
Regstab’s User Manual

Version 2.0.0

http://regstab.forge.ocamlcore.org/

Vincent Aravantinos
vincent.aravantinos@gmail.com

Google∗ “Vincent Aravantinos”

May 3, 2012

Contents

1 Description 2

2 Install 3
2.1 From sources . 3
2.2 Win32 . 4
2.3 Intel Mac OSX Binaries . 4
2.4 Machine-Independent Bytecode 4
2.5 GODI . 5

3 Using the executables 5

4 Input language 7
4.1 Propositional Formulae . 7
4.2 Schemata . 8
4.3 Constraints . 9
4.4 Functions . 9
4.5 Comments . 10

∗The address of my website depends on the institution that employs me, since this can
change a lot, I’d rather not put a concrete URL here.

1

http://regstab.forge.ocamlcore.org/
mailto:vincent.aravantinos@gmail.com

5 Output 10
5.1 Model generation . 10
5.2 Refutation generation . 11

5.2.1 Machine-oriented format 11
5.2.2 Human-oriented format 12

6 Examples 13

7 Various 13
7.1 sch2cnf . 13
7.2 sch2ltl . 14
7.3 Vim syntax file . 14
7.4 Man pages . 14
7.5 Developer documentation . 14
7.6 Licence . 15

1 Description

In short. Regstab is a sat-solver extended to handle formula schemata i.e.,
constructions of the form

∧n
i=1(¬Pi ∨ Pi+1). Such schemata are considered

to be unsatisfiable iff all propositional formulae of the corresponding form are
unsatisfiable.

Restrictions. It is generally not possible to automatize the (un)satisfiability
of such objects [Tableaux’09]. So Regstab is restricted to a specific form of
schemata called “regular schemata”, hence the part “Reg” of Regstab. The
restrictions are detailed in Section 4.2.

How does it do it. Regstab is based on an extension of propositional
tableaux called stab. Hence the part “stab” of Regstab (for Schematic TA-
Bleaux). Regular schemata and stab are described in detail in [Tableaux’09].
A detailed overview of Regstab is provided in [IJCAR’10b].

Model and proof generation. Regstab is able to provide a model when the
schema happens to be satisfiable, and a refutation when it is unsatisfiable. Two
formats are available for proofs, both are generated in XML. The corresponding
DTD files are provided with the distribution, their description is detailed in
Section 5.2.

Complexity. Notice finally that the complexity of Regstab1 is studied in
[LATA’10]: in the (very) worst case, Regstab terminates in time and space
O(22n

) where n is the size of the formula.

1This is not actually Regstab but a procedure very close, so that the results also apply to
Regstab

2

Why not DPLL? This is quite unusual to use propositional tableaux for a
sat-solver but this is much more natural to use tableaux rather than dpll to
handle schemata (though this is done in [IJCAR’10a]). As a pure sat-solver
Regstab is all the least efficient. But one can easily think of combining Regstab
with an efficient sat-solver in order to benefit of both worlds.

2 Install

2.1 From sources

Steps:

1. make all

Compile the byte-code version of Regstab. This generates the executables
regstab, sch2cnf, sch2ltl.

2. (Optional) make opt

Compile the native-code version of Regstab (which is much faster). This is
possible only if Ocaml native-code compilation is possible on your machine,
see the Ocaml manual http://caml.inria.fr/ocaml/portability.en.
html. Most architectures are normally supported. This generates the
executable regstab.opt, sch2cnf.opt, sch2ltl.opt.

3. make install (as root)

• Copy the files regstab, regstab.opt (if any), sch2cnf, sch2cnf.opt
(if any), sch2ltl, and sch2ltl.opt (if any) into the directory $PREFIX/bin/.

• Copy the manual (this file) into the directory $PREFIX/doc/regstab/.

• Copy the man pages into the directory $PREFIX/man/man1/.

• Copy the developer doc into the directory $PREFIX/share/regstab/developper doc/.

• Copy the proof DTD files into the directory $PREFIX/share/regstab/DTD/.

• Copy the vim syntax file into the directories $HOME/.vim/syntax and
$PREFIX/share/regstab/vim/.

The environment variable PREFIX defaults to /usr/local.

Dependencies.

• Ocaml 3.12 or above2 (yes, 3.12 is really needed due in particular to the
use of first-class modules).

• For Windows: MinGW3.
2http://caml.inria.fr/index.en.html
3http://www.mingw.org/

3

http://caml.inria.fr/ocaml/portability.en.html
http://caml.inria.fr/ocaml/portability.en.html
http://caml.inria.fr/index.en.html
http://www.mingw.org/

2.2 Win32

The Win32 archive (not always available, I do my best as I do not have a Win32
machine) contains the following:

• QUICKSTART: “Short manual”.

• bin/: Contains regstab.exe, regstab.opt.exe, sch2cnf.exe, sch2cnf.opt.exe.
Files with .opt are Win32 native executables, other files are machine-
independent bytecode executables. Note that all these executables shall
be run in the Windows (DOS-like) command-line. Take care: ending the
standard input is done by CTRL+Z (and not CTRL+D as on Unix).

• doc/: Contains the manual manual.pdf (this file).

• examples/: Contains examples.

• man/man1/: Contains the man pages for regstab, regstab.opt, sch2cnf,
sch2cnf.opt

• tools/: Contains regstab.vim the vim syntax file for Regstab files, and
the DTD files for proofs and schemata.

2.3 Intel Mac OSX Binaries

The Intel Mac OSX archive contains the following:

• QUICKSTART: “Short manual”.

• bin/: Contains regstab, regstab.opt, sch2cnf, sch2cnf.opt. Files
with suffix .opt are Intel Mac OSX native executables, files without suffix
are machine-independent bytecode executables.

• doc/: Contains the manual manual.pdf (this file).

• examples/: Contains examples.

• man/man1/: Contains the man pages for regstab, regstab.opt, sch2cnf,
sch2cnf.opt.

• tools/: Contains regstab.vim the vim syntax file for Regstab files, and
the DTD files for proofs and schemata.

2.4 Machine-Independent Bytecode

Warning: the bytecode version of Regstab is much slower than the native one.
Though you may have no other choice if your architecture is not supported by
the OCaml native compiler (very rare).

The Bytecode archive contains the following:

• QUICKSTART: “Short manual”.

4

• bin/: Contains regstab and sch2cnf.

• doc/: Contains the manual manual.pdf (this file).

• examples/: Contains examples.

• man/man1/: Contains the man pages for regstab and sch2cnf.

• tools/: Contains regstab.vim the vim syntax file for Regstab files, and
the DTD files for proofs and schemata.

2.5 GODI

Note: there are merely no dependencies so it is very easy to install Regstab
without GODI.

GODI4 is a package manager for Ocaml libraries and software. It has many
many advantages for Ocaml apps developpers.

See GODI documentation and install the package “apps-regstab”. The fol-
lowing will be installed (<PREFIX> is GODI base directory):

• regstab, regstab.opt (if any), sch2cnf, sch2cnf.opt in <PREFIX>/bin.

• The manual (this file) into <PREFIX>/doc/apps-regstab/.

• The man pages into the directory <PREFIX>/man/man1/.

• The developer doc into the directory <PREFIX>/share/apps-regstab/developper doc.

• The proof DTD files into the directory <PREFIX>/share/apps-regstab/DTD.

• The vim syntax file into the directories $HOME/.vim/syntax and <PREFIX>/share/apps-regstab/vim.

3 Using the executables

Regstab is always used via the command-line.

regstab.opt [OPTIONS] [file]
regstab [OPTIONS] [file]

Prints UNSATISFIABLE (resp. SATISFIABLE) if the input formula is unsat-
isfiable (resp. satisfiable). If no file is provided, the input formula is taken on
stdin (to send your formula type in CTRL+D on Unix/Linux/MacOS X, CTRL+Z
on Windows).

4http://godi.camlcity.org/godi/index.html

5

http://godi.camlcity.org/godi/index.html

Options:

--exclude-vars v1,v2,. . .
If the schema is satisfiable, exclude variables v1,v2,. . . of the printed
model (can improve readability of the model if you know that the values
of some variables are not significant). See Section 5.1 for an example.

-l
Print the lemmas used in the deduction (in the end only, not during exe-
cution).

--lemmas
Print the lemmas database (all lemmas, not just those used in the deduc-
tion).

-m
Print a model when the schema is satisfiable. See Section 5.1 for details.

--model
Same as -m.

--not-tune-gc
Turn off garbage collector tuning (which just amounts to increase the size
of the minor heap).

-p file
Output the proof in the given file when the schema is unsatisfiable.

--machine-proof
When the proof is generated, generate it in a ”machine”-oriented way, see
Section 5.2 for details.

--no-utf8
Display text in ASCII rather than UTF8.

--help
Prints the list of options.

-help
Same as --help.

--human-xml
Output XML in such a way that it is (a bit) more readable by humans
(right now it just indents the file). Sometimes more time-consuming.

--proof file
Same as -p.

--used-lemmas
Same as -l.

6

--stats
Provide statistics once the execution is over (number of rules applied,
number of lemmas, ...).

-s
Same as --stats.

--use-inclusion Use inclusion instead of equality to detect cycles (generally
slower but generates more concise proofs).

--verbose n
Be verbose according to the level (1-3, the higher the more verbose). Dis-
plays among other things:

• the input formula as it is parsed by Regstab

• rule applications

• cycle detection

• lemma additions to the database

-v n
Same as --verbose.

-x v1,v2,. . .
Same as --exclude-vars.

4 Input language

We start with an informal description of the language, pointing out worth notic-
ing points. The formal grammar for schemata is given in Figure 1.

4.1 Propositional Formulae

• Usual logical notations are translated into ASCII: the conjunction (∧)
is written /\, the disjunction (∨) is written \/, and the negation (¬) is
written ~.

As a convenience some other usual connectives are pre-defined: the im-
plication (P1 ⇒ P2 := ¬P1 ∨ P2) is written P 1->P 2, the equivalence
(P1 ⇔ P2 := (P1 ⇒ P2) ∧ (P2 ⇒ P1)) is written P 1<->P 2, and the
exclusive or (P1 ⊕ P2 := ¬(P1 ⇔ P2)) is written P 1(+)P 2.

• Propositional variables must be indexed: you cannot write A/\(B\/C) but
P 1/\(P 2\/Q 1) is ok. They can be any alphanumerical sequence starting
with an uppercase letter. Prime (’) can be appended to the sequence. The
index may be any number.

• The precedence of connectives is as follows: /\ > \/ > (+) > <->, ->.

7

Notice that formulae are internally translated into negation normal form, i.e.,
negation only occurs in front of propositional variables (after equivalence, im-
plication and exclusive or have been turned into conjunctions and disjunctions).

4.2 Schemata

Syntax:

• Iterated conjunctions are written “/\i=k..e” where i is an integer variable,
k is an integer, and e is an arithmetic expression. We call k the lower bound
of the iterated conjunction, and e is its upper bound. Iterated disjunctions
are written similarly with \/ instead of /\.

• Arithmetic expressions are written “n+k” or “n-k” where n is an integer
variable and k is a natural number.

• Inside iterations, indexed propositional variables are written “P e” where
P is a propositional variable (see 4.1) and e is an arithmetic expression.
Do not put parentheses around e.

• Integer variables can be any alphanumerical sequence starting with a lower
case letter. Prime (’) can be appended to the sequence.

• Iteration operators have the highest precedence: /\i=0..n P i/\P i+1 is
interpreted as (/\i=0..n P i)/\P i+1, and not /\i=0..n (P i/\P i+1)
(think of the body of the iteration as being an argument given to the
operator /\i=0..n).

Example: P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n

Restrictions:

• Iterations cannot be nested : you cannot write /\i=1..n (\/j=1..n ...)

• There may be only one free variable (called the parameter of the schema):
you cannot write /\i=1..n P i /\ /\i=2..p Q i.

• All iterations must have the same bounds5: you cannot write /\i=1..n
.../\ /\i=2..n ...

• For P e occurring in some iteration, the only variable that can occur in e
is the variable which is iterated6 you cannot write /\i=1..n P n+1 but
/\i=1..n P i+1 is ok.

5In most cases, this can be easily circumvented, e.g., if n > 1 we can manually unfold the
first ranks:

Vn
i=1 Si ∧

Vn
i=2 Ti is equivalent, if n > 1, to S1 ∧

Vn
i=2 Si ∧

Vn
i=2 Ti

6This can be easily circumvented by factorizing the constant indexed proposition:Vn
i=1(Pn ∨ Pi) is equivalent to Pn ∨

Vn
i=1 Pi.

8

4.3 Constraints

Basic constraints can be given on the parameter of a schema. They must be
inserted after the schema and are written “| n op k” where n is the parameter
of the schema, k is an integer, and op ∈ {=,>=,>}.

Example:
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 0

Notice that this example is unsatisfiable with the constraint but is satisfiable
without it: if we take n = 0 we get the formula P 1/\~P 0 which is satisfiable.
As schemata are considered to be unsatisfiable iff all propositional formulae
obtained by giving a value to n are unsatisfiable, this schema is not satisfiable.

Restriction: positive length. Let k1 and n + k2 be the lower and upper
bounds, respectively, of the iterations occurring in the schema. Then the con-
straint should entail n ≥ k1 − k2 − 1, i.e., it should ensure that the length of
iterations is positive. Concretely if we have a constraint of the form n ≥ k3 then
we must have k3 ≥ k1 − k2 − 1.

Example:
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 0

We have here k1 = 1 and k2 = −1. So n ≥ k1 − k2 − 1 amounts to n ≥ 1
which is indeed entailed by n > 0.

The same holds for:
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 1
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 2
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 3
. . .
But not for:
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > -1
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > -2
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > -3
. . .

Notice that this restriction could be removed but at the expense of perfor-
mance.

4.4 Functions

To ease the input you can define simple functions, e.g., if you use often A i->A i+1
with a different A (say B i->B i+1, C i->C i+1, . . .), then you can factorize this
by defining a function λX.Xi ⇒ Xi+1. The syntax is “let F(X) := X i->X i+1
in ...” with the following constraints:

• The name of a function follows the same conventions as propositional
variable names.

9

• The parameters of the function is a comma separated list comprised be-
tween parentheses if the list is non-empty. The parameters may be either
propositional variable names or simple variable names. E.g. you can write
let F(X,n) := X n ->X n+1 in ...

• The right member of the affectation is any formula as defined previously.
It cannot contain a constraint.

Calling the function is done as follows: F(P,n+1), i.e., the name of the
function followed by the list of parameters enclosed between parentheses. When
there is no parameter, you should still put parentheses, i.e., F().

Full Example:
let F(S,A,B,C,i) := S i <-> (A i (+) B i (+) C i-1) in
/\i=1..n (F(S,A,B,C,i) \/ F(S’,A’,B’,C,i+1))

The corresponding formal grammar is given separately in Figure 2.

4.5 Comments

Comments start by // and end at the end of the line.
The special comment //expected: unsat or //expected: sat can be

used before the schema in order to indicate to Regstab whether the schema
is expected to be satisfiable or not. If the result is not the expected one then
Regstab will issue an error message of the following form: ERROR: EXPECTED
TO BE SAT or UNSAT, respectively. All the files in the distribution directory
examples make use of this feature.

5 Output

The standard output of Regstab is just “SATISFIABLE” or “UNSATISFIABLE”,
but one can use several options to generate witnesses: a model (or set of models)
when the input schema is satisfiable, and a refutation when it is unsatisfiable.
We now give more details on these options.

5.1 Model generation

Model generation is triggered by the command-line option -m: Regstab will
then print a model when the input schema is found to be satisfiable. For in-
stance:

> regstab.opt -m
P 1 /\ Q 2
SATISFIABLE
Found model:
P 1, Q 2

You can use the option --exclude-vars to exclude some variables from the
output:

10

> regstab.opt -m --exclude-vars P
P 1 /\ Q 2
SATISFIABLE
Found model (variable P is excluded):
Q 2

When the input schema contains a variable, Regstab tries to provide more
information:

> regstab.opt -m
P 1 /\ /\i=1..n (P i->P i+1)
SATISFIABLE
for any n≤0, the corresponding instance is:
P 1
and the following is a model:
P 1

Or:
> regstab.opt -m
Taking input from stdin.
P 1 /\ /\i=1..n (P i->P i+1) | n>=4
SATISFIABLE
for n=4, the corresponding instance is:
P 1 /\ (P 1->P 2) /\ (P 2->P 3) /\ (P 3->P 4) /\ (P 4->P 5)
and the following is a model:
P 5, P 4, P 3, P 2, P 1

5.2 Refutation generation

Refutation generation is triggered by the command-line option -p (or equiva-
lently --proof). The name of a file in which to store the refutation should be
provided right after the option as follows:

> regstab.opt -p refutation.xml

Regstab will then store the refutation in the file refutation.xml if the
schema happens to be unsatisfiable. There exist two output proof formats:
a “machine-oriented” one, and a “human-oriented” one (the latter being the
default). Both of them are explained informally in the following sections. The
formal presentation of the corresponding proof systems is not presented but is
very close to, e.g., [Tableaux’09] or [LATA’10].7

5.2.1 Machine-oriented format

This format is called machine-oriented because it is the closest to the internal
representation of Regstab and because it prevents, by construction, many ill-
formed proofs and schemata. Thus it removes the burden of checking criteria

7Contact me directly in case you want more precise information.

11

that have already been checked by Regstab. This is useful if you plan to input
the proof to a proof-transformation algorithm (like the tableau to resolution
transformations presented in [FTP’11], or if you want to interface Regstab
with a proof assistant). In particular, it has the following features:

• the parameter name is stored only once (since it is not supposed to change
along the procedure);

• the iteration variable is not mentioned (since it is the only variable that
can appear in iterations, we just need to store the position of the variable,
not its name);

• the bounds of all iterations are the same and are preserved all along the
procedure (except when unfolding an iteration but the shift can be com-
puted if needed), so they are stored only once;

• the grammar used for schemata only accepts regular schemata (in partic-
ular, the grammar prevents the nesting of iterations);

• the proof consists of one single tree (more precisely a tableau [Tableaux’09])
with some leaves closed by “looping” to a previously seen node (this is in
contrast with the human-oriented format presented in the next section,
which contains independent proofs representing the proofs of the lemmas
used in the recursion to prove the main result);

• the rules that are used are clear from their XML tag thus making them
easier to process;

• each rule application provides the involved active formulae (or the set of
removed literals in the case of the pure literal rule).

The file format is fully documented in the DTD file tools/regularproof.dtd.

5.2.2 Human-oriented format

This is the default output format. Contrarily to the machine-oriented format
of the previous section, every element contains all the required information
explicitly. It thus makes it more readable by a human, hence its name. In
particular, as opposite to the machine-oriented format, it has the following
features:

• the parameter name, iteration variable name, and bounds of iterations are
stored in every single schema;

• the proof consists of small sequent-style proofs; when a sequent is encoun-
tered which requires itself a separate inductive proof, then this proof is
done independently and a reference to this proof is stored in the original
proof (this reference is called a “link”).

12

It also has the “feature” that non-regular schemata can be expressed, so if you
want to get rid of useless checks you’d better use the machine-oriented format.
On the other hand it makes the file format more natural and easier to read.
The file format is fully documented in the DTD file tools/prooftrees.dtd.

This output can be graphically visualized using Proof Tool (http://www.
logic.at/prooftool/)8.

6 Examples

Figure 3 presents a list of the provided examples along with an indicative time
that it takes on my machine. Only unsatisfiable examples are presented (satis-
fiable ones are almost immediately found).

The script examples/run runs Regstab on the examples. Note that this
script was written for development purposes only so you can try to use it but it
depends on various libraries and tools – Findlib (http://www.camlcity.org/
archive/programming/findlib.html), Fileutils (https://forge.ocamlcore.
org/projects/ocaml-fileutils/), and maybe other-things-that-are-installed-
on-my-computer-but-I-am-not-aware-that-they-are-needed. . . – and some paths
used inside the script are most probably different between my machine and
yours. The script automatically runs all the files in the examples directory and
stores the resulting execution times in some file in the directory examples/benchs.

Most examples are schemata formalizations of some basic circuits. In ad-
dition, some examples come from the cut-elimination system CERES (http:
//www.logic.at/ceres). Finally, even more examples can be found by trans-
forming LTL formulae into schemata using ltl2sch [TIME’11] (Google “Vin-
cent Aravantinos”, find the Software section).

7 Various

7.1 sch2cnf

sch2cnf.opt -param n [file]
sch2cnf -param n [file]

Computes the propositional formula obtained by giving the value n to the
parameter of the input schema. Outputs the formula in DIMACS cnf format.
Thus sch2cnf can be used as a generator of problems for sat-solvers. If no file
is provided the input formula is taken on stdin.

8Proof Tool evolves quickly so if there is a problem viewing the proofs, please contact
directly the authors of Proof Tool. Also, in case of problems visualizing the proofs, try
triggering on and off the UTF8 output of Regstab.

13

http://www.logic.at/prooftool/
http://www.logic.at/prooftool/
http://www.camlcity.org/archive/programming/findlib.html
http://www.camlcity.org/archive/programming/findlib.html
https://forge.ocamlcore.org/projects/ocaml-fileutils/
https://forge.ocamlcore.org/projects/ocaml-fileutils/
http://www.logic.at/ceres
http://www.logic.at/ceres

Options:

-cnf Forces the displayed formula to be in conjunctive normal form, only useful
when -H is set.

-D Displays the formula in DIMACS cnf format (default).

-H Displays the formula in a human readable format.

7.2 sch2ltl

sch2ltl.opt [file]
sch2ltl [file]

If no file is provided the input formula is taken on stdin.
Computes an LTL formula out of a positive schema. Positive schemata

are a strict subset of regular schemata that are equivalent to LTL formulae
[TIME’11]. A detailed description of their restrictions are given in [TIME’11].
The output format is the one of pltl (http://users.cecs.anu.edu.au/~rpg/
PLTLProvers). Note that there is also a converse translation, available indepen-
dently as “ltl2sch” (Google “Vincent Aravantinos”, find the Software section).

7.3 Vim syntax file

regstab.vim

Copy the file into ~/.vim/syntax/. You can use modelines to force the
syntax (see the provided examples), you just have to add as the last line of your
file:

// vim:ft=regstab
You can also create a file ~/.vim/ftdetect/regstab.vim just containing

the following line:
au BufRead,BufNewFile *.stab set filetype=regstab

7.4 Man pages

Short man pages for quick recall are available in the directory man. If you do
not wish to install RegSTAB you can access them with man -M man/ regstab
or man -M man/ sch2cnf when in the top directory. However only the present
file should be considered as an exhaustive documentation.

7.5 Developer documentation

If you are interested in the internals of Regstab, a set of HTML pages is avail-
able as a developer documentation. These are available on Regstab web page
independently of Regstab’s distribution.

14

http://users.cecs.anu.edu.au/~rpg/PLTLProvers
http://users.cecs.anu.edu.au/~rpg/PLTLProvers

7.6 Licence

This software is published under the terms of the CeCILL-B licence, found in the
distribution. This licence is compatible with the BSD licence and is adapted to
French legal matters. More information on the CeCILL-B licence can be found
on Wikipedia http://en.wikipedia.org/wiki/CeCILL.

References

[Tableaux’09] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A
Schemata Calculus for Propositional Logic. In Martin Giese and
Arild Waaler, editors, TABLEAUX, volume 5607 of Lecture Notes
in Computer Science, pages 32–46. Springer, 2009.

[IJCAR’10a] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A
Decidable Class of Nested Iterated Schemata. In Giesl and Hähnle
[IJCAR’10].

[LATA’10] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. Com-
plexity of the Satisfiability Problem for a Class of Propositional
Schemata. In Adrian-Horia Dediu, Henning Fernau, and Carlos
Martn-Vide, editors, Language and Automata Theory and Ap-
plications, volume 6031 of Lecture Notes in Computer Science,
pages 58–69. Springer, Heidelberg, 2010.

[IJCAR’10b] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier.
RegSTAB: A SAT-Solver for Propositional Iterated Schemata.
In Giesl and Hähnle [IJCAR’10].

[TIME’11] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. Lin-
ear temporal logic and propositional schemata, back and forth. In
18th International Symposium on Temporal Representation and
Reasoning, TIME 2011, Lbeck, Germany, September 12-14, 2011,
Proceedings, 2011.

[FTP’11] Vincent Aravantinos and Nicolas Peltier. Generating schemata
of resolution proofs. In First-Order Theorem Proving, 8th Inter-
national Workshop, FTP 2011, Bern, Switzerland, 2011.

[IJCAR’10] Jürgen Giesl and Reiner Hähnle, editors. Automated Reason-
ing, 5th International Joint Conference, IJCAR 2010, Edinburgh,
Scotland, July 16-19, 2010, Proceedings, Lecture Notes in Com-
puter Science. Springer, 2010.

15

http://en.wikipedia.org/wiki/CeCILL

sentence ::= schema
| schema | constraint

schema ::= indexed-prop _ linear-expression
| schema /\ schema
| schema \/ schema
| schema -> schema
| schema (+) schema
| schema <-> schema
| ~ schema
| (schema)

| /\ var = integer .. linear-expression no-iteration
| \/ var = integer .. linear-expression no-iteration

no-iteration ::= indexed-prop _ linear-expression
| no-iteration /\ no-iteration
| no-iteration \/ no-iteration
| no-iteration -> no-iteration
| no-iteration (+) no-iteration
| no-iteration <-> no-iteration
| ~ no-iteration
| (no-iteration)

constraint ::= var <= integer
| var >= integer
| var < integer
| var > integer
| var = integer

linear-expression ::= var
| integer
| var + integer
| var - integer

var ::= a...z {a...z|0...9|’}*

indexed-prop ::= A...Z {A...Z|a...z|0...9|’}*

integer ::= {0...9}+

Figure 1: Main Grammar.

16

sentence ::= ...

| let definition := schema in sentence
schema ::= ...

| function-call
definition ::= indexed-prop (parameters)

| indexed-prop
parameters ::= indexed-prop

| var
| indexed-prop, parameters
| var, parameters

function-call ::= indexed-prop (arguments)

| indexed-prop ()

arguments ::= linear-expression
| indexed-prop
| indexed-prop , arguments
| linear-expression , arguments

Figure 2: Grammar extension for definitions.

17

Ripple-carry adder
x+ 0 = x 0.014s
commutativity 0.015s
associativity 0.054s
3 + 4 = 7 2.753s
x+ y = z1 ∧ x+ y = z2 ⇒ z1 = z2 0.374s
unicity of the result 0.079s

Carry-propagate adder
x+ 0 = x 0.013s
commutativity 0.035s
associativity 0.497s
equivalence between two different definitions of the same adder 0.029s
equivalence with the ripple-carry adder 0.040s

Comparisons between bit-vectors
x ≥ 0 0.012s
Symmetry of ≤ (i.e., x ≤ y ∧ x ≥ y ⇒ x = y) 0.012s
Totality of ≤ (i.e., x > y ∨ x ≤ y) 0.013s
Transitivity of ≤ 0.014s
1 ≤ 2 0.018s

Presburger arithmetic with bit vectors
x+ y ≥ x 0.015s
x1 ≤ x2 ≤ x3 ⇒ x1 + y ≤ x2 + y ≤ x3 + y 4.623s
x1 ≤ x2 ∧ y1 ≤ y2 ⇒ x1 + y1 ≤ x2 + y2 0.105s
x1 ≤ x2 ≤ x3 ∧ y1 ≤ y2 ≤ y3 ⇒ x1 + y1 ≤ x2 + y2 ≤ x3 + y3 1m24s
1 ≤ x+ y ≤ 5 ∧ x ≥ 3 ∧ y ≥ 4 1m15s

Examples coming from CERES
ex1original 0.034s
ex1 (same as ex1original, with trivial redundancies removed) 0.013s
ex2original 0.140s
ex2 (same as ex2original, with trivial redundancies removed) 0.105s

Other
automata inclusion 0.069s∨n

i=1 Pi ∧
∧n

i=1 ¬Pi 0.036s
P1 ∧

∧n
i=1(Pi ⇒ Pi+1) ∧ ¬Pn+1|n ≥ 0 0.032s

P1 ∧
∧n

i=1(¬Pi ∨ Pi+1) ∧ ¬Pn+1|n ≥ 0 0.012s
model checking of some safety property 0.081s

Figure 3: Provided examples and indicative execution time.

18

	Description
	Install
	From sources
	Win32
	Intel Mac OSX Binaries
	Machine-Independent Bytecode
	GODI

	Using the executables
	Input language
	Propositional Formulae
	Schemata
	Constraints
	Functions
	Comments

	Output
	Model generation
	Refutation generation
	Machine-oriented format
	Human-oriented format

	Examples
	Various
	sch2cnf
	sch2ltl
	Vim syntax file
	Man pages
	Developer documentation
	Licence

