COPYRIGHT NOTICE
for
An Enhanced FORTRAN Compiler

Version 9.38 Released May, 2007
Published by:

Great MigrationsLLC
7453 Katesbridge Ct
Dublin, Ohio 43017

(614) 761-9816

This User's manual for the PROMULA FORTRAN Compiler is the property of Great Migrations LLC. It embodies
proprietary, confidential, and trade secret information. The User's manual and the files of the PROMULA FORTRAN
Compiler machine-readable distribution media are protected by trade secret and copyright laws.

The use of the PROMULA FORTRAN Compiler is restricted as stipulated in the Great Migrations LLC License
Agreement which came with the PROMULA FORTRAN Compiler product and which you completed and returned to
the Great Migrations LLC. The content of the machine-readable distribution media and the User's manual may not be
copied, reproduced, disclosed, transferred, or reduced to any electronic, machine-readable, or other form except as
specified in the License Agreement with the express written approval of Great Migrations LLC.

The unauthorized copying of any of these materialsis a violation of copyright and/or trade secret law.
DISCLAIMER OF WARRANTIESAND LIMITATIONSOF LIABILITIES

THIS USER'S MANUAL IS PROVIDED ON AN "AS IS' BASIS. EXCEPT FOR THE WARRANTY DESCRIBED
IN THE GREAT MIGRATIONS LLC LICENSE AGREEMENT, THERE ARE NO WARRANTIES EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE, AND ALL SUCH WARRANTIES ARE EXPRESSLY AND
SPECIFICALLY DISCLAIMED.

IN NO EVENT SHALL GREAT MIGRATIONS LLC BE RESPONSIBLE FOR ANY INDIRECT OR
CONSEQUENTIAL DAMAGES OR LOST PROFITS, EVEN IF GREAT MIGRATIONS LLC HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Some states do not allow the limitation or exclusion of liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

TRADEMARK

PROMULA® isaregistered trademark of Great MigrationsLLC.
DEFINITION OF PURCHASE

The definition of your particular purchase is specified in the Great Migrations LLC License Agreement which came with
the PROMULA FORTRAN Compiler product and which you completed and returned to the Great Migrations LLC. If
you have any questions about your rights or obligations as a PROMULA FORTRAN Compiler user or believe that you
have not received the complete PROMULA FORTRAN Compiler package that you purchased, please contact:

Great MigrationsLLC
7453 Katesbridge Ct
Dublin, Ohio 43017

(614) 761-9816

Table Of Contents

L INTRODUCTION .ttt sttt ae et b e b e £ e e bt £ e st e bt £ e Rt e Rt s b e e e st b e n s e Rt s b e e e bt s be e e bt e b et enesbe b enesbe e enenes 1
1.1 USER SUPPORTcueettitetetesteeetesteeesestesessesteseesesseneesesseneesessessesessensesessensesessensesessessesessensesessensesesseneesessensesessensesesseneasens 1
1.2 THE DESIGN OF THE COMPILER.cutitttetisteeetesteestesteseesesseseesesseseesesseneesessessesessessesessensesessensesessessesessensesessensesesseneesens 1
1.3 INOTATION USEDcotiitieteeie sttt e steeste ettt saeesbeesbe e beseeseesaeesaeeeae e bt e as e 2ae e eaeeab e e eh e e abe e eeeae e e anesaeeaae e et ambeenbennnesaeasbeensean 2

2. USING THE COMPILERoiict ettt sttt ettt st s ae st s te et sae e besaeseete st eneatestesenbestenesbesannenbeneeneans 3
2.1 HOW P WWORKS. ..ottt ettt ettt e sttt e ete s ee st e s aeesae e st e beeaseeaeeeheeeb e e beeabeeaee s e e eae e eae e s e e bt e aeeaaseebeeebeeabeenbeenneennesanesais 3
2.2 FILE NAMES. ...ttt ittt ettt ettt ae st e s bt et e s et s ee s aeesae e eae e bt e a b e ea et eh e e eh e e eb £ 2 Ee e abe e e e e aeeSRe e eReeas e e abeeabeemseeasesheeabeeabeanteennesanesais 3
2.3 SUMMARY OF OPTIONS.....utteutteuttaueesteasteaasesasesasessssueasseaaseaseasstassssssesssasseaasesassssssessusesssansessesnsessssssesssesssesssesnssssssnes 4
2.4 ECHO CONTROL OPTIONSutteutiaueasteasteassessssasessesseasseasseaseasssassssssssssssseassesassssssssssssasssanseanseansessssssesssesssesssesasesnsesaes 4

2.4.1 Warnings, NOteS, and COMIMENES.........ccceiieerreereresesteseeseeseesseseeseessessessesseesessessessessessesseessessessessessessenseessesenns 5
2.4.2 Monitoring INterNal OPErAtiONScieevereeeereereresese st eseeseeste s e stestesseeseeseeeestestessesaessesseeseessessessessessesseensesenns 6
2.4.3 Annotated Listing Of SOUMCE COUEuiuiieeeeieriese s s st etee e e e s et s e eae e testesaesse s e esseaeseesaesaeesensnensenenns 6
2.4.4 Symbol Listing and Cross REFEreNCE TabI €ccevviiiere ettt s re s enaennens 7
P I @0 a1 o | [T g o =10 T T S 10
2.5 FORTRAN DIALECT CONVENTION FLAGS......uiitettitiietisieietesieseetesteseesestesessesseseeseseesessessesessessesessessensesessessssessensesens 10
2.5.1 ThE FORTRAN INEEOEE TYPE. .. eetiteiteiteetereeieeitesteste et ste st e ae s e e seesbeseesbesaeeaeeeaeeseeseesbesaeehesaeanseseesbesbesaesbeeneansanes 10
2.5.2 The Treatment of Short INteger ArithMELIC........cooii i b 10
2.5.3 FORTRAN SOUrCe FOrMAt USEU........ooiiiieieeie ettt sttt s st ste e te et e eaeesraeste e beentesnsesneesaeesreenseensenns 12
2.5.4 Default Local Variable SIOrage TYPEcoiaeirieierie ettt st e e e b sbe e sae s e e seseesbesbesaesne e e aneenes 12
2.5.5 The DolOOP trip COUNE ASSUMMPLION.eiueiiieiieierie ettt et e ettt e s e et e sbesbesbesaeeae s e e e e sbesbesbesaesneeneaneenes 12
2.5.6 SPECITYING UNIt NUMDEISccieiiiise sttt sttt e et et ese e e et eteseesbesaeese e e entestesteneesaeenennnennenes 13
2.5.7 Selecting DialeCt CONVENTIONS........ciiiieieieeiereesiesiesee st ese e e e e see e ste e ese e e e sesaesressesseesesnseneessestessesaeesenneensenes 14
2.6 STORAGE QUANTITY VALUES.cettitieeterteeetesteeetesteseesestesessesteseesesseseesesteseesesteseesesseseeseseeneesesteseesestensesesseneesesseneasens 14
2.7 MISCELLANEOUS OPTIONS.cttutetesteseetesteseesesseseesesseseesessessesessensesessessesessessesessessesessensesessessesessessesessensesessensesessessasens 14
P2 5 R 1 0 T= N o0 T F=X @ gY@ o1 o] o 14
P22 =Y T oo o [g To N = o 15
2.7.3 C Compiler Include File PAtNNAIME.coiiiiiie ettt st be e s b e e s 15
2.7.4 Library File Name or Pathname fOr LINKENcccooiiiieriieee et s 15
2.7.5 NAME Of EXECULADIE........oo ettt e st s te s e e s aeesbe e teeateeaeesaeesteesbeenteensesaeesaeesseenseenseans 15
2.7.6 Location of FORTRAN FileS TOBEINCIUAEAooueeiiieieeee ettt s st 15
2.8 PROTOTYPE FILES...ccttittetietieette it ste et e et te st e ste e bt e et easeeaeesheesheeabeeaee s aeeeae e aae e st 2 bt aabeeaeeeheeab e e beeabesaeesasesaeesaeabeenseans 15
2.8.1 Formation of EXtErNal SYMDOIS.coiiiiiieeiiee sttt sttt st sb e saesbe e e e e nes 16
2.8.2 FUNCLION PrOtOLYPE SYNEAX.....cuvereerieireiersieseeseeseesiesteseessesseeseeseessessessessesseesessssssessessessessessesssensessessessessessesssensenes 16
2.8.3 VAlUE PAr@mMELErS.......couiieeirtiieicstiee ettt sttt b et £ et s b b et et s b e e e st st et e st s b e e e ne s be e e nesbenaeneees 17
2.8.4 EXErNAI NAME ClASN ..ottt bbbkt s et e et s b e e st s be e e sttt ees 17
2.8.5 MUIIPIE FOIITIS ...ttt st s e e et e st e s e e st e s aeeaeeneenteseeseesbesaeeaeeneenseseneenbesneeneennensenes 18
2.8.6 Global SYmMb0IS AN ProtOLYPES.ccveivieieieceeieerese sttt s e e e e ste et e e se e testesrestesreeseeneeneensestesresaeeseennensenes 19
2.8.7 ReNamMIiNG [AentifierS ONIYcoiiiiiiicice et st e et e s ee s be s aeene e e e eesaeseesbesneenennneneenes 19

3. LANGUAGE ELEMENT S...ciiiiiiiiiieiisiisiees ettt besa et be e st assesesbese e st s be s eseebensesesbenaeneabesesesrenseneaee 20

3.1 FORTRAN STATEMENTSeittiuttiueasteasteaseaueeaueasseasseaaseaasessssaeasaeasseasseastasseasseassasseasessesasssasssseasseensesnsesnsessesssensses 20
3.1.1 Standard FiXeO-FOIMAL LINES.......c.ccoiiiuiiieiieiiesie ettt st te s e s aeestaesteesteetesaeesaeesneesseeteenseeseesnaesseessens 21
I o = o N o 0 7= T =SSR 21
3.1.3 NOrmal Free-FOIMAL LINES.........cccieiieieciecteestee st et erte e steesteesteetesatesaeestaestaesteeeesaeesaeesaeesseenseensesseesseessenssens 22
3.1.4 Continuation Free-FOrMAL LINES........ccoiiiiiiiieiee ettt sttt st sttt et st st sttt st st nae e 22

3.2 SYMBOLIC NAMESutitieetirteseetesteseete st s ee st ste st esesteseesesbe e ebesbessesess e s s es e s b e e es e ab e e e bt eb e e A e Rt e bt ae e s e e b et e ne b e e eneebeseenenbeneenennin 22

3.3 CONSTANTS ...teueettteeetesteneeteseeeesesbeseesesbeseesesb e e eb e s b e e e st ebese e st eb e s es e eb e e eb e A e e e s e eR e £ e R e A e A e R e e b e e e s e b et e n e e bt e enenb et enenbe st enennn 22
GG T8 A g1 o = 0] - | USRS 22
B = | I O] gL = | ST SOPSRUS 23
3.3.3 DOUDIE PreCiSiON CONSEANE.........eivetiiieieterieeete ettt sttt sttt st sttt sttt sttt st et ebe st et s benbe et st e s sbe e eneeee 24
3.3.4 COMPIEX CONSLAN.cuveterteetireeieeeerte st steeteseeseeseestesbesaeebe st easeseesbeaaesaeebesaeaaeeneeneeabesbeebeeaeanseneasabesbesbenneansaneans 25
3.3.5 DOUDIE COMPIEX CONSEANEeeueeeetertereeetereeie st ste e te st eeeseessesbesaesbe s e eseeseesbesbesbeebesaeanseseensasbesaesbesneaneansans 25
3.3.6 LOQICAI CONSLANT.......eetiteieeetireeiete sttt sttt s et et e st e et ebe et e e e se e e e ebesaeeb e e et eae e e e besbeeheebeeaeanse e esabeseesbesneenseeans 26

RS A O =1 = ot (< g O0] 01 =1 0| AR 26

The Promula Fortran Compiler User's Manual

3.3.8 HOIENTEN CONSEANE ...ttt ettt st b ettt st b e bt et e s e et s besa et s be st e ne et e e eneees 26
3.3.9 Exact Representation CONSIANES........civiiierieeiereriesteseestesseeeeseesse e seessesseessessessessessessesssessesesssessessessesseeseenenns 27
34 W ARIABLESteeettrteeeteste sttt st ettt b st e s st e bt b e e e Rt e bt e e Rt b e £ e R R e £ e R R e e e ARt A e R £ R e A e R e R e Ao R £ R e R e Rt b et e Rt b et e Rt Rt nennn 28
N R 1 = o L= Y = VA= o TSRS 28
3.4.2 SNOM INEEQEE VAITADIE ...ttt bbbt e e b et e bt e b e et eat e e e besbesbesbesneeneeneans 28
4.3 BYLE VAITADIE. ...ttt ettt bbbttt A b bRt bt et e at et e be bt eheere e e eneennen 28
34,4 REAI VATTADI ...ttt h et e bbbt bt e et et e e e be bt eRe b e e Rt eat e e e ee bt eheehe et eneenean 29
3.4.5 Double PreCiSion Vari@hl @ooo ittt e bt e e b bbb et ene e e 29
3.4.6 COmMPIEX VAITADIE......oeiieieeeeie ettt b e bt e b et e st e e e b e bt sbeebesaeeae e e e besbesbe st e eneanneneans 29
3.4.7 Double ComMPIEX VArTADIEccverieiiecee sttt st e e tesae e besseenee e e eeseesnenrenneeneenenns 29
I B o o= 1 I = T o SRR 29
/e IS ool Moo Lo IV = T T o] 1= SRR 29
e (O oo Tz I = (== T o OSSR 29
3411 CharaCter Vari@hle........coooeoiiiei ettt sttt sttt s a et sttt e 29
3D ARRAY S ...ttt ettt ettt sttt h b £ bt Rt e R R £ R e R e £ R e R e £ e R e Rt A e R £ R oA e R £ R e Ao R e R e AR e e Rt A e R e bt e e Rt b et e Rt Rt enenns 30
R TN Y g = (TS (0] = To <SPPSR PP ORI 31
3.5.2 AITAY REFEIEINCES ...ttt ettt b et e e e b e bt s et e bt e et e ae et e besbeeheebeeaeeat et e bebeshenhe et ennenean 32
3.6 CHARACTER SUBSTRINGSc.uciiuttiutaiteateasesseeassasseasseaasesassssssasasseasseasseassassssssssssessesnsesasesasssnsssseassesnsesnsessessesssensses 33
3.6.1 SUDSIIING REFEIBINCES ...ttt sttt bbbt e e e e e b et e sbeebeeaeene e e e besbesbesbenneenneneans 33
3.6.2 SUDSETINGS GNO AFTAYS....eeeeeeeeeeieereesteste et eueseeseeseestestesaeebe st aseesseabeabesaeebesaeaseeaseaseabesaeebeeaeansensasasbesaesbesneaneaneans 33
3.7 STATEMENT ORDERucittittitiieasueasueeaseaseassesseesseasseaaseasssaeesaeasaeasseaseaaseaseeaaeeabeeseeaeeeaseaaeesaeesaeaseanseanneensesneesseansens 34
3.8 USER-WRITTEN PROGRAM UNITS...c.ecutitiieuirtirietesteseetesteseesestessesessessesessessesessessesessessssessessesessessesessessenessessensssessesesses 34
3.8.1 Program Unit and Procedure COMMUNICALION.ccvierrereeeereesesesiesseseeeeseeseessessesseseessessssssssessessesseesesnenns 35
3.8.2 AdjUSLADIE DIMENSIONSc.uecveeieeeieiesieste sttt esee e s e ste s e saeste s e eseeeessestesaessessseseeseseessesaeeseeneeneeseensesseseensensennensenns 37
3.8.3 USING COMMON BIOCKSveeueeuieiesiesieseeeteseeaessestestessesseseessessessessessessesssessessessessesssssesssessesssssessessessessessesnenns 38

4. EXPRESSIONS, LVALUES, ASSIGNMENTS, AND STATEMENT FUNCTIONS......ccooeirineenenieeeenieee 39
2. EXPRESSIONS ... et iutttuteateateeteeusaeueesueasseasseaaseaasesaeesaeeaaeaaseaabeeaseeaeeeaeeeb e e be e b e e ae e e aeeSae e eReeeRe e EeeaEeeReeeReeeheesheeabeereearenanenas 39
I R AN g 000 (ol o=\ o] OSSPSR 39
4.1.2 CharaCter EXPIESSIONeeuiteieiteeteeieeteeeetestestesbesaeshe et eeeseeseesbesaeeheeaeeaee e e seabeseeabesaeeseeneanbeseeseesbesaesbeeneensaneans 41
G oo = I Y o === T o OSSPSR 41
4.1.4 REILIONAI EXPDIESSION......ueiiiieie ittt eteeeertestestesbesaeehe et e seeseeasesbesaeeheeaeesee s enseabeseeabesaeeseesanseseeasesbesbesbenneansansans 43
4.1.5 General RUIESTOr EXPIESSIONScc.ciiiuieieierieriesteseeteereeeeseestestesaesbe st eseeseesseseesaesbesaessesaeensensesbesbesaessesneanseneans 44
A2 LVALUES ...ttt et b e h £ b bRt A e Rt b e £ e Rt b et R R e bRt b e bRt b bRt et e eee 44
4.3 ASSIGNMENT STATEMENTS...c.eeutitireeuertertesesteseesessessesessessesessessesessessessssessensesessensesessensasessensesessensesessensesessensesessesseneans 45
G T R AN 1 0100 (o NS Lo 00 g SR 45
4.3.2 CharaCter ASSIONMENTocuereieieetereeeeeeseseste s e sseeseeeeseessessesesseasesseeseesessesseseessesseeseensensessessessessessensensenssnns 45
G TG I Moo o= AN o 07| SR 46
4.4 STATEMENT FUNCTIONSctitetistireesestestesesteseesessessesessessesessessenessessensssessensesessensssessensasessensesessensesestensesessensesessessenens 46
5. STATEMENTS SUPPORTEDcoitiiirieistisieise sttt be et e se s besse st s tensesesbesesesbessenesbesesestensnseane 48
5.1 ASSIGIN STATEMENT ..utietteteeieerueasteesseauseeseesseesseasseaaseasesaeesaeaaaeeaseaseaaseaaeeaaeeabeebeeabeeabeaaeesaeesaeabeanseanseeneesnnesseansens 48
5.2 BACK SPA CE STATEMENTeiiuttitteitteteeteausasteesteasseeaseaasesessaeasseasseasseaseasseasseaseasseaasesasesasssasesaeasseasesseansassesssenssens 48
5.3 BLOGCK DATA STATEMENT ..cuttiutatteasteettaseestsasseasseeaseaassssssaeasseasseaaseaassassssssssssassesasesasesassssssseassesssesnseanssssesssesssens 49
5.4 BY TE STATEMENT ..ettetteteeteseesteasteeteessesssesseasseaaseasesaeesaeesaeesaeaaseaaseaaseaaeeeae e b e e sheeabeeaeeeaeesaeesaeanbeenseanseansesnnesbeanneas 50
B D CALL STATEMENT .uettitttettsteseetesteseeteste st esestesee st sseseesesbe e e st sbe s eseebesseseebesees e es et eb e e b e e e e Rt e bt n e e s e eb et eneeb e e ebeebesbenenbe st enennan 51
5.6 CLOSE STATEMENTttttettrteeetesteseetesteseesesseseesesseseesessessesessessesessessesessessesessensesessessenessessesessessenessessesessessensssessenenses 51
5.7 CHARAGCTER STATEMENT w..eutettittrietesteseetesteseesestesessessessesessessesessessesessessesessessesessessesessessessssessensssessesessessenessessenenses 53
5.8 COMMON STATEMENT ...cuttieetesteeesesteseesessessesessessesessessesessessesessessesessessesessessesessessesessessessasessenessessesessessenessessenenses 54
5.9 COMPLEX STATEMENT ..ettititetesteseetesteseesessessesessessesessessesessessesessessesessessesessessesessensesessessessssessensssessesessessenessessenssses 55
5.10 CONTINUE STATEMENT ..ctiiittiteieterteseetesteseesestesessesseseesessessesessessesessessesessessesessessesessessensssessensssessesessessenessessensases 56
D.11 DATA STATEMENT ..eeiteitteeteueesteasteeseaseesseaseasseasseaaseasssaeesaeeaaeeaseaseaaseaaseaaeeab e e b e e abeeseaaeesaeeaaeaseenseanneansennnasseansens 56
5.11.1 Implied DO List USEin DATA STAEMENL......coouiiiiiiiieeieeieeee ettt sbe b e e seeseesbesaesbesneeneeneans 58
5.11.2 Character Data INItIaliZAtiONcooiiieiiiieee e a e st e e b e s be s b sbe s e eneeeens 59
5.12 DECODE STATEMENT ..uttitiiueesueasteesseaseasseausasseasseaaseaassssssaeasseasseasssastassssssssssessesasesasesasssssseasseessesnsessssssesssesssens 60
5.13 THE DIMENSION STATEMENTcoiutiittettateateasteasteesseeasesseseasseasseasseastassessssssesssesasesasesasssssssssassesssesnsessessesssessses 60
5.13.1 AQJUSEADIE DIMMENSIONScviiieeiieieieste st et esee ettt be bt et e e e besbesbeebe st eaeeae e b e besbeebeeaeense s esesbeseesbesneeneennans 62
5.1 DO STATEMENT ..ttueettitetetesteseetesteneesesseseesessessesesseseesessessesessessesessessesessessesessesseseasesseseasenseseasenseneasesseneesestenesseseenesas 63

5.14.1. Active and INACLIVE DO LOOPS...c..ciiiiieeeiereeeeriesiestestestesseeseseessessesaessesssessessessessessessesseessesssssessessessessessseneens 64

The Promula Fortran Compiler User's Manual

5.14.2 NESLEA DO LOOPS. .. veueeveiueerereesiereestestessessesseesaessessessessessesssessessessessessessesssessessessessessessesssessessessessessessesssessessens 65
5.15 DOUBLE COMPLEX STATEMENTtitittitirietertineetesteseeessessesessessesessessesessessesessessssessessesessessesessessensssessensssessenenses 65
5.16 DOUBLE PRECISION STATEMENTcuveutititettstiseetesteseeesteseesessessesessessssessessesessessesessessesessessesessessensssessensssessenesses 66
D.17 DO WWHILE STATEMENT ..ttt ittaste et et eteesttesteesteessessesaeesaeasaeasseaseaaseasseeseeabeeabeeabeeaseaaeesaeesaeabeanseenseensasbeesseasaens 66
D18 EL SE STATEMENT ... ttittette et see st e ste e st e bt eaeesaea st e e beebeeaeesaeesaeeeaeesbeaaseeae e eaeeehe e b e e beeabeeaeeeanesaeeeaeabeenseeaneenbenneesbeanaens 67
5.19 ENCODE STATEMENT ..uttitiiueeiueasteesseaseassesuessseasseeasesassssesaeasseasseasssassassssssssssessesasesasesassssssseassesssesnsesssssesssesssens 68
5.20 EIND STATEMENT ..cutteitteteettsueesteasueeseaseassesseasseasseeasessssaeesasesaeasseaseaassaseeaaeeabeesaeeaseaasesasesaeesaeanseanseanseensensnesseansens 69
5.21 EIND DO STATEMENT ...teittittiueesteasteesseausessseassasseasseaasesasssasesaeasaeesseanseaassasssssssaseasseansesasesnsssssssseassesssesnsessssssesssensses 69
5.22 THE ENDFILE STATEMENTeeiiutiitteitt ettt ettt ste st s ee st saeasaeese e abesatesaeeabeeabeebeemsesaeesaeesaeabeanbeanneensasneesbeensens 69
5.23 THE END IF STATEMENT ..otiiitiitiietesteseetesteseesestesessesteseesessessesessessesessessesessessesessessesessensessssessenessessesessessenessessensases 70
5.2 ENTRY STATEMENT ..tttettitirtetesteseetesteseesesseseesessessesessessesessessesessessesessessesessessesessessesessessesessessesessessesessessensssessenenses 70
5.25 THE EQUIVALENCE STATEMENT ...ccttiittitirtettsteseetesteseesestessesessessesessessesessessesessessesessessesessessesessessensssessensssessenesses 71
5.26 EXTERNAL STATEMENT ..uitittitiietesteneetesteseesesteseesessessesessessesessessesessessesessessesessessesessessensssessenessessessssessenessessensases 73
5.27 FORMAT STATEMENT tueettititetesteseetesteseesessessesessessesessessesessessesessessesessessesessessesessensesessessensasessenessessesessessenessessensases 74

5.27.1 Character FORMAT SPECIHICALIONS.ueiueieeierieriesiestesesieetesies e s e ste e seeseesseseesresressesseeseeseeseseessessesneeseensens 75

5.27.2 Noncharacter FORMAT SPECIHfiCALIONSccuiiiiiieiiiieiieeee ettt e b s st eneeneans 76

L T =l [D= o o] (o =TSRSS 76

5.27.4 INPUL/OULPUL CONVEISIONS......ueiueieitisteiteatesieesteseastestesaesseseessassaasassesaeasesaeanseasasseseesaeabesaeansessassassessessessesnesnsans 77

B.27.5 FIElU SEPArAIONS ...ceieeteite ettt sttt bt b e et e e e se e b e e b e eaeeb e e et e s e e e e b e ebeeheebeeaeene e e e bebesbesbeeneenneneans 78

5.27.6 Repeatable and Nonrepeatable Edit DESCIIPLOISco.eierieiierierierie ettt e e sre e eneeneens 78

L N B L=< v T o (o] ST SU PR RSI 78

5.27.8 Single and Double QUOLE DESCIIPONSuieeeererieriereesreseesteseessesteseessesseeseeseeseessessessesssessesssssessessessesseessensens 80

5.27.9 BN and BZ Blank INtErPretation........cuieeeeeeeereresesesesieeeeseesestessessesssesseseessessessessesssesssssssssssessessesssessensens 80

5.27.10 Carriage Control CRAraCLEYccovieeerieeieresese st ses e eeesees e te e stes e eseeseessessessessesseeseesesssessessensesseeseenenns 80

L 0 T D I 1= o o] (o | S 81

LS 7 1= o g o] o S 81

5.27.13 ENC-Of-RECOIA SASN ...ttt h et e e e e et e sbe s b e et et e e e besbesbesbenneeneeneans 84

L N el B 1= ot o] (o TS UURU R TRRI 84

L N L R D1 o] o] (o TSRO URU SRRSO 85

L N L o I T o] o] (o TS SUURURRPRSI 86

L N N T B 1= o o] o OSSO URUR RS 86

L N I I B 1= T (o] TSSO URURRTRRI 87

L 5 S B @ I 1= o | o] (o | OSSR 87

LA 2 O 1= o g o] o SR 87

5.27.21 S SP, SSPIUS SGN CONIOleeiiiiiece ettt e e et e besneeresneenee e e eeseesnenaenneeneennnns 89

L T R 1 I T o o] SR 89

5.27.23 Termination of FOrmMAt CONIOlccoiiiririeiee ettt sttt st st e e 90

LA 2. Q1= o] o] (o S 20

A R A B L=< v g1 (] ST SR URURRSI Q0

5.27.26 REPELITION FACIONS ..ottt ettt b e s ae bt e ae e e e e e besbeebeeaeemte e e besbesbesbenneaneeeans Q0

5.27.27 Execution Time FORMAT SPECITICALIONcuiiiiiriiietieeeie ettt neen 91
5.28 FUNCTION STATEMENT ..uuttiutisueasteaseaseaseasteesseasseeasesassssssaeasseasssasssassassssssssssessesasesasesassssessesssesssesnsessessesssesssens 92
5.29 GENERIC STATEMENTtiitiiiiittaateesteeteetsesteesteasteessesasesaeesaeasaeasaeaaseaaseasseaaeeaseaaseaasesasesasssasesaeaaseaseanseensasseessnessens 93
5.30 GOTO STATEMENT ...ttteetirteeetesteseetessessesesseseesessessesessessesessessasessessesessessesessessesessensesessessessasessesessessesessensensssesseneases 94

Lo 0 A W 1 Toc g o 1 Lo g 7= I L@ I PSSR 94

5.30.2 Computed GOTO STALEMENLeiveriiiieitietereeeeeestesteseesre s e e eseeseestesressesseeseessessessesaessesseeseessessessessensessessennenns 94

SRR IANSSTo 1o WCT@ 1 L@ IS =1 1= 10 | S 95
LT3 R Y 1N 1 = V1= SRRSO 95

Lo I N g {0007 T S v L 007] PSSR 96

5.31.2 LOGICAI ITF SEAEEIMENE.c.eeieieieieieeeie sttt sttt ettt e et e b e s bt e be s st eae e e e b e beshesbeeaeease e ebasbesbesbenneeneennans 97

5.31.3 BIOCK IF SEBIEIMIEN. ...ttt b e bt e b et ae e e e e et she e b e e aeeae e e e easbesbesbenneanseneans 97
5.32 IIMPLICTT STATEMENT ...uttittiteetesueasteasteeseesesssesseesseesseaasessesasesaeesaeaaseaaseaaseasseaaeeaseasseesbeeabesasesasesanesaeesseansesnsenns 100
5.33 IINCLUDE STATEMENTttittitt it stte st estteseetesssesseesseesbe e sessesaeesaeesaeesseaaseaaseeaseeaeeabeeabeesbeeabeensesasesanesaeesseanseansenns 101
5.34 INTEGER STATEMENT ...uttiittittitesutasteasteeseatesssesseesseeaseaasessesasesaeesaeeaseaaseanseassessseassasseesbeessesnsesasssanesaeassesnsesnsenns 101
5.35 INQUIRE STATEMENT ..tttttiittteitteestesestesestesestaeassesestasassesassesasseesssssassessssssasssssssesassesssssessessssessssessssessnessssesassenssss 102
5.36 INTRINSIC STATEMENT ...eitttetirtetetestereetesteeetesteseesesteseesesseseesestesessesseseesesseseesesseseeseseensesesseseesessensesesseneesessensesens 105
5.37 LOGICAL STATEMENT .tttteeetesteeetestenesteseeseesessesessesteseesesseseesesseseesessessesessensesessensesessessesessessesessensesessensesessensasens 106
5.38 NAMELIST STATEMENT ..tttietertertetesteneetesteseesestesessesteseesessesessesseseesessesessessessesessensesessensesessessesessensesesseneesessensasens 106

5.38.1 NAMELIST READ STBIEIMENE.......ccoiireeriirreeriinreeee s s se s e sresaesesresessesresesneens 108

The Promula Fortran Compiler User's Manual

5.38.2 NAMELIST WRITE, PRINT, PUNCH STAEMENESveeeiiriie ettt et se e e e s sveeesesnreessssaeeassnneeeeens 109
5.38.3 AITAYSIN NAMELIST ..o iiie ettt ettt se s e e e e ae s ee st e saeeaeeneenaeseeseeseesreneesneeneennensen 110
5.39 OPEN STATEMENTuveieiiittie e ettt e seteesseteeeeesaesesasaeeesasbesesasssseesassseesabeeesaassesssaseseesasseesaassesesasseeessnsenessnssesssssnnnes 111
SR R B = o o ot 1 1= 113
5,40 PARAMETER STATEMENT ...uuttttiiiiiiiiiiittiitesssissssseetessssssssssstesssasssstssssssssesssssssssssssesssssssssssssssissssssessssssssssssesses 114
LR R N WS Y N 1 =Y =N 1 RO 115
SN o LN IR YN = = ST 116
5.43 PROGRAM STATEMENT coiiiiiieittttttteesieeitttteetessssassbssesessssasssssstesssassssssssseessssssstssssssssesssssssssessssssssssssesssssssssssseesss 116
D544 PUNGCH STATEMENT .uttttiiiiiiiiiittttitieessisitstseetsssssasssbssstesssssssssssssssssassssssssssssesssssssssssssssssssssssssssssssssssesssssssssssseess 117
5,45 READ STATEMENT ... cuttieeiittieeeeteeeeeteeesestteeseaaesesasaeeesassesesassaesesasseesassesesaastesesaseseesaasssssaassesssassesesssenessnssessssssnnes 118
LR LG Y Y 7y 1 =Y 1= N 122
LR A I U VY 7N 1 = V1= N O 123
5.48 RECORD STATEMENT ..eeiittieeeiteeeteteessatereeessseeesassesesassesesasssssessssssesassesesasssssssasssssssssssssssssssssssssssssseresssssesssssnees 123
5.49 REWIND STATEMENT .eoiiicttiteeiteeeieteeeeetereeseseeesasseeesassesesassssssssssssesassesesassssssssssessssssssssssssssssssssssssseresssssesssssnnes 124
LTS OIS Y Y Ny 1 =Y 1= N 124
R RS IO S - = Y1 = L IR 125
5.52 STRUGCTURE STATEMENT ...iittttitiitiiiiitttttitessssssssseetsssssssssssstesssassssssstesssssssssssstssssessssssssssessssimsssseeessssissssssesses 125
5.53 SUBROUTINE STATEMENT ..uuttttitiiiiiiiittiiiteesiisisssestessssssssssstssssassstsssssessssissssstesssssmstssstssssssimsssseeessssmssseen 127
LTS A I o) 1N 1 =1V 1= TSR 128
R VA I I =S N1 =LY = 1 SRR 128
. FORTRAN INTRINSIC FUNCTIONSttt ettt st e e s st e s s st e s s s eabe e e s e be e e s ssassssaabeesssabbeessnenssssnrnnas 132
6.1 ABS. ABSOLUTE VALUEuiiiicttiieiittieeeeteteeeiteeeesetesesatesesasssessasssesssasesesasesssaasesesaassesesaasssessasseessansesssasssnessnssnnesns 137
LS A @ S A = ! 1 N = 137
6.3 AIMAG: IMAGINARY PART ..ottt ettt ettt ettt e ettt e e et e s s ebte e e e et e e e e sabaeessbaeessassesesassseessasseessanteessasseeessnsenessan 137
LSRN N I (0] L7) 138
6.5 ALOGIL0: LOGARITHM BASE 10eeiiiiiieie i eeie et e eett e e etee s e ette e s seste e e s esaeassesaeessassesesasseeessbeeeesanseeesasreessnsenessns 138
6.6 ALOG: NATURAL LOGARITHM ..ttiiiiiiiiiititiiiiee e iieittteetessssssibsssssassesssbssssessssssssssssssssssssssssssssssssssasssssssseessssssssssssesss 138
6.7 AMAXOD: IMAXIMUM VALUE ..uttttiiiiiiiiiiitiiiie e e s eeiitbeet e s st sssabbsssessssssssbsssssasssssasbassesesssssasbbbbeessasssassabbssseessessabbaseeasas 139
6.8 AMANXL IMAXIMUM VALUE ..uttttiiiiiiiiiiitiiiie e e s eeitbeet e s st essibsssseasssssssbsssseassssaasbassesasssssasbabsesssasssasabbssseessessabbaseeasas 139
6.9 AMINOD: MINIMUM VALUE ... uutttiiiiii i ieiiitiiie e s ettt et e s s s s et bssseasssssaabbaseeessssssbasbeeasssss s bbb beeesesssassabbeeeeessessasbbnneeasas 139
6.10 AMINTL: MINIMUM VALUE ...uttttiiiiiiiiiiitiiie e e eeiitb et e s s s e e iabbaeseassessaabasseeassssssbbssseessesaas bbb beeaeasssassabbseseessesssabbnneeasas 139
6.11 AMOD: REMAINDERING.......uuuttiitiiiiiiiuttiiteeetiaiissestesssaasisssstesssesissssstesssssssssssssessssiomisssssstessssomisrssssesssenissssseesns 140
B.12 AND: LOGICAL AND...ccciteieeeeteeeeeettieeeeteeeeeeaeeesetesesatesesassseesaasseeesasesesaseessaaseeesaassesssaasssessasseessasesssassseessansenesns 140
6.13 ANINT: NEAREST WHOLE NUMBER.......utiiiitieeiiteeeeiitereseeseesssseessassesssasseesssasssessassessssssssssssssessassesssssssssssssseessns 140
L N 1 N R 2 =0 | = 141
6.15 ATANZ2: ARCTANGENT OF QUOTIENT eiitteiiteeireesreesseessseessseessesssssesssessaseesssessasessssesssseesssessssessssesssssessessnsesssees 141
SR SR AN I AN N AN = o 7 N 13 = N 141
B.17 CABS. ABSOLUTE VALUEttiiiiittieeeetet e e eeee e s eteeeeateeessaseassesaeeseabeeesasseeessaseeeseassesesansesessasseeesantesssaseeesssseneesan 142
B.18 CCOS: COSINEciuurrriiieiieiiiiirtieeseesiaiarteetsssssasabseetesssassabbssteasssssasbssseeassesaasbasbesasesssasbbbbeessessesasabaseeeessesssbbaneeasas 142
5.1 CDABS: ABSOLUTE VALUE ..ttttiiiiiiiiiititiiiie e e seeiatteete s st sssiabssssesssesssbsssssasssssssbssssssssssssbsbsssssssssassabbsssesssessssbrsssesss 142
B.20 CDCOS: COSINE. .. uuttrtiiiiiiiiittrtieeseeiiairreeteesssaissseetesssasiassssteasssssabsssteassssastbassssssssssassssssssssssssssbssssesssssssssssssesss 143
B.21 CDEXP: EXPONENTIAL ...iiiiettttieeseeiiiittttietesessesssssstessssssabssstesssessasssssseassssssbssssesssssassssssssssssssssssrssssessssssssssssseess 143
6.22 CDLOGI10: LOGARITHM BASE L0uiiiiiiiiii ittt e ettt e s e s bse e e s s s e s bbb e e e s s s s sabbbbeeessssssbabbeseeassessaabbaneeaeas 143
6.23 CDLOG: NATURAL LOGARITHM ...eviiiiiteieiettee e eetteeeeesteeeseeaseessssteessasbesessssessssasaeessassesesasesessssesessassesesssssessssseneeans 143
LS O 1 N R = 144
6.25 CDSQRT: SQUARE ROOTueiiiiiiiieiieeiieesteesiteesteesiteessteesseessseessseesssessseesssessnsesssseessseesssessnsessssesssseesssessnseesnees 144
B.26 CEXP: EXPONENTIAL ..eeivtieeeiteeeeeetteeeeetereseesseeesassesssasesesasssesssassesssassssesassessssasesessassesssansssessassesssassesssassssssssssenesns 144
B.27 CHAR: CHARACTER VALUEciiictteeeceteeeeettee e sttt eseeteeeseaaeessestesssasteseeaseeessaseseseassesesassesessasseeesansesesasenessasenesans 145
6.28 CLOGI10: LOGARITHM BASE L0 ... eeeiiiiieie ittt eete e e tee s sttt e s ee e e s esaaee s sesaeessasbesessnsaeessbesessanbenesasseessnneneeans 145
6.29 CLOG: NATURAL LOGARITHM ..iiiiiiiiitttiiiiee e iieittteeie e s s sesibsssteassesssbssssessssssasbssssessssssasbsbsessssssssssabbssseessessssbrsssesss 145
.30 CMPLX: COMPLEX VALUE ..uttttiiiiiiiiiittttiite e e iseiisbesiessssssiabssssesssesssssssssssssssssbsssssssssssssssssssssesssssssssssesssesssssssssesss 146
B.31 CONUIG: CONIUGATE ..eiiiiiiiiittttiees et isiitsrteetsssssasisbssetessssasabsssteasssssasbssseeassssaabassseesssssasssbbesssassssssabbsssesssessabbaneeasss 146
6.32 COSH: HYPERBOLIC COSINE ..uutiiiiiiiiiittttiiieeeiieitatseetsssssssissssstessessssasssssssseessesssssssssesss 147
.33 COS. COSINE ...cciiiiuttteeieeei et iittrties s e s s ssibbreete s st sa bbb e eaeasssasabsaseeassessss b s s seeassesassbbsbeeesessss bbb beeesessasssabbebeeessessaabbaneeasas 147
LSRR Z A s 1\ RS 1 N =SSR 147
6.35 CSQRT: SQUARE ROOTciiieiiieiieesieesteesteesiteessteesteesstessteesssessseesstessseesssessaseessseessessssessnsesssseessseesssessnseesnnes 147
5.36 DABS. ABSOLUTE VALUEuuiiiiittieeceteieeeteeeessteeesesteeesssasesssasaesssasesssasessssasasesaassesesasesessasseessassesssasssnsssssenessan 148

B.37 DACOS: ARCCOSINE....c.uteteeueesreessersseessessseasesseesseesseasseaseassessessseesseessesmsesssssesseesseesseensemssessessseessemssemssesssessessnes 148

The Promula Fortran Compiler User's Manual

LSRR ST I 7N N = T = 148
(SR I Y AN I = G0 = = = N D - =S 149
6.40 DATANZ: ARCTANGENT OF QUOTIENT ...uteiteeiteesuteesseessreesiseesssessseessseesseesssessnseesssessssesssssssnsesssseesssessssessnsessnees 149
SR N Y AN N N R AN = To 7Y 3= N SRR 149
6.42 DBLE: DOUBLE PRECISION VALUEuutttiiiiiiiiiiittities s s essitbssieassesssbssssesssssssbsssssssssssssssssssssssssssssssssssessssssssssssesss 149
6.43 DCMPLX: DOUBLE COMPLEX VALUE ..vvtiiiiiiiiiitiiites e ieeiiabsssiessssssssbbsssessssssssbasssssssssssssssssssssssssssssssssesssssssssssssesss 150
SRV B [O(0 NN T 0] NN (U] 7N 1 SRR 150
6.45 DCOSH: HYPERBOLIC COSINE ...cciiiiiittttiiieeeiisiatteetessssasisssstesssssssssssssessssssasssssssssssssssssssssssssssssssssssesssesssssssssesss 151
B.46 DICOS. COSINEuutreiiieiiiiiittrtiees e et iaiirreetesssaasabseetesssaasabbssteasssssasbssseeassesaasbasbssesssssas bbb besssessssssabasseeessssssbbssseasas 151
6.47 DDIM: POSITIVE DIFFERENCEuetiiiiteieeeiteeeieteeeeeesteeesesssessssssesseatesesasssssssasseesssssesesassssssssssssesasserssassssesssssnesans 151
B.48 DEXP: EXPONENTIAL ..ecivtieeectteeeeetteeeeetereeesaesesessesssassesesassesssasseessasbesesasseessaasesesaassesssasssessasseessassesssasssnesssssenesas 152
6.49 DIM: POSITIVE DIFFERENGCEcciitieeieteteeeitteeeseteeesassesesessesssasaeessatesesassesessasesessassesssassessssssesssasseressssssssssssnesans 152
6.50 DIMAG: IMAGINARY PART ...ttt ittt etee ettt e ettt e e et e s s e bae e s e asb e e e e esbaeessabeeessasbesesasseeeseasseeesanbeeesaseeesssenesans 152
B.51 DINT: TRUNCATION ...eiiiittieieitreeeietteeeeaitereeeesesssaseeeesaseresasssessaasseessasesesassessssasesesaassesssaasssessasssessassesesasssessssssnnesns 153
6.52 DLOGI10: LOGARITHM BASE 10eeiiiiieieieieie e ieteeeeeeteee e eaeee s s stte e e e esteeesessaeessesaeessassesessnsssesssseessansesssasneessasenesans 153
6.53 DLOG: NATURAL LOGARITHM c1itiiiiiiiitittiiie e e s eeitati et e e s s eesibbss s e s s s e ssabsssseasssssasbbsseeesssssasbbbbesssssssssabbsseeessessssbrasseasas 153
6.54 DMAXL: IMAXIMUM VALUE .uuttiiiiiiiiiititiiie e ettt e e e et e s iabbasteassessasbsseseassessasbabbeeesssssasbabbeeseaessasabbeeeeessessssbbaneeasas 154
6.55 DIMINZL: MINIMUM VALUE ...uttttiiiiiiiiiiittiee e e s eeitbe et e s s s s s s ibbasseasssssaabassseasssssasbbssssasssssasbbbbeessasssassabbseseessessssbbnseeasas 154
.56 DIMOD: REMAINDERcciiiiiittttiteeeeiiiitttteeteesssesabssstessssasabsssteassessasbsssseassesaasbssssaasssssasssbbesssesssssabbsssesssessabbanseass 154
6.57 DININT: NEAREST INTEGERuutitiiiiiiiitttiiieeeiiiiitteetessssssisbssstessesssesssssssssesss 154
.58 DIPROD: PRODUCT ..ttttiiiiiiiitittiee s e e s sttt et e e s s sssabbeee e s st aasabsssteassessasbbsseeassessasbssseeesssssas bbb besssessasssabbrseeessesssbbaseeasas 155
6.59 DSIGN: TRANSFER OF SIGN ...uveiiiiuvieeieiteieieisteseieserssasseresessssssassesssassssssssssssssasssesssssessssssssssssssesssassersssssssssssssnesans 155
B6.60 DSINH: HYPERBOLIC SINE ...ecciiutieeieteieieteeeeseteeeeeeteeesesasessssssesssassesesssssssssasssesesssesssssssssssassesssassessssssessssssneeans 156
LSS I 1 N S N 156
6.62 DSORT: SQUARE ROOTcctieiiieiitieiteeiteesteesiteesteesiteessteesteesssessseesssessseesssessasesssseesssessssessnsesssseessseesssessnseesnnes 156
6.63 DTANH: HYPERBOLIC TANGENT ...veiiiiteiecetteeeietteeeeeteeeeesssesssssseessasesesasessssasseessassesesassssessssesesssssesssssssesssssneeans 156
SN D N AN N I (L = N ST 157
6.65 EXIT: STOP PROGRAM EXECUTIONuuutiiiiiiiiiiiirieiiessiessisbssiesssesssbssssessessssssssssssesss 157
OIS 0 A e = 0 N = N Y ST 157
O YA O N IR = TV N I TSR 158
6.68 GETCL: GET COMMAND LINE tuiiiiiiiiiititiiiieeeiiiiittetiee s s eesibbssiesssssssbssssessssssssbssesss 158
5.6 | ABS: ABSOLUTE VALUE .. .uuttttiiiiiiiiiititiiie e e et ee bt ett e s st sesabbasseessessaabbaseeassesssbasbeeessssssbbbbeeeseeseassabbeeeeassessasbbnneeasss 158
B.70 [AND: BITWISE AND ..coiittieiieteeee ettt e eetee e e eeteeeesesteessasteseseaseessssaeessasbasesasseessabaeesaassesesanseeessasseessansesesassrnessassnnesan 158
6.71 ICHAR: INTEGER VALUE OF CHARACTERuvttiiitteeeeeteieeeiteessssteessassesesssseesssasesessassessssssssssssssesssassesssasssssssssseeeans 159
B.72 IDIM: POSITIVE DIFFERENCE........ctteeieiteteeeiteeeeiesteresasseresassessssssesssatesesassessssasssessassessssssssssssssssssassersssssssssssssnesans 159
B.73 IDINT: INTEGER VALUE ...eiiiicteieeeettieeeetet e e eteee e s etteeesetesesesaseessbaeessasseeesasseeessseeeseassesesansseessasseeesansenesasseeessnsennesan 159
B.74 IDNINT: NEAREST INTEGER.....ceciiteeeiiiteieieitteeeietesesassesesessesssssseessatssesasssssssasesessassesesssssssssssesssasseressssssssssssnessns 160
B.75 IFIX: INTEGER VALUEcvtiii ettt e e ettieeeetet e e ettee e s eateeesesteeesesaaeessbaeeesasbasesanseeesabeeeseassesesanseeesssseeesanseeesassreessanrenesas 160
6.76 INDEX: LOCATION OF SUBSTRINGuuttiiiiiiiiiiiurteeieseisiiissssiesssessisssstesssssssissssssssssssmsssssssssssssmmsrsssseessssmssssssesss 161
B.77 INT2: INTEGER VALUE ..o ittttiiee e ettt et e e e sttt et e e s s e e bbb e et e e s s e s saabba b e e e s e e sassbabbeeeessss s bbb beeeseessssabbeeeeassessaabbnaeeaess 161
B.78 INTA: INTEGER VALUE ...t itttiiiie e ettt e e e e ettt et e s s s e et b s et e e s s e s saa b b s aeeaseesaasb b b aeeeeeessa s bbb beeeseessasabbeeeeessessaabbnneeaess 161
B.79 INT: INTEGER VALUE ...ciii it itttiiiee e ieiittti ittt e e e s s ettt et e e s s s e e aabaeeteaseessaa b b s aeeeseessssbabbeeeeeeseas bbb beeeeesssasabbeeeeessesssabbaneeasas 162
6.80 | SIGN: TRANSFER OF SIGN ...uuuttiiiiiiiiiittrtiiieseiisiisssestessssssisssstesssssssssssssessssssasssssessssssmsssssessesssamsssssseessenmsrsssseesns 162
B.81 |2ABS: ABSOLUTE VALUEuuviiiiittieeeeteteeettee e s eteeeseteseseasessasstesssassesesaseeessaseseseassesesassesessasseeesansesesaseeessnsenessan 163
6.82 | 2DIM: POSITIVE DIFFERENCE........eeeeiicttieieitteeeieteeeeasteresessesssssseeseassesesasssssssasseesssssessssssssssssssesssasserssassssssssssnesans 163
6.83 I2MAXOD: MAXIMUM VALUE ...veiiiittieeceteteceteee e setteeeseteeeseaseassssaeessastesasassesssasaseseassesesasesessasseeesasesssasseeesssssnesans 163
6.84 [2MINO: MINIMUM VALUE.....uutiiiittieeceteteceeee e s eteeesesteeeseaseesassaeessassesesaseeessasasesaassesesasssessasseeesasesesasseeesssseneesan 164
5.85 [2MOD: REMAINDER........ttiiiiiteeeiitteeeeeitereeesaeeesateeesasteresassesssasseessassesesassesssaaseseseassessssasssessasseessassesesasssessssssnnesns 164
B.86 I 2NINT: NEAREST INTEGER......ciiiiteeeieteieeeitteeeseteeeeasteresesssessssssesssasesseassesessasesessassesesassesssssssesesassesssssssessssnesans 164
6.87 12SIGN: TRANSFER OF SIGN ..uuttiiiiiiiiiittriiiieeeiisisssestessssssissssstesssssisssssssessssssasssssessssssimssssssstsssssmmitssssesssenmrsssieen 164
6.88 LEN: NUMBER OF CHARACTERS.cccctttttiiitiiiiiittittessssasisssstesssesssssssstesssssissssssssssssssssssssssssssssssssssssesssesssssssssesss 165
6.89 LGE: LEXICALLY GREATER OR BQUAL...ttiiiiiiiiiitiiiiie ettt ettt e e e s s s s bbb s e e s e s s sasbbb b e e e s e s s s sbabbe e e e e s e e s saabbaneeaeas 165
6.90 L GT: LEXICALLY GREATER .. uttttttiiiiiiittttiteeeiisisstestessssasissssstesssssssssssssessssssassssssesssssssssssssssssssmmsssssssesssessssssssessns 165
6.91 LLE: LEXICALLY LESSOR EQUALcctttiiiiiii ittt ee s eesttee e e s s e s st b aa e e s s s s s ebbabeea s e s s s sbbbbeessessssbabbebeeassessnabbnseeaeas 166
(SR 2 I I I o q [I T I =TT 166
6.93 LOGIL0: LOGARITHM BASE L0.......eeeeiiiteieieieie e seteeee e ettt e e eateessstaeessastesesessaesssesseesssssesesassesessnssesesansesssassseesssseneeans 166
6.94 LOG: NATURAL LOGARITHM ...veiiiittieeieteie e ettee e setteeeseteessesasessssssesssassesesassssssasssessassesesasssesssassesesassesessssessssssneeans 167
6.95 MAXO: IMAXIMUM VALUEcuviiiiittieeceteee e eteee e s eteeesetaeeseaseessssaesssassesasaseeessbeeeseassesesassesessasseeesansesssasresssnseneesan 167

6.96 MAXL: MAXIMUM VALUEoiitiiitiesteesieeteseesseesseesseeseenseasessseesseesseessesssesnsssssssseesseenseensssnsessessseessesssennsesnsssneesnes 167

The Promula Fortran Compiler User's Manual

B.97 MAX: MAXIMUM VALUE .o ctteeeeittieeeetet e e eteee e s eteeesatasesesasesssssaeessasbesesasesesasesesaassesesassssessasseeesansesssassreessnsenessan 168
6.98 MINO: MINIMUM VALUE ..o iittieeecttieeeeteeeeeteee e s etteeeseteeesessessssaeessasbasesassesessseeeseassesesassseessasseeesansenssasreesssseneesan 168
6.99 MINL: MINIMUM VALUE ...coiiittieeecttieeeeteteceteee e s eteeeseteeesesasesssabaeessasbesesassesessseeesaassesesassasessassesesansenssasrnessaseneesan 168
6.100 MIN: IMINIMUM VALUEuttttiiii i iiiittttiie e e e s sesatbeet e s s s essabsssseassessasbbsseeassssssbbsseeessssssbbbbeessasssassabbeeeeessessasbbnnreasss 169
B.101 MOD: REMAINDER ...eitiiiiiiittttieeseiissittstetesesssasstssetessssassbsssteasssssasssssseasssssssbssssessssssassssesssssssssssrssssesssssssssrssseess 169
6.102 NINT: NEAREST INTEGER.....uttttiiiiiiiiuttiiieeeiiiiitteetessssasisssstesssesssssssssessssssssssssssssssssssisssssssssssasssrssssesssessssssssesss 170
6.103 REAL: REAL VALUE OR PART .ottt ittt ettt e st e st e e s e e s s e s sab b s e e e s s e e s s bbb b e ees e s s s sbbbbeeeeessesssabbaeeeassessaabbreeeasas 170
6.104 SIGN: TRANSFER OF SIGN ...utttiiiiiiiiiitttieteeeiisisssestessssasisssstesssssssssssssesssssisssssssesssssimsssssessesssmmtsssseessenen 170
6.105 SINH: HYPERBOLIC SINE.....uuttiiiiiiiiiiutiiiieeiiiiiitteetessssssisbssstesssesssssssssesssssssssssssesssssssssssssssesssmmsssssseessessssssssesses 171
LS LT N TR T =S 171
B.107 SNGL: REAL VALUEcttiiecteee ettt ettt e e e etee e s et e e s e te e e s esatee s s baeessasbeeesasseee s s beeeseassesesaseeessabseeesantesesassreessasrenesns 172
6.108 SQRT: SQUARE ROOT.....ccctieitieiieesieeiteeeteesiteesteesteessteesteesssesaseesstessseessseesasesssseesnsessssessnsesssseesssessssessnseesnnes 172
6.109 TANH: HYPERBOLIC TANGENT .. utttiiicttieieitteeeieteeeeessteresesssesssssaeessasbesesasesessasssessassesessssssessssssessasserssssssssssssneeans 172
L0 O T I N S 1Y N 1= N 173
L0 T T I Y O = = = N T = 173
7. CONTROLLING RUNTIME BEHAVWVIOR ...ttt ettt e ettt e ettt e s st a e s s esta e s s st e e s sbaeasssbanessnnnnas 174
7.1 INTERPRETING CARRIAGE CONTROL TO OUTPUT . uuttiiiiiiiiiiiiieeiesssessssbsseessssssssbsssessssssssssssssssssssssssssssssesssessssssssesss 174
7.2 CHECKING SUBSTRING LENGTHS FOR OVERFLOW ...vvviiiiiiiiitieeieessesssbssseessessssbassesss 175
7.3 EXECUTING AN EXPLICIT PAUSEttt e bbb e e e e s s e bbb e e e e e s s e s s bbb e e e e e s s essaabbreeeeeas 175
7.4 USING VAX FORTRAN RUNTIME CONVENTIONScciiiiiiiittttieeeeeiiitbssstessesssssssssessssssssssssssssssssssssssssssesssesssssssssesss 175
7.5 ASSIGNING A STANDARD INPUT UNIT .uututiiiiiiiiiiiitteiie s e s essiibeeie e s s s s sabssssesssssssbassssasssssasbsbbssssssssssssbassssessssssssrsssesss 175
7.6 ASSIGNING A STANDARD OUTPUT UNIT ¢euteiiiiiiieeiittieeeeteeeeeiseessesteessebesesesesassesesesssssessssnsssesssssssssassesesssssesssssneesns 175
7.7 ASSIGNING A STANDARD TERMINAL UNIT . eiiiiuiiiiiittieeeeieieeeiteeeesstteeseebeeesesseesssssesesssssesesssssesssssesssasesesassssessssnnesns 175
7.8 SPECIFYING A VIRTUAL FILENAME .. .teiiiiteiecettee e eetteeeeetee e e eaeeessssteessastesesasseeessasseessassesesassesessaseeessansesesassseessasenesans 176
7.9 SPECIFYING A VIRTUAL FILE SIZE ... etiie it eeee ettt ee ettt eeeatee e e ettt e e s et e e s essaeessebaeessasseeessssaeesabeeeesansenssaseeessaseneeans 176
7.10 SPECIFYING A VIRTUAL SHEET COUNT ...vviiiiteeeeiitteeeeeteeeseaseesssssesssatesssassessssasesessasessssnssssssssssssssssesessssssssssssneesns 176
8. THE PROMULA INTERFACE ... oo ettt et e ettt e st ate e s et e e s st e e s s bb e e s ssb e s e s sabeeessbaeassasbesesssannas 177
8.1 TRANSFORMING A FORTRAN PROGRAM WITH PROMULA ..ottt et sbban e 179
8.2 EXPO, AN EXPOSURE ANALY SISIMODEL ..uvviiiiiiiiiitiiiiiieeeieiiitreeieesssssssssssesssesssesss 180
8.3 THE INITIAL COMPILATION ..ciiieitttteiieeeiieitttteetessssasssssetesssessssssstesssasssssssseassssssbssssssssessssbsssssssssssssssssssssssssssrsssseess 182
8.4 A PROMULA DATAFILE DESCRIPTION. . .uuttitiiiiiiiittteeiessiiiiisssssiessssssssssssssssessisssssssssssssisssssssssssmssssseesssssinssssseess 183
8.5 THE VIRTUAL COMPILATION L..uuututtiiiieiiiiitttteeteseisasssseetessssasssssstssssassssssssesssssissssssessssemsssssssssessssmmssssseessssmmrsssseess 184
8.6 SYNTAX OF THE GLOBALS FILE ...uveiiiiteieieteie e ettt e s eteee s et e e s esaeessesaeeesasbeeessassesesasseeesanbeeesaseesesasbenessseeesansresssasnnnns 185
8.7 USING EXPO WITHPROMULA ...ttt ettt e et e s s et e e s e ba e e s sabeeesssaeeesenbeeesasaesessssenesssaeesssresssasennas 185
9. ERROR MESSAGES.ottt et e et e e et et e s eat e e e s asbeeeseaeeeeaabeeeesanbeeesasseeesanbeneseanrenesannnnas 189
9.1 CONTROL PROGRAM ERRORScuuiiiiteieiiteieeeiteteeseeesesteeessssaesssesseeasassaessaassesesasseeesasesesanssessssssenesssenesanssesssassneas 189
9.2 FORTRAN PREPROCESSOR ERRORS......cccicttiiiiitiieiittiee e eitteeeestaeessesseeessbaeesssasesesasseeesasssssanssesssssseeesassensssnssessssssnes 190
9.2.1 SYNTAX ERRORS, WARNINGS, COMMENTS, AND NOTEScccuutiiiteeeeiiteeeeesiteeeesseeesssseeesesssesssessesssssssessssssesssssnes 190
O.2.2 Fatal PreprOCESSOr EITONS. ... uiiueiteiieeueeieeie ettt ettt e ee bbb be st e aeese e eesbesbesbesaeeheeaeemeeseesbesbesbeebesneenseneanean 299

O.3RUNTIME ERROR IMESSAGESuuuttiiiiiiiiiitttiiiiee et iesstteetessssssssssstssssassssbsssseassssssbssstssssesssbsssssasssssssbbsssessssssssrssssesss 299

PromulaFortran Compiler User's Manual

1. INTRODUCTION

The PROMULA FORTRAN Compiler is a general-purpose, multi-dialect, and portable FORTRAN compiler. It runs on
multiple platforms and supports both the ANSI FORTRAN 66 and ANSI FORTRAN 77 standard dialects, as well as a
large number of common extensions such as those found in the following commercial compilers: VAX FORTRAN, PDP
FORTRAN, PRIME FORTRAN, Data General FORTRAN, and Sun FORTRAN. Some Fortran 90 extensions are also
supported. In cases where different versions of FORTRAN have conflicting features or conventions, a dialect selection
command switch can be used to select the desired set. Extended FORTRAN applications will compile with this product on
'open’ platforms asis— i.e. without making changes to their FORTRAN source code.

Validated by the GSA FORTRAN Compiler Validation Test Suite on every platform, this compiler works by producing
intermediate C source code. It requires a C compiler to produce executable code and is the idea processor for hybrid
FORTRANY/C applications. FORTRAN debugging is supported by the debugger of the host C platform (e.g., the dbx tool
for UNIX platforms).

The product includes both the compiler and an extensive FORTRAN runtime library (about 300 functions) in object form.
The runtime library may be linked into your executables for royalty-free distribution.

1.1 User Support

If you are alicensed and registered user of the PROMULA FORTRAN compiler, then you are entitled to user support from
the Great Migrations LLC.

If you encounter a problem that you cannot resolve on your own by referring to this User's Manual, you may call or write
us.

Great MigrationsLLC
PROMULA FORTRAN Support
7453 Katesbridge Ct

Dublin, Ohio 43017

(614) 761-9816

Y our comments and suggestions about this product are always welcome.

If possible, we will provide support over the telephone. However, if the problem involves an apparent compilation or
runtime library problem, we will probably need a copy of your source FORTRAN code. We will protect the full
confidentiality of any sample codes that you send to us.

1.2 The Design of the Compiler

The PROMULA FORTRAN Compiler (PF) is a comprehensive FORTRAN compiler for C-based platforms. It works by
converting FORTRAN source codes into intermediate C source codes. These are then processed by the C compiler of the
host platform to produce object code. There are four fundamental reasons for this design: portability, integration,
efficiency, and completeness.

By using C as an intermediate step, applications using this compiler achieve a high degree of portability. Our compiler is
highly portable. Once your code compiles and runs under PF on any C-based platform, it will compile and run on almost

PromulaFortran Compiler User's Manual

any other C-base platform. Not only are your FORTRAN source codes processed via C, but our entire FORTRAN runtime
library isalso writtenin C.

Since C is used as an intermediate language, it is trivial to integrate FORTRAN programs with other C based software such
as GUIs, operating systems, data management systems, etc. We know of no mgjor software library available today which is
not usable via C. External C functions can be referenced very naturally using FORTRAN CALL statements and function
references. In addition, prototype files can be supplied to ensure that the compiler properly handles call-by-value versus
call-by-name.

Runtime efficiency is always a concern. At one time the C language was intended for small integer-based applications only.
Early C compilers did not even support floating-point arithmetic. This is no longer true. Contemporary C compilers are
fully featured, run very quickly, and produce efficient code. Benchmarks between PROMULA FORTRAN produced
executables and those produced by contemporary native FORTRAN compilers, when available, typicaly favor
PROMULA. In fact, it istypica for contemporary FORTRAN compilers to share the optimizer back-end of the native C-
compiler.

PROMULA FORTRAN covers the complete current FORTRAN language as currently used and not simply as defined by
the various standards. PF passes the GSA FORTRAN Compiler Validation test on every platform that it operates on. Other
contemporary FORTRAN compilers cover only the FORTRAN standard along with selected extensions from other
dialects. At PROMULA, our primary concern is the dialect coverage of our compiler and its runtime library. We not only
support the VAX, PDP, PRIME, DG, and SUN extensions, but we also provide a diaect selection switch to allow for
conflicting features.

The PROMULA FORTRAN Compiler is completely compatible with and sharesiits front-end with PROMULA.FORTRAN
— our FORTRAN to C translator and portation support tool. In addition the compiler is compatible with our Application
Management system — PROMULA. Via a simple configuration file, PF will add PROMULA data base access instructions
to your program during compilation; thus, unlocking the information within those programs for external management.

It isthe dream of Great Migrations LLC that ultimately there will be only one compiled language — be it ANSI C, C++, or
some other language yet to be designed or discovered. All compiler technology will be focused on making this language as
efficient as possible on every platform supporting it. Operating systems and language processors will be written in this
language and will work through this single language, thus maximizing portability and minimizing startup time on new
platforms. Variation and experimentation in hardware design and in programming languages, tools, and techniques should
be encouraged. Our design makes this possible.

1.3 Notation Used
The notation used to describe FORTRAN statements throughout this manual is as follows:

UPPERCASE indicates a statement keyword or character that is to be written as shown.

lowercase indicates a name, number, symbol, or entity that is to be supplied by the programmer.
[indicate an optional item that can be used or omitted.
{} indicate that only one of the enclosed items can be used.

indicates that the preceding optional item in brackets can be repeated as necessary.

In program examples, a vertical elipsis indicates that other FORTRAN statements or parts of the program have not been
shown because they are not relevant to the example.

Finally, the symbol » indicates a blank character in cases where such is not obvious.

PromulaFortran Compiler User's Manual

2. USING THE COMPILER

PF is the program that controls the compilation of FORTRAN programs. It guides files of source and object code through
each phase of compilation and linking. PF has many options to assist in the compilation of FORTRAN programs; in
essence, however, all you need do to produce an executable file from your FORTRAN program is to type PF followed by
the name of the file or files that hold your program. PF checks whether the file names you give are reasonable, selects the
right phase for each file, and performs other tasks that ease the compilation, debugging, and analysis of your programs.

The summary syntax of the PF command is as follows:
pf [options] filenames [options]

The remainder of this chapter discussesin detail the options and filenames that are accepted.

2.1 How PF Works

PF works as follows. Firgt, it processes al entries on its command line to determine the type of tasks to be performed and
the resources required to perform them. If there is any entry on the command line which PF cannot interpret, PF exits with
an error message. The chapter on error messages describes these in detail.

Next PF processes each FORTRAN source file specified, along with any prototype and global files, to form intermediate C
source files. These C source files are then converted to compiled form via the native C compiler. During this conversion
you may get some messages from the host C compiler. These depend upon the particular platform.

Finally, if an executable isto be formed, all compiled files formed and any additional compiled and library files included on
the command line are passed to the linker along with any specified linker options.

2.2 FileNames

PF classifies files by their extension — i.e., by the final 1, 2, or 3 characters of the file name that are preceded by a period.
Note that the PROMULA compiler is not case sensitive; however, many operating environments are. In the following
discussion, the letters defining the various file types may be either in upper or lower case insofar as the compiler is
concerned.

If the extension of the file name begins with an 'f', then PF assumes that it is a FORTRAN source code and passes it to the
FORTRAN preprocessor and then to the C compiler for compilation. Upon completion a file with the extension 'o', or 'obj'
isformed. Thisfile may then be passed on to the linker.

If the file name extension is '0', or 'obj' on some platforms, then PF assumes that the file contains compiled code and passes
it to the linker unchanged.

If the file name extension is 'a, or 'lib' on some platforms, then PF assumes that the file is alibrary of compiled codes and
passesit to the linker unchanged.

If the file name extension is 'pro’, then PF assumes that the file contains a list of function prototypes to be used by the
FORTRAN preprocessor. This file is passed to that preprocessor along with the names of the FORTRAN source codes.
Multiple prototype files may be supplied. The content of prototype type filesis described in alater section of this chapter.

If the file name extension is 'glb’, then PF assumes that the file contains a list of the program variables that are to be made
"globa" for use by the PROMULA Application Development System. The content of this file and the general topic of the
PROMULA interface are described in alater chapter in this manual.

PromulaFortran Compiler User's Manual

2.3 Summary of Options

Each option on the PF command line may be preceded by a'-' so that it will not be interpreted as a file name. This is not
normally a problem since options do not usually end with extensions; while all valid filenames must. The following is a
complete list of the options. Note that, with one exception, the PF command line options are NOT case sensitive — i.e., the
characters'a and 'A" are considered to be the same on the command line.

Option I nfor mation Sec Characteristic Affected by Switch

C 2.7 Compile only

C l,s 25 Treatment of short arithmetic

D vax,pdp,p77,piv 25 FORTRAN dialect conventions

El 1,2,3 24 Echo errors at specified level

Es 24 Echo source code

Ex 24 Echo symbol cross-reference information

F Snum,t.f,v,9 25 FORTRAN source format used

Fl s)| 25 FORTRAN INTEGER type

G 2.7 Debugging flag

I name 2.7 C compiler include file pathname

L, name 2.7 Library file name or pathname for linker

(0] name 2.7 Name of executable

PH numb 24 Output page height

PW numb 24 Output page width

QE numb 2.6 Quantity of line number storage

Ql numb 2.6 Quantity of input record storage

QH numb 2.6 Quantity of include file storage

QX numb 2.6 Quantity unresolved external symbol
storage

S as 25 Storage auto or static

T 0,1 25 Doloop trip count assumption

UR numb 25 Input unit number

uw numb 25 Output unit number

upP numb 25 Punch unit number

Vv 1,2 24 Verbose flag

4 name 2.7 Include file pathname for FORTRAN
processor

2.4 Echo Control Options

PF is normally silent, unless a fatal error is encountered. Messages are sent to standard output and may be redirected. Note
that error messages themselves are discussed in a later chapter in this manual. The echo control options may be used to send
additional information to the standard output file. This information includes the following:

Option I nfor mation sent to standard output

EL1 Warnings about potentially serious inconsistencies or usages in the FORTRAN source
code

EL2 Comments about possibly nonportable code or about code that may be incorrect and the

warnings from above

PromulaFortran Compiler User's Manual

EL3 Notes about standard FORTRAN violations and other miscellaneous observations and
comments and warnings from above.

ES An annotated listing of the source code.

EX An aphabetical listing of the symbols used in the source aong with a summary
description of each and a cross-reference listing of symbol references by line number.

V1 A message each time the preprocessor opens a new source file or include file.

V2 A message each time the preprocessor starts a new subprogram as well as the messages
from above.

2.4.1 Warnings, Notes, and Comments

The form and meaning of the warnings, notes, and comments are discussed in a later chapter on error messages. Suffice to
say that the PF does extensive syntax checks while it is processing the source code and extensive consistency checks after it
has processed each subprogram.

The following is a sample listing produced which shows the type of messages that might be produced at the EL 1 level:

390: utest.for: W818: The argunent "ia" is being defined with type integer*4 when it has
been passed an argunment of type character.

The "W" appended to the error number indicates a warning. Messages at this level can be ignored, but they typically
indicate potentially serious problems.

At the EL2 level the following additional types of messages are issued:

54: utest.for: C870: The array OBUF is being subscripted with | ess than 1 expressions.

380: utest.for: C815: A data value of type character is being assigned to the variable |IA
of type integer*4.

520: utest.for: C816: The binary type character is being used where type integer*2 is
expect ed.

558: utest.for: C861: Data is being allocated to commobn storage via the variabl e SEATRD.

820: utest.for: C866: The real *4 type has previously been assigned to UC .

At this level, in addition to warnings, other usages are isolated that should either be checked or that represent potentially
serious portation problems.

Finally, at the EL3 level the following additional types of messages are issued:

37: utest.for: N858: The identifier THERMAL with nore than 6 characters is nonstandard.
184: utest.for: N864: Declarative statenents fol |l owi ng executable statenments is nonstandard.
223: utest.for: N851: The use of inline coments is nonstandard.

295: utest.for: N872: Equi val enci ng CBUF of type character*80 with | BUF of type INTEGER*2 is
nonst andar d.

343: utest.for: N853: The standard delineter for a character constant is the single quote.
431: utest.for: N858: The identifier PRANDOM I NDX$ with nore than 6 characters is

nonst andar d.

474: utest.for: N806: Qritting the comma after the | FORMAT specification is nonstandard.
545: utest.for: N823: The COWON bl ock DIR1 has character*1 variable VFORMS and an

unspeci fied vari abl e OPTEV.

722: utest.for: N801l: The | NCLUDE statenent is nonstandard.

1: STRUC6. | NC. N801l: The STRUCTURE st atenent is nonstandard.

800: utest.for: N833: The nonparenthetical formof the PARAMETER statenment is nonstandard.

PromulaFortran Compiler User's Manual

As can be seen, the EL3 level generates many messages and is primarily intended for those who are trying to write pure
standard conforming code.

2.4.2 Monitoring Internal Operations

TheV1 and V2 flags are used to monitor the internal operations of the FORTRAN preprocessor. Only simple messages are
displayed. These options are generally not used in conjunction with the ES and EX flags which produce structured reports.

Thefollowing istypical output produced at the V1 level:

Conpiling source file: utest.for

I ncluding source file: STRUC6.|NC
I ncluding source file: STRUC6.|NC
I ncluding source file: STRUC7.|NC
I ncluding source file: STRUC7.I|NC

In essence, a message is generated each time a source file is opened.

At the V2 level, the following output might be produced:

Conpiling source file: utest.for
Processi ng subprogram utest

Processi ng subprogram
Processi ng subprogram
Pr ocessi ng subprogram
I ncludi ng source file:
Pr ocessi ng subprogram
I ncludi ng source file:
Processi ng subprogram
I ncludi ng source file:
Processi ng subprogram
I ncludi ng source file:
Pr ocessi ng subprogram
Processi ng subprogram
Processi ng subprogram
Processi ng subprogram

anal

anaz2

ana3
STRUCG. | NC
get date
STRUCG. | NC
struc?
STRUCY. | NC
get _d
STRUCY. | NC
struc8

get _da
struc9

t hermal

In addition to source files, as each new subprogram is compiled a message is generated.

2.4.3 Annotated Listing of Source Code

The following listing was produced via the Es option for a simple subprogram referencing a single include file:

PROMULA FORTRAN Conpi | er V4. 00 Date: 08/11/92 Tine: 09:35 Page: 1
File: utest.for

If Line# NI Source

SUBROUTI NE STRUC6
I NCLUDE ' STRUCG. | NC
STRUCTURE / DATE/
I NTEGER*4 DAY, MONTH
I NTEGER*4 YEAR
END STRUCTURE

e

STRUCTURE / TI ME/ APP_TI ME(2)
LOG CAL*1 HOUR, M NUTE
END STRUCTURE

RPRRRRREREE
ONOUTRWNRENE
[E=Y

O000

PromulaFortran Compiler User's Manual

1 9 C
1 10 C This is the sane as:
1 11 C
1 12 C STRUCTURE / TI VE/
1 13 C LOE CAL*1 HOUR, M NUTE
1 14 C END STRUCTURE
1 15 C RECORD / TI ME/ APP_TI ME(2)
1 16 C
1 17 STRUCTURE / TI VE/
1 18 1 LOGE CAL*1 HOUR, M NUTE
1 19 1 END STRUCTURE
1 20
1 21 STRUCTURE / APPO NTMENT/
1 22 1 RECORD / DATE/ APP_DATE
1 23 1
1 24 1 RECORD / TI ME/ APP_TI ME(2)
1 25 1
1 26 1 CHARACTER* 20 APP_NEMO(4)
1 27 1 LOG CAL*1 APP_FLAG
1 28 1 END STRUCTURE
1 29 RECORD / APPO NTMENT/ NEXT_APP, APP_LI ST(7)
1 30 RECORD / DATE/ TODAY
3 WRI TE(6, *) ' ***=x=**%** SQTRUCG. OUT'
4 DO10 I =1,7
5 1 CALL GET_DATE(!, TCDAY)
6 1 WRI TE(6, *) TODAY. DAY, TODAY. MONTH, TODAY. YEAR
7 1 APP_LI ST(1).APP_DATE = TODAY
8 1 TODAY. DAY = TODAY. DAY + 1
9 1 10 END DO
10 5 FORMAT(3l 5)
11 NEXT_APP = APP_LI ST(1)
12 OPEN(1, FI LE=' STRUC6. BI N, FORM =" UNFORVATTED , STATUS=" UNKNOWN')
13 WRI TE(1) NEXT_APP
14 WRI TE(1) APP_LI ST
15 END

The heading which is printed at the top of each page contains the name of this compiler along with its current version
number on the left-hand-side of the page. The right-hand-side normally contains the name of the file being compiled, the
date, the time, and the page number relative to the file. In this case the page width was set to be narrow, so the name of the
fileisplaced on asecond line.

The annotated listing itself contains the include file number (If), the line number within the source file, the nesting level of
the statement, and the actual source code statement. The include file number is left blank for statements in the original
source file. The nesting level indicator is used with declaration statements when structures are being defined. It indicates
the level of nesting within the structure. For executable statements the nesting level indicator indicates the degree of nesting
within DO and/or |F statements. If there is no current nesting, the nesting level isleft blank.

2.4.4 Symbol Listing and Cross Reference Table

The following symbol listing and cross reference table was produced using the Ex option. Not counting the heading, which
was described above, the table consists of 4 sections: include files, symbols referenced, symbol references by line number,
and statement label types and references. In general, in these tables all user-defined symbols are shown in uppercase, while
all descriptive symbols are shown in lowercase.

PROMULA FORTRAN Conpi | er V4. 00 Date: 08/11/92 Tine: 09:35 Page: 2
File: utest.for

Include files used in unit:
Seq Fil ename

PromulaFortran Compiler User's Manual

Synbol s referenced i n SUBROUTI NE STRUC6

Identifier hj ect St or age Type Conment

APP_DATE record APPQO NTMENT DATE scal ar

APP_FLAG vari abl e APPO NTMENT | ogi cal *1 scal ar

APP_LI ST record static APPQO NTMENT 1d-array(679)

APP_VEMO vari abl e APPO NTMENT charact er*20 1d- array(80)

APP_TI ME record APPQO NTMENT TI ME 1d-array(4)

APPO NTMENT structure

DATE structure

DAY vari abl e DATE integer*4 scal ar

GET_DATE subrouti ne 2 args(integer*4,

unspeci fi ed)

HOUR vari abl e TI ME | ogical *1 scal ar

| vari abl e static integer*4 scal ar

M NUTE vari abl e TI ME | ogical *1 scal ar

MONTH vari abl e DATE integer*4 scal ar

NEXT_APP record static APPQO NTMENT scal ar

TI ME structure

TODAY record static DATE scal ar

YEAR vari abl e DATE integer*4 scal ar

Synbol references by |ine nunber in SUBROUTI NE STRUC6

| dentifier Line.lf:u (D=defined, M:nodified, U=used, P=passed)

APP_DATE 22.01:D 7.00: U APP_FLAG 27.01: D

APP_LI ST 29.01: D 7.00: M 11.00: U 14.00: U

APP_MEMO 26.01: D

APP_TI ME 24.01: D

APPO NTMENT 21.01:D

DATE 1.01: D

DAY 2.01:D 6. 00: U 8.00: U

GET_DATE 5.00: U

HOUR 18.01: D

| 4.00: M 5.00: P 7.00: U

M NUTE 18.01: D

MONTH 2.01:D 6. 00: U

NEXT_APP 29.01: D 11.00: M 13.00: U

TI ME 17.01: D

TODAY 30.00: D 5.00: P 6.00: U 7.00: U
8.00: M

YEAR 3.01:D 6. 00: U

Statenent | abel types and references by |ine nunber in SUBROUTI NE STRUC6

Label Type Line.lf:u (D=defined, U=used, A=assigned)

5 f or mat 10.00: D

10 st at enent 4.00: U 9.00: D

The include files section simply lists al include files encountered to date in the compilation along with the sequence
number assigned to them. Note that the base source file has a number of zero. If there are no include files referenced in the
current subprogram, then this section is omitted.

The philosophy behind the design of the symbols reference table is that the user will use this table when he wants
information about a particular symbol, whose status he may not be familiar with but whose identifier he knows or has seen

PromulaFortran Compiler User's Manual

somewhere in the listing. The report consists of a single alphabetical list of each symbol referenced in the subprogram. An
object type, storage status, binary type, and comment are provided for each symbol.

The object type is straightforward. There are thirteen possible entries: "constant”, "parameter”, "variable", "subroutine”,
"function”, "intrinsic", "namelist","entry", "statefunc", "structure”, “record", "pointer”, and "common". These names
correspond directly to the possible FORTRAN object types. It should be mentioned that members within structure
definitions are treated simply as variables or records. This convention is compatible with the approach of using a single

alphabetized list of all symbols.
The storage status of a symbol can be one of four different things.

For subprogram argumentsit is specified as "argument".

For variables in common blocks, it is the name of the common block containing the variable.
For members of structures, it isthe name of structure containing the member.

For simple variablesit is one of the following: "static", "auto", "dynamic", or "virtual".

See the Sa and Ss switches for a description of static versus auto storage. Dynamic and virtual variables can be created via
the PROMULA interface described in alater chapter.

The type of avariable is simply its type specification. For recordsit isthe structure type of the record.

The comment associated with the symbol is a function of its object type. For constant integer parameters — i.e., those that
may be used in other declaration statements — the comment specifies the value of the parameter as specified or computed.
For variables or records, the dimensionality is given; for arrays, the total size in bytes is also given. For subprograms the
number of arguments is given along with the assumed type of each argument. Note that in the C tradition, the PROMULA
FORTRAN compiler makes extensive use of subprogram prototypes and always makes certain that argument types are
consistent. If they are not, it issues a warning.

The symbol reference by line number table is ssimply that. Along with the line number, a use type code is also specified —
'D' means 'defined’, 'M" means 'modified’, 'U' means 'used’, and 'P' means 'passed to a subprogram'. If a symbol has multiple
references in a single statement, then only one reference is reported.

Note that if include files are involved, the line number is followed by the include file sequence number. If include files are
not involved, a simple sequence number is used.

The statement label types and references table is a numerical listing of the statement labels, along with their type,
"statement” or "format", and a listing of the lines where they are referenced.

If the subprogram contains EQUIVALENCE statements, then a fifth table type is generated: the equivalence pairs table.
Given the code fragment below:

48 SUBROUTI NE ANAL

49 | NTEGER BUF1(2048), BUF2(2048), BUF3(2048)
50 BYTE OBUF(32767)

51 EQUI VALENCE (BUF2(1), OBUF(1))

52 EQUI VALENCE (BUF3, OBUF)

62 END

The following equivalence pairs table is produced:

Equi val ence pairs:

Dependent Base O fset
BUF2 OBUF 0
BUF3 OBUF 0

PromulaFortran Compiler User's Manual

The base variable is the variable whose storage is being used to contain the dependent variable. The offset is the byte offset
within the base variable of the start of the dependent variable.

2.4.5 Controlling Page Size

The PH and PW flags are used in conjunction with the ES and EX flags to specify the desired output page height and
width. The default setting for PH is 80 lines and that for PW is 132 characters. The reports produced are quite large, and the
minimum setting allowed for PW is 80 characters.

Thus a command like the following:

pf -ph56 -pwl20 -es -ex deno.for
would compile a FORTRAN program' deno. f or ' and would produce tables 120 characters wide with 56 lines per page.

Note that the symbol table widths are adjusted to fit into the specified page size; however, the source code listing is
truncated if the source line display becomes too wide.

2.5 FORTRAN Dialect Convention Flags

Though the FORTRAN language (or Fortran asit is called in the newest standard) has been three times standardized — in
1966, 1977, and 1990 — it remains a highly nonstandard language. The dialect convention flags allow you to specify the
characteristics of your particular version of FORTRAN.

2.5.1 The FORTRAN Integer Type

There is variation between FORTRAN compilers as to whether the default type of the INTEGER specification should be
INTEGER*2 or INTEGER*4. In fact, an interesting aspect of many modern FORTRAN compilersisthat the user may
specify whether the default integer type isto be a short 16 bit representation or along 32 bit representation on the command
line.

The FIs and FIl command line options allow for this specification. The Fls specification says that the default integer typeis
short, INTEGER*2; while FIl specifiesthat it islong, INTEGER*4. The default setting for this switch is Fll.

Note that this switch also effects the LOGICAL type. Thus, if default integers are short, then so are default logicals.
2.5.2 The Treatment of Short Integer Arithmetic

In moving from one environment to another, one must always be concerned with the accuracy of floating point arithmetic;
however, there is also areal problem with fixed point arithmetic even when dealing with identical word sizes. This section
concerns itself with short integer arithmetic in non-short integer environments. There is a real semantics issue here: the
same program compiled in different environments behaves differently even though these environments have the same word
size. Consider the following FORTRAN program which does short integer additions, multiplications, and divisions in a
variety of contexts.

PROGRAM VARI 2

INTEGER*2 11,12,13,14

I NTEGER*2 | SUM | PROD, | QUOT
I NTEGER*4 JSUM JPROD, JQUOT
REAL*4 RSUM RPROD, RQUOT
REAL* 8 DSUM DPROD, DQUOT

I1 = 20000
2 = 30000
13 = 200

10

PromulaFortran Compiler User's Manual

14 = 300
ISUM =11 + 12 <— Not e addition overfl ow
IPROD = 13 * |4 <— Note multiplication overflow

IQUOT = (11 +12) / 14 <— Note internmediate overflow
JSUM =11 + 12

JPROD =13 * 14

JQUOT = (11 +12) / 14

RSUM =11 + 12

RPROD = 13 * 14
RQUOT = (11 +12) / 14
DSUM = 11 + |2
DPROD = 13 * 14
DQUOT = (11 +12) / 14

WRI TE(*, "' (24H Short Integer Results: ,3113)")
+ 1 SUM | PROD, | QUOT

WRI TE(*, "' (24H Long Integer Results: ,3113)")
+ JSUM JPROD, JQUOT

WRI TE(*, ' (24H Short Real Results: ,3F13.5)")
+ RSUM RPROD, RQUOT

WRI TE(*, ' (24H Long Real Results: ,3F13.5)")
+ DSUM DPROD, DQUOT

STOP

END

In running this example with various FORTRAN compilers, always on machines with 16-bit short integers (VAX, IBM
mainframe, IBM PC), we have obtained the following three results:

(1) Universal promotion to long

Short Integer Results: - 15536 -5536 166
Long I nteger Results: 50000 60000 166
Short Real Results: 50000. 00000 60000. 00000 166. 00000
Long Real Results: 50000. 00000 60000. 00000 166. 00000

(2) No automatic promotion to long

Short Integer Results: - 15536 -5536 -51
Long I nteger Results: - 15536 -5536 -51
Short Real Results: - 15536. 00000 -5536. 00000 -51. 00000
Long Real Results: - 15536. 00000 -5536. 00000 -51. 00000

(3) Selective promotion to long

Short Integer Results: - 15536 -5536 166
Long I nteger Results: 50000 60000 166
Short Real Results: 50000. 00000 -5536. 00000 166. 00000
Long Real Results: 50000. 00000 -5536. 00000 166. 00000

In reviewing these results, a negative number means that a short integer overflow has occurred. The typical FORTRAN
result is the first one. In this instance, the output of all integer calculations is a long. That result is then converted to the
desired result type. Notice that even the intermediate addition in the division example is calculated as along.

In the second case, the result of any short integer calculation is always also short, regardless of the surrounding context.
This type of result is unusual for mainframe FORTRANSs and is common for PC FORTRANS. Note that Microsoft
FORTRAN allows the user to select which type of convention is to be followed as a side-effect of the "WORDSIZE"
metacommand.

Thethird case is strange and difficult to deal with. The particular result above can be gotten from VS FORTRAN. Note that
in an integer context, universal promotion to integer is followed. Also in al cases, the intermediate addition result is
promoted to long. But for some reason the multiplication result is allowed to overflow while the addition result is not.

11

PromulaFortran Compiler User's Manual

Using the CI and Cs options you can select whether you want universal promotion to long or no automatic promotion to
long. There is no provision for selective promotions. Note that selective and universal promotion differ only in overflow
conditions, so users from such environments should use the universal promotion to long convention. The default convention
isno universal promotion — Cs. Automatic promotion is selected viathe " Cl" option.

2.5.3 FORTRAN Source Format Used

In the good old days the one thing that was always the same was the basic line format used to enter FORTRAN programs.
But al good things must end. Now there are at least 5 different major variations of the FORTRAN entry format that we
know of. The F command line switch allows you to specify the entry format that you are using. There is an extensive
discussion of the different formats in the chapter on the FORTRAN language elements in this manual. That discussion will
not be repeated here. The individual settings associated with this flag are mutually exclusive and are as follows:

FSnum Selectsthe standard fixed format with an ending column of n. The default setting is Fs72, which is that good-old

format referred to above.
Ft Selects tab format which comes from the VAX FORTRANS.
Ff Selects the free-form format which isrelatively typical of those FORTRANS that accepted "terminal input".
Fv Selects the VS FORTRAN free-form format.
F9 Selects the Fortran 90 free-format

2.5.4 Default Local Variable Storage Type

There are two fundamentally different waysin which local subprogram variables can be allocated to memory. First, thereis
static storage. This is the default storage for local subprogram variables. It is selected via the Ss option. It is equivalent to
the normal FORTRAN memory alocation. It is wasteful in that local variables all have unique memory locations, but
simple to implement. Also, static storage has memory between calls. This means that local variables can retain their values
between callsto their code.

Second, there is auto storage. This storage is selected vi the Sa option. Auto storage is allocated to the stack each time a
subprogram is called. When the subprogram exits, the storage is returned to the stack for use by other subprograms. The
advantages of auto storage arethat it is fast, easy to use, and economizes on total storage used. The disadvantages are that it
has no memory and that it is very limited on PC platforms where program stacks are typically quite short and always less
than 64K.

Note that local variables that are initialized viaa DATA statement have static storage as their default storage type, even if
the Saoption is selected.

2.5.5 The Doloop trip count assumption

Below is the syntax for the FORTRAN DO statement. It looks very simple; however, what you see is unfortunately not
what you get. FORTRAN compilers vary widely on how the DO statement is executed.

Syntax:

DO [slab[,]] v=el,e2[,e3]

12

PromulaFortran Compiler User's Manual

Where:

sl ab isthe label of an executable statement called the terminal statement of the DO loop. If slab is omitted, the do
loop isterminated viaan END DO statement.

v isan integer, real, or double precision control variable.

el isaninitia parameter.

e2 isatermina parameter.

e3 isanoptiona increment parameter; default is 1.

el, e2, and e3 are called indexing parameters, they can be integer, real, double precision, or symbolic constants,
variables, or expressions.

The DO statement differs widely between FORTRAN 66 and FORTRAN 77. In FORTRAN 66, the value of v is not
compared with that of e2 until the bottom of the loop; therefore, the loop is aways executed once. In FORTRAN 77, the
comparison of v is performed at the top of the loop; therefore, if el exceeds e2 initialy the loop is never incremented.
Officialy, do loops are to be executed as follows:

(1) The expressions el, e2, and e3 are evaluated and then converted to the type of the control variable v, if necessary,
yielding the values i, n2, and n8.

(2) The control variable v is assigned the value of n.
(3) Theiteration count is established as follows:
ic = MAX(I NT((ms-mi+nB)/nB), ntc)

where nt c is the minimum iteration count and equals O if FORTRAN 66 conventions are desired and 1 if FORTRAN
77 conventions are desired.

(4) Ifi c isnot zero, the loop is executed, else execution continues beyond the end of the loop.
(5) The control variable isincremented by the value n8, i c is decremented by 1, and execution loops back to step 4.

The TO and T1 options set the value of nt ¢ in the above description. Selecting TO, which is the default, selects the
FORTRAN 77 convention. Selecting T1, which forces DO loops to be executed at least once, selects the FORTRAN 66
convention.

2.5.6 Specifying Unit Numbers

FORTRAN has a variety of contexts with I/O statements in which no explicit unit number is provided: PRINT, READ(*,
WRITE(*, PUNCH. There are a variety of conventions as to what actual units to associate with these statement forms. The
U command line switch allows you to control this number. Note that the PROMULA FORTRAN runtime library associates
no significance to any particular unit number value. A unit number may be any integer value.

The URnum or Ur option tells the compiler to use unit number "num"” with READ statements for which no unit number is
explicitly shown. The default setting of UR specifies that READ statements for which no unit is explicitly shown should be
directed to standard inpuit.

The UWnum or UW option tells the compiler to use unit number "num" with WRITE or PRINT statements for which no
unit number is explicitly shown. The default setting UW specifies that WRITE or PRINT statements for which no unit
number is explicitly shown should be directed to standard outpui.

13

PromulaFortran Compiler User's Manual

The UPnum or UP option tells the compiler to use unit number "num" with PUNCH statements for which no unit number is
explicitly shown. The default setting UP specifies that PUNCH statements for which no unit number is explicitly shown
should be directed to standard output.

Note: See the chapter on controlling runtime behavior for more discussion or the relationship between particular
FORTRAN units and the standard input and output streams.

2.5.7 Selecting Dialect Conventions

The PROMULA FORTRAN Compiler is a general-purpose, multi-dialect, and portable FORTRAN compiler. It runs on
multiple platforms and supports both the ANSI FORTRAN 66 and ANSI FORTRAN 77 standard dialects, as well as a
large number of common extensions such as those found in the following commercial compilers: VAX FORTRAN, PDP
FORTRAN, PRIME FORTRAN, Data Genera FORTRAN, and Sun FORTRAN. Some FORTRAN 90 extensions are also
supported. In cases where different versions of FORTRAN have conflicting features or conventions a dialect selection
option switch can be used to select the desired set. The particular dialect option which the compiler supports are as follows:

Option Dialect

DVAX Vax FORTRAN
DPDP PDP FORTRAN
DP77 Prime FORTRAN 77
DPIV Prime FORTRAN IV

This particular option should only be used if code is being moved directly from one of these compilers to the PROMULA
compiler.

2.6 Storage Quantity Values

The PROMULA compiler is very conservative in its memory use. Extremely large programs — even those that exceed the
size constraints of some mainframe compilers — can be compiled even on the traditional MS-DOS platforms. There are,
however, afew miscellaneous storage areas which need to be preallocated for efficiency reasons:

(1) Thetable of statement line numbers, controlled by the QEn option;

(2) The current input statement, controlled by the QIn option;

(3) The control table of all include files processed, controlled by the QHn option; and

(4) The unresolved externals tables, controlled by the QXn option.

The details of these tables will not be discussed here. If one of these areas is exceeded, you will get a message telling you
explicitly which has been exceeded and which option to use.

2.7 Miscellaneous Options

The miscellaneous options are used to control the behavior of the compiler and the various other tools used by it.

2.7.1 The Compile Only Option

14

PromulaFortran Compiler User's Manual

The "c" option tells the compiler, that FORTRAN source codes are to be compiled to object form, but that no link step
should be attempted.

2.7.2 The Debugging Flag

The"g" flag tells the compiler, that line number information and symbol information is to be left in the object forms so that
the standard debugger can be used. See the information on the debugger for your platform for details on its use.

2.7.3 C Compiler Include File Pathname

The "Iname" option specifies the path to be used by the C compiler to find its standard include files. This option should
only be used if your C compiler has been installed in a nonstandard way.

2.7.4 Library File Name or Pathnamefor Linker

The "Lname" uppercase version specifies the pathname name to be used in locating the runtime libraries specified via the
"Iname" option. The lowercase version of this option specifies additional libraries to be added into the link step, via a
shorthand name. See the installation instructions for the conventions for your platform.

2.7.5 Name of executable

The "Oname" option specifies the name of the executable to be produced. No extension may be specified for this name. If
this option is omitted, the name of the executable is taken from the first source or object file name encountered on the
command line.

2.7.6 Location of FORTRAN FilesToBelncluded

It is often desirable to have include files that are referenced from within FORTRAN programs stored in some other
directories. The "Zname" option can be used to specify directories to be searched for include files. The syntax of name
varies for operating system to operating system. See the installation instructions for details.

If the first character of "name" isa"#' or an"@" then the remainder of name is assumed to be the name of an environment
variable which contains the include file search paths.

2.8 PrototypeFiles

As has been discussed in several other places, FORTRAN passes all function arguments by name — i.e, it passes the
address of an argument to a subprogram as opposed to its value. C, on the other hand, allows argument values to be passed
directly as well as alowing the passing of argument addresses. In instances where the value of the argument is scalar and
where its value is not being changed by the subprogram, passing the value of that argument is far more efficient than
passing its address. Whenever possible, the FORTRAN compiler should use call-by-value. The problem is that it is not
always possible to tell whether call-by-value is valid smply from the source code. Some other device is needed to tell the
compiler which arguments can be passed by value.

Another problem with FORTRAN s that it is weak typing. By this is meant that it is sometimes valid to pass data of
differing binary types via the same subprogram argument. The compiler needs to know when this is valid; and if it is not

15

PromulaFortran Compiler User's Manual

valid, it needs to know which binary type is the expected one. Many perfectly valid FORTRAN programs fail either at
compilation time or at execution time because of differing typing conventions and differing internal representations. There
isno general solution to the compilation of "weak-typing" FORTRAN programs on multiple platforms. Such programs may
work on one platform, but not on another. The compiler must be told what to do. Some device is needed to describe
subprogram arguments.

A similar problem has faced C programmers as well. Conseguently, the new ANSI C has introduced the notion of a
"function prototype" which describes the arguments of functions in terms of their binary type and in terms of their pointer
status. The conventions developed there are exactly those needed by the FORTRAN compiler as well, although they need
to be extended slightly to deal with virtual variables, multiple forms, and "external name clash".

The C prototype system and its extensions to FORTRAN are discussed in this section. It is strongly recommended that you
take the time to develop a set of prototypes for the subprograms within a FORTRAN program once you have
operationalized it to obtain optimal runtime efficiency.

It should be pointed out that the storage of prototype information read from a configuration file has been carefully
optimized, which means that there are minimal performance penalties for using large prototype files.

2.8.1 Formation of External Symbols

Before moving into the discussion of the prototype syntax, a word about how the compiler forms its own external symbols
is needed. Each COMMON block name and each subprogram name are passed to the linker in a dightly modified form —
an underscore character is added to the back or each name. This has pretty much become the defacto standard for
FORTRAN compilers. The additional underscore reduces the likelihood of name clash with standard system resources.

2.8.2 Function Prototype Syntax

In C, a "function prototype" declaration defines the name, return type, and storage class of a function. In addition, it can
define the types of some or all of the arguments for that function. The prototype declaration has the same format as the
function declaration, except that it is terminated by a semicolon, and the argument identifiers are optional. If used,
argument identifiers have scope only within the prototype declaration and serve only as place holders.

The syntax used for prototypes by the FORTRAN compiler is similar to that used by C; however, it is unfortunately not the
same. The reason is that additional information must be supplied to the compiler, since additional problems are introduced
by the weak-typing conventions of FORTRAN.

The syntax of the PROMULA prototype definition is as follows:

[fname] type name(type[c],type[c]l[,...])
[,type nanme(type[c],type[c]l[,...])[,...]

Where:
fname isthe name of the subprogram used in the FORTRAN code (without the added underscore).

type isoneof thefollowing C binary type specifiers (the corresponding FORTRAN typeis a so shown):

void Any type or arecord type
short integer*2

double real*8

unsigned short logical*2

char integer*1 or byte

long integer*4

16

PromulaFortran Compiler User's Manual

float real*4
unsigned long logical*4
dcomplex complex* 16
complex complex*8
string character

nane isany valid identifier to be used in the C output
c is one of the following special characters:
* indicatesamemory pointer to the indicated type
+ indicatesavirtual pointer to the indicated type
I indicates that avalue conversion should be made to the indicated type
Only a single prototype definition may occur on each record and the notation below

type nane()

means that the function has no arguments. It does not mean that the function has some unspecified number of unspecified
arguments.

The type specifiers have their traditional C interpretation. The "complex" and "dcomplex" types refer to single-precision
complex and double-precision complex respectively. The "string" type refers to the FORTRAN style character string. A
string argument actually consists of a pointer and a length specification.

PROTOTY PE definitions affect both the compilation of references to subprograms and the definitions of subprograms. The
prototype file must be supplied both when subprograms are being compiled and when they are being referenced.

2.8.3 Value Parameters

If no "c" specifier follows the type specification, a value parameter is being defined. When a reference to this argument is
processed, the value of the argument is passed and not its address. If the actual argument does not have the proper type then
an error occurs. The only exception to this occurs when processing numeric constants. A constant with a decimal point or
exponent specified may be used as either a float or double value parameter, and a numeric constant without a decimal
indication with avalue in the range -32767 to + 32767 may be used in either a"long" or "short" environment.

2.8.4 External Name Clash

A problem that pervades C, in particular, is the external name clash problem. One tends to use many different libraries with
C. Itisnot at all unusual to have the same names used by different libraries. As FORTRAN moves into contemporary
environments, it must face the same problem.

With PROMULA areplacement name may be specified in the prototype. Thus, the following two prototypes

voi d fread(short, | ong*, short)
void fwite(short, | ong*, short)

which specify argument types for two functions could also be written

fread void ftread(short, | ong*, short)
fwite void ftwite(short,|ong*, short)

This second form specifies not only the argument types but also changes the external names of the subprograms. The
decision to change these names is made entirely in the prototype file, no changes are needed in the actual FORTRAN

17

PromulaFortran Compiler User's Manual

source. Note that this renaming overrides the normal addition of an underscore to the back of the name. See the section on
global symbols below for more discussion on this topic.

2.8.5 Multiple Forms

Another problem that comes up has to do with multiple forms. Here, a single function in FORTRAN might have to be
compiled in different ways either because of some weak typing convention or because the function is to be used in both
virtual and non-virtual mode. See the chapter on the PROMULA interface for a discussion of virtual mode.

As an example, consider that you have a statistical analysis function which computes the mean and variance of a vector of
values. You have compiled it twice, once using virtual conventions and once using memory conventions. Let us first see
how these two versions of the following utility can be produced.

SUBROUTI NE ANADAT(VAL, N, XBAR, VAR)
DI MENSI ON VAL(N)
XBAR=0. 0
VAR=0. 0
DO 10 J = 1,N
XBAR = XBAR + VAL(J)
10 CONTI NUE
XBAR = XBAR/ N
DO 15 J = 1,N
S = VAL(J) - XBAR
VAR = VAR + S*S
15 CONTI NUE
VAR = VAR (N-1)
RETURN
END

Compiling it with the following prototype produces a memory version.

anadat voi d manadat (fl oat*, short, doubl e*, doubl e*)
Thisversion islike the FORTRAN original — except that its external nameis manadat and not anadat .

Now compiling the identical FORTRAN code with the following prototype produces a virtual version.

anadat voi d vanadat (fl oat +, short, doubl e*, doubl e*)

Thisversioniscaled vanadat and assumes that the vector to be analysed is on disk and is not directly stored in memory.
To achieve these two different versions two compilations have been made, but no changes have been made to the
FORTRAN source.

Now, the following prototype and FORTRAN code can be compiled. For the compilation we will also read a globals file
which will request that the variable "C" resides on disk; while the remaining ones reside in memory. Again see the chapter
on the PROMULA interface for more information on global files.

anadat voi d vanadat (fl oat +, short, doubl e*, doubl e*),
voi d manadat (fl oat *, short, doubl e*, doubl e*)

SUBROUTI NE TEST

DI MENSI ON A(10) , B(20) , C(100)

REAL*8 ABAR, AVAR BBAR BVAR CBAR, CVAR
CALL ANADAT(A, 10, ABAR AVAR)

CALL ANADAT(B, 20, BBAR, BVAR)

CALL ANADAT(C, 100, CBAR, CVAR)

RETURN

END

18

PromulaFortran Compiler User's Manual

In this function ANADAT will be compiled to as manadat when the vector is in memory and vanadat when the vector is
virtual.

2.8.6 Global Symbolsand Prototypes

An additional problem that comes up is that some of the runtime libraries have been implemented via FORTRAN and
othersvia C. Some FORTRANS and/or some Cs append additional characters to each external symbol — be it a function or
a subroutine. This requires that groups of global symbols, but not al, use a modified naming convention. These
modifications are achieved via GLOBAL strings, which may be entered into prototype files.

The GLOBALS string consists of two characters only — the function or subroutine prefix and suffix characters. As an
example, consider the following piece of a prototype file for a FORTRAN based system in which the FORTRAN compiler
appends a underscore character.

GLOBALS "

voi d actday(l ong*, | ong*, | ong*, | ong*);

voi d val dt (I ong*, | ong*, | ong*, short*);

voi d fixdt(long*,|ong*,|ong*,|ong*,|ong*,|ong*,|ong*, short*);

voi d weeknd(!| ong*, | ong*, | ong*, | ong*, | ong*, | ong*, | ong*, short*);

The actual public names are actdat _, val dt _, fi xdt _, and weeknd_. The GLOBALS string preceding these tells the
compiler to make this change in the external names.

2.8.7 Renaming ldentifiers Only

A final capability of the prototype file is to allow the user to enter smple identifier renaming requests. The following
notation

ol dname * newnane

in a prototype input file will rename all occurrences of ol dnarne with newnane.

19

PromulaFortran Compiler User's Manual

3. LANGUAGE ELEMENTS

This chapter discusses the language elements of FORTRAN: FORTRAN statements, symbolic names, constants, variables,
arrays, character substrings, statement order, and user-written program units.

3.1 FORTRAN Statements

FORTRAN statements are written using the FORTRAN character set which consists of 26 letters, 10 digits, and 16 special
characters as follows:

blank

right parenthesis
period or decimal point
underline
plussign

dollar sign

minus sign

dash

asterisk

colon

single quote
ampersand
double quote

= equassign
(left parenthesis

' exclamation mark

- N

S A~ p 4|

Ro

To represent the letters, uppercase or lowercase symbols may be used. There is no distinction made between them.
Remember that in the language syntax descriptions uppercase is always used for reserved words; while lowercase is always
used for user supplied identifiers.

Blanks may be inserted anywhere in a statement except within a Hollerith constant or a quoted string. Such blanks are
simply ignored. Alternatively, al blanks except within Hollerith constants and quoted strings may be omitted. Blanks
within Hollerith constants and quoted strings are simply treated as any other character.

Characters that are not included in the character set described above can be used in Hollerith constants, in quoted strings
and in comment lines. Users should consult with their local system manager for a list of these other locally available
characters and their representation. Users are warned, however, that use of such other characters can reduce the portability
of their programs.

A FORTRAN statement is a sequence of characters as described above. Four general statement formats are available:
fixed, tab, free, and continuation.

To describe these formats, the notions of a "source line" and a "statement field" are needed. A source linein a FORTRAN
program can be one of three things:

(1) A blank line
(2) A comment line

(3) A part of astatement

20

PromulaFortran Compiler User's Manual

A FORTRAN statement is composed of four different types of fields:
(1) A statement label field
(2) A statement content field
(3) A comment field
(4) A continuation indicator field

where the sequence of content-comment-continuation fields may repeat. The line containing the statement label of the first
statement field isthe "initia" line and al other lines are " continuation” lines.

There are four distinctive formats that may be used to enter FORTRAN programs:

(1) Standard fixed-format lines

(2) Tab-format lines

(3) Normal free-format lines

(4) Continuation free-format lines.
Blank lines are the same for all formats. They may appear anywhere and are always ignored. Comment lines have slightly
different formats depending upon the format type; however, they may appear anywhere within a program unit, including
before or within a continuation line sequence.
For all formats the maximum length of the concatenation of the content fields for a given statement is 4096 characters,
excluding blanks and inline comments.

3.1.1 Standard Fixed-Format Lines

The typical FORTRAN program uses standard fixed-format. Under this format a comment line is any line with a nonblank,
non-numeric character in column 1. Statement lines have fields as follows:

Field Column(s)
Statement |abel 1-5
Continuation 6

Content 7 - endcol
Comment endcol +1

The only variable aspect of this format is the value of endcol . When the standard format is selected there is a fixed
statement ending column specified. Thisis usually 72, though 132 is not unusual. Any characters beyond this column are
alwaysignored. In addition, there is an "inline comment" character (!). If this character appears anywhere on the line, not
in a quoted string or a Hollerith constant, then endcol is one position to the left of this character and all characters to the
right are part of acomment field.

The continuation character is any nonblank character in column 6, other than the character '0'.
When the default format is in effect, with a maximum ending column of 72, then the maximum number of continuation

linesis61. Thisassumesthat all lines are completely filled — each with 66 characters.

3.1.2 Tab Format Lines

21

PromulaFortran Compiler User's Manual

With tab format the statement label field consists of the characters which precede the first tab character, within position 1 -
8. After the first tab character, or beyond position 8 there is either a continuation indicator field or a content field. The
continuation indicator field is either a numeric character or an ampersand (&). The content field continues until an end-of-
line is encountered or until the inline comment character (!) isfound, not within a quoted string or a Hollerith constant.

Comment lines are any lines with a nonnumeric character in the first column.

3.1.3 Normal Free-Format Lines

A free-format line is a sequence of variable length lines with no fixed field boundaries. If the first nonblank character on a
line is a numeric digit, then it is considered an initial line with a statement label. If the first nonblank character is an
ampersand (&), then the line is a continuation line. Otherwise, the line is initial with no statement label. The statement
fields continue until the end-of-line is encountered, or until the inline comment character is encountered.

3.1.4 Continuation Free-Format Lines

The continuation free-format is unique in that the continuation indication field occurs on the line being continued and not
on the continuation line. As a result, inline comments and comments within continuation sequences are not allowed. In
this format, a comment line begins with a quotation mark (") in position 1. A statement begins if there is no comment. If
the last character on the line is a minus sign (-) then the following line continues the present one. The continuation minus
signis not part of the statement.

3.2 Symbolic Names

Symbolic names are assigned by the user. They consist of from 1 to 255 letters, digits, the underscore () and the dollar
sign ($). Thefirst character may not be adigit. Letters may be uppercase or lowercase; however, the case is not significant
in establishing the uniqueness of a symbolic name.

Names that are FORTRAN keywords can be used as user-assigned symbolic names without conflict. In general, however,
it is good programming practice to avoid naming conflicts by assigning unique names to program entities. Certain of these
conflictsareillegal and are diagnosed.

3.3 Constants

A constant is afixed quantity. There are nine types of constants supported:

(1) integer

(2) red

(3) double precision
(4) complex

(5) double complex
(6) logical

(7) character

(8) Hollerith

(9) exact representation

Integer, real, double precision, complex, and double complex constants are considered arithmetic constants.

3.3.1 Integer Constant

22

PromulaFortran Compiler User's Manual

An integer constant is a string of 1 to 16 decimal digits written without a decimal point. It can be positive, negative, or
zero. If the integer is positive, the plus sign can be omitted; if it is negative the minus sign must be present. An integer
constant must not contain acomma. Its syntax is as follows:

[{+-3}1 dd...
Where:

d isadecimal digit.
The range of an integer constant is -2147483648 to 2147483647.
Examples of valid integer constants are as follows:

237

-74
+136772
-0024

Examples of invalid integer constants are as follows:

46. Decimal point not allowed
23A Letter not allowed
7,200 Comma not allowed

3.3.2 Real Constant

A real constant consists of a string of decimal digits, "coefficient”, written with a decimal point or with an exponent, or
with both. Commas are not allowed. The plus sign can be omitted from either the coefficient or the exponent if they are
positive, but the minus sign must be present with either or both if either or both are negative. Its syntax is as follows:

{ + -}] coeff
[{ +- 1} 1 coeff E
{ +

[}] exp
-y I nEL{+

{+-
- 11 exp

n isan unsigned integer constant

coeff isacoefficient in one of the following forms:

n.
n.n
.n

exp isan unsigned integer constant
The range of the exponent is -307 to 308. The precision for areal constant is approximately 7 significant digits.
Optionally, a real constant can be followed by a decimal exponent, written as the letter E and an integer constant that
indicates the power of ten by which the number is to be multiplied. If the E is present, the integer constant following the
letter E must not be omitted. The plus sign can be omitted if the exponent is positive, but the minus sign must be present if

the exponent is negative.

Examples of valid real constants:

23

PromulaFortran Compiler User's Manual

7.5
-3.22
+4000.
5

Examples of invalid real constants:

33,500. Comma not allowed
2.5A Letter not allowed

Examples of valid real constants with exponents:

42.E1 Value 42.x 101 = 4200
.00028E+5 Vaue .00028x10° =280
6.205E6 Vaue 6205x105 =6205000.0
700.E-2 Vaue 700.x10%2 =70

3.3.3 Double Precision Constant

A double precision constant is written in the same way as a real constant with exponent, except that the exponent is
prefixed by the letter D instead of E. It consists of a string of decimal digits, "coefficient”, written with an optional decimal
point and with an exponent. Commas are not allowed. The plus sign can be omitted from either the coefficient or the
exponent if they are positive, but the minus sign must be present with either or both if either or both are negative. Its syntax
isasfollows:

[{ +- 1] coeff D[{ +- 1} 1] exp

[{+-3}1InD[{+-1}1]exp
Where:

n isan unsigned integer constant

coeff isacoefficient in one of the following forms:

n.
n.n
.n

exp isan unsigned integer constant
The range of the exponent is -307 to 308. The precision for areal constant is approximately 13 significant digits.

Examples of valid double precision constants:

5.834D2 Vaue 5.834 x 102 =583.4
14.D-5 Vaue 14.x 10 = .00014
9.2D03 Vaue 9.2x 103 =9200.0
312004 Vaue 3120. x 104 = 31200000.0

Examples of invalid double precision constants:

7.2D Exponent missing
D5 Exponent alone not allowed

24

PromulaFortran Compiler User's Manual

2,001.3D2 Commaillega
3.14159265 D and exponent missing

3.3.4 Complex Constant

Complex constants are written as a pair of real or integer constants, separated by a comma and enclosed in parentheses.
The first constant represents the real part of the complex number, and the second constant represents the imaginary part.
The parentheses are part of the constant and must always appear. Either constant can be preceded by a plus or minus sign.
The syntax of a complex constant is as follows:

(real,img)
Where:

real isareal or integer constant for the real part.
imag isarea orinteger constant for the imaginary part.

Examples of valid complex constants:

(1, 7.54) Value 1. +7.54i, wherei =\/-1
(-2.1E1, 3.24) Value -21. + 3.24i

(4,5) Value 4.0+ 5.0i

0.0- 1.0i Value 0.0- 1.0i

Examples of invalid complex constants:

(12.7D-416.1) Comma missing and double precision not allowed.
47E+2,1.942 Parentheses missing

3.3.5 Double Complex Constant
Double complex constants are written as a real, integer, or double precision constant paired with a double precision
congtant separated by a comma and enclosed in parentheses. The first constant represents the real part of the double
complex number, and the second constant represents the imaginary part. The parentheses are part of the constant and must
always appear. Either constant can be preceded by a plus or minus sign. The syntax of a double complex constant is as
follows:

(real,img)

Where:

real isareal, integer, or double precision constant for the real part.
imag isared, integer, or double precision constant for the imaginary part.

Either r eal ori nag must be double precision.

Examples of valid double complex constants:

(1, 7.54D0) Value 1. + 7.54i, wherei =/-1
(-2.1D1, 3.24) Vaue-21. + 3.24i

(4, 5D0) Vaue 4.0 +5.0i

(0DO, -1.) Vaue0.0-1.0i

25

PromulaFortran Compiler User's Manual

Examples of invalid double complex constants:

(12.7E-4 16.1) Comma missing and single precision not allowed.
4.7D0 + 2,1.942 Parentheses missing

3.3.6 Logical Constant

A logical constant takes the form of .TRUE. or .FALSE.. The periods are part of the constant and must appear. Its syntax is
asfollows:

{ .TRUE. .FALSE. }

Where:

.TRUE. Represents the logical value true.
.FALSE. Represents the logical value false.

3.3.7 Character Constant

A character constant is a string of characters enclosed in single or double quotes. Within a character string, the delimiter is
represented by two consecutive occurrences of that delimiter. Its syntax is asfollows:

Y
ngn

Where:

s isastring of characters.
The minimum number of characters in a character constant is one, and the maximum number of characters in a character
constant is 32755. The length isthe number of charactersin the string. Blanks are significant in a character constant. Any
charactersin the platform system character set can be used.
Character positions in a character constant are numbered consecutively as 1, 2, 3, and so forth, up to the length of the
constant. The length of the character constant is significant in all operations in which the constant is used. The length must
be greater than zero.
Examples of valid character constants:

'ABC'

"123"

'YEAR'S
Examples of invalid character constants:

'ABC Terminating quote is missing

'YEAR'S Invalid number of quotes
Zero length character constant

3.3.8 Hollerith Constant

A Hollerith constant is an unsigned integer constant followed by the letter H followed by the specified number of
characters. Its syntax isasfollows:

26

PromulaFortran Compiler User's Manual

nHs
Where:

n isan unsigned nonzero integer constant
s isadtring of exactly n characters.

The minimum number of characters in a Hollerith constant is one, and the maximum number of characters in a Hollerith
constant is 32755. The length isthe number of charactersin the constant and must always be equal to the specified val ue of
n. Blanksare significant in a Hollerith constant. Any characters in the platform system character set can be used.

Character positions in a character constant are numbered consecutively as 1, 2, 3, and so forth, up to the length of the

congtant. The length of the Hollerith constant is significant in all operations in which the constant is used. The length must
be greater than zero.

Examples of valid Hollerith constants:
3HABC
3H123
6HYEAR'S

Examples of invalid Hollerith constants:

HABC Missing count
OH Zero length

3.3.9 Exact Representation Constants
Exact representation constants specify an exact sequence of bits using either octal or hexadecimal notation. This use of

these constants is highly nonportable. They are alternative ways to represent numeric values and may not be assigned to
character variables. Exact representation constants have the following syntax.

's' { OX}
Where:

s isasequence of octal or hexidecimal digits, depending upon whether an ofor octal or an x for hexidecimal is
specified.

The length of these constants depends upon the context in which they are used. They are considered to be the "typeless'
numeric constants. They assume atype based upon the way in which they are used, asfollows:

(1) When used in abinary operation, including assignment, the constant takes on the type of the other operand.

(2) When used in some context where a specific data type is required, such as in a subscript context or as an
argument to an intrinsic function, then the constant takes on that data type.

(3) When used in a context for which no type can be determined, then the exact representation constant is
assumed to be an integer constant.

Examples of valid octal constants:

' 02247 O Value 1191
'10' O Value 8

27

PromulaFortran Compiler User's Manual

Examples of invalid octal constants:

'7782' O Invalid character 8
10747 No O after second quote

Examples of valid hexadecimal constants:

' BF342' X Value 783170
" FFB' X Vaue 4091

Examples of invalid hexadecimal constants:

'82.8' X Invalid Character .
' A9X Missing second quote
3.4 Variables

A variable represents a quantity with a value that can be changed repeatedly during program execution. Variables are
identified by a symbolic name of 1 to 255 letters, digits, underscore (), or dollar sign ($), beginning with a nondigit. A
variable is associated with a storage location. Whenever a variable is used, it references the value currently in that location.
A variable does not have be defined before being referenced for its value.

The possible types of variables are as follows:

(1) Integer

(2) Short integer
(3) Byte

(4) Red

(5) Double precision
(6) Complex

(7) Double complex
(8) Logica

(9) Short logical
(10) Logical byte
(11) Character

When the type of a variable is not explicitly specified, its type is determined by its first character. It isinteger if the first
letteris |, J, K, L, M, or N, and isreal if the first letter is any other character. Note that the IMPLICIT statement is used to
override this default convention.

3.4.1 Integer Variable

Aninteger variableis a variable that istyped explicitly, implicitly, or by default asinteger. The range of an integer variable
isfrom -2147483648 to 2147483647.

3.4.2 Short Integer Variable

A short integer variable is a variable that is typed explicitly as a short integer. The range of a short integer variable is from

- 32768 to 32767.

3.4.3 ByteVariable

28

PromulaFortran Compiler User's Manual

A byte variable is a variable that is typed explicitly as a byte. It behaves like an integer variable; however, itsrangeis from
0 to 255.

3.4.4 Real Variable

A real variableisavariable that is typed explicitly, implicitly, or by default asreal. Therange of areal variableisfrom 10
307 010308, The precision for areal constant is approximately 7 significant digits.

3.4.5 DoublePrecision Variable

A double precision variable is a variable that is typed explicitly as double precision. The value of a double precision
variable can range from 10-307 0 10308 with approximately 17 significant digits of precision.

3.4.6 Complex Variable

A complex variable is a variable that is typed explicitly as complex. A complex variable may be thought of as a sequence
of two real values, with the first being the real part of the complex number and the second being the imaginary part of the
number.

3.4.7 Double Complex Variable

A double complex variable is a variable that is typed explicitly as double complex. A double complex variable may be

thought of as a sequence of two double precision values, with the first being the real part of the double complex number
and the second being the imaginary part of the number.

3.4.8 Logical Variable

A logical variable is a variable that is typed explicitly as logical. It may contain only a value of TRUE or FALSE. The
storage alocated to alogical variable is the same as that allocated to an integer variable.

3.4.9 Short Logical Variable

A short logical variable is a variable that is typed explicitly as short logical. It may contain only a value of TRUE or
FALSE. The storage allocated to a short logical variable is the same as that allocated to a short integer variable.

3.4.10 Logical Byte Variable

A logical byte variableis a variable that istyped explicitly aslogical byte. It may contain only avalue of TRUE or FALSE.
The storage allocated to alogical byte variable is the same as that allocated to an integer byte variable.

3.4.11 Character Variable

A character variableis avariable that is typed explicitly as character. The length of the character variable is specified when
the variable is typed as character. There is no storage distinction between a character variable of length n and an n element
array of single characters. The maximum length of a character variable is 32767.

29

PromulaFortran Compiler User's Manual

3.5 Arrays

A FORTRAN array is a set of elements identified by a single name. The name is composed of 1 to 255 letters, digits,
underscore (), or dollar sign ($), beginning with a nondigit. Each array element is referenced by the array name and a
subscript.

The type of the array elements is determined by the array name in the same manner as the type of a variable is determined
by the variable name. The array name can be typed explicitly with a type statement, implicitly with an IMPLICIT
statement, or by default typing.

The array name and its dimensions must be declared in a DIMENSION, COMMON, or type statement. When an array is
declared, the declaration of array dimensions takes the form shown below.

array (d[,d]...)
Where:

array isthe symbolic name of the array.
d specifies the bounds of an array dimension and takes the form:

[l ower:] upper
Where:

Il over specifies the lower bound of the dimension. The lower bound is an integer expression with a
positive, zero, or negative value. If omitted, the lower bound is assumed to be 1.

upper specifies the upper bound of the dimension. The upper bound is an integer expression with a
positive, zero, or negative value. The upper bound must be greater than or equal to the lower
bound. In the case of an assumed size array, the upper bound of the last dimension can be
specified as*.

There is no limit on the number of dimensions that an array can have. The dimension bounds can be positive, negative, or
zero. If the lower bound is omitted, the lower bound is assumed to be one. In this case, the upper bound must be positive.
The general rule is that the upper bound must always be greater than or equal to the lower bound. The size of each
dimension isindicated by the distance between the lower bound and upper bound — i.e., the span of an array dimension is
given by (upper - | ower +1) , where upper isthe upper dimension bound and | ower isthe lower dimension bound.

For example,
DI MENSI ON RX(0: 5)

declares a 1-dimensional array of six elements such as shown below. The values are the element locations relative to the
location of the first element.

Row 0
Row 1
Row 2
Row 3
Row 4
Row 5

Or~rWNEFO

Alternatively,

30

PromulaFortran Compiler User's Manual

DI MENSI ON TABLE(4, 3)

declares a 2-dimensional array of four rows and three columns, for a total of twelve elements as shown below with the
values being the element locations relative to the location of the first element.

Column 1 Column 2 Column 3
Row 1 0 4 8
Row 2 1 5 9
Row 3 2 6 10
Row 4 3 7 11

Finaly,
I NTEGER STOR(3, 4, 2)

declares a 3-dimensional array of three rows, four columns and two pages (or planes) for a total of 24 elements. It can be
viewed as follows, again with the val ues being the element locations relative to the location of the first element.

Plane 1
Column 1 Column 2 Column 3 Column 4
Row 1 0 3 6 9
Row 2 1 4 7 10
Row 3 2 5 8 11
Plane 2
Column 1 Column 2 Column 3 Column 4
Row 1 12 15 18 21
Row 2 13 16 19 22
Row 3 14 17 20 23

3.5.1 Array Storage

The elements of an array have a specific storage order, with elements of any array stored as a linear sequence of storage
locations. The first element of the array begins with the first storage location or character storage position, and the last
element ends with the last storage location or character storage position.

The number of storage words reserved for an array is determined by the type of the array and its size. Integer, real, and
logical arrays all occupy the same amount of storage — referred to as a "storage word". Thus, for these types the number
of storage words in an array equals the array size. For complex and double precision arrays, the number of storage words
reserved istwice the array size. For double complex the number of storage words per element is 8. For short arrays, logical
or integer, two elements occupy a storage word; while for character arrays and byte arrays four elements occupy a storage
word.

Though assumptions about the relative locations of the standard numeric types can be made based upon the above notion of
"storage unit" in a transportable manner, great care must be taken when making assumptions about the sizes of boundaries
between these types, especially in COMMON blocks.

31

PromulaFortran Compiler User's Manual

Storage patterns for 1-dimensional, 2-dimensional and 3-dimensional arrays were shown above. In general, array elements
are stored in ascending locations by columns. The first subscript value increases most rapidly, and the last subscript value
increases least rapidly.

3.5.2 Array References

Array references can be references to complete arrays or to specific array elements. A reference to a complete array is
simply the array name. A reference to a specific element involves the array name followed by a subscript specification. An
array element reference is aso called a subscripted array name.

A reference to the complete array references all elements of the array in the order in which they are stored. For example,

DI MENSI ON XT(3)
DATA XT/1.,2.,3./
CALL CALC(XT)

uses the array reference XT in the DATA statement and the CALL statement.

A reference to an array element references a specific element and takes the form shown below:
array (e[,e]...)

Where:
array isthe symbolic name of the array.

e is a subscript expression that is an integer, real, or double precision. Each subscript expression has a
value that is within the bounds of the corresponding dimension. Non integer subscripts are converted to
integer by truncation prior to their use.

An array element reference must specify a value for each dimension in the array. Array element references are not legal
unless a value is supplied for each dimension. Each subscript value after conversion to integer must not be less than the
lower bound or greater than the upper bound of the dimension. If the array is an assumed-size array with the upper bound
of the last dimension specified as asterisk, the value of the subscript expression must not exceed the actual size of the
dimension. Theresults are unpredictable if an array element reference exceeds the size of an array. For each array element
reference, eval uation of the subscript expressions yields a value for each dimension and a position relative to the beginning
of the complete array.

The position of an array element is calculated as shown below for an array with from 1 to 7 dimensions. The position
indicates the storage location of an array element relative to the first.

Di mensi ons Position of Array El enent

1 (s1-j1)
2 (sl-j1) + (s2-j2)*nl
3 (sl-j1) + (s2-j2)*nl + (s3-j3)*n2*nl
4 (s1l-j1) + (s2-j2)*nl + (s3-j3)*n2*nl + (s4-j4)*n3*n2*nl
5 (sl-j1) + (s2-j2)*nl + (s3-j3)*n2*nl + (s4-j4)*n3*n2*nl + (s5-j5)*n4*n3*n2*nl
6 (s1l-j1) + (s2-j2)*nl + (s3-)3)*n2*nl + (s4-j4)*n3*n2*nl + (s5-j5)*n4*n3*n2*nl
+ (s6-j 6) *n5*n4*n3*n2*nl
7 (sl-j1) + (s2-j2)*nl + (s3-)3)*n2*nl + (s4-j4)*n3*n2*nl + (s5-j5)*n4*n3*n2*nl
+ (s6-j6)*n5*n4*n3*n2*nl + (s7-j7)*n6*n5*n4*n3*n2*nl
Wher e:
ji Lower bound of dinension i
ki Upper bound of dinension i
ni Size of dinmension i, ni=(ki-ji+1)

32

PromulaFortran Compiler User's Manual

Si Val ue of the subscript expression specified for dinensioni.

3.6 Character Substrings

When a character variable or character entity is declared, the entire character string can be defined and referenced. Specific
parts of the character string can also be defined or referenced with character substring references. A character entity must
be declared with the CHARACTER statement. The declaration of a character entity specifies the length in characters.

3.6.1 Substring References

If the name of a character entity is used in areference, the value is the current value of the entire string. A reference to part
of astring is written as a character substring whose syntax is shown below:

char([first]:[last])
Where:
char isthe name of a character variable or array and can be an array element reference.

first specifies an integer, real, or double precision expression for the position of the first character of the
substring. If first isomitted, thevalueisone.

last gpecifies an integer, real, or double precision expression for the position of the last character in the
substring. If I ast isomitted, the value is the length of the string.

The specification of the first character in the substring is an integer, real, or double precision expression that is evaluated
and converted as necessary to integer via truncation. The expression can contain array element references and function
references, but evaluation of a function reference must not alter the value of the other expression in the substring reference.
If the specification of first isomitted, the valueis 1 and all characters from 1 to the value of the specification of | ast are
included in the substring. The specification of 1ast in the substring is an expression subject to the same rules as the
specification of first. If | ast isomitted, the value is the length of the string and all characters from the specified first
position to the end of the string are included in the substring. For astring length | en, the value of fi r st must be at least 1
and must not exceed | ast ; the value of | ast must not exceed the value of | en.

The following is an example of a string reference:

CHARACTER*6 S1, S2
DATA S1/' STRING /
S2 = 81

Reference to s1 is areference to the full string.

S1(1:3) Vaue'STR'
S1(3: 4) Vaue'RI'
S1(4:) Vaue'ING'
S1(: 4) Value'STRI'
S1(:) Value'STRING'

Note that the substring reference S1(:) has the same effect as the reference Si1, since all characters in the string are
referenced.

3.6.2 Substringsand Arrays

33

PromulaFortran Compiler User's Manual

If a substring reference is used to select a substring from an array element of a character array, the combined reference
includes specification of the array element followed by specification of the substring. For example

CHARACTER*8 ZS(5)
CHARACTER*4 RSEN
ZS(4) (5: 6) =' FG
RSEN=ZS(1) (: 4)

The first reference refers to characters 5 and 6 in element 4 of array ZS. The second reference refers to the first four
characters of the first element of array zS.

3.7 Statement Order

The order of various statements within the program unit isrelatively free, given the rules of FORTRAN.

A PROGRAM statement can appear only as the first statement in a main program. The first statement of a subroutine,
function, or block data subroutine is respectively a SUBROUTINE statement, FUNCTION statement, or BLOCK DATA
statement. The END statement is the last statement of each of the preceding program units.

If avariable is to be explicitly typed, then that typing must precede the first reference to that variable either in a DATA
statement or in an executable statement.

Statement function definitions, PARAMETER definitions, and NAMELIST specifications must precede their first
reference.

Comments can appear anywhere within the program unit. Note that any comment following the END statement is
considered part of the next program unit.

3.8 User-Written Program Units

An executable program consists of one main program and optional subprograms. Both main programs and subprograms are
known as program units. A program unit contains a group of FORTRAN statements, including optional comments; it is
terminated by an END statement. Program units can be compiled independently of each other, but a subprogram cannot be
executed except through a main program.

There are two types of subprograms: a specification subprogram and a procedure subprogram. A subprogram that begins
with a BLOCK DATA statement is a specification subprogram. It is used to enter initial values for variables and array
elementsin named common blocks. A subprogram that begins with a SUBROUTINE statement or a FUNCTION statement
is a procedure subprogram known as a subroutine subprogram or a function subprogram, respectively. It can

accept one or more values through alist of arguments, common blocks, or both.

A procedure is a function or a subroutine subprogram that can be executed many times. A subroutine subprogram begins
with a SUBROUTINE statement and terminates with an END statement; it can return one or more values to the referencing
program unit.

A function is used only in expressions to supply a value to the expression. Functions can occur in two forms. as a user-
written function subprogram beginning with a FUNCTION statement, terminating with an END statement, and containing
other statements; as a single statement written by the user.

34

PromulaFortran Compiler User's Manual

A main program is a program unit that does not begin with a FUNCTION, SUBROUTINE, BLOCK DATA, or ENTRY
statement. The main program should have a PROGRAM statement (optional) and at least one executable statement
followed by an END statement. The execution of any program begins with the main program unit. No executable program
can have more than one main program unit.

The main program can be compiled independently of any subprograms. However, when a main program is loaded into
memory for execution, all the required subprograms must be loaded with it prior to its execution.

3.8.1 Program Unit and Procedure Communication

Communication between the referencing program unit and the referenced procedure is accomplished by passing actual
arguments and by using common blocks. Common blocks can be used to pass data to a subprogram, but not to an intrinsic
function or a statement function. Data must be passed to these functions through an argument list.

When passing arguments, actual arguments in the referencing program unit are associated with the referenced procedure
through dummy arguments. Actual arguments appear in the argument list of the referencing program unit. The referencing
program unit passes actual arguments to the referenced procedure. The procedure receives values from the actual
arguments and returns values to the referencing program unit. Actual arguments can be constants, symbolic names of
congtants, variables, array names, array elements, function references, and expressions. An actual argument cannot be the
name of a statement function within the referencing program unit.

Dummy arguments appear in the argument list of the referenced procedure. Within the referenced procedure, the dummy
arguments are associated with the actual arguments passed. Procedures use dummy arguments to indicate the types of
actual arguments, the number of arguments, and whether each argument is a variable, array, procedure, or statement label.
Dummy arguments for statement functions can only be variables. Since all names are local to the program unit, the same
dummy argument name can be used in more than one procedure. A dummy argument appearing in a SUBROUTINE,
FUNCTION, or ENTRY statement must not appear in EQUIVALENCE, DATA, PARAMETER, SAVE, INTRINSIC, or
COMMON statements except as a common block name. Dummy arguments used in array declarations for adjustable
dimensions must be type integer. Dummy arguments representing array names must be dimensioned.

When a procedure is executed, the actual arguments and dummy arguments are matched up and each actual argument
replaces each dummy argument. The type of the actual argument and the dummy argument must be the same. The

actual arguments must be in the same order and there must be the same number as the dummy arguments in the referenced
procedure. The actual arguments that are evaluated before the association of arguments include: expressions, substring
expressions, and array subscripts. If the actual argument is a procedure name, the procedure must be available for
execution at the time of the reference to the procedure.

A dummy argument is undefined unless it is associated with an actual argument. Argument association can exist at more
than one level of procedure reference, and terminates within a program unit at the execution of a RETURN or END
statement. A subprogram reference can cause a dummy argument to be associated with another dummy argument in the
referenced procedure.

For type character, both the dummy and actual arguments must be of type character, and the length of the actual argument
must be greater than or equal to the length of the dummy argument. If the length of the actual argument of type character is
greater than the length of the dummy argument, only the leftmost characters of the actual argument, up to the length of the
dummy argument, are used as the dummy argument.

If a dummy argument is an array name, length applies to the entire array and not to each array element. Length of array
elementsin the dummy argument can be different from length of array elementsin the actual argument. The total length of
the actual argument array must be greater than or equal to the total length of the dummy argument array.

When an actual argument is a character substring, the length of the actual argument is the length of the substring. If the
actual argument expression involves concatenation, the sum of the lengths of the operands is the length of the actua
argument.

35

PromulaFortran Compiler User's Manual

A variable in a dummy argument can be associated with a variable, array element, substring, or expression in the actual
argument. A procedure can define or redefine the associated dummy argument if the actual argument is a variable name,
array element name, or substring name. The procedure cannot redefine the dummy argument if the actual argument is a
congtant, a symbolic constant, a function reference, an expression using operators, or an expression enclosed in parentheses.

The array declaration in a type, COMMON, or DIMENSION statement provides the information needed for the array
during the execution of the program unit. The actual argument array and the dummy argument array can differ in the
number of the dimension and size of the array. A dummy argument array can be associated with an actual argument that is
an array, array element, or array element substring.

If the actual argument is a noncharacter array name, the size of the actual argument array cannot be less than the size of the
dummy argument array. Each actual argument array element is associated with the dummy argument array element that has
the corresponding subscript value.

An association exists for array elementsin a character array. Note that unless the lengths of the elements in the dummy and
actual argument agree, the dummy and actual argument array elements might consist of different characters. For example,
if a program unit has the following statements:

DI MENSI ON A(2)
CHARACTER A*2

CALL SUB(A)
and the subroutine has the following statements:

SUBROUTI NE SUB(B)
DI MENSI ON B(2)
CHARACTER B* 1

then the first character of A(1) correspondsto B(1) and the second character of A(1) correspondsto B(2).
If the actual argument is a noncharacter array element name, the size of the dummy argument cannot exceed (as+1- av) ,

where as is the size of the actual argument array and av is the subscript value of the array element. For example, if the
program unit has the following statements:

DI MENSI ON' ARRAY(20)

CALL CHECK(ARRAY(3))

then the value of as is20, and av is 3. The maximum dummy array sizeis 18 for the subroutine;

SUBROUTI NE CHECK (DUMMY)
DI MENSI ON' DUMVY(18)

SWAP=DUMVY(2)

Actual argument array elements are associated with dummy argument array elements, starting with the first element passed.
In the example, DUMWY(2) isassociated with ARRAY(4) , and DUMWY(18) is associated with ARRAY(20) .

The association for characters is basically the same as for noncharacter array elements. The actual argument for characters
can be an array name, array element name, or array element substring name. If the actual argument begins at character

36

PromulaFortran Compiler User's Manual

storage position acu of an array, then the first character storage position of the dummy argument array becomes associated
with character storage position acu of the actual argument array, and so forth to the end of the dummy argument array.

A dummy argument that is a dummy procedure can be associated only with an actual argument that is an intrinsic function,
external function, subroutine, or another dummy procedure. If the dummy argument is used as an external function, the
actual argument that is passed must be a function or dummy procedure. The type of the dummy argument must agree with
the type of result of all specific actual arguments that become associated with the dummy argument. When a dummy
argument is used as an external function and is the name of an intrinsic function, the intrinsic function name corresponding
to the dummy argument name is not available. If the dummy argument is referenced as a subroutine, the actual argument
must be the name of a subroutine or dummy procedure, and the dummy argument must not appear in a type statement or be
referenced as a function.

A dummy argument that is an asterisk can only appear in the argument list of a SUBROUTINE or ENTRY statement in a
subroutine subprogram. The actual argument is an alternate return specifier in the CALL statement.

3.8.2 Adjustable Dimensions

Adjustable dimensions enable creation of a more general subprogram that can accept varying sizes of array arguments. For
example, a subroutine with afixed array can be declared as:

SUBROUTI NE SUM A)
DI MENSI ON A(10)

The maximum array size subroutine SUMcan accept is 10 elements. |If the same subroutine is to accept an array of any size,
it can be written as:

SUBROUTI NE SUM A, N)
DI MENSI ON A(N)

Vaue N is passed as an actual argument. Adjustable dimensions can also be passed through common variables. For
example,

SUBROUTI NE SUB(A)
COWON B/ M N
DI MENSI ON A(M N)

Dimension of array A, in subroutine SUB, is specified by the values Mand N passed through the common block B.

Character strings and arrays can also be adjustable. For example,

SUBROUTI NE MESSAG(X)
CHARACTER X* (*)
PRINT *, X

The subroutine declares x with a length of (*) to accept strings of varying size. Note that the length of the string is not
passed explicitly as an actual argument.

Another form of adjustable dimension is the assumed-size array. In this case, the upper bound of the last dimension of the
array is specified by an asterisk. The value of the dimension is not passed as an argument, but is determined by the number
of elements stored in the array. If an array is dimensioned *, the array in the calling program must be large enough to
contain all the elements stored in it in the subprogram.

Use of the asterisk form of the adjustable dimension prevents subscript checking for the array, so the user must be careful
not to reference outside the array bounds. Use of this form is preferable to the common practice of declaring arrays to have
dimension 1.

37

PromulaFortran Compiler User's Manual

3.8.3 Using COMMON Blocks

Common blocks can be used to transfer val ues between a referencing program unit and a subprogram. Common blocks can
reduce the number of storage units required for a program by enabling two or more subprograms to share some of the same
storage units. The variables and arrays in a common block can be defined and referenced in all subprograms that contain a
declaration of that common block. The names of the variables and arrays in the common block can be different for each
subprogram. The association is by storage and not by name.

Common blocks cannot be used to pass data to intrinsic functions or statement functions; the method used to pass data to
these procedures is through an argument list.

A reference to datain acommon block isvalid if the datais defined and is the same type as the type of the name used in the
main program or subprogram. The exceptions to agreement between the type in common and the type of the reference are:

(1) either part of acomplex entity can be referenced asreal;

(2) character arrays may have different lengths and/or dimensionality.

38

PromulaFortran Compiler User's Manual

4. EXPRESSIONS, LVALUES, ASSIGNMENTS, AND
STATEMENT FUNCTIONS

Expressions are formed from a combination of operators, operands, and parentheses. Assignment statements are executable
statements that use expressions to define or redefine the values of variables.

4.1 Expressions

Expressions are classified in two ways: by whether or not they are constant and by their type. A constant expression is an
expression in which only constants (or symbolic constants) and operators are used. If an arithmetic expression is written
using only constants and operators, the expression is an arithmetic constant expression. If a character or logical expression
is written using only constants and operators, the expression is, respectively, a character constant expression, or logical
constant expression.

The types of expressions are: arithmetic, character, logical, and relational. The relational expressions are not fully
independent and are used as parts of logical expressions. Each of these typesis discussed.

4.1.1 Arithmetic Expression

An arithmetic expression is a sequence of unsigned constants, symbolic constants, variables, array elements, and function
references separated by operators and parentheses. For example,

(A-B)*F + O D*E
isavalid arithmetic expression. Formally, the syntax of an arithmetic expression is as follows:

term

+ term

- term
arithexp + term
arithexp - term

Where:
term is an arithmetic term in one of the forms:
fact
term* fact
term/ fact
fact is an arithmetic factor in one of the forms:

prim
prim** fact

prim is an arithmetic primary, which can be an arithmetic expression enclosed in parentheses, or any of the
following:

Unsigned arithmetic constant
Arithmetic symbolic constant

39

PromulaFortran Compiler User's Manual

Arithmetic variable
Arithmetic array element reference
Arithmetic function reference

An arithmetic expression can be an unsigned arithmetic constant, symbolic name of an arithmetic constant, arithmetic
variable reference, arithmetic array element reference, or arithmetic function reference. More complicated arithmetic
expressions can be formed by using one or more arithmetic operands together with arithmetic operators and parentheses.
Arithmetic operands identify values of type integer, real, complex, short integer, byte, double precision, or double complex.

The arithmetic operators are shown below.

Operator Representing Use Meaning

*x Exponentiation X1 ** x2 Exponentiate x1 to the
power x2

* Multiplication x1* x2 Multiply x1 and x2.

/ Division x1/x2 Divide x1 by x2.

+ Addition x1+x2 Add x1 and x2.

+ | dentity +x2 Same as x2.

- Subtraction x1-x2 Subtract x2 from x1.

- Negation -x2 Negate x2.

Each of the operators **, /, and * operates on a pair of operands and is written between the two operands. Each of the
operators + and - either operates on a pair of operands and is written between the two operands, or operates on a single
operand and is written preceding that operand.

Theinterpretation of a division can depend on the data types of the operands.

A set of rules establishes the interpretation of an arithmetic expression that contains two or more operators. A precedence
among the arithmetic operators determines the order in which the operands are to be combined:

*x Highest
* and / Intermediate
+ and - Lowest

For example, in the expression
S A2

the exponentiating operator (**) has precedence over the negation operator (-) . The operands of the exponentiation
operator are combined to form an expression used as the operand of the negation operator. The expression is the same as
the expression - (A**2) .

Successive exponentiations are combined from right to left. For example,
D%k Jrx D
isinterpreted as
2% (3%%2)
Two or more multiplication or division operators are combined from left to right.
Two or more addition or subtraction operators are combined from left to right. Note that arithmetic expressions containing

two consecutive arithmetic operators, such as A**- B or A+ B are not permitted. However, expressions such as A+ (- B) and
A+(-B) are permitted.

40

PromulaFortran Compiler User's Manual

Subexpressions containing operators of equal precedence are evaluated from left to right. The compiler may reorder
individual operations that are mathematically associative and/or communative to perform optimizations such as removal of
repeated subexpressions. The mathematical results of the reordering are correct but the specific order of evaluation is
indeterminate. For example, the expression A/ B*C is guaranteed to equal algebraically (AC/ B), not A/ (BC), but the specific
order of evaluation by the compiler isindeterminate.

An arithmetic constant expression contains only arithmetic constants, symbolic hames of arithmetic constants, or arithmetic
constant expressions enclosed in parentheses. The exponentiation operator is not permitted unless the exponent is of type
integer.

An integer constant expression is an arithmetic constant expression in which each constant or symbolic name of a constant
is of type integer, short integer, or byte.

The data type of an arithmetic expression containing one or more arithmetic operators is determined from the data types of
the operands. When an arithmetic operator combines operands of the same type, then the result is of that type. When the
operands are of different types, the lower type is promoted to the higher type prior to the evaluation of the operator. Using
this terminology the operand types from highest to lowest are double complex, complex, double precision, real, integer,
short integer, and byte.

4.1.2 Character Expression

A character expression is used to express a character string. Evaluation of a character expression produces a result of type
character. The simplest form of a character expression is a character constant, symbolic name of a character constant,
character variable reference, character array element reference, character substring reference, or character function
reference. More complicated character expressions can be formed by using one or more character operands together with
character operators and parentheses. The only character operator available is// which performs a concatenation.

The result of a concatenation operation is a character string concatenated on the right with another string and whose length
is the sum of the lengths of the strings. For example, the value of 'AB' // 'CDE' is the string ‘"ABCDE'. A character
expression and the operands of a character expression must identify values of type character.

Two or more concatenation operators are combined from left to right to interpret the expression. For example, the
interpretation of the character expression

"AB /] 'CD [/l 'EF
isthe same as the interpretation of the character expression
("AB'" // 'CD) /I 'EF
The value of the preceding expression is the same as that of the constant 'ABCDEF".
Note that parentheses have no effect on the value of a character expression. Thus, the expression
"AB' //('CD//'EF)
has the same value as the preceding expressions.
A character constant expression is a character expression in which each operand is a character constant, the symbolic name

of acharacter constant, or a character constant expression enclosed in parentheses.

4.1.3 Logical Expression

41

PromulaFortran Compiler User's Manual

A logical expression is used to express alogical computation. Evaluation of alogical expression, | ogexp, produces a result
of typelogical, with avalue of TRUE or FALSE. It hasthe following syntax:

| ogdi s

| ogexp . EQV. |ogdis
| ogexp . NEQV. |ogdis
| ogexp . XOR | ogdis

Where:

logdis jsalogical digunctionin either form:

| ogterm
logdis .OR. logterm

logterm jsalogical termin either form:

| ogf act
logterm . AND. | ogfact

logfact jsalogical factor in either form:

| ogprim
. NOT. logprim

logprim jsalogical primary. A logical primary can be alogical expression enclosed
in parentheses, arelational expression, or any of the following:

Logical constant

Logical symbolic constant

Logical, short logical, or logical byte variable

Logical, short logical, of logical byte array element reference
Logical function reference

The simplest form of a logical expression is a logical constant, symbolic name of a logical constant, logical variable
reference, logical array element reference, logical function reference, or relational expression. More complicated logical
expressions can be formed by using one or more logical operands together with logical operators and parentheses.

Thelogical operators are shown below.

Operator Representing Meaning

.NOT. Negation Complement x

AND. Conjunction Product of x1 and x2

.OR. Inclusivedigunction ~ Sum of x1 and x2

.EQV. Equivalence Isx1 equivaent to x2?
.NEQV. Nonegquivalence Isx1 not equivalent to x2?

XOR. Exclusive digunction Difference of x1 and x2

A set of rules establishes the interpretation of a logical expression that contains two or more logical operators. A
precedence among the logical operators determines the order in which the operands are to be combined, unless the order is
changed by the use of parentheses. The precedence of the logical operatorsis:

.NOT. Highest
.AND.
.OR.

42

PromulaFortran Compiler User's Manual

.EQV. Or .NEQV. or .XOR. Lowest
For example, in the expression
A.OR B .AND. C

the. AND. operator has higher precedence thanthe. OR. operator; therefore, the interpretation is the same as

A.OR (B.AND. C

Logical quantities are combined from left to right when alogical expression contains two or more . AND. operators, two or
more . OR. operators, or two or more . EQV., . NEQV., or . XOR. operators.

The value of alogical factor involving any logical operator is shown below:

x1 X2 | . NOT. x2 x1. AND. x2 x1. OR x2 x2. EQV. x2 x1. NEQV. x2 x1. XOR. x2
T T F T T T F F
T F T F T F T T
F T F F T F T T
F F T F F T F F

A logical constant expression contains only logical constants, symbolic names of logical constants, relational expressions
which contain only constant expressions, or logical constant expressions enclosed in parentheses.

4.1.4 Relational Expression

A relational expression can appear only within logical expressions. Evaluation of arelational expression produces a logical
result with a TRUE or FALSE value. A relational expression used asaprimary in alogical expressionisin one of the forms:

arithexp rop arithrexp
charexp rop charexp

Where:
rop isone of therelational operators: .LT. .LE. .EQ. .NE. .GT. .GE.
arit hexp is an arithmetic expression.
char exp isacharacter expression.

A relational expression is used to compare the values of two arithmetic or two character expressions. A relational
expression cannot be used to compare the value of an arithmetic expression with the value of a character expression.

Therelational operators are shown below:

Operator Representing Meaning

LT. Lessthan Isx1 lessthan x2?

LE. Lessthan or equal to Isx1 lessthan or equal to x2?
EQ. Equal to Isx1 equal to x2?

.NE. Not equal to Isx1 not equal to x2?

GT Greater than Isx1 greater than x2?

.GE Greater than or equal to Isx1 greater than or equal to x2?

An operand of type complex or double complex is permitted only when the relational operator is.EQ. or .NE.

43

PromulaFortran Compiler User's Manual

An arithmetic relational expression has the logical value TRUE only if the values of the operands satisfy the relation
specified by the operator. If the two arithmetic expressions are of different types, then the operand of the lower type is
promoted to the higher type using the same rules as are used for arithmetic expressions, prior to the comparison.

A character relational expression hasthe logical value TRUE only if the values of the operands satisfy the relation specified
by the operator. The character expression x1 is considered to be less than x2 if the value of X1 precedes the value of x2 in
the collating sequence; X1 is greater than x2 if the value of x1 follows the value of x2 in the collating sequence. Note that
the collating sequence in use determines the result of the comparison. If the operands are of unequal length, the shorter
operand is extended on the right with blanks to the length of the longer operand.

4.1.5 General Rulesfor Expressions
The order in which operands are combined using operatorsis determined by:

Use of parentheses

Precedence of the operators

Right-to-left interpretation of exponentiations

Left-to-right interpretation of multiplications and divisions

Left-to-right interpretation of additions and subtractions in an arithmetic expression
L eft-to-right interpretation of concatenationsin a character expression

Left-to-right interpretation of .NOT. operators

Left-to-right interpretation of .AND. operators

Left-to-right interpretation of .OR. operators

0. Left-to-right interpretation of .EQV., .NEQV., and .XOR. operators in a logical expression or Boolean
expression

HoOoo~NogkwNE

Precedences exist among the arithmetic and logical operators. There is only one character operator. No precedence exists
among the relational operators. The precedences among the operators are:

Arithmetic Highest
Character
Relational
Logical Lowest

An expression can contain more than one kind of operator. For example, the logical expression

L.OR A+B.GE C

where A, B, and C are of type real, and L is of type logical, contains an arithmetic operator, a relational operator, and a
logical operator. This expression would be interpreted as

L.OR ((A+B) .GE O

Any arithmetic operation whose result is not mathematically defined is prohibited: for example, neither dividing by zero
nor raising a zero-valued primary to a zero-valued or negative-valued power is allowed.

4.2 LVALUES

An lvalue is the name of avariable or array element of type integer, short integer, byte, real, double precision, complex, or
double complex. The type of the Ivalue is the same as the type of the variable or array element which formsit. The term
"lvalue” is an abbreviation of the term "left-hand-value". The name is derived from the fact that only Ivalues may appear
on the left-hand-side of an assignment statement. Lvalues are contrasted with expressions in that expressions produce a
value; while lvalues can receive avalue.

44

PromulaFortran Compiler User's Manual

4.3 Assignment Statements
There are four types of assignment statements:
Arithmetic
Character

Logical
Statement label with the ASSIGN statement

The first three types of assignment are discussed below. The ASSIGN statement is discussed in a later chapter. Asisthe
normal convention, the action of the ASSIGN statement is not considered to be "assignment” as that term will be used in
this discussion.

4.3.1 Arithmetic Assignment

The arithmetic assignment statement is shown below
vV = e

Where:

v isanlvalue of type integer, short integer, byte, real, double precision, complex, or double complex.
e isanarithmetic expression.

After evaluation of arithmetic expression e, the result is converted to the type of v using the standard intrinsic conversion
functions. The result isthen assigned to v, and v is defined or redefined with that value.

4.3.2 Character Assignment

The character assignment statement is shown below.

vV =e¢e
Where:

v isthe name of acharacter variable, character array element, character substring.
e isacharacter expression.

The character expression e is evaluated, and the result is then assigned to v. The variable v and expression e can have
different lengths. If the length of v is greater than the length of e, e is extended to the right with blank characters until it is
the same length asv. If the length of v isless than the length of e, e istruncated from the right until it is the same length as
V.

Only as much of the value of e must be defined asis needed to definev.

In the example

CHARACTER A*2, B*4
A=B

the assignment A=B requires that the substring B(1: 2) be defined. It does not require that the substring B(3: 4) be defined.
If visasubstring, e isassigned only to the substring. The definition status of substrings not specified by v is unchanged.

45

PromulaFortran Compiler User's Manual

4.3.3 Logical Assignment

Thelogical assignment statement is shown below.
vV = e

Where:

v isthe name of alogical, short logical, or logical byte variable or logical array element.
e isalogical expression.

The logical expression is evaluated and the result is then assigned to v. Note that e must have a value of either .TRUE. or
FALSE..

4.4 Statement Functions

A statement function is a user-defined procedure which has the same basic syntax as an assignment statement. It is a
nonexecutabl e, single-statement computation that applies only to the program unit containing the definition.

Within a program unit, a statement function must appear after the specification statements and before the first executable
statement in the unit. A statement function must not directly or indirectly reference itself.

Syntax:
fun([d[,d]...])) = expr
Where:
fun is a symbolic name which identifies the statement function
d is a statement function dummy argument. There must be at least one dummy argument.

expr is an expression in which each primary is one of the following:

anexpr enclosed in parentheses

a constant

a symbolic constant

avariable reference

an array element reference

anintrinsic function reference

areference to a statement function which appears in the same program unit
an externa function reference

asubstring reference

The symbolic name of the function is a variable and contains the value of the expression after execution. During execution,
the actual argument expressions are evaluated, converted if necessary to the types of the corresponding dummy arguments
according to the rules for assignment, and passed to the function. Thus, an actual argument cannot be an array name or a
function name. In addition, if a character variable or array element is used as an actual argument, a substring reference to
the corresponding dummy argument must not be specified in the statement function expression. The expression of the
function is evaluated, and the resulting value is converted as necessary to the data type of the function.

The symbolic name of a statement function islocal and must not be the same as any other local name in the program unit,
except a common block name. The name of a statement function cannot be an actual argument and must not appear in an
INTRINSIC or EXTERNAL statement. If the statement function is used in a function subprogram, then the statement

46

PromulaFortran Compiler User's Manual

function can contain a reference to the name of the function subprogram or any of its entry names as a variable, but not asa
function.

Each variable reference in the expression can be either a reference to a variable within the same program unit or to a
dummy argument of the statement function. Statement functions can reference dummy variables that appear in a
SUBROUTINE, FUNCTION, or ENTRY statement, but that statement must precede the statement function. Statement
function dummy arguments can have the same names as variables defined elsewhere in the same program unit without
conflict. Any reference to the name inside the function refers to the dummy argument, and any reference to the name
outside the function definition refersto the variable.

A statement function is referenced through its statement function name. When the statement function name is referenced in
an expression, the statement function is evaluated. The actual arguments are evaluated and converted to the type of the
corresponding dummy argument; the resulting values are used in place of the corresponding dummy arguments in
evaluation of the statement function expression. The definition of a statement function must not directly or indirectly
reference itself. The statement function name can appear anywhere in an expression where an operand of the same type can
be used.

The type of the statement function result is the type of the statement function name. The arguments must agree in order and
number with the corresponding dummy arguments.

A statement function can be referenced only in the program unit where the statement function appears.

47

PromulaFortran Compiler User's Manual

5. STATEMENTS SUPPORTED

This chapter describes the statements of FORTRAN other than assignment statements. Each statement is identified by the
keyword which introduces it. The statement descriptions themselves are organized alphabetically to simplify using this
manual as areference guide.

5.1 ASSIGN Statement

The ASSIGN statement assigns a statement label to an integer variable.

Syntax:

ASSIGN | abel TO identifier

Where:
| abel isthe label of an executable statement or aFORMAT statement
identifier istheidentifier of ascalar integer variable

Description:

The ASSIGN statement assigns a statement label to an integer variable. The value assigned represents the label of an
executable statement or a FORMAT statement. It is not the value of thel abel itself. The labeled statement must appear in
the same program unit as the ASSIGN statement. While the variable contains an assigned value, it cannot be used in any
statement other than an assigned GOTO statement, or in the FORMAT position of an input/output statement.

The ASSIGN statement is an executable statement; therefore, a variable must be ASSIGNed a label to execution of the
assigned GOT O statement or the input/output statement that references the assigned label.

Examples:

The following assigns the label of an executable statement to a variable for later use in an ASSIGNed GOTO statement.

ASSIGN 10 TO iswit
GOTO iswit (5,10, 15, 20)
10 STOP

Execution of the ASSIGN statement prior to the execution of the GOTO statement will cause the program unit to branch to
the statement labeled 10. The following assigns the label of a FORMAT statement to a variable for later use in a
FORMATted input or output statement.

15 FORMAT(1X, 2F10. 5)
ASSIGN 15 TO i fnt
WRI TE(*,ifnt) a, b

Execution of the ASSIGN statement prior to the execution of the WRITE statement will write the values of a and b in
accordance with FORMAT 15.

5.2 BACKSPACE Statement

The BACKSPACE statement positions a file to the start of the preceding record.

48

PromulaFortran Compiler User's Manual

Syntax:

BACKSPACE uni t

BACKSPACE ([UNIT=] wunit [,|1OSTAT= status] [,ERR=err])
Where:

uni t isan integer expression

status isaninteger Ivalue

err isthe label of an executable statement
Notes:

The simplest form of the BACKSPACE statement consists of a single unit specification not enclosed in parentheses. With
this form no additional parameters can be specified. If the parenthetical form of BACKSPACE is used, then the "UNIT="
specification is optional; however, when omitted the unit specification must be the first specification. Other than the above,
the order of the parameters within the parenthetical version of the BACK SPACE statement is free.

Description:

The BACKSPACE statement backspaces the file currently under the specified unit number one record. Any file, regardless
of its type or open status, may be backspaced. When the file is positioned at beginning-of-information, this statement acts
as a do-nothing statement.

If an error occurs as aresult of the backspace, and if neither err nor st at us are supplied then execution will terminate with
an error code set. If either or both are supplied, the execution continues despite any errors.

If supplied, the status lvalue receives the runtime error code for the error condition encountered or a zero, if no error
occurred. If err issupplied, then execution will branch to the statement labeled by it if an error occurs.

Examples:

The files associated with units 1 through 4 are backspaced one record via the following. If any errors occur, the program
will terminate abnormally.

DO 1 lun = 1,4
1 BACKSPACE | un

The following also attempts to backspace units 1 through 4; however, an error reports the error code and the unit number.
Note that the unit number need not be the first specification when it is preceded by the "UNIT=" symbol.
DO2 lun =1,4
2 BACKSPACE(| OSTAT=j , UNI T=l un, ERR=15)
WRI TE(*, *) "Backspace successful "

STOP
15 WRITE(*,*) "Backspace error ",j," on unit ",lun

See also:

The discussion of the OPEN statement describes the FORTRAN file system in general, including the different file types.

5.3 BLOCK DATA Statement

49

PromulaFortran Compiler User's Manual

The BLOCK DATA statement introduces a BLOCKDATA subprogram.

Syntax:

BLOCK DATA [bdnane]
Where:

bdnane isasymbolic name identifying the block data subprogram
Description:
The block data subprogram is a nonexecutable specification subprogram that can be used to enter initial values for variables
and array elementsin common blocks. Both named and blank common may be initialized. A program can have more than
one block data subprogram. Only one block data subprogram can be unnamed.
The BLOCK DATA statement must appear as the first statement of the block data subprogram. The name used for the
block data subprogram must not be the same as any local variables in the subprogram. The name must not be the same as
any other program unit or entry name in the program.
Block data subprograms can contain IMPLICIT, PARAMETER, DIMENSION, TYPE, COMMON, SAVE,
EQUIVALENCE, or DATA statements. A block data subprogram ends with an END statement. Data can be entered into

more than one common block in a block data program. All variables having storage in the named common must be
specified even if they are not all initially defined.

54 BYTE Statement

The BY TE statement defines some user defined entity to be of type byte.

Syntax:

BYTE nane[, nane]. ..
Where:

name hasone of the forms:

var [/ c /]

array [(d[,d]...)]
[/ clist /]

var isavariable, function name, symbolic constant, or dummy procedure
array isanarray name

d specifies the bounds of adimension.

clist isalistof constantsor symbolic constants specifying the initial values.

Each item in the list can take the form:

c isaconstant or symbolic constant.

50

PromulaFortran Compiler User's Manual

r is arepeat count that is an unsigned nonzero integer constant or the symbolic name of
such a constant.

Notes:

The BY TE statement performs the same action asthe INTEGER* 1 statement.

Description:

The BYTE statement is used to define a variable, array, symbolic constant, function name, or dummy procedure name as
type byte. The symbol may already have been defined in another declaration statement. A byte entity behaves like an
integer entity; however, itsrange is 0 to 255.

See also:

See the discussion of the DIMENSION statement for a description of how dimension bounds are defined.

See the discussion of the DATA statement for a description of how initial values are defined.

55 CALL Statement

The CALL statement transfers control to a subroutine subprogram.
Syntax:
CALL sub[([a[,a]..-])]
Where:
sub is the name of a subroutine or dummy procedure.
a isan actual argument that can be one of the following:
An expression
An array name
An intrinsic function name
An external procedure name

An alternate return specifier of the form* s

s isthe statement label of an executable statement that appears in the same program unit as the CALL
Statement.

Description:

The CALL statement can contain actual arguments and statement labels which must correspond in order, number, and type
to those in the subroutine definition.

An actual argument in a CALL statement can be a dummy argument name that appears in the dummy argument list of the
subprogram containing the CALL statement. An asterisk dummy argument cannot be used as an actual argument.

5.6 CLOSE Statement

51

PromulaFortran Compiler User's Manual

The CLOSE statement disconnects a file from a specified unit.

Syntax:
CLCSE uni t
or

CLOSE([UNIT=1] wunit [, STATUS=clssta] [,|OSTAT=status] [,ERR=err])
Where:

unit isaninteger expression

cl sst a isacharacter expression

st at us isan integer lvalue

err the label of an executable statement
Notes:
The simplest form of the CLOSE statement consists of a single unit specification not enclosed in parentheses. With this
form no additional parameters can be specified. If the parenthetical form of CLOSE is used, then the "UNIT="
specification is optional; however, when omitted the unit specification must be the first specification. Other than the above,
the order of the parameters within the parenthetical version of the CLOSE statement is free.
Description:
The CLOSE statement disconnects a file from a specified unit and specifies whether the file connected to that unit is to be
kept or released. A CLOSE statement can appear in any program unit in the program; it need not appear in the same
program unit as the OPEN statement specifying the same unit. A CLOSE statement that references a unit that does not
have a file connected to it has no effect.
After a unit has been disconnected by a CLOSE statement, it can be connected again within the same program to the same
file or to adifferent file. A file connected to a unit specified in a CLOSE statement can be connected again to the same or

to another unit, provided the file still exists.

Thecl sst a variable is a character expression that determines the disposition of the file associated with the specified unit.
Valid values are as follows:

'KEEP Thefile is kept after execution of the CLOSE statement.
'DELETE' Thefileis unloaded after execution of the CLOSE statement.

The default, if cl ssta is not specified is STATUS='DELETE' if the file status was 'SCRATCH' when it was opened;
otherwise, the default is STATUS='KEEP'.

If an error occurs as a result of the close, and if neither err nor st at us are supplied then execution will terminate with an
error code set. If either or both are supplied, the execution continues despite any errors.

If supplied, the st at us Ivalue receives the runtime error code for the error condition encountered or a zero, if no error
occurred.

If err issupplied, then execution will branch to the statement labeled by it if an error occurs.

52

PromulaFortran Compiler User's Manual

Example:
CLOSE (2, ERR=25, STATUS=' DELETE')

When this statement is executed, the file connected to unit 2 will be closed and disconnected. If an error occurs, execution
will branch to statement 25.

See also:

The discussion of the OPEN statement describes the FORTRAN file system in general, including the different file types.

5.7 CHARACTER Statement

The CHARACTER statement defines some user defined entity to be of type character.

Syntax:

CHARACTER] *1 en] [,] nan®e[, nane] . .
Where:

name hasone of the forms

var [*len] [/ c /]

array [(d[,d]...)] [*len] [/ clist /]

I en specifies the length and can be an unsigned nonzero integer constant; an integer constant expression,
enclosed in parentheses, with a positive value; or an asterisk enclosed in parentheses.

var isavariable, function name, symbolic constant, or dummy procedure
array isanarray name
d specifies the bounds of a dimension.

clist isalistof constants or symbolic constants specifying the initial values. Each item in the list can take the

form:

r*c

c isaconstant or symbolic constant.

r is a repeat count that is an unsigned nonzero integer constant or the symbolic name of such a

constant.

The CHARACTER statement is used to define a variable, array, symbolic constant, function name, or dummy procedure
name as type character. A length specification immediately following the word CHARACTER applies to each entity not
having its own length specification. A length specification immediately following an entity is the length specification only
for that entity. Note that for an array, the length specified is for each array element. If alength is not specified for an entity
thelengthis 1.

If a dummy argument has the length (*) specified, the dummy argument assumes the length of the associated actual
argument for each reference to the subroutine or function. If the associated actual argument is an array name, the length
assumed by the dummy argument is the length of each array element in the associated actual argument.

53

PromulaFortran Compiler User's Manual

If a symbolic constant of type character has the length (*) specified, the constant has the length of its corresponding
constant expression in a PARAMETER statement.

See also:
See the discussion of the DIMENSION statement for a description of how dimension bounds are defined.

See the discussion of the DATA statement for a description of how initial values are defined.

5.8 COMMON Statement

The COMMON statement provides a means whereby different program units can share the same information.
Syntax:

COMMON [[/[cb]/]nlist[[,]/[cb]/nlist]
Where:

ch is a symbol
name

nlist isalistof entitiesseparated by commas which can take the following forms:

var [/ c /]
array [(d[,d]...)] [/ clist /]

var isavariable.
array isanarray name.
d specifies the bounds of adimension.

clist isalistof constants or symbolic constants specifying the initial values. Eachiteminthelist can
take the form:

r*c
¢ isaconstant or symbolic constant.

r isarepeat count that isan unsigned nonzero integer constant or the symbolic name of such a
constant.

Description:

The COMMON statement provides a means of associating entities in different program units. The use of common blocks
enables different program units to define and reference the same data without using arguments, and to share storage units.
Within one program unit, any entity in a common block is known by a specific name. Within another program unit, the
same data can be known by a different symbolic name that is valid only within the scope of that program unit.

The cb parameter is a common block name identifying a named common block containing the entities in nl i st . If the
name is omitted, the nli st entities are in blank common. Other than having no name, blank common has no
characteristics different from those of labeled common blocks.

54

PromulaFortran Compiler User's Manual

A single variable name or array name can appear only once in any COMMON statement within the program unit. Function
or entry names cannot be included in common blocks. In a subprogram, names of dummy arguments cannot be included in
common blocks.

If the common block name is omitted, the common block is blank common. When the first specification in the COMMON
statement is for blank common, the slashes can also be omitted. 1f acommon block name is specified, the common block is
a named common block. Within a program unit, declarations of common blocks are cumulative. The nl i st following
each successive appearance of the common block name (or no name for blank common) adds more entities to the common
block and is treated as a continuation of the specification. Variables and arrays are stored in the order in which they appear
in the specification. Alignment bytes are often inserted between members of different types within common blocks;
therefore, great care must be taken when the types of variables within COMMON blocks vary from subprogram to
subprogram.

The actual size of any common block is the number of storage words required for the entities in the common block, plus
any extensions associated with the common block by EQUIVALENCE statements. Extensions can only be made by adding
storage words at the end of the common block.

Entities in common blocks can be initially defined by a DATA statement in a block data subprogram, or by a DATA
statement in any program unit. |f data is assigned to a common block in a subprogram other than a BLOCK DATA
subprogram, then that data may not be defined until that subprogram has been executed. |If datais assigned to the same
storage location in a COMMON block in multiple non BLOCK DATA subprograms, then the content of that location may
vary as the different subprograms are initially executed. The initialization of COMMON variables in non BLOCK DATA
subprograms is highly discouraged.

See also:

See the discussion of the DIMENSION statement for a description of how dimension bounds are defined.

See the discussion of the DATA statement for a description of how initial values are defined.

See the description of the EQUIVALENCE statement for a discussion of how COMMON areas can be extended.

5.9 COMPLEX Statement

The COMPLEX statement defines some user defined entity to be of type complex or double complex.

Syntax:

COWVPLEX[*l en] [,] nange[, nane] ...
Where:

name hasone of the forms

var [*len] [/ c /]

array [(d[,d]...)] [*len] [/ clist /]

I en specifies the complex subtype and can be an unsigned nonzero integer constant whose value is 8
or 16.

var isavariable, function name, symbolic constant, or dummy procedure
array isanarray name

d specifies the bounds of adimension.

55

PromulaFortran Compiler User's Manual

clist isalistof constants or symbolic constants specifying the initial values. Each iteminthelist can
take the form:

r*c
¢ isaconstant or symbolic constant.

r isarepeat count that isan unsigned nonzero integer constant or the symbolic name of such a
constant.

Description:

The COMPLEX statement is used to define a variable, array, symbolic constant, function name, or dummy procedure name
as type complex or double complex. A length specification immediately following the word COMPLEX applies to each
entity not having its own length specification. A length specification immediately following an entity is the length
specification only for that entity. If the length specification for a given entity is 8 or if it is omitted, then the type defined is
complex. If thevalueis 16, then the type is double complex.

See also:

See the discussion of the DIMENSION statement for a description of how dimension bounds are defined.

See the discussion of the DATA statement for a description of how initial values are defined.

5.10 CONTINUE Statement

The CONTINUE statement performs no operation.
Syntax:
CONTI NUE
Description:
The CONTINUE statement performs no operation. It is an executable statement that can be placed anywhere in the
executable statement portion of a source program without affecting the sequence of execution. The CONTINUE statement

is most frequently used as the last statement of a DO loop. It can provide loop termination when a GOTO or IF would
normally be the last statement of the loop.

5.11 DATA Statement

The DATA statement providesinitial values for storage elements.
Syntax:
DATA nlist/clist/ [[,]nlist/clist/]...
Where:
nlist isalistof namesto beinitially defined. Each namein thelist can take the form:

var

56

PromulaFortran Compiler User's Manual

array

el enent
substr
dol i st

var isavariable name.
array isan array name.

el enent isasubscripted array element name. Subscript expressions must consist of integer constants
and active control variables from DO lists.

substr isasubstring of acharacter variable or array element.
dolist isanimplied-DO list of the form:
(dlist, i =init, term[,incr])
dlist isalistof array element names and implied-DO lists.

i isan integer variable called the implied-DO variable.

init isaninteger constant, symbolic constant, or expression specifying the initial value, as
for DO loops.

term isaninteger constant, symbolic constant, or expression specifying the terminal value,
asfor DO loops.

incr isaninteger constant, symbolic constant, or expression specifying the increment, as

for DO loops.
clist isalistof constants or symbolic constants specifying the initial values. Each item in the list can take the
form:
r*c
c isaconstant or symbolic constant.
r isarepeat count that is an unsigned nonzero integer constant or the symbolic name of such a

constant.
Description:

The DATA statement is used to provide initial values for variables, arrays, array elements, and substrings. The DATA
statement is nonexecutable and can appear anywhere in a program unit after any statements explicitly typing the elements
or dimensioning them. Usually, DATA statements are placed after the specification statements but before the statement
function definitions and executable statements.

Example:

The following shows a simple example of aDATA statement.
I NTEGER K(6)
DATA JR/ 4/

DATA AT/ 5.0/, AQ 7.5/
DATA NRX, SRX/ 17.0, 5. 2/

57

PromulaFortran Compiler User's Manual

DATA K/'1,2,3,3,2,1/

The variables JR, AT, AQ, and SRX are initially defined with the values 4, 5.0, 7.5, and 5.2, respectively. Variable NRX is
initially defined with the value 17, after type conversion of the real 17.0 to the integer 17. Array K with 6 elements is
initially defined with a value for each array element.

This second exampl e shows the use of arepeat count.

REAL R(10, 10)
DATA R/ 50*5. 0, 50* 75. 0/

The array Risinitialy defined with the first 50 elements set to the value 5.0 and the remaining 50 elements set to the value
75.0.

Entities that are initially defined by the DATA statement are defined when the program begins execution. Entities that are
not initially defined, and not associated with an initially defined entity, are undefined at the beginning of execution of the
program.

A variable, array element, or substring must not be initially defined more than once in the program. If two entities are
associated, only one can beinitially defined by a DATA statement.

Names of dummy arguments and functions cannot be initially defined. Entitiesin a common block can be initially defined
within a block data subprogram, or within any program unit in which the common block appears; however, the DATA
initialization of COMMON variables with DATA statementsin non BLOCK DATA subprograms is discouraged.

Within the DATA statement, each list nl i st must have the same number of items as the corresponding list cl i st. A one-
to-one correspondence exists between the items specified by nl i st and the constants specified by cl i st. Thefirst item of
nl i st corresponds to the first constant of cl i st , the second item to the second constant, and so forth.

If an unsubscripted array name appears as aniteminnl i st, aconstant incl i st must be specified for each element of the
array. The values of the constants are assigned according to the storage order of the array.

For arithmetic data types, the constant is converted to the type of the associated nl i st item if the types differ. For all other
types, the data type of each constant incl i st must be compatible with the data type of thenl i st item.

Each subscript expression used in an array element name in nl i st must be an integer constant expression, except that
implied-DO variables can be used if the array element name isin dl i st. Each substring expression used for an item in
nl i st must be aninteger constant expression.

5.11.1 Implied DO List Usein DATA Statement

Animplied DO list can be used asaniteminnl i st asthe following example shows.

REAL X(5, 5)
DATA ((X(J,1),1=1,J),J=1,5)/15*1. 0/

The elements of array x are initially defined with the DATA statement. Elements in the lower diagonal part of the matrix
are set to the value 1.0. The elements initialized are (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), (4,2), (4,3), (4,4), (5,1),
(5,2), (5,3), (5,4), and (5,5) as shown below:

Array X

I=1 1=2 1=3 1=4 1=5
1

[Srpgyan
Il
N -

1 1

58

PromulaFortran Compiler User's Manual

1 1 1
1 1 1 1
1 1 1 1 1

J
J
J

g b~ w

As a second example consider the following.
PARAMETER (Pl =3. 14159)
REAL Y(5, 5)
DATA ((Y(J+1,1),J=1+1,4),1=1,3)/6*Pl/
The elements of array Y initialized to 3.14159 are (3,1), (4,1), (4,2), (5,1), (5,2), and (5,3) as shown below:
Array Y

I =1 | =2 1 =3 I =4 I =5

3. 14159
3. 14159 | 3. 14159
3. 14159 | 3.14159 | 3. 14159

[P SR S S
[L | R 1|
a b owN PR

An iteration count and the values of the implied DO variable are established from init, term, and the optional incr just as for
DO loops, except that the iteration count must be positive. When the implied DO list appearsin a DATA statement, the list
itemsindl i st are specified once for each iteration of the implied DO list, with appropriate substitution of values for each
occurrence of theimplied DO variablei .

The appearance of aname as an implied DO variablein aDATA statement does not affect the value or definition status of a
variable with the same name in the program unit. Animplied DO variable has the scope of theimplied DO list only.

Each subscript expression used in dlist must be an integer constant expression, except that any expression can contain an
implied DO variable if the subscript expression is within the corresponding implied DO list.

5.11.2 Character Data I nitialization

For initialization by DATA statement, a character item in nl i st must correspond to a character constant incl i st. The
initial value is assigned according to the following rules:

(1) If thelength of the character iteminnl i st is greater than the length of the corresponding character constant,
the additional character positionsin theitem areinitialy defined as blanks;

(2) if the length of the character iteminnl i st islessthan the length of the corresponding character constant, the
additional charactersin the constant are ignored.

Note that initial definition of a character item causes definition of all character positions. Each character constant initially
defines exactly one character variable, array element, or substring.

The following is a character datainitialization example.
CHARACTER STR1*6, STR2* 3

DATA STR1/' ABCDE /
DATA STR2/' FK&K' /

The character variables STR1 and STR2 are initially defined. Variable STR1 is set to '"ABCDE ', with the sixth character
position defined asblank. Variable STR2 is set to 'FKG', with the fourth and fifth characters of the constant ignored.

59

PromulaFortran Compiler User's Manual

5.12 DECODE Statement

The DECODE statement is the extended internal file input statement.

Syntax:

DECODE(c, fn, u) iolist

Where:
c isan unsigned integer constant or variable having a value greater than zero
fn is a statement label of a FORMAT statement, or a character expression whose value is a format
specification
u isavariable, array element or array name
iolist isalistof character variables, arrays, or array elements
Description:

The DECODE statement is the extended internal file input statement. It performs a memory-to-memory transfer of data
similar to an internal file formatted READ. Starting at location u, display code characters in memory are converted
according to the specified format and stored in the variables specified ini ol i st. The parameter ¢ specifies the number of
characters per record in the internal input file.

When DECODE processes an illegal character for a given conversion specification a fatal error results. DECODE can be
used to pack the partial contents of two words into one.

See also:

The READ statement for a discussion of internal files and of formatted input processing.

5.13 The DIMENSION Statement
The DIMENSION statement defines arrays and their bounds.

Syntax:

DIMENSION array(d[,d]...) [/ clist [/]
Where:
array isanarray name.
d specifies the bounds of a dimension in one of the forms:

upper
| ower : upper

upper isan expression in which all constants, symbolic constants, and variables are type integer or an
asterisk (*)

| ower isan expressioninwhich all constants, and symbolic constants, and variables are of type integer.

60

PromulaFortran Compiler User's Manual

clist isalistof constants or symbolic constants specifying the initial values. Each item in the list can take the
form:
r*c
c isaconstant or symbolic constant.

r is arepeat count that is an unsigned nonzero integer constant or the symbolic name of such a
constant.

Description:

The DIMENSION statement defines symbolic names as array names and specifies the bounds of each array. More than one
array can be declared in a single DIMENSION statement. Dummy argument arrays specified within a procedure
subprogram can have adjustable dimension specifications. A further explanation of adjustable dimension specifications
appears below.

The parameter upper is the upper bound of the dimension and | ower is the lower bound of the dimension. If only the
upper bound is specified, the value of the lower bound is one. The earlier discussion of arrays in Chapter 2 presented the
exact form of a dimension bound expression.

The following shows the relation between the DIMENSION statement and a type declaration statement.

REAL NI L
DI MENSI ON NI L(6, 2, 2)

isequivalent to
REAL NI L(6,2,2)
and both are equivaent to

DI MENSI ON NI L(6, 2, 2)
REAL NI L

In the following example

CHARACTER*8 XR
DI MENSI ON XR(0: 4)

the array XR contains 5 character elements, with each element having a length of 8 characters. A reference to the third and
fourth characters of the second element would be XR(1) (3: 4).

The following example shows an expression in a DIMENSION bound specification:

PARAVETER(N=100)
DI MENSI ON ARR(1: N3, 0: 5)

Array ARR is a two-dimensional array that contains 1800 elements. The value of N in the dimension bound expression for
the first dimension is defined in the PARAMETER statement; thus the first bound goes from 1 to 300, while the second
goesfrom0to 5.

Within the same program unit, only one definition of an array is permitted. Note that dimension information can be
specified in COMMON statements and type statements. The dimension information defines the array dimensions and the
bounds for each dimension.

61

PromulaFortran Compiler User's Manual

5.13.1 Adjustable Dimensions

Adjustable dimensions enable creation of a more general subprogram that can accept varying sizes of array arguments. For
example, a subroutine with afixed array can be declared as:

SUBROUTI NE SUM A)
DI MENSI ON A(10)

The maximum array size subroutine SUMcan accept is 10 elements.

If the same subroutine isto accept an array of any size, it can be written as:

SUBROUTI NE SUM A, N)
DI MENSI ON A(N)

Value N is passed as an actual argument.

Adjustable dimensions can be passed through common variables. For example,

SUBROUTI NE SUB(A)
COWON B/ M N
DI MENSI ON A(M N)

Dimension of array A, in subroutine SUB, is specified by the values Mand N passed through the common block B.

Character strings and arrays can also be adjustable. For example,

SUBROUTI NE MESSAG(X)
CHARACTER X* (*)
PRINT *, X

The subroutine declares X with a length of (*) to accept strings of varying size. Note that the length of the string is not
passed explicitly as an actual argument.

Another form of adjustable dimension is the assumed-size array. In this case, the upper bound of the last dimension of the
array is specified by an asterisk. The value of the dimension is not passed as an argument, but is determined by the number
of elements stored in the array. If an array is dimensioned *, the array in the calling program must be large enough to
contain all the elements stored into it in the subprogram. See the following for example.

SUBROUTI NE CAT (A M N, B, O)

REAL A(M, B(N), C(*)
DO 10 I=1, M

10 C(1)=A(l)
DO 20 I=1, N

20 O(1+M =B(1)
RETURN
END

Subroutine CAT places the contents of array A followed by the contents of array B into array C. The dimension of Cin the
calling program must be greater than or equal to M+N. Use of the asterisk form of the adjustable dimension to prevent
subscript checking for the array is preferable to the common practice of declaring arrays to have dimension 1.

See also:

The description of arrays isin chapter 2. This description covers the properties of arrays, the storage of arrays, and array
references.

62

PromulaFortran Compiler User's Manual

5.14 DO Statement

The DO statement repeats a group of statements.

Syntax:
DO sl [,] v=el,e?[,e3]
[bl ock]
sl exec
or
DO v=el, e2, [, e3]
[bl ock]
ENDDO
Where:
sl isthe label of an executable statement.
v isan integer, real, or double precision variable.
el is an arithmetic expression.
e2 is an arithmetic expression.
e3 is an arithmetic expression.
exec isan executable statement.
bl ock isablock of executable statements.
Description:

The DO statement is used to specify aloop, called a DO loop, that repeats a group of statements. In the first form sl isthe
label of an executable statement called the terminal statement of the DO loop. 1n the second form the ENDDO behaves like
a CONTINUE statement and as such may be treated as the terminal statement. The parameter v is the control variable for
the loop. It may be any noncomplex arithmetic type. The parametersel, e2, and e3 are called indexing parameters; they
can be integer, real, or double precision. The types of these expressions are always converted to the type of the control
variable prior to their use. The parameter el isthe initial parameter, e2 is the terminal parameter, and e3 is an optional
increment parameter — if omitted its defaultis 1.

Theterminal statement of a DO loop is an executable statement that must physically follow and reside in the same program
unit as its associated DO statement. The terminal statement must not be an unconditional GO TO, assigned GO TO,
arithmetic IF, or block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or DO statement. If the terminal statement is
alogical IF statement, it can contain any statement except a DO, block IF, ELSE IF, ELSE, END IF, END, or another
logical IF.

The range of a DO loop consists of all the executable statements following the DO statement up to and including the
terminal statement. The DO statement execution is as follows:

1. Theexpressionsel, e2, and e3 are evaluated and, if necessary, converted to the type of the control variable
V.

2. Control variable v is assigned the value of e1.

3. Theiteration count is established; this value is determined by the following expression:

63

PromulaFortran Compiler User's Manual

MAX(| NT((m2- ml+nB)/ n8), ntc)

Where:
m, n2, n8 are the values of the expressions e1, e2, and e3, respectively, after conversion to the
type of v.
mc is the minimum trip count; nt ¢ normally has a value of 0. It may be set to 1 if a very

old dialect of FORTRAN is being processed.

4. If the iteration count is not 0, the range of the DO loop is executed. If the iteration count is 0, execution
continues with the statement following the terminal statement of the DO loop; the control variable retains its
most recent value, which istypicaly n+n8.

5. Control variable v isincremented by the value of e3.
6. Theiteration count is decremented by one.

Steps 4 through 6 are repeated until the iteration count has a value of 0.

If a DO loop appears within an IF-block, the range of the DO loop must be entirely contained within the IF-block. If a
block | F statement appears within the range of a DO loop, the corresponding END |F statement must also appear within the
range of that DO loop.

A DO loop can be active, inactive, or nested. Each is discussed below.

5.14.1. Activeand Inactive DO L oops

Initially, a DO loop isinactive. A DO loop becomes active only when its DO statement is executed. Once active, a loop
becomes inactive when any of the following occurs:

1. Theiteration count is determined to be 0.
2. A RETURN, STOP, or END statement is executed within the program unit containing the loop.
3. The control variable becomes undefined or is redefined (by a process other than loop incrementation).
4. Itisintherange of another loop that becomes inactive.
5. Itisin the range of another loop whose DO statement is executed. Transfer of control out of the range of a
DO loop does not deactivate the loop. When such atransfer occurs, the control variable retains its most recent
value in the loop. Control can be returned to the range of the loop provided that the control variable is not
redefined outside the range or the program unit containing the loop has not been exited by aRETURN, STOP,
or END statement. The loop becomes inactive once the control variable is redefined and should not be
reentered except through its DO statement.
If aDO loop executes zero times, the control variable value equals m.. Otherwise, if the index variable iterates through the
terminal parameter value, the control value is the most recent value of the control variable plus the increment parameter

value.

If a DO loop becomes inactive but has not executed to completion (iteration count does not equal 0), its control variable
retains its most recent value unless it has become undefined.

Transfer into the range of an inactive DO loop from outside the range is strongly discouraged.

64

PromulaFortran Compiler User's Manual

5.14.2 Nested DO Loops

When a DO loop entirely contains another DO loop, the grouping is called a DO nest. The range of a DO statement can
include other DO statements providing the range of each inner DO is entirely within the range of the containing DO
statement.

The last statement of an inner DO loop must be either the same as the last statement of the outer DO loop or must occur
before it. A terminal statement that is shared by more than one DO loop can be referenced in a GO TO or IF statement

from within the range of the innermost loop only. If the terminal statement is referenced from any loop other than the
innermost loop, results are undefined.

5.15 DOUBLE COMPLEX Statement

The DOUBLE COMPLEX statement defines some user defined entity to be of type double complex.

Syntax:

DOUBLE COVPLEX nane[, nane] ...
Where:

name hasone of the forms:

var [/ c /]
array [(d[,d]...)] [/ clist /]

var isavariable, function name, symbolic constant, or dummy procedure.
array isanarray name.
d specifies the bounds of adimension.

clist isalistof constants or symbolic constants specifying the initial values. Each iteminthelist can
take the form:

r*c
¢ isaconstant or symbolic constant.

r isarepeat count that isan unsigned nonzero integer constant or the symbolic name of such a
constant.

Notes:
The DOUBLE COMPLEX statement performs the same action as the COMPLEX* 16 statement.
Description:

The DOUBLE COMPLEX statement is used to define a variable, array, symbolic constant, function name, or dummy
procedure name as type double complex. The symbol may already have been defined in another declaration statement.

See also:

See the discussion of the DIMENSION statement for a description of how dimension bounds are defined.

65

PromulaFortran Compiler User's Manual

See the discussion of the DATA statement for a description of how initial values are defined.

5.16 DOUBLE PRECISION Statement

The DOUBLE PRECISION statement defines some user defined entity to be of type double precision.

Syntax:

DOUBLE PRECI SI ON name[, nane] . ..
Where:
name hasone of the forms:

var [/ c /]
array [(d[,d]...)] [/ clist /]

var isavariable, function name, symbolic constant, or dummy procedure.
array isanarray name.
d specifies the bounds of adimension.

clist isalistof constants or symbolic constants specifying the initial values. Each iteminthelist can
take the form:

r*c
c isaconstant or symbolic constant.

r isarepeat count that isan unsigned nonzero integer constant or the symbolic name of such a
constant.

Notes:
The DOUBLE PRECISION statement performs the same action as the REAL*8 statement.
Description:

The DOUBLE PRECISION statement is used to define a variable, array, symbolic constant, function name, or dummy
procedure name as type double precision. The symbol may already have been defined in another declaration statement.

See also:
See the discussion of the DIMENSION statement for a description of how dimension bounds are defined.

See the discussion of the DATA statement for a description of how initial values are defined.

5.17 DO WHILE Statement

The DO WHILE statement repeats a group of statements while a condition istrue.

Syntax:

66

PromulaFortran Compiler User's Manual

DO sl WH LE(exp)
[bl ock]
sl exec

or

DO WHI LE(exp)
[bl ock]
END DO

Where:
sl isthe label of an executable statement.
exp isalogical expression.
exec isan executable statement.
bl ock isablock of executable statements.
Description:

The DO WHILE statement is similar to the DO statement. The difference is that DO WHILE executes for as long as a
logical expression istrue; while the simple DO executes for afixed number of iterations.

The DO WHILE statement tests the logical expression at the beginning of each execution of the loop, including the first. If
the value of the expression is true, the statements in the body of the loop are executed; if the expression is false, control
transfers to the statement following the loop.

If no label appearsin a DO WHILE statement, the DO WHILE loop must be terminated with an END DO statement.
Example:
The loop below:
DO VHI LE (I .GT. J)
A(l,d) =10

I =1-1
END DO

isequivalent to
DO 10 WHI LE (I .GT. J)
A(l,J) =10

I =1-1
10 CONTI NUE

5.18 ELSE Statement

The EL SE statement specifies an optional statement block to be executed within a block |F statement.

Syntax:
ELSE [I|F (el) THEN]
[block]
END | F

67

PromulaFortran Compiler User's Manual

Where:

el isalogical expression.

bl ock isablock of executable statements.
Description:
If no preceding logical expression with a block IF statement has been true, and if the expression el is true or if el is
omitted, then the executable statements in the block are executed and control is transferred to the first statement
immediately after the END |F statement.
If theel expressionisomitted, then it must be the last EL SE within the block IF.

See also:

See the block |F statement for a compl ete discussion of the various component statements within the block IF construct.

5.19 ENCODE Statement

The ENCODE statement is an internal file output statement.

Syntax:
ENCODE (c, fn, u) iolist
Where:
c isan unsigned integer constant or variable having a value greater than zero.
fn is a statement label of a FORMAT statement, or a character expression whose value is a format
specification.
u isan extended internal file (variable, array element or array name) in which the record is to be encoded.
iolist isalistof variables, arrays or array elementsto be transmitted to the location specified by u.
Description:

ENCODE is similar to an interna file formatted WRITE. Values are transferred to the receiving storage area from the
variables specified in i ol i st under the specified format. The parameter ¢ specifies the number of characters to be
transferred per record. Therecord lengthis calculated from c. The parameter f n describes the format to be used to encode
the values. The parameter u specifiesthe areato receive the encoded information.

The first record starts with the leftmost character of the location specified by u. The internal file must be large enough to
contain the total number of characters transmitted by the ENCODE statement.

If the list and the format specification transmit more than the number of characters specified per record, the excess
characters are ignored. If the number of characters transmitted is less than the record length, remaining characters in the
record are blank filled.

See also:

See the WRITE statement for adiscussion of internal files and of formatted output processing.

68

PromulaFortran Compiler User's Manual

5.20 END Statement

The END statement indicates the end of the program unit to the compiler.

Syntax:

END
Description:
Every program unit must physically terminate with an END statement. The END statement can be labeled. If control flows
into or branches to an END statement in a main program, execution terminates. If control flowsinto or branchesto an END

statement in a function or subroutine, it istreated as if a RETURN statement has preceded the END statement.

An END statement cannot be continued; it must be completely contained on an initial line. A line following an END
statement is considered to be the first line of the next program unit, even if it has a continuation indicator.

5.21 END DO Statement

The END DO statement terminates the range of a DO loop.

Syntax:

END DO
Description:

The END DO statement terminates the range of a DO or DO WHILE statement. It must be used to terminate such a
statement if the statement did not contain a terminal-statement |abel.

See also:

See the DO and DO WHILE statements for a detailed discussion of loops.

5.22 The ENDFILE Statement

The ENDFILE statement writes an end-of-file to the designated unit.
Syntax:
ENDFI LE uni t

or

ENDFILE ([UNIT=] unit [,|OSTAT= status] [,ERR= err])

Where:

uni t isan integer expression.

st at us isan integer lvalue.

err the label of an executable statement.
Notes:

69

PromulaFortran Compiler User's Manual

The simplest form of the ENDFILE statement consists of a single unit specification not enclosed in parentheses. With this
form no additional parameters can be specified. If the parenthetical form of ENDFILE is used, then the "UNIT="
specification is optional; however, when omitted the unit specification must be the first specification. Other than the above,
the order of the parameters within the parenthetical version of the ENDFILE statement is free.

Description:

The ENDFILE statement writes end-of-file to the designated unit. Depending upon the file type, this end-of-file may or
may not be a physical record. ENDFILE is not permitted on units opened for direct access.

The end-of-file can be later detected by the END= and |OSTAT= parameters on other input statements.
See also:
The discussion of the OPEN statement describes the FORTRAN file system in general, including the different file types.

The discussion of the READ statement describes the END= parameter for detecting the end-of-file condition.

5.23 TheEND I F Statement

The END |F statement terminates a block | F construct.
Syntax:

END | F
Description:
The END IF statement is always the last statement of a block IF construct. Whenever a block of statements below the
block IF itself or below one of the ELSE statements has been executed, control is transferred to the first statement
immediately following the END IF statement. Alternatively, if none of the conditional expressions within the block IF are
true and if there is no EL SE with no conditional expression, then control passes directly from the start of the block IF to the
statement immediately following the END IF.
See also:

See the block IF statement for a compl ete discussion of the various component statements within the block IF construct.

5.24 ENTRY Statement

The ENTRY statement defines additional entry points for a procedure established by the SUBROUTINE or FUNCTION
statement.

Syntax:
ENTRY ep[([d[,d]...])]
Where:
ep is a symbolic name which identifies the entry point
d isadummy argument that can be one of the following:

avariable name

an array name

a dummy procedure name

an asterisk, only if in a subroutine subprogram

70

PromulaFortran Compiler User's Manual

Description:

The ENTRY statement can be used to define additional entry points for a procedure established by the SUBROUTINE or
FUNCTION statement. Each procedure subprogram has a primary entry point established by the statement that begins the
program unit. Usually, a subroutine call or function reference invokes the procedure at the primary entry point, and the first
statement executed is the first executable statement in the program unit. ENTRY statements are used to define other entry
points. A procedure that contains one or more ENTRY statementsis said to have "multiple entry points'.

An ENTRY statement can appear anywhere after the SUBROUTINE or FUNCTION statement in the subprogram. When
an entry name is used to reference a procedure, execution begins with the first executable statement that follows the
referenced entry point. An entry name is available for reference in any program unit, except in the procedure that contains
the entry name. The entry name can appear in an EXTERNAL statement and for a function entry name in atype statement.

Each reference to a procedure must use an actual argument list that corresponds in number of arguments and type of
arguments with the dummy argument list in the corresponding SUBROUTINE, FUNCTION, or ENTRY statement. Type
agreement is not required for actual arguments that have no type, such as a dummy subroutine name. The dummy
arguments for an entry point can therefore be different from the dummy arguments for the primary entry point or another
entry point. No dummy argument can be used in an executable statement of a procedure unless it has already appeared in a
FUNCTION, SUBROUTINE, or ENTRY statement.

5.25 The EQUIVALENCE Statement

The EQUIVALENCE statement specifies the sharing of storage by two or more entities in a program unit.
Syntax:

EQUI VALENCE (nlist) [,(nlist)]...
Where:

nlist isalist of variable names, array names, array element names, or character substring names separated by
commeas.

Description:
The EQUIVALENCE statement is used to specify the sharing of storage by two or more entities in a program unit.
Equivalencing causes association of the entities that share the storage. Equivalencing associates entities within a program
unit, and common blocks associate entities across program units. Equivalencing and common can interact.
The behavior of the EQUIVALENCE statement can best be described via an example.

DI MENSI ON Y(4), B(3, 2)

EQUI VALENCE (Y(1), B(3, 1)

EQUI VALENCE (X, Y(2))

In this example storage is shared so that 6 storage words are needed for v, B, and X. The associations are:

B(1, 1)

B(2, 1)

B(3, 1) Y(1)

B(1, 2) Y(2) X

B(2, 2) Y(3)
B(3, 2) Y(4)

In any equivalence set — i.e., set of variables which occupy the same storage because of EQUIVALENCE statements —
one variable is aways the "base" variable; while other variables are the "derived" variables. The base variable is the

71

PromulaFortran Compiler User's Manual

variable which actually allocates storage, while the storage locations of the derived variables are computed from the storage
location of the base variable. In the above example, B is the base variable because it is the "largest" — i.e., occupies the
most memory locations — variable in the equivalence set (B, Y, X) .

The following example shows an equivalence set of character variables.

CHARACTER A*5, C*4, D(2) *2
EQUI VALENCE (A D(1)), (C D(2))

In this example, storage is shared so that 5 character storage positions are needed for A, C, and D. The associations are;

A(1:1) D(1)(1:1)
A(2:2) D(1)(2:2)
A(3:3) D(2)(1:1) C(1:1)
A(4: 4) D(2)(2:2) C(2:2)
A(5:5) C(3:3)

C(4:4)

Again A is the base variable in the equivalence set (A, D, C) because A occupies the most memory. Notice, however, that
the total memory allocated by the equivalence set is larger than the storage allocated to A in the CHARACTER statement,
because the fourth element of C extends beyond the fifth member of A. In such cases, the storage of the base variable is
expanded to allow for the extra storage needed for the equivalence set. Thus, though A will be treated as though it were a
CHARACTER*5 throughout the subprogram, storage is allocated to A as though it were a CHARACTER*6.

Different data types are associated with the equivalencing of the first storage word of each entity:

REAL TR(4)
COWPLEX TS(2)
EQUI VALENCE (TR, TS)

TR(1) TS(1) red part
TR(2) TS(1) imaginary part
TR(3) TS(2) red part
TR(4) TS(2) imaginary part

If the equivalenced entities are of different data types, equivalencing does not cause type conversion. If a variable and an
array are equivalenced, the variable does not acquire array properties and the array does not |ose the properties of an array.
There are no restrictions about equivalencing character and noncharacter variables and the lengths of the equivalenced
character entities can be different.

Each nl i st specification must contain at least two names of entities to be egquivalenced. In a subprogram, names of
dummy arguments cannot appear in the list. Function and entry names cannot be included in the list. Equivalencing
specifiesthat al entities in the list share the same first storage word. For character entities, equivalencing specifies that all
entitiesin the list share the same first character storage position. Equivalencing can indirectly cause the association of other
entities: for instance, when an EQUIVALENCE statement interacts with a COMMON statement.

If an array element is included in nl i st, the number of subscript expressions must match the number of dimensions
declared for the array name. If an array name appears in the list, the effect is as if the first element of the array had been
included in the list. Any subscript expression must be an integer constant expression. For character entities, any substring
expression must be an integer constant expression.

Equivalencing must not reference array elements in such away that the storage sequence of the array would be altered. The
same storage unit cannot be specified as occurring more than once in the storage sequence. For example,

REAL FA(3)
EQUI VALENCE (FA(1), B), (FA(3), B)

would beillegal.

72

PromulaFortran Compiler User's Manual

Also, the normal storage sequence of array elements cannot be interrupted to make consecutive storage words no longer
consecutive. For example,

REAL BZ(7), CZ(5)
EQUI VALENCE (BzZ, Cz), (Bz(3), CZ(4))

would also beillegal.

The interaction of COMMON and EQUIVALENCE statements is restricted in two ways. First, an EQUIVALENCE
statement must not attempt the association of two different common blocks in the same program unit. For example,

COWON /LT/ A T
COWON /LX S, R
EQU VALENCE (T, S)

is not legal. Second, an EQUIVALENCE statement must not cause a common block to be extended by adding storage
words before the first storage word of the common block. On the other hand, common storage words are added at the end
of the common block. For example,

COWON /X A
REAL B(5)
EQU VALENCE (A, B(4))

isnot legal, whereas:
COWON /X A
REAL B(5)
EQUI VALENCE (A, B(1))

can be used to extend the common block.

5.26 EXTERNAL Statement

The EXTERNAL statement defines a symbolic identifier as referring to an external procedure.

Syntax:

EXTERNAL proc[, proc]...
Where:

proc isasymbolic name
Description:

The EXTERNAL statement is used to identify a symbolic name as representing an external procedure and to permit such a
name to be used as an actual argument. The following shows an example of this.

SUBROUTI NE CHECK
EXTERNAL LOW HI GH

CALL AR(LOW VAL)

CALL AR(HI GH, VAL)

END

SUBROUTI NE AR(FUNC, VAL)
VAL= FUNC(VAL)

END

REAL FUNCTI ON LOW X)
REAL FUNCTI ON HI GH(X)

73

PromulaFortran Compiler User's Manual

The names LOWand HI GH are declared as external. In the first call to subroutine AR, LOWis passed as an actual argument
and the function reference FUNC(VAL) is equivalent to LON VAL) . In the second call to subroutine AR, the function
reference FUNC(VAL) isequivalent to HI GH(VAL) .

The EXTERNAL statement al so specifies that the procedure is a user-written rather than an intrinsic function. Consider the
following example.

SUBROUTI NE ARGR

EXTERNAL SQRT

Y= SQRT(X)
END
FUNCTI ON SQRT(XVAL)

Since the name SQRT is declared external, the function reference SQRT(X) references the user-written function SQRT rather
than the intrinsic function SQRT.

If an externa procedure name is an actual argument in a program unit, it must appear in an EXTERNAL statement in the
program unit. A statement function name must not appear in an EXTERNAL statement.

If an intrinsic function name appears in an EXTERNAL statement in a program unit, the name becomes the name of some
external procedure. The intrinsic function with the same name cannot be referenced in the program unit.

527 FORMAT Statement

The FORMAT statement is a nonexecutable statement which specifies the formatting of data to be read or written with
formatted I/O.

Syntax:
s| FORMAT (flist)
Where:
sl is astatement label
flist isalistof items, separated by commas, having the following forms:
[r]ed
ned
[r](flist)
ed is arepeatable edit descriptor.
ned isanonrepeatable edit descriptor.
r isanonzero unsigned integer constant repeat specification.
Format specifications are used in conjunction with formatted input/output statements to produce output or read input that
consists of strings of display code characters. On input, data is converted from a specified format to its internal binary
representation. On output, data is converted from its internal binary representation to the specified format before it is
transmitted. Formats can be specified by:
(1) thestatement label of a FORMAT statement.

(2) aninteger variable which has been assigned the statement label of a FORMAT statement (see ASSIGN
statement).

74

PromulaFortran Compiler User's Manual

(3) acharacter array name or any character expression, except one involving assumed-length character entities.
(4) anoncharacter array name.

The FORMAT statement is used in conjunction with formatted input and output statements. It can appear anywhere in the
program after the PROGRAM, FUNCTION or SUBROUTINE statement. An example of a FORMAT statement and its
associated READ statement is as follows:

READ (5, 10) 1 NK, NAME, AREA
10 FORMAT (10X, 14,12,F7.2)

The format specification consists of edit descriptors in parentheses. Blanks are not significant except in H, quote, and
apostrophe descriptors.

Generally each item in an input/output list is associated with a corresponding edit descriptor in a FORMAT statement. The
FORMAT statement specifies the external format of the data and the type of conversion to be used. Complex variables
always correspond to two edit descriptors. Double precision variables correspond to one edit descriptor when using D, E,
F, or G. The D edit descriptor corresponds to exactly one list item. Complex editing requires two (D, E, F, G) descriptors;
the two descriptors can be different.

The type of conversion should correspond to the type of the variable in the input/output list. The FORMAT statement
specifies the type of conversion for the input data, with no regard to the type of the variable which receives the value when
reading is complete. For example, the statements

I NTEGER N

READ (5,10) N
10 FORMAT (F10.2)

will assign a floating point humber to the variable N which could cause unpredictable results if N is referenced later as an
integer.

5.27.1 Character FORMAT Specifications

A format specification can also be specified as a character expression or as the name of a character variable or array
containing a format specification. The form of these format specificationsis the same as for FORMAT statements without
the keyword FORMAT. Any character information beyond the terminating parenthesis is ignored. The initia left
parenthesis can be preceded by blanks. For example

CHARACTER FORMF 11

DATA FORM ' (I 3, 2E14. 4) ' |

READ (2, FMT=FCRM END=50) N, A, B
isequivalent to

READ (2, FMI=10, END=50) N, A, B
10 FORMAT (I3, 2E14. 4)

The examples above can also be expressed as:
READ 92, FMI=' (13, 2E14.4)',END=50) N, A/ B
or

CHARACTER FORM (*)
PARAVETER (FORME' (13, 2E14. 4)")
READ (2, FMT=FORM END=50) N, A, B

75

PromulaFortran Compiler User's Manual

As a second example consider that
CHARACTER AR(2) *10
DATA AR/' (10X, 212,1",'0X,F6.2)"'/
READ (5, AR) I,J, X

isequivalent to

READ (5, 100) I, J, X
10 FORMAT (10X, 21 2, 10X, F6. 2)

If aformat specification is contained in a character array, the specification may cross element boundaries. Only the array
name need be specified in the input/output statement; all information up to the closing parenthesis is considered to be part
of the format specification.

5.27.2 Noncharacter FORMAT Specifications

Format specifications can be contained in a noncharacter array. The rules for noncharacter format specifications are the
same as for character format specifications.

5.27.3 Edit Descriptors

Edit descriptors specify the data conversions to be performed. Below are the repeatable edit descriptors.

Type Descriptor Description
Character A Character with data-dependent length
Aw Character with specified length
Numeric Dw.d Double precision floating-point with exponent
Ew. d Single precision floating-point with exponent
Ew. dEe Single precision floating-point with exponent length
Fw. d Single precision floating-point without exponent
Gw. d Single precision floating-point with or without exponent

Gw. dEe Single precision floating-point with or without explicitly specified
exponent length

lw Decimal integer
lw. m Decimal integer with minimum number of digits
Logica Lw Logica
Typeless Ow Octal integer
Ow. m Octal integer with leading zeros and minimum number of digits
Zw Hexadecimal integer
Zw. m Hexadecimal with leading zeros and minimum number of digits

Below are the nonrepeatabl e edit descriptors.

Type Descriptor Description
Input control BN Blanksignored in numerics

Bz Blanks treated as zeros in numerics
Scale factor kP Scaling for numeric editing

76

PromulaFortran Compiler User's Manual

Hollerith nH Output Hollerith string
Character output " Output character string
' Output character string
Skip spaces nX Position forward
Numeric output SP Plus signs (+) produced
SS Plus signs (+) suppressed
S Plus signs (+) suppressed
Tabulation Tn Position forward or backward
TRn Position forward
TLn Position backward
Format control : Terminate format control
End of record / Indicates end of current input or output
record
Output control $ Suppress end-of -record on output

In both tables, uppercase letters indicate the type of conversion. Lowercase letters indicate user-supplied information that
has the following meaning;:

w Nonzero unsigned integer constant specifying the field width in number of character positions in the
external record. Thiswidth includes any leading blanks, + or - signs, decimal point, and exponent.

d Unsigned integer constant specifying the number of digits to the right of the decima point within the
field. On output all numbers are rounded.

e Nonzero unsigned integer constant specifying the number of digits in the exponent.

m Unsigned integer constant specifying the minimum number of digits to be output.

k Integer constant scale factor.

n Positive nonzero decimal integer.

The following paragraphs discuss input/output conversions, field separators, repeatable and nonrepeatable edit descriptors,
and repetition factors.

5.27.4 Input/Output Conversions

For the D, E, F, and G input conversions, a decimal point in the input field overrides the decimal point specification of the
field descriptor.

Leading blanks are not significant in numeric input conversions; other blanks in numeric conversions are ignored unless
BLANK="ZERO' is specified for the file on an OPEN statement or a BZ edit descriptor is in effect. Plus signs can be
omitted. An al-blank field is considered to be zero, except for logical input, where an all-blank field is considered to be
FALSE.

The output field is right-justified for all output conversions. |If the number of characters produced by the conversion is less
than the field width, leading blanks are inserted in the output field unless w. m is specified, in which case leading zeros are
produced as necessary. The number of characters produced by an output conversion must not be greater than the field
width. If the field width is exceeded, asterisks are inserted throughout the field.

Complex data items are converted on input/output as two independent floating-point quantities. The format specification
uses two conversion elements.

77

PromulaFortran Compiler User's Manual

COWPLEX A, B, C, D
WRI TE (6, 10) A

10 FORMAT (F7.2, E8.2)
READ (5, 11) B, C, D

11 FORMAT (2E10.3,2(F8.3,F4.1))

Different types of data can be read by the same FORMAT specification. For example,
10 FORMAT (15, F15. 2)
specifiestwo values: the first of type integer, the second of type real.

Example:

CHARACTER R* 4
READ (5, 15) NO, NONE, I NK, A, B, R
15 FORMAT (315, 2F7. 2, Ad)

reads three integer values, two real values, and one character string.

5.27.5 Field Separators

Field separators are used to separate descriptors and groups of descriptors. The format field separators are the dash (/), the
comma, the colon, and the dollar sign ($). The slash is also used to specify demarcation of formatted records; while the
dollar sign blocks the formation of a new record when the end of the format specification is encountered.

5.27.6 Repeatable and Nonrepeatable Edit Descriptors

The repeatable edit descriptors are used to specify numeric, logical, or character data conversions. The repeatable edit
descriptors can be repeated by prefixing the descriptor with a nonzero unsigned integer constant specifying the number of
repetitions required. The repeatable edit descriptorsare A, D, E, F, G, I, L, O, and Z.

The nonrepeatable edit descriptors are used for numeric input/output control, tabulation control, character output control,
format control, end-of-record designation, and scaling for numeric editing. The nonrepeatable edit descriptors cannot be
repeated. The nonrepeatable edit descriptors are single quote (), double quote ("), BN, BZ, colon (:), dash (/), nH, kP, S,
SP, SS, Tn, TLn, TRn, and dollar sign ($).

5.27.7 A Descriptor

The A descriptor is used with an input/output list item of type character or noncharacter. The following paragraphs discuss
the A descriptor for input/output list items of type character and noncharacter.

The form of the A descriptor for character list itemsis:

A
or
Aw

On input, if wis less than the length of the list item, the input quantity is stored left-justified in the item; the remainder of
the item is filled with blanks. If w is greater than the length of the item, the rightmost characters are stored and the
remaining characters areignored. If wisomitted, the length of the field is equal to the length of the list item.

This example shows a character list item:

78

PromulaFortran Compiler User's Manual

CHARACTER A*9
READ (5, 10) A
10 FORVAT (A7)

Input record:
EXAMPLE
Inlocation A:
EXAMPLEM
The second example shows truncation when input is wider than the list item.
CHARACTER B*10

READ (T, 20) B
20 FORMAT (A13)

Input record:
1 13
SPECI FI CATI ON
In location B:
1 10
Cl FI CATI ON

The following example shows that if no length is specified for an A edit descriptor, then the length of the list item is used.

CHARACTER NANE* 30, PHONE* 7
READ (5,' (A A)') NAME, PHONE

On output, if wis less than the length of the list item, the leftmost characters in the item are output. For example, if a
variable A, declared CHARACTER A*8, contains

SAMPLEM
and A is output with the statement
VRITE (6,' (1X, Ad)')A
then the characters SAMP are output.

If wis greater than the length of the list item, the characters are output right-justified in the field, with blanks on the | eft.
For example, if A inthe previous example is output with the statements

VWRI TE (6, 40) A
40 FORMAT (1X, A12)

output is asfollows:

I\/\I\/\SANPLEI\/\

If wis omitted, the length of the character list item determines the length of the output field.

79

PromulaFortran Compiler User's Manual

5.27.8 Single and Double Quote Descriptors

Character strings delimited by a pair of single quote (*) or double quote (") symbols can be used as aternate forms of the H
specification for output. The paired symbols delineate the string. If the string is empty or invalidly delimited, a fatal
compilation error occurs and an error message is printed. The single and double quote descriptors are ignored on input.

A single or double quote within a string delimited by the same symbol can be represented by two consecutive occurrences
of the symbol. Alternatively, if a single quote or double quote appears within a string, the other symbol can be used as the
delimiter.

5.27.9 BN and BZ Blank Interpretation

The nonrepeatable BN and BZ edit descriptors can be used with the repeatable D, E, F, G, and | edit descriptors, on input,
to specify the interpretation of blanks (other than leading blanks). In the absence of a BN or BZ descriptor, blanks in input
fields are interpreted as zeros or are ignored. Their interpretation depends on the value of the BLANK= parameter in the
OPEN statement that is currently in effect for the input/output unit. BLANK='NULL" (blanks ignored) is the default for
input. 1f a BN descriptor is encountered in a format specification, all blank characters in succeeding numeric input fields
areignored; that is, the field is treated as if blanks had been removed, the remaining portion of the field right-justified, and
the field padded with leading blanks. A field of al blanks has a value of zero.

If a BZ descriptor is encountered in a format specification, all blank characters in succeeding numeric input fields are
interpreted as zeros.

For example, assuming BLANK=NULL', if the statement
READ (6,' (113, Bz, 13, BN, 13)')1,J,K
reads the input record
INAANIJAN

I,J, and K are assigned the following val ues:

I =1
J = 200
K=3

5.27.10 Carriage Control Character

The carriage control character isthe first character of a printer output record and is not printed. It appearsin other forms of
output as data.

The carriage control characters are shown below:

Character Action

Blank Space vertically one line, then print

0 Space vertically two lines, then print

1 Eject to the first line of the next page before printing.
+ No advance before printing; allows overprinting

Any other character Refer to the operating system reference manual.

Carriage control characters are required at the beginning of every record to be printed, including new records introduced by
means of adash. Carriage control characters can be generated by any means.

80

PromulaFortran Compiler User's Manual

5.27.11 D Descriptor

The D descriptor specifies conversion between an internal double precision real number and an external floating-point
number written with an exponent. This descriptor has the form:

Dw. d
Oninput, D editing corresponds to E editing and can be used to input all the same formsas E.

The diagram below illustrates the structure of the input field. It shows the characters allowed to start a subfield.

+ . +
digit DorE
integer fraction exponent
subfield subfield

On output, type D conversion is used to output double precision values. D conversion corresponds to E conversion except
that D replaces E at the beginning of the exponent subfield. For example

DOUBLE PRECI SION A, B, C
A = 111111.11111D0
B = 222222.22222D0
C=A+B8B
WRI TE (2,10) A B, C

10 FORMAT (3D23.11)

produces output of:

.11111111111D+06
. 22222222222D+06
. 33333333333D+06

In general, the specification Dw. d produces output in the following format:
s. ateee
for values where the magnitude of the exponent is greater than or equal to 100, and
s. aDtee
for values where the magnitude of the exponent is less than 100
where:
s Minus sign if the number is negative, or blank if the number is positive
a One or more most significant digits

ee[e] Digitsin the exponent

5.27.12 E Descriptor

81

PromulaFortran Compiler User's Manual

The E descriptor specifies conversion between an internal rea or double precision value and an external number written
with an exponent. This descriptor has the forms:

Ew. d
Ew. dEe

On input, the width w includes plus or minus signs, digits, decimal point, E, and exponent. |f an external decimal point is
not provided, d acts as a negative power-of-10 scaling factor. The internal representation of the input quantity is:

(integer subfield) X 109 X 10 (exponent subfi el d)
For example, if the specification is E10.8, the input quantity 3267E+05 is converted and stored as:
3267 X 108 X 10° = 3.267.

If an external decimal point is provided, it overrides d; e, if specified, has no effect on input. An input field consisting
entirely of blanksisinterpreted as zero.

The following diagram illustrates the structure of the E input field. 1t shows the characters allowed to start a subfield.

+ . +

digit E or D

i nt eger fraction exponent
subfield subfield

The integer subfield begins with a + or - sign, a digit, or a blank; and it can contain a string of digits. The integer field is
terminated by a decimal point, E, +, - or the end of the input field.

The fraction subfield begins with a decimal point and terminates with an E, +, -, or the end of the input field. It can contain
astring of digits.

The exponent subfield can begin with E, + or -. When it begins with E, the + is optional between E and the string of digits
in the subfield. For example, the following are valid equivalent forms for the exponent 3:

E+ 03 E 03 EO3 E3 +3

Valid subfield combinations are as follows:

+1. 6327E- 04 I nteger-fracti on-exponent
-32.7216 Integer-fraction
+328+5 | nt eger - exponent
629E- 1 Fracti on- exponent
+136 I nteger only
. 07628431 Fraction only
E- 06 Exponent only

If the field length specified by win Ew. d is not the same as the length of the field containing the input number, incorrect
numbers might be read, converted, and stored.

The example below illustrates a situation where numbers are read incorrectly, converted, and stored; yet there is no
immediate indication that an error has occurred.

OPEN (3, BLANK=' ZERO)
READ (3,20) A B,C
20 FORMAT (E9. 3, E7. 2, E10. 3)

82

PromulaFortran Compiler User's Manual

On the input record, quantities are in three adjacent fields, columns 1 through 24:

+6.47E-01 -2.36 +5. 321E+02
9 5 10

would beread as;

9 7 10
+6.47E-01 -2.36+5 .321E+02/""

First, +647E- 01 is read, converted and placed in location A. The second specification E7. 2 exceeds the width of the
second field by two characters. The number - 2. 36+5 isread instead of - 2. 36. The specification error (E7. 2 instead of
E5. 2) caused the two extra characters to be read. The number read (- 2. 36+5) is a legitimate input number. Since the
second specification incorrectly took two digits from this number, the specification for the third number is now incorrect.
Thefield . 321E+02~" isread. The OPEN statement specifies that trailing blanks are to be treated as zeros; therefore the
number . 321E+0200 is read converted and placed in location C. Here again, this is a legitimate input number which is
converted and stored, even though it is not the number desired.

Some additional examples of Ew. d input specifications are shown below.

Input Field Specification Vaue Remarks

+143.26E-03 E11.2 0.14326 All subfields present.

327.625 E7.3 327.625 No exponent subfield.

-.0003627+5 E11.7 -36.27 Integer subfield only a minus sign and a plus sign
appearsinstead of E.

-.0003627E5 E11.7 -36.27 Integer subfield left of decimal contains minus sign
only.

AANNNAN E4.1 0. All subfields empty.

E+06 E10.6 0. No integer or fraction subfield: zero stored regardless of

exponent field contents.

On output, the width w must be sufficient to contain digits, plus or minus signs, decimal point, E, the exponent, and blanks.
Generally, w must be at least (d+6) or (d+e+4) for negative numbers, and w must be at least (d+5) or (d+e+3) for
positive numbers. Positive numbers need not reserve a space for the sign of the number unless an SP specification isin
effect. If the field is not wide enough to contain the output value, asterisks are inserted throughout the field. If the field is
longer than the output value, the quantity is right-justified with blanks on the left. If the value being converted is indefinite,
an | isprinted in the field; if it isout of range, an R is printed.
The Ew. d specification produces output in the following formats:

s.a...akE = ee
for values where the magnitude of the exponent is less than 100, and

s.a...a t eee

for values where the magnitude of the exponent exceeds 100.

Where:

83

PromulaFortran Compiler User's Manual

s isaminussign if the number is negative, and omitted if the number is positive.
a...a arethemost significant digits of the value correctly rounded.
ee[e] digitsin the exponent.
When the specification Ew. dEe is used, the exponent is preceded by E, and the number of digits used for the exponent field

not counting the letter and sign is determined by e. If e is specified too small for the value being output, the entire field
width as specified by wwill be filled with asterisks.

5.27.13 End-of-Record Slash

The dash indicates the end of a record anywhere in the FORMAT specification. When a slash is used to separate edit
descriptors, a comma is allowed, but not required. Consecutive slashes can be used and need not be separated from other
elements by commas. When a dash isthe last format specification to be processed, it causes a blank record to be written on
output or an input record to be skipped. Normally, the slash indicates the end of a record during output and specifies that
further data comes from the next record during input.

5.27.14 F Descriptor

The F descriptor specifies conversion between an internal real or double precision humber and an external floating-point
number without an exponent. This descriptor has the form:

Fw. d

On input, the F specification is treated the same as the E specification. Examples of F input are shown below

Input Field Specification Value Remarks

367.2593 F8.4 367.2593 Integer and fraction field.

.62543 F6.5 .62543 No integer subfield.

.62543 F6.2 .62543 Decimal point overrides d of specification.

+144.15E-03 F11.2 14415 Exponents are allowed in F in-put.

50000 F5.2 500.00 No fraction subfield; input number converted as
50000x1072

AN F5.2 0 Blanksin input field interpreted as 0.

On output, the F descriptor outputs a real number without a decimal exponent. The plus sign is suppressed for positive
numbers. If the field istoo short, al asterisks appear in the output field. If the field is longer than required, the number is
right-justified with blanks on the | eft.
The specification Fw. d outputs a number in the following format:

sn.n

where;

n isafield of decimal digits

84

PromulaFortran Compiler User's Manual

s isaminussign if the number is negative, or omitted if the number is positive
The following shows some examples of F output:

Vaueof A FORMAT Output (Before Printing)

+32.694 F6.3 N32.694
+32.694 F10.3 AAAN32.694
-32.694 F6.3 A

**.32694 F43F6.3 ~.327".327

32.694 F6.0 N33,

5.27.15 G Descriptor

The G descriptor specifies conversion between an internal real or double precision number and an external floating-point
number written either with or without an exponent, depending on the magnitude of the number. This descriptor has the
forms:

Gw. d
Gw. dEe

On input, the G specification is treated the same as the E specification. The rules which apply to the E specification also
apply to the G specification. For example,

READ (5,11) A BC
11 FORMAT (Gl3.6, 2G12. 4)

On output, results depend on the size of the floating-point number being edited. For values in the range greater than or
equal to .1 and less than 10d the number is output under F format. For values outside this range, Gw. d output is identical
to Ew. d and Gw. dEe isidentical to Ew. dEe.

If a number is output under the Gv. d specification without an exponent, four spaces are inserted to the right of the field
(these are reserved for the exponent field Exee). Therefore, for output under G conversion, wmust be greater than or equal
to d+6. The 6 extra spaces are required for sign and decimal point plus four spaces for the exponent field. If the Gn. dEe
form is used for a number output without an exponent, then e+2 spaces are inserted to the right of the field. See the
examples below:

Y=77.132

WRI TE (7,20) Y
20 FORMAT (Gl0. 3)

Output (before printing): ~"77. 1AM/
EXI T=1214635. 1

WRI TE (4,10) EXIT
20 FORMAT (Gl0. 3)

Output (before printing): ~~. 121E+07

85

PromulaFortran Compiler User's Manual

READ (5, 50) SAMPLE
50 FORMAT (E20.5)

VR TE (6, 60) SAMVPLE
60 FORMAT (1X, Gl4. 8)

Data Read By Output (before Format Option
READ Statement printing)

.1415926535 E-10 M 14159265E-10 E conversion
N 8979323846 M.89793238 F conversion
A 2643383279. M 26433833E+10 E conversion
AMN-693.9937510 N-693.99375 F conversion

5.27.16 H Descriptor

The H descriptor is used to output strings of characters. This descriptor is not associated with a variable in the output list.
The H descriptor has the form:

nHstring

Where:
n isthe number of charactersin the string including blanks.
string isastring of characters.

The H descriptor cannot be used on input.

Note that although using quotes to designate a character string precludes the need to count characters, the H descriptor may
be more convenient if the string contains quotes.

5.27.17 | Descriptor

The | descriptor specifiesinteger conversion. This descriptor has the forms:

lw
I w. m

On input, the plus sign can be omitted for positive integers. When a sign appears, it must precede the first digit in the field.
The | wand I w. mspecifications have the same effect on input. Anall blank field is considered to be zero. Decimal points
are not permitted. The value is stored in the specified variable. Any character other than a decimal digit, blank, or the
leading plus or minus sign in an integer field on input will cause an error. See example of | input below.

OPEN (2, BLANK=" NULL")
READ (2,10) |,J,K L MN
10 FORMAT (13,17,12,13,12,14)
Input Record:

1397AAA- 1518MTANN NG

In storage:

86

PromulaFortran Compiler User's Manual

contains 139
contains -15
contains 18
contains 7
contains 0
contains 14

zZ2 D X« —

If BLANK="ZERO' had been specified on the OPEN statement, J would contain -1500 and N would contain 104. Other
values would not be affected.

On output, if the integer is positive, the plus sign is suppressed unless an SP specification is in effect. Leading zeros are
suppressed.

If 1 w. mis used and the output value occupies fewer than mpositions, leading zeros are generated to fill up to mdigits. If
m=0, azero value will produce all blanks. If mew, no blankswill occur in the field when the value is positive, and the field
will be too short for any negative value. If the field istoo short, asterisks occupy the field.

5.27.18 L Descriptor

The L descriptor isused to input or output logical items. This descriptor has the form:

Lw

Oninput, if the first nonblank charactersinthefield are T or .T., the logical value . TRUE. is stored in the corresponding list
item, which should be of type logical. If the first nonblank characters are F or .F., the value .FALSE. is stored. If the first
nonblank charactersarenot T, .T., F, or .F., adiagnostic is printed. An all blank field has the value .FALSE.

On output, variables under the L specification should be of type logical. A value of .TRUE. or .FALSE. in memory is
output as aright-justified T or F with blanks on the | eft.

5.27.19 O Descriptor

The O descriptor (letter O) isused to input or output itemsin octal format. This descriptor has the forms:

Ow
Onv. m

The form On. mmeans the same as Owv oninput. The octal digits are the digits O through 7.

On input blanks are allowed, and a plus or minus sign can precede the first octal digit. Blanks are interpreted as zeros, and
an al blank field isinterpreted as zero. A decimal point is not allowed.

On output the rightmost w digits are output. If mis specified, the number is printed with leading zeros so that at least m
digits are printed.

5.27.20 P Descriptor

The P descriptor is used to change the position of a decimal point of a real number when it is input or output. The P
descriptor has the form:

kP

87

PromulaFortran Compiler User's Manual

where k is a signed or unsigned integer constant called the scale factor. Scale factors can either precede D, E, F, and G
format specifications or appear independently. Forms are as follows:

kPDw. d
kPEwW. dEe
kPEw. d
kPFw. d
kPGw. d
kP

A scale factor of zero is established when each FORMAT specification is first referenced; it holds for al F, E, G, and D
field descriptors until another scale factor is encountered.

Once a scale factor is specified, it holds for all D, E, F, and G descriptorsin that FORMAT specification until another scale
factor is encountered. To nullify this effect for subsequent D, E, F, and G descriptors a zero scale factor (OP) must be
specified. For example,

15 FORVAT(2P, E14. 3, F10. 2, G16. 2, OP, 4F13. 2)

The 2P scale factor applies to the E14. 3 format specification and also to the F10. 2 and G16. 2 format specifications. The
0P scale factor restores normal scaling (10 0 = 1) for the subsequent specification 4F13. 2.

Example:

20 FORMNAT(3P, 5X, E12. 6, F10. 3, 0PD18.7,-1P, F5. 2)

E12. 6 and F10. 3 specifications are scaled by 103. The D18. 7 specification is not scaled, and the F5. 2 specification is
scaled by 107 1.

The specification (3P, 31 9, F10. 2) isthe same as the specification (31 9, 3PF10. 2) .

On input, for F, E, D, and G editing, the number is divided by 10X and stored, provided that the number in the input field
does not have an exponent. For example, if the input quantity 314.1592 is read under the specification 2PF8.4, the internal

number is 314.1592 x 10 -2 = 3.141592. However, if an exponent is read the scale factor is ignored.

On output, for F editing, the number in the output field is the internal number multiplied by 10K In the output
representation, the decimal point is fixed; the number is adjusted to the left or right, depending on whether the scale factor
is plus or minus. For example, the internal number -3.1415926536 can be represented on output under scaled F
specifications as shown below

(-1PF13.6) -.314159

(F13.6) -3.141593

(1PF13.6) -31.415927

(3PF13.6) -3141.592654

For E and D editing, the effect of the scale factor kP is to shift the output coefficient left k places and reduce the exponent
by k. In addition, the scale factor controls the decimal normalization between the coefficient and the exponent such that: if
k isless than or equal to 0, there will be exactly - k leading zeros and d+k significant digits after the decimal point; if k is
greater than O, there will be exactly k significant digits to the left of the decimal point and d- k+1 significant digits to the
right of the decimal point. For example, the number -3.1415926536 is represented on output under the indicated Ew. d
scaling as shown below.

(-3PE20.4) -.0003E+04
(-1PE20.4) -.0314E+02
(E20.4) -.3142E+01
(1PE20.4) -3.1416E+00
(3PE20.4) -314.16E-02

88

PromulaFortran Compiler User's Manual

For G editing, the effect of the scale factor is nullified unless the magnitude of the number to be output is outside the range

that permits effective use of F conversion (namely, unless the number N is less than 10" or greater than or equal to 109).
In these cases, the scale factor has the same effect as described for Ew. d and Dw. d scaling. For example, the numbers -

3.1415926536 and -.00031415926536 are represented on output under the indicated Gw. d scaling as shown
below.
(- 3P&20. 6) -3. 14159
(- 1PG20. 6) -3.14159
(&0.6) -3. 14159
(1PG20. 6) -3.14159
(3P&20. 6) -3. 14159
(5P&20. 6) -3.14159
(7P&20. 6) -3. 14159
(- 3P&20. 6) 000314E+00
(- 1PG20. 6) -.031416E- 02
(&0.6) -.314159E- 03
(1PG20. 6) - 3. 141593E- 04
(3P&20. 6) -314. 1593E- 06
(5P&20. 6) -31415. 93E- 08
(7P&20. 6) -3141593. E- 10

5.27.21 S, SP, SS Plus Sign Control

The nonrepeatable S, SP and SS edit descriptors can be used on output with the repeatable D, E, F, G, and | edit descriptors
to control the printing of plus (+) characters. S, SP and SS have no effect on input.

Normally, FORTRAN does not precede positive numbers by a plus sign on output. |f an SP descriptor is encountered in a
format specification, all succeeding positive numeric fields will contain the plus sign (w must be of sufficient length to
include the sign). If an SS or S descriptor is encountered, the optional plus signs will not appear.

S, SP, and SS have no effect on plus signs preceding exponents, since those signs are always provided.

5.27.22 T,TL, TR Descriptors

TheT, TL, and TR descriptors provide for tabulation control. These descriptors have the forms:

Tn
TLn
TRn

Where:
n isanonzero unsigned decimal integer

When a Tn descriptor is encountered in a format specification, input or output control skips right or left to column n; the
next edit descriptor is then processed.

When a TLn descriptor is encountered, control skips backward (left) n columns. If n is greater than or equal to the current
character position, control skipsto the first character position.

When a TRn descriptor is encountered, control skips forward (right) n characters. TRn isthe same asnX.

On input, control can be positioned beyond the end-of-record, but a succeeding descriptor would read only blanks.

89

PromulaFortran Compiler User's Manual

WithaT, TR, or TL specification, the order of alist need not be the same as that of the input or output record. The same
information can be read more than once.

When a T, TR, TL specification causes control to pass over character positions on output, positions not previously filled
during record generation are set to blanks; those already filled are left unchanged.

5.27.23 Termination of Format Control

A colon () in aformat specification terminates format control if there are no more items in the input/output list. The colon
has no effect if there are more items in the input/output list. This descriptor is useful in forms where nonlist item edit
descriptors follow list item edit descriptors; when the iolist is exhausted, the subsequent edit descriptors are not processed.

5.27.24 X Descriptor

The X descriptor is used to skip character positionsin an input line or output line. X is not associated with a variablein the
input/output list. The X descriptor has the form:

nX

Where:

n isthe number of character positions to be skipped from the current character position; n is a nonzero unsigned
integer.

The specification nX indicates that transmission of the next character to or from a record is to occur at the position n
characters forward from the current position.

When an X specification causes control to pass over character positions on output, positions not previoudly filled during
record generation are set to blanks; however, positions already filled are left unchanged.

5.27.25 Z Descriptor

The Z descriptor isused for hexadecimal conversion. This descriptor has the forms:

Zw
Zw. m

The form Zw. mis meaningful for output only. Hexadecimal digits include the digits O through 9 and the letters A through
F. A hexadecimal digit is represented by 4 bits.

On input embedded blanks are interpreted as zero, and an all blank field is equivalent to zero. The string is stored right-
justified with zeros on the | eft.

On output the rightmost w* 4 bits are converted to hexadecimal and written. If mis specified, the number is printed with

leading zeros so that at least mdigits are output. If the number of hexadecimal digits exceeds w, a field of asterisks is
written.

5.27.26 Repetition Factors

90

PromulaFortran Compiler User's Manual

The repeatable edit descriptors can be repeated by prefixing the descriptor with a nonzero unsigned integer constant
specifying the number of repetitions required. For example,

10 FORMAT (314, 2E7. 3)
is equivalent to:
10 FORMAT (14,14,14,E7.3,E7.3)
Also,
50 FORMAT (4Gl2. 6)
is equivalent to:
50 FORMAT (Gl2.6, Gl2.6, Gl2. 6, GL2. 6)

A group of descriptors can be repeated by enclosing the group in parentheses and prefixing it with the repetition factor. |If
no integer precedes the left parenthesis, the repetition factor is 1. For example,

1 FORMAT (13, 2(E15.3, F6.1,214))

is equivalent to the following specification if the number of items in the input/output list does not exceed the number of
format conversion codes:

1 FORMAT(IE, E15.3,F6. 1,14, 14, E15. 3,
+ F6.1,14,14)

A maximum of five levels of parenthesesis allowed in addition to the parentheses required by the FORMAT statement.

If there are fewer items in the input/output list than indicated by the format conversions in the FORMAT specification, the
EXCess conversions are ignored.

If the number of items in the input/output list exceeds the number of format conversions when the final right parenthesisin
the FORMAT statement is reached, the line formed internally is output. The format control then scans to the left looking
for aright parenthesis within the FORMAT statement. |f none is found, the scan stops when it reaches the beginning of the
format specification. If a right parenthesis is found, however, the scan continues to the left until it reaches the field
separator which precedes the left parenthesis pairing the right parenthesis. Output resumes with the format control moving
right until either the output list is exhausted or the final right parenthesis of the FORMAT statement is encountered.

If n slashes are indicated, a repetition factor can be used to indicate multiple slashes; n-1 lines are skipped on output.

5.27.27 Execution Time FORMAT Specification

Variable format specifications can be read in as part of the data at execution time and used wherever a normal format can
be used. The format can be read in under the A specification and stored in a character array, variable, or array element; or it
can beincluded in a DATA statement. Formats can aso be generated by the program at execution time.

If an array or array element is used, its type can be other than character, although character is the preferred type. In either
case, the format must consist of alist of descriptors and editing characters enclosed in parentheses, but without the keyword
FORMAT and the statement label.

The name of the entity containing the specifications is used in place of the FORMAT statement number in the associated
input/output statement. The name specifies the location of the first word of the format information.

91

PromulaFortran Compiler User's Manual

5.28 FUNCTION Statement

The FUNCTION statement introduces and specifies the name of the main entry point of a function subprogram.

Syntax:

[typ[*len]] FUNCTION fun([d[,d]...])
Where:

typ is any valid type keyword: BYTE, INTEGER, REAL, DOUBLECOMPLEX, DOUBLEPRECISION,
LOGICAL, COMPLEX, CHARACTER

I en isan integer constant, which specifies additional type information
fun is the symbolic name which identifies the function subprogram
d isadummy argument that can be a variable name, array name, or dummy procedure name.

Notes: If there are no dummy arguments, either f un or f un() can be used.
Description:

A function subprogram is a procedure that communicates with the referencing program unit through a list of arguments or
common blocks. It is usualy referred to as an external function. A function subprogram performs a set of calculations
when the name appears in an expression in the referencing program unit. A function subprogram begins with a
FUNCTION statement and ends with an END statement. Control is returned to the referencing program unit when a
RETURN or END is encountered; a RETURN statement of the form RETURN exp is not allowed in a function
subprogram.

A function subprogram can contain any statements except PROGRAM, BLOCK DATA, SUBROUTINE, or another
FUNCTION statement. A function must not directly or indirectly reference itself.

The symbolic name of a function subprogram, or an associated entry name of the same type, is a variable name in the
function. The symbolic name specified ina FUNCTION or ENTRY statement must not appear in any other nonexecutable
statement, except atype statement. If the type of afunction is specified in a FUNCTION statement, then the function name
cannot appear in a type statement. In an executable statement, the symbolic name can appear only as a variable. During
execution, this variable becomes defined and can be referenced or redefined. The value of the function is the value of this
variable when control returns to the referencing program unit.

The type of the function name must be the same in the referencing program unit and the referenced function subprogram.
When type is omitted, the type of the function is determined by the first character of the function name. Implicit typing by
the IMPLICIT statement takes effect only when the function name is not explicitly typed. The name cannot have its type
explicitly specified more than once.

The symbolic name of a function subprogram must not be the same as any other name, except a variable name or common
block name. The function subprogram can have more than one entry point, although alternate returns are prohibited.
Multiple entry points are established through the ENTRY statement.

In a function subprogram, the symbolic nhame of a dummy argument is unique to the program unit and must not appear in
an EQUIVALENCE, PARAMETER, SAVE, INTRINSIC, DATA, or COMMON statement, except as a common block
name. The dummy arguments are replaced with the actual arguments during a function reference.

Dummy arguments that represent array names must be dimensioned by a DIMENSION or type statement. Adjustable
dimensions are permitted in function subprograms.

92

PromulaFortran Compiler User's Manual

The type of the function result is the type of the function name. The arguments must agree in order, number, and type with
the corresponding dummy arguments. Function subprograms can be referenced in any procedure subprogram.

5.29 GENERIC Statement

The GENERIC statement identifies a name as representing a generic function.
Syntax:

GENERI C fun[, fun]...
Where:

fun isageneric function name.
Notes:
The GENERIC statement performs the same action asthe INTRINSIC statement.
Description:

The GENERIC statement is used to identify a name as representing a generic or intrinsic function. This statement enables
use of a generic function name as an actual argument. As an example

SUBROUTI NE DC
GENERI C SQRT

CALL SUBA(X, Y, SQRT)

END

SUBROUTI NE SUBA(A, B, FNC)

B=FNC(A)
END

The name SQRT is declared generic in subroutine DC and passed as an argument to subroutine SUBA. Within SUBA, the
reference FNC(A) references the generic function SQRT. Note that if SQRT were declared EXTERNAL, then a user
function would be assumed.

The appearance of a name in a GENERIC statement declares the name as a generic, intrinsic function name. If an intrinsic
function name is used as an actual argument in a program unit, it must appear in a GENERIC or INTRINSIC statement in
the program unit. The following intrinsic function names must not be used as actual arguments:

Type conversion functions BOOL, CHAR, CMPLX, DBLE, FLOAT, ICHAR, IDINT, IFIX, INT, REAL, and
SINGL

Lexical relationship functions LGE, LGT, LLE, and LLT

Largest/smallest value functions AMAX0, AMAX1, AMINO, AMIN1, DMAX1, DMIN1, MAX, MAX0, MAX1,
MIN, MINO, MINO

Logical and masking functions AND, OR, XOR, NEQV, EQV

The appearance of a generic intrinsic function name in a GENERIC statement does not remove the generic properties of the
name.

See Also:

93

PromulaFortran Compiler User's Manual

The EXTERNAL statement which allows user subprograms to be used as parameters.

The INTRINSIC statement which is equivalent to this statement.

5.30 GOTO Statement

The GOTO statement transfers control to alabeled statement in a program unit.
Description:

The three types of GOTO statements are the unconditional GOTO, the computed GOTO, and the assigned GOTO. Eachis
discussed separately below.

See Also:

The ASSIGN statement which assigns labels to variables for use in the assigned GOTO statement.

5.30.1 Unconditional GOTO
The unconditional GOTO branches directly to a statement whose label is specified.
Syntax:
G010 sl ab
Where:
sl ab isthelabel of an executable statement.
Description:
Asan example, in the following

10 AAA=B+Z
B=X+Y
| F(A B) 20, 20, 30
20 Z=A
GOTO 10
30 z=B

control transfers to statement 10 when the GOTO statement executes.

5.30.2 Computed GOTO Statement

The computed GOTO statement transfers control to the statement identified by one of the specified labels.

Syntax:

GOTO (sl ab[,slab]...)[,]exp
Where:

sl ab isthelabel of an executable statement.

94

PromulaFortran Compiler User's Manual

exp isanarithmetic expression.
Description:

The label selected is determined by the value of the expression. If exp has a value of 1, control transfers to the statement
identified by the first label in the list; if exp has avalue of 4, control transfers to the statement identified by the fourth label
inthelist, and so forth. The value of exp istruncated and converted to integer, if necessary.

If the value of exp isless than 1 or greater than the number of labels in the list, execution continues with the statement
following the computed GOTO. Asan example, in the following,

GOTQ(10, 20, 30, 20) L

the next statement executed is 10 if L equals 1, 20 if L equals 2 or 4, and 30 if L equals 3.

5.30.3 Assigned GOTO Statement

The assigned GOTO statement transfers control to the executable statement last assigned to an integer variable by the
execution of aprior ASSIGN statement.

Syntax:
GOTO iv [[,] (slab[,slab]...)]
Where:
sl ab isthelabel of an executable statement.
iv isan integer variable.
Description:
The variable i v must not be defined by any statement other than an ASSIGN statement. The list of statement labels is
optional. The possible branches taken by the GOTO are determined entirely by the assignments made to the variable within

the program unit.

In the following example,
ASSI GN 50 TO JUWP
10 GOTO JUMP, (20, 30, 40, 50)
20 CONTI NUE
30 CAT=ZERO+HAT

40 CAT=10. 1-3.
50 CAT=25.2+7.3

statement 50 is executed immediately after statement 10.

5.31 |F Statement

The |F statement evaluates an expression and conditionally transfers control or executes another statement, depending on
the outcome of the test.

Syntax:

| F(aexp) sl abl, sl ab2, sl ab3

95

PromulaFortran Compiler User's Manual

I F(l exp) stat
I F(I exp) THEN

[ELSEI F(1 exp) THEN

-]
[ELSE

1
ENDI F

Where:

aexp isanarithmetic expression.

I exp isalogical expression.

sl abl arelabelsof executable statements.
sl ab2

sl ab3

stat isany executable statement except a DO, block IF, ELSE, ELSE IF, END, END IF, or another logical IF
Statement.

Description:

The |F statement evaluates an expression and conditionally transfers control or executes another statement, depending on
the outcome of the test. The kinds of | F statements are arithmetic IF, logical IF, and block IF.

See also:

The ELSEIF, EL SE, and ENDIF statements which discuss the other components of the block I F statement.

5.31.1 Arithmetic | F Statement

The arithmetic | F statement transfers control to one of three labeled statements, depending on the value of an expression.

Syntax:
I F(exp) sl abl, sl ab2, sl ah3
Where:
exp is an arithmetic expression.
sl abl arelabelsof executable statements.
sl ab2
sl ab3
Description:

If the value of exp is negative, control transfers to the first statement label; if exp is 0, control transfers to the second
statement label; if exp is greater than 0, control transfersto the third statement label.

96

PromulaFortran Compiler User's Manual

As an example, in the following,
READ (5,10) 1,J,K N
10 FORMAT (10X, 41 4)
IF(I-N) 3,4,6
3 | SUMEJ+K
6 CALL ERRORL
VRI TE (6,2) |SUM

2 FORMAT (110)
4 END

If I islessthan N, control transfers to statement 3, elseif I equals N control transfers to statement 4, else control transfers
to statement 6.
5.31.2 Logical IF Statement
Thelogical IF statement allows for conditional execution of a statement.
Syntax:
| F(exp) stat
Where:
exp isalogical expression.

stat isany executable statement except a DO, block IF, ELSE, ELSE IF, END, END IF, or another logical I1F
Statement.

Description:

If the value of exp is true, statement st at is executed. If the value of exp is false, st at is not executed; execution
continues with the next statement.

Asan example

| F(P. AND. Q) RES=7.2
TEMP=RES* Z

if P and Qare both true, the value of the variable RES is replaced by 7.2; otherwise, the value of RES is unchanged. In either
case, TEMP is set equal to RES times Z.

As another example,

IF (A LT.B) CALL SUB1L
20 ZETA=TEMP+RES4

if Aislessthan B, the subroutine SUBL is called. Upon return from this subroutine, statement 20 is executed. If Aisgreater
than or equal to B, statement 20 is executed and SUBL1 is not called.

5.31.3 Block | F Statement

The block IF statement allows conditional execution of ablock of executable statements.

97

PromulaFortran Compiler User's Manual

Syntax:

| F(expl) THEN

[ELSEl F(exp2) THEN

o]
[ELSE

1
ENDI F

Where:

expl arelogical expressions.
exp2

Description:

The block IF statement is used with the END IF and, optionally, the ELSE and ELSE IF statements to form block IF
structures. If the logical expression is true, execution continues with the next executable statement. If expl or exp2 is
false, control transfers to an ELSE or ELSE IF statement; or if none are present, to an END IF statement. If control is
transferred to an ELSEIF, it behaves exactly as the original IF, except that its logical expression is tested. If control is
transferred to an EL SE, then the statementsimmediately following it are executed.

In general, block IF structures provide for alternative execution of blocks of statements. A block |F structure begins with a
block IF statement, ends with an END | F statement and, optionally, includes one EL SE or one or more EL SE |F statements.
Each block IF, ELSE, and EL SE IF statement is followed by an associated block of executable statements called if-block.

The simplest form of ablock IF structure is shown below.

I F(exp) THEN
i f-block
ENDI F

If expression exp is true, execution continues with the first statement in the if-block. 1f exp isfalse, control transfersto the
statement following the END IF statement. The if-block can contain any number of executable statements, including block
IF statements. An actual example of this structure is as follows:

IF (1.EQO0) THEN
X=X+DX
Y=Y+DY
END | F

If 1 iszero, the subsequent statements are executed. If not, control transfers to the statement following END IF.
Control can be transferred out of an if-block from inside the if-block. Control can be transferred into an if-block from
outside the if-block; however, this practice is not recommended. It is not permissible to branch directly to an ELSE, ELSE

IF, or END IF statement. However, it is permissible to branch directly to a block IF statement.

When execution of the statements in an if-block has completed, and if control has not been transferred outside an if-block,
execution continues with the statement following ENDIF.

A block IF structure can contain one EL SE statement to provide an aternative path of execution within the structure. This
structure is shown below.

98

PromulaFortran Compiler User's Manual

I F (exp) THEN
if-block-1
ELSE

i f-block-2
END | F

In the structure with an EL SE statement, execution continues with the first statement in i f - bl ock-1 if exp istrue. If the
last statement of i f - bl ock- 1 does not transfer control, control transfers to the statement following ENDIF. However, if
exp isfalse, control transfers to the first statement ini f - bl ock- 2. If the last statement ini f - bl ock- 2 does not transfer
control, execution continues with the statement following END IF. A block IF statement can have at most one associated
EL SE statement.

An actual exampleisasfollows:

READ (2,12) A B

I F(XSUM LT. XLI M THEN
X(1)=A/2.0+B/ 2.0
XSUMEXSUMEX(1)

WRI TE (3,14) X(1), XSUM
ELSE

Y(1)=A*B

YSUMEY(1)

WRI TE (3, 16) YSUM Y(1)
ENDI F

An IF structure can contain one or more ELSEIF statements to provide for alternative execution of additional block IF
statements. An example of this structure is as follows:

I F(expl) THEN
if-block-1
ELSEIl F(exp2) THEN
i f-block-2
ELSEIl F(exp3) THEN
i f-block-3
ELSE
i f-block-4
ENDI F

This capability allows formation of IF structures containing a number of possible execution paths depending on the
outcome of the associated IF tests. In this structure, the initial block |F statement and each EL SEIF or EL SE statement has
an associated if-block. Only one if-block in this structure is executed (if no nested levels appear). Each logical expression
is evaluated until one is found that is true. Control then transfers to the first statement of the associated if-block. When
execution of the if-block has completed, and if control has not been transferred, control transfers to the statement following
ENDIF. If none of the logical expressions are true and no ELSE statement appears, no if-blocks are executed; control
transfers to the statement following ENDIF. In this structure, at most one if-block is executed.

If an ELSE statement appears, it must follow the last ELSE |IF statement. If no logical expression is true, control transfers
to the statement following EL SE.

There are no restrictions about branching in or out of if-blocks. If a statement branches into an if-block, then execution
continues from that point in exactly the same manner asif control had normally flowed to that statement viathe logic of the
block IF.

Any given if-block may be empty — i.e., contain no statements.
Finally, block IF structures can be nested: that is, any if-block within a structure can itself contain block IF structures.

Within a nesting hierarchy, control can transfer from a lower level structure into a higher level structure; however, control
cannot transfer from a higher level structure into alower level structure without the use of explicit GOTO statements.

99

PromulaFortran Compiler User's Manual

5.32 IMPLICIT Statement

The IMPLICIT statement specifies the default typing that occurs according to the first letters of the names.

Syntax:

IMPLICIT type(ac[,ac]...) [,type(ac[,ac]...)]...
or

I MPLI CI' T NONE
Where:

type isany valid type specification.
ac isasingle letter, or range of letters represented by the first and last letter separated by a hyphen.
Description:

The IMPLICIT statement changes or confirms the default typing that occurs according to the first letters of the names. The
valid type specifications are as follows: BYTE, INTEGER*1, INTEGER*2, INTEGER*4, INTEGER, REAL*4, REAL*8,
REAL, DOUBLECOMPLEX, DOUBLEPRECISION, LOGICAL*1, LOGICAL*2, LOGICAL*4, LOGICAL,
COMPLEX*8, COMPLEX*16, COMPLEX, CHARACTER[*len].

The letters ac indicate which variables are implicitly typed to the specified type. Asan example

I MPLI CI T CHARACTER*20 (M X-2)

specifies that variables whose names begin with the letter Mare typed as character rather than integer; and those beginning
with X, Y, or Z are character rather than real. Default typing is effectivein all other cases. In this second example,

IMPLICI T LOG CAL (L)
INTEGER L, LX, TT

variable L is integer, rather than logical, because it is explicitly typed. LX is integer. The name TT is integer, because an
explicit type overrides the default typing.

The statement specifies the type of variables, arrays, symbolic constants, and functions beginning with the lettersac. The
IMPLICIT statements in a program unit must precede all other specification statements except PARAMETER statements.
AnIMPLICIT statement in a function or subroutine subprogram affects the type associated with dummy arguments and the
function name, as well as other variables in the subprogram. Explicit typing of a variable name or array element in a type
statement or FUNCTION statement overrides an IMPLICIT specification.

The specified single letters or ranges of letters specify the entities to be typed. A range of letters has the same effect as
writing a list of the single letters within the range. The same letter can appear as a single letter, or be within a range of
letters, only oncein al IMPLICIT statementsin a program unit.

The length can be specified implicitly for entities of type character. If length is not specified, the length isone. The length
can be specified as an unsigned nonzero integer constant, or an integer constant expression, enclosed in parentheses, with a
positive value. The specified length appliesto all entitiesimplicitly typed as character.

Note that any explicit typing with a type statement is effective in overriding both the default typing and any implicit typing.

The IMPLICIT NONE statement overrides all implicit defaults. All data types in the program unit must be explicitly
declared. If you specify IMPLICIT NONE, you must not include any other IMPLICIT statement in the program unit.

The IMPLICIT statement has no effect on the default types of intrinsic functions.

100

PromulaFortran Compiler User's Manual

See also:

The explicit TYPE statements BY TE, INTEGER, DOUBLECOMPLEX, DOUBLEPRECISION, REAL, LOGICAL, and
CHARACTER which describe the actual meanings of the various types.

5.33 INCLUDE Statement

The INCLUDE statement specifies that a given source file be included as part of a sourcefile.

Syntax:
I NCLUDE ' file'
Where:
file isthenameof afile
Description:
When the compiler encounters an INCLUDE statement, it stops reading from the current file and reads the statements in the

included file. When it reaches the end of the included file, the compiler resumes reading the statement immediately after
the INCLUDE statement. An INCLUDE statement may appear within an included file; however, nesting may only be five

deep.
The INCLUDE statement can appear anywhere in a program unit; however, it may not begin with a continuation line or

with a comment within a continued statement. Statements within an included file are treated in exactly the same manner as
if they had been physically contained within the file containing the INCLUDE.

5.34 INTEGER Statement

The INTEGER statement defines some user defined entity to be of type integer, short integer, or byte.

Syntax:

I NTEGER[*l en] [,] nane[, nane] . ..
Where:

name hasone of the forms

var [*len] [/ c /]
array [(d[,d]...)] [*len] [/ clist /]

I en specifies the integer subtype and can be an unsigned nonzero integer constant whose value is 1,
20r4.

var isavariable, function name, symbolic constant, or dummy procedure.
array isanarray name.
d specifies the bounds of a dimension.

clist isalistof constants or symbolic constants specifying the initial values. Each iteminthelist can
take the form:

101

PromulaFortran Compiler User's Manual

r*c
¢ isaconstant or symbolic constant.

r isarepeat count that isan unsigned nonzero integer constant or the symbolic name of such a
constant.

Description:

The INTEGER statement is used to define a variable, array, symbolic constant, function name, or dummy procedure name
as type integer, short integer, or byte. A length specification immediately following the word INTEGER applies to each
entity not having its own length specification. A length specification immediately following an entity is the length
specification only for that entity. If the length specification for a given entity is 4 or if it is omitted, then the type defined is
integer. If the valueis 2, thetypeisshort integer, and if the valueis 1, the typeis byte.

See also:

See the discussion of the DIMENSION statement for a description of how dimension bounds are defined.

See the discussion of the DATA statement for a description of how initial values are defined.

5.35 INQUIRE Statement

The INQUIRE statement obtains information about the current status of afile or unit.

Syntax:
I NQUI RE([UNI T=] u[, | OSTAT=i os] [, ERR=s|] [, OPENED=0d] [, NUMBER=nunj
[, NAVED=nnd] [, NAME=f n] [, ACCESS=acc] [, SEQUENTI AL=seq] [, DI RECT=di r]
[, FORMEf i [, FORMATTED=f t] [, UNFORMATTED=unf] [, RECL=rcl] [, NEXTREC=nr]
[, BLANK=bI nk] [, EXI ST=ex])
I NQUI RE(FI LE=fin [, | OSTAT=i os] [, ERR=sl|] [, OPENED=0d] [, NUMBER=nunj
[, NAMED=nnd] [, NAME=f n] [, ACCESS=acc] [, SEQUENTI AL=seq] [, DI RECT=di r]
[, FORMEf i [, FORMATTED=f it] [, UNFORMATTED=unf] [, RECL=r ¢l] [, NEXTREC=nr]
[, BLANK=bI nk] [, EXI ST=ex])
Where:
u isan integer expression.
fin isacharacter expression.
i os isan integer lvalue.
sl isthe label of an executable statement.
ex arelogical lvalues.
od
nnd

num areinteger Ivalues.
rcl
nr

102

PromulaFortran Compiler User's Manual

fn
acc
seq
fm
ft
unf

bl nk

dir

Notes:

are character lvalues.

The "UNIT=" specification is optional; however, when omitted the unit specification must be the first specification. Other
than the above, the order of the parameters within the INQUIRE statement is free.

Description:

There are two forms of the INQUIRE statement. Inquire by unit is used to obtain information about the current status of a
specified unit. Inquire by file is used to obtain information about the current status of afile. Either afile name (inquire by
file) or a unit specifier (inquire by unit), but not both, must be specified in an INQUIRE statement. The file or unit need
not exist when INQUIRE is executed.

Following execution of an INQUIRE statement, the specified parameters contain values that are current at the time the
statement is executed. The actual information returned in the parametersis as follows:

u

ex

sl

od

num

nmd

fn

acc

seq

dir

is the unit number of thefile.

isalogical variable which returns .TRUE. if the file (unit) exists, and .FALSE. if the file (unit) does not
exist.

is the status code for thefile.
is the statement |abel where execution branches if an error occurs.

isalogical variable which returns . TRUE. if the file (unit) is connected to a unit (file), and .FALSE. if the
file (unit) is not connected to a unit (file).

is an integer variable which returns the external unit number of the unit currently associated with the file;
undefined if the file is not associated with a unit.

isalogical variable which returns .TRUE. if the file has a name, and .FALSE. if the file does not have a
name.

is a character variable which returns the name of the file associated with unit u.

is a character variable which returns the access method of the file: 'SEQUENTIAL' if the file is opened
for sequential access input/output, and '‘DIRECT' if the file is opened for direct access input/output. If the
fileis not opened, acc is undefined.

is a character variable which returns whether or not the file can be opened for sequential access
input/output. It returns 'Y ES if the file can be opened for sequential access input/output, 'NO' if the file
cannot be opened for sequential access input/output, and 'UNKNOWN' if this cannot be determined.

is a character variable which returns whether or not the file can be opened for direct access input/output.
It returns 'YES if the file can be opened for direct access input/output, ‘NO' if the file cannot be opened
for direct access input/output, and 'UNKNOWN' if this cannot be determined.

103

PromulaFortran Compiler User's Manual

fm is a character variable which returns whether or not the file is formatted. It returns ' FORMATTED' if the
file is opened for formatted input/output, and 'UNFORMATTED' if the file is opened for unformatted
input/output. If the file has not been opened, fm is undefined.

fnt is a character variable specifying whether the file can be opened for formatted input/output. It returns
'YES' if the file can be opened for formatted input/output, 'NO' if the file cannot be opened for formatted
input/output, and 'UNKNOWN" if it cannot be determined if the file can be opened for formatted
input/output.

unf is a character variable specifying whether the file can be opened for unformatted input/output. It returns
'YES' if the file can be opened for unformatted input/output, 'NO' if the file cannot be opened for
unformatted input/output, and 'UNKNOWN' if it cannot be determined if the file can be opened for
unformatted input/output.

rcl is an integer variable which returns the record length of a file opened for direct access. If the file is
'FORMATTED!, rcl contains the record length in characters; if 'UNFORMATTED', the record length is
inwords. It isundefined if the fileis not opened for direct access.

nr is an integer variable which, for a direct access file, returns the record number of the last record read or
written plus one. If no records have been read or written, nr contains 1. For sequentia files it is
undefined.

bl nk isacharacter variable which specifies the treatment of blanks. It returns'NULL" if null blank control isin
effect for afile opened for formatted input/output. It returns'ZERO' if zero blank control isin effect for a
file opened for formatted input/output. It is undefined if the file is not opened for formatted input/output.

If an error occurs as a result of the inquire, and if neither sl nor i os are supplied, then execution will terminate with an
error code set. If either or both are supplied, the execution continues despite any errors.

If supplied, thei os lvalue receives the runtime error code for the error condition encountered or a zero, if no error occurred.
If sl issupplied, then execution will branch to the statement labeled by it if an error occurs.

If a unit number is specified and the unit is opened, the NAMED, NAME, ACCESS, SEQUENTIAL, DIRECT, FORM,
FORMATTED, UNFORMATTED, RECL, NEXTREC, OPENED, EXIST, NUMBER, ACCESS, and BLANK variables
will contain information about the file associated with the unit.

If afile nameis specified, the NAMED, NAME, SEQUENTIAL, DIRECT, FORMATTED, UNFORMATTED, OPENED,
EXIST, NUMBER, ACCESS, FORM, RECL, NEXTREC, and BLANK variables will contain information about the file
and the unit it is associated with. EXIST returns a TRUE value only if a non-empty local file by this name exists or if an
empty local file by this nameis currently open.

When EXIST returns a FALSE value, the NUMBER, NAMED, NAME, ACCESS, SEQUENTIAL, DIRECT, FORM,
FORMATTED, UNFORMATTED, RECL, NEXTREC, and BLANK variables will contain undefined values. This does
not result in an error.

If afileis specified that is associated with more than one unit, the NUMBER variable will contain one of the unit numbers
or names.

Note that if a unit that is not associated with afile is specified, only the IOSTAT and EXIST variables contain values.
See also:

The discussion of the OPEN statement describes the FORTRAN file system in general, including the different file types.

104

PromulaFortran Compiler User's Manual

5.36 INTRINSIC Statement

The INTRINSIC statement identifies a name as representing an intrinsic function.

Syntax:

INTRINSI C fun[,fun]...
Where:

fun isan intrinsic function name.
Notes:

The INTRINSIC statement performs the same action as the GENERIC statement.
Description:

The INTRINSIC statement is used to identify a name as representing a generic or intrinsic function. This statement enables
use of a generic function name as an actual argument. As an example

SUBROUTI NE DC

| NTRI NSI C SQRT

CALL SUBA(X, Y, SQRT)

END

SUBROUTI NE SUBA(A, B, FNC)

B=FNC(A)

END
The name SQRT is declared generic in subroutine DC and passed as an argument to subroutine SUBA. Within SUBA, the
reference FNC(A) references the generic function SQRT. Note that if SQRT were declared EXTERNAL, then a user
function would be assumed.
The appearance of a name in an INTRINSIC statement declares the name as a generic, intrinsic function name. If an
intrinsic function name is used as an actual argument in a program unit, it must appear in a GENERIC or INTRINSIC
statement in the program unit. The following intrinsic function names must not be used as actual arguments:

Type conversion functions BOOL, CHAR, CMPLX, DBLE, FLOAT, ICHAR, IDINT, IFX, INT, REAL, and
SINGL

Lexical relationship functions LGE, LGT, LLE, and LLT

Largest/smallest value functions AMAX0, AMAX1, AMINO, AMIN1, DMAX1, DMIN1, MAX, MAX0, MAX1,
MIN, MINO, MIN1

Logical and masking functions AND, OR, XOR, NEQV, EQV

The appearance of a generic intrinsic function name in an INTRINSIC statement does not remove the generic
properties of the name.

See Also:
The EXTERNAL statement which allows user subprograms to be used as parameters.

The GENERIC statement which is equivalent to this statement.

105

PromulaFortran Compiler User's Manual

5.37 LOGICAL Statement

The LOGICAL statement defines some user defined entity to be of type logical, short logical, or logical byte.

Syntax:

LOd CAL[*l en] [,] nane[, nane] ..
Where:

name hasone of the forms

var [*len] [/ c /]

array [(d[,d]...)] [*len] [/ clist /]

I en specifies the integer subtype and can be an unsigned nonzero integer constant whose value is 1,
2o0r4.

var isavariable, function name, symbolic constant, or dummy procedure.
array isanarray name.
d specifies the bounds of a dimension.

clist isalistof constants or symbolic constants specifying the initial values. Each iteminthelist can
take the form:

r*c
c isaconstant or symbolic constant.

r isarepeat count that isan unsigned nonzero integer constant or the symbolic name of such a
constant.

Description:

The LOGICAL statement is used to define a variable, array, symbolic constant, function name, or dummy procedure name
astype logical, short logical, or logical byte. A length specification immediately following the word LOGICAL applies to
each entity not having its own length specification. A length specification immediately following an entity is the length
specification only for that entity. If the length specification for a given entity is 4 or if it is omitted, then the type defined is
logical. If thevalueis 2, thetypeisshort logical, and if the valueis 1, the typeislogical byte.

See also:

See the discussion of the DIMENSION statement for a description of how dimension bounds are defined.

See the discussion of the DATA statement for a description of how initial values are defined.

5.38 NAMELIST Statement

The NAMELIST statement defines a group of variables and/or arrays for later input or output.

Syntax:

106

PromulaFortran Compiler User's Manual

NAMVELI ST/ name/a[,a]...[/nanme/a[,a]...]...
Where:

nane isasymbolic name.

a isavariable or array name.
Description:

The NAMELIST statement permits the input and output of groups of variables and arrays with an identifying name. No
format specification is used. The NAMELIST statement is a nonexecutable statement that appears in the program
following the declarative portion. The symbolic group name must be enclosed in slashes and must be unique within the
program unit.

The namelist group name identifies the succeeding list of variables or array names. It must be declared in a NAMELIST
statement before it is used in an input/output statement. The group name can be declared only once, and it cannot be used
for any purpose other than a namelist name in the program unit. It can appear in READ, WRITE, PRINT, and PUNCH
statements in place of the format designator. When a namelist group name is used, the list must be omitted from the
input/output statement.

A variable or array name can belong to one or more namelist groups. Assumed size arrays cannot appear in a namelist
group.

Data read by a single namelist name READ statement must contain only names listed in the referenced namelist group. All
items in the namelist group, or any subset of the group, can be input. Values are unchanged for items not input. Variables
need not be in the order in which they appear in the defining NAMELIST statement.

The program in the following example

PROGRAM NMLI ST
NAVELI ST /SHIP/ A B, C 11,12
READ(*, SHI P, END=10)
IF(C .GT. 0.0) THEN
A=B+C
[1=11+12
WRI TE(*, SHIP)
ENDI F
STOP

10 PRINT *, ' NO DATA FOUND
STOP
END

can read the following input record
$SH P A=14.7,B=12. 3, C=3. 4,1 1=58, | 2=8$END

and if the above were read would produce the following outpuit:

$SH P

A = . 157E+02,
B = .123E+02,
C = . 34E+01
11 = 66,

12 =8,

$END

107

PromulaFortran Compiler User's Manual

The following sections discuss namelist input and output and arrays in namelist. The syntax descriptions are simplified to
focus the discussion on the namelist. See the sections on READ, WRITE, PRINT, and PUNCH for a general discussion of
these statements.

5.38.1 NAMELIST READ Statement

The namelist READ statement reads input data from a designated file. Its simplified syntax is shown below.

Syntax:

READ(u, nane)
Where:

u isan integer expression.

nane istheidentifier of aNAMELIST group.
Description:

When a READ statement references a namelist group name, input data in the format described below is read from the
designated file.

Syntax:
$nanme entity = value [, entity = value, ...] $END
Where:
nane is the name of the namelist that contains the entity or entities whose values are being specified.

entity is a namelist-defined entity. It can be a variable, array name, subscripted variable, variable with a
substring, or a subscripted variable with a substring.

val ue isaconstant, alist of constants, a repetition of constant in the formr *c, or arepetition of valuesin the
formr*.

Where
c isaconstant or symbolic constant.

r isarepeat count that isan unsigned nonzero integer constant or the symbolic name of such a
constant.

As an example, consider the following:

$AGRP Group name

XVAL=5. 0,

ARR=5*(1.7,-2.4), Five complex numbers
CHAR=' H THERE',

$END Group terminator

In each record of a namelist group, column one is reserved for carriage control and must be left blank. Data items
following $name are read until another $ is encountered.

108

PromulaFortran Compiler User's Manual

Blanks must not appear in the following locations:

(1) Between $ and namelist group name,
(2) Between $and END,
(3) Within array names and variable names.

Blanks can be used freely el sewhere.

Complex constants can be broken across records between the real part and the comma, and between the comma and the
imaginary part.

More than one record can be used as input data in a namelist group. The first column of each input record isignored. All
input records containing data should end with a constant followed by a comma; however, the last record can be terminated
by a $ without the final comma. Constants can be preceded by a repetition factor followed by an asterisk. Omitting a
constant constitutes afatal error.

Constants can be integer, real, double precision, complex, logical, exact representation or character. Each constant must
agree with the type of the corresponding input list item as follows:

(1) Character constants and exact representation constants may be associated with any input list item type. A
character constant is truncated from the right, or extended on the right with blanks, if necessary, to yield a
constant of the same length as the variable, array element, or substring.

(2) A logical or complex constant must be of the same type as the corresponding input list item.

(3) Aninteger, real, or double precision constant can be used for an integer, real, or double precision input list
item. The constant is converted to the type of thelist item.

Logical constants have the following forms:

. TRUE. . FALSE.
. T. . F.
Tccc Fccc

If the third form is used, any words starting with T or F may be used. Note that either upper or lower case may be used.

A character constant must have delimiting single or double quotes. If a character constant occupies more than one record,
each continuation of the constant must begin in column two.

A complex constant has the form (real constant, real constant).
Blank characters appearing within noncharacter constants are ignored. The BLANK= parameter in an OPEN statement has

no effect on namelist. If a constant, other than a character constant, contains no characters other than blanks, a fatal error
results.

5.38.2 NAMELIST WRITE, PRINT, PUNCH Statements
The three namelist output statements are WRITE, PRINT, and PUNCH. Their simplified syntax is shown below.
Syntax:

WRI TE(u, nane)

PRI NT nane

PUNCH nane

109

PromulaFortran Compiler User's Manual

Where:

u isan integer expression.

nane istheidentifier of aNAMELIST group.
Description:

All variables and arrays and their values in the list associated with the namelist group nane are output on the file associated
with unit u, OUTPUT, or PUNCH. They are output in the order of specification in the NAMELIST statement. Output
consists of at least three records. The first record isa $ in column 2 followed by the group nane; the last record isa $in
column 2 followed by the characters END. Each group begins with a new record.

As an example, the following

PROGRAM NANE

NAVELI ST / VALUES/ TOTAL, QUANT, COST
DATA QUANT, COST / 15. , 3. 02/

TOTAL = QUANT*COST*1. 3

WRI TE (6, VALUES)

STOP

END

produces the following output:

$VALUES

TOTAL = . 5889E+02,
QUANT = . 15E+02,
cosT = . 302E+01,
$END

No data appears in column 1 of any record. Logical constants appear as T or F. Elements of an array are output in the
order in which they are stored. Character constants are written with delimiting single quotes.

Records output by a namelist WRITE statement can be read later in the same program by a namelist READ statement

specifying the same group name.

5.38.3 Arraysin NAMELIST

In input data the number of constants, including repetitions, given for an array name should not exceed the number of
elementsinthe array. Asasimple example of array use, consider the following code fragment

| NTEGER BAT(10)
NAMELI ST / HAT/ BAT, DOT
READ (5, HAT)

processing the input record

$HAT BAT=2, 3, 8*4, DOT=1. 05$END

The value of DOT becomes 1.05; the array BAT is as follows:

BAT(1) 2
BAT(2) 3
BAT(3) 4
BAT(4) 4

110

PromulaFortran Compiler User's Manual

BAT(5)
BAT(6)
BAT(7)
BAT(8)
BAT(9)
BAT(10)

B DDDD

As a second example, consider the code fragment

DI MENSI ON GAY(5)

NAMELI ST / DAY/ GAY, BAY, RAY

READ (5, DAY)
when it processes the input record:

$DAY GAY(3)=7. 2, 8. 3, GAY(5) =3. 0, BAY=2. 3, RAY=77. 2%
When dataisinput in the form

array el ement=constant, ..., constant

the constants are stored consecutively beginning with the location given by the array element. The number of constants
need not be equal, but must not exceed, the remaining number of elementsin the array. Asafinal example

DI MENSI ON Y(3, 5)

LOG CAL L

COWPLEX Z

NAVELI ST /HURRY/ 11,12,13,K, MY, Z L
READ(5, HURRY)

can process the following input record:

$HURRY | 1=1, L=. TRUE. , | 2=2,13=3. 5, Y(3, 5) =26, Y(1, 1) =11,
12. OE1, 13,4*14, Z=(1.,2.), K=16, MF17$

Thefinal values stored are as follows:

11=1 Y(1,2)=14.0
| 2=2 Y(2,2)=14.0
13=3 Y(3,2)=14.0
Y(3,5)=26.0 Y(1,3)=14.0
Y(1,1)=11.0 K=16
Y(2,1)=120.0 Me17
Y(3,1)=13.0 z=(1.,2.)
L=. TRUE.

Therest of Y is unchanged.

5.39 OPEN Statement

The OPEN statement can be used to associate an existing file with a unit number to create a new file and associate it with a
unit number, or to change certain attributes of an existing file.

Syntax:
OPEN uni t

OPEN ([UNI T=] u[, | OSTAT=i os] [, ERR=sl] [, FI LE=fi n] [, STATUS=st a] [, ACCESS=acc]
[, FORMEf i [, RECL=r |] [, BLANK=bI nk]

111

PromulaFortran Compiler User's Manual

Where:
u isan integer expression.
uni t
i 0s isan integer lvalue.
sl isthe label of an executable statement.
fin isacharacter expression.
sta
acc
fm
bl nk
r isan integer expression.
Notes:

The simplest form of the OPEN statement consists of a single unit specification not enclosed in parentheses. With this
form no additional parameters can be specified. If the parenthetical form of OPEN is used, then the "UNIT=" specification
is optional; however, when omitted the unit specification must be the first specification. Other than the above, the order of
the parameters within the parenthetical version of the OPEN statement is free.

Description:
The OPEN statement can be used to associate an existing file with a unit number, to create anew file and associate it with a
unit number, or to change certain attributes of an existing file. The UNIT= parameter is required; all other parameters are

optional, except for the RECL parameter, which must be specified if afile is being opened for direct access.

If an error occurs as a result of the open, and if neither ERR= nor STATUS= are supplied, then execution will terminate
with an error code set. If either or both are supplied, the execution continues despite any errors.

If supplied, the STATUS= st a lvalue receives the runtime error code for the error condition encountered or a zero, if no
error occurred.

If ERR=sl issupplied, then execution will branch to sl , the statement labeled by it if an error occurs.

The meaning of the other individual parameters on the OPEN statement is as given below.

UNIT=u specifies the unit number of the file to be opened.
FILE=fin is a character expression whose value is the name of the file to be opened. Trailing blanks are

removed. This file becomes associated with unit u. If FILE is omitted, then a file name is
created. See your system manager for the conventions used for creating this name at your site.

STATUS=sta isacharacter expression specifying file status. Valid values are:

'OLD Filefi n currently exists.
'NEW' Filefi n does not currently exist.
'SCRATCH' Delete the file associated with unit u on program termination or execution of

CLOSE that specifies unit u.

112

PromulaFortran Compiler User's Manual

'UNKNOWN" File statusis unknown.
If STATUS is omitted, then an unknown status is assumed.
ACCESS=acc isacharacter expression specifying the access method of the file. Valid values are:
'SEQUENTIAL" Fileisto be opened for sequential access.
'DIRECT' Fileisto be opened for direct access.

If ACCESS is omitted, then sequential access is assumed. If the file exists, the access method
must be valid for the existing file. Direct access files are discussed further in a following

subsection.
FORM=f m isacharacter expression having one of the following values:
'FORMATTED' File is being opened for formatted input/output.

'UNFORMATTED' Fileisbeing opened for unformatted input/output.

If FORM is omitted, FORMATTED is assumed for sequential access files and
UNFORMATTED is assumed for direct access files. For an existing file, the specified form
must be valid for that file.

RECL=r | isan integer expression specifying the record length for a direct or sequential access file. RECL
is required for direct access files. If omitted for sequential files, variable length records are
assumed.

BLANK=bl nk isacharacter expression having one of the following values:

'‘NULL' Blank values in numeric formatted input fields are ignored, except that a field
of all blanksis treated as zeros.

'ZERO' Blanks, other than leading blanks, are treated as zeros.
If omitted, blanks are ignored in numeric input fields.

Once properties of a file have been established in an OPEN statement, only the BLANK= parameter can be changed in a
subsequent OPEN statement for that file, unlessthe fileisfirst closed in a CLOSE statement.

Once a file has been associated with a particular unit, the file can be associated with another unit in a subsequent OPEN
statement. Thefile is then associated with more than one unit. In this case the unit numbers refer to the samefile. Actions
taken on one unit also affect the other unit. For example, closing a unit closes all other units associated with the samefile.

If afileisassociated with a unit and a succeeding OPEN statement associates a different file with the same unit, the effect
is the same as performing a CLOSE without a STATUS= parameter on the currently associated file before associating the
new file with the unit.

5.39.1 Direct Access Files

Direct access file manipulations differ from conventional sequential file manipulations. In a sequentia file, records are
stored in the order in which they are written, and they normally can be read back only in the same order. This can be slow
and inconvenient in applications where the order of writing is not the same as the retrieval order. In addition, such
processing requires a continuous awareness of the current file position and the position of the required record. To remove
these limitations, a direct access file capability is provided by the FORTRAN input/output statements.

113

PromulaFortran Compiler User's Manual

In adirect access file, any record can be read, written, or rewritten directly, without concern for the position or structure of
the file. This is possible because the file resides on a random access mass storage device that can be positioned to any
portion of afile. Thus, the entire concept of file position does not apply to a direct access file. The notion of rewinding a
direct accessfileis, for instance, without meaning.

To create a direct access file the user must specify an OPEN statement with ACCESS='DIRECT" and include the RECL
(record length) parameter. For example,

OPEN(2, FI LE=' DAFL' , ACCESS=' DI RECT' , RECL=120)
opens an unformatted file DAFL for direct access. Thefileis associated with unit 2 and has arecord length of 120 words.
All recordsin adirect access file must have the same length.
The record length for a formatted direct access file is specified in characters. The record length for an unformatted direct
access file is specified in words. If the iolist for an unformatted WRITE contains character data, the record length to be
written must still be specified in words. For all systems integer, logical, and real numeric items count as one word. Double
precision and complex count as two words, and double complex count as four words. The method for counting character
items, and short or byte length items unfortunately varies from system to system. You should consult with your system
manager if you need to write records containing such items to an unformatted direct access file.
A record number identifies a record in a direct access file. The record number is a positive decimal integer that is assigned
when the record is written. Once a record number is assigned to a record, the record can always be accessed by that record
number. The order of record numbersisthe order of records on adirect accessfile.
Records can be written, rewritten, or read by specifying the record number in a READ or WRITE statement. Records can
be read or written in any order; they need not be referenced in the order of their record numbers. The number of the record
to be read or written is specified in a READ or WRITE statement with the REC= parameter.
The REC= parameter, on a direct access READ statement, must not be set to a record number greater than the highest
record number written in the file. An attempt to read record numbers greater than the highest in the file can return
unpredictable data without any error being reported.
If the length of theiolist in a direct access formatted WRITE statement is less than the record length of the direct access
file, the unused portion of the record is blank filled. A direct access WRITE statement must not write a record longer than
the record length.

A direct access file can be opened for formatted or unformatted input/output. However, neither list directed nor namelist
input/output can be used with direct accessfiles.

5.40 PARAMETER Statement

The PARAMETER statement gives a symbolic name to a constant.
Syntax:

PARAMETER (p=e [,p=€e]...)
Where:

p isasymbolic name.

e isaconstant or aconstant expression

Description:

114

PromulaFortran Compiler User's Manual

The PARAMETER statement is used to give a symbolic name to a constant. PARAMETER statements can be used
anywhere among the specification statements, but each symbolic constant must be defined in a PARAMETER statement
before the first reference to the symbolic constant.

As an example consider the following:

PARAMETER (| TER=20, START=5)
CHARACTER CC* (*)
PARAMETER (CC=' (14, F10.5)")
DATA COUNT/ START/
DO 10 J=1, | TER
READ CC, | X, RX

10 CONTI NUE

The symbolic constant START is used to assign an initial value to variable COUNT, the symbolic constant | TER is used to
control the DO loop, and the symbolic constant CCis used to specify a character constant format specification.

A constant expression can contain: a constant, a previoudy-defined symbolic constant, the arithmetic operators, an
extended constant expression enclosed in parentheses.

If a symbolic name is of type integer, real, double precision, complex, or double complex, the corresponding expression
must be an arithmetic constant expression. If the symbolic name is of type character or logical, the corresponding
expression must be a character constant expression or logical constant expression. Each symbolic nhame becomes defined
with the value of the expression that appears to the right of the equals, according to the rules for assignment. Any symbolic

congtant that appears in an expression must have been previously defined in the same or a different PARAMETER
statement in the program unit.

A symbolic name of a constant can be defined only once in a program unit, and can identify only the corresponding
constant. The type of a symbolic constant can be specified by an IMPLICIT statement or type statement before the first
appearance of the symbolic constant in a PARAMETER statement. |If the length of a symbolic character constant is not the
default length of one, the length must be specified in an IMPLICIT statement or type statement before the first appearance
of the symbolic constant. The easiest way to do thisisto explicitly type the symbolic constant as character with length (*).
The actual length of the constant is determined by the length of the string defining it in the PARAMETER statement. The
length must not be changed by another IMPLICIT statement or by subsequent statements.
Once defined, a symbolic constant can appear in the program unit in the following ways:

In an expression in any subsequent statement

InaDATA statement as an initial value or arepeat count

In acomplex constant as the real or imaginary part

A symbolic constant cannot appear in a FORMAT statement.

5.41 PAUSE Statement

The PAUSE statement temporarily suspends execution of a program.
Syntax:
PAUSE [n]

Where:

115

PromulaFortran Compiler User's Manual

n isaninteger or string expression.
Description:

The PAUSE statement causes the program to temporarily suspend execution. At the same time, the message PAUSE n is
written to the CONSOLE file. The manner in which the program is restarted varies from system to system. Consult your
system manager.

5.42 PRINT Statement
The PRINT statement transfers formatted information from the values named in the input/output list to the OUTPUT file.
Syntax:
PRINT fn [,iolist]
Where:
fn isaformat specification.
iolist isan output list.
Notes:
The PRINT statement is a specia case of the formatted WRITE statement.
Description:

The PRINT statement transfers formatted information from the values specified in the input/output list to the OUTPUT file
according to the specified format. This statement isidentical to the statement

WRI TE(*,fn) iolist
Asasimple example consider

PROGRAM PRI NT
CHARACTER B*3
A=1.2
B=' YES
N=19
PRINT 4, A B, N
4 FORWAT (G20.6, A, |5)
PRI NT 50
50 FORMAT (' END OF FILE)
STOP
END

which will convert the values of A, B, and N into a coded record using format 4 and will then write that record to the
OUTPUT file, followed by arecord containing " END OF FILE".

See also:
The WRITE statement describes format specificationsandi ol i st s in detail. Seethat statement for details on these.

543 PROGRAM Statement

The PROGRAM statement defines the program name and begins a new program definition.

Syntax:

116

PromulaFortran Compiler User's Manual

PROGRAM nane[(fpar[,fpar]...)]
Where:

nane isasymbolic name.

fpar isatoken of any type.
Description:

The PROGRAM statement defines a program name and begins a new program definition. The name of the program and
any parameters associated with it are purely for documentation and are not used by the system in any way.

5.44 PUNCH Statement

The PUNCH statement transfers formatted information from the values named in the input/output list to the PUNCH file.

Syntax:
PUNCH fn [,iolist]

Where:
fn isaformat specification.
iolist isanoutputlist.

Notes:

The PUNCH statement is a special case of the formatted WRITE statement.
Description:

The PUNCH statement transfers formatted information from the values specified in the input/output list to the PUNCH file
according to the specified format. This statement isidentical to the statement

WRI TE(u, fn) iolist
where u is aunit number assigned to the PUNCH file.

Asasimple example consider

PROGRAM PUNCH
CHARACTER B*3
A=1.2
B=' YES
N=19
PUNCH 4, A, B, N

4 FORWAT (G20.6, A, I5)
PUNCH 50

50 FORMAT (' END OF FILE)
STOP
END

which will convert the values of A, B, and N into a coded record using format 4 and will then write that record to the
PUNCH file, followed by arecord containing " END OF FILE".

117

PromulaFortran Compiler User's Manual

See also:

The WRITE statement describes format specifications and iolistsin detail. See that statement for details on these.

5.45 READ Statement

The READ statement transmits data from an external unit or internal file to memory storage locations.

Syntax:
READ fn[,ilist]
READ *, [ilist]
READ nl , [ilist]
READ([UNI T=u] , [FMI=] fn [, REC=rn] [, | OSTAT=i os] [, ERR=sl][, END=sI]) [ilist]

READ([UNI T=u] , [FMI=] nl [, REC=rn][, | OSTAT=i os] [, ERR=sl|] [, END=sl]) [ilist]

READ([UNI T=u] , [FMI=] *[, | OSTAT=i os] [, ERR=s|][, END=sl]) [ilist]
READ([UNI T=] u[, | OSTAT=i os] [, REC=rn] [, ERR=s|][, END=s|] [ilist]
Where:
u isan integer expression or a character variable identifier or an asterisk.
fn isinteger variable, the label of aFORMAT statement, a character expression, or an array identifier.
rn isan integer expression.
nl isthe identifier of aNAMELIST group.
i 0s isan integer lvalue.
sl isthe label of an executable statement.
ilist isaninputitem list.
Notes:

The simplest form of the READ statement consists of a single format specification not enclosed in parentheses, possibly
followed by an input item list. With this form no additional parameters can be specified. If one of the parenthetical forms
of READ is used, then the "UNIT=" and "FMT=" specifications are optional; however, when omitted the unit specification
must be the first specification and the f n specification must be second. Other than the above, the order of the parameters
within the parenthetical versions of the READ statement is free.

Description:

The READ statement transfers input data to internal storage from records contained in external logical units or internal
files. There are four basic types of READ statements:

(1) formatted read statements — those which contain an f n parameter;

118

PromulaFortran Compiler User's Manual

(2) list directed read statements — those which contain an asterisk where an f n parameter would otherwise

appear;

(3) namelist read statements — those which contain a NAMELIST group identifier where an f n parameter would
otherwise appear;

(4) unformatted read statements — those which contain no f n parameter or asterisk or NAMELIST identifier in
thef n position.

Formatted, list directed, and namelist read statements decode information from character records which may either be
contained in external logical units or internal files. Unformatted read statements perform no decoding operations and may
transfer information from external logical units only.

Formatted and unformatted read statements may operate with either sequential or direct access files, while list directed and
namelist read statements may operate only with sequential files.

In general, the parameters on the various READ statements are as follows.

UNIT=u

FMT=fn

REC=rn

FMT=nI

END=sl

ERR=s|

IOSTAT=i os

ilist

is an integer expression, a character variable identifier, or an asterisk. If it is an integer
expression, then it refers to a specific external logical unit. If it isa character variable, then that
variableis treated as an internal file of character records. If itisan *, then the read is performed
from the standard INPUT device. If one of the simple forms of the READ is used, which
contain no parentheses and thus no unit number, then these also use the standard input device.

is an integer variable, the label of a FORMAT statement, a character expression or an array
identifier. It specifies aformat to be used for formatted input. If f n is a statement label, then it
identifies a FORMAT statement in the program unit containing the input statement, which
specifies how the input records are formatted. If it isa character expression, then that expression
specifies how the input records are formatted. If it is an array identifier, then that array is
assumed to contain the format information. Finally, if it is an integer variable, the variable is
assumed to have been assigned the statement number of a FORMAT statement by an ASSIGN
statement.

isan integer expression which specifies the number of the record to be read or written in thefile.
It must be greater than zero, and is valid for files opened for direct access only.

is the identifier of a NAMELIST group. The use of this parameter indicates a namelist read.
See the NAMELIST statement for a description of the conventions used for the namelist read.

specifies the label of an executable statement to which control transfers when an end-of-file is
encountered during an input operation. END=s| isignored for direct accessinput operations.

specifies the label of an executable statement to which control transfers if an error condition is
encountered during input processing.

specifies an integer variable into which an error code is stored as follows:
-1 means that an end-of-file was encountered;

0 means that the input operation completed normally, and a value greater than zero indicates
some other error condition.

isan input item list described below.

119

PromulaFortran Compiler User's Manual

Regardless of the type of the read, if an error occurs as aresult, and if neither ERR=s| nor IOSTAT=i os is supplied, then
execution will terminate with an error code set. If either or both are supplied, the execution continues despite any errors. If
supplied, the IOSTAT=i os lvalue receives the runtime error code for the error condition encountered or a zero, if no error
occurred. If ERR=sl issupplied, then execution will branch to the statement s| if an error occurs.

If END=sl is not supplied, then encountering an end-of-file is treated as any other runtime error, except that the error
condition code is negative. |If END=s! is supplied, then execution continues at the statement labeled, with IOSTAT=i os
receiving a negative error condition code.

Theinput item list portion of an input statement specifies the itemsto be read and the order of transmission. The input item
list can contain any number of items. List items are read sequentially from left to right. If no list appears one or more
records are skipped.

A list item consists of a variable name, an array name, an array element name, a character substring name, or an implied
DO list. List items are separated by commas. Subscripts in an input item list can be written as any valid subscript form.
An array name without subscriptsin an input list specifiesthe entire array in the order in which it is stored. The entire array
(not just the first word of the array) isread. Assumed-size array names are legal ininput lists.

On formatted input the iolist is scanned and each item in the list is paired with the field specification provided by the
FORMAT statement. After one item has been input, the next format specification is taken together with the next element of
thelist; and so on, until the end of thelist.

Animplied DO specification has the following form:
(dlist [,i=el,e2 [,e3]])

The elementsi , el, e2, and e3 have the same meaning as in the DO statement, and dl i st isaninput item list. Redundant
parentheses are allowed and are ignored. The range of an implied DO specification isthat of dl i st . Thevalue of i must
not be changed within the range of the implied DO list by the READ statement. Changes to the values of e1, e2, and e3
have no effect upon the execution of the implied DO. However, their values can be changed in the READ statement if they
are outside the range of the implied DO, and the change does have effect. For example,

READ 100, K, (A(l),1=1,K)
reads a value into K and uses that value as the terminal parameter of the implied DO.
The statements:
K=2

READ 10, (A(l1),1=1, K)
10 FORMAT (F10.3)

read two records, each containing a value for A.

Animplied DO can be used to obtain a single value more than one time. For example, the list (A(K) , B, K=1, 5) causes the
value of variable B to be read five times. Obvioudly, the last value read will be the one stored in B when the READ is
compl eted.

Input of array elements can be accomplished by using an implied DO. The list of variables followed by the DO index is
enclosed in parentheses to form a single element of the input item list. For example,

READ(5, 100) (A(1),1=1,3)
has the same effect as the statement:

READ(5, 100) A(1),A(2), A(3)

120

PromulaFortran Compiler User's Manual

A variable cannot be used as a control variable more than once in the same implied DO nest, but i | i st items can appear
more than once. The value of a control variable within an implied DO specification is defined within that specification. On
exit from the implied DO specification the control variable retains the first value to exceed the upper limit (e2) .

Theimplied DO can be nested: that is, thei | i st inanimplied DO canitself contain an implied DO. The first (innermost)
control variable varies most rapidly, and the last (outermost) control variable varies least rapidly. For example, a nested
implied DO with two levels has the form:

((list,vl=el, e2,el3), v2=eel, ee2, eel)

Nested implied DO loops are executed in the same manner as nested DO statements. The nested form can be used to read
valuesinto arrays.

Each execution of a READ statement processes at least one record. The formatted READ statement transmits data to
storage locations named in i li st according to FORMAT specification f n. Once a READ is initiated, the FORMAT
statement determines when a new record will be transmitted. The unformatted READ statement transmits one record from
the specified unit u to the storage locations named inii | i st . Records are not converted; no FORMAT statement is used.
The information is transmitted from the designated file in the form in which it exists on the file without any conversion. If
the number of words in the list exceeds the number of wordsin the record, an execution diagnostic results. If the number of
locations specified ini | i st islessthan the number of wordsin the record, the excess dataisignored. If i | i st isomitted,
the unformatted READ skips one record.

The list directed READ statement reads data into the storage locations named in i | i st, with the input data items being
free-form with separators rather than in fixed-size fields. A list directed READ following a list directed READ that
terminated in the middle of arecord starts with the next data record.

Input data consists of a string of values separated by one or more blanks, or by a comma or slash, either of which can be
preceded or followed by any number of blanks. Also, a line boundary, such as end-of-record or end-of-card, serves as a
value separator; however, a separator adjacent to aline boundary does not indicate a null value.

Embedded blanks are not allowed in input values, except character values and complex numbers. The format of valuesin
the input record is as follows. Integers use the same format as for integer constants. For real numbers any valid FORTRAN
format for real or double precision numbers may be used. In addition, the decimal point can be omitted; it is assumed to be
to the right of the mantissa. Complex numbers consist of two real values, separated by a comma, and enclosed by
parentheses. The parentheses are not considered to be a separator. The decimal point can be omitted from either of the real
congtants. Each of the real values can be preceded or followed by blanks.

Character values consist of a string of characters (which can include blanks) enclosed by single or double quotes. A
delimiting quote can be represented within a string by two successive occurrences. Character values can only be read into
variables of any type and character substrings. If the string length exceeds the length of the list item, the string is truncated.
If the string is shorter than the list item, the string is left-justified and remaining character positions are blank filled.

Logical values consist of an optional period, followed by a T or F, followed by optional characters which do not include
separators (slashes or commas).

Exact representation constants may be read into variables of any type.

To repeat a value, an integer repeat constant is followed by an asterisk and the constant to be repeated. Blanks cannot be
embedded in the repeat part of the specification.

A null can be input in place of a constant when the value of the corresponding list entity is not to be changed. A null is
indicated by the first character in the input string being a comma or by two commas separated by an arbitrary number of
blanks. Nulls can be repeated by specifying an integer repeat count followed by an asterisk and any value separator. The
next value beginsimmediately after arepeated null. A null cannot be used for either the real or imaginary part of a complex
constant; however, anull can represent an entire complex constant.

121

PromulaFortran Compiler User's Manual

When the value separator is a slash, remaining list elements are treated as nulls and the remainder of the current record is
discarded.

Input values must correspond in type to variables in the input/output list. Note that the form of areal value can be the same
asthat of an integer value.

See also:
The discussion of the OPEN statement describes the FORTRAN file system in general, including the different file types.

The discussion of the FORMAT statement describes how format information is interpreted. The NAMELIST statement
describes the namelist read statement.

5.46 REAL Statement

The REAL statement defines some user defined entity to be of type real or double precision.
Syntax:

REAL[*l en] [,] name[, nane] . ..
Where:

name hasone of the forms

var [*len] [/ c /]

array [(d[,d]...)] [*len] [/ clist /]

I en specifies the real subtype and can be an unsigned nonzero integer constant whose valueis 4 or 8.
var isavariable, function name, symbolic constant, or dummy procedure

array isanarray name

d specifies the bounds of a dimension.

clist isalistof constants or symbolic constants specifying the initial values. Each iteminthelist can
take the form:

r*c
c isaconstant or symbolic constant.

r isarepeat count that isan unsigned nonzero integer constant or the symbolic name of such a
constant.

Description:

The REAL statement is used to define a variable, array, symbolic constant, function name, or dummy procedure name as
type real or double precision. A length specification immediately following the word REAL applies to each entity not
having its own length specification. A length specification immediately following an entity is the length specification only
for that entity. If the length specification for agiven entity is4 or if it is omitted, then the type defined isreal. If the valueis
8, then the type is double precision.

122

PromulaFortran Compiler User's Manual

See also:
See the discussion of the DIMENSION statement for a description of how dimension bounds are defined.

See the discussion of the DATA statement for a description of how initial values are defined.

5.47 RETURN Statement

The RETURN statement terminates a subroutine or function subprogram.

Syntax:

RETURN[exp]
Where:

exp is an arithmetic expression.
Description:

The RETURN statement terminates the currently executing subroutine or function subprogram and returns control to the
calling program unit. If the RETURN is used without the optional expression, then it isa"simple" return. If it is used with
an expression, then it is an "aternate" return. Both subroutine subprograms and function subprograms can have simple
returns. A simple return always begins execution in the calling program unit, at the statement immediately following the
CALL statement. A multiple return exists when the subprogram has more than one RETURN statement, or when a single
RETURN statement is separated from the END statement by other statements.

An alternate return is used only within a subroutine subprogram. It returns control to the referencing program unit at a place
other than the next executable statement after the CALL statement. The RETURN statement in the form RETURN exp is
used for an alternate return.

Control is returned to a specified point in the referencing program unit. The specified point is a statement label in the
referencing program unit. The statement labels must be included in the actual argument list, each preceded by an asterisk.
Control returns to the statement label determined by the integer value of the alternate return expression. If the value of the
expression is less than one, or greater than the number of asterisks in the SUBROUTINE statement or ENTRY statement
that is the current entry point, control returns to the statement following the CALL statement. For example, if a CALL

statement contains five statement labels and if the alternate return expression evaluates to three, control returns to the third
statement label specified in the actual argument in the alternate return list.

548 RECORD Statement

The RECORD statement creates a record of the form specified in a previously declared structure.

Syntax:

RECORD / snane/rli st
[,/snane/rlist]

[,/sname/rlist]
Where:

snanme isthe name of a previously declared structure

123

PromulaFortran Compiler User's Manual

rlist isalistof oneor morevariable names, array names, or array declarators, separated by commas.

Description:

The RECORD statement creates records of the form specified in a previously declared structure. All of the records named
in any given rlist have the same structure and are allocated separately in memory. The RECORD statement is
comparable to that of an ordinary type declaration except that aggregate data items are declared instead of scalar data items.
Record names can be used in COMMON and DIMENSION statements. They cannot be used in DATA, EQUIVALENCE,
NAMELIST, or SAVE statements. Records initially have undefined values unless you have defined their values in their
structure declarations.

See also:

The STRUCTURE statement describes how record structures are defined.

5.49 REWIND Statement

Syntax:

REW ND uni t

REWND ([UNNT=] unit [,IOSTAT= status] [,ERR= err])
Where:

uni t isan integer expression

status isaninteger Ivalue

err the label of an executable statement
Notes:
The simplest form of the REWIND statement consists of a single unit specification not enclosed in parentheses. With this
form no additional parameters can be specified. If the parenthetica form of REWIND is used, then the "UNIT="
specification is optional; however, when omitted the unit specification must be the first specification. Other than the above,
the order of the parameters within the parenthetical version of the REWIND statement is free.

Description:

The REWIND statement positions a file at beginning-of-information so that the next input/output operation references the
first record in thefile. If the fileis already at beginning-of-information, no action is taken.

If an error occurs as a result of the rewind, and if neither err nor st at us are supplied, execution will terminate with an
error code set. If either or both are supplied, the execution continues despite any errors.

If supplied, the st at us Ivalue receives the runtime error code for the error condition encountered or a zero, if no error
occurred.

If err issupplied, then execution will branch to the statement er r if an error occurs.

5.50 SAVE Statement

124

PromulaFortran Compiler User's Manual

The SAVE statement is used to retain the definition status of entities within a subprogram after that subprogram has
executed.

Syntax:

SAVE [a[,a]...]
Where:

a isavariable name, array name, or common block name enclosed in slashes.
Description:

The SAVE statement is used to retain the definition status of entities after the execution of a RETURN or END statement in
asubprogram. A SAVE statement in a main program is optional and has no effect.

Dummy argument names, procedure names, and names of entities in a common block must not appear in the SAVE
statement. A common block name (or // indicating blank common) has the effect of specifying all of the entities in the
common block. A SAVE statement with no list is treated as though it contained the names of all allowable items in the
program unit. If acommon block name is specified in a SAVE statement in a subprogram, the common block name must be
specified by a SAVE statement in every subprogram in which the common block appears.

Execution of a RETURN statement or an END statement within a subprogram may cause the entities within the
subprogram to become undefined, except in the following cases:

(1) entities specified by SAVE statements
(2) entitiesthat have been initially defined ina DATA declaration.
If alocal variable or array that is specified in a SAVE statement and is not in acommon block is defined in a subprogram at

the time a RETURN or END statement is executed, that variable or array remains defined with the same value at the next
reference to the subprogram.

551 STOP Statement

The STOP statement terminates program execution.
Syntax:

STOP[n]
Where:

n isan integer or string expression

The STOP statement writes the message STOP n in the CONSOLE file, and then terminates program execution. The actual
value of n at the time of termination is shown in the STOP message.

5.52 STRUCTURE Statement

The STRUCTURE statement introduces a multistatement structure declaration block which is used to define the form and
possibly the content of records to be defined later in the program unit.

Syntax:

125

PromulaFortran Compiler User's Manual

STRUCTURE / snane/
f decl

END STRUCTURE
Where:
snanme isasymbolic name

fdecl hasone of the following forms

data
substruc
uni on

dat a is any valid type statement: BYTE, INTEGER, REAL, DOUBLECOMPLEX,
DOUBLEPRECISION, LOGICAL, COMPLEX, CHARACTER

substruc hastheform

STRUCTURE [/snane/][flist]
f decl

END STRUCTURE

flist isalist of symbolic names
uni on has the form
UNI ON
mapdecl
ENiD UNI ON
mapdecl has the form
MAP
f decl
ENiD MAP

Description:

The form of a record is defined by the multistatement STRUCTURE declaration. This declaration is composed of the
STRUCTURE statement itself which provides a symbolic name for the STRUCTURE being defined, followed by the body
of the declaration which is composed of one or more field declarations. The order of the declarations determines the order
of the fields within a structure. The STRUCTURE declaration is terminated by an END STRUCTURE statement.

Field declarations within structure declarations consist of the following:

126

PromulaFortran Compiler User's Manual

1. Typed data declaration statements which are ssimply standard FORTRAN type declarations. Fields can be any
valid type and are dimensioned in the normal way. The only extension is that pseudo-name %FILL can be
specified in place of a field name to create empty space in a record for purposes such as alignment. This
creates an unnamed field.

2. Substructure declarations. A field within a structure can be a substructure composed of atomic fields and/or
other substructures. These substructures are exactly like STRUCTURE declaration blocks except that they
include alist of field names.

3. Union declarations. A union declaration declares groups of fields that logically share a common location
within a structure. Each group of fields within a union declaration is declared by a map declaration, with one
or more fields per map declaration. Union declarations use the same area of memory to alternately contain two
or more groups of fields.

The names specified in these statements are not the names of variables and the statements in a structure declaration do not
create variables. The names are field names, and the information provided in the statements describes the layout, or form, of
the structure. The ordering of both the statements and the field names within the statements is important because this
ordering determines the order of the fieldsin records.

See also:

The explicit TYPE statements BYTE, INTEGER, DOUBLECOMPLEX, DOUBLEPRECISION, REAL, LOGICAL, and
CHARACTER which describe the actual meanings of the various types.

5.53 SUBROUTINE Statement

The SUBROUTINE statement introduces and specifies the name of the main entry point of a subroutine subprogram.

Syntax:

SUBROUTI NE sub[([d[,d]...])]
Where:

sub is a symbolic name identifying the subroutine subprogram.

d isadummy argument that can be a variable name, array name, dummy procedure name, or *.
Notes:

If there are no dummy arguments, either sub or sub() can be used.
Description:

A subroutine subprogram is a procedure that communicates with the calling program unit either through alist of arguments
passed with the CALL statement or through common blocks. A subroutine subprogram is executed when a CALL statement
naming the subroutine is encountered in a program unit. Subroutines begin with a SUBROUTINE statement and end with
an END statement. Control is returned to the calling program unit when a RETURN statement is encountered. If control
flows into the END statement, then a RETURN is implied. Subroutines differ from functions in that the subprogram name
isnot used to return results to the calling program.

Subroutines can contain any statement except a PROGRAM, BLOCK DATA, FUNCTION, or another SUBROUTINE
statement. A subroutine subprogram must not directly or indirectly call itself.

In a subroutine subprogram, the symbolic name of a dummy argument is unique to the program unit and must not appear in
an EQUIVALENCE, PARAMETER, SAVE, INTRINSIC, DATA, or COMMON statement, except as a common block
name. The dummy arguments are replaced with the actual arguments during a subroutine call. The SUBROUTINE
statement can also have dummy arguments for statement labels; these arguments are represented by asterisks.

127

PromulaFortran Compiler User's Manual

Dummy arguments that represent array names must be dimensioned by a DIMENSION or type statement. Adjustable
dimensions are permitted in subroutine subprograms.

554 TYPE Statement

The TY PE statement transfers formatted information from the values named in the input/output list to the OUTPUT file.

Syntax:
TYPE fn [,iolist]
Where:
fn isaformat specification
iolist isan output list
Notes:

The TY PE statement is a special case of the formatted WRITE statement.
Description:

The TYPE statement transfers formatted information from the values specified in the output item list to the OUTPUT file
according to the specified format. This statement isidentical to the statement

WRI TE(*,fn) iolist
As asimple example consider

PROGRAM TYPE
CHARACTER B*3
A=1.2
B=' YES
N=19
TYPE 4, A B, N

4 FORMAT (G20.6, A 15)
TYPE 50

50 FORMAT (' END OF FILE')
STOP
END

which will convert the values of A, B, and N into a coded record using format 4 and will then write that record to the
OUTPUT file, followed by arecord containing " END OF FILE".

See also:

The WRITE statement describes format specifications and output listsin detail. See that statement for details on these.

5.55 WRITE Statement

The WRITE statement transmits data from memory storage location or values of expressions to an external or internal unit.

Syntax:
WRI TE fn[,olist]

WRI TE *,[olist]

128

PromulaFortran Compiler User's Manual

WRI TE nl

WRI TE([UNI T=u] , [FMT=] fn [, REC=rn] [, | OSTAT=i os] [, ERR=sl|][, END=sl]) [olist]
WRI TE([UNI T=u], [FMr=] nl [, REC=rn][, | OSTAT=i os] [, ERR=s|][, END=sl])

WRI TE([UNI T=u] , [FMT=] *[, | OSTAT=i os] [, ERR=sl|][, END=sl]) [olist]

WRI TE([UNI T=] u[, | OSTAT=i os] [, REC=rn] [, ERR=sl][, END=sl] [olist]

Where:
u isan integer expression or a character variable identifier or an asterisk
fn isan integer variable, the label of a FORMAT statement, a character expression, or an array identifier
rn isan integer expression
nl isthe identifier of aNAMELIST group
i 0s isan integer lvalue
sl isthe label of an executable statement

olist isanoutputitem list
Notes:

The simplest form of the WRITE statement consists of a single format specification not enclosed in parentheses, possibly
followed by an output item list. With this form no additional parameters can be specified. If one of the parenthetical forms
of WRITE isused, thenthe "UNIT=" and "FMT=" specifications are optional; however, when omitted the unit specification
must be the first specification and the f n specification must be second. Other than the above, the order of the parameters
within the parenthetical versions of the WRITE statement is free.

Description:

The WRITE statement transfers output data from internal storage to records contained in external logical units or internal
files. There are four basic types of WRITE statements:

(1) formatted write statements — those which contain an f n parameter;

(2) list directed write statements — those which contain an asterisk where an f n parameter would otherwise
appear;

(3) namelist write statements — those which contain a NAMELIST group identifier where an f n parameter
would otherwise appear;

(4) unformatted write statements — those which contain no f n parameter or asterisk or NAMELIST identifier in
the f n position.

Formatted, list directed, and namelist write statements encode information into character records which may either be
contained in external logical units or internal files. Unformatted write statements perform no encoding operations and may
transfer information to external logical unitsonly.

Formatted and unformatted write statements may operate with either sequentia or direct access files, while list directed and
namelist write statements may operate only with sequential files.

129

PromulaFortran Compiler User's Manual

In general, the parameters on the various WRITE statements are as follows.

UNIT=u is an integer expression, a character variable identifier, or an asterisk. If it is an integer
expression, then it refers to a specific external logical unit. If it is a character variable, then that
variableistreated as an internal file of character records. If itisan *, then the write is performed
to the standard OUTPUT device. If one of the smple forms of the WRITE is used, which
contain no parentheses and thus no unit number, then these also use the standard OUTPUT
device.

FMT=f n is integer variable, the label of a FORMAT statement, a character expression or an array
identifier. It specifies a format to be used for formatted output. If f n is a statement label, then it
identifies a FORMAT statement in the program unit containing the output statement, which
specifies how the output records are to be formatted. If it is a character expression, then that
expression specifies how the output records are to be formatted. If it is an array identifier, then
that array is assumed to contain the format information. Finally, if it is an integer variable, then
that variable is assumed to have been assigned the statement number of a FORMAT statement
by an ASSIGN statement.

REC=r n isan integer expression which specifies the number of the record to be written to the file. It must
be greater than zero, and isvalid for files opened for direct access only.

FMT=nl is the identifier of a NAMELIST group. The use of this parameter indicates a namelist write.
See the NAMELIST statement for a description of the conventions used for the namelist write.

ERR=s| specifies the label of an executable statement to which control transfers if an error condition is
encountered during output processing.

IOSTAT=i os specifies an integer variable into which an error code is stored as follows. 0 means that the
output operation completed normally, and a value greater than zero indicates some other error
condition.

olist isan output item list described below.

Regardless of the type of the write, if an error occurs as aresult, and if neither ERR=s| nor IOSTAT=i os is supplied then
execution will terminate with an error code set. If either or both are supplied, the execution continues despite any errors. If
supplied the IOSTAT=i os Ivalue receives the runtime error code for the error condition encountered or a zero, if no error
occurred. If ERR=sl issupplied, then execution will branch to the statement sl if an error occurs.

The output item list portion of a WRITE statement specifies the items and/or values to be written and the order of
transmission. The output item list can contain any number of items. List items are written sequentially from left to right. If
no list appears one or more empty records are written.

A list item consists of a variable name, an array name, an array element name, a character substring name, an rvalue of any
type, or an implied DO list. List items are separated by commas. Subscripts in an output item list can be written as any
valid subscript form. An array name without subscripts in an output list specifies the entire array in the order in which it is
stored. The entire array (not just the first word of the array) is written. Assumed-size array names are legal in output lists.

On formatted output, the ol i st is scanned and each item in the list is paired with the field specification provided by the
FORMAT statement. After one item has been output, the next format specification is taken together with the next element
of thelist; and so on, until the end of the list.

Animplied DO specification has the following form:

(dlist [,i=el,e2 [,e3]])

130

PromulaFortran Compiler User's Manual

The elements i, el, e2, and e3 have the same meaning as in the DO statement, and dl i st is an output item list.
Redundant parentheses are allowed and are ignored. The range of an implied DO specification isthat of dl i st . Animplied
DO can be used to output a single value more than one time. For example, the list (A(K), B, K=1, 5) causes the value of
variable B to be written five times.

Output of array elements can be accomplished by using an implied DO. The list of variables followed by the DO index is
enclosed in parentheses to form a single element of the output item list. For example,

VRI TE(5, 100) (A(1),1=1,3)
has the same effect as the statement:
VRI TE(5, 100) A(1), A(2), A(3)

A variable cannot be used as a control variable more than once in the same implied DO nest, but ol i st items can appear
more than once. The value of a control variable within an implied DO specification is defined within that specification. On
exit from the implied DO specification the control variable retains the first value to exceed the upper limit (e2) .

Theimplied DO can be nested: that is, thei | i st inanimplied DO can itself contain an implied DO. The first (innermost)
control variable varies most rapidly, and the last (outermost) control variable varies least rapidly. For example, a nested
implied DO with two levels has the form:

((list,vl=el, e2,el3), v2=eel, ee2, eel)

Nested implied DO loops are executed in the same manner as nested DO statements. The nested form can be used to write
from arrays.

Each execution of a WRITE statement writes at least one record. The unformatted WRITE statement transmits one record
to the specified unit u from the storage locations or values named in ol i st. Records are not converted; no FORMAT
statement is used. The information is transmitted to the designated file in the form in which it exists in the memory without
any conversion.

The list directed WRITE statement writes data using a free-form notation, with items separated by commas. The actual
format used varies from platform to platform. In all cases, list-directed output records can be read by the list-directed
READ statement.

See also:
The discussion of the OPEN statement describes the FORTRAN file system in general, including the different file types.

The discussion of the FORMAT statement describes how format information is interpreted. The NAMELIST statement
describes the namelist read statement.

131

PromulaFortran Compiler User's Manual

6. FORTRAN INTRINSIC FUNCTIONS

Certain procedures that are of general utility or that are difficult to expressin FORTRAN statements are contained within
the FORTRAN library. In general, these include the intrinsic functions and various subprograms that interface with
different aspects of the operating system.

An intrinsic function is a procedure that performs a set of calculations when its name appears in an expression in the
referencing program unit. Intrinsic functions communicate with the referencing program unit through a single value
associated with the function symbolic name.

When the name of an intrinsic function duplicates another element in a program, the result depends on the element and the
references. If a variable, array, or statement function is defined with the same name as an intrinsic function, the name is a
local name that no longer refers to the intrinsic function. If an external function subprogram is written with the same name
as an intrinsic function, use of the name references the intrinsic function, unless the name is declared as the name of an
external function with the EXTERNAL statement.

Intrinsic functions are typed by default and need not appear in any explicit type statement in the program. Explicitly typing
ageneric intrinsic function name does not remove the generic properties of the name.

Certain intrinsic functions are generic, but have related specific functions. For example, the generic function name LOG
computes the natural logarithm of an argument. Its argument can be real, double precision, or complex, and the type of the
result is the same as the type of the argument. Specific function names ALOG, DLOG, and CLOG also compute the natural
logarithm. The specific function name ALOG computes the log of areal argument and returns a real result. Likewise, the
specific name DLOG is for double precision arguments and results, and the specific name CLOG is for complex arguments
and results.

If a generic name and specific names exist, a generic name can be used in place of a specific name and is more flexible than
a specific name. Except for type conversion generic functions, the type of the argument determines the type of the resuilt.

Only a specific name can be used as an actual argument when passing the function name to a user-defined procedure or
function.

The following table lists the intrinsic functions in alphabetical order by name.

Table6-1. Intrinsic Functions

Name Type Arguments Description
ABS INTEGER*2 INTEGER*2 Absolute Vaue
INTEGER INTEGER
REAL REAL
REAL*8 REAL*8
REAL COMPLEX
REAL*8 COMPLEX*16
ACOS REAL*8 REAL*8 Arccosine
REAL REAL
AIMAG REAL COMPLEX Imaginary part
REAL*8 COMPLEX*16
AINT REAL REAL Truncation
REAL*8 REAL*8
ALOG10 REAL REAL Logarithm base 10
ALOG REAL REAL Natural logarithm

132

PromulaFortran Compiler User's Manual

Table6-1. Intrinsic Functions

Name Type Arguments Description
AMAXO0 REAL INTEGER,... Maximum value
AMAX1 REAL REAL,... Maximum value
AMINO REAL INTEGER,... Minimum value
AMIN1 REAL REAL,... Minimum value
AMOD REAL REAL,REAL Remaindering
AND LOGICAL*2 LOGICAL*2,... Logical and
LOGICAL LOGICAL,...
ANINT REAL REAL Nearest whole number
REAL*8 REAL*8
ASIN REAL REAL Arcsine
REAL*8 REAL*8
ATAN2 REAL REAL,REAL Arctangent of quotient
REAL*8 REAL*8,REAL*8
REAL*8 REAL*8,REAL
REAL*8 REAL,REAL*8
ATAN REAL REAL Arctangent
REAL*8 REAL*8
CABS REAL COMPLEX Absolute value
CCOSs COMPLEX COMPLEX Cosine
CDABS REAL*8 COMPLEX*16 Absolute value
CDCOSs COMPLEX*16 COMPLEX*16 Cosine
CDEXP COMPLEX*16 COMPLEX*16 Exponential
CDLOG10 COMPLEX*16 COMPLEX*16 Logarithm base 10
CDLOG COMPLEX*16 COMPLEX*16 Natural logarithm
CDSIN COMPLEX*16 COMPLEX*16 Sine
CDSQRT COMPLEX*16 COMPLEX*16 Square root
CEXP COMPLEX COMPLEX Exponential
CHAR CHARACTER*1 NTEGER*2 Character value
CHARACTER*1 INTEGER
CLOG10 COMPLEX COMPLEX Logarithm base 10
CLOG COMPLEX COMPLEX Natural logarithm
CMPLX COMPLEX INTEGER*2 Complex value
COMPLEX INTEGER
COMPLEX REAL
COMPLEX REAL*8
COMPLEX COMPLEX
COMPLEX COMPLEX*16
COMPLEX REAL,REAL
COMPLEX REAL*8,REAL*8
COMPLEX REAL*8,REAL
COMPLEX REAL,REAL*8
CONJG COMPLEX COMPLEX Conjugate
COMPLEX*16 COMPLEX*16
COSH REAL REAL Hyperbolic cosine
REAL*8 REAL*8
COos REAL REAL Cosine
REAL*8 REAL*8
COMPLEX COMPLEX
COMPLEX*16 COMPLEX*16
CSIN COMPLEX COMPLEX Sine
CSQRT COMPLEX COMPLEX Square root
DABS REAL*8 REAL*8 Absolute value
DACOS REAL*8 REAL*8 Arccosine

133

PromulaFortran Compiler User's Manual

Table6-1. Intrinsic Functions

Name Type Arguments Description
DASIN REAL*8 REAL*8 Arcsin
DATE CHARACTER*(*) Current date
DATAN2 REAL*8 REAL*8,REAL*8 Arctangent of quotient
DATAN REAL*8 REAL*8 Arctangent
DBLE REAL*8 INTEGER*2 Double precision value

REAL*8 INTEGER

REAL*8 REAL

REAL*8 REAL*8

REAL*8 COMPLEX

REAL*8 COMPLEX*16
DCMPLX COMPLEX*16 INTEGER*2 Double complex value

COMPLEX*16 INTEGER

COMPLEX*16 REAL

COMPLEX*16 REAL*8

COMPLEX*16 COMPLEX*16

COMPLEX*16 COMPLEX

COMPLEX*16 REAL*8,REAL*8
DCONJG COMPLEX*16 COMPLEX*16 Conjugate
DCOSH REAL*8 REAL*8 Hyperbolic cosine
DCOS REAL*8 REAL*8 Cosine
DDIM REAL*8 REAL*8,REAL*8 Positive difference
DEXP REAL*8 REAL*8 Exponential
DIM REAL REAL,REAL Positive difference

REAL*8 REAL*8,REAL*8

REAL*8 REAL,REAL*8

REAL*8 REAL*8,REAL

INTEGER*2 INTEGER*2,INTEGER*2

INTEGER INTEGER,INTEGER

INTEGER INTEGER,INTEGER
DIMAG REAL*8 COMPLEX*16 Imaginary part
DINT REAL*8 REAL*8 Truncation
DLOGI10 REAL*8 REAL*8 Logarithm base 10
DLOG REAL*8 REAL*8 Natural logarithm
DMAX1 REAL*8 REAL*S,... Maximum value
DMIN1 REAL*8 REAL*S,... Minimum value
DMOD REAL*8 REAL*8,REAL*8 Remainder
DNINT REAL*8 REAL*8 Nearest integer
DPROD REAL*8 REAL,REAL Product
DSIGN REAL*8 REAL*8,REAL*8 Transfer of sign
DSINH REAL*8 REAL*8 Hyperbolic sine
DSIN REAL*8 REAL*8 Sine
DSQRT REAL*8 REAL*8 Square root
DTANH REAL*8 REAL*8 Hyperbolic tangent
DTAN REAL*8 REAL*8 Tangent
EXIT - INTEGER Stop program execution
EXP REAL REAL Exponential

REAL*8 REAL*8

COMPLEX COMPLEX

COMPLEX*16 COMPLEX*16
FLOAT REAL INTEGER*2 Real value

REAL INTEGER
GETCL --- CHARACTER*(*) Get command line
IABS INTEGER INTEGER Absolute value

134

PromulaFortran Compiler User's Manual

Table6-1. Intrinsic Functions

Name Type Arguments Description

INTEGER*2 INTEGER*2
IAND INTEGER*2 INTEGER*2,... Bitwise and

INTEGER INTEGER,...
ICHAR INTEGER*2 CHARACTER*(*) Integer value of character
IDIM INTEGER INTEGER,INTEGER Positive difference
IDINT INTEGER REAL*8 Integer value
IDNINT INTEGER REAL Nearest integer
IFIX INTEGER INTEGER*2 Integer value

INTEGER INTEGER

INTEGER REAL

INTEGER REAL*8

INTEGER COMPLEX

INTEGER COMPLEX*16
INDEX INTEGER CHARACTER*(*),CHARACTER*(*) Location of substring
INT2 INTEGER*2 INTEGER Integer value

INTEGER*2 INTEGER*2

INTEGER*2 REAL

INTEGER*2 REAL*8

INTEGER*2 COMPLEX

INTEGER*2 COMPLEX*16
INT4 INTEGER INTEGER*2 Integer value

INTEGER INTEGER

INTEGER REAL

INTEGER REAL*8

INTEGER COMPLEX

INTEGER COMPLEX*16
INT INTEGER INTEGER*2 Integer value

INTEGER INTEGER

INTEGER REAL

INTEGER REAL*8

INTEGER COMPLEX

INTEGER COMPLEX*16
ISIGN INTEGER INTEGER,INTEGER Transfer of sign
[2ABS INTEGER*2 INTEGER*2 Absolute value
12DIM INTEGER*2 INTEGER*2,INTEGER*2 Positive difference
I2MAXO0 INTEGER*2 INTEGER*2,... Maximum value
I2MINO INTEGER*2 INTEGER*2,... Minimum value
12MOD INTEGER*2 INTEGER*2,INTEGER*2 Remainder
I2NINT INTEGER*2 REAL Nearest integer
12SIGN INTEGER*2 INTEGER*2,INTEGER*2 Transfer of sign
LEN INTEGER CHARACTER*(*) Number of characters
LGE LOGICAL*2 CHARACTER*(*),CHARACTER*(*) Lexicaly greater or equal
LGT LOGICAL*2 CHARACTER*(*),CHARACTER*(*) Lexicaly greater
LLE LOGICAL*2 CHARACTER*(*),CHARACTER*(*) Lexicaly lessor equal
LLT LOGICAL*2 CHARACTER*(*),CHARACTER*(*) Lexicaly less
LOG10 REAL REAL Logarithm base 10

REAL*8 REAL*8

COMPLEX COMPLEX

COMPLEX*16 COMPLEX*16)
LOG REAL REAL Natural log

REAL*8 REAL*8

COMPLEX COMPLEX

COMPLEX*16 COMPLEX*16

135

PromulaFortran Compiler User's Manual

Table6-1. Intrinsic Functions

Name Type Arguments Description
MAXO INTEGER INTEGER,... Maximum value
INTEGER*2 INTEGER*2,...
MAX1 INTEGER REAL,... Maximum value
MAX INTEGER*2 INTEGER*2,... Maximum value
INTEGER INTEGER,...
REAL REAL,...
REAL*8 REAL*S,...
MINO INTEGER INTEGER,... Minimum value
INTEGER*2 INTEGER*2,...
MIN1 INTEGER REAL,... Minimum value
MIN INTEGER*2 INTEGER*2,... Minimum value
INTEGER INTEGER,...
REAL REAL,...
REAL*8 REAL*S,...
MOD INTEGER*2 INTEGER*2,INTEGER*2 Remainder
INTEGER INTEGER,INTEGER
REAL REAL,REAL
REAL*8 REAL*8,REAL*8
REAL*8 REAL,REAL*8
REAL*8 REAL*8,REAL
INTEGER INTEGER,INTEGER
NINT INTEGER INTEGER*2 Nearest integer
INTEGER INTEGER
INTEGER REAL
INTEGER REAL*8
REAL REAL INTEGER*2 Real value or part
REAL INTEGER
REAL REAL
REAL REAL*8
REAL COMPLEX
REAL COMPLEX*16
SIGN NTEGER*2 INTEGER*2,INTEGER*2 Transfer of sign
INTEGER INTEGER,INTEGER
REAL REAL,REAL
REAL*8 REAL*8,REAL*8
REAL*8 REAL,REAL*8
REAL*8 REAL*8,REAL
SINH REAL REAL Hyperbolic sine
REAL*8 REAL*8
SIN REAL REAL Sine
REAL*8 REAL*8
COMPLEX COMPLEX
COMPLEX*16 COMPLEX*16
SNGL REAL REAL*8 Real value
SQRT REAL REAL Square root
REAL*8 REAL*8
COMPLEX COMPLEX
COMPLEX*16 COMPLEX*16
TANH REAL REAL Hyperbolic tangent
REAL*8 REAL*8
TAN REAL REAL Tangent
REAL*8 REAL
TIME CHARACTER*(*) Current time

136

PromulaFortran Compiler User's Manual

The description of each intrinsic function is given in the following sections.

6.1 ABS: AbsoluteValue

Synopsis:
I NTEGER*2 FUNCTI ON ABS(| NTEGER* 2)
I NTEGER FUNCTI ON ABS(| NTEGER)
REAL FUNCTI ON ABS(REAL)
REAL*8 FUNCTI ON ABS(REAL* 8)
REAL FUNCTI ON ABS(COMPLEX)

REAL*8 FUNCTI ON ABS(COMPLEX* 16)
Description:

ABS(a) isageneric function that returns an absolute value of its argument. The result is integer, real, or double precision,
depending on the argument type. For noncomplex arguments, the result is a, if a is greater than or equal to zero, elseitis-

a. For acomplex argument, the result is the noncomplex square root of the sum of the squares of the two components of the
complex number.

See Also:

IABS, DABS, CABS, CDABS and I12ABS.

6.2 ACOS: Arccosine
Synopsis:
REAL*8 FUNCTI ON ACOS(REAL* 8)
REAL FUNCTI ON ACOS(REAL)
Description:

ACOS(a) is a generic function that returns an arccosine. The result is expressed in radians. The result is rea or double
precision, depending on the argument type.

See also:
DACOS

6.3 AIMAG: Imaginary Part

Synopsis:
REAL FUNCTI ON Al MAG(COMPLEX)

REAL*8 FUNCTI ON Al MAG(COVPLEX* 16)

Description:

137

PromulaFortran Compiler User's Manual

Al MAG(a) returns the imaginary part of a complex argument. The result is real if the argument is complex and double
precision if the argument is double complex.

See also:

DIMAG

6.4 AINT: Truncation

Synopsis:
REAL FUNCTI ON Al NT(REAL)

REAL*8 FUNCTI ON Al NT(REAL* 8)
Description:
Al NT(a) isageneric function that returns an integer after truncation. The result is real or double precision. For ared or
double precision argument, the result is 0 if the absolute value of a islessthan 1. If the absolute value of a is greater than or
equal to 1, theresult is the largest integer with the same sign as argument a that does not exceed the magnitude of a.

See also:

DINT

6.5 ALOGI10: Logarithm Base 10
Synopsis:

REAL FUNCTI ON ALOGLO(REAL)
Description:

ALOGL0(a) is a specific function that returns the logarithm base 10 of the argument. The argument is real and the result is
real.

See also:

CDLOG10, CLOG10, DLOG10, and LOG10

6.6 ALOG: Natural Logarithm
Synopsis:

REAL FUNCTI ON ALOG(REAL)
Description:

ALOF a) isa specific function that returns the natural logarithm of the argument. The argument is real and the result is
real.

See also:

CDLOG, CLOG, DLOG, LOG

138

PromulaFortran Compiler User's Manual

6.7 AMAXO: Maximum Value
Synopsis:

REAL FUNCTI ON AMAXO(| NTEGER, . . .)
Description:

AMAXO(al, a2[, an]...) isaspecific function that returns the value of the largest argument. All arguments are integer,
and theresultisreal.

See also:

AMAX1, MAX, DMAX1, I2MAX0, MAXO, and MAX1

6.8 AMAX1: Maximum Value
Synopsis:

REAL FUNCTI ON AMAX1(REAL, . . .)
Description:

AMAX1(al, a2[, an]...) isaspecific function that returns the value of the largest argument. All arguments are real, and
theresult isreal.

See also:

AMAXO, MAX, DMAX1, I2ZMAX0, MAXO0, and MAX1

6.9 AMINO: Minimum Value
Synopsis:

REAL FUNCTI ON AM NO(| NTEGER, . . .)
Description:

AM NO(al, a2[, an]...) isaspecific function that returns the value of the smallest argument. All arguments are integer,
and theresultisreal.

See also:

AMIN1, DMIN1, I2MINO, MINO, MIN1, and MIN

6.10 AMIN1: Minimum Value

Synopsis:
REAL FUNCTI ON AM N1(REAL, . ..)

Description:

139

PromulaFortran Compiler User's Manual

AM Ni(al, a2[,an]...) isaspecific function that returns the value of the smallest argument. All arguments are real,
and theresult isreal.

See also:

AMINO, DMINZ, I2MINO, MINO, MIN1, and MIN

6.11 AMOD: Remaindering
Synopsis:

REAL FUNCTI ON AMOD(REAL, REAL)
Description:

AMOD(al, a2) isaspecific function that returns the remainder of a1 divided by a2. Both arguments and the result are real.
Theresultis

al-(int(al/a2)*a2).
If a2 equals zero, then the result is zero.
See also:

DMOD, 12MOD, and MOD

6.12 AND: Logical And

Synopsis:
LOG CAL*2 FUNCTI ON AND(LOG CAL*2, . ..)

LOG CAL FUNCTI ON AND(LOG CAL, .. .)
Description:
AND(al, a2[, an]...) isageneric function that returnsthe logical product of its arguments.
See also:

None

6.13 ANINT: Nearest Whole Number

Synopsis:
REAL FUNCTI ON ANI NT(REAL)

REAL*8 FUNCTI ON ANl NT(REAL* 8)

Description:

140

PromulaFortran Compiler User's Manual

ANI NT(a) is ageneric function that returns a real or double precision result from areal or double precision argument. It
computes the nearest integer to its argument. In particular the result is

dint(a+0.5) if a >= 0.0
and

dint(a-0.5) if a <= 0.0
wheredi nt isthe FORTRAN intrinsic function DI NT.
See also:

DNINT, IDNINT, I2NINT, and NINT

6.14 ASIN: Arcsine
Synopsis:
REAL FUNCTI ON ASI N(REAL)
REAL*8 FUNCTI ON ASI N(REAL* 8)
Description:

ASI N(a) is a generic function that returns an arcsine. The result is expressed in radians. The result is real or double
precision, depending on the argument type.

See also:
DASIN

6.15 ATANZ2: Arctangent of Quotient

Synopsis:
REAL FUNCTI ON ATAN2(REAL, REAL)
REAL*8 FUNCTI ON ATAN2(REAL* 8, REAL* 8)
REAL*8 FUNCTI ON ATAN2(REAL* 8, REAL)

REAL*8 FUNCTI ON ATAN2(REAL, REAL* 8)
Description:

ATAN2(al, a2) isageneric function that returns the arctangent of a2 divided by al1. Theresult isexpressed in radians. The
result isreal or double precision, depending on the type of the arguments. |f both arguments are zero, the result is zero.

See also:
DATAN2

6.16 ATAN: Arctangent

Synopsis:

141

PromulaFortran Compiler User's Manual

REAL FUNCTI ON ATAN(REAL)

REAL*8 FUNCTI ON ATAN(REAL* 8)
Description:

ATAN(a) is a generic function that returns an arctangent. The result is expressed in radians. The result is real or double
precision, depending on the argument type.

See also:

DATAN

6.17 CABS. Absolute Value

Synopsis:

REAL FUNCTI ON CABS(COVPLEX)
Description:

CABS(a) returnsthe real absolute value of its argument. The result is the noncomplex square root of the sum of the squares
of the two components of the complex number.

See Also:

ABS, IABS, DABS, CDABS and 12ABS.

6.18 CCOS: Cosine
Synopsis:

COVPLEX FUNCTI ON CCOS(COVPLEX)
Description:

CCOsS(a) is a specific function that returns a cosine. The argument is assumed to be in radians. Both the argument and the
result are complex.

See also:

CDCOS, COS, and DCOS

6.19 CDABS. Absolute Value
Synopsis:

REAL*8 FUNCTI ON CDABS(COMPLEX* 16)
Description:

CDABS(a) returns the absolute value of its argument. The result is the double precision square root of the sum of the
squares of the two components of the complex number.

142

PromulaFortran Compiler User's Manual

See Also:

ABS, IABS, DABS, CABS, and I12ABS.

6.20 CDCOS: Cosine
Synopsis:

COWPLEX*16 FUNCTI ON CDCOS(COVPLEX* 16)
Description:

CDCOS(a) is a specific function that returns a cosine. The argument is assumed to be in radians. The result and argument
are both double complex.

See also:

CCOS, COS, and DCOS

6.21 CDEXP: Exponential
Synopsis:

COVPLEX* 16 FUNCTI ON CDEXP(COVPLEX* 16)
Description:

CDEXP(a) is a specific function that returns a double complex result from a double complex argument. It returns the
exponential of its argument.

See also:

CEXP, DEXP, and EXP

6.22 CDLOGI10: Logarithm Base 10
Synopsis:

COVPLEX* 16 FUNCTI ON CDLOGLO(COVPLEX* 16)
Description:

CDLOGLO0(a) isa specific function that returns the logarithm base 10 of the argument. The argument is double complex and
the result is double complex.

See also:
ALOG10, CLOG10, DLOG10, and LOG10

6.23 CDLOG: Natural Logarithm

Synopsis:

143

PromulaFortran Compiler User's Manual

COVWPLEX*16 FUNCTI ON CDLOG(COVPLEX* 16)
Description:

CDLOG a) is a specific function that returns the natural logarithm of the argument. The argument is double complex and
the result is double complex.

See also:

ALOG, CLOG, DLOG, and LOG

6.24 CDSIN: Sine
Synopsis:

COVPLEX* 16 FUNCTI ON CDSI N(COVPLEX* 16)
Description:

CDSI N(a) isa specific function that returns a sine. The argument is assumed to be in radians. The argument and result are
both double complex.

See also:

CSIN, DSIN, and SIN

6.25 CDSQRT: Sguare Root
Synopsis:

COWPLEX*16 FUNCTI ON CDSQRT(COVPLEX* 16)
Description:

CDSQRT(a) isa specific function that returns the principal square root of its argument. The argument and result are double
complex.

See also:
CSQRT, DSQRT, and SQRT
6.26 CEXP: Exponential
Synopsis:

COVPLEX FUNCTI ON CEXP(COMPLEX)
Description:

CEXP(a) is a specific function that returns a complex result from a complex argument. It returns the exponential of its
argument.

See also:

144

PromulaFortran Compiler User's Manual

CDEXP, DEXP, and EXP

6.27 CHAR: Character Value

Synopsis:
CHARACTER* 1 FUNCTI ON CHAR(| NTEGER* 2)

CHARACTER*1 FUNCTI ON CHAR(| NTEGER)
Description:
CHAR(a) is a generic function that converts a numeric display code, or "lexical value" or "collating weight" into its
character code. The point of this function isthat character values on the host processor are not necessarily the same as those
on the machine for which a given FORTRAN program was written. All numeric display code references in a source
FORTRAN program are passed through this function either by the system directly or by the other runtime functions
included in this library. Note that if you wish this function to return some value other than the host processor values then
you must modify it. Typically, this modification would take the form of alookup table reference.
See also:

ICHAR

6.28 CLOG10: Logarithm Base 10
Synopsis:

COVPLEX FUNCTI ON CLOGLO(COVPLEX)
Description:

CLOGLO(a) is a specific function that returns the logarithm base 10 of the argument. The argument is complex and the
result is complex.

See also:

ALOGI10, CDLOG10, DLOG10, and LOG10

6.29 CLOG: Natural Logarithm
Synopsis:

COVPLEX FUNCTI ON CLOG({ COMPLEX)
Description:

CLOG a) isaspecific function that returns the natural logarithm of the argument. The argument is complex and the result is
complex.

See also:

ALOG, CDLOG, DLOG, and LOG

145

PromulaFortran Compiler User's Manual

6.30 CMPLX: Complex Value

Synopsis:
COVPLEX FUNCTI ON CMPLX(| NTEGER* 2)
COVPLEX FUNCTI ON CMPLX(| NTEGER)
COVPLEX FUNCTI ON CMPLX(REAL)
COVPLEX FUNCTI ON CMPLX(REAL* 8)
COVPLEX FUNCTI ON CMPLX(COMPLEX)
COVPLEX FUNCTI ON CMPLX(COMPLEX* 16)
COVPLEX FUNCTI ON CMPLX(REAL, REAL)
COVWPLEX FUNCTI ON CVPLX(REAL* 8, REAL* 8)
COVPLEX FUNCTI ON CMPLX(REAL* 8, REAL)
COVPLEX FUNCTI ON CMPLX(REAL, REAL* 8)

Description:

CMPLX(a) or CMPLX(al, a2) is a generic function that performs type conversion and returns a complex value. CMPLX
can have one or two arguments. A single argument can be integer, real, double precision, complex, or double complex. If
two arguments are used, the arguments must be of the same type and must both be integer, real, or double precision. For a
single integer, real, or double precision argument, the result is complex, with the argument used as the rea part and the
imaginary part zero. For a single complex argument, the result is the same as the argument. For two arguments al and a2,
the result is complex, with argument a1 used as the real part and argument a2 used as the imaginary part. CMPLX does not
have specific names.

See also:

DCMPLX

6.31 CONJG: Conjugate

Synopsis:
COVPLEX FUNCTI ON CONJG COVPLEX)
COVPLEX* 16 FUNCTI ON CONJG(COMPLEX* 16)

Description:

CONJE a) isageneric function that returns a conjugate of a complex or double complex argument. The result is the same
type as the argument. For a complex or double complex argument (ar, ai), theresultis(ar, -ai) with the imaginary
part negated.

See also:

DCONGJ

146

PromulaFortran Compiler User's Manual

6.32 COSH: Hyperbolic Cosine

Synopsis:
REAL FUNCTI ON COSH(REAL)

REAL*8 FUNCTI ON COSH(REAL* 8)
Description:

CCSH(a) is a generic function that returns a hyperbolic cosine. The result is real or double precision, depending on the
argument type.

See also:

DCOSH

6.33 COS: Cosine

Synopsis:
REAL FUNCTI ON COS(REAL)
REAL*8 FUNCTI ON COS(REAL* 8)
COVPLEX FUNCTI ON COS(COVPLEX)

COVPLEX*16 FUNCTI ON COS(COVPLEX* 16)
Description:

COS(a) is a generic function that returns a cosine. The argument is assumed to be in radians. The result is real, double
precision, complex or double complex, depending on the argument type.

See also:

CCOS, CDCOS, and DCOS

6.34 CSIN: Sine
Synopsis:

COVPLEX FUNCTI ON CSI N(COVPLEX)
Description:

CSI N(a) isagpecific function that returns a sine. The argument is assumed to be in radians. The argument and result are
both complex.

See also:

CDSIN, DSIN, and SIN

6.35 CSQRT: Square Root

147

PromulaFortran Compiler User's Manual

Synopsis:

COVPLEX FUNCTI ON CSQRT(COVPLEX)
Description:
CSQRT(a) isaspecific function that returns the principal square root of its argument. The argument and result are complex.
See also:
CDSQRT, DSQRT, and SQRT
6.36 DABS. Absolute Value
Synopsis:
REAL*8 FUNCTI ON DABS(REAL* 8)
Description:

DABS(a) returns the absolute value of its double precision argument. The result is double precision and equals a, if a is
greater than or equal to zero, elseitis- a.

See Also:

ABS, IABS, CABS, CDABS and |2ABS.

6.37 DACOS: Arccosine
Synopsis:
REAL*8 FUNCTI ON DACOS(REAL* 8)
Description:
DACOS(a) returns the double precision arccosine of its double precision argument. The result is expressed in radians.
See also:

ACOS

6.38 DASIN: Arcsine
Synopsis:

REAL*8 FUNCTI ON DASI N(REAL* 8)
Description:

DASI N(a) is a specific function that returns an arcsine. The result is expressed in radians. The result and argument are
double precision.

See also:

148

PromulaFortran Compiler User's Manual

ASIN

6.39 DATE: Current Date
Synopsis:

SUBROUTI NE DATE(CHARACTER* (*))
Description:
DATE(a) obtains the current date as set within the system. The date is returned as an 8-character character string of the
form m1 dd/ yy. If the argument is too short to receive eight characters, the return value is truncated. If the argument is
longer that eight, then trailing positions are padded with blanks.

See also:

TIME

6.40 DATANZ2: Arctangent of Quotient
Synopsis:

REAL*8 FUNCTI ON DATAN2(REAL* 8, REAL* 8)
Description:

DATAN2(al, a2) is a specific function that returns the arctangent of a2 divided by al. The result is expressed in radians.
The result and argument are both double precision. If both arguments are zero, the result is zero.

See also:

ATAN2

6.41 DATAN: Arctangent
Synopsis:

REAL*8 FUNCTI ON DATAN(REAL* 8)
Description:

DATAN(a) is a specific function that returns an arctangent. The result is expressed in radians. The result and argument are
both double precision.

See also:

ATAN

6.42 DBLE: DoublePrecision Value

Synopsis:

149

PromulaFortran Compiler User's Manual

REAL*8 FUNCTI ON DBLE(| NTEGER* 2)
REAL*8 FUNCTI ON DBLE(| NTEGER)
REAL*8 FUNCTI ON DBLE(REAL)
REAL*8 FUNCTI ON DBLE(REAL* 8)
REAL*8 FUNCTI ON DBLE(COVPLEX)

REAL*8 FUNCTI ON DBLE(COVPLEX* 16)
Description:

DBLE(a) is a generic function that performs type conversion and returns a double precision result. The argument can be
integer, real, double precision, or complex. For an integer or real argument, the result has as much precision as the double
precision field can contain. For a double precision argument, the result is the argument For a complex argument, the real
part is used, and the result has as much precision as the double precision field can contain.

See also:
REAL

6.43 DCMPLX: Double Complex Value

Synopsis:
COVPLEX*16 FUNCTI ON DCMPLX(| NTEGER* 2)
COVWPLEX*16 FUNCTI ON DCMPLX(| NTEGER)
COVPLEX*16 FUNCTI ON DCMPLX(REAL)
COVWPLEX*16 FUNCTI ON DCMPLX(REAL* 8)
COVWPLEX*16 FUNCTI ON DCMPLX(COVPLEX* 16)
COVPLEX* 16 FUNCTI ON DCMVPLX(COVPLEX)

COVWPLEX*16 FUNCTI ON DCMPLX(REAL* 8, REAL* 8)
Description:

DCMPLX(a) or DCMPLX(al, a2) is ageneric function that performs type conversion and returns a double complex value.
DCMPLX can have one or two arguments. A single argument can be integer, real, double precision, complex , or double
complex. If two arguments are used, the arguments must be of the same type and must both be integer, real, or double
precision. For a single integer, real, or double precision argument, the result is double complex, with the argument used as
thereal part and the imaginary part zero. For a single double complex argument, the result is the same as the argument. For
two arguments a1 and a2, the result is double complex, with argument a1 used as the real part and argument a2 used as the
imaginary part. DCMPL X does not have specific names.

See also:

CMPLX

6.44 DCONJG: Conjugate

150

PromulaFortran Compiler User's Manual

Synopsis:
COVPLEX* 16 FUNCTI ON DCONJG(COVPLEX* 16)
Description:

DCONJG(a) isaspecific function that returns a conjugate of a double complex argument. The result is double complex. For
adouble complex argument (ar, ai), theresultis(ar, -ai) withtheimaginary part negated.

See also:

CONGJ

6.45 DCOSH: Hyperbolic Cosine
Synopsis:
REAL*8 FUNCTI ON DCOSH(REAL* 8)
Description:
DCOSH(a) is a specific function that returns a hyperbolic cosine. The result and argument are double precision.
See also:

COsH

6.46 DCOS: Cosine
Synopsis:

REAL*8 FUNCTI ON DCOS(REAL* 8)
Description:

DCOS(a) is a specific function that returns a cosine. The argument is assumed to be in radians and the result isin radians.
The result and argument are both double precision.

See also:

CCOS, CDCOS, and DCOS

6.47 DDIM: Positive Difference
Synopsis:

REAL*8 FUNCTI ON DDI M REAL* 8, REAL* 8)
Description:

DDl M al, a2) is a specific function that returns a double precision positive difference between its double precision
arguments. If al is greater that a2 then the value of

151

PromulaFortran Compiler User's Manual

al - a2
is returned, else zero is returned.
See also:

DIM, IDIM, and I2DIM

6.48 DEXP: Exponential
Synopsis:

REAL*8 FUNCTI ON DEXP(REAL* 8)
Description:

DEXP(a) is a specific function that returns a double precision result from a double precision argument. It returns the
exponential of its argument.

See also:
CDEXP, CEXP, and EXP

6.49 DIM: Positive Difference
Synopsis:
REAL FUNCTI ON DI M REAL, REAL)
REAL*8 FUNCTI ON DI M REAL* 8, REAL* 8)
REAL*8 FUNCTI ON DI M REAL, REAL* 8)
REAL*8 FUNCTI ON DI M REAL* 8, REAL)
I NTEGER*2 FUNCTI ON DI M | NTEGER* 2, | NTEGER* 2)

I NTEGER FUNCTI ON DI M | NTEGER, | NTEGER)

Description:

DI M a1, a2) is a generic function that returns a positive difference. The result is integer, real, or double precision,
depending on the type of the first argument. If al is greater that a2 then the value of

al - a2
isreturned, else zero is returned.
See also:
DDIM, IDIM, and 12DIM

6.50 DIMAG: Imaginary Part

Synopsis:
REAL*8 FUNCTI ON DI MAG(COVPLEX* 16)

152

PromulaFortran Compiler User's Manual

Description:

DI MAG a) is a specific function that returns the imaginary part of a double complex argument. The double precision result
isai , where the complex argument is(ar, ai).

See also:
AIMAG

6.51 DINT: Truncation
Synopsis:

REAL*8 FUNCTI ON DI NT(REAL* 8)
Description:
DI NT(a) returns a double precision integer value after the truncation of its double precision argument. Theresult isO if the
absolute value of a islessthan 1. If the absolute value of a is greater than or equal to 1, the result is the largest integer with
the same sign as argument a that does not exceed the magnitude of a.

See also:

AINT

6.52 DLOG10: Logarithm Base 10
Synopsis:

REAL*8 FUNCTI ON DLOGLO(REAL* 8)
Description:

DLOGLO(a) isaspecific function that returns the logarithm base 10 of the argument. The argument is double precision and
the result is double precision.

See also:

ALOG10, CDLOG10, CLOG10, and LOG10

6.53 DLOG: Natural Logarithm
Synopsis:

REAL*8 FUNCTI ON DLOG REAL* 8)
Description:

DLOE a) isa specific function that returns the natural logarithm of the argument. The argument is double precision and the
result isdouble precision.

See also:

153

PromulaFortran Compiler User's Manual

ALOG, CDLOG, CLOG, and LOG

6.54 DMAX1: Maximum Value
Synopsis:

REAL*8 FUNCTI ON DVAX1(REAL*S, .. .)
Description:

DMAX1(al, a2[, an]...) isa specific function that returns the value of the largest argument. All arguments are double
precision, and the result is double precision.

See also:
AMAXO0, AMAX1, MAX, I2MAX0, MAXO0, and MAX1
6.55 DMIN1: Minimum Value
Synopsis:

REAL*8 FUNCTI ON DM N1(REAL*8, ...)
Description:

DM N1(al, a2[, an]...) isaspecific function that returns the value of the smallest argument. All arguments are double
precision, and the result is double precision.

See also:

AMINO, AMIN1, I2MINO, MINO, MIN1, and MIN

6.56 DM OD: Remainder
Synopsis:

REAL*8 FUNCTI ON DMOD(REAL* 8, REAL* 8)
Description:

DMOD(al, a2) is a specific function that returns the remainder of al divided by a2. The result and both arguments are
double precision. The result is

al-(int(al/a2)*a2).
If a2 equals zero, then the result is zero.
See also:

AMOD, I12MOD, and MOD

6.57 DNINT: Nearest I nteger

Synopsis:

154

PromulaFortran Compiler User's Manual

REAL*8 FUNCTI ON DNI NT(REAL* 8)
Description:

DNI NT(a) is a specific function that returns a double precision result from a double precision argument. It computes the
nearest integer to its double precision argument. In particular the result is

dint(a+0.5) if a >= 0.0 and
dint(a-0.5) if a <= 0.0

where"di nt * isthe FORTRAN intrinsic function DI NT.
See also:

ANINT, IDNINT, I2NINT, and NINT

6.58 DPROD: Product
Synopsis:

REAL*8 FUNCTI ON DPROD(REAL, REAL)
Description:

DPROD(al, a2) is a specific function that returns a double precision product. The arguments are real, and the result is
double precision. Theresultisal*a2.

See also:

None

6.59 DSIGN: Transfer of Sign
Synopsis:

REAL*8 FUNCTI ON DSI G\(REAL* 8, REAL* 8)
Description:

DSl G\(al, a2) isaspecific function that returns a double precision result from two double precision arguments. The result
reflects the magnitude of the first value combined with the sign of the second value. In particular

if al > 0.0 and a2 < 0.0 return -al
or
if al < 0.0 and a2 > 0.0 return -al
elsereturnal

See also:

ISIGN, I2SIGN, and SIGN.

155

PromulaFortran Compiler User's Manual

6.60 DSINH: Hyperbolic Sine
Synopsis:
REAL*8 FUNCTI ON DSI NH(REAL* 8)
Description:
DSI NH(a) is aspecific function that returns a hyperbolic sine. The result and argument are double precision.
See also:

SINH

6.61 DSIN: Sine
Synopsis:

REAL*8 FUNCTI ON DSI N(REAL* 8)
Description:

DSI N(a) is a specific function that returns a sine. The argument is assumed to be in radians. The argument and result are
both double precision.

See also:

CSIN, CDSIN, and SIN

6.62 DSQRT: Square Root
Synopsis:

REAL*8 FUNCTI ON DSQRT(REAL* 8)
Description:

DSQRT(a) isa specific function that returns the principal square root of its argument. The argument and result are double
precision.

See also:

CDSQRT, CSQRT, and SQRT

6.63 DTANH: Hyperbolic Tangent
Synopsis:

REAL*8 FUNCTI ON DTANH(REAL* 8)
Description:

DTANH(a) isa specific function that returns a hyperbolic tangent. The result and argument are double precision.

156

PromulaFortran Compiler User's Manual

See Also:

TANH

6.64 DTAN: Tangent
Synopsis:

REAL*8 FUNCTI ON DTAN(REAL* 8)
Description:

DTAN(a) is a specific function that returns a tangent. The argument is assumed to be in radians. The result and argument
are double precision.

See also:

TAN

6.65 EXIT: Stop Program Execution
Synopsis:

SUBROUTI NE EXI T(| NTEGER)
Description:

A cal to EXI T(a) stops program execution. It performs the identical operation as would be performed by executing the
FORTRAN statement

STOP a
See also:

STOP statement description.

6.66 EXP: Exponential
Synopsis:
REAL FUNCTI ON EXP(REAL)

REAL*8 FUNCTI ON EXP(REAL* 8)
COVPLEX FUNCTI ON EXP(COWPLEX)

COVPLEX*16 FUNCTI ON EXP(COVPLEX* 16)
Description:

EXP(a) isageneric function that returns an exponential. The result is real, double precision, complex, or double complex
depending on the argument type.

See also:

157

PromulaFortran Compiler User's Manual

CDEXP, CEXP, and DEXP

6.67 FLOAT: Real Value

Synopsis:
REAL FUNCTI ON FLQOAT(| NTEGER* 2)

REAL FUNCTI ON FLQOAT(| NTEGER)
Description:

FLOAT(a) is a specific function that returns a real result from an integer argument. It simply converts the argument to its
real, floating point equivalent.

See also:

REAL and SNGL

6.68 GETCL: Get Command Line
Synopsis:
SUBROUTI NE GETCL(CHARACTER* (*))
Description:
GETCL(a) returns any command line string entered along with the request to execute the program. If that string is shorter
than the character length of a, then it is truncated. If the command line string is shorter than the character length of a, then

a is padded with blanks.

See also: None

6.69 |ABS: Absolute Value

Synopsis:
I NTEGER FUNCTI ON | ABS(| NTEGER)

I NTEGER*2 FUNCTI ON | ABS(| NTEGER* 2)
Description:

| ABS(a) is a generic function that returns an absolute value of its argument. The result is integer or short integer
depending on the argument type. It isa, if a isgreater than or equal to zero, elseitis - a.

See Also:
ABS, DABS, CABS, CDABS and I12ABS.

6.70 IAND: Bitwise And

Synopsis:

158

PromulaFortran Compiler User's Manual

I NTEGER*2 FUNCTI ON | AND(| NTECER*2, . . .)

I NTEGER FUNCTI ON | AND(| NTEGER, . . .)
Description:

I AND(al, a2[, an]...) isageneric function which accepts short integers or integers. The return value is the successive
bitwise AND of its arguments, and is the same type as the first parameter.

See also:

None

6.71 ICHAR: Integer Value of Character
Synopsis:

I NTEGER*2 FUNCTI ON | CHAR(CHARACTER* (*))
Description:

| CHAR(a) isaspecific function that returns an integer value from a character argument. The value returned depends on the
collating weight of the character in the collating sequence used.

See also:

CHAR

6.72 IDIM: Positive Difference
Synopsis:

I NTEGER FUNCTI ON | DI M I NTEGER, | NTECER)
Description:

I DI M al, a2) is a specific function that returns an integer positive difference between its integer arguments. If a1 is
greater that a2 then the value of

al - a2
isreturned, else zero is returned.
See also:

DDIM, DIM, and I2DIM

6.73 IDINT: Integer Value

Synopsis:

I NTEGER FUNCTI ON | DI NT(REAL* 8)

Description:

159

PromulaFortran Compiler User's Manual

I DI NT(a) is a specific function that performs conversion to integer, and returns an integer result from a double precision
argument. The conversion to integer is performed via simple truncation.

See also:

IFIX, INT, INT2, and INT4

6.74 IDNINT: Nearest I nteger

Synopsis:
I NTEGER FUNCTI ON | DNI NT(REAL)
Description:

I DNI NT(a) is a specific function that returns an integer result from a real argument. It computes the nearest integer to its
real argument. In particular the result is

int(a+0.5) if a >= 0.0
and

int(a-0.5) if a <= 0.0
where"int" isthe FORTRAN intrinsic function INT.
See also:

ANINT, DNINT, I2NINT, and NINT

6.75 IFIX: Integer Value

Synopsis:

I NTEGER FUNCTI ON | FI X(| NTEGER* 2)

I NTEGER FUNCTI ON | FI X(| NTECER)

I NTEGER FUNCTI ON | FI X(REAL)

I NTEGER FUNCTI ON | FI X(REAL* 8)

I NTEGER FUNCTI ON | FI X(COVPLEX)

I NTEGER FUNCTI ON | FI X(COVPLEX* 16)
Description:

| FI X(a) isageneric function that performs conversion to integer, and returns an integer result. The conversion to integer
for noncomplex arguments is performed via ssimple truncation. For complex arguments only the real part is used and
truncated.

See also:
IDINT, INT, INT2, and INT4

160

PromulaFortran Compiler User's Manual

6.76 INDEX: Location of Substring
Synopsis:

I NTEGER FUNCTI ON | NDEX(CHARACTER* (*) , CHARACTER* (*))
Description:

I NDEX(al, a2) is a specific function that returns the location of a substring within a string. Both arguments must be
character string arguments. If string a2 occurs as a substring within string a1, the result is an integer indicating the starting
position of the substring a2 within al. If a2 does not occur as a substring within a1, the result is 0. If a2 occurs as a
substring more than once within a1, only the starting position of the first occurrence is returned.

See also:

None

6.77 INT2: Integer Value

Synopsis:
I NTEGER*2 FUNCTI ON | NT2(| NTEGER)
I NTEGER*2 FUNCTI ON | NT2(| NTEGER* 2)
I NTEGER* 2 FUNCTI ON | NT2(REAL)
I NTEGER* 2 FUNCTI ON | NT2(REAL* 8)
I NTEGER* 2 FUNCTI ON | NT2(COMPLEX)

I NTEGER* 2 FUNCTI ON | NT2(COVPLEX* 16)
Description:

I NT2(a) isageneric function that performs conversion to short integer, and returns a short integer result. The conversion
to integer for noncomplex arguments is performed via simple truncation. For complex arguments only the real part is used
and truncated.

See also:

IDINT, IFIX, INT, and INT4

6.78 INT4: Integer Value

Synopsis:
I NTEGER FUNCTI ON | NT4(| NTEGER* 2)
I NTEGER FUNCTI ON | NT4(| NTEGER)
I NTEGER FUNCTI ON | NT4(REAL)
I NTEGER FUNCTI ON | NT4(REAL* 8)

I NTEGER FUNCTI ON | NT4(COVPLEX)

161

PromulaFortran Compiler User's Manual

I NTEGER FUNCTI ON | NT4(COVPLEX* 16)
Description:
I NT4(a) isageneric function that performs conversion to integer, and returns an integer result. The conversion to integer
for noncomplex arguments is performed via ssimple truncation. For complex arguments only the real part is used and
truncated.
See also:

IDINT, IFIX, INT, and INT2

6.79 INT: Integer Value

Synopsis:
I NTEGER FUNCTI ON | NT(| NTEGER* 2)
I NTEGER FUNCTI ON | NT(| NTEGER)
I NTEGER FUNCTI ON | NT(REAL)
I NTEGER FUNCTI ON | NT(REAL* 8)
I NTEGER FUNCTI ON | NT(COVPLEX)

I NTEGER FUNCTI ON | NT(COVPLEX* 16)
Description:
I NT(a) isageneric function that performs conversion to integer, and returns an integer result. The conversion to integer
for noncomplex arguments is performed via simple truncation. For complex arguments only the real part is used and
truncated.
See also:

IDINT, IFIX, INT2, and INT4

6.80 ISIGN: Transfer of Sign
Synopsis:

I NTEGER FUNCTI ON | SI G\(| NTEGER, | NTEGER)
Description:

I SI G\(al, a2) isa specific function that returns an integer result from two integers. The result reflects the magnitude of
the first value combined with the sign of the second value. In particular

ifal > 0.0anda2 < 0.0 return-al
or

ifal< 0.0anda2 > 0.0 return-al
elsereturnal

162

PromulaFortran Compiler User's Manual

See also:

DSIGN, I12SIGN, and SIGN.

6.81 12ABS: Absolute Value
Synopsis:

I NTEGER*2 FUNCTI ON | 2ABS(| NTEGER* 2)
Description:

| 2ABS(a) returns the short integer absolute value of its short integer argument. The result is a, if a is greater than or equal
to zero, elseitis -a.

See Also:

ABS, IABS, DABS, CABS, and CDABS

6.82 12DIM: Positive Difference
Synopsis:

I NTEGER*2 FUNCTI ON | 2Dl M| NTEGER* 2, | NTEGER* 2)
Description:

I 2Dl M al, a2) isaspecific function that returns a short integer positive difference between its short integer arguments. If
al isgreater that a2 then the value of

al - a2
is returned, else zero is returned.
See also:

DDIM, DIM, and IDIM

6.83 12ZMAXO0: Maximum Value
Synopsis:

| NTEGER*2 FUNCTI ON | 2MAXO(| NTEGER*2, . . .)
Description:

| 2MAX0(al, a2[, an]...) is a specific function that returns the value of the largest argument. All arguments are short
integer, and the result is short integer.

See also:

AMAXO0, AMAX1, MAX, DMAX1, MAXO0, and MAX1

163

PromulaFortran Compiler User's Manual

6.84 12MINO: Minimum Value
Synopsis:

I NTEGER*2 FUNCTI ON | 2M NO(| NTEGER*2, . . .)
Description:

I 2M NO(al, a2[, an]...) isaspecific function that returns the value of the smallest argument. All arguments are short
integer, and the result is short integer.

See also:

AMINO, AMIN1, DMIN1, MINO, MIN1, and MIN

6.85 12MOD: Remainder

Synopsis:
I NTEGER*2 FUNCTI ON | 2MOD(| NTEGER* 2, | NTEGER* 2)
Description:

| 2MOD(num dem) computes the value of the remainder of numdivided by dem If demis zero, then the result is zero. Both
arguments are the result are short integer.

See also:

AMOD, DMOD, and MOD

6.86 12NINT: Nearest Integer
Synopsis:

I NTEGER*2 FUNCTI ON | 2NI NT(REAL)
Description:

I 2NI NT(a) isaspecific function that returns a short integer result from areal argument. It computes the nearest integer to
itsreal argument. In particular the result is

int(a+0.5) if a >= 0.0
and
int(a-0.5) if a <= 0.0

wherei nt isthe FORTRAN intrinsic function INT.
See also:
ANINT, DNINT, IDNINT, and NINT

6.87 12SIGN: Transfer of Sign

Synopsis:

164

PromulaFortran Compiler User's Manual

I NTEGER*2 FUNCTI ON | 2SI GN(| NTEGER* 2, | NTEGER* 2)
Description:

I 2SI G\(al, a2) is a specific function that returns a short integer result from two short integer arguments. The result
reflects the magnitude of the first value combined with the sign of the second value. In particular

ifal> 0.0anda2 < 0.0 return-al
or

ifal< 0.0 anda2 > 0.0 return-al
elsereturn al

See also:
DSIGN, ISIGN, and SIGN.

6.88 LEN: Number of Characters
Synopsis:

I NTEGER FUNCTI ON LEN(CHARACTER* (*))
Description:

LEN(a) isa specific function that returns the length of a character string. The argument is a character string, and the result
is an integer indicating the length of the string.

See also:

None

6.89 LGE: Lexically Greater or Equal
Synopsis:

LOGI CAL*2 FUNCTI ON LGE(CHARACTER* (*) , CHARACTER* (*))
Description:

LGE(al, a2) is a specific function that returns a result indicating lexically greater than or equal to. The arguments are
character strings. Theresultistrueonly if al followsa2, or al isequal to a2, in the collating sequence.

See also:

CHAR, LGT, LLE,and LLT

6.90 LGT: Lexically Greater

Synopsis:

LOG CAL*2 FUNCTI ON LGT(CHARACTER* (*) , CHARACTER* (*))

Description:

165

PromulaFortran Compiler User's Manual

LGT(al, a2) is a specific function that returns a result indicating lexically greater than. The arguments are character
strings. The result istrue only if al follows a2 in the collating sequence.

See also:

CHAR, LGE, LLE, and LLT

6.91 LLE: Lexically Lessor Equal
Synopsis:

LOG CAL*2 FUNCTI ON LLE(CHARACTER* (*), CHARACTER* (*))
Description:

LLE(a1, a2) is a specific function that returns a result indicating lexically less than or equal to. The arguments are
character strings. Theresult istrue only if a1 precedesa2, or al isequal to a2, in the collating sequence.

See also:

CHAR, LGE, LGT,and LLT

6.92 LLT: Lexically Less
Synopsis:

LOG CAL*2 FUNCTI ON LLT(CHARACTER* (*), CHARACTER* (*))
Description:

LLT(al, a2) isa specific function that returns a result indicating lexically less than. The arguments are character strings.
Theresultistrue only if al precedes a2 in the collating sequence.

See also:

CHAR, LGE, LGT, and LLE

6.93 LOG10: Logarithm Base 10

Synopsis:
REAL FUNCTI ON LOGLO(REAL)
REAL*8 FUNCTI ON LOGL10(REAL* 8)
COVPLEX FUNCTI ON LOGLO(COVPLEX)

COWPLEX*16 FUNCTI ON LOGL0(COVPLEX* 16)

Description:

166

PromulaFortran Compiler User's Manual

LOGLO(a) is a specific function that returns the logarithm base 10 of the argument. The result is always the same type as
the argument.

See also:

ALOGI10, CDLOG10, CLOG10, and DLOG10

6.94 LOG: Natural Logarithm

Synopsis:
REAL FUNCTI ON LOG(REAL)
REAL*8 FUNCTI ON LOG(REAL* 8)
COVPLEX FUNCTI ON LOG(COVPLEX)

COVPLEX*16 FUNCTI ON LOG COVPLEX* 16)
Description:

LOG a) isageneric function that returns the natural logarithm of the argument. The result is always the same type as the
argument.

See also:

ALOG, CDLOG, CLOG, and DLOG

6.95 MAX0: Maximum Value

Synopsis:
I NTEGER FUNCTI ON MAXO(I NTEGER, . . .)

I NTEGER*2 FUNCTI ON MAXO(| NTEGER*2, .. .)
Description:

MAX0(al, a2[, an]...) isageneric function that returns the value of the largest argument. The arguments are integer,
and the result is the same type as the first arguments.

See also:

AMAXO0, AMAX1, MAX, DMAX1, I2MAXO0, and MAX1

6.96 MAX1: Maximum Value

Synopsis:

I NTEGER FUNCTI ON MAX1(REAL, .. .)

Description:

167

PromulaFortran Compiler User's Manual

AMAXO(al, a2[, an]...) isaspecific function that returns the value of the largest argument. All arguments are real, and
theresult isinteger.

See also:

AMAXO0, AMAX1, MAX, DMAX1, I2MAXO0, and MAXO

6.97 MAX: Maximum Value

Synopsis:
I NTEGER*2 FUNCTI ON MAX(| NTECER*2, . . .)
I NTEGER FUNCTI ON MAX(| NTEGER, . . .)
REAL FUNCTI ON MAX(REAL, . . .)

REAL*8 FUNCTI ON MAX(REAL*8, .. .)
Description:

MAX(al, a2[, an]...) isageneric function that returns the value of the largest argument. The result is the same type as its
first argument.

See also:
AMAXO0, AMAX1, DMAX1, I2MAX0, MAXO0, and MAX1

6.98 MINO: Minimum Value

Synopsis:
I NTEGER FUNCTI ON M NO(| NTEGER, . . .)

I NTEGER* 2 FUNCTI ON M NO(| NTEGER*2, . . .)
Description:

M NO(al, a2[, an]...) isageneric function that returns the value of the smallest argument. All arguments are integer,
and the result is the same type asits first argument.

See also:

AMINO, AMIN1, DMIN1, I2MINO, MIN1, and MIN

6.99 MIN1: Minimum Value
Synopsis:

I NTEGER FUNCTI ON M NL(REAL, .. .)
Description:

M NL1(al, a2[, an]...) isaspecific function that returns the value of the smallest argument. All arguments are real, and
theresult isinteger.

168

PromulaFortran Compiler User's Manual

See also:

AMINO, AMIN1, DMIN1, I2MINO, MINO, and MIN

6.100 MIN: Minimum Value

Synopsis:
I NTEGER*2 FUNCTI ON M N(I NTECER*2, . . .)
I NTEGER FUNCTI ON M N(I NTEGER, . . .)
REAL FUNCTI ON M N(REAL, . . .)

REAL*8 FUNCTI ON M N(REAL*8, .. .)
Description:

M N(al, a2[, an]...) isageneric function that returns the value of the smallest argument. The type of the result is the
same asthe type of the first argument.

See also:

AMINO, AMIN1, DMIN1, I2MINO, MINO, and MIN1

6.101 MOD: Remainder

Synopsis:
I NTEGER*2 FUNCTI ON MOD(| NTECGER* 2, | NTEGER* 2)
I NTEGER FUNCTI ON MOD(| NTEGER, | NTEGER)
REAL FUNCTI ON MOD(REAL, REAL)
REAL*8 FUNCTI ON MOD(REAL* 8, REAL* 8)
REAL*8 FUNCTI ON MOD(REAL, REAL* 8)
REAL*8 FUNCTI ON MOD(REAL* 8, REAL)

I NTEGER FUNCTI ON MOD(| NTEGER, | NTEGER)
Description:

MOD(al, a2) is a generic function that returns the remainder of al divided by a2. The result is integer, real, or double
precision, depending on the argument type. Theresultis

al-(int(all/a2)*a2).
If a2 equals zero, then the result is zero.
See also:

AMOD, DMOD, and I2MOD

169

PromulaFortran Compiler User's Manual

6.102 NINT: Nearest | nteger

Synopsis:
I NTEGER FUNCTI ON NI NT(| NTEGER* 2)
I NTEGER FUNCTI ON NI NT(| NTEGER)
I NTEGER FUNCTI ON NI NT(REAL)

I NTEGER FUNCTI ON NI NT(REAL* 8)
Description:

NI NT(a) is a generic function that returns an integer result from an arithmetic, noncomplex argument. It computes the
nearest integer to its argument. In particular the result is

int(a+0.5) if a >= 0.0
and

int(a-0.5) ifa <= 0.0
wherei nt isthe FORTRAN intrinsic function INT.
See also:

ANINT, DNINT, IDNINT, and I2NINT

6.103 REAL: Real Valueor Part

Synopsis:
REAL FUNCTI ON REAL(| NTEGER* 2)
REAL FUNCTI ON REAL(| NTEGER)
REAL FUNCTI ON REAL(REAL)
REAL FUNCTI ON REAL(REAL* 8)
REAL FUNCTI ON REAL(COMPLEX)

REAL FUNCTI ON REAL(COVPLEX* 16)
Description:

REAL(a) is a generic function that performs type conversion and returns a real result. The argument can be integer, real,
double precision, or complex. For acomplex argument (ar, ai), theresultisreal (ar).

See also:

FLOAT and SNGL

6.104 SIGN: Transfer of Sign

170

PromulaFortran Compiler User's Manual

Synopsis.
I NTEGER*2 FUNCTI ON SI GN(| NTEGER* 2, | NTEGER* 2)
I NTEGER FUNCTI ON SI GN\(| NTEGER, | NTECER)
REAL FUNCTI ON S| G\(REAL, REAL)
REAL*8 FUNCTI ON SI GN(REAL* 8, REAL* 8)
REAL*8 FUNCTI ON SI G\(REAL, REAL* 8)
REAL*8 FUNCTI ON SI G\(REAL* 8, REAL)

Description:

SI G\(a1, a2) isageneric function whose result is the same type as its first argument. The result reflects the magnitude of
the first value combined with the sign of the second value. In particular

ifal >0.0and a2 < 0.0 return -al
or

ifal <0.0and a2 >0.0return- a1l
elsereturnal

See also:

DSIGN, ISIGN, and I2SIGN.

6.105 SINH: Hyperbolic Sine

Synopsis:
REAL FUNCTI ON SI NH(REAL)
REAL*8 FUNCTI ON SI NH(REAL* 8)
Description:

SI NH(a) is a generic function that returns a hyperbolic sine. The result is real or double precision, depending on the
argument type.

See also:

DSINH

6.106 SIN: Sine

Synopsis:
REAL FUNCTI ON SI N(REAL)
REAL*8 FUNCTI ON S| N(REAL* 8)

COVPLEX FUNCTI ON S| N(COVPLEX)

171

PromulaFortran Compiler User's Manual

COVPLEX*16 FUNCTI ON SI N(COVPLEX* 16)
Description:

SI N(a) is a generic function that returns a sine. The argument is assumed to be in radians. The result is real, double
precision, complex, or double complex depending on the argument type.

See also:

CDSIN, CSIN, and DSIN

6.107 SNGL: Real Value
Synopsis:

REAL FUNCTI ON SNGL(REAL*8)
Description:

SNGL(a) isasgpecific function that returns areal result from a double precision argument. The result is the double precision
value converted to real.

See also:

FLOAT and REAL

6.108 SQRT: Square Root

Synopsis:
REAL FUNCTI ON SQRT(REAL)
REAL*8 FUNCTI ON SQRT(REAL* 8)
COVPLEX FUNCTI ON SQRT(COVPLEX)
COVPLEX* 16 FUNCTI ON SQRT(COMPLEX* 16)

Description:

SQRT(a) is ageneric function that returns the principal square root of its argument. The result is real, double precision,
complex, or double complex depending on the argument type.

See also:

CDSQRT, CSQRT, and DSQRT
6.109 TANH: Hyperbolic Tangent

Synopsis:
REAL FUNCTI ON TANH(REAL)

REAL*8 FUNCTI ON TANH(REAL* 8)

172

PromulaFortran Compiler User's Manual

Description:

TANH(a) is a generic function that returns a hyperbolic tangent. The result is real or double precision, depending on the
argument type.

See also:

DTANH

6.110 TAN: Tangent

Synopsis:
REAL FUNCTI ON TAN(REAL)

REAL*8 FUNCTI ON TAN(REAL* 8)
Description:

TAN(a) isageneric function that returns a tangent. The argument is assumed to be in radians. The result is real or double
precision, depending on the argument type.

See also:

DTAN

6.111 TIME: Current Time
Synopsis:

SUBROUTI NE TI ME(CHARACTER* (*))
Description:
TI ME(a) obtains the current time as set within the system. The time is returned as an 8-character character string of the
form hh: mm ss. If the argument is too short to receive eight characters, the return value is truncated. If the argument is
longer that eight, then trailing positions are padded with blanks.

See Also:

DATE\

173

PromulaFortran Compiler User's Manual

7. CONTROLLING RUNTIME BEHAVIOR

Once an application has been processed by the compiler and converted into an executable form, its runtime behavior can be
controlled by passing execution control switches to the runtime system via the command line for the application.

These include the following:

Switch Description of Use
Ccode Establishes the runtime conventions code: (Codes may be summed to achieve
composite effects)
Code Meaning
0 Standard conventions
2 Interprets carriage control to output
4 Checks substring lengths for overflow
8 Execute an explicit pause for the PAUSE statement
16 Use VAX FORTRAN runtime conventions
I number Assigns the unit whose number isindicated to standard input.
Onumber Assigns the unit whose number isindicated to standard output.
Tnumber Assigns the unit whose number is indicated to be a terminal — i.e., reads from

standard input, writesto standard output
Vname Specifies the name of afile which isto be used as the virtual disk file.

Svalue Specifies that the file specified by the V parameter is to be created during the
execution of this program.

Zvalue Specifies the maximum number of sheets to be allocated for virtual memory.

7.1 Interpreting Carriage Control to Output

In traditional FORTRAN environments, the first character of each character record written contains a format control:
blank means single space;
zero means double space;
one means start a new page.

By default, the runtime library simply writes these characters to coded records without checking or interpreting them.

If the carriage control convention flag is set, however, the runtime library strips the first character and replaces it with the
appropriate control characters.

174

PromulaFortran Compiler User's Manual

7.2 Checking Substring Lengthsfor Overflow

Normally, substrings are not checked to make certain that they do not overflow the strings from which they are taken. This
convention provides for rapid execution of substring statements and conforms to the normal FORTRAN conventions which
allow the user to play memory games with substrings — i.e., many real FORTRAN programs contain deliberate substring
overflows.

Alternatively, if careful programming conventions are being stressed, it may be desirable to check for substring overflows
at runtime. This flag provides this facility.

7.3 Executing an Explicit PAUSE

In traditional FORTRAN environments, the PAUSE statement executed by jobs running in the background sent a message
to the operator console and then suspended execution until a "go" was received from the operator. By default the runtime
library now treats these PAUSE statements as merely displaying informational messages to the console — execution is not
physically suspended.

The explicit PAUSE flag causes the application to pause until the Enter or Return key is pressed, or until arecord is read

from the standard input file. Since the concept of an "operator's console” is no longer well-defined for jobs running in the
background, care should be used with thisflag. It may cause unexpected results.

7.4 Using VAX FORTRAN Runtime Conventions

The VAX runtime conventions, though they are technically compliant with the 1977 FORTRAN standard, are somewhat
different from normal conventions. Most of these differences can be dealt with at source code processing time; however,
one cannot.

Under VAX runtime conventions, file record lengths are expressed in long words rather than in bytes. The VAX

FORTRAN runtime convention flag informs the runtime system that lengths are to be multiplied times the size of a long
word before they are used.

7.5 Assigning a Standard I nput Unit

Some FORTRAN runtime systems assume that a certain unit is to be assigned to the standard input file. The Inumber
command line switch assigns the unit number specified to the standard input file.

7.6 Assigning a Standard Output Unit

Some FORTRAN runtime systems assume that a certain unit is to be assigned to the standard output file. The Onumber
command line switch assigns the unit number specified to the standard output file.

7.7 Assigning a Standard Terminal Unit

Some FORTRAN runtime systems assume that a certain unit is to be assigned to standard input for reads and to standard
output for writes. Such files are referred to as "terminal” files. The Tnumber command line switch assigns the unit number
specified to the terminal file.

175

PromulaFortran Compiler User's Manual

7.8 Specifying aVirtual Filename

The Vname command line switch specifies the name of a file which is to be used as the virtual disk file. This may be an
existing PROMULA array datafile or it may be afile to be created during the execution of the application program.

7.9 Specifying a Virtual File Size

The Svalue command line switch specifies that the file whose name is specified by the Vvalue parameter is to be created
during the execution of this program. The parameter "value" specifies the size of that file in bytes. If the S switch is used
with no corresponding name specified, then the name "pfc.dba’ is used. Note that the value to be used with this switch is
displayed by the compiler when an application requiring virtual memory is processed.

7.10 Specifying a Virtual Sheet Count

The Zvalue command line switch specifies the maximum number of sheets to be alocated for virtual memory. This
parameter is needed when both dynamic and virtual allocations are being made. It prevents the virtual manager from
exhausting al memory before the dynamic manager has a chance to satisfy its memory needs. The maximum setting for
this parameter is 254.

176

PromulaFortran Compiler User's Manual

8. THE PROMULA INTERFACE

The PROMULA FORTRAN compiler converts FORTRAN source codes into executable code. The PROMULA
Application Management System, henceforth PROMULA, is an integrated programming environment which is designed to
use a data structure which is completely compatible with the one used by FORTRAN. Based on multi-dimensional arrays
(dimensioned variables), the PROMULA data structure is a generalization of the FORTRAN data structure. The
PROMULA language itself is an elegant notation for managing and manipulating such arrays. Using the two tools together
-- the FORTRAN compiler and PROMULA — can add significant value to FORTRAN applications.

A typical program-user interface for ‘old' batch-oriented FORTRAN programs is shown below. The user manipulates what
goes in and what comes out of the program via a text editor. The program itself is a computational 'black box' whose logic
transforms the program inputs into the program outputs. The instructions controlling the running of the program are usually
in a batch procedure of commands to the operating system — written in JCL, the Job Control Language of the operating
system.

User Interface
Edit Inputs (Text Files) with a Text Editor
Run Code with an Operating System Command
Browse/Edit Outputs (Text Files) with a Text Editor

Print Outputs with an Operating System Command

Program I nputs - Program Code - Program Outputs

Figure8-1. A Typical FORTRAN Program-User Interface

In this scheme, the program's logic and the program's information are "locked in" the program code. Typicaly, the
program's inputs and outputs are separate text files that can be accessed sequentially by the program and can be
manipulated by the user via a text editor. How do you make this interface more user friendly? Can you do it without
diminishing the current functionality of the program? Can you add value and functionality without modifying the current
code? The answer is yes. The PROMULA tools make it possible to add value to existing FORTRAN programs. The
purpose of this chapter isto show you how.

A particularly difficult problem faces anyone porting an existing program to a PC or some other contemporary platform.
Traditional programs, though perfectly useful, are rejected by contemporary users because they are not sufficiently user
friendly. In designing the FORTRAN compiler, we felt very strongly that this particular problem could not be ignored.
Simple compilation was not enough. Our solution to this problem is to automatically link the "disk image" used by the
virtual memory manager directly into our PROMULA system, and to allow the compiler to use virtual memory for selected
variables.

At issue is more than just the user interface. There are myriad tools available on the PC; spreadsheets, database managers,
graphics packages, statistical packages, etc., which can be used to work with the data now locked up in existing FORTRAN

177

PromulaFortran Compiler User's Manual

programs. Once the information can be gotten to disk in a structured form, all of these can be used to enhance the value of
that information.

Traditional techniques allow you to work only with the explicit information either read or written by the program. Working
with the information in the program simply means working with itsinput files and its output reports. If thisis not sufficient,
you must go into the program and modify it. This required modification is often time consuming and can introduce errors.
The technique we are presenting here requires virtually no changes in the FORTRAN code. The FORTRAN compiler puts
into the executable the logic needed to place values on the disk at the point of their creation or use. This logic introduces no
errors and requires no changes in the FORTRAN source code.

Here we show through an example how the PROMULA FORTRAN Compiler can add value to an existing FORTRAN
program by making its information directly accessible to the PROMULA system. If you do not presently use PROMULA
itself, this will show you how the use of an "integrated system" can greatly simplify the use of, and even breathe life into,
old, batch-oriented FORTRAN programs.

With PROMULA, it is possible to enhance the user interface by creating a database that contains the information content of
the FORTRAN program — what goesin and what comes out as well as intermediate results.

User Interface
Edit Inputs (Text Files) with a Text Editor
Run Code with an Operating System Command
Browse/Edit Outputs (Text Files) with a Text Editor
Print Outputs with an Operating System Command
plus
Use Program Database | ndependently of Program Code
Retrieve and Browse Information from the Database
Edit Data via Multidimensional Spreadsheet Data Editor or Edit Menus
Use Multiple Windows and Menus to Run Program
Use Report Generator to Produce Reports
Plot Program Variables
Perform Ad Hoc Calculations with Database V arigbles
Develop On-line Documentation and Context-sensitive Help

Import/Export Data from/to Other Programs

Program Database

Program Inputs Program Outputs

Program Code

178

PromulaFortran Compiler User's Manual

Figure8.2. A PROMULA-Enhanced FORTRAN Program-User Interface

8.1 Transforminga FORTRAN Program with PROMULA

PROMULA and the FORTRAN compiler can be used in tandem to upgrade existing FORTRAN codes. The interface
between these two systems truly adds value to existing FORTRAN programs.

Traditionally, FORTRAN programs are computational 'boxes’; they read in data and write out reports. By making the
internal data structure of a FORTRAN program a PROMULA dataset, you are able to 'unlock’ the information content of
the FORTRAN box and make it immediately accessible to users via a database and a structured, user-friendly interface.

Consider the following scenario. Y ou have been given the assignment to port a useful, but large, FORTRAN program from
the company mainframe to the PC or some other desktop platform. The program runs on a mainframe, requires about 8
Megabytes of system memory, and has a batch user interface — its inputs are fixed-format, sequential text files and so are
its outputs. Your mission is to run this program on the desktop without losing any of its functionality, reproduce its
behavior and its results, and make it more user friendly.

With PROMULA, this portation project will go like this:

(1) Make a list of al the program variables that you wish to deposit in a random-access database for later use by the
program and for independent use by other applications. Write a database description file (in PROMULA) and create a
PROMULA database that will contain the selected variables. Each variable in the database is simply defined by an
identifier, a structure (its dimensions, if any), a type, and a descriptor. The dimensionality of variables in the database
must be identical to that in the program. For example, the definitions:

DEFI NE SET
week(52)
day(7)
hour (24)
year (10)

END

DEFI NE VARI ABLE
hdat a(hour, day, week, year) TYPE=REAL(10,2), "Hourly Data"
END

describe a four-dimensional variable, hdat a, containing 87,360 values (= 52 x 7 x 24 x 10), the hourly values for 10
years classified by hour, day, week, and year. On PC-DOS, this variable alone is bigger that 64 Kilobytes and would
make it difficult for the program to compile using atypical compiler available on the PC.

(2) Compile and link the FORTRAN program. During the compilaton introduce references to a PROMULA database
containing all the variables in the program that cause it to be big — larger than the typical memory resources available
on, say, the PC.

The augmented compilation effectively separates the program's calculations from its database. The database can now
reside on disk, can be as large as we wish, and still be accessible to the program via the PROMULA virtual memory
manager. The program database is also accessible to PROMULA for independent data management, manipulation, and
ad hoc analysis.

The same code that runs on the mainframe now runs on the desktop as well and reproduces results without making any
code changes or sacrificing any of the program's capabilities. There is no need to ‘downsize' the code to run it on the
PC. Asaresult, thereis no need to maintain two different codes, one on the mainframe and one on the PC.

(3) WriteaPROMULA user-interface program to manage the program database and to perform the following functions:

179

PromulaFortran Compiler User's Manual

* Browse/edit program inputs

¢ Edit the program source code

* Trandate, compile and link the program source code
* Run the executable model code

* Browse or print program outputs

* Plot program inputs and outputs

PROMULA's built-in windowing, menu management, data management, and graphics features are used to produce a
contemporary user interface. The programming requirements for this kind of program are very modest; and once you've
done one, the code is transferrable to other applications as well.

8.2 EXPO, an Exposure Analysis M odel

The program listing on the following two pages shows a relatively simple FORTRAN program which calculates the
cumulative effects of exposure to various pollutant types. It is basicaly a FORTRAN 66 program, though it has OPEN
statements and uses "T" FORMAT specifications. Both of these are extensions to the 66 dialect. Characters are used, but
are stored in numeric variables; therefore, this program would not be usable with a pure FORTRAN 77 compiler. Except
for this presentation, this program has no other purpose.

PROGRAM EXPO
C TH S PROGRAM COWPUTES EXPOSURE LEVELS G VEN | NPUT TI ME SERI ES

I NTEGER |, | DAY(50), | MNTH(50) , | MOD, | OPT, | YR(50), LUNL, LUN2,
+ MASS(2) , NUM TI ME(2) , TI TLE(20) , XLN(2)

REAL ABS, AVGE(50) , AVG (50) , CONC(50) , CUME(50) , CUVEV, CUM (50) ,
+ CUM V, DUR, EXPOS(50) , FREQ PERD(50) , SEVER(50) , TAKE(50) , VBL,
+ XMULT

LUN1=5

LUN2=6

OPEN(LUNL, FI LE=' EXPO. DAT' , STATUS=' OLD')

OPEN(LUN2, FI LE=' EXPO. RPT' , STATUS=' NEW)

C INITI ALI ZE THE CUMJLATI VE VALUES

CUMEV

0.0
CuMV = 0.0

READ | NPUT CONTROLS AND WRI TE OUTPUT HEADERS

o000

READ(LUNL, 1000) (TITLE(I), 1=1, 20)

READ(LUNL, 1005) (MASS(1),1=1,2), (XLN(1),1=1,2), (TIME(1),1=1,2)
READ(LUN1, 1010) | MOD, | OPT

READ(LUNL, 1020) ABS, XMULT

WRI TE(LUN2, 2007)

WRI TE(LUN2, 2000) (TI TLE(1),1=1,20), (MASS(1),1=1, 2),

1 (XLN(1), 1=1,2), (TIME(1),1=1,2)

DETERM NE WHETHER FREQUENCY AND DURATI ON W LL BE READ I N TI MESERI ES

o000

| F(1 OPT. EQ 0) READ(LUNL, 1020) VBL, FREQ DUR
| F(1 OPT. EQ 1) READ(LUNL, 1020) VBL

C WRI TE QUTPUT HEADER FOR SELECTED EXPOSURE ROUTE

180

PromulaFortran Compiler User's Manual

o000

OO0 000

o000

VR TE(LUN2, 2001)
WRI TE(LUN2, 2010)
VR TE(LUN2, 2011)
WRI TE(LUN2, 2020)

READ NUMBER COF ENTRIES I N TI MESERI ES

READ(LUN1, 1010) NUM
DO 30 | =1, NUM
| F(1 OPT. EQ 0) READ(LUNL, 1030)
+ CONC(1)
I F(1 OPT. EQ 1) READ(LUNL, 1030)
CONC(1), FREQ, DUR
| F(1 OPT. EQ 2) READ(LUNL, 1030)
CONC(1), VBL, FREQ DUR

I DAY(1), I MNTH(1), 1 YR(I),
I DAY(1), I MNTH(1), 1 YR(I),

I DAY(1), I MNTH(1), I YR(1),

(Continued on next page)

CONVERT UNI TS OF | NPUT CONCENTRATI ON
CONC(1) = CONC(1) * XMULT
COVPUTE SEVERI TY, PERI ODI CI TY, EXPOSURE AND | NTAKE
SEVER(1) = CONC(1) * VBL
PERD(|) = FREQ * DUR
EXPOS(1) = SEVER(l) * PERD(I)
TAKE(1) = EXPOS(1) * ABS
COVPUTE CUMULATI VE AND AVERAGE VALUES
CUMEV = CUMEV + EXPOS(1)
CUME(1) = CUMEV
AVGE(1) = CUMEV / |
CUMV = CUM V + TAKE(1)
CUM (1) = CUMV
AVGE (1) = CUMV / |

WRI TE(LUN2, 2030)

CONTI NUE

FORMAT(20A4)

FORMAT(3(2A4, 2X))

FORMAT(BN, 31 5)

FORMAT(8F10. 0)

FORMAT(31 2, 4X, F6. 0)

FORMAT(T2, 20A4, / /
T2, MASS (M UNITS =
T2, LENGTH (L) UNITS
T2, TIME (T) UNITS =

L 2A4, 1,
= 2A4,]
24,1 1)

I DAY(1), | MNTH(1), |
EXPOS(1), CUVE(1), AVGE(), TAKE(1), CUM

YR(1), CONC(1),
(1), AVd (1)

2001 FORMAT(T45, ' | NHALATI ON EXPOSURE ROUTE', /,

1 T45,"
2007 FORVAT(T2,'

1 T2,"*

2 T2,'*

3

VERSI ON 1

R S S O O O

EXPOSURE ANALYSI S MODEL

v,/)
A

A
/

%1

1
T2' L R o R R S o R R Sk I Rk S o o ,///)

2010 FORMAT(T26, ' AMBI ENT', T54, ' CUMJLATI VE' , T70, ' AVERACE' ,

1
2
3 T40, ' EXPOSURE' | T55, ' EXPOSURE' ,
4

T99, ' CUMULATI VE' , T116, ' AVERAGE' ,/, T2, ' DAY',
T8,' MONTH , T16, ' YEAR , T23, ' CONCENTRATI ON',

T70, " EXPOSURE' ,

T86, ' | NTAKE' , T101,' | NTAKE' , T116, ' | NTAKE , /)
2011 FORMAT(T25,' (M L**3)',T41,' (MT)",

T57,'(M', 171, (MT)",

181

PromulaFortran Compiler User's Manual

1 T86,' (MT)',T102,' (M, T117,' (MT)")

2020 FORMAT(T2, ' -=-----mmmmmmmn- L T23, e "
s T '
7 - - JE L ")

2030 FORNMAT(2X,12,T9,12,T17,12,T25, 3. 3, T40, D. 3, T55, N. 3, T70, *. 3,
1 T85, . 3, T100, (9. 3, T115, (D. 3)
STCP
END

8.3 Thelnitial Compilation

The filename for this program is "EXPO.FOR". We compile it by simply entering the following at the operating system
command level:

pf expo.for -0 expo

This produces an executable file. When we run this program, it reads the input data from an input text file, does some
calculations, and writes the output report on an output text file:

EXPO.DAT — expo — EXPO.RPT

The input and output datafiles for this program, EXPO.DAT and EXPO.RPT, are shown in Figures 8-3 and 8-4,
respectively.

RESI DENTI AL AREA, | NHALATI ON, ADULT/ CHI LE, 14 DAY, 50 PPM 100M DOANW ND
uG MVETER MONTH
1 0

1.0 1.0

576. 7 1.0 1.0
17

010879 4.6E-1

010979 5.2E-1

011079 3.8E-2

011179 1.7E-2

011279 1.1E-2

010180 6. 8E-3

010280 4. 8E-3

010380 1. 0E-2

010480 2.4E-2

010580 5.0E-2

010680 6. 5E-2

010780 5.4E-2

010880 1.2E-4

010980 6. 7E-5

011080 2.5E-5

011180 1.4E-5

011280 6. 1E-6

Figure 8-3. Input Datafor EXPO

KR KKK KKK KKK KK KRR KKK KK KKK KKK KT KKK E KK

EXPOSURE ANALYSI S MODEL
* VERSI ON 1 *

Kok kkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkk ok k

RESI DENTI AL AREA, | NHALATION, ADULT/ CHILD, 14 DAY, 50 PPM 100M DOANW ND
MASS (M UNITS = UG

LENGTH (L) UNITS = METER

TIME (T) UNITS = MONTH

I NHALATI ON EXPOSURE ROUTE

182

PromulaFortran Compiler User's Manual

AMBI ENT CUMULATI VE AVERAGE CUMULATI VE AVERAGE

DAY MONTH = YEAR CONCENTRATI ON EXPOSURE EXPOSURE EXPOSURE | NTAKE | NTAKE | NTAKE

(ML**3) (MT) (M (MT) (MT) (M (MT)
1 8 79 . 460 265. 265. 265. 265. 265. 265.
1 9 79 . 520 300. 565. 283. 300. 565. 283.
1 10 79 . 380E-01 21.9 587. 196. 21.9 587. 196.
1 11 79 .170E-01 9. 80 597. 149. 9. 80 597. 149.
1 12 79 . 110E-01 6.34 603. 121. 6.34 603. 121.
1 1 80 . 680E- 02 3.92 607. 101. 3.92 607. 101.
1 80 . 480E- 02 2.77 610. 87.1 2.77 610. 87.1
1 3 80 . 100E- 01 5.77 616. 77.0 5.77 616. 77.0
1 4 80 . 240E-01 13.8 630. 69.9 13.8 630. 69.9
1 5 80 . 500E- 01 28.8 658. 65.8 28.8 658. 65.8
1 6 80 . 650E- 01 37.5 696. 63.3 37.5 696. 63.3
1 7 80 . 540E-01 311 727. 60. 6 31.1 727. 60. 6
1 8 80 . 120E- 03 . 692E-01 727. 55.9 . 692E-01 727. 55.9
1 9 80 . 670E- 04 . 386E-01 727. 51.9 . 386E-01 727. 51.9
1 10 80 . 250E- 04 . 144E-01 727. 48.5 . 144E-01 727. 48.5
1 11 80 . 140E- 04 . 807E-02 727. 45.4 . 807E- 02 727. 45.4
1 12 80 . 610E- 05 . 352E-02 727. 42.8 . 352E-02 727. 42.8

Figure 8-4. Output Report from EXPO

At this point we have a normal FORTRAN program, however, we have added no value to that program. It has the same
capabilities, strengths, and weaknesses as before.

8.4 A PROMULA Datafile Description

Examining the FORTRAN program, we notice that all of the variables in the output report along with two intermediate
calculations are stored in arrays. It is these values which we would like to examine more closely.

We now wish to access the information in these variables by means other than this FORTRAN program. To do this, we
need a description of the data on the file so that the individual values can be accessed and manipulated. The datafile needs
to be described. The simple PROMULA program below contains such a description. For the sake of readers not familiar
with PROMULA notation, we have sequenced the lines and will give a brief discussion of the elements of this description.

001 DEFI NE PROGRAM " Exposur e Anal ysis Mdel "

002 OPEN SEGVENT "expo. xeq", STATUS=NEW

003 DEFI NE FI LE

004 dbase, TYPE=ARRAY

005 END FI LE

006 OPEN dbase "expo. dba", STATUS=NEW

007 DEFI NE SET

008 tp(50), "Tinme Points"

009 END

010 DEFI NE VARI ABLE dbase

011 iday(tp) TYPE=I NTECER(5) "Day"

012 imth(tp) TYPE=I NTEGER(5) "Mbonth"

013 iyr(tp) TYPE=I NTEGCER(5) "Year"

014 avge(tp) TYPE=REAL(10,1) "Average Exposure (MT)"
015 avgi (tp) TYPE=REAL(10,1) "Average Intake (MT)"
016 conc(tp) TYPE=REAL(10,5) "Anbient Concentration (ML**3)"
017 cune(tp) TYPE=REAL(10,1) "Cumulative Exposure (M"
018 cum (tp) TYPE=REAL(10,1) "Curmulative Intake (M"
019 expos(tp) TYPE=REAL(10,1) "Exposure (MT)"

020 perd(tp) TYPE=REAL(10,1) "Period"

021 sever(tp) TYPE=REAL(10,1) "Severity"

022 take(tp) TYPE=REAL(10,1) "Intake (MT)"

023 END

024 DEFI NE VARI ABLE

025 date(tp) TYPE=DATE(10) "Date of exposure"

183

PromulaFortran Compiler User's Manual

026 END

027 DEFI NE RELATI ON
028 KEY(t p, dat e)
029 END

030 DEFI NE PROCEDURE mai n

031 OPEN dbase "expo. dba", STATUS=0OLD

032 SELECT tp IF iday(tp) GI O

033 date(tp) = iday(tp) + imth(tp)*100 + iyr(tp)*10000
034 END mai n

035 END PROGRAM DO(mai n)
036 STOP

Lines 1 and 2 define the program and the file to be used to contain the actual database description. Lines 3-5 specify that an
array file is to be defined, and Line 6 actually creates that file with the name "EXPO.DBA". Lines 7-9 define the "time-
points' classification scheme which classifies the values of the variables to be manipulated. Lines 10-23 define the actual
variables to be contained on the datafile. Notice that along with the variable identifiers and structures, the binary types and
descriptions are also included. This information documents the datafile and is also later used by PROMULA to work with
these variables. Lines 24-29 define a variable "date”" which is not on the database, but which will be used asa"KEY" to the
individual entriesin the "time-points"' classification scheme. The significance of this key relation will become clearer later
when we actually work with the values. Lines 30-34 contain the minimal amount of startup logic that we will need to work
with the actual values. Line 31 opens the datafile. Line 32 looks at the day values and restricts the "time-points"
classification scheme to those entries where a day is defined. Line 33 computes actual date values from the raw inputs from
the FORTRAN program. Thisis all the logic we need to work with the values. The actual "working with the values' will be
done in PROMULA command mode to simplify this discussion. The final two lines end the processing of the program and
end the session with PROMULA.

The final step is to process this description using PROMULA itself. This is done by compiling the above source file,
EXPO.PRM, to produce the following two files:

EXPO.DBA, which isthe actual datafile
EXPO.XEQ, which contains the additional logic and structure discussed above.

We are now ready to add value to the FORTRAN program.

8.5 TheVirtual Compilation

Having defined the EXPO.DBA datafile, we can now re-compile the EXPO.FOR program by making explicit reference to
this datafile. Thisis done as follows:

pf expo.for expo.ghl -0 expo

The file expo. gbl is used during the compilation. It contains the cross-reference map linking the variables in the
FORTRAN program, EXPO.FOR, with the variables in the PROMULA database, EXPO.DBA, and is listed below:

expo. dba

expo i day i day vi rtual
expo i Mmth i Mmth vi rtual
expo iyr iyr vi rtual
expo avge avge vi rtual
expo avgi avgi vi rtual
expo conc conc vi rtual
expo cune cune vi rtual
expo cum cum vi rtual

184

PromulaFortran Compiler User's Manual

expo expos expos vi rtual
expo perd perd vi rtual
expo sever sever vi rtual
expo t ake t ake vi rtual

The new C code produced by this trandation, EXPO.C, is different than the one we produced before without making
explicit reference to the EXPO.DBA datafile. The new trandation makes virtual reference to the EXPO.DBA variables.
Again we compile and link this code to produce a new executable, EXPO.EXE. The size of this file is smaller than the one
we produced earlier by about 2400 bytes (the number of bytes needed to store the 12 vector variables of the program —
each storing 50 values or 200 bytes — which are now stored in the EXPO.DBA file instead — see Lines 11-22 of the
EXPO.PRM datafile description).

8.6 Syntax of the GlobalsFile

In most other FORTRAN host systems the instructions to access information from a database must be placed directly in the
FORTRAN source code. To add value to the FORTRAN application, it must be rewritten and typically be re-engineered.
The philosophy behind the design of the PROMULA host system is that the origina FORTRAN source code not be
changed; rather the compiler itself is instructed to make certain variables accessible to the database manager during the
compilation step. It isthe PROMULA FORTRAN compiler that adds value to the application, not the programmer.

Any variable in a FORTRAN program can be uniquely defined in terms of its identifier and the global symbol dominating
it. Here global symbols are either common area names or subprogram names. Given this observation, the syntax of the
globalsfile, such as the one shown above is straight-forward.

The first line of the globals file smply contains the name of the PROMULA database to be used to contain the program
values. Remember that the compiler does not actually create a database; rather it converts references to variables in the
program to references to variables on the database. It must have access to the database so that it can locate the values.

The subsequent lines simply specify the program variables, their corresponding database variables, and the access method
to be used. The fields themselves are free-format. The first field defines a global symbol — common block name or
subprogram name — which contains a desired variable. The second field contains the local identifier of the variable itself.
The third field contains the name of the corresponding variable on the database. Note that in the example above, the local
names and the database names are always the same. In general, thisis not required.

The final field defines the actual access method to be used. At this point the only two methods are "virtual" and "dynamic".
With virtual access variable values are accessed using a virtual memory scheme. Using purely virtual access there is no
limit on the amount of information that can be referenced; however, there may be a performance penalty. With dynamic
access the memory needed to contain the variable is allocated at runtime, and the entire set of valuesisread in at that time.
When the use of the variable is completed, the values are written back out and the memory released. Depending upon the
situation, dynamic access can be more efficient.

8.7 Using EXPO with PROMULA

As far as the user is concerned, we can now run the program and get the same results. As before, the program reads the
input data from an input text file, does some cal culations, and writes the output report on an output text file:

EXPO.DAT —> expo —> EXPO.RPT

The run time may have gone up a little because the program now reads from and writes to the PROMULA database
EXPO.DBA.

To use the EXPO program with PROMULA, we execute it in precisely the same manner as before, except we must tell the
virtual memory system that it is to use the file "EXPO.DBA" as the actual disk file. To do this we enter the following at the
operating system level:

185

PromulaFortran Compiler User's Manual

expo Vexpo. dba
The V option tells the program to use the EXPO.DBA datafile. After the run is complete, areport file EXPO.RPT is created
and the file "EXPO.DBA" now contains the variable values as they were computed within the program. To verify this, we
will use PROMULA again. We will take you through the individual steps.

First enter "PROMULA" at the operating system level to get the PROMULA Main Menu as shown in Figure 8-5 below.

PROMULA V3.00 (09/01/91) |BM PC Version

Mai n Menu

Key Function

F1 Exit PROMULA
F2 Restart PROMULA
F3 Run the PROMULA Tutorial
F4 Edit a source file
F5 Conpile a source program
F6 Run a program fromthe consol e
F7 Resume an interrupted program
F8 Run a programfroma disk file
F9 Run a nenu of applications

F10 Use the PROMULA Language

L Press desired key or move bounce bar and press [ENTER] -

|— Copyright 1988-1991 PROMULA Devel opnent Corporation, ALL RI GHTS RESERVED —|
Appl i cation Managenment System

Figure8-5. PROMULA Main Menu

We wish to work with an existing program, so press the F6 key which resultsin the dialog shown below.
Enter the filenane of the programto be executed
expo. xeq

Upon completion of this request, we are returned to the Main Menu, again as shown in Figure 8-5. Here, we press the F10
key to work with PROMULA directly. We will not do extensive work here, only enough to demonstrate that the values
from the program are indeed now fully exposed in a highly usable form.

Initially we can use the BROWSE VARIABLE statement, shown below, to obtain a browsable listing of the variables
available. This listing is shown in Figure 8-6. Note that the variable descriptions are all obtained from our initial
definitions.

PROMULA? BROWSE VARI ABLE

186

AVGE Average Exposure (MT)
AVA Average Intake (MT)
CONC Anbi ent Concentration

S\,N,{ ,,I:* "3) PromulaFortrgn Compiler User's Manual

O+
CUIVLE CuUtTTul atl VT LCAPUSUT T 1V}

CUM Cumul ative Intake (M

EXPOS Exposure (M T)
PFRN Peri nd

Press any key to continue

Figure8-6. BROWSE VARIABLE Listing

Next we can look at a particular variable in the list — say, "expos’. To do this we enter the command shown below. The
result is shown in Figure 8-7. Note that the values match those in the output report shown in Figure 8-4. The date keys are
used to label the rows in the report, as specified in the KEY RELATION defined in the program (Line 28 of the program
listing). The number of decimal places shown is 1 as corresponds to the type specification for the variable. Findly, the
range of values has been restricted to the 17 actual ones, as specified in the SELECT statement (Line 32 of the program
listing).

PROVULA? BROWASE expos

Exposure (M T)

(1)
08/01/79 265.3
09/ 01/ 79 299.9
10/ 01/ 79 21.9
11/01/79 9.8
12/ 01/ 88 6.3
01/01/88 3.9
02/ 01/ 88 2.8
03/01/88 5.8
04/ 01/ 88 13.8
05/ 01/ 88 28.8
06/ 01/ 88 37.5
07/ 01/ 88 311
08/01/88 6. 9284E- 2
09/ 01/ 88 3. 8639E- 2
10/ 01/ 88 1. 4418E-2
11/01/88 8.8738E-3
12/ 01/ 88 3.5179E-3

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

Figure8-7. Valuesof " expos"

Suppose next that we wish to see these values shown to 4 decimal places, so that we can see all of the significant digits. The
statement shown below does this. The result is shown in Figure 8-8. This display emphasizes that it is the actual values
within the program that are stored on the datafile, and not the reported values as shown in the report.

PROMULA? BROWSE exposl:10: 4

187

PromulaFortran Compiler User's Manual

Exposure (M T)

(1)
08/01/79 265. 2820
09/01/79 299. 8840
10/ 01/ 79 21.9146
11/01/79 9.0039
12/01/79 6. 3437
01/01/80 3.9216
02/ 01/ 80 2.7682
03/01/80 5.7678
04/01/80 13. 8488
05/01/ 80 28. 8358
06/ 01/ 80 37. 4855
07/01/ 80 31.1418
08/ 01/ 80 0. 0692
09/ 01/ 80 0. 0386
10/ 01/ 80 0.0144
11/01/80 0.0081
12/01/ 80 0.0035

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

Figure8-8. Actual Values Stored on Datafile

Finally, suppose that we wish to plot values — say, average exposure versus concentration
simple plot request to do this. The result is shown in Figure 8-9.

PROMULA?

PLOT LI NE(conc, avge),

TI TLE" Aver age Exposure as a Function of Concentration",

LEGEND"' A Char acter-Resolution Plot", XLABEL"Concentration"

287.

256.

225.

194.

163.

132.

101.

70.

39.

Aver age Exposure as a Function of Concentration
e P LT D T D R D R P R
O+ * k Kk k Kk
| kokkkok ok ok ok ok ok ok

+

O T T Tl T e S T R

0+ KhkkkKkkk kK
| *okkkKk kKK
0+ Kok Kk ok ok ok Kk
| * ok ok ok ok k ok ok ok
0+ Kk kK
| *
0+
| *
0+ *
| *
0+ *
*
O+ ****xxx

|*******

0+*

+
1
}
.
.
.
.
.
.
.
.
¥
!
.
.
.
.
.
.
.
.
3
}
.
.
.
.
.
.
.
.
¥
!
.
.
.
.
.
.
.
:
3
}
.
.
.
.
.
.
.
.
¥
!
.
.
.
.
.
.
.
:
3

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Concentration
Char act er - Resol uti on Pl ot

. The statement below is a

Figure 8-9. Average Exposure Plot Versus Concentration

188

PromulaFortran Compiler User's Manual

As you can see from this example, we have "extracted" information out of a batch FORTRAN program by using
PROMULA. The example has only scratched the surface. Using the PROMULA system as part of your trandation strategy
can make all of your programs usable in entirely new ways. FORTRAN programs can share their information with users
and other programs.

9. ERROR MESSAGES

The error messages for the FORTRAN compiler are divided into three groups:
(1) Control program errors
(2) FORTRAN preprocessor errors

(3) Runtime errors

9.1 Control Program Errors

The control program interprets the command line as entered by the user and then directs the operations of the FORTRAN
preprocessor, the C compiler, and the linker as requested. In particular the control program works as follows.

First, it checks to make certain that all of its support files are present in their expected locations. If it is unable to locate
some file then it issues the following error message and exits:

PROMULA FORTRAN Conpi l er installation error

If you get this error, either something was done incorrectly during the installation of the compiler, or the file system on
your computer has been damaged. Please refer to the platform specific installation instructions which are separate from this
manual for further instructions.

Second, the control program processes al entries on its command line to determine the type of tasks to be performed and
the resources required to perform them. If there is any entry on the command line which it cannot interpret, it exits with the
following message:

Bad ar gunent:

The "bad argument” message is followed by the particular command line argument which the control program was unable
to interpret. Refer to the chapter on using the compiler for a discussion of the valid command line options.

Having checked the command line, the control program processes each FORTRAN source file specified along with any
prototype and global filesto form intermediate C source files. These C source files are then converted to compiled form via
the C compiler. During this conversion you may get some messages from the host C compiler. These depend upon the
particular platform. The only messages which the control program might issue are:

insufficient menory
or

File formation error

The "insufficient memory" message means that the control program itself is unable to satisfy its modest memory
requirements. The "file formation error* message means that the temporary files formed during processing cannot be
formed into the final object or executable files needed. Either of these messages indicates a serious problem beyond the
domain of this compiler.

Finally, if an executable isto be formed, all compiled files formed and any additional compiled and library files included on
the command line are passed to the linker along with the specified linker options.

189

PromulaFortran Compiler User's Manual

9.2 FORTRAN Preprocessor Errors

By far the bulk of the messages issued by the PROMULA FORTRAN compiler are issued by the preprocessor, which
converts the FORTRAN source to C source. The messages are divided into three general groups:

(1) Syntax errors
(2) Warnings, comments, and notes
(3) Fatal preprocessor errors

Each error message is actually a template from which the actual message is built.

Identifier Description of variable part

[object] An object type — such as variable, parameter, statement function, etc.

[ident] A user defined identifier of a symbol — note that these are always shown in upper case to make
them stand out.

[number] A number or count derived from the user supplied information.

[token] An actua token or tokens within the source statement — note that these are always shown in
upper case to make them stand out.

[type] A binary type — such asinteger, real, integer*2, etc.

[label] A statement or format |abel.

[option] A statement option description.

[statement] A statement identifier.

9.2.1 Syntax Errors, Warnings, Comments, and Notes

When a syntax error; is encountered, a message is issued and the remainder of the statement is skipped. In addition, the
formation of the intermediate C output is blocked. With warnings, comments, and notes processing continues. These are
for your information only. See the chapter on using the compiler for details on how to control these optional messages.

Each message consists of four parts separated by a colon as is shown in the sample message below:
3: errl01.for: E101: The statenent function identifier |IALPHA may not be assigned a val ue.

The first part of the message is the record number within the source file of the start of the statement causing the message.
The second part is the name of the source file itself. The third part is the message identifier, which consists of a letter
followed by a number. Thisidentifier letter indicates the type of the message:

L etter Type of message
E Syntax error

W Warning

C Comment

N Note

Theidentifier number can be used to look up the message in the following listing.

Under the theory that a picture is worth a thousand words, rather than trying to describe the circumstances surrounding each
error, atypical code fragment generating each error is presented. It is the intent of the message system that each message be
as clear, self-contained, and specific as possible.

190

PromulaFortran Compiler User's Manual

Error: 101
M essage:
The [object] identifier [ident] may not be assigned a value.

Example of message 101:

If Line# NI Source

1 PROGRAM ERR101
2 IALPHA(X) = IFIX(X) / 2
3 DO 10 IALPHA = 1,5

3: errl01.for: E101: The statenent function identifier |ALPHA may not be
assigned a val ue.

4 VWRI TE(*, *) |
5 10 CONTI NUE
6 END

Error: 102

M essage:
The array [ident] is being subscripted with more than [number] expressions.

Example of message 102:

If Line# N Source

1 PROGRAM ERR102
2 DI MENSI ON A(10, 15)
3 A(l,Jd) = A(1,J,K + B

3: err102.for: E102: The array A is being subscripted with nore than 2
expressi ons.

4 STOP
5 END
Error: 103

M essage:

The statement function either callsitself or thereisamissing dimension for [ident].

Example of message 103:

If Line# NI Source

1 SUBROUTI NE ERR103(|, B)
2 C(1)=C(I+1)/ B+l /C(I-1)
2: errl1l03.for: E103: The statenent function either calls itself or there is
a mssing dinmension for C
3 A = C(3)
4 VRI TE(*, *) A |
5 END

191

PromulaFortran Compiler User's Manual

Error: 104
M essage:
The substring expression for [ident] is terminated by the symbol [token] rather than aright parenthesis.

Example of message 104:

If Line# N Source

1 PROGRAM ERR104
2 CHARACTER* 10 ERR_MES
3 ERR_MES(1:3,5) = “Bad Version"

3: errl04.for: E104: The substring expression for ERR MES is term nated by
the synbol , rather than a right parenthesis.
4 STOP
5 END

Error: 105
M essage:
The [object] identifier [ident] may not be used to represent a function.

Example of message 105:

If Line# N Source

PROGRAM ERR105

STRUCTURE / SHI P/

CHARACTER*10 OMNER

CHARACTER* 10 DESTI NATI ON

END

RECORD/ SHI P/ NI NA, PI NTA, SANTA_MARI A

CHARACTER* 10 VWHERE

WHERE = NI NA(3)

8: err105.for: E105: The record identifier NINA may not be used to represent

O~NOUAWNBR
PP

a function.
9 STOP
10 END

Error: 106
M essage:
The [object] identifier [ident] cannot contain a value.

Example of message 106:

If Line# NI Source
1 SUBROUTI NE ERR106
2 DI MENSI ON A(10, 20)
3 A(2,3) =0.0
4 ENTRY BVALUE
5 A(2,3) = A(2,3) + BVALUE
5: err106.for: E106: The entry point identifier BVALUE cannot contain a
val ue.

192

PromulaFortran Compiler User's Manual

6 STOP
7 END
Error: 107

M essage:
The second quantity [token] in the complex constant is not numeric.

Example of message 107:

If Line# N Source

1 PROGRAM ERR107
2 COWPLEX A
3 A= (0,0) + (6,1)
3: errl07.for: E107: The second quantity | in the conpl ex constant
numeric.
4 END
Error: 108

M essage:

is not

A complex constant is terminated by the symbol [token] rather than aright parenthesis.

Example of message 108:

If Line# N Source

1 PROGRAM ERR108
2 COVPLEX A
3 A= (0,0) + (6,7)

3: err108.for: E108: A conplex constant is terminated by the synbol
than a right parenthesis.
4 END

Error: 109

M essage:

There are too few right parentheses in the expression terminated by the symbol [token].

Example of message 1009:

If Line# NI Source

1 PROGRAM ERR109
2 COWPLEX A
3 A= ((0,0) + (6,7) * (5,5)

rat her

3: err109.for: E109: There are too few right parentheses in the expression

term nated by the synbol END OF STATEMENT.
4 END

193

PromulaFortran Compiler User's Manual

Error: 110
M essage:
An improper symbol [token] is being used to introduce a factor.

Example of message 110:

If Line# N Source

1 PROGRAM ERR110
2 LOG CAL FI NI SH, STARTED
3 FINI SH = . NAT. STARTED
3: err110.for: E110: An inproper synbol . is being used to introduce a
factor.
4 END
Error: 111

M essage:
The binary type [type] cannot be combined with the binary type [type] in this context.

Example of message 111:

If Line# N Source

1 PROGRAM ERR111

2 LOG CAL*4 TEST

3 REAL*4 ALPHA, BETA
4 TEST = . TRUE.

5 ALPHA = BETA + TEST

5: errl11l.for: E111: The binary type real *4 cannot be conbined with the
binary type logical*4 in this context.
6 END

Error: 112
M essage:
The variable [ident] has already been allocated to the common block [ident].

Example of message 112:

If Line# NI Source

1 SUBRQUTI NE ERR112
2 COWON A/ JOE, FRED, FRANK(10)
3 COMMON/ BBB/ FRED

3: errl112.for: E112: The variabl e FRED has al ready been allocated to the
comon bl ock A

4 COMVON / C/ FRANK
4: errl112.for: E112: The vari abl e FRANK has al ready been allocated to the

common bl ock A

5 JOE =5
6 WRI TE(*, *) JOE
7 END

194

PromulaFortran Compiler User's Manual

Error: 113
M essage:
The entry name [token] is not unique.

Example of message 113:

If Line# N Source

1 FUNCTI ON ERR113(A)
2 ERR113=A
3 ENTRY ERR113(B)
3: errl113.for: E113: The entry name ERR113 is not unique
4 ERR113=B
5 END
Error: 114

M essage:
Anillegal binary combination of [type] with [type] is being made.

Example of message 114:

If Line# NI Source
PROGRAM ERR114
LOG CAL TEST
| NTEGER*4 ALPHA
ALPHA = TEST // ALPHA
4: errll4.for: E114: An illegal binary conbination of integer*4 with
integer*4 is being nade
5 END

A WN P

Error: 115

M essage:

An expression of type [type] is being used in the [type] context.
Example of message 115:

If Line# NI Source

1 SUBROUTI NE ERR115
2 INTEGER*1 11

3 COVPLEX BBB

4 11 = BBB

4: err115.for: E115: An expression of type conplex*8 is being used in the
integer*1 context.
5 BBB = 11
5: errl115.for: E115: An expression of type integer*l is being used in the
conpl ex*8 cont ext .
6 END

195

PromulaFortran Compiler User's Manual

Error: 116
M essage:
The code location line number [label] is being referenced as a format number.

Example of message 116:

If Line# N Source

1 PROGRAM ERR116
2 100 WRI TE(*,*) 'Hello Weorld'
3 VR TE(*, 100) ' Goodbye Worl d'

3: errl116.for: E116: The code location |line nunber 100 is being referenced
as a format numnber.

4 STOP
5 END
Error: 117

M essage:
The code location line number [label] is being defined twice.

Example of message 117:

If Line# N Source

1 PROGRAM ERR117
2 100 WRITE(*,*) '"Hello World'
3 100 WRI TE(*, *) ' Goodbye Worl d'
3: errll7.for: E117: The code location |line nunber 100 is being defined
twice.
4 STOP
5 END
Error: 118

M essage:
The format line number [label] is being referenced as a code location.

Example of message 118:

If Line# NI Source

PROGRAM ERR118
100 FORMAT(1X, A20)

WRI TE(*, 100) 'Hello World'

GOTO 100
4: err118.for: E118: The format |ine nunber 100 is being referenced as a

code | ocation.
5 END

A WNBRF

Error: 119

196

PromulaFortran Compiler User's Manual

M essage:
The format line number [label] is being defined twice.

Example of message 119:

If Line# N Source

1 PROGRAM ERR119
2 100 FORMAT(1X, A20)
3 WRI TE(*, 100) 'Hello World'
4 WRI TE(*, 100) ' Goodbye Worl d'
5 100 FORMAT(1X, A30)
5: err119.for: E119: The format |ine nunmber 100 is being defined tw ce.

6 STOP
7 END

Error: 120

M essage:
Thelogical unit specification [token] is of the wrong type.

Example of message 120:

If Line# NI Source
PROGRAM ERR120
LOG CAL TFI LE
TFILE = . TRUE.
WRI TE(TFILE, *) 'Hello World'
4: err120.for: E120: The logical unit specification TFILE, is of the wong
type.
5 STOP
6 END

A WNBRF

Error: 121

M essage:

Theinterna file specification begins with the symbol [token] rather than an identifier.

Example of message 121:

If Line# NI Source

1 PROGRAM ERR121
2 ENCODE(8, 100, 10.5) 'Hello Wrld'
2: errl21.for: E121: The internal file specification begins with the synbol
10.5 rather than an identifier.

3 100 FORVAT(A8)

4 STOP

5 END
Error: 122

M essage:

The read element is the symbol [token] rather than an identifier.

197

PromulaFortran Compiler User's Manual

Example of message 122:

If Line# N Source

1 PROGRAM ERR122
2 10 FORVAT(alo0)
3 READ(| FI LE, 10) 1,J,K
4 READ(| FILE, *) "Hello Wrld
4: errl122.for: E122: The read elenent is the synbol 'Hello Wrld' rather
than an identifier.
5 STOP
6 END

Error: 123
M essage:

The statement function argument name [ident] may not be repeated.

Example of message 123:

If Line# NI Source

1 PROGRAM ERR123
2 EO05A(A, A) =A* A
2: errl123.for: E123: The statenent function argunment name A nay not be
r epeat ed.
3 PRI NT *," ERR123'
4 END
Error: 124

M essage:
Theimplied do-loop counter [ident] is not an integer variable.

Example of message 124

I'f Line# N Source

PROGRAM ERR124

DI MENSI ON A(10)
10 FORVAT(10A10)

READ(| FI LE, 10) (A(1), R=1, 10)
4: err124.for: E124: The inplied do-1oop counter Ris not an integer

vari abl e.
5 STOP

6 END

A WN P

Error: 125
M essage:
Theimplied do-loop minimum is followed by the symbol [token] rather than a comma.

Example of message 125:

198

PromulaFortran Compiler User's Manual

If Line# NI Source

1 PROGRAM ERR125
2 DI MENSI ON A(10)

3 10 FORMAT(10A10)

4 READ(| FI LE, 10) (A(1),1=1=10)

4: err125.for: E125: The inplied do-loop minimumis followed by the synbol
= rather than a coma.

5 STOP

6 END

Error: 126
M essage:
Theimplied do-loop specification is followed by the symbol [token] rather than aright parenthesis.

Example of message 126:

If Line# NI Source
PROGRAM ERR126
DI MENSI ON A(10)
10 FORVAT(10A10)
READ(| FI LE, 10) (A(1),1=1, 10=)
4: err126.for: E126: The inplied do-loop specification is followed by the
synbol = rather than a right parenthesis.
STOP
6 END

A WN PP

Error: 127
M essage:
The [option] parameter was not supplied.

Example of message 127:

If Line# N Source

1 PROGRAM ERR127
2 OPEN(FI LE=' ERR127. QUT' , STATUS="' NEW)
2: errl27.for: E127: The logical unit nunber paranmeter was not supplied.
3 STOP
4 END
Error: 128

M essage:
Dimension [number] for variable [ident] has an invalid extent of [number].

Example of message 128:

If Line# NI Source

199

PromulaFortran Compiler User's Manual

1 SUBROUTI NE ERR128

2 PARAMETER (| TEM=0, JJ=-5)

3 REAL B(3:2),C(0)

4 COWDON / AV A(-4), E(1 TEM

5 DI MENSI ON F(JJ: 0), G(JJ)

6 INTEGER 11 (-4,3J:-6)

7 COWVON H(| TEM 13)

8 DOUBLE PRECI SI ON DD(1 TEM JJ), DF(JJ: | TEM

9 R=4. 523

10 WRITE(1) B,C A EF GII,HDD DF, R

11 END
11: err128.for: E128: Dinension 1 for variable B has an invalid extent of O.
11: err128.for: E128: Dinension 1 for variable C has an invalid extent of 0.
11: err128.for: E128: Dinension 1 for variable A has an invalid extent of -4.
11: err128.for: E128: Dinension 1 for variable E has an invalid extent of O.
11: err128.for: E128: Dinension 1 for variable G has an invalid extent of -5.
11: err128.for: E128: Dinension 1 for variable Il has an invalid extent of -4.
11: err128.for: E128: Dinension 2 for variable Il has an invalid extent of O.
11: err128.for: E128: Dinension 1 for variable DD has an invalid extent of -4.

Error: 129
M essage:
The information for the [option] was supplied redundantly.

Example of message 129:

If Line# NI Source

1 PROGRAM ERR129
2 OPEN(6, FI LE=" ERR127. QUT' , UNI T=7, STATUS=" NEW)
2: errl29.for: E129: The information for the |ogical unit nunber was
suppl i ed redundant|y.

3 STOP
4 END
Error: 130

M essage:

The statement option [option] is followed by the symbol [token] rather than by aline number.

Example of message 130:

I'f Line# N Source
1 PROGRAM ERR130
2 OPEN(6, FI LE=' ERR127. OUT' , ERR=' YES' , STATUS=' NEW)
2: errl130.for: E130: The statenment option ERR= is foll owed by the synbol
"YES' rather than by a |line nunber.

3 77 STOP
4 END
Error: 131

M essage:

200

PromulaFortran Compiler User's Manual

The end-of -statement was reached before the parameter [option] was supplied.

Example of message 131.:

If Line# N Source

1 PROGRAM ERR131
2 1 FORMAT(' Hel lo World ')
3 ASSI GN 1

3: Err131.for: E131: The end-of-statement was reached before the paraneter
"to" was supplied.

4 VRl TE(*, LABEL)
5 STOP
6 END

Error: 132

M essage:
An undefined keyword parameter [token] has been entered when [option] was expected.

Example of message 132:

If Line# NI Source

1 PROGRAM ERR132
2 1 FORMAT(' Hel lo World ')
3 ASSI GN 1 FOR LABEL

3: err132.for: E132: An undefined keyword paranmeter FORLABEL has been
entered when "to" was expected.

4 VIRl TE(*, LABEL)
5 STOP
6 END

Error: 133

M essage:
The variable [ident] in the [statement] statement is not an undimensioned integer.

Example of message 133:

If Line# NI Source

1 SUBROUTI NE ERR133
2 | NTEGER 1J(10)
3 ASSIGN 10 TO 1J

3: errl133.for: E133: The variable |J in the assign statenent is not an
undi nensi oned i nteger.
4 ASSIGN 20 TO R
4: err133.for: E133: The variable Rin the assign statenent is not an
undi nensi oned i nteger.
5 R=10.0
6 GOTO 1 J, (10, 20, 30)
6: errl133.for: E133: The variable |1J in the goto statement is not an
undi nensi oned i nteger.
7 10 WRITE(*,*) R
8 GOTO R
8: errl133.for: E133: The variable Rin the goto statement is not an
undi nensi oned i nteger.
9 20 WRITE(*,*) 1J
10 GOTO |J

201

PromulaFortran Compiler User's Manual

10: err133.for: E133: The variable 1J in the goto statenent is not an
undi nensi oned i nt eger
11 30 GOTO R, (10, 20)
11: err133.for: E133: The variable Rin the goto statenent is not an
undi nensi oned i nt eger
12 END

Error: 134
M essage:
The symbol [token] within the data value list is not a constant.

Example of message 134:

If Line# NI Source

1 PROGRAM ERR134

2 DI MENSI ON A(5)

3 DATA A/ 1.0, 2.0, BETA 4.0, 5.0/

3: errl34.for: E134: The synbol BETA within the data value list is not a

const ant .

4 VR TE(*, *) A

5 STOP

6 END

Error: 135
M essage:
The sign character has been applied to a non-numeric constant value [token].

Example of message 135:

If Line# N Source

1 PROGRAM ERR135
2 | NTEGER A(3)
3 DATA A/ 77' X, ' ff'x, - 1'x/

3: errl135.for: E135: The sign character has been applied to a non-nuneric
constant value '1'Xx.

4 WRI TE(*, *) A
5 STOP
6 END

Error: 136
M essage:
The first member of the complex value [token] is not a numeric constant.

Example of message 136:

If Line# NI Source

1 PROGRAM ERR136
2 COVPLEX A(3)
3 DATA A/ (0.0, 1.0),(2.0,4.0),("0",0.0)/

3: err136.for: E136: The first nmenber of the conplex value "0" is not a
nuneri c constant.

202

PromulaFortran Compiler User's Manual

4 WRI TE(*, *) A
5 STOP
6 END

Error: 137

M essage:

The symbol [token] was used for the option [option] rather than a variable identifier.

Example of message 137:

If Line# NI Source

1 PROGRAM ERR137
2 OPEN(6, FI LE=' ERR127. QUT' , | OSTAT=32, STATUS=" NEW)
2: errl137.for: E137: The synbol 32 was used for the option | OSTAT= rat her
than a variable identifier.

3 STOP
4 END
Error: 138

M essage:
The format does not have a line number.

Example of message 138:

If Line# NI Source

1 PROGRAM ERR138
2 PRI NT 1
3 FORMAT("Hel l o World")
3: errl138.for: E138: The format does not have a |ine nunber.
4 STOP
5 END
Error: 139

M essage:
The format specification is preceded by the symbol [token] rather than aleft parenthesis.

Example of message 139:

If Line# NI Source

1 PROGRAM ERR139
2 PRINT 1
3 1 FORMAT "Hello Wrld")

3: errl139.for: E139: The format specification is preceded by the synbol
"Hello World" rather than a |left parenthesis.
4 STOP
5 END

203

PromulaFortran Compiler User's Manual

Error: 140
M essage:
The format specification ends in the symbol [token] rather than aright parenthesis.

Example of message 140:

If Line# NI Source

1 PROGRAM ERR140
2 PRI NT 1
3 1 FORVAT("Hello World"

3: err140.for: E140: The format specification ends in the synbol
END_OF_STATEMENT rather than a right parenthesis.

4 STOP
5 END
Error: 141

M essage:
A Hollerith string extends beyond the end of the specification.

Example of message 141.:

If Line# N Source
1 PROGRAM ERR141
2 DATA | DAT ... [AHB/
2: errl4l.for: E141: A Hollerith string extends beyond the end of the
speci fication.

3 VRI TE(*, ' (A4)') | DAT
4 STOP
5 END

Error: 142

M essage:
A delimited string has no closing delimeter.

Example of message 142:

If Line# N Source

1 PROGRAM ERR142
2 DATA | DAT/ " B/
2: errl42.for: E142: A delimted string has no closing delineter.
3 WRI TE(*, ' (A4)") | DAT
4 STOP
5 END
Error: 143

M essage:

Theif conditional expression is preceded by the symbol [token] rather than a left parenthesis.

204

PromulaFortran Compiler User's Manual

Example of message 143:

I'f Line# N Source
1 PROGRAM ERR143
2 IF 1 .EQ 33) PRINT *,"'Hello Wrld'
2: errl43.for: E143: The if conditional expression is preceded by the synbol
I rather than a left parenthesis.

3 STOP
4 END
Error: 144

M essage:

Theif conditional expression isfollowed by the symbol [token] rather than aright parenthesis.

Example of message 144:

I'f Line# N Source

1 PROGRAM ERR144

2 IF(I .EQ 33, PRINT *,'Hello Wrld
2: errl44.for: E144: The if conditional expression is followed by the synbol
rather than a right parenthesis.

3 STOP
4 END
Error: 145

M essage:
The [statement] statement contains the unrecognized symbol [token].

Example of message 145:

If Line# NI Source

1 PROGRAM ERR145
2 IF(I .EQ 45) THEN PRINT *,'Hello Wrld'
2: errl45.for: E145: The if statement contains the unrecognized synbol
PRI NT.
3 1 STOP
4 1 END
Error: 146

M essage:
The [object] [ident] may not be allocated to common.

Example of message 146:

If Line# NI Source

1 SUBRQUTI NE ERR146

2 PARAMETER (| CON=3, CON=3.)
3 REAL A B

4 I NTEGER Z, CON

205

PromulaFortran Compiler User's Manual

5 COWDN E, CON
5: errl146.for: E146: The paraneter CON nay not be allocated to common.
6 WRI TE(*,*) A Z
7 END
Error: 147

M essage:
The members of a complex constant are separated by the symbol [token] rather than a comma.

Example of message 147:

If Line# NI Source

1 PROGRAM ERR147
2 COMPLEX A(3)
3 DATA A/ (0.0, 1.0), (2.0, 4.0), (0.0/0.0)/

3: errl47.for: E147: The nmenbers of a conplex constant are separated by the
synbol / rather than a comma

4 WRI TE(*, *) A
5 STOP
6 END

Error: 148

M essage:
The second member of acomplex constant is the symbol [token] rather than a numeric constant.

Example of message 148:

If Line# N Source

1 PROGRAM ERR148
2 COVPLEX A(3)
3 DATA A/ (0.0,1.0),(2.0,4.0),(0.0,"0.0")/

3: errl48.for: E148: The second nmenber of a conplex constant is the synbo
"0.0" rather than a nuneric constant.
4 WRI TE(*, *) A
5 STOP
6 END

Error: 149
M essage:

The default else is not the last part of the blocked if.

Example of message 149:

If Line# NI Source

1 PROGRAM ERR149
2 IF(I .EQ 99) THEN
3 1 PRI NT *, " Goodbye"
4 1 ELSE
5 1 PRI NT *,"What now"
6 1 ELSE | F(1 .EQ 98)
6: errl149.for: E149: The default else is not the last part of the blocked

206

PromulaFortran Compiler User's Manual

if.
7 1 PRINT *,"Hel | 0"
8 1 ENDI F
8: errl149.for: E166: The statenent introduced by the keyword ENDI F is not a
valid statenent type.
9 1 END

Error: 150
M essage:
Negative and zero if branches are separated by the symbol [token] rather than a comma.

Example of message 150:

If Line# N Source
1 PROGRAM ERR150
2 IF(1 - 6) 10/15,20
2: err150.for: E150: Negative and zero if branches are separated by the
synbol / rather than a commm.

3 10 PRINT *,"' Hell o'
4 15 PRINT *,' Goodbye'
5 20 STOP
6 END

Error: 151

M essage:
The zero if branch is the symbol [token] rather than an integer constant.

Example of message 151.

If Line# N Source
1 PROGRAM ERR151
2 IF(I - 6) 10,1JK 20
2: errl51.for: E151: The zero if branch is the synbol |JK rather than an
i nteger constant.

3 10 PRINT *,"' Hell o'
4 15 PRINT *,' Goodbye
5 20 STOP
6 END

Error: 152

M essage:
The positive if branch is[token] rather than an integer constant.

Example of message 152:

If Line# NI Source

1 PROGRAM ERR152
2 IF(I - 6) 10,15,1JK
2: errl152.for: E152: The positive if branch is I1JK rather than an integer
constant.

207

PromulaFortran Compiler User's Manual

3 10 PRINT *,"' Hell o'
4 15 PRINT *,' Goodbye'
5 20 STOP
6 END

Error: 153

M essage:
The assign statement keyword is followed by the symbol [token] rather than an integer statement number.

Example of message 153:

I'f Line# NI Source
SUBROUTI NE ERR153(WWHI CH)
| NTEGER*2 LABEL, WHI CH
1 FORVAT(' Hello World ',15)
2 FORVAT('Hello Anerica ',15)
IF(WHICH . GT. 0) THEN
ASSI GN 90001 TO LABEL
ELSE
ASSI GN 90002 TO LABEL
ENDI F
10 GOTO LABEL
11 90001 ASSI GN WHI CH TO LABEL
11: err153.for: E153: The assign statement keyword is followed by the synbol
WHI CHTOLABEL rat her than an integer statenent nunber.
12 GOTO 90003
13 90002 ASSIGN 2 TO LABEL
14 90003 WRI TE(*, LABEL) WHI CH

CoO~NOUA~AWNE

e

15 RETURN
16 END
Error: 154

M essage:
A complex constant is terminated by the symbol [token] rather than aright parenthesis.

Example of message 154:

If Line# NI Source

1 PROGRAM ERR154
2 COMPLEX A(3)
3 DATA A/ (0.0, 1.0),(2.0,4.0),(0.0,0.0/

3: errl54.for: E154: A conplex constant is termnated by the synbol / rather
than a right parenthesis.
4 WRI TE(*, *) A
5 STOP
6 END

Error: 155
M essage:

The constant [token] of type [type] is being read into variable [ident] of type [type].

208

PromulaFortran Compiler User's Manual

Example of message 155:

If Line# NI Source

1 PROGRAM ERR155
2 DI MENSI ON A(3)
3 DATA A/ (0.0, 1.0), (2.0, 4.0),(0.0,0.0/

3: err155.for: E155: The constant (0.0,1.0) of type conplex*8 is being read
into variable A of type real*4

4 WRI TE(*, *) A
5 STCP
6 END

Error: 156
M essage:
The do statement dummy variable identifier isthe symbol [token] rather than an identifier.

Example of message 156:

If Line# N Source
1 PROGRAM ERR156
2 DO 10 1,5
2: errl156.for: E156: The do statenment dummy variable identifier is the
synbol 5 rather than an identifier.

3 PRI NT *,

4 10 CONTI NUE

5 STOP

6 END
Error: 157

M essage:
The do statement dummy [ident] is a variable of type [type].

Example of message 157:

If Line# NI Source

1 PROGRAM ERR157
2 CHARACTER* 4
3 DO10 1 =1,5

3: err157.for: E157: The do statement dummy | is a variable of type
character*4

4 PRI NT *,

5 10 CONTI NUE

6 STOP

7 END
Error: 158

M essage:

The do statement dummy is followed by the symbol [token] rather than an equals sign.

209

PromulaFortran Compiler User's Manual

Example of message 158:

If Line# N Source

1 PROGRAM ERR158
2 I NTEGER*4 |
3 DO10 I / 1,5

3: err158.for: E158: The do statement dummy is followed by the synmbol /
rather than an equal s sign.

4 PRI NT *, |

5 10 CONTI NUE

6 STOP

7 END
Error: 159

M essage:
The [object] [ident] being used to control the datarange is not an integer constant.

Example of message 159:

If Line# NI Source
PROGRAM ERR159
PARAMETER (I VAL = N * N)
DI MENSI ON A(100)
DATA (A(l),1=1,1VAL)/100*1. 2/
4: err159.for: E159: The paraneter |VAL being used to control the data range
is not an integer constant.
5 STOP
6 END

A WNBRF

Error: 160
M essage:
The do statement minimum value is followed by the symbol [token] rather than a comma.

Example of message 160:

If Line# N Source
1 PROGRAM ERR160
2 | NTEGER* 4 |
3 DO 10, | =1 TO5
3: errl160.for: E160: The do statenment mininumvalue is followed by the
synbol TO6 rather than a comm.

4 PRI NT *, |

5 10 CONTI NUE

6 STOP

7 END
Error: 161

M essage:

The do statement maximum value is followed by the symbol [token] rather than a comma.

210

PromulaFortran Compiler User's Manual

Example of message 161:

If Line# NI Source

1 PROGRAM ERR161
2 | NTEGER*4 |
3 DO10 1 =1, 5BY1

3: errl6l.for: E161: The do statement maxi numvalue is followed by the
synbol BY1 rather than a comm.

4 PRI NT *, |

5 10 CONTI NUE

6 STOP

7 END
Error: 162

M essage:
The [object] [ident] may not be dimensioned.

Example of message 162:

If Line# NI Source

1 SUBROUTI NE ERR162
2 PARAMETER (| CON=3, CONE3.)
3 DI MENSI ON | CON(3)
3: errl62.for: E162: The paraneter | CON may not be di mensioned.
4 VRI TE(*, *) A Z
5 END
Error: 163

M essage:
The computed goto is opened by the symbol [token] rather than aleft parenthesis.

Example of message 163:

If Line# NI Source
1 PROGRAM ERR163
2 READ *, |
3 GO TO = 10, 20) |
3: errl163.for: E163: The conputed goto is opened by the synbol = rather than
a |left parenthesis.

4 10 PRINT *, "Hello'
5 20 STOP
6 END

Error: 164

M essage:
An element in the computed goto statement list [token] is not a statement label.

Example of message 164:

If Line# NI Source

211

PromulaFortran Compiler User's Manual

1 PROGRAM ERR164
2 READ *, |
3 GO TO (10, Z0) |

3: errl64.for: E164: An element in the conputed goto statenent list Z0 is
not a statement |abel.

4 10 PRINT *, "Hello'
5 20 STOP
6 END

Error: 165

M essage:
The computed goto is closed by the symbol [token] rather than aright parenthesis.

Example of message 165:

If Line# NI Source

1 PROGRAM ERR165
2 READ *, |
3 G0 TO (10,20 |

3: errl65.for: E165: The conputed goto is closed by the synmbol | rather than
a right parenthesis.

4 10 PRINT *, 'Hello'
5 20 STOP
6 END

Error: 166

M essage:
The statement introduced by the keyword [token] is not avalid statement type.

Example of message 166:

If Line# NI Source

1 PROVIGRA ERR166
1. errl166.for: E166: The statement introduced by the keyword PROMGRAERR166

is not a valid statenment type.

2 DI MENSI ON AMAT(10) , | MAT(5)
3 EQUI VALENCE (| MAT(2), AVAT(4))
4 STOP
5 END
Error: 167

M essage:
The call statement subroutine name is [token] and not an identifier.

Example of message 167:

If Line# NI Source

1 PROGRAM ERR167
2 CALL 999(A B, O

212

PromulaFortran Compiler User's Manual

2: errl67.for: E167: The call statenent subroutine name is 999 and not an

identifier.
3 STOP
4 END
Error: 168

M essage:
The variable [ident] is used as an assigned format but is never assigned aformat label.

Example of message 168:

I'f Line# NI Source
SUBROUTI NE ERR168
ASSIGN 10 TO I A
GOTO | A (10, 20)
10 A=1
WRI TE(*, | A) A
1 FORMAT(1X, F10. 0)
20 RETURN
END
8: errl168.for: E168: The variable A is used as an assigned format but is
never assigned a format | abel.

O~NO O WN P

Error: 169
M essage:
An element in an implicit list is the symbol [token] rather than a single letter.

Example of message 1609:

If Line# NI Source

1 PROGRAM ERR169
2 I MPLI CI T | NTEGER(A, BC)
2: errl169.for: E169: An elenent in an inplicit list is the synbol BC rather
than a single letter.

3 PRINT *, A B, C
4 STOP
5 END

Error: 170

M essage:
An upper bound in an implicit list range is the symbol [token] rather than a single | etter.

Example of message 170:

If Line# N Source
1 PROGRAM ERR170
2 I MPLI CI T | NTEGER(A- DE)
2: errl170.for: E170: An upper bound in an inplicit list range is the synbol
DE rather than a single letter.
3 PRINT *,A/B,C D E
4 STOP

213

PromulaFortran Compiler User's Manual

5 END

Error: 171
M essage:
Theimplicit statement is closed by the symbol [token] rather than aright parenthesis.

Example of message 171.:

If Line# NI Source

1 PROGRAM ERR171
2 IMPLICIT I NTEGER (A B, C
2: errl71l.for: E171: The inplicit statenent is closed by the synbo
END_OF STATEMENT rather than a right parenthesis
3 PRI NT*, A, B, C
4 STOP
5 END

Error: 172
M essage:
An element in the statement list is [token] rather than an identifier.

Example of message 172:

If Line# NI Source

1 PROGRAM ERR172
2 SAVE A, B, 99
2: errl72.for: E172: An elenent in the statenent list is 99 rather than an
identifier.

3 PRINT *, A B

4 STOP

5 END

Error: 173

M essage:
The function keyword [token] is not well-formed in the function declaration.

Example of message 173:

If Line# NI Source

PROGRAM ERR173
| NTEGER TEST
PRINT *, TEST(1.0,2.0)
STOP
END
I NTEGER 999 FUNCTI ON TEST(A, B)
6: errl73.for: E173: The function keyword 999 is not well-forned in the
function declaration
7 I NTEGER A, B
8 TEST = A+ B
9 RETURN

OO WNPE

214

PromulaFortran Compiler User's Manual

10 END

Error: 174
M essage:
The function keyword has been replaced by [token] in the function declaration.

Example of message 174:

If Line# NI Source

1 PROGRAM ERR174

2 I NTEGER TEST

3 PRINT *, TEST(1.0,2.0)
4 STOP

5 END

6 | NTEGER FONCTI ON TEST(A, B)
6: errl74.for: E174: The function keyword has been replaced by FONCTI ONTEST
in the function declaration

7 | NTEGER A, B
8 TEST = A+ B
9 RETURN
10 END

Error: 175

M essage:
A subroutine or program may not have atype specification.

Example of message 175:

If Line# NI Source
1 PROGRAM ERR175
2 | NTEGER TEST
3 PRI NT *, TEST(1.0,2.0)

4 STOP
5 END
6 | NTEGER SUBROUTI NE TEST(A, B)
6: errl75.for: E175: A subroutine or programnay not have a type
speci fication.

7 | NTEGER A, B
8 TEST = A+ B
9 RETURN
10 END

Error: 176

M essage:
The program or subprogram identifier [token] is not well formed.

Example of message 176:

If Line# NI Source

215

PromulaFortran Compiler User's Manual

1 PROGRAM 176
1. errl76.for: E176: The program or subprogramidentifier 176 is not well
f or ned.
2 PRINT *,'Hello Wrld'
3 STOP
4 END
Error: 177

M essage:
The program statement closing parenthesis is missing.

Example of message 177:

If Line# NI Source

1 PROGRAM ERRL77(| NPUT, QUTPUT
1. errl77.for: E177: The program statement closing parenthesis is mssing.
2 PRINT *, 'Hello World'
3 STOP
4 END
Error: 178

M essage:
Entry points are allowed in subprograms only.

Example of message 178:

If Line# N Source

1 PROGRAM ERR178
2 ENTRY SAM
2: errl78.for: E178: Entry points are allowed in subprograns only.
3 WRI TE(*,*) "HI'
4 END
Error: 179

M essage:
A statement may not goto itself.

Example of message 179:

If Line# NI Source

1 SUBROUTI NE ERR179
2 =1
3 10 GOTQ(20, 30, 10), |
3: errl79.for: E179: A statenment may not goto itself.
4 201 =1 +1
5 GOTO 10
6 30 STCP
7 END

216

PromulaFortran Compiler User's Manual

Error: 180
M essage:
The pointer specification is preceded by the symbol [token] rather than a left parenthesis.

Example of message 180:

If Line# NI Source

1 PROGRAM ERR180
2 PARAMETER (1 P=4, JP = 10)
3 PO NTER P, V(0:1P, 0:JP))

3: err180.for: E180: The pointer specification is preceded by the synbol P
rather than a | eft parenthesis.

REAL A(55)

DATA A/ 3*123. 456, 2*3. 45, 5*7. 89, 45*6. 78/

P = LOC(a)

PRINT *," conputed= ",V(0,0)," should be =", A(1)

STOP

END

©oo~NO U A~

Error: 181
M essage:
The pointer identifier [token] is not avalid identifier symbol.

Example of message 181.:

If Line# NI Source

1 PROGRAM ERR181

2 PARAMETER (1 P=4, JP = 10)

3 PO NTER (, P, V(0:1P,0:JP))

3: errl181.for: E181: The pointer identifier , is not a valid identifier

synbol .

4 REAL A(55)

5 DATA A/ 3*123. 456, 2*3. 45, 5*7. 89, 45*6. 78/

6 P = LOC(a)

7 PRINT *," conputed= ", V(0,0)," should be =", A(1)

8 STOP

9 END

Error: 182

M essage:
The pointer is separated from its referent by the symbol [token] rather than by acomma.

Example of message 182:

If Line# N Source

1 PROGRAM ERR182
2 PARAMETER (| P=4, JP = 10)
3 PO NTER (P = V(0:1P, 0:JP))
3: err182.for: E182: The pointer is separated fromits referent by the
synbol = rather than by a comm.

217

PromulaFortran Compiler User's Manual

REAL A(55)

DATA A/ 3*123. 456, 2*3. 45, 5*7. 89, 45*6. 78/

P = LOC(a)

PRI NT *," conputed= ",V(0,0)," should be =", A(1)
STOP

END

©©oo~NOO O A

Error: 183
M essage:
The referent of the pointer [token] is not avalid identifier symbol.

Example of message 183:

If Line# NI Source

1 PROGRAM ERR183

2 PARAMETER (1 P=4, JP = 10)

3 PO NTER (P ,, V(0:1P,0:JP))

3: errl183.for: E183: The referent of the pointer , is not a valid identifier

synbol .

4 REAL A(55)

5 DATA A/ 3*123. 456, 2*3. 45, 5*7. 89, 45*6. 78/

6 P = LOC(a)

7 PRINT *," conputed= ",V(0,0)," should be =", A(1)

8 STOP

9 END

Error: 184

M essage:
The data statement subscript expression istoo complex to process.

Example of message 184:

If Line# NI Source

1 PROGRAM ERR184
2 DI MENSI ON | VAL(100)
3 DATA I, J,1VAL(J/1)/50, 100, 32/
3: errl84.for: E184: The data statenment subscript expression is too conplex
to process.
4 STOP
5 END

Error: 185
M essage:
The pointer specification ends in the symbol [token] rather than aright parenthesis.

Example of message 185:

If Line# NI Source
1 PROGRAM ERR185
2 PARAMETER (1 P=4, JP = 10)
3 PO NTER (P, V(O0:1P,0:JP)

218

PromulaFortran Compiler User's Manual

3: err185.for: E185: The pointer specification ends in the synbol
END_OF_STATEMENT rather than a right parenthesis.

REAL A(55)

DATA A/ 3*123. 456, 2*3. 45, 5*7. 89, 45*6. 78/

P = LOC(a)

PRINT *," conputed= ", V(0,0)," should be =", A(1)

STOP

END

©oo~NO U A~

Error: 186
M essage:

The value [number] for subscript [number] of array [ident] with minimum of [number] and maximum of [number] is out of
range.

Example of message 186:

If Line# N Source

1 PROGRAM ERR186
2 DI MENSI ON AVAL(2: 15, 3:12)
3 DATA |,J, AVAL(2,2)/6,4,34.5/

3: errl186.for: E186: The value 2 for subscript 2 of array AVAL with m ni mum
of 3 and maxi mum of 12 is out of range.

4 STOP
5 END
Error: 187

M essage:
Datais being assigned the [object] [ident] which is not avariable.

Example of message 187:

If Line# NI Source

1 PROGRAM ERR187
2 PARAMETER (Pl = 3.14159)
3 DATA PI/ 3. 14159/
3: errl87.for: E187: Data is being assigned the paraneter Pl which is not a
vari abl e.
4 STOP
5 END

Error: 188
M essage:
Datais being assigned to the subprogram argument [ident].

Example of message 188:

I'f Line# N Source
1 SUBRQUTI NE ERR188(| ARCU)
2 DATA | ARGU/ 56/
2: errl88.for: E188: Data is being assigned to the subprogram argunent | ARGU.

219

PromulaFortran Compiler User's Manual

3 RETURN
4 END
Error: 189

M essage:
The data statement variable list symbol [token] is not valid.

Example of message 189:

If Line# N Source

1 PROGRAM ERR189
2 DI MENSI ON A(100)
3 DATA (A(l),1=1,100), 100*1. 2/
3: errl189.for: E189: The data statenent variable list synbol 100 is not
val id.
4 STOP
5 END
Error: 190

M essage:
The dataimplied do-loop variable is followed by the symbol [token] rather than an equals sign.

Example of message 190:

If Line# NI Source

1 PROGRAM ERR190
2 DI MENSI ON' A 100)
3 DATA (A(1),1*1,100)/100*1. 2/

3: err190.for: E190: The data inplied do-loop variable is followed by the
synbol * rather than an equals sign

4 STOP
5 END
Error: 191

M essage:
The variable[ident] is used in an assigned goto but is never assigned a statement label.

Example of message 191:

If Line# NI Source

1 SUBROUTI NE ERR191
2 GOTO | A, (10, 20)

3 10 A=1

4 VR TE(*, *) A

5 20 RETURN

6 END

6: errl191.for: E191: The variable IAis used in an assigned goto but is
never assigned a statenent |abel

220

PromulaFortran Compiler User's Manual

Error: 192

M essage:

The dataimplied do-loop minimum is followed by the symbol [token] rather than a comma.

Example of message 192:

If Line# NI Source

1 PROGRAM ERR192
2 DI MENSI ON A(100)
3 DATA (A(1),1=1=100)/100*1. 2/
3: err192.for: E192: The data inplied do-loop minimumis followed by the
synbol = rather than a commm.
4 STOP
5 END
Error: 193

M essage:

The dataimplied do-loop range is followed by the symbol [token] rather than aright parenthesis.

Example of message 193:

If Line# NI Source

1 PROGRAM ERR193
2 DI MENSI ON' A 100)
3 DATA (A(1), =1, 100/ 100*1. 2/

3: err193.for: E193: The data inplied do-loop range is followed by the
synbol / rather than a right parenthesis

4 STOP
5 END
Error: 194

M essage:

The data array [ident] is being subscripted with more than [number] expression(s).

Example of message 194:

If Line# NI Source
1 PROGRAM ERR194
2 DI MENSI ON A(100)
3 DATA (A(I,10),1=1,100/100*1. 2/
3: errl94.for: E194: The data array A is being subscripted with nmore than
1 expression(s).

4 STOP
5 END
Error: 195

M essage:

221

PromulaFortran Compiler User's Manual

The data substring range for [ident] contains the symbol [token] rather than a colon.

Example of message 195:

If Line# N Source

1 PROGRAM ERR195

2 CHARACTER* 100 MESSAGE

3 DATA MESSAGE(56, 63)/' Hello World'/

3: errl195.for: E195: The data substring range for MESSAGE contains the

synbol , rather than a col on.

4 STOP

5 END

Error: 196

M essage:

The data substring range for [ident] is terminated by the symbol [token] rather than aright parenthesis.

Example of message 196:

If Line# NI Source
1 PROGRAM ERR196
2 CHARACTER* 100 MESSAGE
3 DATA MESSAGE(56:63/'Hello World'/
3: errl196.for: E196: The data substring range for MESSAGE is term nated by
the synbol / rather than a right parenthesis.

4 STOP
5 END
Error: 197

M essage:

The data statement specification is closed by the symbol [token] rather than a slash.

Example of message 197:

If Line# NI Source

1 PROGRAM ERR197
2 CHARACTER* 100 MESSAGE
3 DATA MESSAGE(56:63)*' Hel lo World'/

3: errl197.for: E197: The data statement specification is closed by the
synbol * rather than a sl ash.

4 STOP
5 END
Error: 198

M essage:
The data statement value list contains too many values.

Example of message 198:

222

PromulaFortran Compiler User's Manual

If Line# NI Source

1 PROGRAM ERR198
2 CHARACTER* 100 MESSAGE
3 DATA MESSAGE(56:63)/' Hello Wrld',' Goodbye'/
3: errl198.for: E198: The data statenent value |list contains too many val ues.
4 STOP
5 END
Error: 199

M essage:
The indexing constant [token] is of type [type] rather than of type integer.

Example of message 199:

If Line# NI Source

1 PROGRAM ERR199
2 PARAMETER(I Pl = 100, Pl = 3.14159)
3 DI MENSI ON A1 PI, PI)

3: err199.for: E199: The indexing constant Pl is of type real*4 rather than
of type integer.
4 STOP
5 END

Error: 200
M essage:

An unnamed field is being declared with the symbol [token] rather than with
%fill.

Example of message 200:

If Line# NI Source

1 PROGRAM ERR200

2 STRUCTURE / STRA/

3 1 CHARACTER*1 CHR
4 1 CHARACTER*3 %-ULL

4: err200.for: E200: An unnamed field is being declared with the synbol
%ULL rather than with %ill.

5 1 | NTEGER*4 | CHR
6 1 END STRUCTURE
7 STOP
8 END
Error: 201

M essage:
The argument list for [object] [ident] ends with the symbol [token] rather than a closing right parenthesis.

Example of message 201:

223

PromulaFortran Compiler User's Manual

If Line# NI Source

1 PROGRAM ERR201
2 SFUNC(X, Y) = SI N(X)*C0s(Y)
3 VAL = SFUNC(2.3, 5.4, 3. 8)

3: err201.for: E201: The argunent list for statenent function SFUNC ends
with the synmbol , rather than a closing right
par ent hesi s.

STOP

END

[S20F

Error: 202

M essage:

The dimension specification is terminated by the symbol [token] rather than a right parenthesis.

Example of message 202:

I'f Line# N Source
1 PROGRAM ERR202
2 DI MENSI ON A(10(/10*1. 0/
2: err202.for: E202: The dinmension specification is term nated by the synbol
(rather than a right parenthesis.

3 STOP
4 END
Error: 203

M essage:

The value [number] is not within the valid statement or format number range.

Example of message 203:

If Line# NI Source

1 PROGRAM ERR203
2 10 FORMAT(1X,110)
3 READ(5,0) I A
3: err203.for: E203: The value 0 is not within the valid statenent or fornat
nunber range.
4 IF(1A .EQ 45) GOTO 12345678
4: err203.for: E203: The val ue 12345678 is not within the valid statenent or
format nunber range.
5 WRI TE(6,0) | A
5. err203.for: E203: The value 0 is not within the valid statenent or format
nunmber range.
6 12345 STOP
7 END

Error: 204

M essage:

The [object] [ident] is of base type [type] and cannot be assigned a variable length string specification.

224

PromulaFortran Compiler User's Manual

Example of message 204:

If Line# NI Source

1 PROGRAM ERR204
2 I NTEGER | *4, J*2, K*(*)
2: err204.for: E204: The variable Kis of base type integer*4 and cannot be
assigned a variable length string specification

3 STOP
4 END
Error: 205

M essage:

The element length specification for [ident] is closed by the symbol [token] rather than a parenthesis.

Example of message 205:

If Line# NI Source

1 PROGRAM ERR205
2 I NTEGER | *4, J*(2, K*(4)
2: err205.for: E205: The elenment length specification for J is closed by the
synbol , rather than a parenthesis.
3 STOP
4 END
Error: 206

M essage:
The character size specification [token] for [ident] is not a constant.

Example of message 206:

If Line# NI Source

1 PROGRAM ERR206
2 I NTEGER | *4,3*(2), K*(N)
2: err206.for: E206: The character size specification Nfor Kis not a
constant .
3 STOP
4 END
Error: 207

M essage:
The declaration statement value list contains too many values.

Example of message 207:

If Line# N Source

1 PROGRAM ERR207
2 CHARACTER* 100 MESSAGE/ ' Hello Worl d', ' Goodbye' /

225

PromulaFortran Compiler User's Manual

2: err207.for: E207: The declaration statement value |ist contains too many

val ues.
3 STOP
4 END

Error: 208
M essage:
The [statement] statement contains the unrecognized symbol [token].

Example of message 208:

If Line# NI Source

1 PROGRAM ERR208
2 DI MENSI ON A(10), B(10))
2: err208.for: E208: The di nension statenment contains the unrecognized
synbol).
3 STOP
4 END
Error: 209

M essage:
The common block identifier [token] is not avalid identifier symbol.

Example of message 2009:

If Line# NI Source

1 PROGRAM ERR209
2 COVMON/ 123/ A(10), B(113)
2: err209.for: E209: The common bl ock identifier 123 is not a valid
identifier synbol

3 STOP
4 END
Error: 210

M essage:

The common block identifier is followed by the symbol [token] rather than a slash.

Example of message 210:

If Line# NI Source

1 PROGRAM ERR210
2 COVMON/ CB123, A(10), B(113)
2: err210.for: E210: The common bl ock identifier is followed by the synbol
rather than a sl ash.
3 STOP
4 END

226

PromulaFortran Compiler User's Manual

Error: 211
M essage:
The equivalence specification is preceded by the symbol [token] rather than aleft parenthesis.

Example of message 211:

If Line# NI Source

1 PROGRAM ERR211
2 DI MENSI ON AMAT(10) , | MAT(5)
3 EQUI VALENCE | MAT(2) , AMAT(4))

3: err211.for: E211: The equival ence specification is preceded by the synbo
| MAT rather than a left parenthesis

4 STOP
5 END
Error: 212

M essage:
The equivalence element identifier [token] is not avalid identifier symbol.

Example of message 212:

If Line# NI Source

1 PROGRAM ERR212
2 DI MENSI ON AMAT(10) , | MAT(5)
3 EQUI VALENCE (10, | MAT(2), AVAT(4))

3: err212.for: E212: The equival ence elenent identifier 10 is not a valid
identifier symnbol

4 STOP
5 END
Error: 213

M essage:
An equivalencerelation is being assigned the [object] [ident] which isnot avariable.

Example of message 213:

If Line# NI Source

1 PROGRAM ERR213
2 PARAVETER(| VAL = 99)

3 DI MENSI ON' AMAT(10) , | MAT(5)
4 EQUI VALENCE (I MAT(2), I VAL)

4: err213.for: E213: An equivalence relation is being assigned the paraneter
I VAL which is not a variable.
5 STOP
6 END

Error: 214

M essage:

227

PromulaFortran Compiler User's Manual

An equivaencerelation is being assigned to the subprogram argument [ident].

Example of message 214:

If Line# N Source

1 SUBRQUTI NE ERR214(AVAT)
2 DI MENSI ON AMAT(10) , | MAT(5)
3 EQUI VALENCE (| MAT(2), AMAT(4))

3: err214.for: E214: An equivalence relation is being assigned to the
subprogram ar gument AMAT.

4 STOP
5 END
Error: 215

M essage:
The size of dimension [number]([ident]) of the equivalence element [ident] has not yet been resolved.

Example of message 215:

If Line# NI Source

1 PROGRAM ERR215
2 DI MENSI ON AMAT(N) , | MAT(5)
3 EQUI VALENCE (| MAT(2), AMAT(4))

3: err215.for: E215: The size of dinmension 1(N) of the equival ence el enent
AMAT has not yet been resol ved.

4 STOP
5 END
Error: 216

M essage:
The equivalence element [ident] is a[object] rather than a variable.

Example of message 216:

If Line# NI Source
1 SUBRQUTI NE ERR216
2 EQUI VALENCE (E(1), F)
3 COVWON / D/ D
4 EQUI VALENCE (A, B)
5 DI MENSI ON B(20)
6 Z=D(1) +B(1) +A(2)
7 WRI TE(*,*) B, D E

8 END
8: err216.for: E216: The equival ence element Ais a function rather than a
vari abl e.

Error: 217

M essage:

228

PromulaFortran Compiler User's Manual

The equivalence element subscript specification [token] for [ident] is not a constant.

Example of message 217:

If Line# N Source

1 PROGRAM ERR217
2 DI MENSI ON AMAT(10) , | MAT(5)
3 EQUI VALENCE (I MAT(2), AMAT(N))

3: err217.for: E217: The equival ence el ement subscript specification N for
AMAT is not a constant.

4 STOP
5 END
Error: 218

M essage:
The symbol [token] is not avalid format specifier.

Example of message 218:

If Line# N Source
1 PROGRAM ERR218
2 10 FORMAT(1X, 1 10)
3 READ(5, FMI=10.0) | A
3: err218.for: E218: The synbol 10.0 is not a valid format specifier.

4 STOP
5 END
Error: 219

M essage:
The equivalence element [ident] is closed by the symbol [token] rather than aright parenthesis.

Example of message 219:

If Line# NI Source

1 PROGRAM ERR219
2 DI MENSI ON AMAT(10) , | MAT(5)
3 EQUI VALENCE (| MAT(2(, AMAT(4))

3: err219.for: E219: The equival ence el ement | MAT is closed by the synbo
(rather than a right parenthesis.

4 STOP
5 END
Error: 220

M essage:

The first element [ident] of the equivalence is followed by the symbol [token] rather than a comma introducing the next
element.

229

PromulaFortran Compiler User's Manual

Example of message 220:

If Line# NI Source

1 PROGRAM ERR220
2 DI MENSI ON AMAT(10) , | MAT(5)
3 EQUI VALENCE (I MAT(2) AMAT(4))

3: err220.for: E220: The first element | MAT of the equivalence is followed
by the symbol AMAT rather than a comma introducing the

next el ement.

4 STOP
5 END
Error: 221

M essage:

The formal argument [ident] has already been defined earlier in the argument list.

Example of message 221:

If Line# NI Source

1 SUBROQUTI NE ERR221(ALPHA, BETA, ALPHA)
1. err221.for: E221: The formal argument ALPHA has al ready been defined
earlier in the argument |ist.

2 RETURN
3 END
Error: 222

M essage:
The [object] [ident] is not an undimensioned variable asisrequired in this context.

Example of message 222:

If Line# N Source

1 PROGRAM ERR222
2 | NTEGER | VEC(10)
3 DEFI NE FI LE | VEQ(100, 512, U, | REC)

3: err222.for: E222: The array variable | VEC is not an undi mensi oned
variable as is required in this context

4 STOP
5 END
Error: 223

M essage:

The equivalence group with the last element [ident] is closed by the symbol [token] rather than a right parenthesis.

Example of message 223:

If Line# NI Source

1 PROGRAM ERR 223

230

PromulaFortran Compiler User's Manual

2 DI MENSI ON AVAT(10) , | MAT(5)
3 EQUI VALENCE (| MAT(2), AMAT(4)
3: err223.for: E223: The equival ence group with the |ast el ement AMAT is
cl osed by the synbol END OF STATEMENT rather than a
ri ght parenthesis.

4 STOP
5 END
Error: 224

M essage:
An unexpected end-of-file was encountered while reading the source file.

Example of message 224:

If Line# NI Source

1 PROGRAM ERR22
2 DI MENSI ON AMAT(10)
3 READ(5) AMAT
3: err224.for: E224: An unexpected end-of-file was encountered while reading
the source file.

Error: 225
M essage:
The variable [ident] substring subscript [number] is not in the valid range of [number] to [number].

Example of message 225:

If Line# NI Source

1 PROGRAM ERR225
2 CHARACTER* 10 NAME, HOME, SON
3 DATA NANE(0: 9) /' Freddy' /

3: err225.for: E225: The variabl e NAVE substring subscript 0 is not in the
valid range of 1 to 10.
4 DATA HOMVE(1: 13)/"' Col unbus Chi o'/
4: err225.for: E225: The variable HOVE substring subscript 13 is not in the
valid range of 1 to 10.
5 DATA SON(5:1)/"' Andy'/
5: err225.for: E225: The variable SON substring subscript 1 is not in the
valid range of 5 to 10.

6 VR TE(*, *) NAVE
7 STOP
8 END

Error: 226

M essage:
The parameter element [ident] is followed by the symbol [token] rather than an equals sign.

Example of message 226:

231

PromulaFortran Compiler User's Manual

If Line# NI Source

1 PROGRAM ERR226
2 PARAMETER (PI, 3.14159)
2: err226.for: E226: The paraneter elenent Pl is followed by the synbol ,
rather than an equal s sign.
3 PRINT *, P
4 STOP
5 END

Error: 227
M essage:
The parameter element [ident] definition is followed by the symbol [token] rather than a constant.

Example of message 227:

If Line# NI Source

1 PROGRAM ERR227
2 PARAMETER (PI = 3. 14159
2: err227.for: E227: The paraneter elenent Pl definition is followed by the
synbol END _OF_STATEMENT rather than a constant.
3 PRINT *, P
4 STOP
5 END

Error: 228
M essage:
The namelist statement begins with the symbol [token] rather than a slash.

Example of message 228:

I'f Line# N Source
1 PROGRAM ERR228
2 NAMVELI ST SHHP/ A B, C 11,12
2: err228.for: E228: The nanelist statenent begins with the symbol SH P
rather than a slash.
3 cC=0.0
4 READ(*, SHI P, END=10)
4: err228.for: E129: The information for the an option was supplied
redundant|y.

5 IF(C .NE. 0.0) STOP
6 10 PRI NT *,' NO DATA FOUND
7 STOP
8 END

Error: 229

M essage:

The namelist identifier [token] is not avalid identifier symbol.

232

PromulaFortran Compiler User's Manual

Example of message 229:

If Line# NI Source

1 PROGRAM ERR 229
2 nanmelist// SHIP/ A BCIl1,12
2: err229.for: E229: The nanelist identifier / is not a valid identifier
synbol .
3 c=0.0
4 READ(*, SHI P, END=10)
4: err229.for: E129: The information for the an option was supplied
redudantly.
5 IF(C .NE. 0.0) STOP
6 10 PRINT *,' NO DATA FOUND
7 STOP
8 END

Error: 230
M essage:
The namelist identifier [ident] has already been defined as a[object].

Example of message 230:

I'f Line# N Source
1 PROGRAM ERR230
2 | NTEGER SHI P
3 NAMELI ST/ SHIP/ A/ B,C 11,12
3: err230.for: E230: The nanelist identifier SH P has al ready been defined
as a variable.

4 CcC=0.0
5 READ(*, SHI P, END=10)
6 IF(C .NE. 0.0) STOP
7 10 PRINT *, ' NO DATA FOUND
8 STOP
9 END
Error: 231

M essage:
The namelist identifier [ident] isfollowed by the symbol [token] rather than a slash.

Example of message 231:

If Line# NI Source
1 PROGRAM ERR231
2 NAMELI ST/ SHIP, A B, C 11,12
2: err231.for: E231: The nanelist identifier SHHPis followed by the symbol
, rather than a slash.
cC=0.0
READ(*, SHI P, END=10)
IF(C .NE. 0.0) STCP
10 PRINT *,' NO DATA FOUND
STOP
END

W~NO O~ W

233

PromulaFortran Compiler User's Manual

Error: 232
M essage:
The namelist [ident] element identifier [token] is not avalid identifier symbol.

Example of message 232:

If Line# NI Source

1 PROGRAM ERR232
2 NAMELI ST/ SHI P/ ,A B, C 11,12
2: err232.for: E232: The nanelist SH P el enent identifier , is not a valid
identifier synbol.
3 CcC=0.0
4 READ(*, SHI P, END=10)
5 IF(C .NE. 0.0) STOP
6 10 PRINT *,' NO DATA FOUND
7 STOP
8 END

Error: 233
M essage:
The namelist [ident] element [ident] is a subprogram argument.

Example of message 233:

If Line# NI Source

1 SUBROUTI NE ERR233(J1, K1, 11)
2 NAMELI ST/ SHIP/ AB C 11,12
2: err233.for: E233: The nanelist SHI P elenent 11 is a subprogram argunent.
3 C=0.0
4 READ(*, SHI P, END=10)
5 IF(C .NE. 0.0) RETURN
6 10 PRINT *,' NO DATA FOUND
7 STOP
8 END

Error: 234
M essage:
The external element identifier [token] isnot avalid identifier symbol.

Example of message 234:

If Line# N Source

1 PROGRAM ERR234
2 EXTERNAL AFUNC, , BFUNC, CFUNC
2: err234.for: E234: The external elenent identifier , is not a valid
identifier symbol.
3 CALL PROCESS(AFUNC, | VAL)
4 CALL PROCESS(BFUNC, | VAL)

4: err234.for: E248: The variabl e argunment BFUNC has been entered where a
subprogram argunent is required.
5 CALL PROCESS(CFUNC, | VAL)

234

PromulaFortran Compiler User's Manual

5: err234.for: E248: The variable argunent CFUNC has been entered where a
subprogram argunent is required.

6 STOP
7 END
Error: 235

M essage:
The entry identifier [token] is not avalid identifier symbol.

Example of message 235:

If Line# NI Source

1 SUBROUTI NE ERR235(A)

2 A=A* 10

3 ENTRY (ERR235A(A))

3: err235.for: E235: The entry identifier (is not a valid identifier

synbol .

4 PRI NT *, A

5 RETURN

6 END

Error: 236

M essage:

The alternate return indicated by the symbol [token] may be used only in subroutines.

Example of message 236:

If Line# NI Source
1 FUNCTI ON ERR236(*)
1. err236.for: E236: The alternate return indicated by the synbol * may be
used only in subroutines.

2 ERR236=5. 0
3 RETURN 1
4 END

Error: 237

M essage:

The filename [token] within the parenthetical form of the include statement is not avalid identifier symbol.

Example of message 237:

I'f Line# N Source
1 PROGRAM ERR237
2 | NCLUDE(" DDL237")
2: err237.for: E237: The filenane "DDL237" within the parenthetical form of
the include statement is not a valid identifier synbol.

3 STCP
4 END

235

PromulaFortran Compiler User's Manual

Error: 238

M essage:

The include statement filename [token] is not a valid string constant or identifier symbol.

Example of message 238:

If Line# NI Source

1 PROGRAM ERR238
2 | NCLUDE 238DDL
2: err238.for: E238: The include statenent filenane 238 is not a valid
string constant or identifier synbol.

3 STOP
4 END
Error: 239

M essage:
The include statement file [token] cannot be opened.

Example of message 239:

If Line# N Source

1 PROGRAM ERR239
2 I NCLUDE " DDL239. | NC'
2: err239.for: E239: The include statenent file DDL239.|NC cannot be opened.
3 STOP
4 END
Error: 240

M essage:

The length specification [number] associated with [ident] is not available for the [type] type.

Example of message 240:

If Line# NI Source
1 PROGRAM ERR240
2 LOG CAL*4 ALPHA, BETA*3
2: err240.for: E240: The length specification 3 associated with BETA is not
avail abl e for the |ogical type.

3 STOP
4 END
Error: 241

M essage:

The type statement length specification [token] is not available for the [type] type.

236

PromulaFortran Compiler User's Manual

Example of message 241.

I'f Line# NI Source
1 PROGRAM ERR241
2 LOG CAL*3 ALPHA, BETA*2
2: err241.for: E241: The type statenent |ength specification 3 is not
avail abl e for the |ogical *4 type.

3 STOP
4 END
Error: 242

M essage:
The character statement variable length string [token] is not a constant.

Example of message 242:

If Line# NI Source

1 PROGRAM ERR242
2 CHARACTER* (N) ALPHA, BETA
2: err242.for: E242: The character statement variable length string Nis not
a constant.
3 STOP
4 END
Error: 243

M essage:

The character statement variable length string is closed by the symbol [token] rather than aright parenthesis.

Example of message 243:

If Line# NI Source

1 PROGRAM ERR243

2 CHARACTER* (10, ALPHA, BETA
2: err243.for: E243: The character statenent variable length string is
closed by the synbol , rather than a right parenthesis.

3 STOP
4 END
Error: 244

M essage:
The character statement variable length string [token] is not a constant.

Example of message 244

If Line# N Source
1 PROGRAM ERR244
2 CHARACTER* N, ALPHA, BETA
2: err244.for: E244: The character statenment variable length string Nis not

237

PromulaFortran Compiler User's Manual

a constant.
3 STOP
4 END

Error: 245
M essage:
The argument [token] of type [type] has been entered where a call-by-value argument of type [type] is required.

Example of message 245:

If Line# NI Source

1 PROGRAM ERR245
2 DOUBLE PRECI SI ON DVAL
3 DVAL = DFLOAT(3. 45)

3: err245.for: E245: The argunent 3.45 of type real *4 has been entered where
a call -by-val ue argument of type integer*4 is required

4 STOP
5 END
Error: 246

M essage:
The argument [ident] has the local variable [ident] as an adjustable dimension.

Example of message 246:

If Line# NI Source

1 SUBROUTI NE ERR246(1)
2 | NTEGER | (J)

3 COMMON JK

4 CALL ETEST(I,J)

5 END

5: err246.for: E246: The argunent | has the local variable J as an
adj ust abl e di nensi on.

Error: 247

M essage:
The argument [token] of type [type] has been entered where a call-by-reference argument of type [type] is required.

Example of message 247:

If Line# NI Source

1 PROGRAM ERR247

2 COVPLEX I C, LC

3 CALL SUB247(AVAL)
4 CALL SUB247(10Q)

5 CALL SUB247(1C*LC)

5: err247.for: E247: The argunent |C*LC of type conpl ex*8 has been entered
where a call-by-reference argunment of type real*4 is
required

6 STOP

238

PromulaFortran Compiler User's Manual

7 END

Error: 248
M essage:
The [object] argument [ident] has been entered where a subprogram argument is required.

Example of message 248:

If Line# NI Source

1 PROGRAM ERR248

2 DI MENSI ON AVAL(10)

3 EXTERNAL FUNC, | FUNC

4 CALL SUB248(FUNC)

5 CALL SUB248(|1 FUNC)

6 CALL SUB248(AVAL)
6: err248.for: E248: The array variabl e argunent AVAL has been entered where

a subprogram argunent is required.

7 STOP

8 END

Error: 249
M essage:
The argument [token] of type [type] has been entered and cannot be converted into a call-by-value argument of type [type].

Example of message 249:

If Line# NI Source

1 PROGRAM ERR249

2 COVPLEX ALPHA

3 LOG CAL*1 |V

4 ALPHA = CMPLX(IV, BETA)

4: err249.for: E249: The argunent |V of type logical*1 has been entered and
cannot be converted into a call-by-val ue argunent of

type real *8
5 STOP
6 END
Error: 250

M essage:
The common variable [ident] has the adjustable dimension [ident].

Example of message 250:

If Line# NI Source

1 SUBROUTI NE ERR250(| DI M
2 COVMON/ ALPHA/ A(1 DI M
3 VRITE(*, *) "HI"
4 END
4: err250.for: E250: The common variabl e A has the adjustabl e di nension

I DI M

239

PromulaFortran Compiler User's Manual

Error: 251
M essage:
The value-argument [token] has been entered where a subprogram argument is required.

Example of message 251:

If Line# NI Source

1 PROGRAM ERR251

2 EXTERNAL FUNC, | FUNC

3 CALL SuUB251(FUNC)

4 CALL SUB251(| FUNC)

5 CALL SUB251(AVAL* BVAL)

5: err251.for: E251: The val ue-argunent AVAL*BVAL has been entered where a
subprogram argunent is required
6 STOP
7 END

Error: 252
M essage:
The symbol [token] ishot valid in the formal argument list.

Example of message 252:

If Line# NI Source

1 SUBROUTI NE ERR252(ALPHA, BETA, *, 32)
1. err252.for: E252: The synbol 32 is not valid in the formal argunent |ist.
2 RETURN
3 END
Error: 253

M essage:
Thelocal variable [ident] has an adjustable dimension [ident].

Example of message 253:

If Line# N Source

SUBROUTI NE ERR253(| DI M

REAL A(ID'M

VRITE(*, *) "HI"

END

4: err253.for: E253: The local variable A has an adjustable dinmension IDM

A WN P

Error: 254
M essage:

The formal argument list contains the symbol [token] rather than a comma or right parenthesis.

240

PromulaFortran Compiler User's Manual

Example of message 254

If Line# N Source

1 SUBROUTI NE ERR254(A, B*)
1. err254.for: E254: The formal argunent |list contains the synbol * rather
than a comma or right parenthesis.

2 STOP
3 END
Error: 255

M essage:
The alternate return label [token] is not an integer constant.

Example of message 255:

If Line# NI Source

1 PROGRAM ERR255
2 CALL SUB255(A, B, *STOP)
2: err255.for: E255: The alternate return |abel STOP is not an integer
const ant .
3 PRINT *, 'Hello
4 100 STOP
5 END
Error: 256

M essage:

The actual argument list contains the symbol [token] rather than a comma or right parenthesis.

Example of message 256:

If Line# N Source
1 PROGRAM ERR256
2 CALL SUB256(A, B&100)
2: err256.for: E256: The actual argunment |ist contains the synbol & rather
than a comma or right parenthesis.

3 PRINT *, '"Hello'
4 100 STOP
5 END

Error: 257

M essage:

The actual argument list contains more than the [number] argument(s) required by the [object] [ident].

Example of message 257:

If Line# N Source

1 PROGRAM ERR257
2 AVAL = ALOGLO(BVAL, 100. 0)

241

PromulaFortran Compiler User's Manual

2: err257.for: E257: The actual argunment list contains nore than the 1
argunent (s) required by the system function ALOGLO

3 STOP
4 END
Error: 258

M essage:
The adjustable dimension [ident] for [ident] is not a variable or parameter.

Example of message 258:

If Line# NI Source

1 SUBROUTI NE ERR258(FUNC, N)
2 DI MENSI ON FUNC(N)

3 CALL N(FUNC)

4 RETURN

5 END

5: err258.for: E258: The adjustable dinmension N for FUNC is not a variable
or paraneter.

Error: 259
M essage:

The do while conditional is followed by the symbol [token] rather than the
end-of-statement.

Example of message 259:

If Line# NI Source

1 PROGRAM ERR259
2 DO WH LE (A .LT. B) BEG N
2: err259.for: E259: The do while conditional is followd by the synbo
BEG N rat her than the end-of-statenent.
3 A=A+B
4 END DO
4: err259.for: E166: The statenent introduced by the keyword ENDDO i s not a
valid statenment type.

5 STOP
6 END
Error: 260

M essage:
The reference to the [object] [ident] is followed by the symbol [token] rather than a left parenthesis.

Example of message 260:

If Line# NI Source

1 PROGRAM ERR260
2 SFUNC(A, B) = SIN(A) * COS(B)
3 ALPHA = BETA + SFUNG, 3. 5, 4. 2)

3: err260.for: E260: The reference to the statenent function SFUNC is

242

PromulaFortran Compiler User's Manual

followed by the synbol , rather than a | eft parenthesis.
4 STOP
5 END

Error: 261
M essage:
The argument list for [object] [ident] contains the symbol [token] rather a comma.

Example of message 261:

If Line# NI Source

1 PROGRAM ERR261
2 SFUNC(A, B) = SIN(A) * COS(B)
3 ALPHA = BETA + SFUNC(3. 5)

3: err26l.for: E261: The argunent list for statement function SFUNC contains
the synbol) rather a commm.

4 STOP
5 END
Error: 262

M essage:
The structure definition identifier [token] has already been defined as a structure identifier.

Example of message 262:

If Line# NI Source
PROGRAM ERR262
STRUCTURE / SHI P/
CHARACTER*10 OWNER
CHARACTER* 10 DESTI NATI ON
END
6 STRUCTURE / SHI P/
6: err262.for: E262: The structure definition identifier SHI P has already
been defined as a structure identifier.

PR

7 CHARACTER* 10 O\NER2
8 CHARACTER* 10 DESTI NATI ON2
9 END
10 RECORD / SHI P/ NI NA, PI NTA, SANTA MARI A
11 CHARACTER* 10 WHERE
12 WHERE = NI NA(3)
13 STOP
14 END
Error: 263

M essage:
The actual argument list contains less than the [number] argument(s) required by the [object] [ident].

Example of message 263:

If Line# NI Source

1 PROGRAM ERR263

243

PromulaFortran Compiler User's Manual

2 ALPHA = AMOD(BETA)
2: err263.for: E263: The actual argunment |list contains |less than the
argunent (s) required by the system functi on AMOD.

3 END

Error: 264
M essage:
The structure or record definition identifier isintroduced by the symbol [token] rather than a dlash.

Example of message 264

If Line# NI Source
PROGRAM ERR264

STRUCTURE / SHI P/
CHARACTER* 10 OMNER
CHARACTER* 10 DESTI NATI ON
END

I

RECORD SHI P/ NI NA, PI NTA, SANTA MARI A
6: err264.for: E264: The structure or record definition identifier is
introduced by the symbol SH P rather than a slash.

o

7 CHARACTER* 10 WHERE
8 WHERE = NI NA. O\NER
8: err264.for: E145: The assignment statenent contains the unrecognized
synbol
9 STOP
10 END
Error: 265

M essage:
The structure or record identifier [token] is not avalid identifier symbol.

Example of message 265:

If Line# NI Source
PROGRAM ERR265
STRUCTURE / SHI P/
CHARACTER* 10 ONNER
CHARACTER* 10 DESTI NATI ON
END
6 RECORD //SHI P/ NI NA, PI NTA, SANTA MARI A
6: err265.for: E265: The structure or record identifier / is not a valid
identifier symbol.

I

7 CHARACTER* 10 WHERE
8 WHERE = NI NA. O\NER
8: err265.for: E145: The assignnment statenent contains the unrecogni zed
synbol
9 STOP
10 END
Error: 266

M essage:

244

PromulaFortran Compiler User's Manual

The structure identifier [token] classifying the record has not been defined.

Example of message 266:

If Line#

6: err266.for:

7
8

8: err266.for:

9
10

Error: 267

M essage:

PROGRAM ERR266
STRUCTURE / SHI P/
CHARACTER* 10 OMNER
CHARACTER* 10 DESTI NATI ON
END
RECORD / SHUP/ NI NA, PI NTA, SANTA MARI A
E266: The structure identifier SHUP classifying the record
has not been defi ned.
CHARACTER* 10 WHERE
VWHERE = NI NA. OANER
E145: The assignment statenent contains the unrecogni zed
synbol
STOP
END

The structure or record definition identifier is followed by the symbol [token] rather than a dash.

Example of message 267:

If Line#

6: err267.for:

7
8

8: err267.for:

9
10

Error: 268

M essage:

e

PROGRAM ERR267
STRUCTURE / SHI P/
CHARACTER* 10 OMANER
CHARACTER* 10 DESTI NATI ON
END
RECORD / SHI P, NI NA, PINTA, SANTA MARI A
E267: The structure or record definition identifier is
followed by the symbol , rather than a slash.
CHARACTER* 10 WHERE
VWHERE = NI NA. OANER
E145: The assignment statenent contains the unrecognized
synbol
STOP
END

The member identifier [token] associated with the [object] [ident] is not avalid identifier symbol.

Example of message 268:

If Line#

N Source

PR

PROGRAM ERR268

STRUCTURE / SHI P/

CHARACTER*10 OWNER

CHARACTER* 10 DESTI NATI ON

END

RECORD / SHI P/ NI NA, PI NTA, SANTA MARI A

245

PromulaFortran Compiler User's Manual

7 CHARACTER* 10 WHERE
8 WHERE = NI NA. 3
8: err268.for: E268: The nenber identifier 3 associated with the structure
SH P is not a valid identifier synbol.

9 STOP
10 END
Error: 269

M essage:
The member identifier [token] is not a member of the [object] [ident].

Example of message 2609:

If Line# NI Source

PROGRAM ERR269

STRUCTURE / SHI P/

CHARACTER* 10 OANER

CHARACTER* 10 DESTI NATI ON

END

RECORD / SHI P/ NI NA, PI NTA, SANTA_MARI A

CHARACTER* 10 WHERE

WHERE = NI NA. O\NR

8: err269.for: E269: The menber identifier OMR is not a nmenber of the
structure SHI P.

O~NOUAWNBR
PP

9 STOP
10 END
Error: 270

M essage:
The* dimension specification for [ident] must be the last dimension.

Example of message 270:

If Line# N Source

1 SUBRQUTI NE ERR270(A, B, O)
2 DI MENSI ON A(*, 3)

2: err270.for: E270: The * dimension specification for A nmust be the |ast
3 DI MENSI ON B(2, 2, 5, *)
4 DI MENSION C(2, *, 5)

4: err270.for: E270: The * dinmension specification for C nust be the |ast
5 WRI TE(*, *) A(1,1),B(2,2,2,2),C(2,2,2)
6 END

Error: 271

M essage:

The equivalence element substring specification [token] for [ident] is not a constant.

Example of message 271:

If Line# NI Source

246

PromulaFortran Compiler User's Manual

1 PROGRAM ERR271
2 CHARACTER AMAT* (10), | MAT*(5)
3 EQUI VALENCE (| MAT(2: 5), AMAT(N: N+3))

3: err271.for: E271: The equival ence el enent substring specification N for
AMAT is not a constant.

4 STOP
5 END
Error: 272

M essage:
The symbol [token] is not avalid subscript expression separator, a comma was expected.

Example of message 272:

If Line# NI Source

1 PROGRAM ERR272

2 CHARACTER* 10 ERRMES(10, 20)

3 ERRVES(1: 3,5) = "Bad Version"

3: err272.for: E272: The synbol : is not a valid subscript expression
separator, a comma was expected
4 STOP
5 END
Error: 273

M essage:
The symbol [token] is not avalid substring range separator, a colon was expected.

Example of message 273:

If Line# N Source

1 PROGRAM ERR273
2 PARAMVETER(N = 5)
3 CHARACTER AMAT* (10), | MAT*(5)
4 EQUI VALENCE (| MAT(2: 5), AVAT(N, N+3))
4: err273.for: E273: The synbol , is not a valid substring range separator,
a col on was expected.
5 STOP
6 END
Error: 274

M essage:

The equivalence element substring specification is closed by the symbol [token] rather than aright parenthesis.

Example of message 274:

If Line# NI Source

1 PROGRAM ERR274
2 PARAVETER(N = 5)

247

PromulaFortran Compiler User's Manual

3 CHARACTER ANMAT*(10), | MAT*(5)
4 EQUI VALENCE (| MAT(2:5), AVAT(N: N+3,))
4: err274.for: E274: The equival ence el ement substring specification is
closed by the synbol , rather than a right parenthesis

5 STOP
6 END
Error: 275

M essage:
The kind parameter is the symbol [token] rather than an integer constant or the identifier of a constant integer parameter.

Example of message 275:

If Line# N Source

PROGRAM ERR275

| NTEGER SHORT, DOUBLE, QUAD

PARAMETER (SHORT = 2, DOUBLE = 8, QUAD = 16)

PRINT *, 23, 0, 1234567, 42_1, 42_SHORT

PRINT *, 13.5, 0.1234567, 123.45678, 00.30_DOUBLE

PRINT *, 3.0, 3., 12345., 0., .1234567_QUAD

PRINT *, (1, -1), (3.14, 1.0), (3.14_*, -7),

+ (-1.0, 1E-27_QUAD)

7: err275.for: E275: The kind paraneter is the synbol * rather than an
integer constant or the identifier of a constant
i nteger paraneter

9 END

O~NO O WNE

Error: 276
M essage:
The kind identifier [token] has not yet been defined as a constant integer parameter.

Example of message 276:

If Line# N Source
PROGRAM ERR276
| NTEGER SHORT, DOUBLE, QUAD
PARAMETER (SHORT = 2, DOUBLE = 8, QUAD = 16)
PRINT *, 23, 0, 1234567, 42_1, 42_SHORT
PRINT *, 13.5, 0.1234567, 123.45678, 00.30_DOUBLE
PRINT *, 3.0, 3., 12345., 0., .1234567_QUAD
PRINT *, (1, -1), (3.14, 1.0), (3.14_DUBLE, -7),
+ (-1.0, 1E-27_QUAD)
7: err276.for: E276: The kind identifier DUBLE has not yet been defined as a
constant integer paraneter.
9 END

O~NO O WNPEF

Error: 277
M essage:
Thekind identifier [ident] is a[object] rather than a constant integer parameter.

Example of message 277:

248

PromulaFortran Compiler User's Manual

If Line# NI Source

1 PROGRAM ERR277

2 I NTEGER SHORT, DUBLE, QUAD

3 PARAMETER (SHORT = 2, DOUBLE = 8, QUAD = N)

4 PRINT *, 23, 0, 1234567, 42_1, 42_SHORT

5 PRINT *, 13.5, 0.1234567, 123.45678, 00.30_DOUBLE

5: err277.for: E277: The kind identifier DOUBLE is a paraneter rather
than a constant integer paraneter.
6 PRINT *, 3.0, 3., 12345., 0., .1234567_QUAD
6: err277.for: E277: The kind identifier QUAD is a paranmeter rather than a
constant integer paraneter.
7 PRINT *, (1, -1), (3.14, 1.0), (3.14_DOUBLE, -7),
8 + (-1.0, 1E-27_QUAD)
7: err277.for: E277: The kind identifier DOUBLE is a paraneter rather than
a constant integer paraneter.
9 END

Error: 278
M essage:

The kind value [number] associated with [ident] is not available for the [type] type.

Example of message 278:

If Line# NI Source

1 PROGRAM ERR278
2 | NTEGER SHORT, DOUBLE, QUAD
3 PARAMETER (SHORT = 2, DOUBLE = 8, QUAD = 20)
4 PRINT *, 23, 0, 1234567, 42_1, 42_SHORT
5 PRI NT *, 13.5, 0.1234567, 123.45678, 00.30_DOUBLE
6 PRINT *, 3.0, 3., 12345., 0., .1234567_QUAD
6: err278.for: E278: The kind value 20 associated with ERR278 is not
avail able for the real type.
7 PRINT *, (1, -1), (3.14, 1.0), (3.14_DOUBLE, -7),
8 + (-1.0, 1E-27_QUAD
7. err278.for: E278: The kind value 20 associated with ERR278 is not
avail able for the real type.
9 END

Error: 279
M essage:
A statement function argument identifier [token] is not avalid identifier symbol.

Example of message 279:

If Line# NI Source

1 PROGRAM ERR279
2 SFUNC(X, 6) = SIN(X) + COS(Y)
2: err279.for E279: A statenent function argument identifier 6 is not a
valid identifier synbol.
3 STOP
4 END

249

PromulaFortran Compiler User's Manual

Error: 280
M essage:
A statement function argument list is terminated by the symbol [token] rather than aright parenthesis.

Example of message 280:

If Line# NI Source
1 PROGRAM ERR280
2 SFUNC(X, Y*) = SIN(X) + COS(Y)
2: err280.for: E280: A statement function argunent list is term nated by the
synbol * rather than a right parenthesis.

3 STOP
4 END
Error: 281

M essage:
A statement function parameter list is followed by the symbol [token] rather than an equal s sign.

Example of message 281:

If Line# NI Source
1 PROGRAM ERR281
2 SFUNC(X, Y) * = SIN(X) + COS(Y)
2: err281.for: E281: A statenment function paraneter list is followed by the
synbol * rather than an equal s sign.

3 STOP
4 END
Error: 282

M essage:

The left-hand-side of the assignment statement begins with the symbol [token] which is not avalid identifier symbol.

Example of message 282:

If Line# NI Source
1 PROGRAM ERR282
2 DI MENSI ON AVAL(10, 10)
3 +VAL(I,J) = 99.5
3: err282.for: E282: The |eft-hand-side of the assignment statenent begins
with the synbol + which is not a valid identifier synbol.

4 STOP
5 END
Error: 283

M essage:

The right-hand-side of the assignment is preceded by the symbol [token] rather than an equals sign.

250

PromulaFortran Compiler User's Manual

Example of message 283:

If Line# N Source
1 PROGRAM ERR283
2 A*=(B+ 0O
2: err283.for: E283: The right-hand-side of the assignnent is preceded by
the synbol * rather than an equals sign

3 STOP
4 END
Error: 284

M essage:
The equivalenced variable [ident] may not be redefined as being external.

Example of message 284:

If Line# NI Source

1 SUBROUTI NE ERR284(K)
2 EQUI VALENCE(| SI NE, SI NE)
3 EXTERNAL S| NE

3: err284.for: E284: The equival enced variabl e SINE may not be redefined as
bei ng ext ernal
4 WRI TE(*, *) SI NE(K)
5 END

Error: 285
M essage:
The attribute specifier list contains the symbol [token] where acomma or :: is expected.

Example of message 285:

If Line# NI Source

1 PROGRAM ERR285
2 REAL :: METERS
3 REAL, PARAMETER * :: | NCHES_PER METER = 39. 37
3: err285.for: E285: The attribute specifier list contains the symbol *
where a comma or :: is expected.
4 READ *, METERS
5 PRINT *, METERS, "neters =", METERS * | NCHES_PER METER, "inche
6 END PROGRAM ERR285

Error: 286
M essage:
The attribute specifier [token] is not defined.

Example of message 286:

If Line# NI Source

1 PROGRAM ERR286

251

PromulaFortran Compiler User's Manual

2 REAL :: METERS
3 REAL, PARI METER :: | NCHES_PER METER = 39. 37
3: err286.for: E286: The attribute specifier PARIMETER is not defined
4 READ *, METERS
5 PRINT *, METERS, "neters =", METERS * | NCHES_PER METER, "inch
6 END PROGRAM ERR286
Error: 287

M essage:

The attribute specifier [token] is defined as part of the standard but is not implemented in this dialect.

Example of message 287:

If Line# NI Source

1 PROGRAM ERR287
2 REAL :: METERS
3 REAL, PARAMETER, PRI VATE :: | NCHES PER METER = 39. 37

3: err287.for: E287: The attribute specifier PRI VATE is defined as part of
the standard but is not inplenmented in this dialect.

4 READ *, METERS
5 PRINT *, METERS, "neters =", METERS * | NCHES_PER METER, "inche
6

END PROGRAM ERR287

Error: 288
M essage:
The dimensioned variable [ident] may not be redefined as being external.

Example of message 288:

If Line# NI Source

1 SUBROUTI NE ERR288(K)
2 DI MENSI ON SI NE(100)
3 EXTERNAL SI NE

3: err288.for: E288: The di mensioned variable SINE nay not be redefined as
bei ng external .

4 VRI TE(*, *) SI NE(K)
5 END
Error: 289

M essage:
The type of [object] [ident] is undefined.

Example of message 289:

If Line# N Source
1 PROGRAM ERR289
2 I MPLI CI' T NONE
3 | NTEGER | VAL, JVAL
4 | VAL 100
5 JVAL 200

252

PromulaFortran Compiler User's Manual

6 KVAL = | VAL + JVAL
6: err289.for: E289: The type of variable KVAL is undefined.
7 STOP
8 END
Error: 290

M essage:
The subprogram argument [ident] may not be allocated to a common block.

Example of message 290:

If Line# NI Source

1 SUBROUTI NE ERR290(| ARGU, JARQA)
2 COMMON/ ALPHA/ A, B, JARGU
2: err290.for: E290: The subprogram argunent JARGU nay not be allocated to a
conmon bl ock.

3 RETURN
4 END
Error: 291

M essage:
The statement function definitions must precede any executable statements.

Example of message 291.

If Line# NI Source

1 PROGRAM ERR291
2 PRINT *,' Hel | o’
3 SFUNC(X, Y) = COS(X) + SIN(Y)

3: err291.for: E291: The statenent function definitions nust precede any
execut abl e statenents.

4 PRI NT *, SFUNC(3.1,5.2)
5 STOP
6 END

Error: 292

M essage:
The [object] identifier [ident] may not be assigned a value.
Example of message 292:

If Line# N Source

1 PROGRAM ERR292
2 PARAMETER (Pl = 3.14159)
3 Pl = 3.14159
3: err292.for: E292: The paraneter identifier Pl nay not be assigned a
val ue.
4 STOP
5 END

253

PromulaFortran Compiler User's Manual

Error: 293
M essage:
The variable [ident] has type [type] and not type integer as required in this context.

Example of message 293:

If Line# NI Source
1 PROGRAM ERR293
2 DEFI NE FI LE VEC(100, 512, U, | REC)
2: err293.for: E293: The variable VEC has type real *4 and not type integer
as required in this context.

3 STOP
4 END
Error: 294

M essage:
The format contains the unrecognized specification character [token].

Example of message 294:

If Line# N Source

1 PROGRAM ERR294
2 WRI TE(*,1) "Hello Wrld"
3 1 FORMAT(1X, Al10, Y5)

3: err294.for: E294: The format contains the unrecogni zed specification
character Y.

4 STOP
5 END
Error: 295

M essage:
The format specification has a bad t format specification.

Example of message 295:

If Line# N Source

1 PROGRAM ERR295
2 WRI TE(*, 1) "Hello World"
3 1 FORMAT(T, A10)

3: err295.for: E295: The format specification has a bad t format
speci fication.

4 STOP
5 END
Error: 296

M essage:

254

PromulaFortran Compiler User's Manual

The format specification has a bad business format string.

Example of message 296:

If Line# N Source

1 PROGRAM ERR296
2 1 FORVAT(1X, B' 2999')
2: err296.for: E296: The format specification has a bad business format string.
3 WRI TE (6,1) 12345
4 STOP
5 END
Error: 297

M essage:
A b format specification isnot followed by annor az.

Example of message 297:

If Line# N Source

1 PROGRAM ERR297
2 1 FORVAT(BC, 1X 15)
2: err297.for: E297: A b format specification is not followed by an n or a

Z.
WRI TE (6, 1) 12345

3
4 STCP
5 END

Error: 298
M essage:
A variable < format specification has no closing >.

Example of message 298:

If Line# N Source

PROGRAM ERR298

DI MENSI ON A(5)

DATA A/1.,2.,3.,4.,5./

DO10 | = 1,10
VR TE(6, 100) |

110 CONTI NUE
DO 20 1=1,5

1 WRI TE (6,101) (A(1),J=1,1)

©O~NOUNWNER
-

120 CONTI NUE
10 100 FORMAT(| <MAX(1, 5) >)
11 101 FORMAT(<I >F10. <I - 1)

11: err298.for: E298: A variable < format specification has no closing >.
12 END

Error: 299

M essage:

255

PromulaFortran Compiler User's Manual

The format specification has a bad Hollerith string.

Example of message 299:

If Line# N Source

1 PROGRAM ERR299
2 WRI TE(*, 1)
3 1 FORVAT(1X, 30HHel | o Worl d)
3: err299.for: E299: The format specification has a bad Hollerith string
4 STOP
5 END
Error: 300

M essage:
The executable statement number [label] was referenced but not defined.

Example of message 300:

If Line# N Source

1 SUBROUTI NE ERR300(| OP)
2 VR TE(*, *) "hel | o worl d"
3 IF(10P .EQ 0) GOTO 20
4 STOP

5 END

5: err300.for: E300: The executabl e statenment nunber 20 was referenced but
not defined

Error: 301
M essage:
The format statement number [label] was referenced but not defined.

Example of message 301:

If Line# N Source

1 PROGRAM ERR301
2 WRI TE(*,1) "hello world"
3 STOP
4 END
4: err301.for: E301: The format statenent nunber 1 was referenced but not
defi ned
Error: 302

M essage:
The namelist identifier [ident] may be used only asani/o target.

Example of message 302:

If Line# N Source

256

PromulaFortran Compiler User's Manual

1 SUBRQUTI NE ERR302
2 NAMELI ST/ NML/ A, B
3 PARAVETER(NML=3)
3: err302.for: E302: The nanelist identifier NM. may be used only as an i/o
target.
4 REAL NML
4: err302.for: E302: The nanelist identifier NML may be used only as an i/o
target.
5 EXTERNAL NML
5: err302.for: E302: The nanelist identifier NML may be used only as an i/o
target.
6 NML(1)=I**2
6: err302.for: E302: The nanelist identifier NML may be used only as an i/o
target.
7 ASSI GN 10 TO NML
7: err302.for: E302: The nanelist identifier NML nay be used only as an i/o
target.
8 GOTO NML
8: err302.for: E302: The nanelist identifier NML may be used only as an i/o
target.
9 10 READ(5, NML)
10 END
Error: 303

M essage:
The specifier [token] is not valid for the [statement] statement.

Example of message 303:

If Line# N Source

1 SUBRQUTI NE ERR303
2 CLOSE(UNI T=1, END=10)

2: err303.for: E303: The specifier END= is not valid for the close statenent.
3 I NQUI RE(UNI T=1, FMTI'=5)

3: err303.for: E303: The specifier FMI= is not valid for the inquire statenent.
4 END

Error: 304

M essage:

Both unit number and unit name may not be specified on the [statement] statement.
Example of message 304:

SUBRQUTI NE ERR304
I NQUI RE(UNI T=5, FI LE=" DUMWY' , | OSTAT=I OS)

N =

2: err304.for: E304: Both unit number and unit name nmay not be specified on
the inquire statenent.

3 WRI TE(*, *) 108
4 END
Error: 305

257

PromulaFortran Compiler User's Manual

M essage:
The entry parameter identifier [ident] isa[object] and not avariable.

Example of message 305:

If Line# N Source

1 SUBRQUTI NE ERR305
2 A(l) = 3.7+
3 ENTRY SUM A, 1)

3: err305.for: E305: The entry paraneter identifier Ais a statenent
function and not a variable.

4 ALPHA = A(l)
5 END
Error: 306

M essage:
The value [token] is not avalid repeat count.

Example of message 306:

If Line# NI Source
1 SUBRQUTI NE ERR306
2 REAL A(10), B(10)
3 DATA A/ 0*0. 0, 10*0. 0/
3: err306.for: E306: The value 0 is not a valid repeat count.

4 DATA (B(I1),1=1,10)/0*1.0/
4: err306.for: E306: The value 0 is not a valid repeat count.
5 WRI TE(*,*) AB
6 END
Error: 307

M essage:
Theillegal character [token] isin the binary constant [token].

Example of message 307:

If Line# NI Source

1 SUBROUTI NE ERR307
2 | T=B' 0101"
3 | P=B' 0121"
3: err307.for: E307: The illegal character 2 is in the binary constant
B' 0121'.
4 WRI TE(*,*) IT, IP
5 END
Error: 308

M essage:

Theillegal character [token] isinthe octal constant [token].

258

PromulaFortran Compiler User's Manual

Example of message 308:

If Line# NI Source

1 SUBROUTI NE ERR308
2 | T=0 0101
3 | P=O 0191
3: err308.for: E308: The illegal character 9 is in the octal constant
O 0191'.
4 WRI TE(*,*) IT, IP
5 END
Error: 309

M essage:

Theillegal character [token] isin the hexidecimal constant [token].

Example of message 3009:

If Line# NI Source

1 SUBRQUTI NE ERR309
2 | T=H 0101
3 | P=H 01G1'
3: err309.for: E309: The illegal character Gis in the hexideci nal constant
H 01GL' .
4 WRI TE(*,*) IT, IP
5 END
Error: 310

M essage:
The [object] [ident] may not be redefined as a [statement].

Example of message 310:

I'f Line# N Source

FUNCTI ON E310(K)

EXTERNAL S| NE

PARAMETER(SI NE=3. 3)

3: err310.for: E310: The function SINE may not be redefined as a paraneter.

WN -

4 E310 = SI NE
5 END
Error: 311

M essage:

The common variable [ident] may not be redefined as a [statement].

Example of message 311:

If Line# N Source

1 FUNCTI ON ERR311(K)
2 COMMON J

259

PromulaFortran Compiler User's Manual

3 PARAVETER(J=2)
3: err31l.for: E311: The common variable J may not be redefined as a
par anet er .
4 E595 = K + J
5 END
Error: 312

M essage:
The subprogram argument [ident] may not be redefined as a [statement].

Example of message 312:

If Line# NI Source

1 FUNCTI ON ERR312(K)
2 PARAVETER(K=3)
2: err3l12.for: E312: The subprogram argunent K nay not be redefined as a
par aret er .
3 E595 = K
4 END
Error: 313

M essage:
The dimensioned variable [ident] may not be redefined as a [statement].

Example of message 313:

If Line# NI Source

1 FUNCTI ON ERR313(K)

2 REAL A(10)

3 PARAMETER (A=3. 45)

3: err313.for: E313: The di nensioned variable A may not be redefined as a

par amet er .

4 E595 = K + A

5 END

Error: 314

M essage:

The equivalenced variable [ident] may not be redefined as a [statement].

Example of message 314:

I'f Line# N Source
FUNCTI ON ERR314(K)
COMMON J
EQUI VALENCE(J, N)
PARAMVETER (N=-1)
4: err314.for: E314: The equival enced variable N nay not be redefined as a
par anet er .
5 ERR314 = K+ J + N
6 END

A WN P

260

PromulaFortran Compiler User's Manual

Error: 315
M essage:
The [object] [ident] may not be redefined as being external.

Example of message 315:

If Line# NI Source

1 SUBROUTI NE ERR315(K)
2 PARAMETER(SI NE=3. 3)
3 EXTERNAL SI NE
3: err315.for: E315: The paraneter SINE may not be redefined as being
ext ernal .

4 VR TE(*, *) SI NE(K)
4: err315.for: E105: The paraneter identifier SINE may not be used to
represent a function.
5 END

Error: 316
M essage:
The common variable [ident] may not be redefined as being external .

Example of message 316:

If Line# NI Source

1 SUBROUTI NE ERR316(K)

2 COWDON SI NE

3 EXTERNAL S| NE

3: err316.for: E316: The conmon variable SINE may not be redefined as being

external .

4 VRI TE(*, *) SI NE(K)

5 END

Note: 801

M essage:
The [statement] statement is nonstandard.

Example of message 801:

If Line# NI Source

1 PROGRAM V801
2 1 FORVAT(I 5)
3 ACCEPT 1, | VAL

3: warn801.for: N801l: The accept statenment is nonstandard.
4 PRI NT *, | VAL

4: warn801.for: N801: The print statement is nonstandard.
5 STOP
6 END

261

PromulaFortran Compiler User's Manual

Note: 802
M essage:
Omitting the period from the [token] format specification is nonstandard.

Example of message 802:

If Line# NI Source
1 SUBROUTI NE V802
2 1 FORVAT(1X, F6, I 5, E10)
2: warn802.for: N802: Omitting the period fromthe F fornat specification is
nonst andar d.
2: warn802.for: N802: Ormitting the period fromthe E format specification is
nonst andar d.
3 WRI TE(1,1) Al,B
4 RETURN
5 END

Note: 803
M essage:
The exponent field appended to the D format specification is nonstandard.

Example of message 803:

If Line# NI Source

SUBROUTI NE WB03(A, B)
REAL*4 A
REAL*8 B
1 FORVAT(1X, E26. 8E5, D30. 20E5)
4: warn803.for: N803: The exponent field appended to the D format
speci fication is nonstandard.
WRITE(1,1) A B
RETURN
END

A WN P

~N o o

Note: 804

M essage:

The [token] format specification is nonstandard.

Example of message 804:

If Line# NI Source
1 SUBRQUTI NE V804
2 DI MENSI ON | VAL(6)
3 1 FORMAT(1X, 6010)
3: warn804.for: N804: The O format specification is nonstandard.

4 WRI TE(6, 1) | VAL
5 RETURN
6 END

262

PromulaFortran Compiler User's Manual

Note: 805
M essage:
Theb'.." business format specification is nonstandard.

Example of message 805:

If Line# NI Source

1 PROGRAM WB05
2 WRI TE (6,*), 'ZZ999, 12345
3 VRITE (6, (1X B 'ZZ999'')'), 12345
3: warn805.for: N805: The b'..' business format specification is nonstandard
4 STOP
5 END

Note: 806
M essage:
Omitting the comma after the [token] format specification is nonstandard.

Example of message 806:

I'f Line# N Source
1 SUBRQUTI NE V806
2 1 FORVAT(1HL' Hel 1o World")
2: warn806.for: N806: Ormitting the conma after the H fornat specification is
nonst andar d.
3 2 FORVAT(1X ' Good Bye')
3: warn806.for: N806: Onmitting the comma after the X fornmat specification is
nonst andar d.

4 VRI TE(*, 1)

5 WRI TE(*, 2)

6 STOP

7 END
Comment: 807

M essage:
Theinput format contains a superfluous S specification.

Example of message 807:

If Line# NI Source

1 PROGRAM 807
2 1 FORMAT(SP, 16)
3 READ(5,' (SP,15)") 1V

3: warn807.for: C807: The input format contains a superfluous S
speci fication.
4 WRI TE(6,1) 1V
5 READ(5,1) IV
5: warn807.for: C807: The input format contains a superfluous S
speci fication.
6 WRI TE(6,1) 1V

263

PromulaFortran Compiler User's Manual

7 READ(5, 2) |V
8 2 FORMAT(SS, | 8)
8: warn807.for: C807: The input format contains a superfluous S
speci fication.
9 STOP
10 END

Note: 808
M essage:
A commain aformat following a left parenthesis is nonstandard.

Example of message 808:

I'f Line# N Source
1 PROGRAM V808
2 1 FORVAT(, 1H1, ' Hello Wrld")
2: warn808.for: N808: A comma in a format following a left parenthesis is
nonst andar d.
3 WRI TE(6, 1)
4 WRI TE(6, ' (, 9H Good Bye)')
4: warn808.for: N808: A comma in a format following a left parenthesis is
nonst andar d.
5 STOP
6 END

Note: 809
M essage:
A commain aformat preceding aright parenthesisis nonstandard.

Example of message 809:

I'f Line# N Source
1 PROGRAM V809
2 1 FORVAT(1X,'Hello World',)
2: warn809.for: N809: A comma in a format preceding a right parenthesis
i s nonstandard.
3 WRI TE(6, 1)
4 WRI TE(6, ' (1X, 8HGood Bye,)"')
4: warn809.for: N809: A comma in a format preceding a right parenthesis is
nonst andar d.
5 STOP
6 END

Note: 810
M essage:
A sequence of more than one commain aformat is nonstandard.

Example of message 810:

If Line# NI Source

264

PromulaFortran Compiler User's Manual

1 PROGRAM V810
2 1 FORVAT(1X,,"'Hello Wrld")
2: warn810.for: N810: A sequence of nore than one conma in a format is
nonst andar d.
3 WRI TE(6, 1)
4 WRI TE(6, ' (1X,, 8HGood Bye)')
4: warn810.for: N810: A sequence of nore than one comma in a format is
nonst andar d.
5 STOP
6 END

Note: 811
M essage:
The use of variable expressions within a format is nonstandard.

Example of message 811:

I'f Line# N Source
PROGRAM V811
DI MENSI ON (5)
DATA A/1.,2.,3.,4.,5./
DO 10 I = 1,10
WRI TE(6, 100) |
110 CONTI NUE
DO 20 1=1,5
1 WRI TE(6, 101) (A(1),J=1,1)
120 CONTI NUE
10 100 FORMAT(| <MAX(1, 5) >)
10: warn811l.for: N811l: The use of variable expressions within a format is
nonst andar d.
11 101 FORMAT(<I >F10. <I - 1>)
11: warn811.for: N811l: The use of variable expressions within a format is
nonst andar d.
11: warn811l.for: N811l: The use of variable expressions within a format is
nonst andar d.

©CO~NOONWNER
-

12 END

Comment: 812
M essage:
A floating point format field width may be too small in this format.

Example of message 812:

1 PROGRAM V812
2 1 FORVAT(1X, E20.17)
2: warn812.for: C812: A floating point format field width nay be too small
inthis format.

3 2 FORMAT(1X, E20. 12)
4 WRI TE(6, 1) VAL

5 VR TE(6, 2) VAL

6 STOP

7 END

265

PromulaFortran Compiler User's Manual

Note: 813
M essage:
The [option] option on the [statement] statement is nonstandard.

Example of message 813:

If Line# NI Source

1 PROGRAM V813
2 OPEN(1, FI LE=' TEST1. DAT")
3 OPEN(2, NAME=' TEST2. DAT")
3: warn813.for: N813: The NAME= option on the open statenment is nonstandard.
4 STOP
5 END
Warning: 814

M essage:
The argument [token] of type [type] has been entered where an argument of type [type] has been used.

Example of message 814:

If Line# NI Source

1 PROGRAM W814
2 CALL SUBL(A B, C, 1)
3 CALL SUBL(I, XY, 2)

3: warn814.for: WB14: The argunent | of type integer*4 has been entered
where an argunent of type real *4 has been used.
4 STOP
5 END

Comment: 815
M essage:
A datavalue of type [type] is being assigned to the variable [ident] of type [type].

Example of message 815:

If Line# NI Source

1 PROGRAM V815
2 I NTEGER | VAL
3 DATA | VAL/ AHFREDY

3: warn815.for: C815: A data value of type character is being assigned to
the variable | VAL of type integer*4.
4 WRI TE(*, ' (1X Ad4)") | VAL
5 STOP
6 END

Comment: 816

M essage:

266

PromulaFortran Compiler User's Manual

The binary type [type] is being used where type [type] is expected.
Example of message 816:

If Line# N Source

1 PROGRAM V816
2 I NTEGER | VAL
3 I VAL = . TRUE.

3: warn816.for: C816: The binary type logical*2 is being used where type
integer*4 is expected.
4 WRI TE(*,' (1X,15)") | VAL
5 STOP
6 END

Note: 817
M essage:
If the option unit=is omitted from the unit specifier, then it must be first.

Example of message 817:

If Line# NI Source
1 SUBROUTI NE WB17
2 READ (FMI=6, 3) A
2: warn8l1l7.for: N817: If the option unit=is onmtted fromthe unit
specifier, then it nmust be first.
6 FORMAT(1X, F10.2)
30 FORMAT(1X, G20. 10)
B=5. 4
WRI TE (ERR=20, 6, 30) B
6: warn81l7.for: N817: If the option unit=is onmtted fromthe unit
specifier, then it nmust be first.

o0k w

7 20 CONTI NUE
8 END
Warning: 818

M essage:
The argument [token] is being defined with type [type] when it has been passed an argument of type [type].

Example of message 818:

If Line# N Source
1 PROGRAM W818
2 CALL S818(34.5,56,(8.7,6.5),.FALSE.,' F')
3 STOP
4 END
5 SUBROUTI NE S818(1,R C L, S)
6 REAL R
6: warn818.for: WB18: The argunent R is being defined with type real *4 when
it has been passed an argunent of type integer*4.
7 COWPLEX C
8 CHARACTER S
9 LOG CAL L

267

PromulaFortran Compiler User's Manual

10 C=R+I
10: warn818.for: WB18: The argunent | is being defined with type integer*4
when it has been passed an argunment of type real *4.

11 L=. TRUE

12 WRI TE(*,*) S

13 END
Warning: 819

M essage:
The TL field specification will shift position before column 1.

Example of message 819:

If Line# NI Source

1 SUBRQUTI NE W819
2 WRI TE (6, 20)
3 20 FORMAT(1X,' BIRD , TL6, 2HXX)
3: warn819.for: WB19: The TL field specification will shift position before
colum 1.
4 END
Warning: 820

M essage:
The [type] function [ident] was previously defined as having type [type].
Example of message 820:

If Line# N Source

1 FUNCTI ON Vi820(J)

2 W820 = FLOAT(I)

3 END

4 SUBRQUTI NE WB20A(1)
5 | NTEGER W820

6 | = W820(1 +l)

6: warn820.for: Ws20: The integer*4 function W20 was previously defined as
havi ng type real *4.
7 END

Warning: 821
M essage:
This [type] function has been previously referenced as having type [type].

Example of message 821.:

If Line# N Source
1 PROGRAM WB21
2 REAL WB21A
3 E = WB21A(2)
4 END
5 I NTEGER FUNCTI ON WB21A(1)

268

PromulaFortran Compiler User's Manual

6 WB21A=
6: warn821l.for: WB21: This integer*4 function has been previously referenced
as having type real *4
7 END

Note: 822
M essage:
The use of initial or redundant commas in symbol lists is honstandard.

Example of message 822:

If Line# NI Source

1 PROGRAM W22
2 PARAMETER (, Pl = 3.14159)
2: warn822.for: N822: The use of initial or redundant comras in synbol lists

i s nonstandard
3 VRI TE(*, *) Pl
4 STOP
5 END

Note: 823
M essage:
The common block [ident] has a [type] variable [ident] and a[type] variable [ident].

Example of message 823:

If Line# NI Source

PROGRAM W823

COVWON ALPHA/ | VAL, RVAL, SVAL

| NTEGER | VAL

REAL RVAL

CHARACTER* 10 SVAL

READ(*, *) | VAL, RVAL, SVAL

CALL HELPER

STOP

END

9: warn823.for: N823: The common bl ock ALPHA has a real *4 variable RVAL and
a character*10 variabl e SVAL.

CoO~NOUAWNE

Warning: 824
M essage:

The variable [ident] substring subscript [number] is not in the range of
[number] to [number].

Example of message 824:

If Line# N Source

1 PROGRAM V824
2 CHARACTER* 10 NAME, HOME, SON
3 NAMVE(0: 9) = ' Freddy

3: warn824.for: WB24: The variabl e NAVE substring subscript O is not in the

269

PromulaFortran Compiler User's Manual

4
4: warn824.for:

5
5. warn824.for:
6
7
Warning: 825

M essage:

The subscript value [number] for subscript [number] of array [ident] is not in the range of [number] to [number].

range of 1 to 10.

HOVE(1: 13) = ' Col unmbus Ohi o'
W324: The variabl e HOVE substring subscript 13 is not in the
range of 1 to 10.
SON(5:1) = ' Andy'
W324: The variabl e SON substring subscript 1 is not in the

range of 5 to 10.
STOP
END

Example of message 825:

If Line# N

A WN P

4: warn825.for:

5

5. warn825.for:

6

Comment: 826

M essage:

Sour ce

SUBRQUTI NE V825
PARAMETER(| A = 3)
REAL A(O: 3, 4)
A(-1, 4) =0.
W825: The subscript value -1 for subscript 1 of array Ais
not in the range of 0 to 3.
A(3, | A+2) =0.
WB25: The subscript value 5 for subscript 2 of array Ais
not in the range of 1 to 4.
END

The variable [ident] substring subscript is of type [type] rather than integer.

Example of message 826:

If Line# N

5
5: warn826. for:

6
7

7: warn826. for:

8
9

Comment: 827

M essage:

Sour ce

SUBROUTI NE W826
CHARACTER* 10 ABCD
ABCD(1:2) = 'AB

| =5

ABCD (3.0:4) =' CD
C826: The variable | substring subscript
rather than integer.
R=5
ABCD(R: | +1) = 'EF
C826: The variable R substring subscript
rather than integer.
VRl TE(*, *) ABCD
END

is of type real*4

is of type real*4

270

PromulaFortran Compiler User's Manual

The function [ident] has been previoudly referenced or defined as a subroutine.

Example of message 827:

If Line# NI Source
SUBRQUTI NE W827
CALL WB27A(J,1)
END
FUNCTI ON WB27A(J, 1)
4: warn827.for: C827: The function WB27A has been previously referenced or
defined as a subroutine.
5 CALL W827C(J,1)
6 I = WB27C(J, 1)
6: warn827.for: C827: The function WB27C has been previously referenced or
defined as a subroutine.
7 VB27A=1 +J
8 END

A WN P

Comment: 828
M essage:
The subroutine [ident] has been previously referenced or defined as a function.

Example of message 828:

If Line# NI Source
SUBROUTI NE WB28
R = WB28A(J, 1)
END
SUBRQUTI NE WB28A(J, I)
4: warn828.for: C828: The subroutine WB28A has been previously referenced or
defined as a function.
5 I = WB28C(J, 1)
6 CALL WB828C(J, 1)
6: warn828.for: CB828: The subroutine WB28C has been previously referenced or
defined as a function.
7 END

A WN P

Note: 829
M essage:
The array [ident] has more than 7 dimensions.

Example of message 829:

If Line# NI Source

1 SUBRQOUTI NE W829
2 DI MENSION A(2,2,2,2,2,2,2,2)
2: warn829.for: N829: The array A has nore than 7 di nmensions.
3 A(1,2,1,2,1,2,1,2) = 3.3
4 WRITE(*, *) A(1,2,1,2,1,2,1,2)
5 END

271

PromulaFortran Compiler User's Manual

Note: 830
M essage:
An entry point is being defined within an if or do range.

Example of message 830:

If Line# NI Source

1 SUBROUTI NE V830
2 DO 10 1=1,3
3 1 ENTRY GEORGE
3: warn830.for: N830: An entry point is being defined within an if or do
range.
4 1 10 CONTI NUE
5 END
Warning: 831

M essage:
The variable [ident] subscript is of type [type] rather than integer.

Example of message 831.:

If Line# NI Source

1 SUBROUTI NE W31
2 DI MENSI ON B(0: 1)
3 D = B(0.0)
3: warn831.for: WB31l: The variable D subscript is of type real*4 rather than
i nt eger.
4 END

Note: 832
M essage:
The use of hexidecimal, octal, or binary constantsis nonstandard.

Example of message 832:

If Line# N Source
1 SUBROUTI NE WB32
2 1 T=0 77"
2: warn832.for: N832: The use of hexidecimal, octal, or binary constants is
nonst andar d.
3 | P=H FF'
3: warn832.for: N832: The use of hexidecimal, octal, or binary constants is
nonst andar d.
4 WRITE(*,*) IT,IP
5 END

Note: 833

M essage:

272

PromulaFortran Compiler User's Manual

The nonparenthetical form of the parameter statement is nonstandard.

Example of message 833:

If Line# N Source

1 SUBRQUTI NE V833
2 PARAMETER | =3, J=4
2: warn833.for: N833: The nonparenthetical formof the paraneter statenent
i s nonst andard.
3 WRI TE(*, *) 1,3
4 END

Note: 834
M essage:
Using arepeat count with the [token] format specification is nonstandard.

Example of message 834:

If Line# N Source

1 SUBRQOUTI NE W834
2 READ (5,10) A
3 10 FORMAT (3/, F10. 0)
3: warn834.for: N834: Using a repeat count with the / format specification
i s nonstandard.
4 A=A + 1.0
5 END

Note: 835
M essage:
Omitting the field after the period in aformat specification is nonstandard.

Example of message 835:

If Line# NI Source

1 SUBRQUTI NE WB35
2 WRI TE(5, 10) 1
3 10 FORMAT(1X,13.)

3: warn835.for: N835: QOmtting the field after the period in a fornat
specification is nonstandard.
4 VRl TE(5, 20), 2.
5 20 FORMAT(1X, F6.)
5: warn835.for: N835: Omitting the field after the period in a fornat
specification is nonstandard.
6 VRl TE(5, 30), 3. DO
7 30 FORMVAT(1X, 1P, E20.)
7: warn835.for: N835: Omitting the field after the period in a fornat
specification is nonstandard.
8 END

Note: 836

273

PromulaFortran Compiler User's Manual

M essage:
Omitting the repeat count before the [token] format specification is nonstandard.

Example of message 836:

If Line# N Source

1 SUBRQUTI NE V836
2 WRI TE(*, "' (X, 11HHel I o World)")
2: warn836.for: N836: QOritting the repeat count before the X format
specification is nonstandard.
3 END

Comment: 837
M essage:
The variable [ident] has already been dimensioned.

Example of message 837:

I'f Line# N Source

SUBRQUTI NE WB37(2)

REAL A(10)

COMMON/ AB/ B(10) , A(6)

3: warn837.for: C837: The variable A has already been di nensi oned.

WN -

4 REAL B(10)
4: warn837.for: C837: The variable B has already been di nensi oned.
5 Z=1.
6 END
Warning: 838

M essage:
The datainitialization for [ident] will be ignored.

Example of message 838:

If Line# NI Source

BLOCK DATA W38

PARAMETER (N=3)

COVMMON/ E6O7A/ A(3)

REAL B(2)

| NTEGER | OTA

DATA(A(1),1=1,N/1.,2.,3./

DATA K/ 2/

END

8: warn838.for: WB38: The data initialization for Kwll be ignored.

O~NO O WNE

Note: 839
M essage:

The variable [ident] is assigned a statement label but is never used in an

274

PromulaFortran Compiler User's Manual

assigned goto.

Example of message 839:

If Line# N Source
1 SUBRQUTI NE V839
2 ASSIGN 10 TO I A
3 GOTO 20
4 10 A=1
5 WRI TE(*, *) A
6 20 RETURN
7 END
7: warn839.for: N839: The variable |A is assigned a statement |abel but is
never used in an assigned goto.

Comment: 840
M essage:
In this character assignment the variable [ident] is self-referential.

Example of message 840:

If Line# NI Source

1 SUBROUTI NE V840
2 CHARACTER*40 A, B
3 A=" ABCDEFGHI JKLMNOPQRSTUVWKYZ01234567894* () - +'
4 A(12:40) = A
4: warn840.for: C840: In this character assignment the variable Ais self-
referential .
5 B=' NOT USED
6 A='0123456789'// A
6: warn840.for: C840: In this character assignnent the variable Ais self-
referential .
7 WRI TE(*, *) A
8 END
Comment: 841

M essage:
The switch value for this computed goto is a constant.

Example of message 841.:

I'f Line# NI Source

SUBROUTI NE V841(1)

PARAMETER (J = 2)

Qoro (10,1, 2),J

3: warn841.for: C841: The switch value for this conputed goto is a constant.
4 GOTO (10,1, 2),

wWN -

5 GOTO (10,1,2),3
5: warn841.for: C841: The switch value for this conputed goto is a constant.

6 1 CONTI NUE
7 2 CONTI NUE
8 10 RETURN
9 END

275

PromulaFortran Compiler User's Manual

Note: 842
M essage:
The variable [ident] is assigned aformat label but is never used as an assigned format.

Example of message 842:

If Line# NI Source

1 SUBROUTI NE WB42
2 ASSIGN 10 TO I A
3 GOTO | A, (10, 20)
4 10 A=1

5 ASSIGN 1 TO 1A
6 VR TE(*, 1) A

7 1 FORMAT(1X, F10. 0)
8 RETURN

9 END

9: warn842.for: N842: The variable A is assigned a format |abel but is
never used as an assigned format.

Note: 843
M essage:
It isinefficient to have a statement label on an unconditional goto.

Example of message 843:

If Line# NI Source
SUBROUTI NE W843
=1
I F(l.EQ0) GO TO 20
20 IF(1.NE. O) GO TO 25
25 GO TO 30
5. warn843.for: N843: It is inefficient to have a statenent |abel on an
uncondi ti onal goto.
6 30 RETURN
7 END

b wWNPEF

Note: 844
M essage:
The executable statement number [1abel] was defined but not referenced.

Example of message 844:

If Line# NI Source

1 SUBROUTI NE WB44
2 10 A = 1.0

3 20 FORMAT(1X, 3F10. 5)
4 VR TE(*, 20) A

5 END

5. warn844.for: N844: The executabl e statenent nunber 10 was defi ned but not
ref erenced.

276

PromulaFortran Compiler User's Manual

Note: 845
M essage:
The format number [label] was defined but not referenced.

Example of message 845:

If Line# NI Source

1 SUBROUTI NE W845
2 A=1.0

3 20 FORMAT(1X, 3F10. 5)
4 VR TE(*, *) A

5 END

5. warn845.for: N845: The format nunber 20 was defined but not referenced.

Comment: 846
M essage:

The actual argument list contains more than the [number] argument(s) used when the [object] [ident] was previoudy
referenced or defined.

Example of message 846:

If Line# N Source

1 SUBROUTI NE WB46
2 CALL WB4BA(A)
3 CALL WB46A(A, B)

3: warn846.for: C846: The actual argunment |ist contains nore than the 1
argunent (s) used when the subroutine WB46A was
previously referenced or defined.

4 END

Note: 847
M essage:
More than 19 continuation linesin one statement is nonstandard.

Example of message 847:

If Line# NI Source
SUBROUTI NE WB47(A, B)
DI MENSI ON B(25)
A = B(1)
+ B(2)
B(3)
B(4)
B(5)
B(6)
B(7)
B(8)
B(9)
B(10)
B(11)

R R R R TR

+ 4+t + o+ o+

277

PromulaFortran Compiler User's Manual

14 $ + B(12)
15 $ + B(13)
16 $ + B(14)
17 $ + B(15)
18 $ + B(16)
19 $ + B(17)
20 $ + B(18)
21 $ + B(19)
22 $ + B(20)
23 $ + B(21)
24 $ + B(22)
25 $ + B(23)
26 $ + B(24)
27 $ + B(25)

3: warn847.for: N847: More than 19 continuation lines in one statenent is
nonst andar d.

28 VRI TE(*, *) A
29 END
Comment: 848

M essage:
The variable [ident] in the assign is either an argument or isin common or is equivalenced.

Example of message 848:

If Line# NI Source

1 SUBROUTI NE WB48(| OTA)
2 COMMON/ JOT/ JOT

3 EQUI VALENCE(JOT, NAM
4 ASSI GN 10 TO | OTA

4: warn848.for: C848: The variable IOTA in the assign is either an argunent

or is in common or is equival enced.
5 GOTO | OTA
6 10 ASSIGN 20 TO JOT
6: warn848.for: C848: The variable JOT in the assign is either an argunent
or is in common or is equival enced.
7 GOTO JOT
8 20 ASSI GN 30 TO NAM
8: warn848.for: C848: The variable NAMin the assign is either an argunent
or is in common or is equival enced.

9 GOTO NAM
10 30 CONTI NUE
11 END

Note: 849
M essage:
The use of debugging comments is nonstandard.

Example of message 849:

I'f Line# N Source
1 PROGRAM W849
2 | =100 * 2
2: warn849.for: N849: The use of debuggi ng comrents i s nonstandard.

278

PromulaFortran Compiler User's Manual

D WRITE(*, ' (1X,15)") |
STOP
END

abw

Note: 850
M essage:
The use of comment characters other than * or C is nonstandard.

Example of message 850:

If Line# N Source
1 SUBROUTI NE W50
2 A =10.0
3 C THIS IS A COVWENT
4 B =15.0
4: warn850.for: N850: The use of comment characters other than * or Cis
nonst andar d.

5 $ TH S IS A COMENT
6 C=20.0
7 * THIS IS A COVWENT
8 RETURN
9 END

Note: 851

M essage:
The use of inline comments is nonstandard.

Example of message 851:

If Line# NI Source

1 PROGRAM W851
2 DI MENSION | A(10) ! This is the key vector
2: warn851.for: N851: The use of inline comments is nonstandard.
3 WRITE(1) |TA
4 STOP
5 END
Note: 852

M essage:
The use of multiple statements on a single line is nonstandard.

Example of message 852:

If Line# NI Source

1 PROGRAM V852
2 IA=10; IB =15
2: warn852.for: N852: The use of multiple statements on a single line is
nonst andar d.
3 WRI TE(*,' (1X,215)") IAIB
4 STOP
5 END

279

PromulaFortran Compiler User's Manual

Note: 853
M essage:
The standard delimeter for a character constant is the single quote.

Example of message 853:

If Line# NI Source

1 SUBROUTI NE WB53
2 CHARACTER*9 A
3 A=" ABCDEF"

3: warn853.for: N853: The standard delineter for a character constant is the
singl e quote.
4 END

Note: 854
M essage:
The use of r or | character constants is nonstandard.

Example of message 854:

If Line# NI Source

1 PROGRAM V854
2 CHARACTER*10 | A
3 DATA | A/ L" ABC'/
3: warn854.for: N854: The use of r or | character constants i s nonstandard.

4 WRITE(L, ' (1X, A3)') IA
5 STOP
6 END

Note: 855

M essage:
The use of radix-50 constants is nonstandard.

Example of message 855:

If Line# NI Source

1 PROGRAM W55
2 DATA | Al 3RABC/
2: warn855. for: N855: The use of radi x-50 constants i s nonstandard.
3 WRITE(L,' (1X,110)") 1A
4 STOP
5 END

Note: 856

M essage:

280

PromulaFortran Compiler User's Manual

A logical or arithmetic if with lessthan 3 branchesis nonstandard.

Example of message 856:

If Line# NI Source

1 PROGRAM 856
2 1 =0
3 IF(1.EQO0) 5,6

3: warn856.for: N856: A logical or arithmetic if with less than 3
branches is nonstandard.

4 5 WRI TE(*, *) |
5 6 CONTI NUE
6 END

Note: 857

M essage:

The parenthetical form of the program statement is nonstandard.

Example of message 857:

If Line# NI Source

1 PROGRAM WB57(QUTPUT, TAPE99, | NPUT)
1: warn857.for: N857: The parenthetical formof the program statenent is
nonst andar d.
2 A=1
3 WRI TE(*, *) A
4 END

Note: 858

M essage:

Theidentifier [token] with more than 6 charactersis nonstandard.

Example of message 858:

If Line# NI Source

1 SUBROUTI NE W858
2 1=1
3 JABCDEF=I
3: warn858.for: N858: The identifier JABCDEF with nore than 6 characters is

nonst andar d.
4 WRI TE(*, *) |, JABCDEF
5 END

Note: 859
M essage:
The continuation of the end statement is nonstandard.

Example of message 859:

281

PromulaFortran Compiler User's Manual

If Line# NI Source

1 SUBROUTI NE WB59
2 DATA A/ 2.0/

3 WRI TE(*, *) A

4 E

5 1ND

4: warn859.for: N859: The continuation of the end statenment is nonstandard.

Note: 860
M essage:
The use of return in the main program is nonstandard.

Example of message 860:

1 PROGRAM V860
2 =1
3 WRI TE(*, *) |
4 RETURN
4: warn860.for: N860: The use of return in the main programis nonstandard.
5 END
Comment: 861

M essage:
Datais being allocated to common storage viathe variable [ident].

Example of message 861.:

If Line# NI Source

1 SUBROUTI NE V861
2 COMWON A, D
3 EQUI VALENCE (C, A)
4 DATA D,B,C/1.0,2.0,3.0/
5 WRI TE(*,*) A B, D
6 END
6: warn861.for: C861: Data is being allocated to commobn storage via the
variable D
6: warn861.for: C861: Data is being allocated to conmon storage via the
variable C.

Note: 862
M essage:
Initializing the function value via a data statement is nonstandard.

Example of message 862:

If Line# N Source
1 FUNCTI ON W862()
2 DATA W862/ 4./
2: warn862.for: N862: Initializing the function value via a data statenent

282

PromulaFortran Compiler User's Manual

i s nonstandard.
3 WRI TE(*, *) W862
4 END

Comment: 863
M essage:
The datavariable list islonger than the value list, extraignored.

Example of message 863:

If Line# N Source

1 SUBRQUTI NE 863
2 I NTEGER | (6), J(5), K(4)
3 DATA Y, Z/ 1./

3: warn863.for: C863: The data variable list is longer than the value list,
extra ignored.
4 DATA |/ 5*0/
4: warn863.for: C863: The data variable list is |longer than the value list,
extra ignored.
5 DATA J/ 2, 3/
5: warn863.for: C863: The data variable list is |longer than the value list,
extra ignored.

6 DATA K/ 1, 2, 3, 4/
7 WRITE(*,*) 1,3,Y,Z
8 END

Note: 864

M essage:
Declarative statements following executable statementsis nonstandard.

Example of message 864:

If Line# N Source

1 SUBRQUTI NE V864
2 X=1.3
3 REAL | (10)
3: warn864.for: N864: Declarative statenments followi ng executable statenents
i s nonst andard.
4 WRI TE(*,*) X |
5 END

Note: 865
M essage:
Specification statements following data statements is nonstandard.

Example of message 865:

If Line# NI Source

1 SUBROUTI NE V865
2 DATA A/ 5. 6/
3 REAL B

283

PromulaFortran Compiler User's Manual

3: warn865.for: N865: Specification statements follow ng data statenents is
nonst andar d.
4 VR TE(*, *) A
5 END

Comment: 866

M essage:

The [type] type has previously been assigned to [ident].
Example of message 866:

If Line# NI Source

1 SUBROUTI NE V\B66(AB)
2 I NTEGER A, Z(2)
3 CHARACTER*5 A
3: warn866.for: C866: The integer*4 type has previously been assigned to A
4 COWPLEX Z
4: warn866.for: C866: The integer*4 type has previously been assigned to Z
5 AB=1.
6 END
Note: 867
M essage:

The argument [ident] has an expression as an adjustable dimension.

Example of message 867:

If Line# N Source

1 SUBRQUTI NE WB67(A, B,C, D, I)
2 COMMON J, K
3 REAL A(1),B(J+1), C(K)
4 WRI TE(*,*) A/B,C D
5 END
5: warn867.for: N867: The argunent B has an expression as an adjustable
di mensi on.

Note: 868
M essage:
Implicit statements following specification statements is nonstandard.

Example of message 868:

I'f Line# N Source

SUBROUTI NE W\B68(SAM A)

I NTEGER SAM

REAL A(SAM

I MPLI CI' T COVPLEX(S)

4: warn868.for: N868: Inplicit statenents foll owi ng specification statenents

A WNBRF

284

PromulaFortran Compiler User's Manual

i s nonstandard.

5 WRITE(*, *) A
6 END
Warning: 869

M essage:
The do index variable [ident] is aready the index for an outer loop.

Example of message 8609:

If Line# N Source

1 SUBROUTI NE V869

2 REAL A(10)

3 DATA A/ 10*4.5/

4 DO 10 J=1, 10

5 1 10 WRI TE(6, *) (A(J), J=1, 3)

6 DO 20 1=1, 10

7 1 DO 20 1=1, 10

7: warn869.for: W869: The do index variable | is already the index for an

outer | oop.

8 2 20 A(1)=I

9 END

Comment: 870
M essage:
The array [ident] is being subscripted with less than [number] expressions.

Example of message 870:

If Line# NI Source

1 SUBROUTI NE W870
2 REAL Y(10, 10), Z(6, 3)
3 DATA Z(3)/2./

3: warn870.for: C870: The array Z is being subscripted with |less than 2
expr essi ons.
4 DO 10 J=1, 100
5 1 10 Y(J)=0.
5: warn870.for: C870: The array Y is being subscripted with I ess than 2
expressi ons.
6 VRI TE(*, *) Y, Z
7 END

Note: 871
M essage:
The statement function argument [ident] is never used.

Example of message 871.:

If Line# NI Source

1 SUBROUTI NE WB71(A, B, O)
2 ASF(Q) =B+A+C

285

PromulaFortran Compiler User's Manual

2: warn871.for:

3
4
5

Note: 872

M essage:

N871: The statenent function argunent G is never used.

A=S| N(B) +ASF(1. 0)
RETURN
END

Equivalencing [ident] of type [type] with [ident] of type [type] is honstandard.

Example of message 872:

If L

14:
14:
14:
14:

14:

ine# N Source

war n872. for:
war n872. for:
war n872. for:
war n872. for:

war n872. for:

Comment: 873

M essage:

The equivalence with [ident] is expanding the size of variable [ident] by [number] bytes.

SUBROUTI NE V872
DOUBLE PRECI SION D
COWLEX C

CHARACTER* 10 S1, S2, S3, $4, S5

LOG CAL L
| NTEGER |

REAL R

EQUI VALENCE(| , S1)
EQUI VALENCE(R, S2)
EQUI VALENCE(D, S3)
EQUI VALENCE(C, $4)
EQUI VALENCE(L, S5)
WRITE(*, *) "HI'
END

N872: Equival encing S1 of type character*10 with | of
integer*4 is nonstandard.
N872: Equival encing S2 of type character*10 with R of

real *4 i s nonstandard.

N872: Equi val encing S3 of type character*10 with D of

real *8 i s nonstandard.

N872: Equival encing S4 of type character*10 with C of
conpl ex*8 i s nonstandard.

N872: Equival encing S5 of type character*10 with L of
| ogi cal *4 i s nonstandard.

Example of message 873:

If L

ine# N Source

5. warn873.for:

SUBRQUTI NE WB73

REAL X(10), Y(13)

EQUI VALENCE (X(5), Y(1))
WRITE(*,*) X, Y,"H'
END

C873: The equivalence with Y is expanding the size of

variable X by 28 bytes.

type
type
type
type

type

286

PromulaFortran Compiler User's Manual

Comment: 874
M essage:
The equivalence with [ident] is expanding the size of common [ident] by [number] bytes.

Example of message 874:

If Line# NI Source
1 SUBRQUTI NE V874
2 REAL X(10)
3 COMMON/ XX/ Y
4 EQUI VALENCE (X(9).,VY)
5 WRI TE(*,*) "HI'
6 END
6: warn874.for: C874: The equivalence with X is expandi ng the size of common
XX by 4 bytes.

Note: 875
M essage:
Omitting commas from the [statement] statement is nonstandard.

Example of message 875:

If Line# NI Source

1 SUBROUTI NE WB75

2 I MPLI CI T | NTEGER(A) REAL(1)
2: warn875.for: N875: QOritting commas fromthe inplicit statement is
nonst andar d.
AA=2
I1=4
WRI TE(*, *) AA I
END

oo~ W

Comment: 876
M essage:
Common block [ident] is[number] bytes longer than when previoudly defined.

Example of message 876:

If Line# NI Source

SUBRQUTI NE WB76
COWON/ E156X/ A(99)
CHARACTER*21 B, C, E*3, F*3
COWON E156Y/ B
COWDON E156Z/ E

E ' EEE'

F = 'FFF

WRI TE(*,*) EF

END

SUBRQOUTI NE WB76A
COVMON/ E156X/ A(100

POOOO~NOOTWNE

PP

287

PromulaFortran Compiler User's Manual

12 CHARACTER* 21B, C, E*3, F*3
13 COMMON E156Y/ B, C

14 COMMON / E156Z/ E, F

15 E = ' EEE

16 F ='FFF

17 WRI TE(*,*) E F

18 END

18: warn876.for: C876: Common bl ock E156X is 4 bytes |onger than when

previ ously defined.

18: warn876.for: C876: Common bl ock E156Y is 21 bytes |onger than when

previously defined.

18: warn876.for: C876: Common bl ock E156Z is 3 bytes |onger than when

previ ously defined.

Comment: 877

M essage:

Common block [ident] is[number] bytes shorter than when previoudly defined.

Example of message 877:

If Line# NI Source

1 SUBROUTI NE W877
2 COMMVON/ VB77X/ A(100)

3 CHARACTER*21 B, C, E*3, F*3
4 COMMON/ VB77Y/ B, C

5 COMMON / WB77Z/ E, F

6 E = ' EEE

7 F ='FFF

8 WRI TE(*,*) E F

9 END

10 SUBROUTI NE WB77A

11 COMMON/ VB77X/ A(99)

12 CHARACTER*21 B, C, E*3, F*3
13 COMMON/ VB77Y/ B

14 COMMON/ VB77Z/ E

15 E = ' EEE

16 F ='FFF

17 WRI TE(*,*) E F

18 END

18: warn877.for: C877: Common bl ock WB77X is 4 bytes shorter than when

previ ously defined.

18: warn877.for: C877: Common bl ock WB77Y is 21 bytes shorter than when

previously defined.

18: warn877.for: C877: Common bl ock WB77Z is 3 bytes shorter than when

previ ously defined.

Comment: 878

M essage:

The [statement] statement isignored in block data subprograms.

Example of message 878:

1 BLOCK DATA W878
2 COWON PI / PI

288

PromulaFortran Compiler User's Manual

3 DATA PI/3.141592/
4 Pl =3. 14
4: warn878.for: C878: The assignment statement is ignored in block data
subpr ogr ans.
5 CALL E159A
5: warn878.for: C878: The call statement is ignored in block data
subpr ogr ans.
6 END

Note: 879
M essage:
The conditional expression was of type [type] rather than logical.

Example of message 879:

If Line# NI Source

1 SUBROUTI NE WB79(A, B)
2 | F(A+B) GO TO 10
2: warn879.for: N879: The conditional expression was of type real *4 rather
than | ogi cal

3 B=4.2
4 10 1F(A LE 10.)B=0.
5 END

Note: 880
M essage:
The use of redundant commeas to indicate missing arguments is nonstandard.

Example of message 880:

If Line# NI Source

1 SUBROUTI NE WB80(A, B)
2 A=W\B8OB(A,)
2: warn880.for: N880: The use of redundant commas to indicate m ssing
argunents i s nonstandard
3 VRI TE(*, *) A B
4 END

Note: 881
M essage:
The [type] control value for the computed goto has been truncated to integer.

Example of message 881.:

If Line# NI Source

1 SUBROUTI NE WB81(1, J)
2 REAL |

3 DOUBLE PRECI SI ON J
4 GOTQ(10, 20, 30), |

4: warn881.for: N881l: The real *4 control value for the conputed goto has
been truncated to integer.

289

PromulaFortran Compiler User's Manual

5 10 1=7.8
6 RETURN
7 20 GO TO(10, 30), J

7: warn881.for: N881l: The real *8 control value for the computed goto has
been truncated to integer.

8 RETURN
9 30 1=07.8
10 RETURN
11 END
Comment: 882

M essage:
A value of one will be assumed for the zero format count field.

Example of message 882:

If Line# NI Source

1 SUBROUTI NE W882
2 VR TE(*, 6)
3 6 FORMAT(3X, OF10. 6)

3: warn882.for: C882: A value of one will be assuned for the zero fornat
count field.
4 VIRl TE(*, 8)
5 8 FORMAT(3X, 0(' ABC , 3X))
5: warn882.for: C882: A value of one will be assunmed for the zero fornmat
count field.
6 END

Comment: 883
M essage:
ThereisaT format specification within a repeated parenthetical group.

Example of message 883:

I'f Line# NI Source
1 SUBROUTI NE V883
2 | NTEGER K(6)
3 DATA J,K/0,1,2,3,4,5,6/
4 WRI TE(*, 10) J, (K(N), N=1, 6)
5 WRI TE(*, 20) J, (K(N), N=1, 2)
6 10 FORVAT(1X, 110, 3(T5,13,15))
6: warn883.for: C883: There is a T format specification within a repeated
parent heti cal group.
7 20 FORMAT(1X,110,/,(T5,13,15))
8 END

Note: 884
M essage:

The use of zero length character constants is nonstandard.

290

PromulaFortran Compiler User's Manual

Example of message 884:

If Line# N Source
1 SUBROUTI NE V884
2 10 FORMAT(" ','")
2: warn884.for: N884: The use of zero length character constants is
nonst andar d.
3 20 FORMAT(' ',"")
3: warn884.for: N884: The use of zero |length character constants is
nonst andar d.
4 30 FORMAT(' ', **)
4: warn884.for: N884: The use of zero |length character constants is
nonst andar d.
5 CHARACTER*2 A, B
A=
6: warn884.for: N884: The use of zero length character constants is
nonst andar d.

7 VRI TE(*, 10) A
8 VRI TE(*, 20) A
9 WRI TE(*, 30) B
10 END

Note: 885

M essage:
An implicit high-low range specification is nonstandard.

Example of message 885:

If Line# N Source
1 SUBROUTI NE E885(A)
2 I MPLI CI T | NTEGER(D- A)
2: warn885.for: N885: An inplicit high-low range specification is
nonst andar d.
3 A=1
4 END

Note: 886
M essage:
Including arepeat count before the [token] format specification is nonstandard.

Example of message 886:

If Line# NI Source
1 SUBRQUTI NE W\B86
2 WRI TE(*, 10)
3 10 FORMAT(1X, 1S,11,6,2SP,12,3SS,13)

3: warn886.for: N886: Including a repeat count before the S fornat
speci fication is nonstandard.

3: warn886.for: N886: Including a repeat count before the , format
specification is nonstandard.

3: warn886.for: N886: Including a repeat count before the S fornat
speci fication is nonstandard.

3: warn886.for: N886: Including a repeat count before the S format
specification is nonstandard.

4 WRI TE(*, 20)

201

PromulaFortran Compiler User's Manual

5 20 FORMAT(10T10,6' A", 2TL2,5"B",6TR6,'C ,7)

5: warn886.for: N886: Including a repeat count before the T fornat
speci fication is nonstandard.

5: warn886.for: N886: Including a repeat count before the ' fornat
specification is nonstandard.

5: warn886.for: N886: Including a repeat count before the T fornat
speci fication is nonstandard.

5: warn886.for: N886: Including a repeat count before the " fornat
specification is nonstandard.

5: warn886.for: N886: Including a repeat count before the T fornat
speci fication is nonstandard.

5: warn886.for: N886: Including a repeat count before the) fornat
specification is nonstandard.

6 WRI TE(*, 30)
7 30 FORMAT(1X, E10. 2, G20. 10)
8 READ(*, 40) |
9 40 FORMAT(2BZ, |2, 2* A*, 3BN)

9: warn886.for: N886: Including a repeat count before the * fornat
speci fication is nonstandard.
10 END

Comment: 887
M essage:
Output format contains a superfluous bn or bz specification.

Example of message 887:

If Line# N Source

1 SUBROUTI NE W887

2 | A=1

3 VR TE(6, 10) | A

4 10 FORMAT (BZ, 1X, 1 10)

4: warn887.for: C887: CQutput format contains a superfluous bn or bz
speci fication.
5 20 FORMAT (1X, Bz, 110)
6 WRI TE (6,20) IA
6: warn887.for: C887: Qutput format contains a superfluous bn or bz
speci fication.
7 END

Note: 888
M essage:
The block data subprogram contained no data statements.

Example of message 888:

If Line# N Source

1 BLOCK DATA W\888
2 COMMVON/ P! / PI

3 COMMVON DY X 10)
4 END

4: warn888.for: N888: The bl ock data subprogram contai ned no data statenents.

292

PromulaFortran Compiler User's Manual

Note: 889
M essage:
The use of zero-width or free-form format value editing specifications is nonstandard.

Example of message 889:

If Line# NI Source
1 SUBROUTI NE VB89
2 10 FORMAT(FO. 5)
2: warn889.for: N889: The use of zero-width or free-formformat val ue
editing specifications is nonstandard.
3 30 FORMAT(10)
3: warn889.for: N889: The use of zero-width or free-formformat value editing
specifications is nonstandard.
4 40 FORMAT(LO)
4: warn889.for: N889: The use of zero-width or free-formformat value editing
speci fications is nonstandard.

5 60 FORMAT(DO. 0)
5: warn889.for: N889: The use of zero-width or free-formformat value editing

speci fications is nonstandard.
6 70 FORMAT(EO. 0)
6: warn889.for: N889: The use of zero-width or free-formformat value editing
speci fications is nonstandard.
7 80 FORMAT(Q0. 0)
7: warn889.for: N889: The use of zero-width or free-formformat value editing
speci fications is nonstandard.

8 VRl TE(*, 10)

9 VRl TE(*, 30)
10 VRl TE(*, 40)
11 VRl TE(*, 60)
12 VRl TE(*, 70)
13 VRl TE(*, 80)
14 END

Comment: 890

M essage:
The zero statement label isignored.

Example of message 890:

1 SUBRQUTI NE V890

2: warn890.for: C890: The zero statenent |abel ignored.
2 0000 REAL A

3: warn890.for: C890: The zero statenent |abel ignored.
3 0000 A-1.
4 WRI TE(*, *) A
5 END

Comment: 891

M essage:

293

PromulaFortran Compiler User's Manual

The statement function [ident] has been previously declared as being external.

Example of message 891.:

If Line# NI Source

1 SUBRQUTI NE WB91(1)
2 EXTERNAL JJ
3 JI(K) =K** 3/ (K- 1) ** KK(K)

3: warn891.for: C891: The statement function JJ has been previously decl ared
as being external.
4 LL(I) =KK(I)
5 I =LL(1)-33(1)
6 END

Note: 892
M essage:
List-directed 1/O for internal filesis nonstandard.

Example of message 892:

If Line# NI Source

1 SUBROUTI NE W92
2 CHARACTER* 128 LI NE
3 A=3
4 WRI TE(LINE, *)' A=", A
4: warn892.for: N892: List-directed I/Ofor internal files is nonstandard.
5 WRI TE(*, *) LINE
6 END

Warning: 893
M essage:
There is an equivaence contradiction for [ident].

Example of message 893:

If Line# NI Source

1 SUBROUTI NE WB93
2 REAL A(10), B(20)

3 EQUI VALENCE (A(1), B(10)), (A(10), B(5))
4 VWRI TE(*,*) A B

5 END

5: warn893: for: WB93: There is an equival ence contradiction for B.

Comment: 894
M essage:
The do loop ends on atransfer statement.

Example of message 894:

294

PromulaFortran Compiler User's Manual

I'f Line# NI Source
1 SUBROUTI NE W94
2 I NTEGER A(6)
3 DATA J/ 1/
4 DO 10 1=1,6
5 1 A(l) =l
6 1 10 1 F(J-2) 15, 15, 30

6: warn894.for: C894: The do | oop ends on a transfer statenent.

7 15 DO 20 1=1,6
1 ALY =l

9 1 20 ENDDO

10 30 DO 60 |=1,6

11 1 ALY =l

12 1 60 RETURN
12: warn894.for: C894: The do | oop ends on a transfer statement.
13 65 DO 70 1=1,6
14 1 A(l) =l
15 1 70 STOP 70
15: warn894.for: C894: The do | oop ends on a transfer statement.
16 75 DO 80 I1=1,6
17 1 A(l) =l
18 1 80 GOrq 65, 75, 85, 105) |

18: warn894.for: C894: The do | oop ends on a transfer statenent.
19 85 DO 90 1=1,6
20 1 ASSI GN 105 TO | OT
21 1 90 GOTO I T , (105, 65)

21: warn894.for: C894: The do | oop ends on a transfer statenent.

22 105 DO 110 I1=1,6
23 1 ACl) =l
24 1 110 DO 115 J = 1,5
25 2 VRI TE(*, *) J
26 2 115 CONTI NUE
26: warn894.for: C894: The do | oop ends on a transfer statenent.

27 END

Comment: 895

M essage:
The character [token] has already been assigned type [type].

Example of message 895:

If Line# N Source

1 SUBRQUTI NE WB95(A)
2 I MPLI CI T | NTEGER(A-Z), REAL(1-1J)
2: warn895.for: C895: The character | has al ready been assigned type
i nteger*4.
2: warn895.for: C895: The character J has already been assigned type
i nteger*4.
3 A=1
4 END

Note: 896
M essage:
References to nonconstants like [object] [ident] in parameter statements is nonstandard.

Example of message 896:

295

PromulaFortran Compiler User's Manual

If Line# NI Source
1 SUBRQOUTI NE WB96
2 PARAMETER (| =3, K=J)
2: warn896. for: N896: References to nonconstants like variable J in
paraneter statements is nonstandard.
3 PARAVETER(L=J+3)
3: warn896.for: N896: References to nonconstants like variable J in
paraneter statenents is nonstandard.

4 PARAMETER(A=1/ 3., B=1./A)
5 J = 99
6 WRITE(*,*) |,K L, ABZWY
7 END
Comment: 897

M essage:

The actual argument list contains less than the [number] argument(s) used when the [object] [ident] was previoudy
referenced or defined.

Example of message 897:

1 SUBROUTI NE V897
2 CALL DEMJ(A, B)
3 CALL DEMJ(A)

3: warn897.for: C897: The actual argunment list contains less than the 2
argunent (s) used when the subrouti ne DEMO was
previously referenced or defined.

4 END

Comment: 898
M essage:
The statement labels on elseif, else, or endif may not produce the desired effect.

Example of message 898:

1 SUBROUTI NE WB98
2 DATA A/ 2.0/
3 I F(A. CGE. 2.) THEN
4 1 1 =3
5 1 GOTO (10, 30, 40), |
6 1 10 ELSEI F(A. LT.2.) THEN
6: warn898.for: C898: The statenent |abels on elseif, else, or endif may not
produce the desired effect.
7 1 A=2.
8 1 30 ELSE
8: warn898.for: C898: The statenment |abels on elseif, else, or endif may not
produce the desired effect.
9 1 A=4.
10 1 40 ENDI F
10: warn898.for: C898: The statenent |abels on elseif, else, or endif may not
produce the desired effect.
11 END

296

PromulaFortran Compiler User's Manual

Comment: 899
M essage:
The subprogram [ident] is not an intrinsic function.

Example of message 899:

I'f Line# NI Source

1 SUBROUTI NE WB99

2 I NTRINSI C | NT, | FI X, | DI NT, XREAL, FLOAT, SNG_, DBLE, CMPLX, ECHAR
2: warn899.for: CB899: The subprogram XREAL is not an intrinsic function.
2: warn899.for: C899: The subprogram ECHAR is not an intrinsic function.

3 A=3. 1415

4 WRI TE(*, *) A

5 END
Warning: 900

M essage:
Animplied do must be used for the assumed size array [ident].

Example of message 900:

If Line# NI Source

SUBROUTI NE WD00(C, D)

REAL C(*), (10, *)

CALL E569A(C, D

WRI TE(2) (C(1),1=1,10), D

4: warn900.for: VW00: An inplied do nust be used for the assumed size array
D.

4: warn900.for: C870: The array D is being subscripted with |ess than 2
expr essi ons.

5 END

A WNBRF

Warning: 901
M essage:
Only thereal part of acomplex value is used in an arithmetic if.

Example of message 901:

If Line# NI Source

1 SUBROUTI NE WB01(C)
2 COMPLEX C
3 | F(C**2) 10, 20, 20

3: warn901.for: WD01l: Only the real part of a conplex value is used in an
arithmetic if.
4 20 RETURN
5 10 END

297

PromulaFortran Compiler User's Manual

Warning: 902
M essage:
The global symbol [ident] is being used to represent both a subprogram and a common area.

Example of message 902:

If Line# NI Source

1 SUBROUTI NE W02

2 COMMON VB02/ A, B, C
3 A=B+C

4 RETURN

5 END

5: warn902.for: VW02: The gl obal synbol W02 is being used to represent
both a subprogram and a conmon area

Warning: 903
M essage:

The equivalence element subscript value [number] for subscript [number] of array [ident] with minimum of [number] and
maximum of [number] is out of range.

Example of message 903:

If Line# N Source

1 PROGRAM V903
2 PARAMETER(NA = 10, | A = 11)
3 DI MENSI ON AA(NA, 6), BB(4)
4 EQUI VALENCE (BB, AA(1 A 2))

4: warn903.for: W03: The equival ence el ement subscript value 11 for
subscript 1 of array AAwith mnimmof 1 and nmaxi num
of 10 is out of range

5 BB(3) = 99

6 STOP

7 END
Warning: 904

M essage:

The formal argument list contains more than the [number] arguments used when this subprogram was previously referenced
or defined.

Example of message 904:

If Line# N Source

1 PROGRAM V904
2 CALL SUB904(A, B)

3 STOP

4 END

5 SUBROUTI NE SUB904(A, B, C, D)

5: warn904.for: WO04: The formal argunent list contains nmore than the 2
argument s used when this subprogram was previously
ref erenced or defined

6 RETURN

298

PromulaFortran Compiler User's Manual

END

9.2.2 Fatal Preprocessor Errors

Fatal preprocessor errors, occur when requested or needed files cannot be opened or when available memory has been
exhausted. When afatal error occurs, the preprocessor exits to the control program. No intermediate C files are produced.

File problems cannot be avoided, but are usually simple to correct. The preprocessor always gives the name of the file it is
trying to open when such a problem occurs.

The preprocessor is as conservative as possible in its memory utilization. Extremely large source files can be processed.
Typically, other FORTRAN processors have much tighter memory constraints. There are several command line options
which allow control of memory allocation for systems with limited memory. Refer to the chapter on using the compiler for
adiscussion of these options should the need arise.

The fatal errors have the same general form as the syntax messages, except that the identifying letter is an "F'. The
messages themselves are self-explanatory and are listed below:

Number M essage

501 Insufficient procedure storage for promotion operator.

502 Insufficient definition storage for main control table.

503 Insufficient symbol table storage.

504 Insufficient value storage for scalar data value.

505 Insufficient value storage for array values.

506 Insufficient definition storage for dummy table.

507 Insufficient definition storage for dimension control table.

508 Insufficient definition storage for common table.

509 Insufficient definition storage for prototype table.

510 Insufficient procedure storage for next opcode.

511 Insufficient procedure storage for opcode support word.

512 Insufficient procedure storage for opcode support byte.

513 Insufficient procedure storage for opcode parameters.

514 Insufficient value storage for integer constant.

515 Insufficient storage for parameter type list.

516 Insufficient user space for common size table.

517 Insufficient value storage for runtime data string.

518 Insufficient value storage for include following record.

519 Insufficient unresolved external symbol storage space.

520 Insufficient procedure storage for required quantity storage.

521 Include statement files nested more than 5 deep.

522 Statement contains more than \1 characters — use the QIn flag to increase this value
523 Constant string length exceeds 255 characters.

524 Length of scratch storage exceeded during namelist processing.

525 The DEMO license does not allow use of the include statement.

526 The PILOT license can only include files less than 1000 bytes long.

527 Insufficient value storage for character variable length specification.

528 Insufficient system memory to continue processing. The source code being processed must be shortened.
529 Insufficient value storage for alternate symbol display name.

530 Insufficient value storage for symbol reference information control table.
531 The include file storage of \1 bytesisinsufficient, use the QHn flag to increase it.

9.3 Runtime Error Messages

299

PromulaFortran Compiler User's Manual

Runtime error messages occur when an error occurs during the execution of programs formed using the PROMULA
FORTRAN compiler. These are contained within the runtime library and are fatal. Each message has a code and a short
description as follows:

Code Text of message Code Text of message
ELUN_EOF end of file encountered EWRS IFS bad format specification
EOPN_EOF end of file encountered EWRT_IFS bad format specification
ERBV_EOF end of file encountered EWVL_IFS bad format specification
ERTX_EOF end of file" ENXF_EFS bad of format control character
EWTX_EOF write beyond end of file ENXF BTF bad T format
ELUN_RDO writeto readonly file ENXF_BUS bad B business format string
EINT_NAF no active file structure ENXF_BBF bad BN,Z format
ELUN_NAF no active file structure EOPN_LNR unit number out of range
EINT_TMF too many files open E XF_DEL mising terminating delimeter
ELUN_TMF too many files open ENXF_HOL bad Hollerith string
ENAM_TMF too many files open ERCK_BUF internal buffer exceeded
ESIO TMF too many files open ERDX_MLP missing left parenthesis
ECLO_PCF physical closefailure ERDX_COM missing comma
EOPN_POF physical open failed ERDX_MRP missing right parenthesis
ECLO_POF physical open failure ERDZ_MLP missing left parenthesis
EBCK_FRT at front of file ERDZ_COM missing comma
EBCK_DIR direct accessfile ERDZ_MRP missing right parenthesis
ELUN_PWF physical write failed ERNL_MNI missing namelist identifier
ERWV_PWF physical write failure ERNL_MVI missing variable identifier
EWBV_PWF physical write error ERNL_UVI undefined variable identifier
EWEF PWF physical write failure ERNL_SSV subscripted scalar variable
ERDB_IFS invalid format specification ERNL_NNS non-numeric subscripts
ERDD_IFS invalid format specification ERNL_TMS too many subscripts
ERDF_IFS invalid format specification ERNL_EQL missing equals sign
ERDI_IFS invalid format specification ERNL_BSI bad string input
ERDL_IFS invalid format specification ERNL_MLP complex missing left pren
ERDS IFS invalid format specification ERNL_COM complex missing comma
ERDT_IFS invalid format specification ERNL_MRP complex missing right pren
EWRB_IFS bad format specification ESTD_NNC non-numeric character in field
EOPN_BFZ setting buffer size failed

300

	1. INTRODUCTION
	1.1 User Support
	1.2 The Design of the Compiler
	1.3 Notation Used

	2. USING THE COMPILER
	2.1 How PF Works
	2.2 File Names
	2.3 Summary of Options
	2.4 Echo Control Options
	2.4.1 Warnings, Notes, and Comments
	2.4.2 Monitoring Internal Operations
	2.4.3 Annotated Listing of Source Code
	2.4.4 Symbol Listing and Cross Reference Table
	2.4.5 Controlling Page Size

	2.5 FORTRAN Dialect Convention Flags
	2.5.1 The FORTRAN Integer Type
	2.5.2 The Treatment of Short Integer Arithmetic
	2.5.3 FORTRAN Source Format Used
	2.5.4 Default Local Variable Storage Type
	2.5.5 The Doloop trip count assumption
	2.5.6 Specifying Unit Numbers
	2.5.7 Selecting Dialect Conventions

	2.6 Storage Quantity Values
	2.7 Miscellaneous Options
	2.7.1 The Compile Only Option
	2.7.2 The Debugging Flag
	2.7.3 C Compiler Include File Pathname
	2.7.4 Library File Name or Pathname for Linker
	2.7.5 Name of executable
	2.7.6 Location of FORTRAN Files To Be Included

	2.8 Prototype Files
	2.8.1 Formation of External Symbols
	2.8.2 Function Prototype Syntax
	2.8.3 Value Parameters
	2.8.4 External Name Clash
	2.8.5 Multiple Forms
	2.8.6 Global Symbols and Prototypes
	2.8.7 Renaming Identifiers Only

	3. LANGUAGE ELEMENTS
	3.1 FORTRAN Statements
	3.1.1 Standard Fixed-Format Lines
	3.1.2 Tab Format Lines
	3.1.3 Normal Free-Format Lines
	3.1.4 Continuation Free-Format Lines

	3.2 Symbolic Names
	3.3 Constants
	3.3.1 Integer Constant
	3.3.2 Real Constant
	3.3.3 Double Precision Constant
	3.3.4 Complex Constant
	3.3.5 Double Complex Constant
	3.3.6 Logical Constant
	3.3.7 Character Constant
	3.3.8 Hollerith Constant
	3.3.9 Exact Representation Constants

	3.4 Variables
	3.4.1 Integer Variable
	3.4.2 Short Integer Variable
	3.4.3 Byte Variable
	3.4.4 Real Variable
	3.4.5 Double Precision Variable
	3.4.6 Complex Variable
	3.4.7 Double Complex Variable
	3.4.8 Logical Variable
	3.4.9 Short Logical Variable
	3.4.10 Logical Byte Variable
	3.4.11 Character Variable

	3.5 Arrays
	3.5.1 Array Storage
	3.5.2 Array References

	3.6 Character Substrings
	3.6.1 Substring References
	3.6.2 Substrings and Arrays

	3.7 Statement Order
	3.8 User-Written Program Units
	3.8.1 Program Unit and Procedure Communication
	3.8.2 Adjustable Dimensions
	3.8.3 Using COMMON Blocks

	4. EXPRESSIONS, LVALUES, ASSIGNMENTS, AND STATEMENT FUNCTIONS
	4.1 Expressions
	4.1.1 Arithmetic Expression
	4.1.2 Character Expression
	4.1.3 Logical Expression
	4.1.4 Relational Expression
	4.1.5 General Rules for Expressions

	4.2 LVALUES
	4.3 Assignment Statements
	4.3.1 Arithmetic Assignment
	4.3.2 Character Assignment
	4.3.3 Logical Assignment

	4.4 Statement Functions

	5. STATEMENTS SUPPORTED
	5.1 ASSIGN Statement
	5.2 BACKSPACE Statement
	5.3 BLOCK DATA Statement
	5.4 BYTE Statement
	5.5 CALL Statement
	5.6 CLOSE Statement
	5.7 CHARACTER Statement
	5.8 COMMON Statement
	5.9 COMPLEX Statement
	5.10 CONTINUE Statement
	5.11 DATA Statement
	5.11.1 Implied DO List Use in DATA Statement
	5.11.2 Character Data Initialization

	5.12 DECODE Statement
	5.13 The DIMENSION Statement
	5.13.1 Adjustable Dimensions

	5.14 DO Statement
	5.14.1. Active and Inactive DO Loops
	5.14.2 Nested DO Loops

	5.15 DOUBLE COMPLEX Statement
	5.16 DOUBLE PRECISION Statement
	5.17 DO WHILE Statement
	5.18 ELSE Statement
	5.19 ENCODE Statement
	5.20 END Statement
	5.21 END DO Statement
	5.22 The ENDFILE Statement
	5.23 The END IF Statement
	5.24 ENTRY Statement
	5.25 The EQUIVALENCE Statement
	5.26 EXTERNAL Statement
	5.27 FORMAT Statement
	5.27.1 Character FORMAT Specifications
	5.27.2 Noncharacter FORMAT Specifications
	5.27.3 Edit Descriptors
	5.27.4 Input/Output Conversions
	5.27.5 Field Separators
	5.27.6 Repeatable and Nonrepeatable Edit Descriptors
	5.27.7 A Descriptor
	5.27.8 Single and Double Quote Descriptors
	5.27.9 BN and BZ Blank Interpretation
	5.27.10 Carriage Control Character
	5.27.11 D Descriptor
	5.27.12 E Descriptor
	5.27.13 End-of-Record Slash
	5.27.14 F Descriptor
	5.27.15 G Descriptor
	5.27.16 H Descriptor
	5.27.17 I Descriptor
	5.27.18 L Descriptor
	5.27.19 O Descriptor
	5.27.20 P Descriptor
	5.27.21 S, SP, SS Plus Sign Control
	5.27.22 T, TL, TR Descriptors
	5.27.23 Termination of Format Control
	5.27.24 X Descriptor
	5.27.25 Z Descriptor
	5.27.26 Repetition Factors
	5.27.27 Execution Time FORMAT Specification

	5.28 FUNCTION Statement
	5.29 GENERIC Statement
	5.30 GOTO Statement
	5.30.1 Unconditional GOTO
	5.30.2 Computed GOTO Statement
	5.30.3 Assigned GOTO Statement

	5.31 IF Statement
	5.31.1 Arithmetic IF Statement
	5.31.2 Logical IF Statement
	5.31.3 Block IF Statement

	5.32 IMPLICIT Statement
	5.33 INCLUDE Statement
	5.34 INTEGER Statement
	5.35 INQUIRE Statement
	5.36 INTRINSIC Statement
	5.37 LOGICAL Statement
	5.38 NAMELIST Statement
	5.38.1 NAMELIST READ Statement
	5.38.2 NAMELIST WRITE, PRINT, PUNCH Statements
	5.38.3 Arrays in NAMELIST

	5.39 OPEN Statement
	5.39.1 Direct Access Files

	5.40 PARAMETER Statement
	5.41 PAUSE Statement
	5.42 PRINT Statement
	5.43 PROGRAM Statement
	5.44 PUNCH Statement
	5.45 READ Statement
	5.46 REAL Statement
	5.47 RETURN Statement
	5.48 RECORD Statement
	5.49 REWIND Statement
	5.50 SAVE Statement
	5.51 STOP Statement
	5.52 STRUCTURE Statement
	5.53 SUBROUTINE Statement
	5.54 TYPE Statement
	5.55 WRITE Statement

	6. FORTRAN INTRINSIC FUNCTIONS
	6.1 ABS: Absolute Value
	6.2 ACOS: Arccosine
	6.3 AIMAG: Imaginary Part
	6.4 AINT: Truncation
	6.5 ALOG10: Logarithm Base 10
	6.6 ALOG: Natural Logarithm
	6.7 AMAX0: Maximum Value
	6.8 AMAX1: Maximum Value
	6.9 AMIN0: Minimum Value
	6.10 AMIN1: Minimum Value
	6.11 AMOD: Remaindering
	6.12 AND: Logical And
	6.13 ANINT: Nearest Whole Number
	6.14 ASIN: Arcsine
	6.15 ATAN2: Arctangent of Quotient
	6.16 ATAN: Arctangent
	6.17 CABS: Absolute Value
	6.18 CCOS: Cosine
	6.19 CDABS: Absolute Value
	6.20 CDCOS: Cosine
	6.21 CDEXP: Exponential
	6.22 CDLOG10: Logarithm Base 10
	6.23 CDLOG: Natural Logarithm
	6.24 CDSIN: Sine
	6.25 CDSQRT: Square Root
	6.26 CEXP: Exponential
	6.27 CHAR: Character Value
	6.28 CLOG10: Logarithm Base 10
	6.29 CLOG: Natural Logarithm
	6.30 CMPLX: Complex Value
	6.31 CONJG: Conjugate
	6.32 COSH: Hyperbolic Cosine
	6.33 COS: Cosine
	6.34 CSIN: Sine
	6.35 CSQRT: Square Root
	6.36 DABS: Absolute Value
	6.37 DACOS: Arccosine
	6.38 DASIN: Arcsine
	6.39 DATE: Current Date
	6.40 DATAN2: Arctangent of Quotient
	6.41 DATAN: Arctangent
	6.42 DBLE: Double Precision Value
	6.43 DCMPLX: Double Complex Value
	6.44 DCONJG: Conjugate
	6.45 DCOSH: Hyperbolic Cosine
	6.46 DCOS: Cosine
	6.47 DDIM: Positive Difference
	6.48 DEXP: Exponential
	6.49 DIM: Positive Difference
	6.50 DIMAG: Imaginary Part
	6.51 DINT: Truncation
	6.52 DLOG10: Logarithm Base 10
	6.53 DLOG: Natural Logarithm
	6.54 DMAX1: Maximum Value
	6.55 DMIN1: Minimum Value
	6.56 DMOD: Remainder
	6.57 DNINT: Nearest Integer
	6.58 DPROD: Product
	6.59 DSIGN: Transfer of Sign
	6.60.c2.DSINH: Hyperbolic Sine
	6.61 DSIN: Sine
	6.62 DSQRT: Square Root
	6.63 DTANH: Hyperbolic Tangent
	6.64 DTAN: Tangent
	6.65 EXIT: Stop Program Execution
	6.66 EXP: Exponential
	6.67 FLOAT: Real Value
	6.68 GETCL: Get Command Line
	6.69 IABS: Absolute Value
	6.70 IAND: Bitwise And
	6.71 ICHAR: Integer Value of Character
	6.72 IDIM: Positive Difference
	6.73 IDINT: Integer Value
	6.74 IDNINT: Nearest Integer
	6.75 IFIX: Integer Value
	6.76 INDEX: Location of Substring
	6.77 INT2: Integer Value
	6.78 INT4: Integer Value
	6.79 INT: Integer Value
	6.80 ISIGN: Transfer of Sign
	6.81 I2ABS: Absolute Value
	6.82 I2DIM: Positive Difference
	6.83 I2MAX0: Maximum Value
	6.84 I2MIN0: Minimum Value
	6.85 I2MOD: Remainder
	6.86 I2NINT: Nearest Integer
	6.87 I2SIGN: Transfer of Sign
	6.88 LEN: Number of Characters
	6.89 LGE: Lexically Greater or Equal
	6.90 LGT: Lexically Greater
	6.91 LLE: Lexically Less or Equal
	6.92 LLT: Lexically Less
	6.93 LOG10: Logarithm Base 10
	6.94 LOG: Natural Logarithm
	6.95 MAX0: Maximum Value
	6.96 MAX1: Maximum Value
	6.97 MAX: Maximum Value
	6.98 MIN0: Minimum Value
	6.99 MIN1: Minimum Value
	6.100 MIN: Minimum Value
	6.101 MOD: Remainder
	6.102 NINT: Nearest Integer
	6.103 REAL: Real Value or Part
	6.104 SIGN: Transfer of Sign
	6.105 SINH: Hyperbolic Sine
	6.106 SIN: Sine
	6.107 SNGL: Real Value
	6.108 SQRT: Square Root
	6.109 TANH: Hyperbolic Tangent
	6.110 TAN: Tangent
	6.111 TIME: Current Time

	7. CONTROLLING RUNTIME BEHAVIOR
	7.1 Interpreting Carriage Control to Output
	7.2 Checking Substring Lengths for Overflow
	7.3 Executing an Explicit PAUSE
	7.4 Using VAX FORTRAN Runtime Conventions
	7.5 Assigning a Standard Input Unit
	7.6 Assigning a Standard Output Unit
	7.7 Assigning a Standard Terminal Unit
	7.8 Specifying a Virtual Filename
	7.9 Specifying a Virtual File Size
	7.10 Specifying a Virtual Sheet Count

	8. THE PROMULA INTERFACE
	8.1 Transforming a FORTRAN Program with PROMULA
	8.2 EXPO, an Exposure Analysis Model
	8.3 The Initial Compilation
	8.4 A PROMULA Datafile Description
	8.5 The Virtual Compilation
	8.6 Syntax of the Globals File
	8.7 Using EXPO with PROMULA

	9.ERROR MESSAGES
	9.1 Control Program Errors
	9.2 FORTRAN Preprocessor Errors
	9.2.1 Syntax Errors, Warnings, Comments, and Notes
	9.2.2 Fatal Preprocessor Errors

	9.3 Runtime Error Messages

