE and Atmel AVR

microcontroller.

3. By using this project as the first step, and together with the analyzed information
from the logic analyzer, advancements can be made to make a more user friendly and

complete JTAG analyzer.

4. Further verifications for the IDCODE can be done by using microcontrollers form
different manufacturers such as ALTERA, ARM or any other device that supports JTAG

functions.

10.

11.

51

REFERENCE

Institute of Electrical and Electronics Engineers. Standard Test Access Port and
Boundary-Scan Architecture. United States of America, 1993.

Be Van Ngo, P.Law and A.Sparks. Use of JTAG boundary-scan for testing electronic
circuit boards and systems. AUTOTESTCON 2008

Ping Zhang, Yanmin Song, Jianmin Zhang, Zuocheng Xing. Design of Testing
Structure in Microprocessor Based on JTAG. ISCID 2009. Vol. 1, 223 - 226

K.Rosenfeld, R.Karri. Attacks and Defenses for JTAG. Design & Test of Computers.
IEEE. 2009

Shen Xu Baang, Liang Song Hai. Design and Implementation of a JTAG boundary-
scan interface controller. Proceedings of the second Asian Test Symposium. 1993
215 - 218.

Korbel, S. Interesting Applications of Atmel AVR Microcontrollers. Euromicro
Symposium on Digital System Design. Czech Tech University. IEEE. 2004. 499-506

Dettmer, R. JTAG-Setting the Standard for Boundary-Scan Testing, IEE Review.
IEEE. 1989. 49-52

Maunder, C. Joint Test Action Group, Computer-Aided Engineering Journal. British
Telecom, United Kingdom. IEEE. 1986. 121-122

Atmel Corporation. 8-bit Microcontroller Datasheet for ATmega 164p,324p,644p.
United States of America.2010

Mitra, S. Design for Testability and Testing of IEEE 1149.1 TAP Controller. VLSI
Test Symposium. Intel Corp. Sacramento CA. IEEE. 2002. 247-252

Pierce, L. Multi-Level Secure JTAG Architecture, On-Line Testing Symposium.
Department of Electric and Computer Engineering. Carbondale, IL. IEEE. 2011. 208-
209

52

APPENDIX A

Program for Simulation

Il Program to get the idcode of the target board

#define F_CPU 20000000UL

#define setb(port, pin) port|=(1<<pin)

#define offb(port, pin) port&=~(1<<pin)

#define togb(port, pin) port*=(1<<pin)

#include <stdio.h>

#include <avr/io.h>

#include <util/delay.h>

int main ()

{

int X[56] =
{11,1,1,1,01,1,0,0,0,0,0,0,1,1,1,0,
0,0,0,0,1,1,1,1,1};

int i, TMS, TDI, TRST;

DDRB = 0xFF;

PORTB = 0x00;

DDRC=0x00;

_delay_ms(0.1);

for(i=0;i<56;i++)

{ setb(PORTB,7);

TMS=X]i];

if (i==0)

{ TRST=1;

TDI=0; }

else if(i==13)

{ TRST=0;

TDI=1; }

else

{ TRST=0;

TDI=0; }

if (TMS==0)

{ offb(PORTB,1); }
else

{ setb(PORTB,1); }
if (TD1==0)

{ offb(PORTB,5); }
else

{ setb(PORTB,5); }
if (TRST==0)

{ setb(PORTB,2); }
else

{ offb(PORTB,2); }
_delay_ms(0.5);
togh(PORTB,7);
_delay_ms(0.5);

}

return 0;}

53

54

APPENDIX B

Program for Full JTAG Function (IDCODE)

Il Program to get the idcode of the target board

#define F_CPU 20000000UL

#define setb(port, pin) port|=(1<<pin)

#define offb(port, pin) port&=~(1<<pin)

#define togb(port, pin) port*=(1<<pin)

#include <stdio.h>

#include <avr/io.h>

#include <util/delay.h>

int main ()

{

int X[56] =
{11,1,1,1,01,1,0,0,0,0,0,0,1,1,1,0,
0,0,0,0,1,1,1,1,1};

int i, TMS, TDI, TRST;

DDRB = 0xFF;

PORTB = 0x00;

DDRC=0x00;

_delay_ms(0.1);

for(i=0;i<56;i++)

{ setb(PORTB,7);

TMS=X]i];

if (i==0)

{ TRST=1;

TDI=0; }

else if(i==13)

{ TRST=O0;

TDI=1; }

else

{ TRST=0;

TDI=0; }

if (TMS==0)

{ offb(PORTB,1); }
else

{ setb(PORTB,1); }
if (TDI1==0)

{ offo(PORTB,5); }
else

{ setb(PORTB,5); }
if (TRST==0)

{ setb(PORTB,2); }
else

{ offb(PORTB,2); }
_delay_ms(0.5);
togh(PORTB,7);
if(i==19)
{a=(PINC & 0x01); }
if(i==20)

55

{a=(a<<1);
a=a+(PINC & 0x01); }
if(i==21)

{a=(a<<1);
a=a+(PINC & 0x01); }
if(i==22)

{a=(a<<1);
a=a+(PINC & 0x01); }
if(i==23)

{a=(a<<1),
a=a+(PINC & 0x01); }
if(i==24)

{ a=(a<<1);
a=a+(PINC & 0x01); }
if(i==25)

{a=(a<<1),
a=a+(PINC & 0x01); }
if(i==26)

{ a=(a<<1);
a=a+(PINC & 0x01); }
if(i==27)

{ b=(PINC & 0x01); }
if(i==28)

{ b=(b<<1);
b=b+(PINC & 0x01); }
if(i==29)

{ b=(b<<1);

56

b=b+(PINC & 0x01); }
if(i==30)

{ b=(b<<1);
b=b+(PINC & 0x01); }
if(i==31)

{ b=(b<<1);
b=b+(PINC & 0x01); }
if(i==32)

{ b=(b<<1);
b=b+(PINC & 0x01); }
if(i==33)

{ b=(b<<1);
b=b+(PINC & 0x01); }
if(i==34)

{ b=(b<<1);
b=b+(PINC & 0x01); }
if(i==35)

{ c=(PINC & 0x01); }
if(i==36)

{c=(c<<1);
c=c+(PINC & 0x01); }
if(i==37)

{ c=(c<<1);
c=c+(PINC & 0x01); }
if(i==38)

{c=(c<<1);
c=c+(PINC & 0x01); }

57

if(i==39)

{ c=(c<<1);
c=c+(PINC & 0x01); }
if(i==40)

{ c=(c<<1);
c=c+(PINC & 0x01); }
if(i==41)

{c=(c<<1);

c=c+(PINC & 0x01); }
if(i==42)

{ c=(c<<1);
c=c+(PINC & 0x01); }
if(i==43)

{ d=(PINC & 0x01); }
if(i==44)

{ d=(d<<1);
d=d+(PINC & 0x01); }
if(i==45)

{ d=(d<<1);
d=d+(PINC & 0x01); }
if(i==46)

{ d=(d<<1);
d=d+(PINC & 0x01); }
if(i==47)

{ d=(d<<1);
d=d+(PINC & 0x01); }
if(i==48)

58

{ d=(d<<1);
d=d+(PINC & 0x01); }
if(i==49)

{ d=(d<<1);
d=d+(PINC & 0x01); }
if(i==50)

{ d=(d<<1);
d=d+(PINC & 0x01); }
_delay_ms(0.1); }
PORTB=d;
_delay_ms(1000);
PORTB=c;
_delay_ms(1000);
PORTB=b;
_delay_ms(1000);
PORTB=a;
_delay_ms(1000);
PORTB=0x04,

return O;

}

59

60

APPENDIX C

User Manual for WIN AVR-GCC

WIN WVR-GCC is an open source software development tools for Atmel AVR
series of microcontroller hosted on Windows platform. It includes CNU compiler for C
and C++ programming. WIN AVR includes all tools for developing on AVR which
includes compiler, programmer, debugger and more. This software can be found at
http://winavr.sourceforge.net/.

This software is free to download from the above mentioned website. The
installation process is simple. First, download the executable file. To be installed, just run

the .exe file and follow the installation process.

This software is easy to use. It is a command prompt based program. To be used,
the command prompt is open in the directory where the .c program to be compiled is
saved. Using the command prompt, several instructions can be used to compile the
program, burn it into the microcontroller and many more. All this functions are governed
by a makefile. Below are two figures that shows example of a make file and the usage of

the command prompt for compiling.

http://winavr.sourceforge.net/

61

File Edit WView Settings 7
D=l @ AL ERQU R
1CC=avr—gcc
z CFLAGS=-g -05 -Wall -mcall-prologues -mmcu=atmega324p
2 OBJ2HEX=avr-objcopy
4 TARGET=try4
H
6 program : $(TARGET).hex
r#.0bj : %.0
8 $({cc) ${CFLAGS) %< -0 %@
E
10 %, hex : %.obj
11 ${0OBI12HEX) -R .eeprom -0 ihex $< 3@
1z
13 clean :
14 rm -f *.hex *.obj *.o0 *.out
15
16 Flash :
17 avrdude -c usbtiny -pm324p -u flash:w:$(TARGET). hex
is
19 fuse :
20 avrdude -c usbtiny -pm324p -u Tfuse:w:0xdf:m -u hfuse:w:0x99:m -u efuse:w:0xff:m
21

4 [5

Ln1:22 Coll Sel0 406 bytes AMNST IIE INS Makefiles

Appendix C1: Makefile

The above figure shows an example of a makefile. To use WIN AVR, avr-gcc is
written in the CC part of the makefile (first line in the above figure). The name of the
program to be compiled is inserted in the target portion of the makefile (line four). The
commands used are ‘make clean’, ‘make flash’ and ‘make fuse’. Clean is used to delete
the .hex file that exists in the particular directory. Flash is used to burn the program into
the microcontroller. Fuse is used to set the fuses into the microcontroller. The main
function is ‘make’. When ‘make’ is typed into the command prompt, the .hex file is

created.

62

(53 ClWindowssysem32endens

. icrosoft Windows [Version 6.1.7601]
Changlng {Copyright (c) 2089 Microsoft Corporation. A1l rights reserved.

dlrectory \ C:\Users\JasBeant>cd desktop

C:\Users\JasBeant\Desktop>cd ATTiny2313

LlStIng files C:\Users\JasBeant\Desktop\ATTiny2313>1s
in the folder Makefile a.out blink.c
C:\Users\JasBeant\Desktop\ATTiny2313 >make
avr-gcc -9 Wall -ncall-prologues -mmcu=attiny2313 -c¢ -o hlink.o hlink.c
- avr-gcc —g Wall -ncall-prologues -mmcu=attiny2313 hlink.o -o hlink.ohj
Complhng avr-ohjcopy -R .eepron -0 ihex hlink.ohj hlink.hex
the program / rn blink.obj blink.o R
to get the C:\Users\JasBeant\Desktop\ATTiny2313)

hex file

The hex file

Appendix C2: Command Prompt Example

The above figure is of an example of the command prompt using WIN AVR-
GCC. To use the compiler and programmer functions, the command prompt must be in
the directory where the C file is saved. Then by using the commands as mentioned above,

the program can be compiled and burned into the microcontroller.

63

APPENDIX D

User manual for Proteus

Proteus is software that is required to be bought. This trial version of this software

may be downloaded on www.download.cnet.com. This will be a version that has

limitations on the time that it can be used as well as the functions that can be done by the
software. Once the trial or full version has been obtained, the software can then be
installed by just running the .exe file and follow the installation process till the end.

This software is easy to use. Once installed, there will be two programs, ARES
and ISIS. For the microcontroller design, ISIS is used. The first step is to open the
program. To begin the design, simply click on the pick component from library button
and choose the required component and place it in the workplace (figure Appendix D1).
Once the design is done, double click on the microcontroller to set the program file into
the microcontroller (figure Appendix D2). Logic analyzing can be done by attaching
probes to the wires, opening the logic analyzer and running the program. The data will be
displayed as a timing diagram. (Appendix D3).

http://www.download.cnet.com/

Set to component

64

mode
[E8 UNTITLED - 1}! Professional = B X
— - —_— - -
File View it Tools Design Graph Source Debug Library Template System Help
D 5 @ {E Pick Devices P . " l D |
Dt_[?: f; Kepmwords: Besults [729): ATMEGAIZ4P Preview:
| Device Library D escription | Y5M DLL Model [8YR2.DLL] =
Match whale woards? ATBICES.EUS MCS8051 8032 Microcontoller (20kB code, 2568 data, 3
P> Show only parts with models? ATS051200 AVR AVR Microcontoller [1k byte In-System pragrar
ATANS2313 AVR AVR Microcontaller [2k byte In-System pragrar
0° Category ATI0S2323 AR AR Microcontaller [2k byte In-System progran
Debugging Tools ~ | ATI052333 AR AVR Microcontaller
Diodes ATAN52343 AR AVA Microcontaller [2k byte In-System pragrar
ECL 10000 Sefies ATI054433 AR AWR Microcontoller (8k bpte In-5ystem prograr
PIO] Electromechanical ATAD54474 £R 4R Microcontoller E
i Inductars L ATI058515 AR AWA Microcontoller (Bl byte self-programming f
T 4 Laplace Primitives ATI0S8535 AR £%R Microcontaller (3 byte self-programming F
Mecharics ATS0USE1286 AVR2 128 KBytes Flash, 8416 Bytes SRAM. 4 KBute:
= Memary ICs ATI0USEE4E AVR2 64 KBytes Flash, 4320 Bytes SRAM, 2 KBytes
n Miscelansaus ATMEGATDZ AR AVA Microcontaller [Feplaced by Atmel ATmer
I Modeling Primitives ATMEGA128 AVR2 128 KBytes Flash, 4320 Bytes SRAM. 4 KBute:
£ Operational dmplfiers ATMEGA1280 AvR2 128 KBytes Flash, BE72 Bytes SRAM, 4 KByte:)
Optoelectronics ATMEGAT287 AvRZ 128 KBytes Flash, 8672 Bytes SRAM, 4 KByte: FCE Preview:
FICAXE ATMEGA1284P AVR2 128 KBytes Flash, 16608 Bytes SRAM, 4 KByh
@ PLDs & FPGAs ATMEGATE AvR2 16 KBytes Flash, 1088 Bytes SRAM, 512 Byte:
Resistars ATMEGATEZ AVRZ 16 KBytes Flash, 1248 Bytes SRAM, 512 Byte:
U/" Simulator Primitives ATMEGATEAP AWVRZ 16 KBytes Flash, 1248 Bytes SRAM, 512 Bute:
1 Speakers & Sounders ATMEGATES AvR2 16 KBytes Flash, 1248 Bytes SRAM, 512 Byte:
e gw!}ctss &nHE!ays - | ATMEG&1ESP AVR2 16 KBytes Flash, 1248 Bytes SRAM, 512 Byte:
= e e ATMEGATES AVR2 16 KBytes Flash, 1248 Bytes SRAM, 512 Byte:
Sub-categary ATMEGATES 32FIN - AVRZ 16 KBytes Flash, 1248 Bytes SRAM, 512 Bytes
Ve ~ | ATMEGATESP AvR2 16 EBytes Flash, 1248 Bytes SRAM, 512 Byte:
£5000 Farnily — | ATMEGATEBP_22PIM AVR2 16 KBytes Flash, 1248 Bytes SRAM, 512 Byte:
= 8051 Famiy = |ATMEGATES ARz 16 KBytes Flash, 1248 Bytes SRAM, 512 Byte:
@ AR Family ATMEGATEIP AvR2 1E EBytes Flash, 1248 Bytes SRAM, 512 Byte:
AR Family ATMEGAZEED AVR2 256 KBytes Flash, BE72 Bytes SRAM, 4 KBute:
o BASIC Stamp Modules ATMEGA25E1 AVR2 256 KBytes Flash, BE72 Bytes SRAM, 4 KByte:
() DSPIC33 Farnily . yte B
A e A £VR2 32 KBules Flash, 2272 Bytes SRAM., 1 KBule E
' © | Mveaaame 2 Kives i, 272 s ST 1 e 07 2000 2002012
] wtes Flash, yhes . JU
+ Analog Devices <|llg I r ’T‘ m
Click to open the Appendix D1: Picking a Component in Proteus

component library

Pick the desired

component

65

s . 8 8 . 5)
File

View Edit Tools Design Graph Source Debug Library Template tem Help

(=" | BE BG4 R |90 A EEEE QRS
T ARAEBEREN BRI E

|:| %D 1 Edit Component

Component Reference: o7 Hidder

Companent ¥ alue: |ATMEGAE44 Hidden:

[P]L[DEVICES | PCE Packoge [piLao < [2] [Fice 2

Y
s
*

EL

o1 70Q

=
E L|ED 004 Program File QAGF’mgram\tw hex AI\ j
= GEMELECTT00U16W CLKDIVA [Divide clock by 8] |01 Programmed | [Higean— +]
- CKOUT [Clock output) [y Unprogrammed | [Hidean ~|
% ‘WDTON [watchdog timer ahways on’ |[1] Urprogranmed j |Hide Al j
[= BODTRST (Selbct Resetvector] | 1) Unprogrammed x| |Hidean +|
@Browse and selgctthe... [O0M0 It RC Osc. bz <] [Hideal +]
[. . Baot Loader Sige: [(00) 4098 words. Starts at 04700 v | [Hide sl]
~.hex file to inseit the... [io0) | [Aidean]
@ Advanced Properties:
/p ro g ram |Cluck Frequengy j [iDetzul) |Hide Al j
-
O Other Properties:
@
A i
B Double-cljck to open
ﬁ Exclude fram Simulation Attach hierarchy module

Exclude from PCB Lavout

the component

Appendix D2: Setting Program into Microcontroller .
settings

Probes

e]

Ly LI
' i
——| Feaun roFCHra FADADCIFTID —:- (= ——| FRaED rOFCHrE FamaDCIFT D —:-
—| FeuruakaFena FRILADCHFTIE 5| PR IakaIFT R T ===
o i PAGADCAFTI (g | FeasmmmraEThn FARADCIFTHED (g
| = el FARADCIFTRTS (e o [le el FARACAFTR [
| PR TRO T P 2 e Ly i | PR TRO SR 12 PRAUAICHPTI [
——| FRaRmTIFCRr G PraADCETHa [= —| FRAMITIPCHr PR aDCPTHs [
——{ FRamBAIFTRr PARLADCHFCTINTE [= 5| FREMEHIPC R 1 PAIADFTAD [-
2 renzoupchr Fansponporrr [FRASCNPCHE IS PanapCpoHer [LOgIC
" 1
e i et L —| PO Fosueenrm 3
| POt D e e Yy e T—]| FO! ramaFC e FTUSORFCHEIF o anal zer
7—| PR RraECrra PoaTERPE T | PeR HroPcrrE PoaTCHPER I
| FramriFC e T i el == | PR Br iFC e P RPN o
T—| FosOCIRIEC T PO PO PE M oy TI| FRinC e e ma Wlth the
| PrasaEErr P rDIPT R oy e] e e e i
| PR EPREmIFE Rrm POATOICIPCHRZ [1| P ERgCRiPC T el e -
= Fono=zarcrrs FonrOsCAPCHeE [=_| Fonopcers FonrOsCARCHrE OUtpUt
= LT S o P w3
. arnz [— M arnz [
TRER BT + TRET I
crere PRI R JFAG Frogamiliy b,

Appendix D3: Final Design and Output

