
COP8™ Development Tools
QUICKSTART FOR THE EPU

March 1998

&23� (38 'HYHORSPHQW 7RROV

2

REVISION RECORD

REVISION RELEASE DATE SUMMARY OF CHANGES
A 03/98 First Release

The information contained in this guide is for reference only and is subject to
change without notice.

No part of this document may be reproduced in any form or by any means without
the prior written consent of National Semiconductor Corporation.

© Copyright National Semiconductor Corporation, 1998

COP8 is a trademark of National Semiconductor Corporation
PC is a trademark of International Business Machine Corporation
iceMaster is a trademark of MetaLink Corporation
Windows and Windows NT are trademarks of Microsoft Corporation
InstallShield is a registered trademark of InstallShield Corporation

&23� (38 'HYHORSPHQW 7RROV

3

:KDW \RX QHHG

• Computer and monitor : 486 or higher PC™ with at least 8 MB
RAM (16 MB recommended), a hard disk with at least 20MB of
free disk space and a mouse

• Windows ™ 95, Windows NT™, or Windows 3.11 running in
enhanced mode (The descriptions in the document will assume a
Windows 95 environment)

• (Optional) Printer

• A LED (Light Emitting Diode) and a resistor (at least 330 Ohms)

,QVWDOOLQJ $60&23�/LQNHU�/LE� 0HWD/LQN
LFH0DVWHU�'HEXJJHU� DQG :&23� ,'(

Begin by clearing the memory by exiting all tasks:
 Identify any resident programs by lowering the mouse cursor to the
 taskbar, clear any program by clicking on them and exiting them.

This is usually accomplished by clicking on File|Exit .

Install ASMCOP/Linker/Lib
1. Insert the disk labeled ASM/Linker/Lib into the floppy drive
2. Click the start button and select Run
3. At the windows prompt Open:
 A) Type in a:install (where a: is your floppy drive)
 B) At the dos prompt: Source drive of installation disk [A]:,
 Select a: (where a: is the drive in which the floppy is in)
 C) At the dos prompt for Directory for COP8 [C:\cop]:,
 Select c:\cop (where c: is the hard drive)
 D) Depress the return key
4. The install program will now decompress the necessary files.
5. When done, type in "exit " and hit the <RETURN> key.

Install iceMASTER™-EPU-COP8
1. Insert the disk labeled iceMASTER™-EPU-COP8 Disk1 into your

floppy drive
2. Click the start button and select RunC
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

4

3. At the windows prompt Open:
 A) Type in a:\setup (where a: is your floppy drive)
 B) Click Yes to the prompt "Install COP8 Emulator"
 C) Change disk(s) as requested by InstallShield®

 D) Select a destination path and Click on Next
 E) Click Next to add files to the Program Folder
 F) Click Ok to the next three menus

Install WCOP8 IDE

1. Insert the disk labeled KKD WCOP8 IDE Disk1 into your floppy
drive

2. Click the start button and select Run
 3. At the windows prompt Open:

 A) Type in a:setup (where a: is your floppy drive)
 B) Click Next when you are done reading the information window

4. A screen will appear asking for your name, company, and
 the serial number on the label of the WCOP8 IDE disk. Type in all
 the necessary information and when done click Next.

 5. A window will pop up asking for which type of installation to do.
 A) Click on the space next to "Make new installation and overwrite

 all old settings" if this is a new installation of WCOP8 IDE.
 B) Click Next when done.

6. A window will ask for "Destination Location" which WCOP8 IDE
 will be installed at.
 A) Click on Next for the default path or click on Browse for a to

 enter another destination path.
 B) Click on Next when done.

 7. A window will ask for the type of Operation System in which
 WCOP8 IDE will be installed into.

 A) Select the type of Operation System.
 B) Click on Next when done.

 8. A window pane will pop up asking which Program groups should
 the WCOP8 icons be installed.
 A) Select a program group
 B) Click Next when done.
 C) Click on Next to decompress the files and finalize the install

 process.
 D) Click on Finish when done to exit the install program.C

O
P

8
Q

U
IC

K
ST

A
R

T

&23� (38 'HYHORSPHQW 7RROV

5

At the end of the installation(s) you can verify that the correct files have been
installed by using Windows Explorer and comparing your installation to that
shown in Fig 1.

C
O

P
8

Q
U

IC
K

ST
A

R
T

Figure 1.

&23� (38 'HYHORSPHQW 7RROV

6

 ,QVWDOOLQJ WKH (38

1. Begin by identifying all the parts of the system. Locate the serial connection
cable, base unit, a power supply (there should be two for the EPU), and a 40
pin ribbon cable with a header. The setup should look like Fig. 2.

Figure 2.

2. Connect the power supply module (110V or 220V) to the EPU. Plug in the
 power supply but do not turn on the power yet!

3. Connect the serial cable to the PC and then connect the other end to the EPU
 module. This is shown in the Fig 3.C

O
P

8
Q

U
IC

K
ST

A
R

T

&23� (38 'HYHORSPHQW 7RROV

7

Figure 3.

4. Install the ribbon cable with the 40 pin header onto the connector J1 on the
 EPU.

5. Click on the Start menu, select Programs, select WCOP8 IDE and the
 program will start.

C
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

8

7KH 4XLFN 6WDUW ([HUFLVH

The sections which follow demonstrate the typical steps and procedures for
entering and modifying a program written for the COP8 Assembler, running the
Assembler and Linker, downloading the program into the Evaluation and
Programming Unit (EPU) for purposes of debugging and eliminating errors, and
finally programming a COP microcontroller EPROM or OTP part.

We make the assumption that you are somewhat familiar with embedded
microcontrollers, software text editors and assemblers, and some form of
debugging tool. By following this document closely you will be able to create
one example of a working set of firmware even if you’ve never developed
software for a microcontroller. No previous experience with COP8
microcontrollers is required to understand and use the example program.

A Note on Developing Software

The first step in developing
application software is to carefully
specify the operational requirements.
Flow-charts or some other technique
can be used to document the program
sequences in the software (such as
the one shown in Fig. 4) . Fig. 4 is a
high level "idea chart" that we will
use for our exercise program. In
many cases new application software
is written by modifying existing
software. A sample program,
(main.asm) supplied with WCOP8
IDE, is used for our example. Using
Windows utilities (click and drag are
easiest) copy the example to your
quick project directory. WCOP8
IDE allows you to organize software
development into projects. The
following briefly delineates the steps
to set up a project.

 Figure 4.C
O

P
8

Q
U

IC
K

ST
A

R
T

Start

timer=0
counter=0

timer=
0.5s?

Delay
Subroutine

Switch LED
D(0)

Yes

Is
counter=0?

Switch LED
D(1)

3 sec have
elapased

Yes

timer++

No

counter++
timer=0

No

&23� (38 'HYHORSPHQW 7RROV

9

Figure 5.

Launch the WCOP8 IDE by clicking on the Start Menu|Programs|WCOP8
IDE. WCOP8 IDE will scan the hard drive for ASMCOP/ LNCOP/PROMCOP®

and ByteCraft's COP8C® compiler when it is ran for the first time. It will then
create the appropriate settings for your machine. Select Project|New Project,
and, on the New Project window (Fig.5), locate the directory c:\cop8\project\
quick. At the File Name prompt type in main.prj. This will be the project name
of our lesson. Click OK, and the Project Files window appears (Fig. 6).

C
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

10

Figure 6.

Select Project|Add Files Select main.asm as the only file for this project. Click
OK, and the . The project main.prj has been created, and consists only of the
one file main.asm. Click on the main.asm icon, and edit the file so that it
corresponds to the listing in Appendix A, and save it.

C
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

11

Step1. Setup of the Circuit

The modified software, when executing on
your EPU, will blink an LED at two
different rates. The LED and a series
resistor are connected between Vcc and one
of 2 PORT “D” I/O pins. Attach a clip lead
to the post TP6 which is Vcc. This will be
used to obtain LED voltage. (See Fig. 7a
and 7b).

 Figure 7a.

When the assembled circuit (Fig 7b.) is
connected, and the program is running,
the LED attached at EPU J1-D0 will blink
at approximately 1/2 second on, 1/2
second off. When the LED is attached to
EPU J1-D1 it will blink at approximately
3 seconds on, 3 seconds off. Rate will
vary a bit depending on your processor
speed. Since the EPU simulates fetching
instructions over the serial (RS-232) host
port, the dominate timing parameter is the
baud rate.

 Figure 8.C
O

P
8

Q
U

IC
K

ST
A

R
T

Figure 7b.

&23� (38 'HYHORSPHQW 7RROV

12

Click on the main.asm icon. Select Execute|Build or click on the build icon. A
window with the title Executing will pop up. WCOP8 IDE will assemble, and if
there are no assembly errors link the program.

If there are assembly errors, an error map is displayed. If no error(s) occurred
then a display such as the one in Fig. 8 will be given.

Large embedded microprocessor projects frequently contain more than one file
(module) each of which is assembled separately. The Assembler outputs are then
linked together and tested as a whole. WCOP8 IDE has a make function that
assembles only the files that have changed, and then links the files to produce
the symbolic output ready for loading into the EPU or other MetaLink emulation
tool. For this feature select Execute|Make or click on the make icon.

WCOP8 IDE provides for consolidation of all of these modules as a project, and
includes several features for the orderly processing of these multiple modules.
This example, set up as a project even though the source is a single file module,
nevertheless illustrate the principles of project management. Chapter 8 in the
WCOP8 IDE User’s Manual, Using the WCOP8 IDE in Project Mode, covers
these additional features in detail.

Step 2. Debugging and Testing Software on the EPU Module

We will now setup WCOP8 IDE so that it will recognize the MetaLink
iceMaster Debugger. Click on Project|Project Settings. Double Click
MetaLink tools. Click on Window COP8 Emulator. Click on Browse button
and locate where MetaLink's debug program is located. A path/program name
similar to "e:\metalink\whp2380\whp2380.exe" should be found. A window
similar to Fig. 9 will now be displayed.

C
O

P
8

Q
U

IC
K

ST
A

R
T

Figure 9.

&23� (38 'HYHORSPHQW 7RROV

13

Click on the box next to the sentence "Use command line parameters".
Click on the selection National COFF - file (.cof) parameters
Click Ok when done.

Connect the ribbon cable with the header pins to the target hardware, in this
case the LED and resistor, to J1. (In a typical application, the supplied cable will
be used to connect between EPU J1 and the microprocessor socket on the target
hardware.) Power up the EPU and click on Debug|Windows COP8 Emulator
to activate the EPU and the PC. A window will pop up asking you to select a
project directory . Select a directory and click OK . A Select Chip window will
pop up. Select the 8SGR (40 - pin configuration) as the Emulation Device and
Click OK . Another window will pop up asking for a communications port
(COM1-COM4) in which the EPU is connected to. Click the appropriate COM
port and click OK . The specific device and com port information will be
preserved and the user will not have to re-enter information the next time he/she
load up the same project directory.

Step 3. Configuring the EPU Module

The EPU software generally locates the
serial port through the configuration file
used by the EPU, and establishes the
connection between the PC and the EPU.
If there is a problem, use
Configure|Emulator to select the serial
port and baud rate. While the serial port is
usually set to the highest baud rate, it is
sometimes necessary to set the baud rate to a lower value to ensure reliable
operation. Refer to the "troubleshooting" section (pg. 5/6) of the EPU manual if
you encounter any configuration problems.

Step 4. File

Select File|Load so that the executable (in this case main.cof) can be entered
into the File Name box. At the prompt, “Merge into current application
environment?”, select no (merge allows multiple files to be loaded into memory
without pre-initialization to all 0x00 content).

C
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

14

Note: By displaying main.asm in the edit window when selecting
Debug|Windows Emulator, the default directory used by the EPU will
be c:\cop8\ The full path for the executable, main.cof, need not be
entered into the File Name entry box.

Once loaded the EPU is ready to execute, and following your directions, to test
the example If you are optimistic you can simply click RUN and see the result.
By following the techniques described below you will learn to use some of the
testing features available using the EPU and iceMaster debugger software.
C

O
P

8
Q

U
IC

K
ST

A
R

T

&23� (38 'HYHORSPHQW 7RROV

15

Step 6. Adding/Using a simple
Break/Trace

This section covers the basics for
setting, editing and removing
breakpoints. Breakpoints are
generally inserted at critical points
in the program to verify program
operation. Once started, the
microcontroller runs until the next

breakpoint is reached. The process is then frozen and the microcontroller’s
internal state is displayed for examination and possible change. When ready,
the process can be resumed (to run until the next breakpoint) or restarted.

Figure 9.

The EPU also retains a trace of the most recent 100 frames that occurred in the
execution cycle. In addition to the trace, content of the internal registers and
stack, condition of the input/output ports, and memory content (RAM and
ROM) are also available.

A breakpoint is added by clicking on the code line, and then clicking on Toggle-
Breakpoint. A breakpoint is enabled when a small square appears to the right
of the instruction address (Fig. 10). Using the EPU you can enable up to 32k
breakpoints . A breakpoint can be cleared by selecting the set breakpoint and
clicking on Toggle-Breakpoint a second time. Here we will add a breakpoint at
line 21 and line 24. Line 21 and Line 24 are where the subroutines are called. C

O
P

8
Q

U
IC

K
ST

A
R

T

&23� (38 'HYHORSPHQW 7RROV

16

Step 7. Running the Code

Note that the EPU is an in-circuit simulator as opposed to the more common in-
circuit emulator. While the in-circuit emulator runs in real time, the in-circuit
simulator is controlled by software, executes instructions one at a time, and runs
much slower (approximately 10 KHz). Instruction fetch and trace are performed
within the PC with the microcontroller code memory loaded cycle by cycle over
the serial port. Execution speed is primarily a function of baud rate.
It is good practice to reset the microprocessor before starting the simulation.
This is done by selecting Run|Reset|Processor. Selecting Run|Go (function key
F4) causes the processor to run to the next breakpoint and stop. Select Run|Go.

 Figure 10.

Select Window|Trace to use the EPU trace facility. This allows the user to view
the instructions that have been executed prior to the breakpoint. After arriving at
the breakpoint and enabling the Trace function you should have a window
similar to that of Fig. 11. This is important when verifying instruction execution
based on branches within the program. An alternative method of simulation is
to step through the program one instruction at a time. While this approach can
be time consuming, it is possible to determine the step-by-step status of the
microcontroller. This is accomplished by selecting Run|Step (function key F7).

C
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

17

A Note On Window Displays

Simulation results are shown in the EPU window
which is divided into five window panes: Source,
Core Registers, Registers, Status and RAM Memory.
Each window pane can be expanded so that all
information can be viewed. The user can also adjust
the size of the window panes to suit the data viewing
requirements.

The Source window pane shows the hexadecimal
machine code and the source assembly code, and
indicates the active breakpoints. The RAM window
pane shows data in the RAM memory. The Status

window pane presents the simulation data including breakpoint address and
other related data. The Registers window pane shows the data in the registers,
the timers and input/output ports. The Core Register window pane shows the
accumulator, stack pointer, B and X registers as well as the flags in the Program
Status Word (PSW).

Since the first few instructions in the example program set up timer registers,
results of these instructions can be verified in the Registers pane.

C
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

18

Step 8. Misc. Section - Programming the
(E)PROM

This section contains the procedures for
programming the COP One Time
Programmable (OTP) and erasable
microprocessors supported by the EPU.
Select File|PROM Programmer|Device to
display the set of COP devices that can be
programmed by the EPU. Select the
appropriate device from the list.

A window similar to that of Fig. 12 should pop up to allow programming of the
COP microcontroller.

 Figure 12.

Clicking on the Configuration button will bring up another window (Fig 13.)
which will allow a detailed configuration of the microcontroller. For the 40 pin
devices, the configuration of the COP device must be finalized.C

O
P

8
Q

U
IC

K
ST

A
R

T

&23� (38 'HYHORSPHQW 7RROV

19

Select Security, and then
choose Disable or Enable.
For testing purposes
choose Disable. The clock
option is chosen by
selecting Clock Option.
For testing purposes
choose RC Oscillator. The
clock configuration on the
target hardware will determine Figure 13.
the selection of External Oscillator, RC Oscillator or Crystal Oscillator. Enable
the POR (Power On Reset) circuit by clicking on the Power On Reset|Enabled.

The RAM size selection is not available for the SGR EPU. If the program has
not been loaded, then select Load to load the program into the EPU so that the
COP microprocessor can be programmed. This is not necessary if the program
has been loaded as part of the debugging process; the otp will program from the
same memory that was used by the debugger for simulation.

Programming the COP microcontroller is accomplished by selecting
File|Programming|Automatic and clicking on the Start Operation. This first
checks that the COP device is blank, programs the code, and Configuration
(ECON) and Signature registers, and verifies the programming by reading the
just programmed device and comparing the data to the file. Selecting
File|Programming|Manual|Eprom Program will program only the code space.

Click on the button Start Operation to begin programming our microcontroller.
Follow the directions on the pop up window. After programming Click on the
Exit button to get back to the main client window. The software will ask you to
remove the chip from the programming socket. Make sure the chip is not in the
socket. Leaving the chip in may cause damage to both the simulator board
and/or the surrounding circuit.

C
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

20

After "burning" the microcontroller you can test the behavior of the code at full
speed. Replace the ribbon cable header with the newly burnt chip and apply a
clean 5 volts (preferably from a power supply.) Detach the clip from TP6 and
attach it to a supply VCC (+5V) and the microcontroller ground to that of
supply GND. Make sure that the /RESET line is tied high as to enable the POR
(Power On Reset) circuit. The setup should look similar to that of Fig. 14.

Figure 14.

Step 9. Conclusion And Final Thoughts

The WCOP8 IDE is a powerful software tool
for organizing the development of single and
multiple module programs for the COP8
family of microprocessors. The EPU in-
circuit simulator similarly is an inexpensive
tool for debugging and testing COP8 software
and verifying operation of the target
hardware. The EPU can then program a
COP8 EPROM or OTP device which can be
inserted into the target circuitry for actual
real time testing.C

O
P

8
Q

U
IC

K
ST

A
R

T

&23� (38 'HYHORSPHQW 7RROV

21

Appendix A

Assembly Code For The QuickStart Lesson

;**;
;* COMPANY : K&K Development *;
;* PROJECT : WCOP8 IDE Test Assembler Project *;
;* FILENAME : Main.asm *;
;* VERSION : 1.0 *;
;*--*;
;* This file is part of the test project that comes *;
;* with the WCOP IDE software. The only purpose of the *;
;* project is to serve as an example when exploring the *;
;* features of WCOP8 IDE. *;
;* *;
;* K&K Development makes no warranty, representation or *;
;* guarantee regarding the suitability of this project *;
;* for any particular purpose. *;
;**;

.chip COP888EG

.incld main.inc

; Set up memory location COUNT1 as a register so that the
; instruction DRSZ (Decrement and Skip if Zero) can be used
; to test the result. See it used below.)

.sect REGISTER,REG
COUNT1: .dsb 1

; .endsect

; This tells this software module that there is a software
; subroutine in another module called "Subroutine". Not used as part
; of the demo.

;.extrn Subroutine ;Subr. from ext. module

; This section of code is given the name "code1". The first line of
; code, a call to a subroutine name "Subroutine" has been commented
; out since it is not used as part of the demonstration. The second
; instruction sets up Timer 1 to produce a rectangular pulse train
; on pin 3 of Port G. Instructions 3 and 4 initialize 16-bit Timer
; T1. The next 4 instructions initialize two 16-bit registers whose
; contents are alternately loaded into Timer each time it counts
; down to 0 and generates an interrupt. If both register were
; reloaded with the same value, a square wave output would be
; produced. (Indicated times are for real timer operation.)

.sect code1,rom

 init:
; JSR Subroutine ;Call subr from ext. module
 LD CNTRL,#B'10100000 ;PWM Mode, T1A Toggle

C
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

22

Assembly Code Continued

 LD TMR1LO,#L(1000) ;1 ms, tc = 1 us
 LD TMR1HI,#H(1000)
 LD T1RALO,#L(500) ;0.5 ms
 LD T1RAHI,#H(500)
 LD T1RBLO,#L(1000) ;1.0 ms
 LD T1RBHI,#H(1000)
 RBIT 3,PORTGD ;set up Port G bit 3
 SBIT 3,PORTGC ;as an output
 LD PSW,#B'00010001 ;Enable global and timer q

 ;interrupts
 SBIT 4,CNTRL ;Start Timer T1

;
; Once started the software will loop through this section until
; halted. Operation of the DELAY and TOGGLE subroutines is described
; below.

WAIT:
JSR DELAY
JSR TOGGLE
JP WAIT

 .endsect

;******Interrupt handler(s)*******
; This section, the timer interrupt handler software, is given the
; name "intr", and is located at address 0xFF. All interrupt
; software for the COP8 family must start at location oxFF. The
; exclusive OR instruction is used to toggle bit ; 0 of output port
; D. The timer pending flag, PSW bit 5, is set whenever a timer
; interrupt occurs, and must be cleared by the interrupt handler.
; Interrupts are disabled whenever an interrupt is detected. RETI is
; a special return instruction which re-enables the interrupts.
;
; Save the state of the registers before jumping to the Interrupt
; Service Routine
;
; Note: The COP uses a Vectored Interrupt Structure versus
; a polled interrupt structure

.sect intr,rom,abs=0xff

 .=00FF ; Start at interrupt address

 ; This is needed to store
 ; the state of the CPU before
 ; the "jump" to the ISR

Save: PUSH A ; Push Accumulator contents onto
 ; stack

 LD A,B
 PUSH A ; Push B pointer onto stack
 LD A,X

C
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

23

Assembly Code Continued

 PUSH A ; Push X pointer onto stack
 VIS ; Vector to the appropriate

 ; interrupt routine

Restore: ; This is needed to re-store
 ; the state of the CPU before
 ; the "jump" to the ISR

 POP A ; Pop X pointer from stack
 X A,X ; Restore X pointer
 POP A ; Pop B pointer from the stack
 X A,B ; Restore B pointer
 POP A ; Restore Accumulator contents
 RETI

Timer1A_Service:

 RBIT 5,PSW ;Reset Timer T1A pending flag
 LD A,PORTD ;Input Port D
 XOR A,#001 ;Toggle bit 0, 1.5ms
 X A,PORTD ;Output changed port bit

 JP Restore

 ; These interrupts are not used in
 ; the program

NotUsed: ; They do nothing
 JP Restore

.endsect

;******Vector Table*******
;
; This is the table which corresponds to the ISR(s) above
; There is a typical ISR table in page "3-4 Interrupts" of
; the feature family user's manual
; Make the edit to the table as required

.sect Interrupt_TABLE, ROM, ABS=0x1E0 ; Vector Table
; Now Define where the interrupt are going
; be at. We start at location 0x1E0

.Addrw NotUsed

.Addrw NotUsed

.Addrw NotUsed

.Addrw NotUsed.

.Addrw NotUsed

.Addrw NotUsed

.Addrw NotUsed

.Addrw NotUsed

.Addrw NotUsed

.Addrw NotUsed

.Addrw NotUsed

.Addrw Timer1A_Service

.Addrw NotUsed

.Addrw NotUsed

.Addrw NotUsed

.Addrw NotUsedC
O

P
8

Q
U

IC
K

ST
A

R
T

&23� (38 'HYHORSPHQW 7RROV

24

Assembly Code Continued

.endsect

;******************************
; This section of code is given the name "delay". Register COUNT1 is
; is initialized to a count of 0xFF. The DRSZ instruction decrements
; COUNT1, and compares the result to zero. If zero the jump
; instruction back to LABEL is skipped and the delay routine is
; exited.

.sect delay,rom
DELAY:
LD COUNT1,#0FF

LABEL1:
DRSZ COUNT1 ; Decrement COUNT1, skip if zero
JP LABEL1

 RET
.endsect

;*******************************
; This section of code is given the name "toggle", and is placed in
; ROM. The exclusive OR instruction is used to toggle bit 1
; of output port D. The DELAY subroutine inserts a time delay.

.sect toggle,rom
 TOGGLE:
 LD A,PORTD ;Input Port D

XOR A,#002 ;Toggle bit 1
X A,PORTD ;Output changed port bit
JSR DELAY ;Time delay
RET

.endsect

.end init

C
O

P
8

Q
U

IC
K

ST
A

R
T

