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BD BOX is a scalable Brownian dynamics package for UNIX/LINUX platforms. BD BOX is written in C and

uses modern computer architectures and technologies:

• MPI technology for distributed-memory architectures

• OpenMP technology for shared-memory systems

• NVIDIA CUDA framework for GPGPU

• SSE vectorization for CPU

Within the BD BOX framework macromolecules can be represented either with flexible bead models (the bd flex

module of the BD BOX package) or as rigid bodies (the bd rigid module of the BD BOX package).

When flexible models are employed, each molecule consists of a various number of spherical subunits (beads)

connected with deformable bonds [1, 2]. Bonded interactions that result in deformations of planar and dihedral

angles can be also modeled. Direct, nonbonded interactions between molecules are evaluated using pairwise

functions describing screened electrostatics in dielectric media [3] with effective charges assigned to spherical

subunits [4] and Lennard-Jones potential types. The far-field hydrodynamic effects are modeled using the config-

uration dependent Rotne-Prager-Yamakawa mobility tensor [5, 6, 7] or its Ewald-summed form in case of periodic

systems [8, 9]. Equations of motions are propagated using either the Ermak-McCammon [10] scheme or the

predictor-corrector IG-T algorithm by Iniesta and Garcia de la Torre [11]. Hydrodynamically correlated random

displacements are generated either via the Cholesky factorization of the configuration-dependent mobility tensor

matrix [10], using the TEA-HI approach proposed by Geyer and Winter [12, 13], or with an approach described

by Ando and Skolnick [14] that utilizes Krylov subspaces. With BD BOX one can simulate flexible molecules in

homogeneous flows [2] or external electric fields (direct, alternate or rotating fields).

With BD BOX one can also simulate rigid bodies that are described with fully anisotropic diffusion tensors

[15]. Molecules, treated as rigid bodies can be described either using a coarse-grained representation or with

fully atomistic details. In the latter case, intermolecular interactions may include electrostatic, hydrophobic and

Lennard-Jones potentials. External electric fields can also be applied to the simulated system. Hydrodynamic

interactions between molecules modeled within the rigid-body framework are currently not supported.

BD BOX simulations can be performed without or with boundaries; in the latter case the containing or

periodic boundary conditions can be used. With BD BOX one can effectively simulate either single molecules or
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multimolecular systems composed of large numbers of different species. For efficient simulations of dense systems

we implemented algorithms preventing the overlapping of diffusing molecules [16, 17, 18].

This manual describes the usage of the bd rigid module of the BD BOX package. The bd flex module for

BD simulations of flexible molecular models, is described separately.
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1 Requirements

The BD BOX package is distributed as source code. A UNIX/LINUX make tool is needed to build a working

binary from the source code (see below). CPU versions of BD BOX binaries can be run either in a serial mode or in

parallel, either on shared-memory machines using OpenMP and MPI libraries or on architectures with distributed

memory using the MPI library. GPU versions of BD BOX binaries require the CUDA Toolkit (obtainable freely at

http://developer.nvidia.com). Both CPU and GPU versions can be compiled with the support for either single

or double-precision floating-point arithmetic.

For the generation of random Gaussian numbers, BD BOX uses functions implemented in the GNU Scientific

Library (GSL) (http://www.gnu.org/software/gsl) that are based on the Mersenne Twister algorithm of Mat-

sumoto and Nishimura [19]. We also implemented a function that uses the standard system routine drand48()

and the polar Box-Muller transformation [20].

A generic, sequential algorithm implemented in BD BOX for the Cholesky factorization, follows the choldc()

subroutine described in [21]. However, it is better to compile BD BOX with the implemented support for the

LAPACK (or SCALAPACK) library (http://www.netlib.org/lapack) that offers efficient, highly memory-optimized

routines for the Cholesky factorization. LAPACK performs the vast amount of operations by exploiting BLAS.

Machine-specific implementations of BLAS are available and such implementations can be crucial for the per-

formance of BD BOX. The Cholesky factorization on GPU relays on the implemented support for the MAGMA

dense linear algebra library (http://icl.cs.utk.edu/magma), which provides functionality of LAPACK.

2 Installation

The configure shell script, written by GNU Autoconf is used to build the BD BOX binaries. After downloading

and unpacking the compressed BD BOX archive:

gzip -d bd box-ver.tar.gz

tar -xvf bd box-ver.tar

the user should execute the configure script from within the BD BOX directory:
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cd ./bd box-ver

./configure

configure takes instructions from Makefile.in and builds Makefile and some other files that work on the user’s

system. We provide the INSTALL file and some other files (consult the README file in the bd box-ver direc-

tory) with flags and options that can be passed to the configure script to tune the compilation parameters on a

particular system. Next, the:

make

command followed (optionally) by the:

make install

should be executed. As a result of the compilation process, two binaries: bd flex and bd rigid should be created,

either within the bd box-ver/src directory, or in the directory passed by the user to the configure script (with the

–prefix option). It is possible to prevent compilation of either one of binaries using –disable–flex or –disable-rigid

flags.

Tools distributed with the BD BOX package should be compiled separately. Their sources along with appro-

priate Makefiles ale located in bd box-ver/tools/tool name directories. Each tool can be compiled using the:

make all

command.
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Units

charge: e

length: Å

time: ps

temperature: K

energy: kcal
mol
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3 Rigid-body Brownian dynamics

3.1 Molecular Models

Within the BD BOX rigid-body framework molecules can be described either using a coarse-grained representation

or with fully atomistic details. In both cases molecules are described as conglomerates of spherical subunits (i.e.

atoms). Each kind of interaction that the molecule is involved in is assigned its own representation - for example

for a given molecule a set of charged spheres can be used to evaluate electrostatic interactions and a different

set (considering both positions and radii of spheres) can be used to evaluate excluded volume interactions with

other molecules in the studied system (consult Figure 1 for the overall concept).

Figure 1: Exemplary molecular models that are tractable within the BD BOX rigid-body framework.
Models consist of spheres with radii defining excluded volume interactions (left). Point charges can be
positioned inside molecules (their positions do not necessarily coincide with centers of spheres used to
define excluded volume interactions (left)). Additionally, each charge can be assigned a non-zero radius
(center). Charge radii are used to define the dielectric cavity occupied by the molecule. Positions and
radii of spheres in the dielectric representation and in the excluded volume representation can be the same
as for example in case of atomistically detailed molecular models - a molecule is then represented by a set
of van der Waals spheres (atoms) with central point charges (right).
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3.2 Rigid-body Diffusion Tensor Matrix

In dilute solutions, diffusional properties of molecules are determined by their size and shape, as well as by the

temperature and viscosity of the solvent. The information required to characterize translational and rotational

movements of quasi-rigid Brownian particles in dilute solutions is contained in their diffusion tensors. Single-

particle diffusion tensor, DDD, is represented by a symmetric, 6× 6 matrix that consists of four 3× 3 blocks. These

blocks are related to translational (tt) and rotational diffusivities (rr) and their couplings (rt,tr) [15]:

DDD =

 DDDtt DDDtr

DDDrt DDDrr

 (1)

Diffusion tensors of molecules can be obtained theoretically from rigid-body hydrodynamic calculations performed

for detailed molecular models [22]. For a spherical particle the above matrix takes a diagonal form (isotropic dif-

fusion) in which identical elements Dtt
ii correspond to the translational diffusion coefficient of a sphere. Similarly,

identical elements Drr
ii give its rotational diffusion coefficient. For an arbitrarily-shaped object its average trans-

lational and rotational diffusion coefficients are defined, respectively, as: Dt = 1
3Tr

(
DDDtt
)

and Dr = 1
3Tr (DDDrr),

where the diffusion tensor (Equation 1) is evaluated in the molecule-fixed coordinate system with the origin lo-

cated at the particle’s diffusion center, and whose axes coincide with the principal axes of the rotational diffusion

tensor.

3.3 Equations of Motions

The propagation scheme for an arbitrarily-shaped rigid body (that is described with a fully-anisotropic diffusion

tensor) can be written in the molecule-fixed frame (again, by molecule-fixed frame we mean that the origin of

the frame is assumed to be located at the diffusion center of the molecule and its axes coincide with the principal

axes of diffusional rotations) as [10, 15]:

∆~x(∆t) =
∆t

kBT
DDD ~M + ~R(∆t) (2)

where:

DDD - the precomputed (and constant in the simulation) 6 × 6 diffusion tensor of the molecule evaluated in the

molecule-fixed coordinate system with the origin located at the molecule’s diffusion center and axes coinciding
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with the principal axes of particle’s rotations (so that the submatrix DDDrr in Equation 1 is diagonal)

∆t - the time step

~x - the vector describing the position of the diffusion center (~r) and orientation (~φ) of the molecule, ~x = (~r, ~φ)T

~M - the generalized force vector, resulting, for example, from interactions with other molecules or external

fields and having two components: the total force (~F ) and the total torque (~T ) referred to the molecule’s diffu-

sion center, ~M = (~F , ~T )T .

~R(∆t) - random displacement vector arising from the Brownian noise, with zero mean, and the variance-covariance

given with:

< ~R(∆t)~R(∆t) >= 2DDD∆t (3)

Random displacements of the particle can be computed via Cholesky decomposition of its diffusion tensor [10].

Brownian dynamics trajectory of an object in the laboratory frame is obtained by applying at each BD simulation

step properly defined transformations - translations and rotations [15] - between the molecule-fixed and the

laboratory coordinate frame.

3.4 Rotations

The following matrix is utilized to perform rotational motions [23]:

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33


where:
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M11 =
(Ω2

y + Ω2
z)cosΩ + Ω2

x

Ω2

M12 =
ΩxΩy

Ω2
(1− cosΩ)− Ωz

Ω
sinΩ

M13 =
ΩxΩz

Ω2
(1− cosΩ) +

Ωy

Ω
sinΩ

M21 =
ΩxΩy

Ω2
(1− cosΩ) +

Ωz

Ω
sinΩ

M22 =
(Ω2

x + Ω2
z)cosΩ + Ω2

y

Ω2

M23 =
ΩyΩz

Ω2
(1− cosΩ)− Ωx

Ω
sinΩ

M31 =
ΩxΩz

Ω2
(1− cosΩ)− Ωy

Ω
sinΩ

M32 =
ΩyΩz

Ω2
(1− cosΩ) +

Ωx

Ω
sinΩ

M33 =
(Ω2

x + Ω2
y)cosΩ + Ω2

z

Ω2

where the vector:

~Ω = {Ωx,Ωy,Ωz}

describes rotations around axes x, y, z of the molecule-fixed coordinate system, and:

Ω =
√

Ω2
x + Ω2

y + Ω2
z

4 Intermolecular Interactions

Forces and torques acting on molecules ( ~M in Equation 2) are evaluated analytically based on derivatives of

different potential functions that are described below. During simulations, intermolecular forces are evaluated

within atom-based, spherical cutoffs, defined by the user. Minimum image convention is utilized in case of

periodic systems.
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4.1 Excluded Volume Interactions

Excluded volume interactions are modeled using pairwise terms of form:

Eexcij = α
√
εLJi εLJj

(
B

(
σi + σj
rij

)n
−
(
σi + σj
rij

)m)
(4)

where:

n and m - non-negative integers

i and j - indexes that run over atoms from different molecules

σ - denotes an atomic radius

εLJ - the interaction well depth assigned to a given atom

α and B - user-defined constants

rij - the distance between the two interacting atoms

values of n/m can be set to: 12/6, 12/0, 8/6, 8/0.

4.2 Hydrophobic Interactions

Hydrophobic (i.e. nonpolar interactions) can be evaluated using one of the two solvent accessible surface based

approaches implemented in BD BOX: either the FACTS model [24] or the model (that we will further refer to

using the therm primitive) similar in the spirit to the approach described by Gabdoulline and Wade [25].

4.2.1 FACTS Approach

In the FACTS model, the nonpolar contribution to the free energy of solvation of a molecule is modeled in relation

to the amount of its surface exposed to the solvent (SASA) [24]:

Enonpolar = µ
N∑
i=1

SASAi (5)
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where summation runs over all (N) atoms of a molecule (or molecules), µ denotes the empirical surface tension

parameter [26], and atomic SASAs are given with [24]:

SASAi = co +
c1

1 + e−c2(Di−c3)
(6)

Di =
N∑
j 6=i

VjΘij + d1|
∑N

j 6=i
Vj
rij

Θij x̂ij

1 +
∑N

j 6=i
Vj
rij

Θij

|+ d2

N∑
j 6=i

VjΘij |
∑N

j 6=i
Vj
rij

Θij x̂ij

1 +
∑N

j 6=i
Vj
rij

Θij

| (7)

In the above equations Vj denotes the van der Waals volume of the jth atom, rij is the distance between atoms

i and j, x̂ij is a unit vector pointing from the ith atom to the neighboring jth atom and Θij is a sigmoidal

weighting function:

Θij =


(

1−
(
rij
Ri

)2)2

, if rij ≤ Ri

0, if rij > Ri

(8)

where Ri is a predefined radius of a sphere (i.e. cutoff) enclosing the ith atom.

Parameters co, c1, c2, c3, d1 and d2 that are derived by fitting to exact values of SASA [24] are defined

in the PARAM22 CHARMM parameter set [27]. For all atoms values of Ris are similar following the original

parametrization of the FACTS model [24].

4.2.2 Primitive Approach

Each atom of a given molecule is assigned a constant SASA value computed in the absence of other molecules,

SASAoi . The change in the SASA of a particular surface atom (i) of one molecule due to the proximity of surface

atoms (j) of other molecules, SASAi, is computed as:

SASAi = φSASAoi
∑
j

fij(rij) (9)

where

fij(rij) =
b− (rij − σj)

b− a
for a < rij − σj < b (10)

fij(rij) = 1 for rij − σj < a (11)
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fij(rij) = 0 for rij − σj > b (12)

and φ is a user defined parameter, and σj is the van der Waals radius of the ith atom.

Parameters a and b are also user defined (see Figure 2). Energy is computed as:

Figure 2: Performance of the primitive approach. Total values of solvent accessible surfaces calculated
for 1500 different relative configurations of two small proteins, with φ = 0.5, a = 1.3Å, and b = 6.4Å.
All-atom protein models were used in calculations with atomic radii taken from the PARAM22 CHARMM
parameter set [27]. Exact SASA values were calculated using APBS [28].

Enonpolar = µ
N∑
i=1

(SASAoi − SASAi) (13)
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4.3 Electrostatic Interactions

4.3.1 Screened Coulombic Interactions

The energy of the electrostatic interaction (screened by dissolved ions) between two charges qi and qj that belong

to different molecules is computed as:

ECoulombicij = γ
qiqj
ε

e−κrij

rij
(14)

where:

κ - the inverse of the Debye length

rij - the distance between the two charges

γ - the unit conversion factor (an user-defined parameter)

ε - the dielectric constant of the solvent.

4.3.2 Polarization terms

Polarization (desolvation) terms are evaluated between the charges of one molecule and the dielectric cavity of

another molecule. Dielectric body of a molecule is treated as a conglomerate of spheres (i.e. atoms) [29]. Energy

of the interaction between the ith charge (qi) of one molecule with the jth dielectric sphere (radius σj) of another

molecule is computed as [30]:

Ecavityij = γβ
ε− εp

ε(2ε+ εp)

(1 + κrij)
2

r4ij
exp (−2κrij)(σj)

3(qi)
2 (15)

where:

γ - the unit conversion factor (an input parameter)

β - the user-defined (an input parameter) constant that depends on ionic strength - it also takes into account

the fact that atoms in the molecule overlap

ε - the dielectric constant of the solvent

εp - the dielectric constant of a molecule

rij - the distance between the ith charge of one molecule and jth atom of another molecule

κ - the inverse of the Debye length.
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5 External Fields

5.1 Bounding Sphere

A spherical surface, impenetrable for molecules, that encloses simulated system can be included in bd rigid

simulations. The influence of such a containing sphere on the studied system is modeled by applying a central

force of form:

~F = − A

(Rsphere − r)n
êr (16)

where:

Rsphere - the radius of a spherical surface

n - a non-negative integer

A - the amplitude of the force

r - the distance between a diffusion center of a particular molecule and the system’s center of geometry

The above force is applied to each of the studied molecules outside a predefined cutoff.

5.2 Electric Field

It is possible to simulate with bd rigid the interactions of charged molecules with external electric fields:

DC – direct current field

~E = EoêE (17)

AC – alternate current field

~E = Eo cos (ωt)êE (18)

RF – rotate field

~E = Eo(cos (ωt), sin (ωt), 0)êE (19)

where êE = êx or êE = êy or êE = êz, Eo is the magnitude of the external field and ω its frequency. Except for

the rotate field, all other fields act along the space fixed direction.
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6 Overlaps

The presence of the Gaussian random displacement vector in the BD integration scheme (Equation 2) may lead

to nonphysical overlaps between molecules. Overlaps occur when the distance between two atoms that belong to

different molecules is smaller than the sum of excluded volume radii of these atoms. bd rigid can check whether

a particular simulation step leads to an overlap. Next, positions of molecules are corrected to remove all cases of

overlaps. This can be done in one of the four ways.

One option is that the current step of the simulation is rejected, original positions of all molecules are restored

and a new step is attempted with a different random vector, until there are no cases of overlaps.

The second option is similar to the first, however, each of the subsequent attempts is made with a smaller

time step. After successful removal of all overlaps, the time step is restored to its initial value.

As a third option, we also implemented an iterative procedure that removes overlaps between atoms via

translations and rotations around diffusion centers of colliding molecules (∆~xcorr) resulting from pseudo-forces

acting along the line connecting centers of overlapping atoms ( ~M corr):

∆~xcorr(∆t) = ξDDD ~M corr (20)

where:

ξ - the scaling factor

DDD - the diffusion tensor.

Each pair of overlapping atoms is treated separately. Translations and rotations of molecules are performed until

there are no overlaps in the system.

The fourth option is similar in the spirit to the third one but overlaps between two different molecules are

evaluated simultaneously and all pairs of overlapping atoms from a given molecule pair are considered in order

to determine the directions of correcting forces.

7 Running Simulations with bd rigid

Various input files are needed to perform BD simulations with the bd rigid module of the BD BOX package

(Figure 3).
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Figure 3: Schematics of the BD BOX bd rigid module

Structure files (*.mstr) contain definitions of molecular models that are used to represent different types of

molecules to be simulated. A separate *.mstr file is required for each kind of a molecule that is present in the

simulated system (for example, when monodisperse system is to be simulated, a single structure file will suffice);

the number of molecules of each kind in the system is specified by the user in the *.prm file.

Diffusion tensor files (*.dt) contain definition of diffusion tensors of simulated molecules. A separate *.dt file

is required for each kind of a molecule that is present in the simulated system.

Simulation parameters are stored in the text control file (*.prm) (Figure 3). These include for example the

type of the propagation algorithm and its time step, temperature, ionic strength, definition of boundaries, values

of cutoffs for intermolecular interactions, specifications of the output (names and types of files, write frequency),

path to the input structure and diffusion tensor files, numbers of molecules of different types in the simulated

system, and many others.
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While molecules are usually placed by the program at random positions and with random orientations inside

the primary simulation cell, it is also possible to define initial positions and orientations of all objects in the

simulated system using a text-formatted file (Figure 3).

The output from bd rigid consists of a few files (Figure 3).

The output file (*.out/*.err) contains the track of the BD run, error messages (if any) and debugging

information.

Another file, in the PQR format (*.pqr), contains the definition of the molecular system under study - it can

be used to verify the starting configuration of molecules and also (together with a trajectory file) to visualize

results.

The trajectory file, either in the binary DCD or binary MOLB format (*.dcd/*.molb) describes the time-

dependent behavior of the studied system. MOLB trajectory contains only translations and rotations that are

needed to perform transformations from the molecule-fixed to the laboratory frame, while DCD files contain

Cartesian coordinates of atoms of all molecules in the simulated system in the laboratory frame.

The energy file (*.enr) registers different contributions to the total energy of the system during a simulation.

The binary restart file (*.rst) contains all the information needed to continue an interrupted BD run. All files are

periodically updated during a BD run with frequencies defined by the user.

Having prepared all the necessary files, the user may run the simulation with the command:

bd rigid file.prm

It is also possible not to use the control file at all or to override all options specified in the control file by

using command line parameters that correspond to appropriate control file keywords:

bd rigid −−parameter=value

or

bd rigid file.prm −−parameter=value
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7.1 Structure File

Structure file contains representations of a molecule that are used in evaluation of intermolecular interactions. In

general, the structure file adheres to the following format:

TAG list of properties

Currently, two tags are recognized: Q and LJ. Lines that begin with the tag Q define dielectric/electrostatic

model of a molecule. Molecule is composed of dielectric spheres with central discrete charges. Lines that begin

with the tag Q should be formatted as follows:

Q x1 y1 z1 charge1 radius1

................

Q xi yi zi chargei radiusi

................

Q xN yN zN chargeN radiusN

where x, y, z denote Cartesian coordinates of a dielectric sphere in the molecular frame, charge denotes its

central charge and radius denotes its radius. Molecular representation specified with Q tags is used in evaluation

of electrostatic interactions (Coulombic and desolvation terms, equations 14 and 15).

Molecular representation specified with LJ tags is used in evaluation of collisions, excluded volume and hy-

drophobic interactions. Lines that begin with the LJ tag should be formatted as follows:

LJ x1 y1 z1 radius1 ε1 d11 d21 c01 c11 c21 c31 µ1 SASAo1

...................

LJ xj yj zj radiusj εj d1j d2j c0j c1j c2j c3j µj SASAoj

...................

LJ xM yM zM radiusM εM d1M d2M c0M c1M c2M c3M µM SASAoM
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where x, y, z denote Cartesian coordinates of spheres in the molecular frame, radius denotes radius used in

evaluations of excluded volume and hydrophobic interactions, ε is the well depth of excluded volume interactions,

parameters d and c are for the FACTS model (equations 6, 7), SASAo denotes the solvent accessible surface

area of a given sphere in the model (Equation 9) and µ (Equations 5, 13) denotes the surface tension parameter.

Molecular representations given with tags Q and LJ can differ both in the number of spheres (atoms) and

their positions.

We supply a tool (orient mstr, see below) that can be used to transform (rotate and translate) molecular coor-

dinates (given either as a *.mstr, *.pdb or *.pqr files to the molecular frame that coincides with the main axes

of diffusional rotations with the origin located at the diffusion center of a molecule.

7.2 Tensor File

Diffusion tensor files (*.dt) (a separate file is needed for each type of a molecule that is present in the simulated

system) contain elements of the diffusion tensor matrix in the plain text format. Elements of DDD are given in *.dt

files in the following order:

Dtt
11 D

tt
12 D

tt
13 Dtr

11 D
tr
12 D

tr
13

Dtt
21 D

tt
22 D

tt
23 Dtr

21 D
tr
22 D

tr
23

Dtt
31 D

tt
32 D

tt
33 Dtr

31 D
tr
32 D

tr
33

Drt
11 D

rt
12 D

rt
13 Drr

11 D
rr
12 D

rr
13

Drt
21 D

rt
22 D

rt
23 Drr

21 D
rr
22 D

rr
23

Drt
31 D

rt
32 D

rt
33 Drr

31 D
rr
32 D

rr
33

where units of Dtt
ij are Å2 · ps−1, units of D

tr/rt
ij are Å·ps−1 and units of Drr

ij are ps−1. Elements of DDD

should be given in the molecule-fixed frame with origin located at the diffusion center of a molecule and axes

coinciding with principal axes of rotations. We provide a tool (dmatrix, see below) that can be used to compute

the diffusion tensor matrix of a molecule either based on the appropriate PDB file or a plain text file containing
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its coarse-grained representation.

7.3 External Coordinates File

Initial coordinates of objects in the studied system (in the laboratory frame) can be specified by the user in an

external text file, which should adhere to the following format:

v
(1)
x v

(1)
y v

(1)
z Ω

(1)
x Ω

(1)
y Ω

(1)
z

...........

v
(i)
x v

(i)
y v

(i)
z Ω

(i)
x Ω

(i)
y Ω

(i)
z

..........

v
(N)
x v

(N)
y v

(N)
z Ω

(N)
x Ω

(N)
y Ω

(N)
z

where i runs over N molecules (ordering of molecules results from parameters defined in the *.prm file -

see below); the vector:

~v = {vx, vy, vz}

describes translations that are needed to translate the diffusion center of a molecule to its initial position in the

laboratory frame, and the vector:

~Ω = {Ωx,Ωy,Ωz}

describes rotations that are needed to orient the molecule in the laboratory frame.

Ω =
√

Ω2
x + Ω2

y + Ω2
z

The rotation matrix is defined as [23]:

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33
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where:

M11 =
(Ω2

y + Ω2
z)cosΩ + Ω2

x

Ω2

M12 =
ΩxΩy

Ω2
(1− cosΩ)− Ωz

Ω
sinΩ

M13 =
ΩxΩz

Ω2
(1− cosΩ) +

Ωy

Ω
sinΩ

M21 =
ΩxΩy

Ω2
(1− cosΩ) +

Ωz

Ω
sinΩ

M22 =
(Ω2

x + Ω2
z)cosΩ + Ω2

y

Ω2

M23 =
ΩyΩz

Ω2
(1− cosΩ)− Ωx

Ω
sinΩ

M31 =
ΩxΩz

Ω2
(1− cosΩ)− Ωy

Ω
sinΩ

M32 =
ΩyΩz

Ω2
(1− cosΩ) +

Ωx

Ω
sinΩ

M33 =
(Ω2

x + Ω2
y)cosΩ + Ω2

z

Ω2

7.4 Simulation Control File

Control file is based on a number of keywords that allow the user to specify simulations conditions. Only these

lines in the control file that begin with a particular keyword are recognized by the program.

Each line of the *.prm file should contain only one keyword and its value:

keyword value

The complete list of available keywords is given in the next section.

8 Control File Keywords and Command Line Parameters

Below, a complete list of recognized keywords and their possible values, is given. Values of all keywords relevant

to a simulation must be specified by the user - default values that are given below are these at which program

variables are initialized and they are not always meaningful.
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8.1 Input/Output Control

out filename string - text file containing diagnostic informations regarding the current bd rigid run (output)

dcd filename string - DCD-formatted binary trajectory file, default: NULL string (output)

save dcd freq integer - frequency (number of steps) for writing to the DCD trajectory, default: 1

pqr filename string - PQR-formatted file, containing the startup configuration of the simulated system, de-

fault: NULL string (output)

rep string - this keyword is used to define which molecular representation from the *.mstr file (tags Q and

LJ) should be written to the PQR-formatted file, possible options are lj (Lennard-Jones spheres defined with the

LJ tags) or elec (charges, defined with the Q tags); default lj

molb filename string - binary trajectory file (*.molb), default: NULL string (output)

save molb freq integer - frequency (number of steps) for writing to the *.molb trajectory, default: 1

enr filename string - plain text energy file, default: NULL string (output)

save enr freq integer - frequency (number of steps) for writing to the energy file, default: 1

rst filename string - binary restart file, default: NULL string (output)

save rst freq integer - frequency (number of steps) for writing to the binary restart file, default: 1

ext coor file string - an optional plain text file describing an user-defined configuration of the simulated sys-

tem, default: NULL string (input)
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restart string - this keyword indicates that a continuation run should be performed, using the string restart

file, default: NULL string (input); restarts should be specified using command line parameters

object string integer - the name of the object (molecule) to be simulated and the number of objects of this

kind in the system - the program will look for appropriate string.mstr and string.dt files; multiple object lines

can be present in the parameter file - their order determines the ordering of molecules in all output files as well

as the order of objects in the external coordinate file defined with the ext coor file key

benchmark string - whether to benchmark evaluation of forces (yes no), default: no,

8.2 Nonbonded Interactions

elec string - whether to evaluate electrostatic (screened Coulomb) interactions, yes/no, default: yes

elec desolv string - whether to evaluate desolvation (cavity) forces, yes/no, default: yes

hdb surf string - whether to evaluate non-polar (hydrophobic) interactions, none/primitive/facts, default: none

elec cutoff float - cutoff for electrostatic interactions (also cavity terms), default: 0

hdb cutoff float - cutoff for nonpolar interactions evaluated with the FACTS model (Ri in Equation 8),de-

fault: 10.0

hdb a float - inner cutoff for nonpolar interactions evaluated with the primitive model (a in Equation 10),

default: 3.1

hdb b float - outer cutoff for nonpolar interactions evaluated with the primitive model (a in Equation 10),

default: 4.35

hdb phi float - scaling factor for nopolar interactions evaluated with the primitive approach, default: 0.5
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lj cutoff float - cutoff for Lennard-Jones interactions, default: 10.0 ; setting this parameter to -1 results in

cutoffs defined for each pair of atoms as 2
1
6 (Ri +Rj) (useful in case of the 12/6 form of the L-J potential)

lj repul float - repulsive term in the Lennard-Jones potential, (Equation 4, r−lj repul), possible values 8, 12,

default: 12

lj attract float - attractive term in the Lennard-Jones potential, (Equation 4, r−lj attract), possible values: 0, 6,

default: 6

repul B float - the magnitude of the repulsive part in the Lennard-Jones potential (Equation 4), default: 1

probe radius float - radius of the spherical probe used to determine surface atoms - during simulations colli-

sions are evaluated between surface atoms, default: 1.4

srf ratio float - value used to determine whether an atom is buried or belong to the surface of a molecule,

i.e. if for a given atom the ratio surfaceburied/surfacetotal is smaller than srf ratio the atom belongs to the

surface of the molecule, default: 0.9

points per sphere integer - number of points used to describe the surface of an atom, default: 1000

gamma float - unit conversion factor for electrostatic interactions (Equation 14 and 15), default (conversion

to kcal
mol ): 331.842

alpha float - scaling factor for Lennard-Jones interactions (Equation 4), default: 4.0

beta float - scaling factor for desolvation (cavity) forces (Equation 14 and 15), default: 1.0
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8.3 Boundaries

bc string - specifies boundary conditions, possible values are none - an infinite system, pbc - periodic boundary

conditions, sphere - an impenetrable sphere

xbox float - the primary simulation cell, size in the x direction, default: 0.0

ybox float - the primary simulation cell, size in the y direction, default: 0.0

zbox float - the primary simulation cell, size in the z direction, default: 0.0

sphere radius float - the radius of an impenetrable sphere enclosing the simulated system, default: 0.0

sboundary string - whether to use the bounding sphere potential, default: no (another possibility yes). Note

that this keyword has nothing to do with the bc keyword; if bc sphere is used molecules are not allow to cross

a spherical surface around the studied system but no potential is used for that, rather BD moves leading outside

the spherical surface are simply rejected an repeated with different random vectors

sboundary A float - the magnitude of the bounding sphere force (Equation 16), default: 0.0

sboundary n integer - the power of the radial distance dependence of the bounding sphere force (Equation

16), default: 0

sboundary cutoff float - the bounding sphere force is applied outside this cutoff radius (Equation 16), default: 0.0

8.4 External Electric Fields

E ext string - whether to switch on/off the external electric field, yes/no, default: no
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E magn float - the magnitude of the external electric field, default: 0.0

E type string - a choice between different types of the electric field, possible values are AC, DC or RF, de-

fault: DC

E freq float - the frequency (where applicable) of the external electric field (units
[

1
ps

]
), default: 0.0

E dir1 string - the direction of the external electric field, x, y or z, default: x

E dir2 string - the second direction of the external electric field (RF), x, y or z, default: y

E factor float - the unit conversion factor for the external electric field (to kcal
mol ·e

−1Å−1), default: 1.0

8.5 Algorithms

bd algorithm string - this keyword defines the algorithm that is used to generate the BD trajectory of the studied

system, possible values are ermak const (the time step is constant during the simulation) or ermak var (variable

time step is used in order to prevent overlaps between simulated objects)

bd steps integer - the number of BD simulation steps

dt float - time step

min dt float - minimal possible value of the time step when the variable time step algorithm is used

rand seed integer - seed for the random number generator

move attempts integer - the maximal number of attempts that are made by the program to remove overlaps in the

system, in each attempt a BD step that leads to an overlap is repeated with a different random vector (Equation 3)
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pos iter integer - maximal number of iterations that are performed by the program to position and orient objects

in the simulation cell at the begining of the BD run

pos min integer - the minimal allowed surface-to-surface distance between objects in the simulation cell at

the begining of the BD run

check overlaps string - whether to check if there are overlapping objects in the simulated system whose po-

sitions need to be corrected yes/no

overlaps string - defines the algorithm that is applied to look for the overlaps in the system, either trees (for a

hierarchical algorithm) or direct (for a brute force algorithm)

overlaps removal string - defines the method that is applied to remove overlaps in the system: none (if the

check overlaps keyword is set to yes the program will repeat all steps that lead to overlaps with different random

vectors), atom - overlaps will be corrected iteratively by applying appropriate forces and torques - each pair of

overlapping atoms is evaluated separately, molecule - overlaps will be corrected iteratively by applying forces and

torques and evaluating all pairs of overlapping atoms within a given molecules pair simultaneously

nb list string - defines a method that is used to evaluate nonbonded interactions; brute - brute force method,

spatial - a method similar in the spirit to the cell-linked lists algorithm, however, without explicit creation of

nonbonded lists, verlet - Verlet lists algorithm with a twin-range cutoff

verlet roff float - defines the value of the outer cutoff in the twin-range cutoff Verlet algorithm, i.e. the outer

cutoff is computed as a cutoff increased by verlet roff

verlet count integer - Verlet lists will be refreshed during a simulation every verlet count steps

dm alg float - defines the method used to perform thread decomposition (in case of parallel runs), either atomdec
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(decomposition is based on the indexes of atoms) or spatialdec (decomposition is performed based on Cartesian

coordinates of atoms)

8.6 Physical Conditions

T float - temperature, default: 298.15

kappa float - the inverse of the Debye length, default: 0.1

eps float - solvent dielectric constant, default: 78.54

epsin float - solute dielectric constant, default: 1

8.7 Devices Control

cuda devices integer integer - CUDA devices to be used, their numbers followed by system identifiers

cuda blockinteger - dimension of the thread block - relevant in case of CUDA devices with the compute ca-

pability smaller than 2.0

9 Tools

We provide a set of tools that can be used to prepare input files necessary to perform BD simulations with the

BD BOX bd rigid module. These are described below.
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9.1 dmatrix

This utility can be used to compute the rigid-body diffusion tensor of a molecule. In case of an atomistic model of

a molecule coordinates are read from a PDB-formatted file. However, if the user needs to compute the diffusion

tensor of a coarse-grained molecular model, its coordinates should be specified directly in the text input file.

dmatrix requires an input file input.txt (the name of the file should not be changed) that adheres to the following

format:

input.txt - computations are to be performed for a molecule whose coordinates are stored in a PDB-formatted

file:

————————————————————-

comment - single line containing comments (can be left empty)

1 - coordinates of a molecule are stored in the PDB file

name of the appropriate PDB file - name of the PDB file with coordinates of a molecule

viscosity temperature - viscosity of the solvent (Poisse) and temperature (K)

solvent radius - radius of solvent molecules (typically set to 1.4Å - water)

————————————————————-

input.txt - computations are to be performed for a coarse-grained model:

————————————————————-

comment - single line containing comments (can be left empty)

0 - computations are to be performed for a coarse-grained model

number of beads in a model - number of spherical subunits (atoms) in a model

x y z radius - coordinates of a spherical subunit and its radius

x y z radius

x y z radius

...

viscosity temperature - viscosity of the solvent (Poisse) and temperature (K)

solvent radius - radius of solvent molecules (typically set to 0.0Å in case of coarse-grained models)

————————————————————-
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To run computations, the user should simply execute the dmatrix command from within the directory where

the input.txt file is located. As a result, three text files should be created:

output.txt - details of computations and debugging information

tensor.txt - 6× 6 diffusion tensor matrix

transformations.txt - transformations (translations and rotations) that should be performed to orient the molecule

along main axes of the rotational diffusion tensor, with the origin located at the diffusion centre. This file can

be fed to the orient mstr utility.

NOTE: when computations are performed for a coarse-grained model, overlaps between beads de-

fined in the input.txt file are possible only if all beads in a model are of the same size

9.2 orient mstr

Tool for orienting molecule in the molecular frame (with axes coinciding with the principal axes of diffusional

rotations).

Usage:

orient mstr transformations structure

where:

transformations - file resulting from the execution of the dmatrix tool

structure - file containing coordinates of a molecule to be transformed (PDB/PQR/MSTR files are supported)

Results of the orient mstr execution - transformed coordinates of a molecule formatted according to the for-

mat of the input structure file - are printed to the standard output.
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9.3 parsemolb

Tool for converting binary *.molb files to text

Usage:

parsemolb file index precision

where:

file - name of the *.molb file to be converted

index - index of a molecule whose coordinates are to be extracted (numbering of molecules starts with 0)

precision - either float or double

Output is printed to the standard output using the following format:

time vx vy vz o(1) .... o(9)

where time denotes current time, vx, vy, vz are components of the translation vector (from the molecule-fixed

to the laboratory frame) and o(1) ... o(9) are components of the rotation matrix. Current position of a given

molecule in the laboratory frame can be obtained by applying rotations and then translations to the input structure

of a molecule.

9.4 molb2dcd

Tool for converting binary *.molb trajectory files to binary *.dcd files.

Usage:

molb2dcd input type precision name

where: input - text input file

type - either all or separate - coordinates of molecules are either stored in a single file or separate *.dcd files are

created for each molecule

precision - either double or float

name - input *.molb file
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The text input file is used to specify molecules for which DCD trajectory will be created, it contains names

of PDB files and indexes of molecules of interest in the source *.molb file. Indexes can be given as a list or as a

range. An exemplary text input file is given below.

exemplary text input file for the molb2dcd utility

————————————————————

name0.pdb 0

name1.pdb 1-10

name2.pdb 11 12 13 14 15

name3.pdb 16

————————————————————

9.5 sasa tool

This small utility program can be used to compute atomic SASA’s using atomic coordinates and radii of atoms

provided by the user in the PQR-formatted input file.

Usage:

sasa tool input output N radius

where:

input - input *.pqr file

output - output file, plain text

N - number of points used to describe the surface of an atom

radius - radius of the solvent probe
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9.6 charge optimizer

Utility program that can be used to derive a set of effective charges. Effective charges positioned initially at heavy

atoms of the molecule are derived by fitting the electrostatic potential resulting from the Debye-Hückel approxi-

mation to the external molecular potential obtained as a numerical solution of the Poisson-Boltzmann equation

(see [31] for details). The total number of effective charges is optimized upon the execution of charge optimizer.

Fitting of effective charges can be performed in various regions around the molecule: the whole space around the

molecule, spherical layer centered on the molecule, or the molecular skin defined by inflating van der Waals radii

of molecule’s atoms (see Figure 4). Execution of the program is controlled via keywords given in the plain text

parameter file.

Usage:

charge optimizer file.prm

and the following keywords can be specified in the parameter file (in the keyword value manner):

gamma float - unit conversion factor, the default value of 331.842 results in electrostatic potentials evaluated in

units of kcal
mol·e

eps float - dielectric constant of the solvent

kappa float - the inverse of the Debye length, default: 0.1 Å−1

dxfile string - DX-formatted file with the electrostatic potential of the molecule obtained by solving the linear

Poisson-Boltzmann equation, input

outsourcedx string - DX-formatted file with the input electrostic potential (scaled by ext phi scale, see below)

that can be used for debuging and visualization purposes, output

ext phi scale float - factor for scaling (multiplication) values of the input electrostatic potential (can be used to

convert units), default value: 0.5922 (scaling from kT298K to kcal
mol )

skip points integer - every skip points point of the input grid (in each direction, x, y, z) will be taken into account

upon evaluation of electrostatic potential, default: 1 - all points are taken into account

pqrfile string - input, PQR-formatted file containing the definition of the evaluated molecule

outdx string - DX-formatted file with the electrostatic potential generated by the derived effective charges, output
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outpqr - PQR-formatted output file with effective charges

tol float - goodness of electrostatic charges fit, this keyword is used to define the stop condition for the program

- value of 1.0 means perfect fit (sensible values of effective charges are typically obtained for tol in the range of

0.85 to 1.0), default value: 0.9995

penalty float - this variable is used to prevent the effective charges to have unphysical (extremely large) magni-

tudes, typically values below 0.01 should used, default:0.001

step attempts integer - number of attempts made by the prgram to reduce the number of effective charges,

default: 1000; initially effective charges are positioned at heavy atoms - if possible this number is subsequently

reduced while preserving the accuracy specified with the tol parameter

seed integer - seed for the random number generator, 31415

omega string - defines the region where the fitting is performed, possible values are full, sphere, skin

omega low float - lower boundary of the fitting region, relevant for all values of the omega keyword

omega high float - upper boundary of the fitting region, relevant only for omega values skin and sphere

out filename string - plain text log file, default: err.log

Figure 4: Possible definitions of the region outside the molecule where its electrostatic potential is fitted
upon evaluation of effective charges. When the omega parameter is assigned value skin, electrostatic
potential is fitted in the volume bounded by surfaces obtained by inflating van der Waals surface of the
molecule by omega low and omega high (left). When omega is set to full the upper bondary of the
volume results from the definition of the input electrostatic grid (center). Setting omega to sphere results
in a volume of spherical layer between surfaces of spheres of radii omega low and omega high, respectively
(right).
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10 Examples distributed with BD BOX

Below, we present a list of examples that are distributed along with the BD BOX source code. Examples are

located in examples/rigid/name directories.

HEWL

A single hen egg white lysozyme molecule. All-atom model.

SPHERES

Periodic box with hard spheres at volume fraction of 30%.

QSPHERES

Periodic box with oppositely charged spheres.

HEWL pH3 100mM

420 molecules of hen egg white lysozyme at volume fraction of 10%. Charges assigned at pH 3 and 100mM ionic

strength.

11 Final Notes

We did our best to ensure that the BD BOX code is bug-free. We have tested implemented features using rather

simple and thus predictable models (such as single spheres, dumbbells, chains) but also more elaborate models

of proteins. Properties of these models derived from BD simulations (such as for example translational and

rotational diffusion coefficients at different conditions of temperature and viscosity, chains end-to-end distances

and their radii of gyration) were validated using theoretical/analytical predictions and available literature data.

Additionally, we have also cross-examined BD BOX using various hardware platforms.

We invite users to send comments and questions regarding their own applications of BD BOX. Reports on

possible bugs are also welcomed.
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