United States Patent

US008234089B2

(12) 10) Patent No.: US 8,234,089 B2
Grey et al. (45) Date of Patent: Jul. 31, 2012
(54) AUTO-SCHEDULING OF TESTS 6,112,222 A * 82000 Govindarajuetal. ... 718/102
6,151,022 A * 11/2000 Alshibani et al. 715/788
R R 6,336,088 Bl 1/2002 Bauman et al. 703/15
(75) Inventors: Jam.es A. .Grey, Cedal; Park, TX (US); 6,397,378 Bl 5/2002 Greyetal. ... 717175
Daniel Elizalde, Austin, TX (US) 6,502,102 B1* 12/2002 Haswelletal. .. . 707/102
6,570,385 B1* 5/2003 Roberts etal. 324/378
(73) Assignee: National Instruments Corporation, 6,697,750 B1* 2/2004 Coinetal. 702/108
Austin, TX (US) 6,708,324 B1* 3/2004 Solloway etal. . . 717/124
? 6,738,813 B1* 5/2004 Reichman 709/224
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 1024 days. OTHER PUBLICATIONS
National Instruments Corporation, LabVIEW, “Test Executive Ref-
(21) Appl. No.: 10/289,798 erence Manual,” Aug. 1997.

(22)

(65)

(1)

(52)
(58)

(56)

Filed: Nov. 7, 2002

Prior Publication Data

US 2004/0093180 A1 May 13, 2004

Int. CI.

GOIR 29/00 (2006.01)

US.CL e 702/123; 702/119
Field of Classification Search 702/108,

702/117,118,119, 121, 123, 182
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
4354227 A * 10/1982 Haysetal.cccceeen. 710/240
4,604,694 A * 81986 Hough 710/200
5,261,097 A 11/1993 Saxon 718/106
5,408,663 A * 4/1995 Miller 718/104
5,524,078 A * 6/1996 Kolbetal. 701/29
5,544308 A * 8/1996 Giordano et al. .. 714/26
5,838,766 A * 11/1998 Rand 379/9
5,857,192 A * 1/1999 Fitting 707/200
5,893,157 A * 4/1999 Greenspan et al. 711/150
6,002,868 A 12/1999 Jenkinsetal. 717/105
6,023,773 A 2/2000 O’Donnell etal. 714/40

1= Sequenc File3 *

Main]Sekup] Cleanup] Parameters] qucals}

Johnson, Laura, “Test and Measurement—Understanding Test
Executives,” Webpage www.testandmeasurement.com.content/
news/, Oct. 16, 2000, pp. 1-9.

Primary Examiner — Jeftrey R West
(74) Attorney, Agent, or Firm — Meyertons Hood Kivlin
Kowert & Goetzel, P.C.; Jeffrey C. Hood; Mark S. Williams

(57) ABSTRACT

System and method for performing a multiple tests on each of
one or more units, where each of the tests requires a respective
resource of a plurality of resources. A first test is performed on
a unit using a first resource. During performance of the first
test, a search is made for a second test, requiring a second
resource, where the second resource is not currently being
used. If the second test is found, the second test is performed
on the unit, or a second unit, using the second resource,
substantially concurrently with at least a portion of the first
test being performed on the unit. Performing a test includes
locking the respective resource to exclude use by other tests,
including acquiring the resource, and unlocking the resource
upon completion of the test, including releasing the resource
for use in performing the respective test on another of the
units.

36 Claims, 9 Drawing Sheets

| Step

| Description ;

5
f @Beg»n Auto-Schedule

A4 Tes 1

& Unlock Resource

E ' # Lock Resource

it Elrestz

E &t Unlock Resource

! # Lock Resource

A Erests

| L:f Unlock Resource

[:}_(E End Auto-Schedule
f END

Begin Auta-Schedule ‘
Numeric Linmit Test, 0 <=x <= 10
Unlock Resource

Lock: “Scope”

Nurneric Limit Test, 0 <=x <= 10
Unlock Resource

Lock: "Camera”

Nurneric Limit Tesk, 0 <=x <= 10
Unlock Resource

End Auto-Schedule

US 8,234,089 B2

Page 2
U.S. PATENT DOCUMENTS 2003/0093524 A1* 52003 Goldick ..occoccoerrrrrvnonn 709/225
y ;
6,738,974 B1* 5/2004 Nageswaran et al. 718/104 %883;8}%8%2 ﬁ}* ggggg %‘;Vnagtztlal ;gg%?
6,842,022 B2* 12005 Khoche - 324754 2003/0212523 AL* 11/2003 Dorough et al o 702/119
2001/0044913 Al* 11/2001 Brassac et al. .. 714/33 g Coreeee

2002/0124205 Al* 9/2002 Grey et al. e T14/33 * cited by examiner

U.S. Patent Jul. 31, 2012 Sheet 1 of 9 US 8,234,089 B2

I ain } Setup] Cleanup] Parameters 1 Locals |
Step 1 Description
Lock DMM Lock{"DMM")
Brest1 Numeric Lirit Test, 0 <= x <= 10
&) Unlock DMM EarlyUnlock("DMM™
@ Lock Scope Lock{"Scope™
Test 2 Numeric Limit Test, 0 <= x <= 10
{31 Unlock Scape Lock("Scope™)
[Lock Camera Lack("Carnera")
Btess tmercmt To 0 <o <510
Unlock Camera EarlyUnlock("Camera")
END

Fig. 1A (Prior Art)

Fig. 1B (Prior Art)

US 8,234,089 B2

Sheet 2 of 9

Jul. 31, 2012

U.S. Patent

¢ 9ld

9¢l
|013U0TD) UOHOW

8EL—.
&

> g5}
581 J9pUN HUN
w > v0s}
58 Japun WU

spieog uopisinboy
eleq-uj-bnid

44
sjuaLnAsy|
paseg-Jaindwo)

oe\

20} HOMSN

US 8,234,089 B2

Sheet 3 of 9

Jul. 31, 2012

U.S. Patent

€ 9Old

L —/

\ sngaido

/ 7

061 11 L L ||
PIEO zclh z8) 08}
juswnisy uoysinbo - om0
a|geinBluoday _H_ W .Sm,m pied gdido aAlQ pieH PIA
(4
f 0/1 sng uoisuedx3 f
4 7
891
J1ajjonuo) sng
— _{
291 sng JsoH v\
¥91 —
lg|jonu0) %ww
Aows |\
|
991
AIOWBN uley

US 8,234,089 B2

Sheet 4 of 9

Jul. 31, 2012

U.S. Patent

¥ 9Old

so|l4 . 0 ‘rao’
aousnbag 1a a7 ‘1na IA
_ _ _ _
1ordepy Js)depy laydepy J9)1depy
oouBNbag a2dA10)jo1d 8|qix8|4 adAjojoid piepur)g| |adAjojoid piepuels
11a IAND/D M3IIAGET

+

}

L

0vZ sieydepy

|opON SS8001d

zee .

zeT

*"9poD J1p3 'apa S1eal ‘Ol

de)g ‘@noex3 ‘peojun ‘peo
aoepeu| J8)depy

J

0z

auIbug aAljNoSX] 159

+

[AT4
loyp3 aouanbeg

olseq [ensiA

IND

M3IINGET]

20Z @p0oJ 82n0g |In4 UM sweiboid aoepsiu| sojesadQ

US 8,234,089 B2

Sheet 5 of 9

Jul. 31, 2012

U.S. Patent

G OlId

—

% 01 isdeys Jo Jaquing| peiaees sdals on|

T
H
i

!
! |

an3 ,

uoqpuodald (jp'4andwod) saysoubeigpiengiay 2D ‘uoiay sansoubelg Emonxmx%
uoljipUcIadd (P’ 453ndwiaa} sasoubengoapiy e ‘uciny sasoubelg omu_}%
uopIpuUoIaid {p* 493ndwod) sasoubeigey |3 U0y s21350U681] Eqm%
M uoyipuoIsId ()P’ 433ndwod) sonsoubeiaoy 2D Uiy sapsoubelq Eow_w@
‘ uoIipuodald {pr4ayndwiod) 3saLpieagaay ||eD 153k jedfssed _u_m.on_}mv_%
m uoipuodald D fzuey 5 => X =» (2 3524 T Jusuny om_u_s_%
| UoIypU0da.d {||p* 4a3ndwoa) 353 .Edi [leD is81 Rdfssed E.qm%
' uopIpuUosald ()’ 483ndwod) 3saL oY [[BD "53] |edfssed Eomm@v
, uoppuUoIald bas'nda Ul aausNbagUIRKY ||2D nd2 @ ,
“ BT oA T => X => 21 11581] JMswWny ug Lozoa@ .

JUSLWICD M #0)d Uol3niax3 _ ~ uopdussag r da)g

BASIA

mucmsmm“mc_mﬂi _w,_m.‘uo“._, _uwhww,muiw_mm; _ a:zmu_u _ n:._ ummm c_w E\:

s ianduod’ stoday g sajdwexd\pueisisaiio en

US 8,234,089 B2

Sheet 6 of 9

Jul. 31, 2012

U.S. Patent

9

Ol

jgaues

m NG _ _ SUANUOT MIIA

abuey]

— abuey]

210113 aull {-Uny 2IouBT [7f

ainye 4 asuanbag sasne] ained daig mn_
odyearg L

snsay plooay fiaf

UOKRADY O zm

UOLEAIIY MOPUL A, PUBISISET

uondo co:,m..“.m,ummqm

AP0 SANIRIAIU| Ul UDHEN[RA T UONPUOZAL]

'8pOj Uny

paso[o 81 3y aouanbas sy proju|

uondg peauty

a|lj sauanbas Buuado uaym rmo_m:n__

:uondgy peoT

_wco_mmmaxu TD%NEDEuim _wco_ﬁo doo | suoioy ysod suondg uny [Ri8URY

san4ada.id 0apIA i

U.S. Patent

Jul. 31, 2012

§ 18 Sequence File3 *

Main)] Setup } Cleanup} Parameters l' Lpfals]

Sheet 7 of 9 US 8,234,089 B2

il Step

| Description j

Bhest1

Lock Resource

Elvest 2

Lock Resource

B rest 3

END

) Bean Auto-Schedule
LockResource

&) Unlock Resource

&} Unlock Resource

& Unlock Resaurce
> :)_G End Auto-Schedule

Fig.

Begin Auta-Schedule
Leckiompr T
MNumeric Limit Test, 0 <=x <= 10

Unlock Resource

Lock: “Scope"

MNurneric Limik Test, 0 <= x <= 10
Unlock Resource

Lack: “Camers”

MNumeric Limit Test, 0 <= x <= 10
Unlock Resource

End Auto-Schedule

7A

Fig. 7B

U.S. Patent Jul. 31, 2012 Sheet 8 of 9 US 8,234,089 B2

Per Execution Thread
800

search plurality of tests for next test to perform
on unit
802

Y

timeout?
805

test found?
804

lock resource
806

'

perform test on unit
808

unlock resource
810

YES
a

NO

Fig. 8

U.S. Patent Jul. 31, 2012 Sheet 9 of 9 US 8,234,089 B2

Main ‘ E';etup] Cleamjp] P,?rréyr_neters] chélil

i @
% B i

|

’ Step | Description }'
| :

%

7 Insert Step o S [3

Add Auto-Scheduled Section Chrl4+E R
| | Set Auto-Schedule Timeout... {
Spenfy Modules, ., Chal+M

}:
i
Cosd b e

Fig. 9A

(' Main ! Setup] Cleanup Ig Parameters l Lﬂnc,als‘iw B
E Step ‘ Description

1 @ Begin Auto-5chedule Beqin Auto-Schedule

] & LockResource Not Configured

: L?j-} Imsert your steps here,..

@3 UnlockResource Unlock Resource

?; ¥ EndAutoSchedule End Auto-Schedule

%] § END

Fig. 9B

US 8,234,089 B2

1
AUTO-SCHEDULING OF TESTS

FIELD OF THE INVENTION

The present invention relates to the field of test executive
software for organizing and executing test executive
sequences. In particular, the invention relates to a system and
method for efficient execution of multiple tests on one or
more units.

DESCRIPTION OF THE RELATED ART

Test executive software is specialized software that allows
a user to organize and execute sequences of reusable test
modules to test units under test (UUTs). For example, the test
modules may interact with one or more hardware instruments
to test the UUT(s). The test modules often have a standard
interface and typically can be created in a variety of program-
ming environments. The test executive software operates as a
control center for the automated test system. More specifi-
cally, the test executive software allows the user to create,
configure, and/or control test sequence execution for various
test applications, such as production and manufacturing test
applications. Text executive software typically includes vari-
ous features, such as test sequencing based on pass/fail
results, logging of test results, and report generation, among
others.

Test executives include various general concepts. The fol-
lowing comprises a glossary of test executive nomenclature,
as used herein:

Code Module—A program module, such as a Windows
Dynamic Link Library (.dll), LabVIEW VI (.vi), ActiveX
component, or other type of program module or component,
that implements one or more functions that perform a specific
test or other action.

Test Module—A code module that performs a test of a
UUT.

Step—An action that the user can include within a
sequence of other actions. A step may call a test module to
perform a specific test.

Step Module—The code module that a step calls.

Sequence—A series of steps that the user specifies for
execution in a particular order. Whether and when a step is
executed can depend on the results of previous steps.

Sequence File—A file that contains the definition of one or
more sequences.

Sequence Editor—A program that provides a graphical
user interface for creating, editing, and debugging sequences.

Run-time Operator Interface—A program that provides a
graphical user interface for executing sequences on a produc-
tion station. A sequence editor and run-time operator inter-
face can be separate application programs or different aspects
of the same program.

Test Executive Engine—A module or set of modules that
provide an API for creating, editing, executing, and debug-
ging sequences. A sequence editor or run-time execution
operator interface uses the services of a test executive engine.

Application Development Environment (ADE)—A pro-
gramming environment such as LabVIEW, LabWindows/
CVI, Microsoft Visual C++, Microsoft Visual Basic, etc., in
which the user can create test modules and run-time operator
interfaces.

Unit Under Test (UUT)—The device or component that is
being tested.

20

25

30

35

40

45

50

55

60

65

2

Thus, the user may use the sequence editor to construct a
test executive sequence comprising a plurality of steps. The
test executive sequence may then be executed to perform tests
of'a system or UUT.

In some systems, multiple UUTs may be tested in parallel.
This approach generally increases the testing system perfor-
mance since it allows multiple units to be tested at the same
time. For example, a plurality of tests may be performed on
each of a plurality of UUTs, where each test may require
exclusive use of one or more resources, e.g., oscilloscope,
sensor, digital multi-meter (DMM), etc., during execution of
the test, e.g., by using respective execution threads to test
respective units in parallel. However, when performing par-
allel testing, inefficiencies may result when executing threads
must wait for a specific resource or resources to be released.

FIGS. 1A and 1B illustrate a prior art approach to parallel
test scheduling, where three tests are performed on four
UUTs. FIG. 1A illustrates a test step sequence where a first
test, Test 1, requires use of a DMM, a second test, Test 2,
requires use of an oscilloscope, and a third test, Test 3,
requires use of a camera. As is well-known in the art, when a
resource is used exclusively for a test, the resource is typically
locked prior to the test execution, then released after the test
execution. Thus, in the test sequence shown in FIG. 1A, the
sequence contains the necessary synchronization steps to
ensure that no two threads access the same resource at the
same time. Protecting the test step with locks is needed to
avoid collisions, i.e., simultaneous requests for resources,
since there is only one instance of each resource (e.g., DMM,
oscilloscope, camera) and the resources will be shared (se-
quentially) by all the UUTs being tested in parallel. Thus, as
FIG. 1A shows, for a given UUT, the DMM is first locked,
then Test 1 is performed. Once Test 1 is complete, the DMM
is unlocked. The test sequence then locks the oscilloscope
(“scope”), performs Test 2 on the UUT, and upon completion
of Test 2 unlocks the oscilloscope, as shown. Finally, the
camera is locked, Test 3 is performed on the UUT, and the
camera is unlocked, after which the test sequence for that
UUT is terminated.

FIG. 1B is a table illustrating execution flow of testing 4
UUTs in parallel using the test sequence of FIG. 1A. As FIG.
1B shows, the test sequence is applied to each UUT in a
staggered fashion to prevent resource request conflicts. How-
ever, a problem with this approach is that there are some idle
hardware times. As may be seen, at the beginning of the test,
when UUT1 is performing Test 1 (and using the associated
resources), the other units are held idle, waiting for the
resource to become available. When the resource for Test 1
becomes available, UUT 2 can start the testing process, leav-
ing UUT 3 and UUT 4 still idle. As Test 1 is completed for
each UUT, the resources for Test 1 are freed for use in per-
forming Test 1 on the next UUT. This staggered sequencing is
performed for each of' the tests, leading to idle resources in the
first portion of the testing and the last portion of the testing. In
other words, in the table of FIG. 1B, any time during the test
procedure that the UUTs are not being tested represents an
inefficiency, i.e., wasted time. Similarly, in situations where
multiple tests are to be performed on a single UUT, simple
linear performance of the tests may result in substantial
resource idle time.

Thus, it would be desirable to provide improved systems
and methods for performing parallel testing on one or more
units under test.

SUMMARY OF THE INVENTION

Various embodiments of a system and method for perform-
ing a plurality of tests on each of one or more units under test

US 8,234,089 B2

3

(UUT) are presented, where each of the plurality of tests
requires or is associated with a respective resource of a plu-
rality of resources. The plurality of tests may be specified in a
test sequence, also referred to as an auto-scheduled test
sequence, described below. A plurality of execution threads
may be used to perform at least a portion of two or more of the
tests substantially in parallel. In an embodiment where the
plurality of tests are to be performed on each of a plurality of
units, a thread may be associated with each unit. In an
embodiment where the plurality of tests is to be performed on
a single unit, each thread may be associated with one or more
of'the tests, or may simply perform any of the tests as each is
able. The threads may in effect compete for use of the
resources to perform respective tests on the unit or units by
each performing an embodiment of the method described
below.

It is noted that a test may be a single operation, or may be
two or more operations or subtests. In other words, a “test”
may actually refer to multiple tests. Similarly, a resource may
be a single device or component (or program), or may include
multiple devices or components (or programs). Thus, when a
test is performed on a unit using a resource, it may be that
multiple subtests (i.e., tests) are performed on the unit (or a
component of the unit) using a plurality of devices. It should
be noted that in other embodiments, described below, the
method may be performed by a plurality of threads to perform
a plurality of tests on a single unit.

In one embodiment, the plurality of tests may be searched
for a next test to perform on the unit, where 1) the test has not
been performed on the unit, and 2) the respective resource of
the test is available for use. In other words, an attempt may be
made to determine a test whose associated resource is not
currently being used to perform another test, or to perform the
same test on another unit. If the test is not found, the method
may check against a time-out condition, and if a time-out has
occurred, the method may exit. If no time-out has occurred,
then the method may continue searching. In other words, if
the respective test for the respective unit is not found, the
method may continue the searching until the respective test is
found, or an ending condition, e.g., a time-out condition, is
met. If the respective test is found, then the respective
resource of the respective test may be locked, where locking
includes acquiring the respective resource. In other words,
once a free resource for a desired test is determined, the
method may lock the resource, thereby excluding use of the
resource by execution threads for other tests. The respective
test may then be performed on the unit, e.g., the locked
resource may be used to perform the associated test on the
UUT.

Once the test has been performed, the respective resource
may be unlocked, thereby releasing the resource for use by
other tests/threads. As noted above, in one embodiment, mul-
tiple execution threads may operate substantially in parallel,
performing respective tests, e.g., on associated UUTs, as the
respective resources become available. In other words, two or
more of the respective tests on the respective units may be
performed substantially concurrently, e.g., by respective
execution threads. In another embodiment, at least portions of
the searching, locking, performing, and unlocking for a plu-
rality of the respective tests may be performed substantially
concurrently.

After the respective resource has been unlocked, an ending
condition may be checked, and if the ending condition is met
the method may exit, otherwise, the method may proceed
searching for another test to perform on the unit, as described
above. In one embodiment, searching for the next test may be
performed iteratively. For example, the searching, locking,

20

25

30

35

40

45

50

55

60

65

4

performing, and unlocking may be performed by the execu-
tion thread until 1) each of the plurality of tests has been
performed on the unit, and/or 2) an ending condition is met.
Considering all of the execution threads together, the search-
ing, locking, performing, and unlocking may be performed
(by the various execution threads) until 1) each of the plurality
of tests has been performed, e.g., on each of the plurality of
units, and/or 2) the ending condition is met. The ending
condition may include time-outs, equipment failure, manual
or automatic termination of the test process, and/or any other
type of ending condition.

Once the resource associated with the test has been
unlocked, the method may further include searching for
another, i.e., a different, test of the plurality of tests to be
performed on the respective unit, where 1) the different test
requires another, i.e., a different, resource of the plurality of
resources, and 2) the different resource is not currently being
used. If the different test is found, then the method may
perform the different test on the respective unit using the
different resource, where performing the different test on the
respective unit is performed substantially concurrently with
performing the respective test on the different one of the
plurality of units. In other words, once the respective test has
been performed on the respective unit, e.g., by a first thread,
not only may the method find and perform another test on the
respective unit, but the method may also find and perform the
respective test on another unit, assuming that the respective
test has not yet been performed on the other unit.

The general concepts presented above may also be applied
to performing multiple tests on a single unit. In other words,
the method may perform multiple tests on a single unit, where
at least a portion of two or more of the tests are performed
substantially concurrently. In this embodiment, multiple
execution threads may be launched, where each thread may
perform an embodiment of the above method in order to
perform a particular test on the UUT. Thus, in one embodi-
ment, if there are three tests to be performed on the unit, three
threads may be launched, where each thread is capable of
performing any of the three tests on the unit. In other embodi-
ments, the number of threads may not equal the number of
tests, but rather two or more threads may operate to perform
three or more tests between them.

Thus, similar to the method described above, in one
embodiment, the method may include searching the plurality
of tests to determine a respective test, where the respective
test has not been performed on the unit, and where the respec-
tive resource of the respective test is available for use. If the
respective test is found, the respective resource of the respec-
tive test may be locked (acquired), and the respective test
performed on the unit. The respective resource of the respec-
tive test may then be unlocked (released). In a preferred
embodiment, at least portions of the searching, locking, per-
forming, and unlocking for a plurality of the respective tests
may be performed substantially concurrently. The searching,
locking, performing, and unlocking may be performed itera-
tively until each of the plurality of tests has been performed on
the unit, or until a stopping condition is met, e.g., due to
hardware problems, manual termination, etc. Thus, various
embodiments of the method may be used to perform a plu-
rality of tests on a single unit.

It should be noted that in other embodiments, the two
approaches described above may be combined. In other
words, multiple threads may be used to perform a plurality of
tests on each of a plurality of units, where at least a portion of
the tests are performed in substantially parallel fashion, and in

US 8,234,089 B2

5

doing so, multiple tests may be performed (by multiple
threads) on a respective unit in a substantially concurrent
manner.

In some situations, the above described methods may result
in thread “starvation”, where various factors such as process-
ing bias and/or circumstance may prevent or exclude a thread
from acquiring a resource to perform a test. In other words,
because each of the threads are effectively competing for test
resources, in some cases a particular thread may be prevented
from ever (or at least for a relatively long time, e.g., before a
time-out condition occurs) acquiring a resource. Thus, in an
embodiment of the method where the searching, locking,
performing, and unlocking are performed by a respective
execution thread, each of the plurality of resources may be
associated with it a respective queue structure or its equiva-
lent, e.g., a FIFO (first in, first out), for storing threads waiting
for the respective resource. In this case, searching the plural-
ity of tests to determine a respective test may include each
thread examining the plurality of resources to determine a
free resource (i.e., unlocked), and if a free resource is found,
determining the respective test associated with the free
resource. If no free resource is found, the method may deter-
mine a resource of the plurality of resources with fewest
threads in the FIFO for that resource, and add the thread to the
FIFO for that resource. In one embodiment, when the respec-
tive resource is acquired, i.e., when the execution thread locks
the resource, the thread may be removed from any other
FIFOs storing the thread. In other words, once the thread
successfully finds a free resource, the thread may be removed
from any FIFOs in which the thread is still waiting.

While in many embodiments, the auto-scheduled test
sequences described above may be generated manually by a
user, it may be desirable to provide means for more easily
generating auto-scheduled test sequences. Thus, in one
embodiment, program instructions implementing a tool or
interface for generating auto-schedule test sequences may be
provided in the form of a stand-alone application, a dynamic
linked library, and/or a plug-in program module for an exist-
ing application, such as, for example, National Instruments
TestStand product. In another embodiment, the program
instructions may simply be integrated into an existing pro-
gram, thereby extending the functionality of the program to
include the desired features.

In a preferred embodiment, for a test sequence to be per-
formed in auto-scheduled mode, at least one auto-scheduled
block plus one or more auto-scheduled sections may be
included. Thus, in one embodiment, a graphical user interface
(GUI) may present menu options to the user for creating,
modifying, and otherwise specifying the auto-scheduled
block and the one or more auto-scheduled sections. In other
words, in one embodiment, a test sequence may be created in
response to user input, where creating the test sequence
includes receiving user input requesting an automatic sched-
uling feature, and programmatically creating one or more
steps in the test sequence to enable the automatic scheduling
feature. The one or more steps may include at least one
auto-schedule block, including a plurality of auto-scheduled
sections, each specifying a respective test of the plurality of
tests and a respective resource of the plurality of resources for
use in performing the respective test.

In one embodiment, when creating a sequence, the user
may simply insert a “Begin Auto-Schedule” step. This step
may include configuration menus that allow the user to add
auto-scheduled sections and/or a timeout, e.g., by right click-
ing on the “Begin Auto-Schedule” step and selecting an “Add

20

25

30

35

40

45

50

55

60

65

6

Auto-Scheduled Section” option. Thus, in one embodiment,
for ease of use, the GUI may automatically insert additional
steps that are needed.

In one embodiment, a “Begin Auto-Schedule” step and a
corresponding “END” step may be generated, e.g., in
response to user input received by the GUI Once the begin/
end steps of the auto-schedule block have been added to the
test sequence file, the user may select another menu option
indicating the addition of an auto-scheduled section, resulting
in insertion of an auto-scheduled section (possibly including
a“Lock Resource” and an “Unlock Resource” step) as well as
an “End Auto-Schedule” step. In one embodiment, a label
may also be added that shows where the user-defined or
specified test steps must be added for each auto-scheduled
section. Thus, in response to receiving user input indicating
the addition of an auto-schedule section, the GUI may pro-
grammatically insert one or more steps in the test sequence
for specifying a respective test to be performed. This opera-
tion may be repeated as many times as needed for each appli-
cation. For example, if an application requires locking three
sets of instruments, then three auto-scheduled sections may
be inserted.

Once an auto-scheduled section has been inserted, the
resource (or group of resources) that section will utilize may
be configured, e.g., by right clicking on the corresponding
“Lock Resource” step and selecting a “Configure Lock
Resource . . . ” option or its equivalent. A pop-up dialog may
be displayed and the user may provide input, e.g., a string,
indicating the name ofthe resource to lock, or a selection from
a list of available resources. If the section utilizes more than
one resource, an array of strings may be entered, where each
string contains the name of the resource to lock. The “Lock
Resource” step may automatically create a Lock for each of
the names indicated, i.e., manual creation of the locks may not
be required. In one embodiment, if a Lock for an indicated
resource (name) already exists, the “Lock Resource” step
type may connect to the existing Lock. Thus, in a preferred
embodiment, further user input may be received by the GUI
specifying the resource and the desired steps needed to per-
form the respective test using that resource, e.g., by an “Insert
Step” menu option. The user may thus add and specify suc-
cessive auto-schedule sections for the auto-schedule block,
where each section indicates or performs a respective test
using a respective resource.

As mentioned above, in one embodiment, the auto-sched-
uled step types may include a timeout feature, thus, in addi-
tion to specifying the auto-schedule sections, an option may
be presented to the user for specifying a time-out condition
for the auto-schedule block. In one embodiment, the specified
timeout may be applied to all of the auto-scheduled sections.
In other words, the auto-scheduled steps may be viewed as a
group or block that performs a particular function, e.g., a test
suite, and thus, in this embodiment, the timeout may be
defined at the top level and may be applied to every auto-
scheduled section inside the auto-schedule block. If an auto-
scheduled block times-out, it indicates that one of the auto-
scheduled sections was not able to acquire its resources
within the specified time. In one embodiment of the GUI, a
timeout may be set by right clicking on the “Begin Auto-
Scheduled” step and selecting the option “Set Auto-Schedule
Timeout . . . ”. A pop-up dialog may be displayed presenting
the option to enable or disable the timeout for the current
block. In one embodiment, the GUI may also allow the user to
specify whether a timeout causes a runtime error or simply
terminates.

US 8,234,089 B2

7

It should be noted that the above approach may be used to
generate additional auto-schedule blocks, with respective
auto-schedule sections, time-out specifications, etc.

Although the above described embodiment is implemented
as a set of steps organized into an auto-schedule block, other
approaches are also contemplated. For example, the plurality
of'tests may be included in a selection structure, such as a case
statement, as is well-known in the art. This type of selection
structure may be implemented in a variety of ways, including,
but not limited to, graphical programming languages such as
National Instruments “G” language, used in the LabVIEW
graphical program development environment, and text-based
programming languages, such as C, C++, etc.

In an embodiment where the selection structure is a case
statement, each of the plurality of auto-scheduled sections
may comprise or may be included as a respective case in the
case statement. In one embodiment, each respective case may
be selectable based on a label indicating the respective
resource, where the respective resource is not currently in use.
In another embodiment, the label for each case may indicate
the test instead of the resource, where the associated resource
is implied by the test. The locking and/or unlocking function-
ality for resource management may be performed by case-
specific code inside each respective case section, or alterna-
tively, by implicit program instructions connected or
associated with the case. Additionally, other functionality
required by the testing process may also be provided by
explicit or implicit code.

For example, in one embodiment of the auto-schedule case
statement, there may be no explicit selection variable used to
select the case, i.e., to match with the case label. Rather, an
“auto-schedule” block indicator at the beginning of the case
statement may have associated code that manages an iterative
process whereby each case is considered based on resource
availability and whether the case, i.e., the test, has already
been performed on the unit. In one embodiment, each “case”,
e.g., case “Camera”, may have associated code that deter-
mines the availability of the respective resource and/or keeps
track of whether the test has already been performed on the
unit.

Alternatively, explicit code may be provided for the above
described functionality. For example, the case statement may
be embedded in a loop for iterative consideration of each
case/test. As another example, an explicit function may be
provided that determines the next test to be performed.

Thus, in various embodiments, auto-schedule test
sequences may be created that substantially improve efficien-
cies of test procedures by reducing testing resource idle time.
Additionally, the auto-schedule test sequences may be gen-
erated via a GUI, where the GUI programmatically inserts
steps and/or structures into the test sequence in response to
user input.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the pre-
ferred embodiment is considered in conjunction with the
following drawings, in which:

FIGS. 1A and 1B illustrate scheduling and execution flow
of test executive sequences for multiple units under test in
parallel, according to the prior art;

FIG. 2 illustrates an instrumentation control system
according to one embodiment of the present invention;

FIG. 3 is a block diagram of the computer system of
FIG. 2;

20

25

30

35

40

45

50

55

60

65

8

FIG. 4 illustrates a test executive application software
architecture according to one embodiment of the present
invention;

FIG. 5 illustrates one example of a test executive sequence,
created according to one embodiment of a test executive
application;

FIG. 6 illustrates an exemplary dialog box for a test execu-
tive step, which enables the user to specify various properties
for the step that affect the way the test executive software
manages the execution of the step;

FIGS. 7A and 7B illustrate scheduling and execution flow
of'test executive sequences for one or more units under test in
parallel, according to one embodiment;

FIG. 8 is a flowchart diagram illustrating one embodiment
of'a method for performing test executive sequences on one or
more units under test in parallel; and

FIGS. 9A and 9B illustrate creation of an auto-schedule
test sequence using a graphical user interface, according to
one embodiment.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example in the drawings and are herein
described in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Incorporation by Reference

The following references are hereby incorporated by ref-
erence in their entirety as though fully and completely set
forth herein.

U.S. patent application Ser. No. 09/259,162 titled “Test
Executive System and Method Including Step Types for
Improved Configurability,” filed Feb. 26, 1999.

The LabVIEW and BridgeVIEW graphical programming
manuals, including the “G Programming Reference Manual”,
available from National Instruments Corporation, are hereby
incorporated by reference in their entirety.

The TestStand user manual, available from National Instru-
ments Corporation, is also hereby incorporated by reference
in its entirety.

FIG. 2—Instrumentation System

FIG. 2 illustrates an exemplary instrumentation control
system 100. The system 100 comprises a host computer 102
that connects to one or more instruments. The host computer
102 comprises a CPU, a display screen, memory, and one or
more input devices such as a mouse or keyboard as shown.
The computer 102 may connect through the one or more
instruments to analyze, measure or control one or more units
under test (UUT) or processes 150, here represented by UUT
150A and UUT 150B. It is noted that FIG. 2 is exemplary
only, and the present invention may be used in conjunction
with any of various systems, as desired.

In one embodiment, the UUT may be a system comprising
aplurality of sub-components, where respective tests are to be
performed on each component. The computer 102 may
execute a test executive sequence to perform automated tests
of the system or portions of the system. As described below,
the computer 102 may launch multiple execution threads to
perform a plurality of tests, some of which may be performed
substantially in parallel.

US 8,234,089 B2

9

The one or more instruments may include a GPIB instru-
ment 112 and associated GPIB interface card 122, a data
acquisition board 114 and associated signal conditioning cir-
cuitry 124, a VXI instrument 116, a PXI instrument 118, a
video device 132 and associated image acquisition card 134,
a motion control device 136 and associated motion control
interface card 138, and/or one or more computer based instru-
ment cards 142, among other types of devices.

The GPIB instrument 112 may be coupled to the computer
102 via a GPIB interface card 122 provided by the computer
102. In a similar manner, the video device 132 may be
coupled to the computer 102 via the image acquisition card
134, and the motion control device 136 may be coupled to the
computer 102 through the motion control interface card 138.
The data acquisition board 114 may be coupled to the com-
puter 102, and optionally interfaces through signal condition-
ing circuitry 124 to the UUT. The signal conditioning cir-
cuitry 124 preferably comprises an SCXI (Signal
Conditioning eXtensions for Instrumentation) chassis com-
prising one or more SCXI modules 126.

The GPIB card 122, the image acquisition card 134, the
motion control interface card 138, and the DAQ card 114 are
typically plugged in to an I/O slot in the computer 102, such
as a PCI bus slot, a PC Card slot, or an ISA, EISA or Micro-
Channel bus slot provided by the computer 102. However,
these cards 122, 134, 138 and 114 are shown external to
computer 102 for illustrative purposes. The cards 122, 134,
138 and 114 may also be implemented as external devices
coupled to the computer 102, such as through a serial bus.

The VXI chassis or instrument 116 may be coupled to the
computer 102 via a serial bus, MXI bus, or other serial or
parallel bus provided by the computer 102. The computer 102
preferably includes VXI interface logic, such as a VXI, MXI
or GPIB interface card (not shown), which interfaces to the
VXI chassis 116. The PXI chassis or instrument is preferably
coupled to the computer 102 through the computer’s PCI bus.

A serial instrument (not shown) may also be coupled to the
computer 102 through a serial port, such as an RS-232 port,
USB (Universal Serial bus) or IEEE 1394 or 1394.2 bus,
provided by the computer 102. In typical systems an instru-
ment will not be present of each interface type, and in fact
many systems may only have one or more instruments of a
single interface type, such as only GPIB instruments.

The instruments are coupled to the unit undertest (UUT) or
process 150, or are coupled to receive field signals, typically
generated by transducers. Other types of instruments or
devices may be connected to the system, as desired.

The computer system 102 may include a memory medium
on which test executive software according to one embodi-
ment of the present invention is stored. The test executive
software may allow a user to create, configure, and/or control
test executive sequence execution for various test applica-
tions, such as production and manufacturing test applications.
As described below, the test executive software may include
functionality for performing multiple tests in a test executive
sequence. The test executive software, possibly in the form of
additional programs, may also provide means for generating
the test executive sequence, e.g., in response to user input.

The term “memory medium” is intended to include an
installation medium, e.g., a CD-ROM, floppy disks 104, or
tape device; a computer system memory or random access
memory such as DRAM, SRAM, EDO RAM, Rambus RAM,
etc.; or a non-volatile memory such as a magnetic media, e.g.,
a hard drive, or optical storage. The memory medium may
comprise other types of memory as well, or combinations
thereof. In addition, the memory medium may be located in a
first computer in which the programs are executed, or may be

20

25

30

35

40

45

50

55

60

65

10

located in a second different computer that connects to the
first computer over a network, such as the Internet. In the
latter instance, the second computer may provide program
instructions to the first computer for execution. The host
computer CPU executing code and data from the memory
medium may comprise a means for implementing the meth-
ods described below.

FIG. 3—Computer System Block Diagram

FIG. 3 is a block diagram of the computer system illus-
trated in FIG. 2. It is noted that any type of computer system
configuration or architecture can be used as desired, and FIG.
3 illustrates a representative PC embodiment. It is also noted
that the computer system may be a general purpose computer
system as shown in FIG. 2, a computer implemented on a VXI
card installed in a VXI chassis, a computer implemented on a
PXI card installed in a PXI chassis, or other types of embodi-
ments. Elements of a computer not necessary to understand
the present invention have been omitted for simplicity.

The computer 102 includes at least one central processing
unitor CPU 160 that is coupled to a processor or host bus 162.
The CPU 160 may be any of various types, including an x86
processor, e.g., a Pentium class, a PowerPC processor, a CPU
from the SPARC family of RISC processors, as well as others.
Main memory 166 is coupled to the host bus 162 by means of
memory controller 164.

The main memory 166 may store software according to one
embodiment of the present invention, such as test executive
software with functionality as described above with reference
to FIG. 2, and as described in detail below with reference to
FIGS. 7A-9B. The main memory 166 may also store operat-
ing system software as well as other software for operation of
the computer system, as well known to those skilled in the art.

The host bus 162 is coupled to an expansion or input/output
bus 170 by means of a bus controller 168 or bus bridge logic.
The expansion bus 170 is preferably the PCI (Peripheral
Component Interconnect) expansion bus, although other bus
types can be used. The expansion bus 170 includes slots for
various devices such as the data acquisition board 114 (of
FIG. 2) and a GPIB interface card 122 that provides a GPIB
bus interface to the GPIB instrument 112 (of FIG. 2). The
computer 102 further comprises a video display subsystem
180 and hard drive 182 coupled to the expansion bus 170.

As shown, a reconfigurable instrument 190 may also be
connected to the computer 102. The reconfigurable instru-
ment 190 may include a functional unit, also referred to as
configurable logic, such as a programmable logic device
(PLD), e.g.,an FPGA, or a processor and memory, which may
execute a real time operating system. Program instructions
may be downloaded and executed on the reconfigurable
instrument 190. In one embodiment, at least a portion of the
test executive software described herein may execute on the
reconfigurable instrument 190. In various embodiments, the
functional unit may be comprised on an instrument or device
connected to the computer through means other than an
expansion slot, e.g., the instrument or device may be con-
nected viaan IEEE 1394 bus, USB, or other type of port. Also,
the functional unit may be comprised on a device such as the
data acquisition board 114 or another device shown in FIG. 2.
Test Executive Software Components

FIG. 4 is a block diagram illustrating high-level architec-
tural relationships between elements of one embodiment of a
test executive software application. It is noted that FIG. 4 is
exemplary, and the present invention may be utilized in con-
junction with any of various test executive software applica-
tions or architectures. In one embodiment, the elements of
FIG. 4 are comprised in the TestStand test executive product
from National Instruments. As shown, the test executive soft-

US 8,234,089 B2

11

ware of FIG. 4 includes operator interface programs 202 for
interfacing to various software programs. The operator inter-
face programs 202 shown in FIG. 4 are for creating operator
interface programs using the LabVIEW, LabWindows/CVI,
and Visual Basic application development environments.
However, additional operator interface programs 202 may be
included for development with other application develop-
ment environments.

The test executive software of FIG. 4 also includes a
sequence editor 212 for creating and editing test executive
sequences. The sequence editor 212 and the operator inter-
face programs 202 interface to the test executive engine 220.
One or more process models 222 couple to the test executive
engine 220. The test executive engine 220 interfaces through
an adapter interface 232 to one or more adapters 240. The
adapters shown in FIG. 4 include the LabVIEW standard
prototype adapter, the C/CVI prototype adapter, the DLL
flexible prototype adapter, and the sequence adapter. The
LabVIEW standard prototype adapter interfaces to program
modules having a .VI extension, i.e., LabVIEW graphical
programs. The C/CVI prototype adapter interfaces to pro-
gram modules having a .dll, .lib, .obj, or .c extension. The
DLL flexible prototype adapter interfaces to program mod-
ules having a .dll extension. The sequence adapter interfaces
to sequence files.

The test executive engine 220 manages the execution of
test executive sequences. Sequences comprise steps that may
call external code modules. By using module adapters 240
that have the standard adapter interface 232, the test executive
engine 220 can load and execute different types of code
modules. Thus, the test executive may be independent from
particular application development environments (ADEs)
used to create the code modules. In one embodiment, the test
executive may use a special type of sequence called a process
model to direct the high-level sequence flow. The test execu-
tive engine 220 may implement an API used by the sequence
editor 212 and run-time operator interfaces 202.

Test Executive Sequence Editor

The sequence editor 212 may be an application program in
which the user creates, modifies, and/or debugs test executive
sequences. The sequence editor 212 may have a graphical
user interface (GUI) enabling a user to efficiently create a test
executive sequence for testing a system or unit under test. For
example, the sequence editor 212 may provide the user with
easy access to test executive features, such as step types, step
properties, sequence parameters, step result collection, etc.

FIG. 5 illustrates one example of a test executive sequence,
created according to one embodiment of a sequence editor
212. The exemplary sequence of FIG. 5 comprises a plurality
of test executive steps operable to test various aspects of a
computer system. For example, the sequence includes a
“ROM” step to test the computer’s read-only memory, a
“RAM?” step to test the computer’s random access memory,
etc. Each step may call an external code module that interacts
with the computer system to perform the desired test. The user
may also specify various properties for each step that affect
the way the test executive software manages the execution of
the step. For example, FIG. 6 illustrates an exemplary dialog
box for the “Video” step. As shown, a “Run Options” property
page is selected in FIG. 6. The “Run Options” property page
enables the user to specify various options for the step, such as
whether to record test results for the step, whether to break
execution when the step is reached, whether to pre-load the
step when opening the sequence file, etc.

In one embodiment, the sequence editor 212 may also
include an execution window that provides debugging tools,
e.g., those found in application development environments

20

25

30

35

40

45

50

55

60

65

12

such as LabVIEW, LabWindows/CVI, Microsoft Visual
C/C++, Microsoft Visual Basic, etc. These may include fea-
tures such as breakpoints, single stepping, tracing, a variable
display, and a watch window.

In one embodiment, in the sequence editor 212, the user
may start multiple concurrent executions. Multiple instances
of the same sequence can be executed, and different
sequences can be executed at the same time, e.g., as separate
threads in a multi-threaded system. Executing multiple
instances of the same sequence on different execution threads
enables parallel testing of multiple UUTs, as described
herein. In one embodiment, each execution instance may
have its own execution window. In trace mode, the execution
window may display the steps in the currently executing
sequence. When execution is suspended, the execution win-
dow may display the next step to execute and provide single-
stepping options.

Additional functionality of the sequence editor 212 accord-
ing to embodiments of the present invention are described
below with reference to FIGS. 7A-9B.

Test Executive Engine

The test executive engine 220 may be used when creating,
editing, executing, and debugging test executive sequences.
The test executive engine 220 may also provide a test execu-
tive engine application programming interface (API) that
enables another program to interface with the test executive
engine 220 in order to perform these actions. In one embodi-
ment, the test executive engine 220 may export an object-
based or component-based API, which in one embodiment
may be an ActiveX Automation API. The sequence editor 212
and run-time operator interfaces 202 may use the test execu-
tive engine API. The engine API may be called from any
programming environment able to use the API. For example,
where the API comprises an ActiveX Automation API, the
engine API may be called from any programming environ-
ment that supports access to ActiveX Automation servers.
Thus, in various embodiments, the engine API may be called
from test modules written in various programming environ-
ments, including test modules that are written in LabVIEW,
LabWindows/CVI, Microsoft Visual C++, Microsoft Visual
Basic, Java, etc.

One task performed by the test executive engine 220 is to
manage the execution of test executive sequences. Executing
a sequence may comprise executing steps included in the
sequence. Not all steps in the sequence are necessarily
executed. For example, the user may configure some steps to
be skipped, e.g., depending on execution results of previous
steps. For a step that references a user-supplied code module,
executing the step may comprise executing the respective
code module. In addition to these user-supplied code modules
being executed, for each step, additional program instructions
may be executed, wherein these additional program instruc-
tions implement additional functionality specified for the
step. These additional program instructions may be specified
by the test executive software, rather than being defined by the
respective user-supplied code module for the step. As one
example, when including a step in a sequence, the user may
configure execution results of the step to be collected. In this
example, when the step is executed, program instructions to
store the step results accordingly may be executed in addition
to the program instructions of a user-supplied code module
that the step references. It is noted that not all steps may
reference a user-supplied code module. For example, the test
executive may provide some step types that primarily affect
various aspects of sequence execution and are not designed to
reference user-supplied code modules.

US 8,234,089 B2

13
FIGS. 7A and 7B—Auto-Scheduling of a Test Executive
Sequence

FIGS. 7A and 7B illustrate an approach to (substantially)
parallel test scheduling, where a plurality of tests are to be
performed on a plurality of UUTs using a respective plurality
of resources, according to one embodiment. More specifi-
cally, FIGS. 7A and 7B illustrate an approach for performing
the tests illustrated in prior art FIGS. 1A and 1B, where three
tests are performed on four UUTs. It is noted that as used
herein, the term “resource” refers to one or more devices,
components, and/or programs used to perform a test, e.g.,
instruments, plug-in cards, etc. Also, as used herein, the term
“test” refers to one or more operations performed on a unit
using a resource. Thus, a test may itself include multiple
sub-tests (which are themselves tests).

As illustrated in FIG. 7A, in one embodiment, the plurality
of'tests may be included in a test executive sequence. The test
executive sequence may include at least one auto-schedule
block, which may include a plurality of auto-scheduled sec-
tions. Each auto-scheduled section may specify a respective
test of the plurality of tests, and a respective resource of the
plurality of resources for use in performing the respective test.

As FIG. 7A shows, in this embodiment, the test sequence
includes an auto-schedule block or group. In one embodi-
ment, the auto-schedule block may include a begin step,
indicating initiation of the auto-schedule block, the plurality
of auto-scheduled sections, and an end step, indicating termi-
nation of the auto-schedule block. The begin step may include
(possibly implicit) code or instructions to manage processing
and execution of the auto-scheduled sections, for example,
iteratively searching through the sections, as described in
detail below with reference to FIG. 8. Similarly, the end step
may have associated code that performs various functions or
operations related to the termination of the testing sequence
of the auto-schedule block, e.g., clean-up operations, etc.

In the embodiment shown, each of the plurality of auto-
scheduled sections (in this case, three) includes a lock
resource step indicating locking and acquiring a respective
resource, a respective test of the plurality of tests which uses
the locked and acquired resource, and an unlock resource step
indicating unlocking and releasing the resource.

More particularly, FIG. 7A illustrates an example test
sequence, e.g., a test executive sequence, where a first test,
Test 1, requires use of a DMM, a second test, Test 2, requires
use of an oscilloscope, and a third test, Test 3, requires use of
a camera. The sequence of tests is to be performed on each of
the four UUTSs. As mentioned above, when a resource is used
exclusively for a test, the resource is typically locked prior to
the test execution, then released after the test execution. Thus,
in the test sequence shown in FIG. 7A, each test step is
protected with resource locks to avoid collisions, i.e., simul-
taneous requests for resources, since there is only one
instance of each resource (e.g., DMM, oscilloscope, camera)
and the resources may be shared (sequentially) by all the
UUTs being tested in parallel (at least substantially).

Thus, as FIG. 7A shows, for each UUT, the DMM is to be
locked, then Test 1 performed. Once Test 1 is complete, the
DMM is to be unlocked. The test sequence also specifies that
the oscilloscope (“scope”) is to be locked, Test 2 performed
on the UUT, and upon completion of Test 2 the oscilloscope
unlocked, as shown. Finally, the test sequence specifies that
the camera is to be locked, Test 3 performed on the UUT, and
the camera unlocked. Once all three of these tests are per-
formed on the UUT, the test sequence for that UUT is termi-
nated, as indicated by the END test step.

It should be noted that in the test sequence shown, although
the three tests are specified in a particular order, actual per-

20

25

30

35

40

45

50

55

60

65

14

formance of the tests for each UUT may occur in different
orders, depending on resource availability, as illustrated in
FIG. 7B and described below. Thus, using the approach
described herein the various tests may preferably be per-
formed on the UUTs in various orders as needed to improve
the efficiency of the testing procedure. It should be further
noted that in a preferred embodiment, the test executive
sequence shown is performed or implemented by each of a
plurality of execution threads, where each thread corresponds
to a respective UUT. Further details of using multiple execu-
tion threads to perform multiple tests in (substantially) par-
allel fashion are presented below with reference to FIG. 8.

Although the embodiment shown in FIG. 7A is imple-
mented as a set of steps organized into an auto-schedule
block, other approaches are also contemplated. For example,
in an alternative embodiment, the plurality of tests may be
included in a selection structure, such as a case statement, as
is well-known in the art. Most programming languages
include a case or select/switch statement where each case is
labeled with a data item or variable value that is matched
against an input value. This type of selection structure may be
implemented in a variety of ways, including, but not limited
to, graphical programming languages such as National
Instruments “G” language, used in the LabVIEW graphical
program development environment, and text-based program-
ming languages, such as C, C++, etc.

For example, a typical textual language case statement may
have the following form:

switch (k)

case kValueOne:
// case-specific code here
break;

case kValueTwo:
// other case-specific code here
break;

case kValueThree:
// further case-specific code here
break;

where the value of k determines which case is executed.
A textual Auto-schedule case statement corresponding to
the test executive sequence of FIG. 7A may thus look like:

autoschedule

case “DMM1”:
// Use DMM 1 to perform test 1
break;

case “Scope”:
// Use Oscilloscope to perform test 2
break;

case “Camera”:
// Use Camera to perform test 3
break;

where the selection structure may include the at least one
auto-schedule block containing the plurality of auto-sched-
uled sections, as described above.

Thus, in an embodiment where the selection structure is a
case statement, each of the plurality of auto-scheduled sec-
tions may comprise or may be included as a respective case in
the case statement. In one embodiment, each respective case
may be selectable based on a label indicating the respective

US 8,234,089 B2

15

resource, where the respective resource is not currently in use.
In another embodiment, the label for each case may indicate
the test instead of the resource, where the associated resource
is implied by the test. The locking and/or unlocking function-
ality for resource management may be performed by case-
specific code inside each respective case section, or alterna-
tively, by implicit program instructions connected or
associated with the case. Additionally, other functionality
required by the testing process may also be provided by
explicit or implicit code.

For example, note that in the auto-schedule case statement
shown, there is no explicit “k value” used to select the case,
i.e., to match with the case label. Rather, the “auto-schedule”
block indicator at the beginning of the case statement may
have associated code that manages an iterative process
whereby each case is considered based on resource availabil-
ity and whether the case, i.e., the test, has already been per-
formed on the unit. In one embodiment, each “case”, e.g.,
case “Camera”, may have associated code that determines the
availability of the respective resource and/or keeps track of
whether the test has already been performed on the unit.

Alternatively, explicit code may be provided for the above
described functionality. For example, the case statement may
be embedded in a loop for iterative consideration of each
case/test. As another example, an explicit function may be
provided that determines the next test to be performed.

The following pseudo-code, based loosely on C/C++, illus-
trates one embodiment of a text-based implementation of the
above test sequence:

// AutoSchedule
char* resourceNames[3]
void * sectionAddress[3]
int sectionExecuted[3] =
double timeOut = 10.0;
void * newlnstructionPointer;
DetermineNextSection;
newlnstructionPointer =
__AcquireLockAndGetCodeAddressForNextAutoScheduleSection(3,
resourceNames,
sectionAddresses, sectionExecuted, &EndAutoSchedule, timeOut);
asm

{

mov eip, newInstructionPointer

{“DMM1”, “Scope”, “Camera”};
{&Sectionl, &Section2, &Section3};
{FALSE, FALSE, FALSE};

Sectionl:
UseDMM1(); // user supplied code for sectionl compiled to here
__ReleaseLock(resourcesNames[0]);
goto DetermineNextSection;

Section2:
UseScope(); // user supplied code for section2 compiled to here
__ReleaseLock(resourcesNames[1]);
goto DetermineNextSection;

Section3:
UseCamera(); // user supplied code for section3 compiled to here
_ ReleaseLock(resourcesNames[2]);
goto DetermineNextSection;

EndAutoSchedule:
// user supplied code immediately following the autoschedule block.

In this embodiment, the compiler implicitly supplies the
_AcquireL.ockAndGetCodeAddress-
ForNextAutoScheduleSection and _ReleaseLock functions.
Itis noted that the implementation code (or at least analogous
code) for this approach could be compiled code generated for
any language-specific autoschedule construct.

Thus, any of a variety of approaches may be used to imple-
ment various embodiments of the present invention, includ-
ing graphical and text-based programming languages. Addi-

20

25

30

40

45

50

55

60

65

16

tionally, both explicit and implicit constructs may be
employed to implement the auto-schedule functionality
described herein. Further details regarding the performance
of multiple tests on one or more UUTs are presented below
with reference to FIG. 8.

FIG. 7B is a table illustrating execution flow of testing four
UUTs (substantially) in parallel using the test sequence of
FIG.7A, according to one embodiment. As FIG. 7B shows, in
contrast to the prior art approach of FIG. 7B where the
ordered test sequence was applied to each UUT in a staggered
fashion to prevent resource request conflicts, in the auto-
schedule test sequence of FIG. 7B, the availability of
resources required for each test may be used to determine the
particular ordering of'tests. It should be noted that the execu-
tion flow shown is a simplified example of an execution flow,
and is intended to illustrate broad concepts of the present
invention. In other words, the execution flow shown is exem-
plary only, and is not intended to limit the actual execution
flow of different embodiments of the present invention to any
particular form.

In the example shown, while Test 1 is performed on UUT
1 (the first unit under test), during which the respective
resource for Test 1 is locked, Test 2 is performed on UUT 2,
and Test 3 is performed on UUT 3. Thus, in contrast with the
prior art approach in which UUT 1, UUT 2, and the resources
associated with Test 2 and Test 3, are idle while Test 1 is
performed on UUT 1, in this embodiment, all of the tests are
performed (on the respective UUTs) in parallel.

As FIG. 7B also shows, once the initial tests, i.e., the first
column of tests in the table, are complete, the tests and their
associated resources may be re-allocated to different UUTs.
In other words, the respective resources used by each test for
the respective UUTs may be unlocked and released, then used
to perform the test on another UUT. For example, in the
embodiment shown, in the second column of tests, Test 2 is
performed on UUT 1, Test 3 is performed on UUT 2, and Test
1 is performed on UUT 4.

It is noted that when there are more units to be tested than
tests, there may be slots in the schedule where a UUT is idle,
as indicated by the blank slots in the table of FIG. 7B. How-
ever, itis further noted that in this case no testing resources are
idle for any of the schedule slots. Conversely, when there are
more tests to be performed than units to be tested, there may
be schedule slots where testing resources, but no UUTs, will
be idle.

In the third column of the table, the tests and their associ-
ated resources are again respectively re-allocated to different
UUTs, with Test 3 performedon UUT 1, Test 1 on UUT 3, and
Test 2 on UUT 4, as shown. Once this third test battery is
complete, then in the fourth column of the table, Test 1, Test
2, and Test 3 are performed on UUT 2, UUT 3, and UUT 4,
respectively, after which the test executive sequence is com-
plete, i.e., terminated.

A visual comparison of the execution flows of FIGS. 7B
and 1B may be made to determine an approximate difference
in the efficiencies of the two approaches. For example, simply
counting the number of blank slots in the two execution flows
shows that in the prior art approach there are 12 schedule slots
where UUTs are idle, i.e., where no test is being performed on
a UUT. In contrast, in the schedule of FIG. 7B, there are four
blank schedule slots where a UUT is not being tested. Thus,
according to this measure, the approach illustrated in F1G. 7B
is one third as inefficient as the prior art approach. It is further
noted that the total time required to perform the entire testing
procedure is similarly reduced by a third, in that there are six
columns in the prior art table, and only four columns in the
table of FIG. 7B. It is noted that the above description is an

US 8,234,089 B2

17

idealized case, in that each of the tests requires the same
amount of time to be performed, and that in real world appli-
cations the various tests may require substantially different
times to be performed.

Further details of the performance of multiple tests on one
or more UUTs are presented below with reference to FIG. 8.
FIG. 8—Method for Performing Multiple Tests on One or
more Units

FIG. 8 is a flowchart diagram illustrating one embodiment
of'a method for performing a plurality of tests on one or more
units, where portions of at least a subset of the plurality of
tests are performed in parallel, or at least substantially in
parallel. More specifically, FIG. 8 illustrates one embodiment
of' a method performed by an execution thread, e.g., associ-
ated with a unit under test (UUT). As described above, each
test preferably has associated with it a respective resource,
used to perform the test on the UUT. It is noted that in various
embodiments of the methods described herein, some of the
steps may be performed in a different order than shown, or
may be omitted. Additional steps may also be performed as
desired.

In an embodiment where a plurality of tests are to be
performed on each of a plurality of units, each of the plurality
of'units may have an associated execution thread for perform-
ing an embodiment of the method of FIG. 8, where at least a
subset of the threads execute in (substantially) parallel fash-
ion. Thus, the method of FIG. 8 may be considered to be
performed by each of the plurality of threads for a respective
unit, where the threads cooperate and/or compete for
resources to perform specific tests. As was noted above, a test
may be a single operation, or may be two or more operations
or subtests. Similarly, a resource may be a single device or
component (or program), or may include multiple devices or
components (or programs). Thus, when a test is performed on
a unit using a resource, it may be that multiple subtests (i.e.,
tests) are performed on the unit using a plurality of devices. It
should be noted that in other embodiments, described below,
the method of FIG. 8 may be performed by a plurality of
threads to perform a plurality of tests on a single unit.

As FIG. 8 shows, in 802, the plurality of tests may be
searched for a next test to perform on the unit. In one embodi-
ment, the plurality of tests may be searched to determine a
respective test to perform on the unit where 1) the respective
test has not been performed on the unit, and 2) the respective
resource of the respective test is available for use. In other
words, an attempt may be made to determine a test whose
associated resource is not currently being used to perform
another test, or to perform the same test on another unit.

As indicated in FIG. 8, if in 804 the test is not found, e.g.,
a test that has not yet been performed on the unit and that has
an available resource, then in 805, the method may check
against a time-out condition, and if a time-out has occurred,
the method may exit, as shown. If no time-out has occurred,
then the method may continue searching, as indicated in 802.
In other words, in the embodiment shown, if the respective
test for the respective unit is not found, the method may
continue the searching until the respective test is found, or an
ending condition, e.g., a time-out condition, is met.

If in 804, the respective test is found, then in 806 the
respective resource of the respective test may be locked,
where locking includes acquiring the respective resource. In
other words, once a free resource for a desired test is deter-
mined, the method may lock the resource, thereby excluding
use of the resource by execution threads for other tests. The
respective test may then be performed on the unit, as indicated
in 808. In other words, the locked resource may be used to
perform the associated test on the UUT.

20

25

30

35

40

45

50

55

60

65

18

One the test has been performed, then in 810, the respective
resource of the respective test may be unlocked, where
unlocking includes releasing the respective resource. Said
another way, when the test has been performed, the resource
may be freed for use by other tests/threads. As noted above, in
one embodiment, multiple execution threads may operate
substantially in parallel, performing respective tests on asso-
ciated UUTs as the respective resources become available. In
other words, two or more of the respective tests on the respec-
tive units may be performed substantially concurrently, e.g.,
by respective execution threads. In another embodiment, at
least portions of the searching, locking, performing, and
unlocking for a plurality of the respective tests may be per-
formed substantially concurrently.

As FIG. 8 also shows, after the respective resource has been
unlocked in 810, then in 811, a determination may be made as
to whether an ending condition is met, and if so, the method
may exit or terminate, as shown. If the ending condition is not
met, then the method may proceed searching for another test
to perform on the unit, as shown in 802 and described above.
In one embodiment, searching for the next test may include
iteratively searching. For example, in one embodiment, the
searching, locking, performing, and unlocking may be per-
formed by the execution thread until 1) each of the plurality of
tests has been performed on the unit, and/or 2) an ending
condition is met. Considering all of the execution threads
together, the searching, locking, performing, and unlocking
may be performed (by the various execution threads) until 1)
each of the plurality of tests has been performed, e.g., on each
of'the plurality ofunits, and/or 2) the ending condition is met.
The ending condition may include time-outs, equipment fail-
ure, manual or automatic termination of the test process,
and/or any other type of ending condition.

In other embodiments, additional constraints may be
imposed on the search conditions, e.g., on the selection cri-
teria. For example, in one embodiment, certain of the tests to
be performed on a unit may need to be performed in a par-
ticular order, e.g., a test A may need to be performed before a
test B is performed on that unit. As another example, in
embodiments where multiple tests may be performed on a
single unit (substantially) concurrently, there may be certain
combinations of resources which are not allowed, thus, a
selection which might otherwise be acceptable may be
rejected (at least for a time) if the resource combination
constraint would be violated. Thus, although in some embodi-
ments, the order of the tests to be performed on each unit may
not matter, in other embodiments, at least some ordering
constraints may be imposed on the process.

In a further elaboration of the above embodiment, where
multiple tests are to be performed on multiple units, the
method may include performing a first test of the plurality of
tests on a first unit using a first resource of the plurality of
resources. During the performing of the first test, the method
may search for a second test of the plurality of tests, where, as
noted above, 1) the second test requires a second resource of
the plurality of resources, and 2) the second resource is not
currently being used. If the second test is found, then the
second test is performed on a second unit using the second
resource, where performing the second test on the second unit
is performed substantially concurrently with at least a portion
of said performing the first test on the first unit.

As described above, performing the first test of the plural-
ity of tests on a first unit using a first resource of the plurality
of resources may include locking the first resource to exclude
use of the first resource by others of the plurality of tests,
where locking includes acquiring the first resource for per-
forming the first test. Upon completion of the first test, the

US 8,234,089 B2

19

method may unlock the first resource, where unlocking
includes releasing the first resource for use in performing the
first test on another of the plurality of units.

Similarly, the method may further include searching for a
third test of the plurality of tests, where 1) the third test
requires a third resource of the plurality of resources, and 2)
the third resource is not currently being used. If the third test
is found, then the third test may be performed on a third unit
using the third resource, where performing the third test on
the third unit is performed substantially concurrently with
performing the first test on the first unit and/or performing the
second test on the second unit.

Additionally, the method may also include completing the
performance of the first test on the first unit using the first
resource, where completing includes unlocking and releasing
the first resource for use by others of the plurality of tests, and
performing the first test on a different one of the plurality of
units using the first resource. In other words, once the first test
on the first unit is done, another thread, e.g., associated with
a different unit, may operate to perform the first test on the
(different) unit.

In one embodiment, the method may further include
searching for another, i.e., a different, test of the plurality of
tests to be performed on the first unit, wherein 1) the different
test requires another, i.e., a different, resource of the plurality
of resources, and 2) the different resource is not currently
being used. Ifthe different test is found, then the method may
perform the different test on the first unit using the different
resource, where performing the different test on the first unit
is performed substantially concurrently with performing the
first test on the different one of the plurality of units. In other
words, once the first test has been performed on the first unit,
e.g., by a first thread, not only may the method find and
perform another test on the first unit, but the method may also
find and perform the first test on another unit, assuming that
the first test has not yet been performed on the other unit.

The general concepts presented with reference to FIG. 8
may also be applied to performing multiple tests on a single
unit. In other words, the method may perform multiple tests
on a single unit, where at least a portion of two or more of the
tests are performed substantially concurrently. In this
embodiment, multiple execution threads may be launched,
where each thread may perform an embodiment of the
method of FIG. 8 in order to perform a particular test on the
UUT. Thus, in one embodiment, if there are three tests to be
performed on the unit, three threads may be launched, where
each thread is capable of performing any of the three tests on
the unit. In other embodiments, the number of threads may
not equal the number of tests, but rather two or more threads
may operate to perform three or more tests between them.

Thus, similar to the method described above, in one
embodiment, the method may include searching the plurality
of tests to determine a respective test, where the respective
test has not been performed on the unit, and wherein the
respective resource of the respective test is available for use.
If the respective test is found, the respective resource of the
respective test may be locked (acquired), and the respective
test performed on the unit. The respective resource of the
respective test may then be unlocked (released). In a preferred
embodiment, at least portions of the searching, locking, per-
forming, and unlocking for a plurality of the respective tests
may be performed substantially concurrently. The searching,
locking, performing, and unlocking may be performed itera-
tively until each of the plurality of tests has been performed on
the unit, or until a stopping condition is met, e.g., due to
hardware problems, manual termination, etc. Thus, various

20

25

30

35

40

45

50

55

60

65

20

embodiments ofthe method of FIG. 8 may be used to perform
a plurality of tests on a single unit.

It should be noted that in other embodiments, the two
approaches described above may be combined. In other
words, multiple threads may be used to perform a plurality of
tests on each of a plurality of units, where at least a portion of
the tests are performed in substantially parallel fashion, and in
doing so, multiple tests may be performed (by multiple
threads) on a respective unit in a substantially concurrent
manner. Thus, efficiencies resulting from parallel execution
of multiple threads may be two-fold, in that not only may
different tests be performed on respective different units (in
parallel), but different tests may be performed on single units
(in parallel), as well.

In some situations, the above described methods may result
in thread “starvation”, where various factors such as process-
ing bias and/or circumstance may prevent or exclude a thread
from acquiring a resource to perform a test. In other words,
because each of the threads are effectively competing for test
resources, in some cases a particular thread may be prevented
from ever (or at least for a relatively long time, e.g., until a
time-out condition occurs) acquiring a resource. Thus, in an
embodiment of the method where the searching, locking,
performing, and unlocking are performed by a respective
execution thread, each of the plurality of resources may be
associated with it a respective queue structure or its equiva-
lent, e.g., a FIFO (first in, first out), for storing threads waiting
for the respective resource. In this case, searching the plural-
ity of tests to determine a respective test may include each
thread examining the plurality of resources to determine a
free resource (i.e., unlocked), and if a free resource is found,
determining the respective test associated with the free
resource. If no free resource is found, the method may deter-
mine a resource of the plurality of resources with fewest
threads in the FIFO for that resource, and add the thread to the
FIFO for that resource.

In other words, each resource may have associated with it
a queue that allows threads to wait for a particular resource to
become available. By selecting the FIFO with the least num-
ber of queued threads (if no free resources for needed tests are
found), the thread is added to the waiting list for the resource
with the least current demand.

In one embodiment, when the respective resource is
acquired, i.e., when the execution thread locks the resource,
the thread may be removed from any other FIFOs storing the
thread. In other words, once the thread successfully finds a
free resource, the thread may be removed from any FIFOs in
which the thread is still waiting.

FIGS. 9A and 9B—Creating an Auto-Schedule Test
Sequence

While in many embodiments, the auto-scheduled test
sequences described above may be generated manually by a
user, e.g., using various development environments such as
National Instruments LabVIEW and LabWindows/CVI, the
Visual Basic application development environments, and
various text-based development environments, it may be
desirable to provide means for more easily generating auto-
scheduled test sequences. Thus, in one embodiment, program
instructions implementing a tool or interface for generating
auto-schedule test sequences may be provided in the form of
a stand-alone application, a dynamic linked library, and/or a
plug-in program module for an existing application, such as,
for example, National Instruments TestStand. In another
embodiment, the program instructions may simply be inte-
grated into an existing program, thereby extending the func-
tionality of the program to include the desired features.

US 8,234,089 B2

21

FIG. 9A illustrates on embodiment of a graphical user
interface (GUI) for creating an auto-schedule test executive
sequence. FIG. 9B illustrates an example test sequence file
generated using the GUI of FIG. 9A. It should be noted that
the embodiment shown in FIGS. 9A and 9B is exemplary
only, and is not intended to limit the GUI to any particular
form, functionality, or appearance.

As mentioned above, in a preferred embodiment, for a test
sequence to be performed in auto-scheduled mode, at least
one auto-scheduled block plus one or more auto-scheduled
sections may be included. Thus, inthe GUI shown in FIG. 9A,
menu options may be presented to the user for creating,
modifying, and otherwise specifying the auto-scheduled
block and the one or more auto-scheduled sections. In other
words, in one embodiment, a test sequence may be created in
response to user input, where creating the test sequence
includes receiving user input requesting an automatic sched-
uling feature, and programmatically creating one or more
steps in the test sequence to enable the automatic scheduling
feature. In one embodiment, the one or more steps may
include at least one auto-schedule block, including a plurality
of auto-scheduled sections, where each auto-scheduled sec-
tion specifies a respective test of the plurality of tests, and a
respective resource of the plurality of resources for use in
performing the respective test, as was described in detail
above.

In other words, when creating a sequence, the user may
simply insert a “Begin Auto-Schedule” step. This step may
include configuration menus that allow the user to add auto-
scheduled sections and/or a timeout, e.g., by right clicking on
the “Begin Auto-Schedule” step and selecting the option
“Add Auto-Scheduled Section”, as shown in FIG. 9A. Thus,
in one embodiment, for ease of use, the GUI may automati-
cally insert additional steps that are needed.

In the embodiment shown in FIG. 9A, a “Begin Auto-
Schedule” step and a corresponding “END” step have been
generated, e.g., in response to user input received by the GUI.
As FIG. 9A also shows, once the begin/end steps of the
auto-schedule block have been added to the test sequence file,
the user may select another menu option indicating the addi-
tion of an auto-scheduled section, resulting in insertion of an
auto-scheduled section (including a “Lock Resource” and an
“Unlock Resource” step) as well as an “End Auto-Schedule”
step. In the example shown, a label is also added that shows
where the user test steps must be added for each auto-sched-
uled section. Note that in the embodiment shown, prior to
receiving user input specifying the particular resource to be
used by these additional steps, the GUI describes the “Lock-
Resource” step as “Not Configured”. Thus, in response to
receiving user input indicating the addition of an auto-sched-
ule section, the GUI may programmatically insert one or
more steps in the test sequence for specifying a respective test
to be performed. This operation may be repeated as many
times as needed for each application. For example, if an
application requires locking three sets of instruments, then
three auto-scheduled sections may be inserted.

Once an auto-scheduled section has been inserted, the
resource (or group of resources) that section will utilize may
be configured. For example, in one embodiment, the resource
may be configured by right clicking on the corresponding
“Lock Resource” step and selecting the option “Configure
Lock Resource A pop-up dialog may be displayed and
the user may provide input, e.g., a string, indicating the name
of the resource to lock, or a selection from a list of available
resources. If the section utilizes more than one resource, an
array of strings may be entered, where each string contains
the name of the resource to lock. The “Lock Resource” step

20

25

30

35

40

45

50

55

60

65

22

may automatically create a Lock for each of the names indi-
cated, i.e., manual creation of the locks may not be required.
In one embodiment, if a Lock for an indicated resource
(name) already exists, the “Lock Resource” step type may
connect to the existing Lock.

Thus, in a preferred embodiment, further user input may be
received by the GUI specifying the resource and the desired
steps needed to perform the respective test using that
resource, as indicated by the “Insert Step” menu option
shown in FIG. 9A. The user may thus add and specify suc-
cessive auto-schedule sections for the auto-schedule block,
where each section indicates or performs a respective test
using a respective resource.

As mentioned above, in one embodiment, the auto-sched-
uled step types may include a timeout feature, thus, in addi-
tion to specifying the auto-schedule sections, an option may
be presented to the user for specifying a time-out condition
for the auto-schedule block, as also shown in the GUI of FIG.
9A. In one embodiment, the specified timeout may be applied
to all of the auto-scheduled sections. In other words, the
auto-scheduled steps may be viewed as a group or block that
performs a particular function, e.g., a test suite, and thus, in
this embodiment, the timeout may be defined at the top level
and may be applied to every auto-scheduled section inside the
auto-schedule block. If an auto-scheduled block times-out, it
indicates that one of the auto-scheduled sections was not able
to acquire its resources within the specified time. In one
embodiment of the GUI of FIG. 9A, a timeout may be set by
right clicking on the “Begin Auto-Scheduled” step and select-
ing the option “Set Auto-Schedule Timeout . . . ”. A pop-up
dialog may be displayed presenting the option to enable or
disable the timeout for the current block. In one embodiment,
the GUI may also allow the user to specify whether a timeout
causes a runtime error or simply terminates.

It should be noted that the above approach may be used to
generate additional auto-schedule blocks, with respective
auto-schedule sections, time-out specifications, etc. It should
be further noted that although the above embodiments are
described in terms of menus and dialogs, any other types of
interface elements may be used as desired, including, for
example, drag-and-drop techniques, e.g., where a user drags
and drops icons representing the various test steps onto the
test sequence, text-based scripting or natural-language pars-
ing, wizard-based approaches, where a sequence of panels or
dialogs leads the user through the test sequence generation
process, and so on.

Thus, in various embodiments, auto-schedule test
sequences may be created that substantially improve efficien-
cies of test procedures by reducing testing resource idle time.
Additionally, the auto-schedule test sequences may be gen-
erated via a GUI, where the GUI programmatically inserts
steps and/or structures into the test sequence in response to
user input.

Various embodiments further include receiving or storing
instructions and/or data implemented in accordance with the
foregoing descriptions upon a carrier medium. Suitable car-
rier media include a memory medium as described above, as
well as signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as net-
works and/or a wireless link.

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.

US 8,234,089 B2

23

We claim:

1. A computer-implemented method comprising:

a computer system creating a test executive sequence in
response to user input, wherein creating the test execu-
tive sequence comprises:
the computer system including an auto-schedule block

inthe test executive sequence in response to user input
requesting inclusion of an automatic scheduling fea-
ture in the test executive sequence, wherein including
the auto-schedule block comprises displaying a visual
indication in the test executive sequence that an
execution order for test steps within the auto-schedule
block is not fixed and should be automatically deter-
mined during execution of the test executive
sequence; and
the computer system including a plurality of test steps in
the auto-schedule block in response to user input
selecting each respective test step of the plurality of
test steps and requesting inclusion of the respective
test step in the auto-schedule block, wherein each
respective test step specifies a corresponding test,
wherein an execution order for the plurality of test
steps is not fixed, and wherein including the plurality
of test steps in the auto-schedule block configures
their execution order to be automatically determined
during execution of the test executive sequence;
wherein the method further comprises the computer sys-
tem concurrently executing the test executive sequence
on a plurality of physical units under test (UUTs),
wherein each respective UUT comprises a respective
physical device, wherein the test executive sequence is
executed on each respective UUT by a respective thread;
wherein for each respective thread, the computer system
automatically determines an order in which the respec-
tive thread should execute the plurality of test steps in
response to determining that the plurality of test steps
are included in the auto-schedule block, wherein the
respective thread executes the plurality of test steps in
the determined order;
wherein the computer system determines that a first thread
should execute a first step of the plurality of test steps
before a second step of the plurality of test steps, and
wherein the computer system determines that a second
thread should execute the second step before the first
step.
2. The method of claim 1,
wherein each of the tests specified by the plurality of test
steps requires a respective physical resource;
wherein for each respective thread, said automatically
determining the order and said executing the plurality of
test steps in the determined order comprise:
programmatically searching the tests to select a respec-
tive test according to search criteria specifying that 1)
the respective test has not yet been performed on the
respective UUT corresponding to the respective
thread, and 2) the respective physical resource
required by the respective test is available for use;

locking the respective physical resource required by the
respective test, wherein said locking comprises
acquiring the respective physical resource;

the respective thread performing the respective test on
the respective UUT corresponding to the respective
thread; and

unlocking the respective physical resource required by
the respective test, wherein said unlocking comprises
releasing the respective physical resource.

20

25

30

35

45

50

55

60

65

24

3. The method of claim 2,

wherein said searching, said locking, said performing, and
said unlocking are repeatedly performed by the com-
puter system until each of the plurality of tests has been
executed by each respective thread.

4. The method of claim 2,

wherein said programmatically searching the tests com-
prises iteratively searching the tests.

5. The method of claim 1,

wherein each test step of the plurality of test steps requires
a respective physical resource;

wherein creating the test executive sequence further com-
prises:

for each respective test step of the plurality of test steps, the
computer system receiving user input specifying the
respective physical resource required by the respective
test step.

6. The method of claim 1,

wherein each of the tests specified by the plurality of test
steps requires a respective physical resource;

wherein for each respective thread, the order in which the
thread should execute the plurality of test steps is auto-
matically determined by the computer system based on
availability of the physical resources required by the
tests.

7. The method of claim 1,

wherein creating the test executive sequence further com-
prises the computer system including a plurality of auto-
scheduled sections in the auto-schedule block in
response to user input;

wherein said including the plurality of test steps in the
auto-schedule block comprises including each respec-
tive test step in a corresponding auto-scheduled section.

8. The method of claim 7, wherein each respective auto-

scheduled section in the plurality of auto-scheduled sections
includes:

a lock resource step, wherein the lock resource step indi-
cates locking a respective resource, wherein the test step
included in the respective auto-scheduled section
requires locking of the respective resource; and

an unlock resource step, wherein the unlock resource step
indicates unlocking the respective resource.

9. The method of claim 1,

wherein the auto-schedule block includes a begin step,
wherein the begin step indicates initiation of the auto-
schedule block;

wherein the auto-schedule block also includes an end step,
wherein the end step indicates termination of the auto-
schedule block;

wherein said including the plurality of test steps in the
auto-schedule block comprises including the plurality of
test steps between the begin step and the end step;

wherein the method further comprises the computer sys-
tem displaying the begin step and the end step within the
test executive sequence.

10. The method of claim 1, further comprising:

the computer system displaying the test executive
sequence on a display, wherein the displayed test execu-
tive sequence visually indicates that the plurality of test
steps are included in the auto-schedule block.

11. The method of claim 1,

wherein creating the test executive sequence further com-
prises the computer system receiving user input speci-
fying one or more ordering constraints imposed on at
least a subset of the plurality of test steps;

wherein for each respective thread, the order in which the
thread should execute the plurality of test steps is auto-

US 8,234,089 B2

25

matically determined by the computer system at least in
part based on the one or more ordering constraints.
12. The method of claim 1,
wherein said creating the test executive sequence com-
prises the computer system storing information in one or
more data structures, wherein the information in the one
or more data structures represents the test executive
sequence.
13. A non-transitory computer-readable memory medium
storing program instructions executable to:
create a test executive sequence in response to user input,
wherein in creating the test executive sequence the pro-
gram instructions are executable to:
include an auto-schedule block in the test executive
sequence in response to user input requesting inclu-
sion of an automatic scheduling feature in the test
executive sequence, wherein in including the auto-
schedule block the program instructions are execut-
able to display a visual indication in the test executive
sequence which visually indicates that an execution
order for test steps within the auto-schedule block is
not fixed and should be automatically determined dur-
ing execution of the test executive sequence; and
include a plurality of test steps in the auto-schedule
block in response to user input selecting each respec-
tive test step of the plurality of test steps and request-
ing inclusion of the respective test step in the auto-
schedule block, wherein each respective test step
specifies a corresponding test, wherein an execution
order for the plurality of test steps is not fixed, and
wherein in including the plurality of test steps in the
auto-schedule block the program instructions are
executable to configure their execution order to be
automatically determined during execution of the test
executive sequence;
wherein the program instructions are further executable to
concurrently execute the test executive sequence on a
plurality of physical units under test (UUTs), wherein
each respective UUT comprises a respective physical
device, wherein the test executive sequence is executed
on each respective UUT by a respective thread;
wherein for each respective thread, the program instruc-
tions are executable to automatically determine an order
in which the respective thread should execute the plu-
rality of test steps in response to determining that the
plurality of test steps are included in the auto-schedule
block; and
wherein the program instructions are executable to deter-
mine that a first thread should execute a first step of the
plurality of test steps before a second step of the plurality
of test steps, and wherein the program instructions are
executable to determine that a second thread should
execute the second step before the first step.
14. The computer-readable memory medium of claim 13,
wherein each of the tests specified by the plurality of test
steps requires a respective physical resource;
wherein the program instructions are executable to:
programmatically search the tests to select a respective
test according to search criteria specifying that 1) the
respective test has not yet been performed on a respec-
tive UUT, and 2) the respective physical resource
required by the respective test is available for use;
lock the respective physical resource required by the
respective test, wherein said locking comprises
acquiring the respective physical resource;
perform the respective test on the respective UUT; and

20

25

30

35

40

45

50

55

60

65

26

unlock the respective physical resource required by the
respective test, wherein said unlocking comprises
releasing the respective physical resource.

15. The computer-readable memory medium of claim 14,

wherein for each respective UUT of the plurality of UUTs,
the program instructions are executable to perform said
searching, said locking, said performing, and said
unlocking repeatedly until each of the plurality of tests
has been performed on the respective UUT.

16. The computer-readable memory medium of claim 14,

wherein said programmatically searching the tests com-
prises iteratively searching the tests.

17. The computer-readable memory medium of claim 13,

wherein each test step of the plurality of test steps requires
a respective physical resource;

wherein in creating the test executive sequence the pro-
gram instructions are further executable to:

for each respective test step of the plurality of test steps,
receive user input specifying the respective physical
resource required by the respective test step.

18. The computer-readable memory medium of claim 13,

wherein each of the tests specified by the plurality of test
steps requires a respective physical resource;

wherein for each respective thread, the program instruc-
tions are executable to automatically determine the
order in which the thread should execute the plurality of
test steps based on availability of the physical resources
required by the tests.

19. The computer-readable memory medium of claim 13,

wherein the program instructions are further executable to
include a plurality of auto-scheduled sections in the
auto-schedule block in response to user input;

wherein in including the plurality of test steps in the auto-
schedule block, the program instructions are executable
to include each respective test step in a corresponding
auto-scheduled section.

20. The computer-readable memory medium of claim 19,

wherein each respective auto-scheduled section in the plural-
ity of auto-scheduled sections includes:

a lock resource step, wherein the lock resource step indi-
cates locking a respective resource, wherein the test step
included in the respective auto-scheduled section
requires locking of the respective resource; and

an unlock resource step, wherein the unlock resource step
indicates unlocking the respective resource.

21. The computer-readable memory medium of claim 13,

wherein the auto-schedule block includes a begin step,
wherein the begin step indicates initiation of the auto-
schedule block;

wherein the auto-schedule block also includes an end step,
wherein the end step indicates termination of the auto-
schedule block;

wherein the program instructions are executable by the at
least one processor to include the plurality of test steps in
the auto-schedule block between the begin step and the
end step;

wherein the program instructions are further executable to
display the begin step and

the end step within the test executive sequence.

22. The computer-readable memory medium of claim 13,

wherein the program instructions are further executable to:

display the test executive sequence on a display, wherein
the displayed test executive sequence visually indicates
that the plurality of test steps are included in the auto-
schedule block.

US 8,234,089 B2

27

23. The computer-readable memory medium of claim 13,
wherein in creating the test executive sequence the pro-
gram instructions are further executable to receive user
input specifying one or more ordering constraints
imposed on at least a subset of the plurality of test steps;
wherein for each respective thread, the program instruc-
tions are executable to automatically determine the
order in which the thread should execute the plurality of
test steps based at least in part on the one or more
ordering constraints.
24. The computer-readable memory medium of claim 13,
wherein in creating the test executive sequence the pro-
gram instructions are executable to store information in
one or more data structures, wherein the information in
the one or more data structures represents the test execu-
tive sequence.
25. A system comprising:
at least one processor; and
a memory medium storing program instructions;
wherein the program instructions are executable by the at
least one processor to:
create a test executive sequence in response to user input,
wherein in creating the test executive sequence the pro-
gram instructions are executable by the at least one
processor to:
include an auto-schedule block in the test executive
sequence in response to user input requesting inclu-
sion of an automatic scheduling feature in the test
executive sequence, wherein in including the auto-
schedule block the program instructions are execut-
able by the at least one processor to display a visual
indication in the test executive sequence which visu-
ally indicates that an execution order for test steps
within the auto-schedule block is not fixed and should
be automatically determined during execution of the
test executive sequence; and
include a plurality of test steps in the auto-schedule
block in response to user input selecting each respec-
tive test step of the plurality of test steps and request-
ing inclusion of the respective test step in the auto-
schedule block, wherein each respective test step
specifies a corresponding test, wherein an execution
order for the plurality of test steps is not fixed, and
wherein in including the plurality of test steps in the
auto-schedule block the program instructions are
executable by the at least one processor to configure
their execution order to be automatically determined
during execution of the test executive sequence;
wherein the program instructions are further executable by
the at least one processor to concurrently execute the test
executive sequence on a plurality of physical units under
test (UUTs), wherein each respective UUT comprises a
respective physical device, wherein the test executive
sequence is executed on each respective UUT by a
respective thread;
wherein for each respective thread, the program instruc-
tions are executable by the at least one processor to
automatically determine an order in which the respective
thread should execute the plurality of test steps in
response to determining that the plurality of test steps
are included in the auto-schedule block; and
wherein the program instructions are executable by the at
least one processor to determine that a first thread should
execute a first step of the plurality of test steps before a
second step of the plurality of test steps, and wherein the
program instructions are executable by the at least one

20

25

30

35

40

45

50

55

60

65

28

processor to determine that a second thread should
execute the second step before the first step.
26. The system of claim 25,
wherein each of the tests specified by the plurality of test
steps requires a respective physical resource;
wherein the program instructions are executable by the at
least one processor to:
programmatically search the tests to select a respective
test according to search criteria specifying that 1) the
respective testhas not yet been performed on a respec-
tive UUT, and 2) the respective physical resource
required by the respective test is available for use;

lock the respective physical resource required by the
respective test, wherein said locking comprises
acquiring the respective physical resource;

perform the respective test on the respective UUT; and

unlock the respective physical resource required by the
respective test, wherein said unlocking comprises
releasing the respective physical resource.

27. The system of claim 26,

wherein for each respective UUT of the plurality of UUTs,
the program instructions are executable by the at least
one processor to perform said searching, said locking,
said performing, and said unlocking repeatedly until
each of the plurality of tests has been performed on the
respective UUT.

28. The system of claim 26,

wherein said programmatically searching the tests com-
prises iteratively searching the tests.

29. The system of claim 25,

wherein each test step of the plurality of test steps requires
a respective physical resource;

wherein in creating the test executive sequence the pro-
gram instructions are further executable by the at least
one processor to:

for each respective test step of the plurality of test steps,
receive user input specifying the respective physical
resource required by the respective test step.

30. The system of claim 25,

wherein each of the tests specified by the plurality of test
steps requires a respective physical resource;

wherein for each respective thread, the program instruc-
tions are executable by the at least one processor to
automatically determine the order in which the thread
should execute the plurality of test steps based on avail-
ability of the physical resources required by the tests.

31. The system of claim 25,

wherein the program instructions are further executable by
the at least one processor to include a plurality of auto-
scheduled sections in the auto-schedule block in
response to user input;

wherein in including the plurality of test steps in the auto-
schedule block, the program instructions are executable
by the at least one processor to include each respective
test step in a corresponding auto-scheduled section.

32. The system of claim 31, wherein each respective auto-
scheduled section in the plurality of auto-scheduled sections
includes:

a lock resource step, wherein the lock resource step indi-
cates locking a respective resource, wherein the test step
included in the respective auto-scheduled section
requires locking of the respective resource; and

an unlock resource step, wherein the unlock resource step
indicates unlocking the respective resource.

US 8,234,089 B2

29

33. The system of claim 25,

wherein the auto-schedule block includes a begin step,
wherein the begin step indicates initiation of the auto-
schedule block;

wherein the auto-schedule block also includes an end step,
wherein the end step indicates termination of the auto-
schedule block;

wherein the program instructions are executable by the at
least one processor to include the plurality of test steps in
the auto-schedule block between the begin step and the
end step;

wherein the program instructions are further executable by
the at least one processor to display the begin step and
the end step within the test executive sequence.

34. The system of claim 25, wherein the program instruc-

tions are further executable by the at least one processor to:

display the test executive sequence on a display, wherein
the displayed test executive sequence visually indicates
that the plurality of test steps are included in the auto-
schedule block.

15

30

35. The system of claim 25,

wherein in creating the test executive sequence the pro-
gram instructions are further executable by the at least
one processor to receive user input specifying one or
more ordering constraints imposed on at least a subset of
the plurality of test steps;

wherein for each respective thread, the program instruc-
tions are executable by the at least one processor to
automatically determine the order in which the thread
should execute the plurality of test steps based at least in
part on the one or more ordering constraints.

36. The system of claim 25,

wherein in creating the test executive sequence the pro-
gram instructions are executable by the at least one
processor to store information in one or more data struc-
tures, wherein the information in the one or more data
structures represents the test executive sequence.

