
A Guide to Specialising Gödel Programs

with the Partial Evaluator SAGE

C.A.Gurr∗

Human Communication Research Centre
University of Edinburgh

2 Buccluech Place, Edinburgh EH8 9LW Scotland

April 1994

Abstract

This document provides a description of the partial evaluator SAGE , a partial evaluator written
in the logic programming language Gödel which specialises Gödel programs. Although capable of
specialising any Gödel program SAGE was developed primarily to specialise meta-programs which
use a ground representation. To assist users of SAGE this document gives an overview of SAGE ,
a manual for its use and a guide to writing Gödel programs, particularly meta-programs, in a style
which makes them amenable to specialisation.

1 Introduction

Gödel is a declarative, general-purpose logic programming language which provides a number of higher-
level programming features, including extensive support for meta-programming with a ground repre-
sentation. The Gödel language is documented in [5] and we refer here to the current implementation
of Gödel as “The Bristol Gödel”.

This document provides a description of the partial evaluator SAGE (Self-Applicable Gödel partial
Evaluator), a manual for its use and a guide to writing Gödel programs in a style which makes them
amenable to specialisation by SAGE . A full description of the techniques employed by SAGE is given
in [4]. A summary of that document is given in [3].

SAGE was originally implemented to test techniques developed during research into the self-
application of a declarative partial evaluator written in a logic programming language. As such SAGE
was and is designed primarily for the specialisation of Gödel meta-programs which use a ground
representation.

Gödel meta-programs which use a ground representation suffer from a computational expense that
this incurs which is in addition to the so-called ‘interpretation overhead’ that is recognised in all meta-
programs. However, these extra overheads may be almost entirely removed by partial evaluation.
We refer to this as “specialising the ground representation” and a summary of the techniques used
to perform this is given by [2]. These techniques may be applied to supplement techniques used to
remove the more familiar interpretation overheads.

The layout of this guide is as follows. In the following section we give a brief overview of partial
evaluation as it is defined for SAGE . In Section 3 we provide a user-manual for SAGE and give some

∗email: corin@cogsci.ed.ac.uk

1

2 AN OVERVIEW OF PARTIAL EVALUATION 2

pointers on good programming style for writing Gödel programs which are intended to be specialised
by SAGE . Finally in Sections 4 and 5 we describe with examples SAGE ’s strategy for unfolding general
Gödel programs and Gödel meta-programs respectively.

2 An Overview of Partial Evaluation

SAGE is a partial evaluator based mainly on finite unfolding. Partial evaluation by unfolding was put
on a firm theoretical footing by Lloyd and Shepherdson in [7] and we refer to that paper for a formal
definition of partial evaluation as used by SAGE . In this section we give first a brief outline of the
concept of partial evaluation by finite unfolding and then describe some issues in the application of
this technique which relate to the Gödel language and to the SAGE partial evaluator in particular

2.1 Partial Evaluation by Finite Unfolding

In the context of [7] the basic technique for partially evaluating a program P wrt a goal G is to
construct “partial” search trees for P with suitably chosen atoms from G as goals, and then extract
the specialised program P ′ from the definitions associated with the leaves of these trees.

For example, let P be the following (partial) program:

P(x) <- Q(x,y) & R(y).
P(x) <- S(x).
Q(x,A) <- T(x).
Q(x,B) <- T(F(x)).
R(A).
R(B).

and <- P(x) the goal we wish to partially evaluate P wrt. We would therefore construct a partial
SLDNF-tree for this program wrt the singleton set {P(x)}. The following is one possible such tree:

<-P(x)

¡
¡

¡
¡¡ª

@
@

@
@@R

<- Q(x,y) & R(y) <- S(x)

¡
¡

¡
¡¡ª

@
@

@
@@R

<- Q(x,A) <- Q(x,B)

? ?
<- T(x) <- T(F(x))

We next extract new statements for the predicate P from the leaf nodes of this tree, giving us the new

2 AN OVERVIEW OF PARTIAL EVALUATION 3

definition:

P(x) <- T(x).
P(x) <- T(F(x)).
P(x) <- S(x).

To construct the partial evaluation of P wrt <- P(x) we lastly replace the definition of the predicate
P in P with this new definition.

2.2 Partial Evaluation of Gödel Programs

Gödel provides a module system for programming and has a large library of system modules (20 in
the Bristol Gödel). In this section we describe two aspects of this module system which affect and are
affected by partial evaluation

2.2.1 Open and Closed Code in Gödel Programs

Modules in Gödel programs may be of one of two kinds. The first kind of modules are those which
have been written by some Gödel user and are referred to as user-defined modules. The second kind
of modules are those which are provided by the Gödel system and these are referred to as system
modules. The majority of system modules are what we refer to as closed modules. A module is closed
if its export part uses the module keyword Closed instead of the keyword Export. Any module which
is not closed is an open module. In the Bristol Gödel only system modules may be closed modules and
all system modules are closed other than the Syntax module.

All code in a Gödel program falls into one of two categories, which we refer to as open and closed .
We define the open code of a Gödel program to be that code which is either defined in a user-defined
module of the program or which is defined in an open system module. We define all code that is
defined in a closed Gödel system module as being closed code.

When SAGE encounters an atom whose predicate or proposition symbol is declared in a closed
module it interprets the execution of a call to this atom wrt the program being partially evaluated
as long as this atom matches any delay declaration for the relevant predicate or proposition. Thus
an atom such as Member(x,[1,2,3]), whose predicate is defined in the system module Lists will be
executed by SAGE during a partial evaluation. An atom such as Member(x,y) however will not be
executed as it does not match the delay declaration (in the system module Lists) for this predicate:

DELAY Member(_,y) UNTIL NONVAR(x).

Any such atom which is not executed by SAGE will be left as a residual atom in the partial evaluation.

2.2.2 Gödel Scripts

When partially evaluating a Gödel program a process we refer to as flattening occurs. The details of
this flattening process are not relevant here but we remark that because of this process any partial
evaluator must construct the results of a partial evaluation as a Gödel script. A script is essentially a
Gödel program from which all module structure has been removed.

Gödel supports the representation of partially evaluated programs as scripts and a file,
Program.scr, containing the representation of a script may be compiled into executable code by
calling the script-compile command ;sc Program from the Gödel environment.

Removing the module structure of a program by constructing its partial evaluation as a script is
not as drastic a measure as it may seem, if we assume that the module structure is provided primarily

2 AN OVERVIEW OF PARTIAL EVALUATION 4

for software engineering purposes. Here the module structure is a useful aid to the programmer when
writing and debugging the original program. It seems safe to assume that a program will only be
partially evaluated once it is complete and (hopefully) bug-free. In this case the user needs only to be
certain that the answers computed by the partially evaluated program are correct with respect to the
original program and he/she is unlikely to be concerned with the module structure of the specialised
program. In fact, taking the widely accepted view that partial evaluation may be considered as a
part of the compilation process for a program, the above argument is perfectly acceptable. All that
programmers will generally require from the compilation of their programs is that the compiled version
of a program should be correct with respect to the original program.

2.3 SAGE ’s Implementation of Partial Evaluation

In this section we give an overview of SAGE ’s strategy for partially evaluating Gödel programs.

2.3.1 Non-Selectable Predicates

When requesting SAGE to perform a partial evaluation of some program the user may denote certain
of the predicates in the program to be non-selectable. A predicate is selectable if it is not non-selectable.

Non-selectable predicates are never selected for unfolding by SAGE , thus they can be used to mask
off parts of the object program which a user would prefer not to be specialised.

When specifying the set of non-selectable predicates it is necessary to ensure that any predicate
which a non-selectable predicate depends upon is also non-selectable. A set of non-selectable predicates
for which this property holds is said to be well-structured .

In general it is not necessary to mark all predicates which non-selectable predicates depend upon as
also being non-selectable. If a particular predicate is depended upon by some non-selectable predicate
in the program to be partially evaluated we need only mark this particular predicate as non-selectable
if it is also depended upon by some selectable predicate.

Note: The current implementation of SAGE does not check for well-structuredness of
the non-selectable predicates. This property is currently the responsibility of the user.

2.3.2 Unsafe Predicates

Prior to computing the partial evaluation of an object program and goal SAGE will construct a
predicate dependency graph for that goal to identify the recursive selectable predicates which the goal
depends upon and then perform a static analysis of the goal wrt the object program.

The static analysis detects those atoms with recursive predicates which will be encountered in
the subsequent partial evaluation. The purpose of this analysis is to determine which of these atoms
are sufficiently instantiated for them to be unfolded during partial evaluation without the risk of an
infinite unfolding.

The static analysis is based upon an analysis of ground arguments in atoms. If it may be determined
that each occurrence of an atom with some recursive selectable predicate has a particular argument
which will always be ground and that this can guarantee the finite unfolding of this atom then this
predicate is marked safe. Any recursive selectable predicate which is not marked safe will be marked
unsafe by the static analysis.

For example, consider the following definition of the standard Member predicate:

Member(x, [x|_]).
Member(x, [_|list]) <- Member(x, list).

3 A GUIDE TO USING SAGE 5

This predicate is recursive. If we may determine that every atom with this predicate which is encoun-
tered in some partial evaluation will have a ground term in the second argument, then it is obvious
that such an atom may be unfolded in a finite number of unfolding steps and thus this predicate
would be marked safe by the static analysis. If we were unable to determine that every atom with
this predicate in some partial evaluation had a ground term in its second argument then the static
analysis would mark this predicate as being unsafe.

2.3.3 Partially Evaluated Atoms

Having performed the static analysis SAGE will identify all safe selectable atoms in the goal to
be partially evaluated and compute the partial evaluation of these atoms. In addition SAGE will
identify all instances of atoms with unsafe predicates. For each unsafe predicate SAGE will compute
a generalisation of every atom in the partial evaluation which has this predicate. This generalisation
is referred to as a covering atom for this predicate. A partial evaluation of each of the covering atoms
is then computed.

2.3.4 Selection Strategy

The current implementation of SAGE relies upon a depth-first leftmost safe selectable literal selection
strategy. That is to say, when selecting a literal for unfolding from a formula, SAGE will always select
the leftmost literal whose predicate symbol is both selectable and safe.

Note that by not selecting literals with unsafe predicates and computing partial evaluations of the
unsafe atoms in which unsafe literals are not selected, SAGE produces specialised recursive definitions
for unsafe predicates.

2.3.5 Post-Partial Evaluation Optimisations

Having performed the partial evaluation SAGE performs a post-processing optimisation which involves
the deletion of redundant terms from the partially evaluated atoms.

For example, if P(A,x,y,B) is an atom which is partially evaluated by SAGE then a new predicate
P 1 (binary, in this case) will be defined and every instance of this partially evaluated atom will be
replaced by an equivalent instance of the atom P 1(x,y). The definition of P will be replaced with
the definition of this new predicate P 1 in the specialised program.

When constructing the specialised program SAGE will delete all redundant selectable predicates.
A predicate is redundant if it is not relied upon by any predicate appearing in some literal in the
partial evaluations computed by SAGE .

3 A Guide to Using SAGE

In this section we give an outline of SAGE ’s main algorithm and describe how it is used. We note
that SAGE ’s strategy for computing partial evaluations is a relatively simple one and therefore we
conclude this section with some pointers on how to write Gödel programs which may be optimally
specialised by SAGE .

3.1 Algorithm for SAGE

When invoked SAGE will prompt the user to input the name of the object program, the object
goal this program is to be specialised wrt and the list of non-selectable predicates. Once SAGE has

3 A GUIDE TO USING SAGE 6

constructed the partial evaluation of this program and written the resulting script into a file it will
output a message describing the partial evaluation which has been computed. We refer to this message
as the log of the partial evaluation and a copy of this log is also written to a file.

The following list describes the main points of SAGE ’s operation:

1. User inputs object program, object goal and list of non-selectable predicates

2. Extract selectable atoms from goal

3. Compute predicate dependency graph to determine recursive selectable predicates which atoms
to be partially evaluated depend upon

4. Compute static analysis to determine which recursive predicates are unsafe and construct cover-
ing atoms for them

5. Compute partial evaluations of safe selectable atoms in goal and covering atoms

6. Construct residual script:

• Optimise partially evaluated atoms

• Remove superfluous code

• Construct new predicate declarations

• Insert specialised declarations and code

7. Write residual script to file. Write log to screen and file.

3.2 Running SAGE

In this section we provide a manual for using SAGE and an example of its execution.

3.2.1 Loading and Invoking SAGE

SAGE is comprised of four modules, SAGE, PE, Assemble and Analyse. It is loaded by loading the
top-level module SAGE. Once loaded SAGE is invoked by the proposition RunPE.

3.2.2 User Inputs

Strings are input to SAGE without quotes and are terminated by a carriage-return. Full stops are not
required to terminate a string.

Non-selectable predicates are input individually as atoms. The end of a list of them is denoted by
inputting a carriage return to the prompt. When specialising a meta-program (that is, any program
which imports the system module Syntax) the user is prompted whether they want to mark the
“WAM-like” predicates as non-selectable. The relevance of these predicates is discussed in Section 5.1.

The file extensions for the object program and specialised script (that is, .prm and .scr respec-
tively) are appended automatically by SAGE . So if your program’s main module is Main then SAGE
will write the residual script to the file Main.scr. This process will overwrite existing files of that
name, so if you have such a file we suggest that a copy with a different name is made before the partial
evaluation is initiated.

3 A GUIDE TO USING SAGE 7

3.2.3 SAGE Specialisation Logs

Upon completion SAGE prints out the specialisation log describing the specialisation it has just
performed. A copy of this log is also written to the file Main.new, where Main is the name of the main
module of the specialised program.

3.2.4 An Example Run: Specialising the Program Append

The module Append.loc is a Gödel program which gives a user-defined version of the standard Append
predicate. This program defines MyAppend, an open-code version of the closed predicate Append which
is defined in the system module Lists.

MODULE Append.

IMPORT Lists.

PREDICATE MyAppend : List(a) * List(a) * List(a).

MyAppend([],x,x).
MyAppend([a|x],y,[a|z]) <- MyAppend(x,y,z).

We show below the listing of a sample run of SAGE in which the Append program is specialised
wrt the goal MyAppend(x,y,[1,2,3]).

unix% goedel
Goedel 1.3
Type ;h. for help.
[] <- ;load SAGE.
Loading module "SAGE" ...
Loading module "PE" ...
Loading module "Assemble" ...
Loading module "Analyse" ...
[SAGE] <- RunPE.

SAGE Partial Evaluator.

Welcome :

Object Program Name ? Append
Loading program...done
Object goal ? MyAppend(x,y,[1,2,3])

Non-Selectable Atoms :

Input non-selectable predicates as atoms, terminating with empty string.
Next atom ?

3 A GUIDE TO USING SAGE 8

Constructing predicate dependency graph...done
Performing static analysis...done
Performing partial evaluation...done
Optimising residual code...done
Writing script in file Append.scr...done

% ---------------------------------------
Script: Append.scr
Partial evaluation of program: Append
wrt goal: MyAppend(x,y,[1,2,3])

% ---------------------------------------

The following atoms were partially evaluated:
MyAppend(x,y,[1,2,3])

No predicates were marked non-selectable.
No predicates were marked unsafe.
The following new predicates have been defined:
Predicate MyAppend/3, defined in module Append,
has been replaced by:

PREDICATE MyAppend_1 : List(Integer) * List(Integer).

as if re-defined by the statement:
MyAppend(v,v_1,[1,2,3]) <- MyAppend_1(v,v_1).

These changes have been recorded in the file Append.new
Do you wish SAGE to perform another partial evaluation (Y/N)? n

Goodbye.

Yes
[SAGE] <-;quit.
unix%

Figure 1 gives the specialised code produced by SAGE following this run.

MyAppend_1([],[1,2,3]).
MyAppend_1([1],[2,3]).
MyAppend_1([1,2],[3]).
MyAppend_1([1,2,3],[]).

Figure 1: Specialised Code for Predicate MyAppend

The specialised version of the Append program has been written to the file Append.scr. This
file may be compiled into executable code using the ;sc command (script-compile) in the Gödel
environment, as the following listing demonstrates:

unix% goedel
Goedel 1.3
Type ;h. for help.

3 A GUIDE TO USING SAGE 9

[] <- ;sc Append.
Compiling script "Append" ...
Module "Append" compiled.
[] <- ;load Append.
Loading module "Append" ...
[Append] <- ;type Append_1.
PREDICATE

Append_1 : List(Integer) * List(Integer).

[Append] <- Append_1(x,y).

x = [],
y = [1,2,3] ? ;

x = [1],
y = [2,3] ?
Yes
[Append] <- ;quit.
unix%

3.3 Viewing Residual Scripts

The Bristol Gödel does not currently provide a script-viewer, so the means of viewing the residual
code produced by SAGE are somewhat limited at the moment.

Support for viewing scripts is currently provided by the program View. This program consists of
the single module View and once loaded may be invoked with the atom ViewScript(<script name>),
where <script name> is the name (a string) of the top level module of the program that has been
specialised. For example, the specialised code for the Append program given above, which is stored in
the file Append.scr, may be viewed via the call ViewScript("Append").

3.4 Some Tips on Writing Programs to be Specialised

Recall that atoms which are selectable and not unsafe are always unfolded by SAGE . It must be
stressed that this, unfortunately, is not always a good thing as the following example illustrates.

Let P be the following program:

FilterList([],[]).
FilterList([x|rest], list) <-
Filter(x, list, list1) &
FilterList(rest, list1).

Filter(A, list, list).
Filter(x, [x|list], list) <-
x ~= A.

which we are specialising wrt the goal <- FilterList([x,y,z],list). If the predicates FilterList
and Filter were both marked selectable and safe then SAGE would produce the following specialised
definition for FilterList:

FilterList([A,A,A],[]).
FilterList([A,A,x],[x]) <- x ~= A.
FilterList([A,x,A],[x]) <- x ~= A.

3 A GUIDE TO USING SAGE 10

FilterList([A,x,y],[x,y]) <- x ~= A & y ~= A.
FilterList([x,A,A],[x]) <- x ~= A.
FilterList([x,A,y],[x,y]) <- x ~= A & y ~= A.
FilterList([x,y,A],[x,y]) <- x ~= A & y ~= A.
FilterList([x,y,z],[x,y,z]) <- x ~= A & y ~= A & z ~= A.

The above new definition, while highly specialised, is probably not ideal as we have introduced a
large element of non-determinism which makes this residual code less efficient than it might be. The
problem is caused by the fact that we have unfolded the call to Filter when we probably would have
preferred not to.

To solve this problem we must find a means of preventing such unfoldings from being made. There
are three ways in which this may be achieved, the first of which is that we mark a predicate such as
Filter as being non-selectable. For the program and goal above such a partial evaluation would lead
to the following specialised code:

FilterList([x,y,z], list) <-
Filter(x, list, list1) &
Filter(y, list1, list2) &
Filter(z, list2, []).

Filter(A, list, list).
Filter(x, [x|list], list) <-
x ~= A.

However, marking a predicate non-selectable means that SAGE will not be able to perform any
specialisation of this predicate. If we wish to both specialise a predicate and prevent unwanted
unfoldings of calls with this predicate we have two further options.

The first option is to ensure that the relevant predicate will be marked unsafe by SAGE . This
will happen whenever this predicate is recursive and insufficiently instantiated at the time of partial
evaluation. This strategy of SAGE ’s will often work successfully for recursive predicates in meta-
programs, as examples in Section 5 demonstrate. However, for some predicates, particularly non-
recursive predicates such as Filter above, this is not sufficient.

A second option for preventing unwanted unfoldings makes use of SAGE ’s technique for specialising
conditional formulas in Gödel programs. This technique is described in Section 4.2 and is guided
primarily by a test of whether the condition of a conditional is sufficiently instantiated at the time of
partial evaluation for SAGE to be able to determine whether or not it will succeed when the specialised
program is executed.

If the condition of a conditional is sufficiently instantiated at partial evaluation time then it will be
unfolded together with the then part or else part, as appropriate. If the condition is not sufficiently
instantiated at partial evaluation time then the conditional will still be specialised, but the residual
code will remain as a single conditional formula.

For example, we might modify the above definition of the predicate FilterList to replace the call
to Filter with a conditional formula as follows:

FilterList([],[]).
FilterList([x|rest], list) <-
IF x = A

THEN FilterList(rest, list)
ELSE list = [x|list1] &

FilterList(rest, list1).

or, alternatively, as follows:

4 SPECIALISING GÖDEL PROGRAMS 11

FilterList([],[]).
FilterList([x|rest], list) <-
(
IF x = A

THEN list = list1
ELSE list = [x|list1]

) &
FilterList(rest, list1).

Of these two alternatives we comment that the second is preferable as the recursive call to FilterList
only appears once in the second statement. A general rule of thumb is that the then part and else part
of conditionals used in this way should be kept simple wherever possible.

When this second alternative definition is specialised wrt the goal <- FilterList([x,y,z],list),
SAGE will produce the following new definition:

FilterList([x,y,z], list) <-
(
IF x = A

THEN list = list1
ELSE list = [x|list1]

) &
(
IF y = A

THEN list1 = list2
ELSE list1 = [y|list2]

) &
(
IF z = A

THEN list2 = []
ELSE list2 = [z]

).

4 Specialising Gödel Programs

In this section we give an overview of the extensions to the definition of partial evaluation in [7] which
permit the specialisation of Gödel programs containing logical connectives in addition to &, conditional
formulas, commit operators and set terms.

4.1 Quantifiers and Connectives

Unfolding formulas of the form A <- B, A -> B, and A <-> B is handled simply by transforming them
to the forms A \/ ~B, ~A \/ B and (A & B) \/ (~A & ~B), respectively. Disjunctions may be unfol-
ded to produce two resultants, one for each of the disjuncts. For example, the disjunction in the re-
sultant H <- A & (B \/ C) & D can be unfolded to produce the two new resultants H <- A & B & D
and H <- A & C & D.

During SAGE ’s partial evaluations existentially quantified variables are renamed so as to have
names different from all other variables in the formula. Consequently SAGE may generally ignore
existential quantifiers, as the names of the quantified variables are guaranteed not to occur outside
the scope of the quantifier. The cases where we are interested in knowing whether variables are free
or quantified, in negated formulas for example, are dealt with by the unfolding strategy for those
particular cases.

4 SPECIALISING GÖDEL PROGRAMS 12

Universally quantified formulas such as ALL [x] P(x,y), are transformed to the form
~(SOME [x] ~P(x,y)).

4.2 Constructive Negation and Conditional Formulas

For negated formulas in Gödel programs we have extended the definition of partial evaluation in [7] to
include the concept of constructive negation [1]. Constructive negation may be described as follows.
First a partial evaluation of the formula that has been negated is computed. If there are no residual
resultants for this partial evaluation then the formula has failed finitely and the negation has therefore
succeeded. If at least one of residual resultants has an empty body and has not bound any variables
in the original formula then the negation fails safely, otherwise the negations of these resultant bodies
and the bindings they compute are conjoined to produce a specialised version of the negation. This
specialised version of the negation is recorded in the residual script as the definition of a new predicate.

For example, let P be the program:

P(x) <- Q(x).
Q(A).
Q(B).

where A, B and C are constants. The partial evaluations of the formulas P(C), P(A) and P(x) would
be the sets {}, {True} and {x=A,x=B} respectively, where True is the truth-proposition. The spe-
cialisations of the formulas ~P(C), ~P(A) and ~P(x) would therefore be True, False and ~Not_0(x)
respectively, where False = ~True and the definition of the new predicate Not_0 is:

Not_0(A).
Not_0(B).

Gödel also provides a conditional operator of the form

IF Condition THEN Formula1 ELSE Formula2

which is defined to mean

(Condition & Formula1) \/ (~Condition & Formula2)

and is used to avoid the need to compute the formula Condition twice. We use constructive negation
in the specialisation of this operator in the following manner. First a partial evaluation of Condition
is computed. If there are no residual resultants for this partial evaluation then Condition has failed
finitely and the conditional is replaced by Formula2, which may subsequently be specialised further.
Alternatively the specialised version of Condition will be the disjunction of all the residual resultant
bodies of this partial evaluation and the bindings they compute. If any of these disjuncts is an empty
formula then, in at least one case, Condition has terminated successfully and bound no free variables.
In this case we may replace the conditional with the conjunction of the specialised Condition and
Formula1, which may subsequently be specialised further. Otherwise the specialisation of Condition
has not indicated whether Condition will succeed or fail and so Formula1 and Formula2 are both par-
tially evaluated and a new conditional is constructed in which Condition, Formula1 and Formula2 are
replaced by their specialised versions. As for negated formulas, these specialised versions of Condition,
Formula1 and Formula2 are represented in the specialised conditional as calls to new predicates.

For example, suppose that the predicate P was defined as in the above example, {R(x)} was (in
all cases) the partial evaluation of the atom Q(x,y) and the definition of the predicate S was:

S(x,y,z) <- IF P(x) THEN Q(y,z) ELSE Q(z,y).

4 SPECIALISING GÖDEL PROGRAMS 13

then the specialisations of the formulas S(A,A,B), S(C,A,B) and S(x,A,B) would be R(A), R(B)
and IF Test 0(x) THEN Then 1 ELSE Else 2 respectively, where the new predicate Test 0 and new
propositions Then 1 and Else 2 are defined as:

Test_0(A).
Test_0(B).
Then_1 <- R(A).
Else_2 <- R(B).

4.3 Pruning

While there is a strong argument in favour of allowing pruning within logic programs, it is well
established that the ‘cut’ operator of Prolog is unsound. Hill et al [6] propose an alternative pruning
operator for logic programming, the commit, which, while naturally affecting completeness, is proved
to be sound. The commit operator is supplied by Gödel to allow pruning and has three forms. The
most general form of the Gödel pruning operator has the form {. . .}_n, of which two special cases
have the form | and {. . .}. We refer to the most general form as the full commit.

It is also shown in [6] that, provided two conditions are met, the computational equivalence of
a program and its partial evaluation wrt a given goal (that is, [7, theorem 4.3]) can be extended to
encompass programs containing commits. These conditions are restrictions on the structure of the
SLDNF-trees used to obtain the partial evaluation and are referred to as the freeness and regularity
conditions.

A detailed description of the commit operator and proof of its soundness would unfortunately be
far too long for a paper of this form. Suffice it to say that it is shown in [4] that, while the freeness
condition is acceptable, the regularity condition imposes restrictions on the computation of partial
evaluations which are both expensive to enforce and lead to a significant reduction in the amount of
specialisation that may be performed. In [4] a technique for partially evaluating programs containing
commit operators is presented which allows us to strengthen the partial evaluation theorem for such
programs ([6, theorem 3.2]) by entirely removing the regularity condition.

While techniques have been developed that enable a partial evaluator to perform unfolding with-
out respecting the regularity condition, the full commit is necessary to implement these techniques.
Unfortunately the Bristol Gödel does not currently support the full commit and therefore the version
of SAGE documented here cannot implement these techniques. In view of the restrictive nature of
unfolding while respecting the regularity condition we have decided that the best approach under the
circumstances is that the current implementation of SAGE should remove all commits in any program
statements which it specialises. This approach will not affect the soundness of the partial evaluation
although it does imply that a partially evaluated program may return more answers than the unspe-
cialised program for certain queries, as pruning is effectively disabled for all selectable predicates.

4.4 Set Terms and the Sets Module

Note: The current implementation of SAGE does not support programs which import
the Sets module - therefore the correctness of partially evaluated programs which import
Sets cannot be guaranteed.

5 SPECIALISING GÖDEL META-PROGRAMS 14

5 Specialising Gödel Meta-Programs

SAGE is a partial evaluator which was developed primarily to specialise Gödel meta-programs which
use the ground representation. Therefore it is fitting that we devote a section of this guide to illustra-
ting, with examples, the features of Gödel’s ground representation which allow suitable meta-programs
to be effectively specialised by SAGE .

5.1 The Interpreter SLD

We first present the meta-interpreter SLD which is analogous to the well-known vanilla or solve meta-
interpreter of languages such as Prolog. The difference between SLD and a vanilla-interpreter is that
SLD uses a ground representation and a vanilla interpreter uses a non-ground representation.

The meta-interpreter SLD is the most simple ground meta-interpreter which could be written and
we use it here to illustrate the basis issues involved in specialising Gödel meta-programs with SAGE .

5.1.1 Using SAGE on the Module SLD

The module SLD.loc is the main module for this interpreter and illustrates two things:

1. A potential approach to I/O for for meta-programs.

2. The pre- and post-interpretation instructions.

MODULE SLD.

IMPORT Solve, ProgramsIO.

PREDICATE Demo : String * String * String.

Demo(program_string, goal_string, answer_string) <-
FindInput(program_string++".prm", In(is)) &
GetProgram(is, program) &
MainModuleInProgram(program, module) &
StringToProgramFormula(program, module, goal_string, [goal]) &
StandardiseFormula(goal, 0, var, goal1) &
EmptyTermSubst(empty_substitution) &
Solve(program, goal1, var, _, empty_substitution, answer) &
ApplySubstToFormula(goal1, answer, answer_goal) &
ProgramFormulaToString(program, module, answer_goal, answer_string).

This module declares the top-level predicate Demo for this interpreter. Demo has three arguments,
each of type list, which give the name of the object program, the body of the object goal and the
interpreted answer respectively.

Using I/O predicates in Meta-Programs

Demo calls the system predicates FindInput, GetProgram and MainModuleInProgram to deduce, from
the string giving the name of an object program, the representation of the object program and the name

5 SPECIALISING GÖDEL META-PROGRAMS 15

of its main module. Demo then uses this information to deduce the representation of the object goal
by using the system predicate StringToProgramFormula. Once this goal has been interpreted wrt the
object program to return a formula containing the answer-substitution, Demo converts this formula into
a string which may be displayed to the user by calling the system predicate ProgramFormulaToString
(we shall demonstrate a somewhat more sophisticated way to display an answer-substitution with the
program Coroutine in Section 5.2). Together these calls perform the I/O operations necessary to
translate the users choice of object program and goal into the ground representation and to translate
the interpreters computed answer back into a string which the user can comprehend.

Performing Pre- and Post-Processing of Interpretations

The module SLD imports the module Solve which defines the predicate Solve. This predicate performs
the actual interpretation of the object goal wrt the object program and is called by the Demo predicate.
Before it is called Demo will call the predicates StandardiseFormula and EmptyTermSubstitution to
initialise the variables in the object goal and to get the representation of an empty term-substitution.
Demo then calls Solve which performs the interpretation, returning the representation of the answer-
substitution. To enable this answer-substitution to be converted into a string which may be re-
turned to the user, Demo will apply the substitution to the interpreted goal by using the predicate
ApplySubstToFormula. This formula is then converted to a string as described above.

Specialising the Module SLD

Examining the specialisation of the module SLD allows us to illustrate the difference in SAGE ’s hand-
ling of open and closed code.

Let us assume that we wish to specialise the program SLD wrt a known object program, Append
for example, and an unknown goal. We can see that we would wish to partially evaluate SLD wrt the
goal <- Demo("Append",g,a). We shall consider first what will happen when SAGE unfolds the I/O
predicates called by Demo.

In the Bristol Gödel these I/O predicates are all defined in closed modules and have the delay
declarations given in Figure 2. Therefore SAGE will execute calls which match these declarations and

DELAY FindInput(x,_) UNTIL GROUND(x).
DELAY GetProgram(x,_) UNTIL GROUND(x).
DELAY MainModuleInProgram(x,_) UNTIL GROUND(x).
DELAY StringToProgramFormula(x,y,z,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).
DELAY ProgramFormulaToString(x,y,z,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).

Figure 2: Delay Declarations for I/O Predicates

leave as residual those calls which fail to match these declarations.
As the string giving the name of the object program is known, we see that the call FindInput

will be executed and that therefore the calls GetProgram and MainModuleInProgram will also be
executed. In this way SAGE is able to deduce the representation of the object program that SLD is to
be specialised wrt. However, the string giving the representation of the object goal is unknown and
therefore the call StringToProgramFormula will not be executed as the third argument is not ground.

5 SPECIALISING GÖDEL META-PROGRAMS 16

Similarly, as after the partial evaluation of the interpretation the object goal and answer substitution
will still be unknown, the call ProgramFormulaToString will also be left as residual.

We now consider the partial evaluation of the pre- and post-processing instructions. It is essential
to note that in the Bristol Gödel the system module Syntax is an open module and that therefore the
definitions of the predicates called during pre- and post-processing consist of open code.

The system module Syntax, being the only open system module in the Bristol Gödel, deserves
particular care when specialised. Much of the code in Syntax is already as efficient as we would wish
and should not be specialised. Those predicates we would wish to specialised are Resolve, ResolveAll
and the ‘data-type’ predicates EmptyTermSubst, And, Or, Not,. . . and so on. The approach taken in
the current implementation of SAGE is to treat Syntax as a closed module for all predicates other
than Resolve and ResolveAll. This approach means that the predicates EmptyTermSubst, And, Or,
Not,. . . will always be unfolded as they have no delay declarations.

When a user wishes to specialise a meta-program, SAGE will ask if the “WAM-like predicates” are
to be marked non-selectable. In general the user should answer “yes” to this question, as this assists
SAGE in specialising the ground representation by specialising calls to Resolve. This specialisation
is described in more detail below for the module Solve.

Of the two pre-processing calls and the single post-processing call we see that SAGE will unfold
the call EmptyTermSubst but not the calls StandardiseFormula and ApplySubstToFormula, as these
latter two calls do not match their delay declarations.

To end our illustration of the partial evaluation of the module SLD we give the specialised definition
of the predicate Demo, specialised wrt the object program Append. Figure 3 gives this specialised

PREDICATE Demo_1 : String * String.

Demo_1(goal_string, answer_string) <-
StringToProgramFormula(<Append>, "Append", goal_string, [goal]) &
StandardiseFormula(goal, 0, var, goal1) &
Solve_1(goal, var, _, EmptyTermSubst, answer) &
ApplySubstToFormula(goal1, answer, answer_goal) &
ProgramFormulaToString(<Append>, "Append", answer_goal, answer_string).

Figure 3: Specialised Version of Module SLD

definition for Demo, in which we have denoted the representation of the object program Append by
<Append>. In addition we have replaced calls to the predicates Demo and Solve by calls to the new
predicates Demo 1 and Solve 1. This is a post-processing optimisation performed by SAGE to remove
redundant terms. We shall explain it in more detail when we consider the partial evaluation of the
module Solve.

5.1.2 Using SAGE on the Module Solve

In this section we illustrate the specialisation of the ground representation by an examination of the
partial evaluation of the module Solve. We first comment that while the definition for the predicate
Solve only covers empty formulas, atoms and conjunctive formulas, extending the definition of this
predicate to cover other kinds of formulas would be very straightforward. As an example, Figure 4
gives one possible extension covering disjunctive formulas and negated formulas.

5 SPECIALISING GÖDEL META-PROGRAMS 17

LOCAL Solve.

Solve(program, goal, v, v, subst, subst) <-
EmptyFormula(goal).

Solve(program, goal, v_in, v_out, subst_in, subst_out) <-
And(left, right, goal) &
Solve(program, left, v_in, new_v, subst_in, new_subst) &
Solve(program, right, new_v, v_out, new_subst, subst_out).

Solve(program, goal, v_in, v_out, subst_in, subst_out) <-
Atom(goal) &
MyStatementMatchAtom(program, goal, statement) &
Resolve(goal, statement, v_in, new_v, subst_in, new_subst, new_goal) &
Solve(program, new_goal, new_v, v_out, new_subst, subst_out).

PREDICATE MyStatementMatchAtom : Program * Formula * Formula.

MyStatementMatchAtom(program, atom, statement) <-
{ PredicateAtom(atom, pred, _) \/

PropositionAtom(atom, pred) } &
DefinitionInProgram(program, _, pred, defn) &
Member(statement, defn).

Solve(program, goal, v_in, v_out, subst_in, subst_out) <-
Or(left, right, goal) &
(Solve(program, left, v_in, v_out, subst_in, subst_out) \/

Solve(program, right, v_in, v_out, subst_in, subst_out)).
Solve(program, goal, v, v, subst, subst) <-

Not(goal1, goal) &
~Solve(program, goal1, v, _, subst, _).

Figure 4: Extension to the Definition of Solve

5 SPECIALISING GÖDEL META-PROGRAMS 18

DefinitionInProgram versus StatementMatchAtom

In the third statement in the definition of the predicate Solve we have used the user-defined predicate
MyStatementMatchAtom where one might have expected to use the system predicate
StatementMatchAtom. The reasoning behind this choice concerns the delay declarations for the two
system predicates StatementMatchAtom and DefinitionInProgram and the fact that, during partial
evaluation of the program SLD, the object program will be known but the object goal will be unknown.

StatementMatchAtom and DefinitionInProgram are both defined in the closed system module
Programs and have the following declarations:

PREDICATE StatementMatchAtom :

Program % Representation of a program.
* String % Name of an open module in this program.
* Formula % Representation of an atom in the flat language of

% this program.
* Formula. % Representation of a statement in this module whose

% proposition or predicate in the head is the same
% as the proposition or predicate in this atom.

DELAY StatementMatchAtom(x,_,z,_) UNTIL GROUND(x) & GROUND(z).

PREDICATE DefinitionInProgram :

Program % Representation of a program.
* String % Name of an open module in this program.
* Name % Representation of the flat name of a proposition

% or predicate declared in this module.
* List(Formula). % List (in a definite order) of representations of

% statements in the definition of this proposition
% or predicate.

DELAY DefinitionInProgram(x,_,_,_) UNTIL GROUND(x).

As the object program is known during partial evaluation we would expect that SAGE would
encounter calls to these predicates for which the first argument, and only the first argument, were
instantiated. Examining the above delay declarations we see that this would mean that calls to
DefinitionInProgram would be executed by SAGE and that calls to StatementMatchAtom would
be left as residual. For this reason we provide the user-defined predicate MyStatementMatchAtom.
The declarative meaning of this predicate is equivalent to that of StatementMatchAtom, the difference
being that when specialising the program SLD wrt a known object program SAGE may unfold the
call to MyStatementMatchAtom and thereby deduce the representations of all open statements in the
object program.

The Partial Evaluation of Resolve

It is in the third statement in the definition the predicate Solve that we see a call to the predicate
which is possibly the most important meta-programming predicate of all of those provided by Gödel:
the predicate Resolve.

The atom Resolve(atom,st,v,v1,s,s1,body) is called to perform the resolution of the atom
atom with the statement st. The integers v and v1 are used to rename the statement with v being the

5 SPECIALISING GÖDEL META-PROGRAMS 19

integer value used in renaming before the resolution step is performed and v1 being the corresponding
value after the resolution step has been performed. The representations of term substitutions s and s1
represent respectively the answer substitution before and after the resolution step. The last argument,
body, is the representation of the body of the renamed statement.

The predicate Resolve has been designed to meet the needs of practically any Gödel meta-program
which performs logical inference steps. To achieve this the implementation of this predicate handles
the following operations:

• Renaming the statement to ensure that the variables in the renamed statement are different
from all other variables in the current goal.

• Applying the current answer substitution to the atom to ensure that any variables bound in the
current answer substitution are correctly instantiated.

• Unifying the atom with the head of the renamed statement.

• Composing the mgu of the atom and the head of the statement with the current answer substi-
tution to return the new answer substitution.

Each of these four operations is potentially very expensive when we are dealing with the explicit
representation of substitutions, therefore it is vital that they are handled in as efficient manner as
possible. The implementation of Resolve is designed to meet this need by being both as efficient as
possible and capable of being highly specialised by SAGE .

In the previous section we demonstrated how the module SLD would be specialised wrt an ob-
ject program such as Append. In the specialisation of this module, assuming that the predicate
Solve were marked as unsafe, we see that SAGE would determine that a specialisation of the atom
Solve(<Append>,g,v,v1,s,s1) should be performed, where <Append> is the representation of the
object program Append. As the object program is known in the call to Solve SAGE will unfold
the call to MyStatementMatchAtom in the third statement for Solve. In this manner SAGE may
then specialise Resolve with respect to each statement in the object program. Specialising a call to
Resolve with respect to a known statement will remove the vast majority of the expense of the ground
representation.

When a call to Resolve is specialised wrt a known object statement the specialised code is gua-
ranteed to be a single (possible empty) conjunction of atoms, provided that the user has specified that
the WAM-like predicates were to be marked non-selectable. The predicates of these atoms will each
be one of UnifyTerms, GetConstant, GetFunction, UnifyValue, UnifyVariable, UnifyConstant or
UnifyFunction. These predicates perform highly specialised unification operations and together form
a crucial part of the implementation of Resolve.

The above seven predicates we refer to as the WAM-like predicates, as they are analogous to
emulators for the WAM instructions GetValue (in the case of UnifyTerms), GetConstant, GetFunction,
UnifyValue, UnifyVariable and UnifyConstant, after which they are named1. As such, these operations
could be implemented by Gödel at a very low level, leading to a computation time for the specialised
form of a meta-program which would be comparable to that of the object program itself.

1Note that a subtle difference in the manner in which the WAM implements the unification of nested function terms
and the manner in which Resolve implements it means that the WAM does not have an equivalent to the UnifyFunction

instruction.

5 SPECIALISING GÖDEL META-PROGRAMS 20

Promoting Symbols from the Ground Representation

When performing the partial evaluation of a meta-program we recommend that SAGE be permitted
to unfold any of the ‘data-type’ predicates EmptyTermSubst, And, Or, Not,. . . etc. The unfolding of
such predicates in the definition of Solve, for example, will cause the symbols used by Gödel’s ground
representation to be promoted into the heads of the three statements, as can be seen in Figure 5. This
would permit the Bristol Gödel to perform first-argument indexing on the specialised definition of this
predicate and thus make the execution of this specialised code more efficient.

An important point to note is that the Bristol Gödel only performs indexing on the first argument
of the head of a statement. Therefore it is most important to ensure that the argument on which the
user of SAGE would wish the specialised version of a meta-program to perform indexing will be the
first argument in the specialised meta-program. In the unspecialised meta-interpreter SLD the desired
argument is in fact the second argument in the heads of the statements defining Solve. However,
as the first argument to the specialised call is instantiated to a term which will be discarded in the
specialised program (that is, the representation of the object program which SLD is specialised wrt)
then we can see that this second argument in the unspecialised definition of Solve will be the first
argument of the specialised definition of Solve, as we would wish.

Specialising the Module Solve

Figure 5 illustrates the result of specialising the call Solve(<Append>,g,v,v1,s,s1), where <Append>

Object program:
MyAppend([],x,x).
MyAppend([a|x],y,[a|z]) <- MyAppend(x,y,z).

Specialised interpreter:
Solve_1(Empty, v, v, subst, subst).
Solve_1(left &’ right, v_in, v_out, subst_in, subst_out) <-
Solve_1(left, v_in, new_v, subst_in, new_subst) &
Solve_1(right, new_v, v_out, new_subst, subst_out).

Solve_1(MyAppend’(arg1, arg2, arg3), v_in, v_out, subst_in, subst_out) <-
GetConstant(arg1, Nil’, subst_in, s1) &
GetValue(arg2, arg3, s1, new_subst) &
Solve_1(Empty, v_in, v_out, new_subst, subst_out).

Solve_1(MyAppend’(arg1, arg2, arg3), v_in, v_out, subst_in, subst_out) <-
GetFunction(arg1, .’(sub11, sub12), mode, subst_in, s1) &
UnifyVariable(mode, sub11, var, v_in, v1) &
UnifyVariable(mode, sub12, a1, v1, v2) &
GetFunction(arg3, .’(sub21, sub22), mode1, s1, s2) &
UnifyValue(mode1, var, sub21, s2, new_subst) &
UnifyVariable(mode1, sub22, a2, v2, new_v) &
Solve_1(MyAppend’(a1, arg2, a2), new_v, v_out, new_subst, subst_out).

Figure 5: Specialisation of Solve wrt Append

is the representation of the Append program. In this specialised definition of the Solve predicate SAGE
has made three optimisations:

1. the calls to Resolve have been specialised wrt the two statements in the object program to

5 SPECIALISING GÖDEL META-PROGRAMS 21

produce the third and fourth statements respectively in the new predicate Solve_1

2. symbols (such as Empty and &’), which are ordinarily hidden by Gödel’s implementation of the
ground representation as an abstract data type, have been promoted into the specialised program

3. the representation of the object program Append, which is now redundant, has been removed by
replacing the predicate Solve/6 by the new predicate Solve_1/5.

5.2 The Interpreter Coroutine

The second meta-interpreter we consider is, while still a relatively small meta-program, significantly
more complex than SLD and serves to illustrate more sophisticated meta-programming techniques such
as the explicit manipulation of substitutions and implementation of a selection rule.

5.2.1 Using SAGE on the Module Coroutine

The module Coroutine.loc is the main module for this interpreter and performs the same I/O and
pre- and post-processing functions that were performed by the module SLD in the previous section.
The two main differences between this module and the SLD module are that this module:

1. calls MySucceed where the SLD module calls Solve

2. produces a more sophisticated presentation of the answer-substitution.

The first of these two points merely emphasises that the interpretation performed by Coroutine is
different to that of SLD. We shall examine this in more detail below. The second point, a more sophi-
sticated presentation of the answer-substitution, is illustrative of certain aspects of the manipulation
of substitutions in meta-programs and the specialisation of conditionals. We consider this next.

Partial Evaluation of the Predicate AnswerString

Suppose that we permit SAGE to unfold any of the predicates appearing in the definitions for
AnswerString, AnswerString1 and BindingToString. When specialising the initial call to
AnswerString the representation of the object program and main module name (that is, the first
two arguments) will be known but the other arguments will be unknown. It is apparent therefore
that SAGE will mark the predicate AnswerString1 as being unsafe in this partial evaluation. When
performing the partial evaluation SAGE will therefore unfold the call to AnswerString in Go but not
the call to AnswerString1. Instead a separate call to AnswerString1 with the first two arguments
instantiated will be specialised to produce a new recursive definition of this predicate in which the call
to BindingToString will have been unfolded.

The condition of the conditional in the definition of BindingToString will not be unfolded as it not
sufficiently instantiated to be executed without binding any free variables. Examining the formulas in
the then-part and else-part of this conditional we see that only the equality atoms will be unfolded.
This conditional will be replaced by a specialised version which will appear in the definition of the
specialised AnswerString1 predicate. To illustrate these specialisations Figure 6 shows the partial
evaluation of the Coroutine module wrt the object program Append.

As comparatively little specialisation of the predicates AnswerString1 and BindingToString
may actually be performed it is possible that a user of SAGE might prefer simply to mark either
AnswerString or AnswerString1 as non-selectable, thus leaving the residual definitions of these pre-
dicates the same as their original definitions. A selection of more effective specialisations of conditionals
is illustrated by the partial evaluation of the module Conc.

5 SPECIALISING GÖDEL META-PROGRAMS 22

MODULE Coroutine.

IMPORT Conc, ProgramsIO.

PREDICATE Go : String * String * String.

Go(program_string, goal_string, answer_string) <-
FindInput(program_string++".prm", In(is)) &
GetProgram(is, program) &
MainModuleInProgram(program, module) &
StringToProgramFormula(program, module, goal_string, [goal]) &
FormulaMaxVarIndex([goal], var) &
EmptyTermSubst(empty) &
EmptyFormula(e) &
MySucceed(goal, program, var, _, e, e, empty, answer) &
AnswerString(program, module, goal, answer, answer_string).

PREDICATE AnswerString : Program * String * Formula * TermSubst * String.

AnswerString(program, module, goal, answer, "{" ++ string ++ "}") <-
FormulaVariables(goal, vars) &
AnswerString1(vars, program, module, answer, "", string).

PREDICATE AnswerString1 : List(Term) * Program * String * TermSubst * String * String.

AnswerString1([], _, _, _, _, "").
AnswerString1([var|rest], program, module, answer, comma, string ++ rest_string) <-

ApplySubstToTerm(var, answer, var_answer) &
BindingToString(var, var_answer, program, module, comma, comma1, string) &
AnswerString1(rest, program, module, answer, comma1, rest_string).

PREDICATE BindingToString : Term * Term * Program * String * String * String * String.

BindingToString(var, var_answer, program, module, comma, comma1, string) <-
IF var = var_answer

THEN comma1 = comma &
string = ""

ELSE ProgramTermToString(program, module, var, var_string) &
ProgramTermToString(program, module, var_answer, answer_string) &
comma1 = "," &
string = comma ++ var_string ++ "/" ++ answer_string.

5 SPECIALISING GÖDEL META-PROGRAMS 23

PREDICATE Go_1 : String * String.

Go_1(goal_string, "{" ++ answer_string ++ "}") <-
StringToProgramFormula(<Append>, "Append", goal_string, [goal]) &
MySucceed_1(goal, var, _, Empty, _, EmptyTermSubst, answer) &
FormulaVariables(goal, vars) &
AnswerString1_1(vars, answer, "", answer_string).

PREDICATE AnswerString1_1 : List(Term) * TermSubst * String * String.

AnswerString1_1([], _, _, "") <-
AnswerString1_1([var|rest], answer, comma, string ++ string1) <-

ApplySubstToTerm(var, answer, var_answer) &
(
IF Test_0(var, var_answer)

THEN Then_1(comma, comma1, string)
ELSE Else_2(var, var_answer, comma, comma1, string)

) &
AnswerString1(rest, answer, comma1, string1).

PREDICATE Test_0 : Term * Term.

Test_0(var, var).

PREDICATE Then_1 : String * String * String.

Then_1(comma, comma, "").

PREDICATE Else_2 : Term * Term * String * String * String.

Else_2(var, var_answer, comma, ",", comma ++ var_string ++ "/" ++ answer_string) <-
ProgramTermToString(<Append>, "Append", var, var_string) &
ProgramTermToString(<Append>, "Append", var_answer, answer_string).

Figure 6: Specialised Version of Module Coroutine

5 SPECIALISING GÖDEL META-PROGRAMS 24

5.2.2 Using SAGE on the Module Conc

Note: This section of the guide has yet to be completed.

EXPORT Conc.

PREDICATE MySucceed : Formula * Program * Integer * Integer * Formula * Formula
* TermSubst * TermSubst.

LOCAL Conc.

IMPORT Programs.

BASE Bind.

FUNCTION ! : xFx(200) : Term * Term -> Bind.

MySucceed(formula, _, var, var, _, _, answer, answer) <-
EmptyFormula(formula) |.

MySucceed(formula, program, var, var1, l, r, answer_so_far, answer) <-
Atom(formula) |
MyStatementMatchAtom(program, formula, clause) &
Resolve(formula, clause, var, new_var, answer_so_far,

new_answer, new_body) &
(
IF EmptyFormula(new_body)

THEN AndWithEmpty(l, r, nb)
ELSE AndWithEmpty(l, new_body, nb1) &

AndWithEmpty(nb1, r, nb)
) &
Select(nb, new_answer, program, l1, s1, r1) &
MySucceed(s1, program, new_var, var1, l1, r1, new_answer, answer).

PREDICATE MyStatementMatchAtom : Program * Formula * Formula.

MyStatementMatchAtom(program, atom, statement) <-
{ PredicateAtom(atom, pred, _) \/

PropositionAtom(atom, pred) } &
DefinitionInProgram(program, _, pred, defn) &
Member(statement, defn).

PREDICATE Select : Formula * TermSubst * Program * Formula * Formula * Formula.

Select(formula, _, _, formula, formula, formula) <-
EmptyFormula(formula) |.

Select(formula, subst, program, left, selected, right) <-
And(l, r, formula) |
IF SOME [l1, s1, r1] Select(l, subst, program, l1, s1, r1)
THEN

5 SPECIALISING GÖDEL META-PROGRAMS 25

left = l1 &
selected = s1 &
AndWithEmpty(r1, r, right)

ELSE
Select(r, subst, program, l1, selected, right) &
AndWithEmpty(l, l1, left).

Select(formula, subst, program, empty, formula, empty) <-
Atom(formula) |
EmptyFormula(empty) &
CanRunAtom(program, formula, subst).

PREDICATE CanRunAtom : Program * Formula * TermSubst.

CanRunAtom(program, atom, sss) <-
PredicateAtom(atom, predicate, _) &
ProgramPredicateName(program, module, _, _, predicate) &
IF SOME [heads, conditions, n]

(ControlInProgram(program, module, predicate, heads, conditions) &
Length(heads, n) & n > 0)

THEN
GetDelay(heads, conditions, atom, sss).

PREDICATE GetDelay :
List(Formula) * List(Condition) * Formula * TermSubst.

GetDelay([head|_], [condition|_], atom, subst) <-
InstanceOfHead(head, atom, subst, sss) &
ConditionSatisfied(condition, sss).

GetDelay([_|rh], [_|rc], atom, sss) <-
GetDelay(rh, rc, atom, sss).

PREDICATE InstanceOfHead : Formula * Formula * TermSubst * List(Bind).

InstanceOfHead(head, atom, subst, bind) <-
PredicateAtom(head, name, head_args) &
PredicateAtom(atom, name, args) &
InstanceOfHead2(head_args, args, subst, [] , bind).

PREDICATE InstanceOfHead1 : Term * Term * List(Bind) * List(Bind).

InstanceOfHead1(head_arg, arg, b, [head_arg ! arg|b]) <-
Variable(head_arg) |.

InstanceOfHead1(head_arg, arg, subst, subst) <-
ConstantTerm(head_arg, name) |
ConstantTerm(arg, name).

InstanceOfHead1(head_arg, arg, subst, new_subst) <-
FunctionTerm(head_arg, name, head_args) |
FunctionTerm(arg, name, args) &
InstanceOfHead3(head_args, args, subst, new_subst).

PREDICATE InstanceOfHead2 : List(Term) * List(Term) * TermSubst
* List(Bind) * List(Bind).

REFERENCES 26

InstanceOfHead2([], [], _, subst, subst).
InstanceOfHead2([head_arg|head_args], [arg|args], sss, subst, new_subst) <-

ApplySubstToTerm(arg, sss, arg1) &
InstanceOfHead1(head_arg, arg1, subst, subst1) &
InstanceOfHead2(head_args, args, sss, subst1, new_subst).

PREDICATE InstanceOfHead3 : List(Term) * List(Term) * List(Bind) * List(Bind).

InstanceOfHead3([], [], subst, subst).
InstanceOfHead3([head_arg|head_args], [arg|args], subst, new_subst) <-

InstanceOfHead1(head_arg, arg, subst, subst1) &
InstanceOfHead3(head_args, args, subst1, new_subst).

PREDICATE ConditionSatisfied : Condition * List(Bind).

ConditionSatisfied(cond, subst) <-
GroundCondition(var, cond) |
Member(var ! term, subst) &
GroundTerm(term).

ConditionSatisfied(cond, subst) <-
OrCondition(cond1, cond2, cond) |
OrConditionSatisfied(cond1,cond2, subst).

ConditionSatisfied(cond, subst) <-
AndCondition(cond1, cond2, cond) |
ConditionSatisfied(cond1, subst) &
ConditionSatisfied(cond2, subst).

ConditionSatisfied(cond, subst) <-
NonVarCondition(var, cond) |
Member(var ! term, subst) &
NonVariable(term).

ConditionSatisfied(cond, subst) <-
TrueCondition(cond).

PREDICATE OrConditionSatisfied : Condition * Condition * List(Bind).

OrConditionSatisfied(cond, _, subst) <-
ConditionSatisfied(cond, subst).

OrConditionSatisfied(_, cond, subst) <-
ConditionSatisfied(cond, subst).

References

[1] D Chan and M Wallace. A treatment of negation during partial evaluation. In H D Abramson
and M H Rogers, editors, Meta-Programming in Logic Programming, Proceedings of the Meta88
Workshop, June 1988, pages 299–318. MIT Press, 1989.

REFERENCES 27

[2] C A Gurr. Specialising the Ground Representation in the Logic Programming Language Gödel. In
Proceedings of the Third International Workshop on Logic Program Synthesis and Transformation.
Springer-Verlag, July 1993.

[3] C A Gurr. A Self-Applicable Partial Evaluator for the Logic Programming Language Goedel
(Extended Abstract). Technical Report Draft, Human Communication Research Centre, University
of Edinburgh, 1994.

[4] C A Gurr. A Self-Applicable Partial Evaluator for the Logic Programming Language Gödel. PhD
thesis, Department of Computer Science, University of Bristol, January 1994.

[5] P M Hill and J W Lloyd. The Gödel Programming Language. Technical Report CSTR-92-27,
Department of Computer Science, University of Bristol, 1992. Revised May 1993. To be published
by MIT Press.

[6] P M Hill, J W Lloyd, and J C Shepherdson. Properties of a pruning operator. Journal of Logic
and Computation, 1(1):99–143, 1990.

[7] J W Lloyd and J C Shepherdson. Partial evaluation in logic programming. Journal of Logic
Programming, 11:217–242, 1991.

