
Towards Web-Based ComputingyKiyoko F. Aoki and D.T. LeeDepartment of Electrical and Computer EngineeringNorthwestern UniversityEvanston, Illinois 60208, U.S.A.Email: fdtlee,kaokig@ece.nwu.eduAbstractIn a problem solving environment for geometric computing, a graphical user interface, orGUI, for visualization has become an essential component for geometric software develop-ment. In this paper we describe a visualization system, called GeoJAVA with a GUI, whichenables the user or algorithm designer to execute and visualize an existing code in the li-brary or develop a new code over the internet. The library consists of geometric code writtenin C/C++. The GUI is written using Java programming language. Taking advantage ofthe socket classes and system-independent application programming interfaces (API's) thatcome with the Java language, GeoJAVA provides a platform independent environment fordistributed geometric computing.Users are able to remotely join a \channel" or discussion group in a location transparentmanner to do collaborative research. Then the visualization of an algorithm, a C/C++program located locally or remotely and controlled by a \oor manager," can be viewed byall the members in the channel through a visualization sheet called GeoJAVASheet. Theexecution of the algorithm can then be re-run dynamically to demonstrate the changes inthe output upon modi�cation of the input data by the oor manager. A chat box is alsoprovided for verbal communication among all the members.Furthermore, this system not only allows visualization of pre-compiled geometric codes,but also serves as a web-based programming environment where users may submit theirown geometric code, compile it with the visualization libraries provided by the system, andvisualize these directly over the web, sharing it with other users immediately.ySupported in part by the O�ce of Naval Research under the Grants No. N00014-95-1-1007 and No.N00014-97-1-0514.A preliminary result was presented at the "Workshop on Geometric Software," held in INRIA, Sophia-Antipolis, France in June 1997. 1

1 IntroductionAs the computer and communication technology advances, communication via e-mails orWorld Wide Web has become commonplace in our daily activities. In the computing world,collaboration via Internet has gained popularity recently. The notion of a \collaboratory" isintroduced in a report on \Distributed, Collaboratory Experiment Environment"[8], whichrefers to an integrated, tool-oriented computing and communication system that supportsscienti�c collaboration. In other words, it is a computing system that allows remote partiesto gain access to scienti�c resources such as expensive and physically large equipment thatwould otherwise not be accessible. As in any other scienti�c computing disciplines, the areaof geometric computing would �nd such a collaborative system bene�cial because of the largesize of the libraries used to implement geometric algorithms. The e�ort required to downloadand install these libraries are oftentimes not worth it, especially when the user only needsthem for a single program or algorithm that he/she would like to execute or implement.The idea of a collaboratory is also to enable remote users with expertise in speci�c areasof a scienti�c �eld to collaborate with one another, viewing the data that is pertinent toeach user's specialty in order to come up with a solution to a particular problem. Forcomputational geometers or practitioners dealing with geometric data, most everyone isinterested in the execution and analysis of geometric algorithms, so a collaboratory forgeometric computing would provide remote users in a group with the facilities to view theexecution of an algorithm implemented by any member in the group, and to give feedbackto one another regarding the algorithm.In order to implement such a collaboratory, distributed visualization of algorithms or at abare minimum remote execution of algorithms, needs to be supported. Any user connectedto a network should be able to have access to the collaboratory, and immediately begincollaborating with other users currently connected to the collaboratory. This implies thatsuch a collaboratory must be independent of the users' platform. To implement a collab-oratory from scratch that meets the requirement is by no means obvious, especially whenvisualization or graphics output is involved, for which all sorts of display devices have to besupported. However, since Internet and web browsers on the World Wide Web are readilyaccessible by many researchers on the network, building a collaboratory on the web seems2

to be a plausible solution. The Java programing language developed by Sun Microsystems,which is considered platform-independent, is a natural choice of language to use to implementsuch a collaboratory. Thus came the development of the GeoJAVA system, a Web-based in-teractive visualization system that provides (1) a Java-based GUI (graphical user interface)called GeoJAVASheet, (2) a Java-based \chat" box that allows users in separate groups tocommunicate verbally, (3) a library of geometric algorithms called GeoLIB, (4) a compilationtool allowing users to implement user-de�ned algorithms using the GeoLIB library, and (5)distributed visualization of geometric algorithms.There are many applications of this system. Among them are \distance" learning andcollaborative research on geometric computing. For example, a \classroom" can be formedby a group in which the teacher of a geometric code, say \A," initially has control of the\oor." That is, A is the user interacting directly with the code, and the rest of the usersin the group become students. Each student in the group can then watch the execution ofthe same code, say a Delaunay triangulation program, that A has executed. Each studentwill be able to see the same set of points that A is sending to the program as input and theanimated execution of the triangulation program on each of their browsers. If students havequestions or comments, they may type them in the chat box, and may also receive controlof the \oor" upon release by A to input their own set of input points that is distributed tothe rest of the group.In doing collaborative research, the current problem in the development of a new algo-rithm is in explaining what the actual execution looks like to remote parties. Up to now,researchers have been using e-mails or transferring �les of their algorithms, describing ver-bally what each step of the execution is on a \frame by frame" basis. The GeoJAVA systemprovides a solution to this problem. For instance, a group may consist of several researcherslocated at di�erent sites. One of the researchers, say \B", may have developed a new algo-rithm to solve a speci�c problem for which she would like advice from the others. So uponreceiving control of the oor, B may execute her algorithm to present to the others. Anyof the other researchers may then receive the oor to give advice or make improvementson the algorithm. The changes to the code may be made by B, the code recompiled, andthen immediately re-executed for the others to see. Verbal communication is all performedthrough the chat box. 3

Through these examples, one can see the bene�ts of visualization; the phrase, "a picture isworth more than a thousand words" indeed rings true. However, not only can the GeoJAVAsystem visualize static data, but it can also serve as an interactive visualization system. Usersmay manipulate the visualized data and simultaneously see the change in the algorithm'soutput. This feature applies to programs that are in the library or are user-de�ned, andruns on top of a distributed environment, which makes the GeoJAVA system a powerful toolwith di�erent utilities.Returning to the �rst example, then, after the Delaunay triangulation has been executed,user A may demonstrate how the triangulation changes when a speci�c point is moved to adi�erent location by simply selecting a point and moving it across the sheet. The GeoJAVAsystem automatically handles the dynamic re-execution of the algorithm and updating of thesheets in the group.As technology advances and becomes more readily available, audio and video communi-cation can easily be added to the system for a greater \collaboratory" feel. This is due tothe modularity of each component of the system, which will be described in detail in thefollowing sections.In the next section, we briey introduce features of the Java programming languagepertinent to the GeoJAVA system. This will be followed by a review of related work, then adescription of the design of the GeoJAVA system, and �nally we discuss our plans for futurework.2 Java Programming LanguageThe Java programming language by Sun Microsystems provides two major features thatmake it very applicable to distributed geometric computing. They are sockets and GUIobjects. By simply declaring a new ServerSocket() data object in a server application, clientapplications can begin communicating to it by using a Socket() class, declared similarly,without worrying about the type of system on which the applet or application may berunning. GUI objects such as buttons, canvases and panels can also be created easily withprede�ned classes provided by the Java library.Both datagram (User Datagram Protocol or UDP) and stream-based (Transmission Con-4

trol Protocol, or TCP) sockets are provided in the Java application programming interface(API). However, security issues prevent applets from waywardly creating sockets on users'machines; sockets can only be created on the host that provided the applet. Therefore, ifa Java application is running on the server, another applet cannot create a socket on theremote host to even connect back to the server application. Datagram sockets require sucha con�guration. Although Java applications (as opposed to applets), would work without aproblem, that would defeat the purpose of allowing users to easily access the system withouthaving to download the application itself. Stream-based sockets, however, can be used inan applet where the TCP socket is created on the server and the applet communicates di-rectly to that port. Therefore, using TCP sockets, applets can be easily created that providedistributed geometric computing.In addition to the language limitations, TCP is favorable because of its stability, especiallyin large networks. UDP packets are not \acknowledged" by the recipient, so the farther thedistance between the sender and receiver, the more prone the packet is to get lost. Thisoften results in the user's algorithm \hanging" during execution, without any method ofrecovering itself. The user is unfortunately forced to kill the execution of the algorithmin this case. Adding error checking packets for acknowledgements would most likely onlyincrease the number of lost packets over the network. We create a GeoLIB library thatsupports TCP messaging. Since setup and disconnect packets are not used for each messagesent (it is only required upon connection/disconnection to/from the system), the packet sizesare smaller, and TCP's reliability prevents the transmission speed from getting degraded asmuch, compared to the UDP transmission protocol.3 Related WorkAs is evident at the \Computational Geometry Interactive Software" page,(http://www.cs.duke.edu/~je�e/compgeom/demos.html), many geometric algorithm visual-ization tools have been implemented, and the \Complete Collection of Algorithm Anima-tions" at http://www.cs.hope.edu/~alganim/ccaa/geometric.html gives a comprehensive listof geometric algorithms written in Java. These applets demonstrate Java's \write-once-run-everywhere" concept[7]. Once a user implements her Java applet that demonstrates an5

algorithm, any user with a Java-enabled browser can execute it. The following is a listing ofa few notable java applets from these lists.GeomNet at the Center for Geometric Computing at Johns Hopkins University(http://www.cgc.cs.jhu.edu/geomNet/).GeomNet is a system for performing distributed geometric computing over the Inter-net. It provides a list of GeomNet supported algorithms from which a single user canchoose an algorithm they would like to execute. Geometric computing is distributedin that the algorithms are available for anyone on the Internet who would like to seethe execution of an algorithm. However, it is not implemented for groups of usersto simultaneously see the execution of a single algorithm. One of the components ofGeomNet is Mocha [2] at the Center for Geometric Computing at Brown University(http://loki.cs.brown.edu:8080/pages/Mocha.html). Mocha is a Java applet that com-municates with an \algorithm server" which allows users to select geometric algorithmsfor which they can provide input.VoroGlide by Christian Icking, Rolf Klein, Peter K�ollner, and Lihong Ma(http://wwwpi6.fernuni-hagen.de/java/anja/index.html.en).VoroGlide is an applet that smoothly maintains the convex hull, Voronoi diagram andDelaunay triangulation of the user's input while points are added or moved. It illus-trates incremental construction of the Delaunay triangulation and includes a recordeddemo.ModeMap by David Watson (http://www.iinet.com.au/~watson/modemap.html).Modemap is an applet that draws Voronoi diagrams, Delaunay triangulations, naturalneighbor circles and radial density contours on a sphere. This is a single 3D appletwhose only purpose is to illustrate the relationship between these geometric conceptson a sphere. It also allows for moving of points.The Geometry Applet by David Joyce(http://aleph0.clarku.edu/~djoyce/java/Geometry/Geometry.html).The Geometry applet illustrates Euclid's Elements. It lets users set up simple geometric6

objects in 3D as well as constraints through the use of Java parameters, and thendisplays the e�ects as objects are moved.Alpha-shape demo from NCSA, which requires VRML.(http://�aker.ncsa.uiuc.edu/alpha/demo.html).This alpha-shape demo is an online Alvis demo that serves as a web-based interface toAlvis software. It is used to clarify concepts of Alpha Shapes and Alpha Ranks. Threedata sets are available. Please refer to http://�aker.ncsa.uiuc.edu/alpha/reference.htmlfor references regarding Alpha Shapes/Ranks.Although these applets are successful in demonstrating various computational geometryalgorithms, if a researcher, say, wanted to test and develop their own algorithm, they wouldnot be able to make any practical use of these applets, let alone demonstrate the same execu-tion of their algorithm simultaneously on remote parties' machines. This lack of interactivityand customizability motivates the development of the GeoJAVA system.Other Java-based collaborative systems also worth noting are Tango [3], Promondia [6],and NCSA's Habanero. Tango is a Java-based system that allows remote users to collab-orate over the Web. Users with applications that they would like to make distributed mayincorporate Tango's API into their code, which would allow their application to commu-nicate to a central server that handles the \distribution" of the application. It providesnice multimedia features and is geared towards medical and scienti�c research. Promon-dia is a system that provides a framework for real-time group communication. Its focusis on group-conferencing using a shared whiteboard, video, and chat system. Habanero(http://www.ncsa.uiuc.edu/SDG/Software/Habanero/) is a framework for sharing Java ob-jects with colleagues distributed over the Internet. It is similar to Tango where single-userapplications are transformed into multi-user, shared applications using their provided API.Finally, a Java-based implementation ofCollaborative Active Textbooks (JCAT) onalgorithms was developed by Digital Equipment Corporation [4]. This system, which takesadvantage of a new feature in Java version 1.1 called Remote Method Invocation (RMI)technology, allows applets on di�erent machines to communicate with each other, with theviews of an algorithm located on di�erent machines. Although JCAT runs on all Java-enabled browsers, at the time of this writing, only HotJava 1.0 can support the collaborative7

features because it requires JDK 1.1. The algorithms that are visualized are written in Javaand are based on BALSA's notion of interesting events to communicate the operations ofthe algorithm to the views [5], and \group communication" is implemented by having each\student" specify the name of the \teacher's" machine where the algorithm is running.The focus of Tango is di�erent from that of the GeoJAVA system in that it is gearedtowards medical and scienti�c researchers. It is very useful in an environment where collab-oration is needed from di�erent people with completely di�erent specialties. For example,a consultation for a certain surgical procedure may require the expertise of a neurologist,cardiovascular specialist and a physical therapist, where all three need di�erent views of thesame data. Technically speaking, the full-edged Tango requires the installation of a plug-infor the browser and only works with Netscape 3.0+, whereas the GeoJAVA system is \javapure," and so any browser can be used to access it.Promondia's focus is also di�erent in that it attempts to give users a foundation forreal-time communication using Java, as opposed to having any distributed application-based purpose. Their focus is on satisfying the increasing demand for other network ser-vices, such as real-time data feeds, group communication and teleconferencing (refer tohttp://www6.nttlabs.com/papers/PAPER100/PAPER100-java.html for an online version oftheir paper).Habanero uses Java applications as opposed to applets, which means it is not necessarilyweb-based. Its components need to be downloaded, and only Java components can be usedfor collaboration. Thus, Habanero has a limited scope.The main di�erence between JCAT and the GeoJAVA system would be location indepen-dence. Whereas GeoJAVA system users may access the system through a single page andform a group using a single channel name, JCAT requires channels to be formed by forcing\students" to specify the hostname of the \teacher's" machine. This requires knowledgeof who the the oor manager is beforehand. That is, only the teacher has control of thealgorithm, and the students may not request control of the oor. Also, the algorithm beingdisplayed must be written in Java. Therefore, current algorithms written in C++ must bere-written in Java in order for it to be useful under JCAT.The GeoJAVA system is based on GeoMAMOS (http://www.ece,nwu.edu/~theory/geo-mamos.html), part of which are GeoSheet [10] and GeoManager [1], which provide distributed8

visualization of geometric algorithms over a UNIX-based network. GeoSheet is the 2-D GUIfor GeoMAMOS that is the interface with which users interact to communicate with theiralgorithms. GeoManager provides the dynamic manipulation of algorithms by allowing usersto execute their program, then modify the original input data and simultaneously see thechanges in the algorithm's output. A drawback of GeoMAMOS is that it was written inC/C++ for the X-Windows environment running Unix, so users who do not have accessto such machines installed with the GeoMAMOS software are not able to make use of thevisualization tool. In view of the above, a system-independent version has been implementedin the form of the GeoJAVA system.The following section will describe the design of the GeoJAVA system, which allowsvisualization of users' algorithms written in C/C++ in a distributed fashion. Groups, orchannels, are formed by simply specifying a common channel name when entering the system,and distributed visualization process can begin immediately upon execution of a programby the oor manager.4 Design DescriptionThe GeoJAVA system consists of six major components: (1) MultiServer, (2) ChannelGuide,(3) GeoJAVASheet, (4) GeoLIB, (5) Chat box, and (6) a compilation tool. The design ofeach of these components will be described next.4.1 MultiServerMultiServer is a Java application adapted from the Free Internet Conferencing Tools (FICT)home page at http://www.sneaker.org/�ct/. Slight modi�cations were incorporated for itto provide the services for the collaboration management of the GeoJAVA system. It keepstrack of the groups and the oor queue using the Connection and Vulture classes and alsoprovides the dynamic manipulation of geometric algorithms.MultiServer(int port, boolean verbose) The MultiServer class is a separate Javaprogram running on the web server which creates the server thread and establishes thesocket at the port number speci�ed by the DEFAULT PORT global constant. It then listensfor connections from users. Whenever a new connection is made, a new Connection class is9

created and appended to the MultiServer's queue of connections. A new Vulture object isalso created which ensures that all of the connections are valid. Each of these componentswill be described later. Note that because all new users connect through MultiServer, groupsof users need not be concerned with the actual location of a \server" host. Thus locationtransparency is supported.MultiServer handles the oor control for each group by maintaining a FIFO queue. Whena new group is created, the oor queue for this group is empty. The �rst user to press the\Floor Request" button is added to the queue and becomes the \oor manager." Otherusers in the group who press this button thereafter are appended to the queue. When theoor manager presses the \Floor Release" button, he/she is then removed from the queue,and the successive user in the queue becomes the oor manager for the group.Finally, MultiServer also functions as the \GeoManager" of the system. After the initialexecution of an algorithm, if the user modi�es the original data input, MultiServer willsend messages to GeoJAVASheet to update the output dynamically. This allows for \trueanimation" and easier debugging of algorithms for the developer. Furthermore, when usersjoin a channel in the middle of the execution of an algorithm, MultiServer allows these usersto \catch up" on the algorithm execution.Connection(String channel, String username, int port number, String host-name) class The Connection object is responsible for receiving the messages sent by its cor-responding GeoJAVASheet, chat box, or user program and then processing it appropriately.Messages from GeoJAVASheets go through MultiServer to broadcast to the GeoJAVASheetsof every member of its group or to send to their user program, messages from chat boxes arebroadcast directly to the chat boxes of every member of its group, and the user program'smessages are sent to the GeoJAVASheets in its channel. Messages from GeoJAVASheetsrequesting for or releasing the oor are forwarded to MultiServer with its correspondingchannel, hostname and TCP port number.Vulture class The Vulture class is a simple thread that informs MultiServer when aconnection has been closed or lost and cleans up the lists. Whenever possible, the Connectionobject will notify the Vulture thread when a connection is closed. But even if the Connectionobjects never notify the Vulture, this method wakes up every �ve seconds and checks allconnections, in case a Connection unexpectedly crashes before it is able to send a \close"10

message.The Java source code for these three classes are given in the Appendix.4.2 ChannelGuideChannelGuide is an applet that ensures that multiple users do not enter the system with thesame username. This is the applet that the user �rst sees when entering the GeoJAVA system.ChannelGuide takes the user and channel names requested by the user, communicates withMultiServer to check the current user lists for duplicates, and responds with the appropriateinformation, either allowing the user to start up GeoJAVASheet or prompting for a di�erentuser name. The ChannelGuide applet running on an X-Windows system is shown in Figure 1.

Figure 1: ChannelGuide Applet.ChannelGuide functions by �rst communicating with MultiServer, requesting the listsof channels and users currently on the system. Once these lists are received, it processesthem to display. If a used username is entered, then a message is displayed indicatingthat the entered name is invalid. Otherwise, the ChannelGuide window disappears, and aGeoJAVASheet and chat box are initiated with the user's user and channel name.11

4.3 GeoJAVASheetThe GeoJAVASheet applet is actually a frame that contains (1) a panel onto which usersmay input graphical objects such as points, line segments, triangles, rectangles, polygons,polylines, circles, arcs, and various types of graphs, (2) a row of buttons on top: Return(for communication with the user's application program), Undo (undo the previous action),Delete (a speci�c object on the panel), Modify (an object's component), Move (an entireobject), Delete All, Quit, Toggle Grid (reference lines), (3) a choice box on the left to selectan object to input onto the panel, (4) a \oor" button under the choice box (this will beexplained later), and (5) a row of property selectors on the bottom, such as line widths, linecolors, font styles, font sizes, line styles, and �ll styles. Figure 2 shows a GeoJAVASheet ona Windows machine.

Figure 2: GeoJAVASheet Applet.GeoJAVASheet is simply a GUI that responds to (1) messages received from MultiServer,12

and (2) the user's actions such as hitting the Return button or requesting control of the oor.Internally, GeoJAVASheet maintains lists of the various geometric objects. Any time a newobject is drawn on the panel, a new instance of that object is appended to the list to whichits type corresponds. Users may modify or delete objects on the sheet using one of thebuttons on the top row.Geometric objects can also be displayed (and consequently added to the lists) basedon messages received from the user program. These messages are in a speci�c format todetermine the action to take, the data object being referenced, and the object's coordinatesand properties. For example, if the user's program wants to display a red point of radius tenpixels at location (25, 30), then the message would look like: (IPC WRITE, GEOPOINT, 25,30, 10, RED). Once the message is received, it is parsed, added to MultiServer's appropriateinternal list of data structures, and displayed on the panel.The user program receives data for geometric objects by sending a request message andthen waiting for a message containing the data for that object. GeoJAVASheet sends amessage to its corresponding user program when the user presses the Return button. Whenthe user program has explictly requested an object for input, and the user hits the Returnbutton, then the last object appended to the panel corresponding to that displayed in thechoice box (which has been updated with the object requested from the user program)will be stored in a message to be sent to MultiServer. The user program's ID is stored inGeoJAVASheet upon the program's initialization and thus has been stored in this message aswell. Once MultiServer receives this message, it forwards it to the appropriate user program.There is an additional feature in the application version of GeoJAVASheet where thedata on the sheet may be saved to and opened from �les. Two additional \Open File"and \Save" buttons provide this option. The data is stored in XFig format[14], just as inGeoMAMOS, but other formats will be supported in future versions. Figure 3 is an instanceof the GeoJAVASheet application running under Windows.4.4 GeoLIB Geometric LibraryThe GeoLIB library in the current version consists of two parts: the LEDA [12] and Ge-oLEDA libraries. Both libraries are written in C/C++. An advantage of this is that userswho have developed algorithms written in C/C++ prior may continue to use their algorithms13

Figure 3: GeoJAVASheet Application.without re-writing their code, and \new" users need not download a Java compiler if they donot already have one. In the future, we plan on incorporating the Computational GeometryAlgorithms Library (CGAL) [13].LEDA The GeoLIB library is based on the basic geometric classes and member functionsof the Library of E�cient Datatypes (LEDA) library (currently version 3.5.2). By inheritingfrom this comprehensive library of geometric classes, GeoLIB provides both a completelibrary of geometric objects as well as several basic geometric algorithms.GeoLEDA The visualization portion of the GeoLIB library is contained in the Ge-oLEDA library. GeoLEDA consists of geometric objects that (1) inherit from the objects inthe LEDA library and (2) contain visualization member functions as well as interprocess com-munication (IPC) functions that provide the basic socket infrastructure for communicationbetween the components of the GeoJAVA system. It also contains functions that implement14

basic geometric algorithms. This library is developed and used by the GeoMAMOS system.However, since GeoMAMOS uses UDP, all of the IPC functions have been modi�ed to TCPfunctions, due to the reasons explained in Section 2. This is advantageous in that althoughinitializations are slower, communication while connected is faster and more reliable. Webriey describe the main functions from the GeoLIB library that the programs use in orderto visualize algorithms next.IPCServiceSetup(), IPCServiceSetup(char* host, int portnum) This functionsets up the initial TCP connection between the user program and GeoJAVASheet. It canhave no arguments, in which case the user will be prompted for the host and port numberat the command line, or it can take the host and port number for an input and outputGeoJAVASheet that has the oor. It then establishes a socket connection between itselfand MultiServer (with a Connection object serving as an interface). Any messages sent toMultiServer contain the GeoJAVASheet ID to which it corresponds so that MultiServer canforward them to the appropriate GeoJAVASheet. The user program must begin with theIPCServiceSetup() function before any visualization functions are called.Graphic Read and Graphic Write (initiated from user program)The Graphic Read and Graphic Write visualization functions are member functions imple-mented in every geometric object and are issued from the user program.Graphic Read will cause GeoJAVASheet to return to the program the last object inputonto the sheet. The process is as follows: (1) Graphic Read requested from user program (setchoice box on GeoJAVASheet to the requested object type), (2) user inputs the object ontothe sheet, (3) user presses the \Return" button located at the top of GeoJAVASheet, which(4) sends the data for the object to MultiServer, which forwards it to the user program.In Graphic Write, the \opposite" action is performed. The user program sends objectdata to GeoJAVASheet (through MultiServer), and GeoJAVASheet displays the object. Theprocess is as follows: (1) Graphic Write command sent to GeoJAVASheet with the object'sdata, (2) the object is added to the corresponding list of geometric objects, and (3) Geo-JAVASheet displays the object.Using these libraries, a user may develop geometric algorithms that can perform anygeometric computing they would like, without concern for implementing the display of in-termediate or �nal results in their code. 15

4.5 Chat BoxThe Chat Box is another applet adopted from the Free Internet Conferencing Tools web pageand is a simple GUI consisting of a text �eld in which to enter text and a textbox in whichall messages from users within the same channel are displayed. In addition, it lists the userscurrently in their channel. It maintains a PrintStream object that handles the displaying ofall of the messages, a DataInputStream that receives the messages, and a Socket class withwhich the connection to MultiServer is made.A user may select a speci�c username on the userlist in order to send messages to usersprivately, or messages may be broadcast to everyone on the channel by selecting the asterisk(*), also on the list. Figure 4 is an instance of the Chat Box running under X-Windows.

Figure 4: Chat Box Applet.4.6 Compilation ToolThe compilation tool allows user-de�ned programs written in C/C++ to be compiled andexecuted directly on the GeoJAVA server. It is a series of common gateway interface (CGI)forms that upload the code, create a corresponding Make�le for it, compile it, and, if thecompilation is successful, execute it with the user's corresponding host and port number.Unsuccessful compilations will result in a page listing the compilation errors so that the usermay debug their own code and restart the process with the corrections.With this tool, users no longer need to worry about obtaining the appropriate librariesfor their system, installing, and compiling them. Of course, security precautions must be16

taken in order to ensure that the user's program does not contain any malicious code. Itis possible for users to include system code which may corrupt the system. Therefore extrachecks during the upload stage of the tool ensure that such malicious code is not used.Records of those who have been using the compilation tool keep track of the users and theiractions, while still maintaining a certain level of privacy.The following series of illustrations demonstrates the steps in the compilation process.Figure 5 is the �rst page, where the �le is uploaded from the user's local disk to the server.

Figure 5: Code upload pageThe user may specify a note for their code, normally the name of the algorithm. During theupload, the CGI script checks the �lename for special characters and also parses the codefor any \malicious code" such as system calls. Upon completion of the upload, the contentsare displayed to ensure that the correct �le has been uploaded completely, along with theuser's notes, as in Figure 6. A link for a script that performs the actual compilation is alsogiven.The compilation will then take place, after which the output of the compilation will bedisplayed. If it is unsuccessful, a page such as in Figure 7 will be displayed, allowing theuser to see the compilation errors. In this case, a link back to the �rst �le upload page isgiven, but the user may also use the Back button on their browser to return to the �rst page.17

Figure 6: Intermediate page
18

Figure 7: Compilation output with error messages.In addition, a link for an online manual is available in case the user would like to consultdocumentation on the usage of the functions in the GeoLIB library. If the compilation issuccessful, a form for the host and port number will be given as in Figure 8. When the userenters the appropriate data and clicks the Submit button, the algorithm will execute and theoutput be displayed on the speci�ed GeoJAVASheet (and other GeoJAVASheets in the samechannel). The completion of the execution of the algorithm will produce a page like Figure 9.At this point, the user may submit their code to add to the Algorithm Browser, which isshown in Figure 10. The Algorithm Browser lists the available algorithms for execution.Anyone with the oor may bring up this page and sample any of the algorithms given.The next section gives a general description of the architectural design of the GeoJAVAsystem, followed by an example of a user's code and its execution.
19

Figure 8: Compilation output

Figure 9: Algorithm Execution Completion20

Figure 10: Algorithm Browser

21

algorithm
User 1’s

User 2

User 2
User 1

User 1’s algorithm

Chat Box

display

User 1

Floor Queue

Chat Box

User 1’s algorithm
display

GeoJAVASheet

GeoJAVASheet

Connection

Connection

Connection

MultiServer

Vulture

Connection

Connection

Figure 11: GeoJAVA System Architecture5 Architectural DesignCombining the components described in the previous section, the result is a complete systemas illustrated in Figure 11.The �gure is an instance of the system where User 1 and User 2 are on the same channel.User 1 has the oor and is executing an algorithm. The dotted area containing MultiServeris the Java application that runs on the web server at a speci�ed TCP port. When a newuser enters, a new Connection instance is created for the user's GeoJAVASheet, chat box,and possibly user program. Note that the Connection objects are clients that MultiServerinstantiates when the users enter the system, and these Connection objects communicate totheir counterpart applets through a TCP socket. This architecture is an expansion of theAnnoyingChat/MultiServer applets on the FICT home page.
22

6 ExampleThe user's program is written in C++ and has only a few simple \rules" for its structureto follow in order to work with the GeoJAVA system. These rules consist of including theappropriate include �les and calling IPCServiceSetup(...) at the beginning of the program.Then the code may make calls to Graphic Read() and Graphic Write() for the geometricobjects used. Details of these functions are given in Section 4.4.The following is an excerpt of a geometric algorithm that computes the visibility polygonfrom a point interior to a given simple polygon; both the simple polygon and the sourcepoint are entered by the user from the GeoJavaSheet. VISIBILITY is a function, based onthe algorithm by Lee[9] that takes as input a simple polygon and a point and produces asoutput the visibility polygon. More details of this implementation can be found in Aoki[1].// Header files#include <stdio.h>#include <stdlib.h>#include <string.h>#include <geoIPC/port.h>#include <geoLEDA/geo_plane.h>#include <geoLEDA/geo_polygon.h>#include <geoLEDA/geo_polyalg.h>main(int argc, char* argv[]){ geopolygon P, *final;GeoPoint pt1;node v;final = new geopolygon();if (argc>1)IPCServiceSetup(argv[1], atoi(argv[2]));elseIPCServiceSetup();SetOutSheetFillStyle(0);GeoPause("Please enter a simple polygon");23

P.Graphic_Read();GeoPause("Please enter an interior point");pt1.Graphic_Read();*final = VISIBILITY(&P, pt1);SetOutSheetColor(next_color());GeoPause("Ready to see the visibility polygon?");final->Graphic_Write();Note that the call to IPCServiceSetup() checks the arguments to the program and assumesthat if there are arguments, they are the host and port number for the GeoJAVASheet towhich it should communicate. This format should be followed, especially if the user wishesto execute their program o� the web server, which will call the program with the host andport number as arguments.Figure 12 displays the ChannelGuide when user Frank enters the system. User Kiyokois already on channel \channel1," and Frank is about to join her. At that time, user Kiyokosees what is in Figure 13. But when she sees Frank join the channel, she can send himmessages, as in Figure 14, which is what Frank sees in his chat window.When Kiyoko runs her algorithm (notice that she does indeed have the oor), both Kiyokoand Frank will see the same display on their sheets. The reader may follow the programalong with the following series of �gures. First, in Figure 15, Kiyoko and Frank see therequest to enter a polygon, brought up because of the call to GeoPause(...) in the program.Next, after Kiyoko has entered a polygon and hit the Return button, she and Frank bothget a view as in Figure 16, requesting a point. Notice the polygon displayed on the sheet.As soon as Kiyoko hits the Return button, the polygon is displayed on all of the other users'GeoJAVASheets on the channel. In this case, only Frank sees the polygon entered.Figure 17 displays the change in the GeoJAVAPause window to prepare the user for theoutput, and Figure 18 is the �nal output to the program.Figure 19 displays another example of three GeoJAVASheets and three chat boxes con-nected to the same channel while running on three di�erent hosts.24

Figure 12: ChannelGuide

25

Figure 13: Kiyoko's View
26

Figure 14: Frank's Chat Box View

Figure 15: Enter a polygon request27

Figure 16: Enter a point request

Figure 17: Ready request28

Figure 18: Final program output

Figure 19: GeoJAVA System Demo29

7 Conclusion and Future WorkThe GeoJAVA system provides a comprehensive set of tools with which any user on theWorld Wide Web can learn and implement concepts of computational geometry as well ascollaborate with remote users on algorithm design. This is provided in a distributed andlocation transparent manner. System independence and modular implementation also makesthe system scalable, and the dynamic manipulation of geometric algorithms and the onlinecompilation tool are unique features that make the GeoJAVA system useful for computationalgeometers and students.Using this GeoJAVA system as a stepping stone, many other valuable systems may bedeveloped. For example, Sun Microsystems has recently announced its 3D API. A greatcontribution to computational geometry can be made with the implementation of a GeoJAVAsystem that visualizes 3D geometric algorithms.Also MultiServer may become a bottleneck as more and more users and groups participatein collaborations. Therefore, a proposed workaround is to create a new MultiServer instanceevery time a new group is formed. The check for duplicate group names may be performed bycommunication among the existing MultiServer instances. This would make the GeoJAVAsystem more scalable.Furthermore, a Java version may be developed of the GeoLIB library, which may eliminatethe need for a large C/C++ library for those who do not know or do not wish to implementtheir algorithms in C/C++. In the current version of GeoJAVASheet, the JDK version 1.0.2has been used since JDK 1.1 has yet to be implemented in most of the browsers in use today.However, once its stability and popularity have become the norm, we plan on upgradingGeoJAVASheet to at least JDK 1.1.The need for compilation is expected to remain, however, so the compilation page may beimproved or expanded. In order for users to retrieve their compiled code, an additional toolmay be developed which can be downloaded to the user's machine. This tool would connectover the Internet to the appropriate server containing the libraries for the user's system andthen compile the code on the local machine itself. This would eliminate the need to use abrowser for compilation, and may complement the GeoMAMOS system.It is our hope that with this visualization prototype, a foundation can be established on30

top of which a problem solving environment for geometric computing, and other �elds ofscienti�c research and development can be built.8 AcknowledgementsWe would like to thank the following people for their help in the initial implementationof GeoJAVASheet: Mehmet Sayal, Lisa Singh, Takashi Yoshikawa. We would also like toacknowledge Benjamin McLean for his implementation of ChannelGuide and �le I/O on theapplication version of GeoJAVASheet and Steve Loranz and Matt Firlik for their help withthe compilation tool.References[1] K. Aoki, \The Prototyping of GeoManager: A Geometric Algorithm Manipulation Sys-tem", Master's Thesis, December, 1995.[2] J. E. Baker, I. F. Cruz, L. D. Lejter, G. Liotta, and R. Tamassia, \Mocha",http://loki.cs.brown.edu:8080/papers/MochaFS.html.[3] L. Beca, G. Cheng, G. C. Fox, T. Jurga, K. Olszewski, M. Podgorny, P. Sokolowski,K. Walczak, \Web Technologies for Collaborative Visualization and Simulation", NPACTechnical Report SCCS-786, Syracuse University, NPAC, Syracuse, NY, submitted Jan-uary 6, 1997.[4] M. H. Brown, M. A. Najork, R. Raisamo, \A Java-Based Implementation of Collabora-tive Active Textbooks", in 1997 IEEE Symposium on Visual Languages, pages 372-379.IEEE Computer Society, September 1997.[5] M. H. Brown, R. Sedgewick, \A System for Algorithm Animation", Computer Graphics,18(3), 177-186, July 1984.[6] U. Gall, F. J. Hauck, \Promondia: A Java-Based Framework for Real-Time GroupCommunication in the Web", Sixth International World Wide Web Conference, 1996.31

[7] J. Gosling, B. Joy and G. Steele, The Java Language Speci�cation, Addison-WesleyDevelopers Press, Sunsoft Java Series (1996).[8] W. E. Johnston and S. Sachs, \Distributed, Collaboratory Experiment Environments(DCEE) Program: Overview and Final Report", Lawrence Berkeley National Labora-tory, February, 1997.[9] D. T. Lee, \Visibility of a Simple Polygon," Computer Vision Graphics and ImageProcessing, 22 (1983) 207-221.[10] D. T. Lee, C. F. Shen and S. M. Sheu, \GeoSheet: A Distributed Visualization Toolfor Geometric Algorithms", Int'l J. Computational Geometry & Applications, 8,2, April1998, to appear.[11] S. N�aher, \LEDA { A Library of E�cient Data Types and Algorithms", Max-Planck-institut f�ur informatik. Technical Report A 04/89, Universit�at des Saarlandes,Saarbr�ucken, 1989.[12] S. N�aher, \LEDA3.0 User Manual", technischer Bericht A, Fachbereich Informatik,Universit�at des Saarlandes, Saarbr�ucken, 1992.[13] M. H. Overmars, \Designing the Computational Geometry Algorithms Library CGAL."In Proceedings Workshop on Applied Computational Geometry, May 27-28, 1996,Philadelphia, Pennsylvania, pp. 113-119.[14] B. V. Smith, The X�g User Manual, 1993.

32

Appendix:The following is the java source code for MultiServer. Note that it works closely withClasses Connection and Vulture.public class MultiServerTCP extends Thread {/** Default port to listen on */protected final static int DEFAULT_PORT = 8411;protected final static int DEFAULT_PORT2 = 8511;private int port;private ServerSocket listen_socket;protected ThreadGroup threadgroup;protected Vector connections;protected Vulture vulture;protected Vector ports = new Vector();protected Vector floorQ = new Vector();protected Vector channelQ = new Vector();private Vector channelGuideQ = new Vector();private Vector names = new Vector();private Vector channels = new Vector();public boolean locked = false;public static final int BUFSIZE = 4096;public static final int MAXCHANNELS = 10; // also set in channelGuide.protected String last_ss = new String("");/** Exit with an error message, when an exception occurs. */public static void fail(Exception e, String msg) {System.err.println(msg + ": " + e);System.exit(1);}// Create a ServerSocket to listen for connections on; start the thread.public MultiServerTCP(int port, boolean verbose) {// Create our server thread with a name.super("Server");if (port == 0) port = DEFAULT_PORT;this.port = port;try { listen_socket = new ServerSocket(port); }33

catch (IOException e) {fail(e, "Exception creating server socket");}// Create a threadgroup for our connectionsthreadgroup = new ThreadGroup("Server Connections");// Initialize a vector to store our connections inconnections = new Vector();// Create a Vulture thread to wait for other threads to die.// It starts itself automatically.vulture = new Vulture(this);// Tell the world we are runningif (verbose) System.out.println("Multiserver is running...");// Start the server listening for connectionsthis.start();}/*** The body of the server thread. Loop forever, listening for and* accepting connections from clients. For each connection,* create a Connection object to handle communication through the* new Socket. When we create a new connection, add it to the* Vector of connections. Note that we are running asynchronously.* We used to use synchronized to lock the Vector of connections.* The Vulture class does the same, so the vulture won't be removing* dead * connections while we're adding fresh ones. This version seems* more resistant to deadlock.*/public void run() {try {while(true) {Socket client_socket = listen_socket.accept();System.out.println("socket accepted!!! "+client_socket.getPort());Connection c = new Connection(this, client_socket, threadgroup, 3, vulture);connections.addElement(c);}}catch (IOException e) {fail(e, "Exception while listening for connections");}} 34

/** Start the server up, listening on an optionally specified port */public static void main(String[] args) {int port = 0;boolean verbose = false;if (args.length == 0) new MultiServerTCP(port, verbose);else if (args.length == 1) {if (args[0].equals("-v")) {verbose = true;new MultiServerTCP(port,verbose);} else {try {port = Integer.parseInt(args[0]);}catch (NumberFormatException e) {port = 0;}new MultiServerTCP(port, verbose);}}else if ((args.length == 2) && args[0].equals("-v")) {try {port = Integer.parseInt(args[1]);}catch (NumberFormatException e) {port = 0;}verbose = true;new MultiServerTCP(port, verbose);}else System.out.println("Usage: java MultiServerTCP [-v] [<port>]");}public void removeChannel(String hoststr, int portnum, String chanName) {floorQ.removeElement(hoststr+"|"+portnum+"|"+chanName);channelQ.removeElement(chanName+"|"+hoststr+"|"+portnum);Enumeration e = channelQ.elements();while (e.hasMoreElements()) {Object o = e.nextElement();System.out.println(o);}e = floorQ.elements();while (e.hasMoreElements()) {Object o = e.nextElement();System.out.println(o);}} 35

public boolean add2Q(String hoststr, String portstr, String chanName) {String request;Integer portint;int portnumber, bytecount=0;byte[] barray = new byte[BUFSIZE];InetAddress address;boolean success;success = true;if (floorQ.isEmpty()) {floorQ.addElement(hoststr+"|"+portstr+"|"+chanName);success = true;} else { // Modified KFA 1/16/98 for multiple channels.Enumeration f = floorQ.elements();while (f.hasMoreElements()) {String s = (String)f.nextElement();if (s.endsWith(chanName))success = false;}if (success == true)}return success;}public boolean hasMore(String chanName) {Object o;Enumeration e = floorQ.elements();o = e.nextElement();while (e.hasMoreElements()) {if (((String) o).endsWith(chanName))return true;}return false;}public boolean remfromQ(String hoststr, String portstr, String chanName) {String request;byte[] barray = new byte[BUFSIZE];36

InetAddress address;boolean success;Enumeration e;String newHost = new String();String newPort = new String();String newSS = new String();int portno, newport = -1;if (floorQ.contains(hoststr+"|"+portstr+"|"+chanName)) {if (hasMore(chanName))floorQ.removeElement(hoststr+"|"+portstr+"|"+chanName);e = floorQ.elements();Object o = e.nextElement();while (!((String)o).endsWith(chanName)) {o = e.nextElement();}StringTokenizer st = new StringTokenizer((String)o, "|");newHost = st.nextToken();newPort = st.nextToken();request = new String("floor granted ");Connection you;e = connections.elements();portno = (new Integer(portstr)).intValue();while (e.hasMoreElements()) {you = (Connection)e.nextElement();if (you.myType.equals("GJS") && you.channel.equals(chanName) &&you.hoststr.equals(newHost) && you.portstr.equals(newPort)) {you.send(request);newport = you.portnum;if (!you.serv_str.equals(""))newSS = you.serv_str;37

}}// adjust UP which originally connected with// a different GeoSheet that had the floor...e = connections.elements();while (e.hasMoreElements()) {you = (Connection)e.nextElement();if (you.myType.equals("UP") && you.UPport == portno) {you.UPport = newport;you.hoststr = newHost;System.out.println("Adjusted UP with "+you.serv_str);}}success = true;} else {success = false;}System.out.println("Floor Q now has ");e = floorQ.elements();while (e.hasMoreElements()) {Object o = e.nextElement();System.out.println(o);}return success;}public void broadcastDraw(String msg, int UPport, String last_serv_str, int sendUP) {StringTokenizer stringT, request;String mychann, mess;String hoststr;Integer portInt;int portnum;int bytecount=0;byte[] barray = new byte[BUFSIZE];InetAddress address;Connection you; 38

last_ss = new String(last_serv_str);Enumeration e = channelQ.elements();while (e.hasMoreElements()) {String channstr = (String)e.nextElement();stringT = new StringTokenizer(channstr, "|");mychann = stringT.nextToken();hoststr = stringT.nextToken();portnum = (new Integer(stringT.nextToken())).intValue();if (portnum == UPport) {System.out.println("UP: found "+portnum);// find connections with same channelEnumeration c = connections.elements();while (c.hasMoreElements()) {you = (Connection) c.nextElement();System.out.println("checking "+you.channel+"="+mychann);if (you.channel.equals(mychann) && you.isGJS) {System.out.println("serv_str is "+you.serv_str);if (sendUP == 0 && you.portnum == UPport)System.out.println("not sending");else if (you.serv_str.equals("GeoSheetStdOut")) {System.out.println("sending");you.send(msg);}}}break;}} //while}public void send2UP(String msg, int portnum, int serv_num) {Connection you;String serv_str;Enumeration c = connections.elements();while (c.hasMoreElements()) {you = (Connection) c.nextElement();if (you.myType.equals("UP"))if (you.UPport == portnum && you.serv_str.equals(last_ss)) {39

you.send(msg);}}}public void addChannel(String hoststr, int portnum, String newchannel) {channelQ.addElement(new String(newchannel+"|"+hoststr+"|"+portnum));System.out.println("adding to channelQ: "+newchannel+"|"+hoststr+"|"+portnum);}public boolean GJSHasFloor(String host, int num, String serv_str) {String you;Connection connect;Enumeration c = connections.elements();while (c.hasMoreElements()) {connect = (Connection) c.nextElement();if (connect.myType.equals("GJS") &&connect.portnum == num &&connect.hoststr.equals(host)) {connect.serv_str = new String(serv_str);break;}}c = floorQ.elements();while (c.hasMoreElements()) {you = (String) c.nextElement();if (you.startsWith(host+"|"+num))return true;}return false;}public String findFloorGJS(String hoststr, int UPport) {String chanName = new String();Connection you;StringTokenizer st;String newHost;String newUP; 40

Enumeration c = connections.elements();while (c.hasMoreElements()) {you = (Connection) c.nextElement();if (you.myType.equals("GJS") &&you.portnum == UPport &&you.hoststr.equals(hoststr)) {chanName = you.channel;break;}}c = floorQ.elements();while (c.hasMoreElements()) {Object o = c.nextElement();if (((String)o).endsWith(chanName)) {return (String)o;}}chanName = new String(hoststr +"|"+ UPport);return chanName;}//changed by BJMpublic void add2CGQ(String newchannel, String newuser){ Enumeration e = connections.elements();Connection you;channelGuideQ.addElement(new String(newchannel+"|"+newuser));channels.addElement(newchannel.toLowerCase());names.addElement(newuser.toLowerCase());while (e.hasMoreElements()) {you = (Connection) e.nextElement();you.sendUpdate();}}public void someoneDied(String chan, String nam)41

{channelGuideQ.removeElement(new String(chan+"|"+nam));names.removeElement(nam.toLowerCase());channels.removeElement(chan.toLowerCase());}public Vector getCGQ(){return channelGuideQ;}//this method checks the names and channels vectors to see if a user can add//with the given name and channel. Returns 0 if the user can connect on that//channel, returns 1 if there are already MAXCHANNELS channels, returns 2 if//it is an invalid usernamepublic int canIConnect(String req){ locked = true;int i = req.indexOf("|");String C = req.substring(0,i);String N = req.substring(i+1);System.out.println("C= "+C+" N= "+N);String c = C.toLowerCase();String n = N.toLowerCase();if (names.contains(n) || n.equals("*")){ locked = false;return 2;}if (channels.size() >= MAXCHANNELS){ locked = false;return 1;} else {add2CGQ(C,N);locked = false;return 0;} 42

}}// This class is the thread that handles all communication with a client// It also notifies the Vulture when the connection is dropped.class Connection extends Thread {static int connection_number = 0;protected Socket client;protected Vulture vulture;protected DataInputStream in;public PrintStream out;protected MultiServerTCP serv;public String channel = new String();public String oldChannel = new String();public String username;public String myType = new String();public String portstr = new String();public int portnum;public String hoststr = new String();public int UPport = -1;public boolean isGJS = false;public String serv_str = new String();public int serv_num;// Initialize the streams and start the threadpublic Connection(MultiServerTCP theserver, Socket client_socket,ThreadGroup threadgroup, int priority, Vulture vulture){ // Give the thread a group, a name, and a priority.super(threadgroup, "" + ++connection_number);this.setPriority(priority);// Save our other arguments awayclient = client_socket;this.vulture = vulture;serv = theserver;channel = "The Default Channel";oldChannel = "The Default Channel";username = "UnKnown";// Create the streams 43

try {in = new DataInputStream(client.getInputStream());out = new PrintStream(client.getOutputStream(), true);}catch (IOException e) {try { out.close(); in.close(); client.close();}catch (IOException e2) {} ;System.err.println("Exception while getting socket streams: " + e);return;}// And start the thread upthis.start();}public void sendUpdate() {Vector CHG = serv.getCGQ();String outline = new String("CHG");for (Enumeration enum = CHG.elements(); enum.hasMoreElements();){ outline = outline.concat(new String(";"+enum.nextElement()));} out.println(outline);System.out.println("here's the data" + outline);}public void run() {String line;Integer portint;StringTokenizer st;String msg = "";// Send a welcome message to the clientsend("0 WELCOME " + super.getName());try {for(;;) {yield();try {sleep(500);} catch (InterruptedException e){ }line = in.readLine();if (line == null) break;line = line.trim(); 44

if (line.startsWith("CHANNEL")) {if (!isGJS) {int i = line.indexOf("|"); //added by BJMchannel = line.substring(8, i-1); //added by BJMoldChannel = line.substring(8, i-1); //added by BJMusername = line.substring(i+11); //added by BJMmyType = new String("CHAT");} else {channel = line.substring(8);}if (hoststr != null) {serv.addChannel(hoststr, portnum, channel);}} else if (line.startsWith("channelGuide request")) { // added by BJMVector CHG = serv.getCGQ();String outline = new String("CHG");for (Enumeration enum = CHG.elements(); enum.hasMoreElements();) {outline = outline.concat(new String(";"+enum.nextElement()));} out.println(outline);} else if (line.startsWith("Can I Connect: ")) {line= line.substring(15);while (serv.locked) {}int response = serv.canIConnect(line);if (response==1) {int i = line.indexOf("|"); //added by BJMchannel = line.substring(0, i); //added by BJMoldChannel = channel; //added by BJMusername = line.substring(i+1); //added by BJM} out.println("Connection Request: "+response);} else if (line.startsWith("HOST")) {st = new StringTokenizer(line.substring(4),"|");hoststr = st.nextToken();portstr = st.nextToken();portint = new Integer(portstr);portnum = portint.intValue();45

myType = new String("GJS");isGJS = true;} else if (line.startsWith("CLOSE ")) {portstr = line.substring(6);serv.removeChannel(hoststr, portnum, channel);serv.remfromQ(hoststr, portstr, channel);} else if (line.startsWith("GJS")) {st = new StringTokenizer(line.substring(4),"|");serv_num = (new Integer(st.nextToken())).intValue();portstr = st.nextToken();msg = new String(st.nextToken());if (msg.equals("Xfloor request") || msg.equals("floor request")) {if (serv.add2Q(hoststr, portstr, channel))out.println("floor granted");} else if (msg.equals("Xfloor release")||msg.equals("floor release")) {if (serv.remfromQ(hoststr, portstr, channel))out.println("floor released ");elseout.println("MSPause only one ");} else if (msg.startsWith("Draw")) {serv.broadcastDraw(msg.substring(5), portnum, "GeoSheetStdOut", 0);} else if (msg.startsWith("XDraw")) {serv.broadcastDraw(msg.substring(6), portnum, "GeoSheetStdOut", 0);} else { /* reply to UP */serv.send2UP(msg, portnum, serv_num);}} else if (line.startsWith("A|connect")) {st = new StringTokenizer(line.substring(10), "|");serv_str = new String(st.nextToken());hoststr = new String(st.nextToken());UPport = (new Integer(st.nextToken())).intValue();myType = new String("UP");if (serv.GJSHasFloor(hoststr, UPport, serv_str)) {System.out.println(serv_str+" UPport "+UPport);} else {hoststr = serv.findFloorGJS(hoststr, UPport);st = new StringTokenizer(hoststr, "|");hoststr = st.nextToken();UPport = (new Integer(st.nextToken())).intValue();}} else if (line.startsWith("A|disconn")) {46

try {out.close(); in.close(); client.close();}catch (IOException e2) { System.out.println("Yow!");};} else if (line.startsWith("B|")) {processUP(line.substring(2));} else {if (line.length() > 0)broadcast(line);}}}catch (IOException e) { }// When we're done, for whatever reason, be sure to close the socket,// and to notify the Vulture object. Note that we have to use synchronized// first to lock the vulture object before we can call notify() for it.// Note: running asynchronously now.finally {try {out.close(); in.close(); client.close();}catch (IOException e2) { System.out.println("Yow!");};channel = "Kill me please!";}}// handle user program messagepublic void processUP(String line) {serv.broadcastDraw(line, UPport, serv_str, 1);}public void send(String msg) {if (out.checkError()) {this.channel = "Kill me please!";} else {out.println(msg);}}// Here we send a message to everyone who is on the channel.public void broadcast(String msg) {Connection you;String toName;StringTokenizer st; 47

st = new StringTokenizer(msg, "|");st.nextToken();st.nextToken();toName=st.nextToken();if (toName.equals("*")) {Enumeration e = serv.connections.elements();while (e.hasMoreElements()) {you = (Connection) e.nextElement();if (you.channel.equals(channel))you.send(msg);}} else {Enumeration e = serv.connections.elements();while (e.hasMoreElements()) {you = (Connection) e.nextElement();if (you.channel.equals(channel) && you.username.equals(toName))you.send(msg);}}}}// This class waits to be notified that a thread is dying (exiting)// and then cleans up the list of threads and the graphical list.class Vulture extends Thread {protected MultiServerTCP server;protected Vulture(MultiServerTCP s) {super(s.threadgroup, "Connection Vulture");server = s;setPriority(5);this.start();}// This is the method that waits for notification of exiting threads// and cleans up the lists. It is a synchronized method, so it// acquires a lock on the `this' object before running. This is// necessary so that it can call wait() on this. Even if the// the Connection objects never call notify(), this method wakes up// every five seconds and checks all the connections, just in case.48

// Note also that all access to the Vector of connections and to// the GUI List component are within a synchronized block as well.// This prevents the Server class from adding a new conection while// we're removing an old one.public /* synchronized */ void run() {Connection c;for(;;) {try {sleep(10000);} catch (InterruptedException e) {};System.gc();// Do we run into trouble here if not synchronized?// (Assuming that something changes during the enumeration)Enumeration e = server.connections.elements();while (e.hasMoreElements()) {c = (Connection) e.nextElement();// if the connection thread isn't alive anymore,// remove it from the Vector and List. And inform// the deceased's friends.if (c.channel.equals("Kill me please!")){ server.remfromQ(c.hoststr, c.portstr, c.oldChannel); // added by KFAc.stop();server.connections.removeElement(c);server.someoneDied(c.oldChannel, c.username); //added by BJMc = null;} else if (!c.isAlive()) {server.remfromQ(c.hoststr, c.portstr, c.oldChannel); // added by KFAserver.connections.removeElement(c);server.someoneDied(c.oldChannel, c.username); //added by BJMc.broadcast("0 OBITUARY " + c.getName());c = null;}}}}}
49

