
KLayout
High Performance Layout Viewer And Editor

Version 0.21.16

Development and Documentation by Mahias Köfferlein ¹
Typeseing by Peter Ragosch

March 26, 2012

¹Contact

contact@klayout.de

Abstract

KLayout, the high performance layout viewer and editor, is continuously developed and improved by
Mahias Köfferlein since the first official release, Version 0.09, dated April 2006 and published under the
GNU public license GPL. e soware is available for Linux®¹, Windows™² and Mac OS³ operating sys-
tems. KLayout’s Home Page describes the application features, the build and use, the Ruby scripting
interface and many more in detail.

is article is compiled with the intention to collect all available information about KLayout from the
home page into one compact, and therefore, easy search able PDF document.

Document Revision History
Version Date Description
0.21.16 2012, March Chapter 4: Release Notes and Tar-Kits, section 4.1: Version 0.21.16 and sec-

tion 4.2: Version 0.21.15 added.
Chapter 8: ick Start Manual – Viewer Mode, section 8.3.15: Saving a
layout or parts of it, dialog Layout Writer Option on GDS2 Writer Options
dialog page: item ..□ Write current time to time stamps and description added.
Some minor typeseing improvements.

0.21.14 2012, February Initial Version

¹Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
²Windows is a registered trademark of Microso Corporation in the United States and other countries.
³Mac OS is a trademark of Apple Inc., registered in the U.S. and other countries.

http://www.klayout.de

Contents

I About e Project 12

1 KLayout Highlights 13
1.1 KLayout Features . 13
1.1.1 General . 13
1.1.2 Viewer . 13
1.1.3 Editor . 14

1.2 KLayout is a GDS and OASIS file viewer . 14
1.3 KLayout is more . 14
1.4 KLayout is free . 15
1.5 Current status . 15
1.6 e future of the project . 15

2 Download and Build 16
2.1 Download Current Version . 16
2.2 Development Snapshot . 16
2.3 Packaged Release for Windows . 16
2.4 Building on MacOS . 17
2.5 Building KLayout on Unix . 17
2.6 Building KLayout for Windows 32 bit with MinGW . 19
2.7 Building KLayout for Windows 32 bit and 64 bit with Visual Studio 19
2.8 All Downloads . 20

3 Current Development 21
3.1 Development Snap Shot Tarkit . 21
3.1.1 Tar-Kits . 21

3.2 Multithreading for XOR tool . 21
3.3 Diff tool performance enhancements. 21

4 Release Notes and Tar-Kits 22

4.1 Version 0.21.16 . . 22
4.2 Version 0.21.15 . . 23
4.3 Version 0.21.14 . . 23
4.4 Version 0.21.13 . . 24
4.5 Version 0.21.12 . . 25
4.6 Version 0.21.11 . . 25
4.7 Version 0.21.10 . . 26
4.8 Version 0.21.9 . . 26
4.9 Version 0.21.8 . . 26
4.10 Version 0.21.7 . . 27
4.11 Version 0.21.6 . . 27
4.12 Version 0.21.5 . . 28
4.13 Version 0.21.4 . . 28

4.14 Version 0.21.3 . . 29
4.15 Version 0.21.2 . . 29
4.16 Version 0.21.1 . . 29
4.17 Version 0.21 . . . 30
4.18 Version 0.20.2 . . 31
4.19 Version 0.20.1 . . 32
4.20 Version 0.20 . . . 32
4.21 Version 0.19.3 . . 33
4.22 Version 0.19.2 . . 34
4.23 Version 0.19.1 . . 34
4.24 Version 0.19 . . . 34
4.25 Version 0.18.2 . . 35
4.26 Version 0.18.1 . . 35

4.27 Version 0.18 . . . 36
4.28 Version 0.17.2 . . 37
4.29 Version 0.17.1 . . 38
4.30 Version 0.17 . . . 38
4.31 Version 0.16.1 . . 39
4.32 Version 0.16 . . . 39
4.33 Version 0.15 . . . 40
4.34 Version 0.14 . . . 40
4.35 Version 0.13 . . . 41
4.36 Version 0.12 . . . 42
4.37 Version 0.11 . . . 42
4.38 Version 0.10 . . . 43
4.39 Version 0.9 43

2 Version 0.21 KLayout

Contents Contents

5 Known Bugs and Issues 44
5.1 Version 0.21.5 . 45
5.1.1 DXF reader . 45
5.1.2 Performance issues on select . 45
5.1.3 RBA:Edge.intersect? delivers wrong results when the edges are collinear 45

5.2 Version 0.21.4 . 45
5.2.1 DXF reader . 45
5.2.2 Problems with non-English locales and UTF-8 file names on Linux 46

5.3 Version 0.21.3 . 46
5.3.1 CIF reader . 46
5.3.2 Rotate methods swapped . 46
5.3.3 “Draw border instances of arrays” feature broken . 46
5.3.4 Ruby crash . 46

5.4 Version 0.21.2 . 46
5.4.1 DXF reader still not complete . 46

5.5 Version 0.21.1 . 46
5.5.1 RBA: RdbItem.each_value is not working on const objects 46
5.5.2 DXF reader still not complete . 46
5.5.3 Layer mapping broken for DXF and CIF readers, writers 46

5.6 Version 0.21 . 47
5.6.1 Persistence of reader options is broken . 47
5.6.2 RBA: each_selected is broken . 47
5.6.3 DXF and CIF readers and writers incomplete . 47

5.7 Version 0.20.1 . 47
5.7.1 Program crashes when the marker browser is opened 47

5.8 Version 0.20 . 47
5.8.1 Net tracing does not extract net correctly . 47
5.8.2 Gerber reader does not correctly read certain macros 47

5.9 Version 0.19.3 . 47
5.9.1 Polygon cut algorithm for reducing the number of points per polygon in the GDS2

writer . 47
5.10 Version 0.19.2 . 47
5.10.1 Crashes on Qt 4.6.0 . 47
5.10.2 Ruby modules not loaded from the installation path on UNIX 48
5.10.3 OASIS reader too picky . 48

5.11 Version 0.19.1 . 48
5.11.1 “Test for shapes in view” feature does not work properly for AREF’s 48
5.11.2 RBA scripts crash in tight loops on Ruby 1.8.7 (i.e. Ubuntu 9.10) 48
5.11.3 GDS text reader problems . 48
5.11.4 Interactive stretching of images is broken . 48

5.12 Version 0.19 . 48
5.12.1 Crash when selecting “…” node in the marker browser item list 48
5.12.2 “Test for shapes in view” feature in layer list is extremely slow in some cases 48

5.13 Version 0.18 . 49
5.13.1 Crash when selecting “instance” mode on empty layout 49
5.13.2 Issues on Mac OS X . 49

5.14 Version 0.17.2 . 49
5.14.1 Sizing bugs . 49
5.14.2 Build not working for Mac OS X . 49
5.14.3 Crash when double-clicking a path end in partial mode 49
5.14.4 “Fit selection” is not working properly . 49
5.14.5 Wrong DBU read from GDS2 files . 49
5.14.6 Round paths are not wrien properly to OASIS files 49

KLayout Version 0.21 3

Contents Contents

5.14.7 Windows repaint problem for hidden canvas content 49
5.14.8 Space representation in vector fonts . 49

5.15 Version 0.17.1 . 50
5.15.1 Program hangs if the properties dialog is closed with the system menu 50
5.15.2 Program crashes if many text objects have identical location 50
5.15.3 OASIS reader problems when property name and string ID’s are defined aer they

are used . 50
5.15.4 AREF row and column description was swapped and misleading 50

5.16 Version 0.17 . 50
5.16.1 Display freezes on some Windows installations . 50

5.17 Version 0.16.1 . 50
5.17.1 Some flaws in partial edit mode and polygon or path creation 50
5.17.2 Order of recent file list was latest last . 50
5.17.3 Selection of very large arrays happened to be very slow 50

5.18 Version 0.16 . 51
5.18.1 Compile problems when ruby support is not enabled 51
5.18.2 “open recent” function is not working correctly on Windows 51
5.18.3 “change layer” function is not working properly . 51

5.19 Version 0.15 . 51
5.19.1 Child cells are shown multiple times in cell hierarchy 51
5.19.2 “Save” saves all layers if none should be saved . 51
5.19.3 Text objects are not shown correctly if a scalable font is selected for them 51

5.20 Version 0.14 . 51
5.20.1 Crash on Windows when the program is called first time 51

5.21 Version 0.13 . 51
5.21.1 Crash on Windows when the layer list becomes very small 51
5.21.2 KLayout does not start on some platforms and exits with a segmentation fault . . . 52

5.22 General . 52
5.22.1 Layout loading time . 52
5.22.2 Drawing speed versus high display precision . 52

II Documentation 53

6 Resources 54
6.1 Typographic Conventions . 54
6.1.1 Input Dialog Conventions . 55
6.1.2 RBA Typographic Conventions . 55
6.1.3 Listing Conventions . 55

6.2 Command-line arguments . 56
6.2.1 General Options . 56
6.2.2 Special Options . 57

6.3 Transformations in KLayout . 58
6.4 RDB format . 59
6.4.1 Basic structure . 60
6.4.2 Detailed description . 62

6.5 DXF format . 65
6.5.1 General DXF structure . 65
6.5.2 DXF structure that KLayout understand . 66
6.5.3 Other topics . 70

6.6 Expression syntax . 71
6.6.1 String interpolation . 71
6.6.2 Basic data types . 72

4 Version 0.21 KLayout

Contents Contents

6.6.3 Constants . 72
6.6.4 Operators and precedence . 72
6.6.5 Functions . 73

7 Useful Ruby Modules 75
7.1 Compute the total area of all selected shapes . 75
7.2 Compute the total area of all selected layers (hierarchical) 75
7.3 A layer processing framework . 76
7.4 Import a Cadence techfile . 76
7.5 Import a LEF file . 76
7.6 A simple technology manager . 76
7.7 Search for odd-width paths . 77
7.8 Replace cells with others from another file . 77
7.9 Write all child cells of the current cell to new files . 77
7.10 Dump all shapes of the current cell recursively to a XML file 77
7.11 List all layers under a ruler . 78
7.12 Rename all cells . 78
7.13 Compute the bounding box of a cell . 78

III Manuals 79

8 ick Start Manual – Viewer Mode 80
8.1 Basic viewing operations . 80
8.1.1 Main window . 80
8.1.2 Loading a file . 82
8.1.3 Managing the panels and loaded layouts . 83
8.1.4 Choosing a cell . 83
8.1.5 Choosing a hierarchy depth . 84
8.1.6 Configuring the cell list . 84
8.1.7 Hiding cells . 84
8.1.8 Zooming into the layout . 84
8.1.9 Return to a previous view state . 85
8.1.10 Bookmarking views . 85
8.1.11 Descending into a cell with context . 85

8.2 Changing the layers display style . 85
8.2.1 Choosing a layer color . 85
8.2.2 Bringing layers to the front or pushing them to the back 86
8.2.3 Telling used from unused layers . 86
8.2.4 Choosing a fill paern . 86
8.2.5 Animating layers . 86
8.2.6 Changing the display style . 86
8.2.7 Changing the layer visibility . 87

8.3 Advanced viewing operations . 87
8.3.1 Organizing layers hierarchically . 87
8.3.2 Using multiple layer properties setups with tabs . 87
8.3.3 Manipulation on layer views . 87
8.3.4 Loading and saving the layer sets . 90
8.3.5 Creating a screen-shot . 90
8.3.6 Doing measurements . 90
8.3.7 Ruler properties . 91
8.3.8 Adding images . 92
8.3.9 Browsing shapes . 92

KLayout Version 0.21 5

Contents Contents

8.3.10 Browsing instances . 93
8.3.11 e marker browser . 93
8.3.12 Selecting rulers, shapes or instances . 94
8.3.13 More configuration options . 94
8.3.14 Undo and redo . 96
8.3.15 Saving a layout or parts of it . 96
8.3.16 Saving and restoring a session . 97

9 ick Start Manual – Editor Mode 98
9.1 Basic principles of editor mode . 99
9.1.1 Pick and drop principle . 99
9.1.2 Basic editor mode options . 99
9.1.3 Selection . 100
9.1.4 Partial editing vs. full element editing . 100

9.2 Basic editing operations . 100
9.2.1 Creating a layout from scratch . 100
9.2.2 Creating a new layer . 101
9.2.3 Creating a new cell . 101
9.2.4 Creating a polygon . 101
9.2.5 Creating a box . 101
9.2.6 Creating a path . 101
9.2.7 Creating a text object . 102
9.2.8 Placing an instance of a cell . 102
9.2.9 Moving the selection . 102
9.2.10 Other transformations of the selection . 103
9.2.11 Partial editing . 103
9.2.12 Moving the selection to a different layer . 103
9.2.13 Other layer operations . 104
9.2.14 Copy and paste of the selection . 104
9.2.15 Delete a cell . 104
9.2.16 Rename a cell . 104
9.2.17 Copy and paste of cells . 105

9.3 Advanced editing operations . 105
9.3.1 Hierarchical operations . 105
9.3.2 Creating clips . 105
9.3.3 Flaen cells . 106
9.3.4 Layer Boolean operations . 106
9.3.5 Layer sizing . 107
9.3.6 Shape-wise Boolean operations . 107
9.3.7 Shape-wise sizing . 108
9.3.8 Object alignment . 108
9.3.9 Corner rounding . 109
9.3.10 Cell origin adjustment . 109
9.3.11 Layer operations . 110

10 Advanced Functions 111
10.1 e XOR tool . 111
10.2 e Diff tool . 112
10.3 e fill (tiling) utility . 112
10.4 Importing Gerber PCB files . 114
10.4.1 e import dialog . 116
10.4.2 e layer stack flow . 117
10.4.3 e free layer mapping flow . 119

6 Version 0.21 KLayout

Contents Contents

10.4.4 General options . 120
10.5 Importing other layout files . 122
10.6 e net tracing feature . 122

IV Ruby Scripting Interface (RBA) 124

11 RBA Introduction 125
11.1 Using RBA scripts . 125
11.2 Basic RBA . 126
11.3 A simple example . 126
11.4 Extending the example . 127
11.5 Events . 128
11.6 Brief overview over the API . 128
11.7 RBA and QtRuby . 129
11.7.1 Execution context . 130
11.7.2 Interfacing between QtRuby and RBA objects . 130

11.8 What can be done and what can’t . 131
11.9 More information . 131

12 RBA Examples 132
12.1 Using the HTML browser dialog I: A location browser . 132
12.2 Using the HTML browser dialog II: A screen-shot gallery 133
12.3 Dynamic database manipulation: A “Sokoban” implementation 133
12.4 Creating layouts I: e Koch curve . 134
12.5 Creating layouts II: Data visualization . 135
12.6 Menus: Dumping the menu structure . 135
12.7 Editing: Hierarchical propagation . 136
12.8 Using QtRuby I: Adding a custom dialog . 137
12.9 Using QtRuby II: Transforming KLayout into a HTTP server. 138

13 RBA Reference 140

13.1 AbstractMenu 142
13.2 Action 145
13.3 ActionBase 149
13.4 Annotation 153
13.5 Application 160
13.6 ArgType 166
13.7 Box 169
13.8 BrowserDialog 177
13.9 BrowserSource 179
13.10 Cell 181
13.11 CellInstArray 190
13.12 CellMapping 195
13.13 CellView 197
13.14 Class 200
13.15 CplxTrans 202
13.16 DBox 209
13.17 DCplxTrans 217
13.18 DEdge 223
13.19 DPath 230
13.20 DPoint 235
13.21 DPolygon 239

13.22 DSimplePolygon 245
13.23 DText 249
13.24 DTrans 253
13.25 DoubleValue 259
13.26 Edge 261
13.27 EdgeProcessor 269
13.28 FileDialog 277
13.29 ICplxTrans 279
13.30 Image 285
13.31 ImageDataMapping 294
13.32 InputDialog 298
13.33 InstElement 301
13.34 Instance 304
13.35 IntValue 308
13.36 LayerInfo 310
13.37 LayerMap 314
13.38 LayerProperties 318
13.39 LayerPropertiesIterator 331
13.40 LayerPropertiesNode 335
13.41 Layout 349
13.42 LayoutView 361

KLayout Version 0.21 7

13.43 LoadLayoutOptions 382
13.44 MainWindow 384
13.45 Manager 399
13.46 Marker 401
13.47 MessageBox 406
13.48 Method 409
13.49 ObjectInstPath 411
13.50 Observer 414
13.51 ObserverBase 415
13.52 ParentInstArray 416
13.53 Path 418
13.54 Point 424
13.55 Polygon 428
13.56 RdbCategory 435
13.57 RdbCell 437

13.58 RdbItem 439
13.59 RdbItemValue 442
13.60 RdbReference 445
13.61 RecursiveShapeIterator 447
13.62 ReportDatabase 450
13.63 SaveLayoutOptions 457
13.64 Shape 465
13.65 ShapeProcessor 474
13.66 Shapes 482
13.67 SimplePolygon 491
13.68 StringListValue 496
13.69 StringValue 497
13.70 Text 499
13.71 Trans 503

List of Figures

4.1 Ruler with halo . 41
4.2 Ruler without halo . 41

6.1 Illustration of Transformation – Overview . 58
6.2 Illustration of Transformation – Basics . 59
6.3 Marker Database Browser Dialog . 61
6.4 Marker Database Browser – UML Diagram . 62

8.1 KLayout Main Window . 81
8.2 Display without Oversampling (1x, Normal) . 95
8.3 Display with 2x Oversampling . 95
8.4 Display with 3x Oversampling . 96

9.1 Illustration of maximum coherence . 107
9.2 Illustration of minimum coherence . 107
9.3 Illustration of “strict” (red curve) to “weak” (purple curve) cutoff modes 108
9.4 Illustration of round corners function . 110

10.1 Illustration of Default Fill Option . 114
10.2 Illustration of Enhanced Fill Option . 114
10.3 Illustration of Second Order Fill Option . 114
10.4 Import Dialog — General . 116
10.5 Import Dialog — Layout Layers . 117
10.6 Import Dialog — Layer Stack . 117
10.7 Import Dialog — Artwork Files . 118
10.8 Import Dialog — Drill Types And Files . 118
10.9 Import Dialog — Files . 119
10.10 Import Dialog — Layout Layers . 119
10.11 Import Dialog — Layer Mapping . 120
10.12 Import Dialog — Coordinate Mapping . 120
10.13 Import Dialog — Options . 121

12.1 RBA Example 1 – Using the HTML browser dialog I – A location browser. 132
12.2 RBA Example 2 – Using the HTML browser dialog II – A screen-shot gallery 133
12.3 RBA Example 3 – Dynamic database manipulation – A “Sokoban” implementation 134
12.4 RBA Example 4 – Creating layouts I – e Koch curve. 134
12.5 RBA Example 5 – Creating layouts II – Data visualization. 135
12.6 RBA Example 6 – Menus – Dumping the menu structure. 136
12.7 RBA Example 8 – Using QtRuby I – Adding a custom dialog. 137
12.8 RBA Example 9 – Using QtRuby II – Transforming KLayout into a HTTP server 138

13.1 Box notation. 169
13.2 Box notation. 209

List of Dialog Entries and Code Snippets

2.1 Build Script on MacOS 10.5.7 . 17
2.2 Build Script on MacOS 10.5.6 . 17
2.3 Simple Build on Unix . 17
2.4 Simple Build on Unix with Qt Path . 18
2.5 Simple Build on Linux Standard Base Systems . 18
2.6 Simple Build on Unix for other Platform . 18
2.7 Simple Build on Unix – Known Platform List . 18
2.8 Simple Build on Unix – Final Executable Path . 18
2.9 Simple Build on Unix with Ruby Support . 18
2.10 Simple Build on Unix with Ruby Support — Example . 18
2.11 Build Script for Windows 32 bit with MinGW . 19
5.1 C++ Patch – file layApplication.h. line 53, Version 0.13 . 52
5.2 C++ Patch – file layApplication.cc, line 50, Version 0.13 . 52
6.1 Typographic Conventions Example – Console Input . 55
6.2 Typographic Conventions Example – XML File . 55
6.3 Typographic Conventions Example – DXF File . 56
6.4 Typographic Conventions Example – C++ File . 56
6.5 Typographic Conventions Example – Dialog Input . 56
6.6 Typographic Conventions Example – Ruby Code . 56
6.7 KLayout Command Line Input – Basics . 56
6.8 KLayout Command Line Input – Example . 56
6.9 XML File – Report Database Sample . 60
6.10 DXF Code – Simple DXF Record Structure . 65
6.11 Simple DXF Record Structure . 66
6.12 DXF Code – DXF Record Structure – POLYLINE . 67
6.13 DXF Record Structure – LWPOLYLINE . 68
6.14 DXF Record Structure – SOLID . 68
6.15 DXF Record Structure – INSERT . 69
6.16 DXF Record Structure – LINE . 69
6.17 DXF Record Structure – CIRCLE . 69
6.18 DXF Record Structure – TEXT . 70
6.19 DXF Record Structure – HATCH . 70
7.1 KLayout Command Line Input — Ruby Module . 75
7.2 XML File – Cell Shape Dump File . 77
8.1 Dialog Select Source – Layer Source Specification . 88
8.2 Dialog Select Source – Transformation . 88
8.3 Dialog Select Source – Expression . 89
8.4 Dialog Select Source – Hierarchy Level Selector . 89
9.1 KLayout Command Line Input — Layer Property File . 98
11.1 Command Line Input – Build Script for Ruby Support . 125
11.2 KLayout Command Line Input – Ruby Script . 125
11.3 Ruby Code – Application Start . 126
11.4 KLayout Command Line Input – Ruby Libraries And Module 126

10 Version 0.21 KLayout

11.5 Ruby Code – New Menu – Hello World . 126
11.6 Ruby Code – New Menu – Hallo World Extended . 127
11.7 New Menu – Hallo World Using Events . 128
11.8 Application Start . 130
11.9 Ruby Code – QtRuby interface of the main window . 130
11.10Ruby Code – RBA interface . 130
12.1 KLayout Command Line Input – Basics . 137
12.2 QtRuby interface of the main window . 137
12.3 KLayout Command Line Input – QtRuby Server . 138
12.4 Dialog Input – Transformation . 138
13.1 . 160
13.2 . 160
13.3 Call exec from RBA Console . 161
13.4 ery valid configuration parameter . 161
13.5 ery invalid configuration parameter . 161
13.6 ery the configuration parameter names . 161
13.7 ery the application’s installation path . 162
13.8 Return the singleton instance of the application . 163
13.9 . 163
13.10ery a reference of the main window . 163
13.11 . 163
13.12file klayout-configuration exists and is readable . 163
13.13file klayout-config does not exists . 164
13.14file klayout-configuration exists, but is not readable . 164
13.15Set a configuration parameter with the given name to the given value 164
13.16ery the application’s version string . 164
13.17file klayout-configuration does not exists, or exists and is write able 164
13.18file klayout-configuration is set to read only . 165

Part I

About e Project

12 Version 0.21 KLayout

Chapter 1. KLayout Highlights

Chapter 1

KLayout Highlights

Content

1.1 KLayout Features
1.1.1 General
1.1.2 Viewer
1.1.3 Editor

1.2 KLayout is a GDS and OASIS file viewer

1.3 KLayout is more
1.4 KLayout is free
1.5 Current status
1.6 e future of the project

1.1 KLayout Features

1.1.1 General

• Fast and accurate: fast loading and drawing
• Support of GDS and OASIS file formats with automatic decompression of zlib compatible formats
• Full support of properties
• Full 64 bit support on Linux
• Extensible and configurable to a large degree by custom ruby scripts
• Support of DXF file format (still under construction)

1.1.2 Viewer

• Overlay capabilities: multiple layouts can be loaded into one window
• Very flexible layer configuration: many display options including choice of fill paern and different
frame and fill colors, animation, transparency, dimming/highlighting …

• Layer grouping: the display properties of a group of layers can be changed at once
• Advanced layer display aributes: layers can be named, they can carry additional transformations,
select certain hierarchy levels or select shapes by their properties

• Copy and paste of layers aributes to other panels
• Drawing order: select the layer that is show on top
• Descend into hierarchy: show a cell embedded into it’s context
• Flexible rulers: unlimited count, flexible display styles. Multiple templates can be configured, rules
can be edited (move, delete, copy & paste)

• Shape and instance browsers
• Bookmarks, various zoom modes, mouse wheel support, screen-shot function …
• Undo/redo on layer properties, for rulers …

KLayout Version 0.21 13

Chapter 1. KLayout Highlights 1.2. KLayout is a GDS and OASIS file viewer

• Save: save layout or parts (cells, layers) of it to a different format, with scaling or different database
unit.

• Image overlay capabilities: image files (i.e. jpg, png, gif) can be loaded and placed at an arbitrary
position in the layout.

• Marker browser: certain error report files can be loaded and a browser tool is provided.

1.1.3 Editor

• Smart drawing functions with many options: angle constraints, grid …
• True, in-place editing in sub-cells
• Unlimited undo/redo
• Smart partial editing function to stretch shapes, move edges or vertices
• Copy and paste of shapes and whole cells, even to other layouts
• Many advanced editing functions: hierarchical operations, booleans, clip, corner rounding, sizing,
alignment, layer operations …

1.2 KLayout is a GDS and OASIS file viewer

Although a comparatively simple piece of soware, a layout viewer is not only just a tool for the chip
design engineer. Today design’s complexity require not only a simple viewer. Rather, a viewer is the
microscope through which the engineer looks at the design.

ere are numerous viewers available, but sadly there are not manywhich satisfy a few basic requirements.
Most of them are commercial and expensive. If there is need for a simple, yet powerful viewer - here it is.

emain objective was to focus on the basic functionality but adding some useful features that many, even
commercial viewers don’t have.

First rarely any tool allows to place two or even more layout files over each other. It oen happens that
you receive some layers in one file, the other layers in another. Some tools allow to load multiple layouts
and switch between the windows. Well, this may help - but still the possibility of overlaying two layouts
offers much more comfort.

Sadly, almost no viewer is really precise. ere is not much more annoying than a layout that changes
when you zoom into it. Or placeholder shapes appearing at some zoom level and disappearing at the next,
cell labels that cannot be caught because they jump around when you try to zoom them into view, and
many other surprising ways or creative interpretation and optimization. is viewer shows the design as
it is.

Only some viewers allow to make layers transparent. Only this way, a stack of layers can be visualized
effectively. In addition, this viewer can animate layers to make them blink or scroll the fill paern. Ani-
mation is a good tool to highlight certain layers.

is viewer allows to display a layer marked by drawing a small cross on all shapes. ere is not beer
way to visualize the distribution of a set of sparse error markers on a dense layout!

All comes wrapped in a nice, Qt based state of the art GUI. Usage of the viewer is simple and is similar to
that of other tools.

1.3 KLayout is more

Starting with version 0.15,KLayout is also an editor that allows to change GDS and OASIS files and create
them from scratch. See section 4.33, Release Notes of Version 0.15 and chapter 9: ick Start Manual –
Editor Mode, for a more detailed description.

14 Version 0.21 KLayout

Chapter 1. KLayout Highlights 1.4. KLayout is free

KLayout also offers a Ruby-based scripting environment called RBA which allows to automate various
tasks, mainly in the visualization area but also for layout generation. See chapter 11, an introduction into
the ruby based automation API, for details about this feature.

1.4 KLayout is free

e viewer is published under GNU public license GPL version 2 or any later version in compliance with
the requirements for using the Qt open source license. It may be copied and distributed freely.

is program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of Merchantability or fitness for a particular purpose. Please
use it AT YOUR OWN RISK.

1.5 Current status

e current version is 0.21. Although this low number reflects the early stage of development, the version
is reasonably stable.

KLayout currently builds on recent Linux® installations, under Solaris and can be built on Windows™
using cygwin and mingw. For the precise requirements see below and chapter 2: Download and Build, or
on the download and build page. For Windows™, a package is provided that contains the executable and
DLL’s required.

e issue list for version 0.21 can be found in section 5.6, Known Bugs and Issues List.

Currently there is no comprehensive documentation but I hope the user interface is intuitive enough to
compensate this lack somewhat. However, there is a ick Start Manual – Viewer Mode in chapter 8
available. Also for editor mode a ick Start Manual – Editor Mode is provided in chapter 9.

e build is performed by a simple wrapper shell script rather than some sophisticated configuration setup.
Some options allow to configure the script somewhat. is is definitely theweak spot of the current release.
I hope I will be able to obtain a more elaborate setup in the next release.

e build requires the Qt4 GUI toolkit in the multi-threaded version and a recent gcc version to build. If
required, the Qt4 toolkit can be obtained from Qt HOME.

Since the viewer is based on open platforms, I would expect that it also compiles on other platforms. e
GUI abstraction through Qt even allows to compile it on Windows™with only very minor code special-
izations.

1.6 e future of the project

KLayout is a living project. e program is being used by people in their daily work already. As my time
allows I will gradually enhance and extend the code. I personally like to add editing capabilities. However,
this is a major step, but the basics are already set up in the current code.

Please feel free to issue feature requests to this mail address.

I am always eager for learning about use cases and potential new applications for this tool.

KLayout Version 0.21 15

http://www.gnu.org/
http://www.klayout.de/build.html
http://qt.nokia.com
contact@klayout.de

Chapter 2. Download and Build

Chapter 2

Download and Build

Content

2.1 Download Current Version
2.2 Development Snapshot
2.3 Packaged Release for Windows
2.4 Building on MacOS
2.5 Building KLayout on Unix

2.6 BuildingKLayout forWindows 32 bit
with MinGW

2.7 BuildingKLayout forWindows 32 bit
and 64 bit with Visual Studio

2.8 All Downloads

2.1 Download Current Version

Download packages for the current versions from these links. You find download links for other versions
here.

Platform Type Version Download
unix source package 0.21.16 klayout-0.21.16.tar.gz
Windows 32 bit binary package 0.21.16 klayout-0.21.16-win32.zip

installer klayout-0.21.16-win32-install.exe
Windows 64 bit binary package 0.21.16 klayout-0.21.16-win64.zip

installer klayout-0.21.16-win64-install.exe
Windows 32 bit binary package 0.21.16 klayout-0.21.16-mingw32.zip

legacy MinGW based build
MacOS 10.6 binary package 0.21.16 klayout-0.21.16.intel-snowleopard.dmg.zip

2.2 Development Snapshot

A snapshot of the current development code base (last update 2012-03-05) can be obtained here: klayout-
r1134.tar.gz.

2.3 Packaged Release for Windows

For the Windows platform, a zip archive is provided that contains all the required executable and DLL’s.
A description how to actually build KLayout on Windows using MinGW and Visual Studio 2010 can be
found below.

16 Version 0.21 KLayout

http://www.klayout.de/build.html#all_downloads
http://www.klayout.de/klayout-0.21.16.tar.gz
http://www.klayout.de/klayout-0.21.16-win32.zip
http://www.klayout.de/klayout-0.21.16-win32-install.exe
http://www.klayout.de/klayout-0.21.16-win64.zip
http://www.klayout.de/klayout-0.21.16-win64-install.exe
http://www.klayout.de/klayout-0.21.16-mingw32.zip
http://www.klayout.de/klayout-0.21.16.intel-snowleopard.dmg.zip
http://www.klayout.de/klayout-r1134.tar.gz
http://www.klayout.de/klayout-r1134.tar.gz

Chapter 2. Download and Build 2.4. Building on MacOS

Starting with version 0.15, an installer executable is provided as well. To install KLayout using the in-
staller, download the executable and execute it. It will install the binaries at the target location, which
can be selected in the installer user interface. In addition, it will create three KLayout shortcuts in the

..Programs section of the ... Start menu. It will also register itself as handler for file types .gds and .oas.

If the installer is executed from a normal user account, it will install itself for that user only. No particular
rights are required in this case. If started with administrator rights, it will install itself for all users.

2.4 Building on MacOS

For building the executable onMacOS 10.5.7, the “mac-leopard-gcc-release” platform is provided. e build
is based on the Xcode installation. is build script call was used successfully with Qt 4.5.2 from the Xcode
package:

Console Input 2.1: Build Script on MacOS 10.5.7

./build.sh -platform mac-leopard-gcc-release \
-qtbin /Developer/Tools/Qt \
-qtlib /usr/lib \
-rblib /usr/lib/libruby.dylib \
-rbinc /usr/lib/ruby/1.8/universal-darwin9.0

OnMacOS 10.6 this build script call was used successfully (Qt library isqt-mac-cocoa-opensource-
4.6.2.dmg):

Console Input 2.2: Build Script on MacOS 10.5.6

./build.sh -platform mac-leopard-gcc-release \
-qtbin /Developer/Tools/Qt \
-qtlib /usr/lib \
-rblib /usr/lib/libruby.dylib \
-rbinc /usr/lib/ruby/1.8/universal-darwin10.0

Apparently, both 32 and 64 bit versions of Qt must be installed.

2.5 Building KLayout on Unix

System Requirements:

• Linux system (tested on Ubuntu 8.04LTS, 10.04LTS, RHE 4)

• on Linux: gcc Version 3.2 or later (tested with 3.4.5, 4.3.2, 4.4.3). Solaris is no longer supported.

• Qt Version 4.2.x or later (tested with 4.2.3, 4.4.3, 4.5.2, 4.6.2).

• gcc C++ compiler (package “g++” on Debian)

• zlib library and headers (package “zlib1g-dev” on Debian)

To build, the simplest way is to use the build.sh wrapper script provided. Unpack the tarkit, change to the
directory created and type

Console Input 2.3: Simple Build on Unix

./build.sh

KLayout Version 0.21 17

Chapter 2. Download and Build 2.5. Building KLayout on Unix

If the script complains about missing tools are libraries, the Qt installation needs to be specified. ere are
basically two ways: either a Qt package was configured or installed using the environment provided by
TrollTech, or the system provides a Qt4 installation itself.

In the first case, the actual Qt installation path can be specified with the -qt option: i.e.

Console Input 2.4: Simple Build on Unix with Qt Path

./build.sh -qt ~/qt

will locate the Qt include files in �/qt/include, the Qt library in �/qt/lib. e installation path is
the prefix that was specified on Qt’s configure command line.

On LSB (Linux Standard Base) systems, the Qt4 library can be optionally installed. It is common to have
different installation directories for include and library files. On Ubuntu 6.10 with Qt4 for example, the
libraries are located in /usr/lib, the development tools like uic are installed in /usr/bin and the
include files reside in /usr/include/qt4. In this case, use:

Console Input 2.5: Simple Build on Linux Standard Base Systems

./build.sh -qtbin /usr/bin -qtlib /usr/lib -qtinc /usr/include/qt4

Since the above seings are the default, this is equivalent to specifying nothing as shown above.

e build script does not determine the platform to build upon. By default, 32 bit Linux and gcc is config-
ured as the build platform. To build for an other platform, use

Console Input 2.6: Simple Build on Unix for other Platform

./build.sh -platform <platform>

e platforms and build variants available are listed with

Console Input 2.7: Simple Build on Unix – Known Platform List

./build.sh -help

e build script will create the final executable in

Console Input 2.8: Simple Build on Unix – Final Executable Path

./bin.<platform>/klayout

To integrate other build variants, a new file can be created in the config sub-directory. is is a partial
Makefile that defined the variables specific for a certain build.

To enable Ruby script automation capabilities (RBA), the Ruby library and path to the Ruby headers must
be specified for the build script:

Console Input 2.9: Simple Build on Unix with Ruby Support

build.sh -rblib <ruby library path> -rbinc <ruby headers location>

For example:

Console Input 2.10: Simple Build on Unix with Ruby Support — Example

18 Version 0.21 KLayout

Chapter 2. Download and Build 2.6. Building KLayout for Windows 32 bit with MinGW

build.sh -rblib /usr/lib/libruby1.8.so -rbinc /usr/lib/ruby/1.8/i486-linux

For more details about RBA, see chapter 11: RBA Introduction.

2.6 Building KLayout for Windows 32 bit with MinGW

Starting with version 0.21, a build setup is provided for MinGW with the gcc. A good starting point for
the MinGW build is the Qt SDK which comes with a Qt retail built for MinGW and the gcc compiler suite.

To enable Ruby support, the Ruby interpreter, preferably version 1.9 is required. A strange fact with
building Ruby 1.9 is that one needs a Ruby interpreter to build it. One possible solution is first to build a
1.8 version, put the executable into the path and then run the Ruby build from the MinGW console.

To buildKLayout onMinGW, simply open theMinGW shell (MSYS), unpack theKLayout source package
and cd to the destination folder. en use build.sh as on Linux. For example, if the Qt SDK was installed
in c:\Qt\2010.04, the build script call is

Console Input 2.11: Build Script for Windows 32 bit with MinGW

build.sh -qt /c/Qt/2010.04/qt

For ruby support use the -rblib and -rbinc options accordingly to specify the ruby installation path.

2.7 Building KLayout for Windows 32 bit and 64 bit with Visual Studio

Starting with version 0.21, a Visual Studio solution is included in the source branch of KLayout’s source
tar-kit (klayout.sln). e solution is provided for Visual Studio 2010.

To build KLayout with Visual Studio, the following requirements must be fulfilled:

• Qt for Visual Studio 2010 (VC++ version 10). Currently this version must be built manually. Qt
version 4.7.1 is compatible with Visual Studio 2010 and building it is prey straightforward.

• For a complete build including Ruby support, the ruby interpreter is required as well. Only version
1.9 is supporting the 64 bit platform. Building is straightforward, except that again a ruby interpreter
must be installed before version 1.9 can be built. If no interpreter is at hand, a 1.8 version must be
built before. e project files currently assume Ruby version 1.9.1.

A pre-built package for VS2010 can be downloaded here: ruby1.9.1-p430.zip. It contains both the 32
bit and 64 bit builds in the 1.9.1-p430/x86 and 1.9.1-p420/x64 directories.

• For full performance, it is recommended to replace the standard STL implementation of VC++ with
the STLPort implementation which has a 2x performance impact in some cases. Building STLPort
on VC++ is straightforward and has been tested with version 5.2.1.

A pre-built package for VS2010 can be downloaded here: STLport-5.2.1.zip. It contains both the 32
bit and 64 bit builds.

Before building KLayout, it is required to set the following environment variables:

• $QTDIR to the installation path of Qt for 32 bit build ($QTDIR/bin being the location of the
executable, $QTDIR/lib being the location of the libraries and $QTDIR/include being the
location of the header files).

• $QTDIR64 to the installation path of Qt for 64 bit build ($QTDIR64/bin being the location of the
executable, $QTDIR64/lib being the location of the libraries and $QTDIR64/include being
the location of the header files).

KLayout Version 0.21 19

http://www.klayout.de/resources/ruby1.9.1-p430.zip
http://www.klayout.de/resources/STLport-5.2.1.zip

Chapter 2. Download and Build 2.8. All Downloads

• $STLPORT to the installation path of the STLPort library (if required). $STLPORT/stlportmust
be the location of the headers. is variable is the same for 32 and 64 bit builds.

• $RUBY to the installation path of the Ruby library (if required) for the 32 bit build. e location of
the ruby.h header must be $RUBY/include/ruby-1.9.1.

• $RUBY64 to the installation path of the Ruby library (if required) for the 64 bit build. e location
of the ruby.h header must be $RUBY64/include/ruby-1.9.1.

Aer this preparation, KLayout can be build from Visual Studio using the Win32 platform for 32 bit and
x64 platform for 64 bit. e configurations provided are:

• Debug for the normal debug build without Ruby and STLPort.

• Debug (STLPort) for the debug build with Ruby support and using STLPort.

• Release for the normal release build without Ruby and STLPort.

• Release (STLPort) for the release build with Ruby support and using STLPort.

2.8 All Downloads

All currently available downloads can be found here: hp://www.klayout.de/build.html.

20 Version 0.21 KLayout

http://www.klayout.de/build.html

Chapter 3. Current Development

Chapter 3

Current Development

is chapter lists features that are developed currently and will go into the next release (Version 0.22).

Content

3.1 Development Snap Shot Tarkit
3.1.1 Tar-Kits

3.2 Multithreading for XOR tool
3.3 Diff tool performance enhancements.

3.1 Development Snap Shot Tarkit

A snapshot of the current development code base (last update 2011-06-10) can be obtained here:

3.1.1 Tar-Kits

Sources for all systems klayout-r802.tar.gz

3.2 Multithreading for XOR tool

e XOR tool now can make use of multi-CPU architectures by using multiple threads for tiles and layers.
e number of threads can be specified on the XOR tool dialog.

3.3 Diff tool performance enhancements.

e diff tool now uses a different scheme to identify identical cells. is algorithm is based on a signature
and is much faster the the previous algorithm which was based on instance identity.

KLayout Version 0.21 21

http://www.klayout.de/klayout-r802.tar.gz

Chapter 4. Release Notes and Tar-Kits

Chapter 4

Release Notes and Tar-Kits

is chapter lists available release notes and soware packages.

Hint: Menu related items are updated to reflect themenu structure of Version 0.21.

Content

4.1 Version 0.21.16
4.2 Version 0.21.15
4.3 Version 0.21.14
4.4 Version 0.21.13
4.5 Version 0.21.12
4.6 Version 0.21.11
4.7 Version 0.21.10
4.8 Version 0.21.9
4.9 Version 0.21.8
4.10 Version 0.21.7
4.11 Version 0.21.6
4.12 Version 0.21.5
4.13 Version 0.21.4

4.14 Version 0.21.3
4.15 Version 0.21.2
4.16 Version 0.21.1
4.17 Version 0.21
4.18 Version 0.20.2
4.19 Version 0.20.1
4.20 Version 0.20
4.21 Version 0.19.3
4.22 Version 0.19.2
4.23 Version 0.19.1
4.24 Version 0.19
4.25 Version 0.18.2
4.26 Version 0.18.1

4.27 Version 0.18
4.28 Version 0.17.2
4.29 Version 0.17.1
4.30 Version 0.17
4.31 Version 0.16.1
4.32 Version 0.16
4.33 Version 0.15
4.34 Version 0.14
4.35 Version 0.13
4.36 Version 0.12
4.37 Version 0.11
4.38 Version 0.10
4.39 Version 0.9

4.1 RN Version 0.21.16

Release Date: 2012-03-05

Tar-Kits

Sources for all systems klayout-0.21.16.tar.gz
WIN32 binaries and DLL’s klayout-0.21.16-win32.zip
WIN32 installer klayout-0.21.16-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.16-win64.zip
WIN64 installer klayout-0.21.16-win64-install.exe

Features

• GDS format readers and writers now support time stamps: by default, the current time is wrien
to the files to simplify comparison of binary files for example. is option can be turned off in the
menu ..File ..Save ..Layout Writer Options ..□ Write current time to time stamps . In addition, the time stamp
of the BGNLIB record is read and displayed in the ..File ..Layout Properties page.

22 Version 0.21 KLayout

http://www.klayout.de/klayout-0.21.16.tar.gz
http://www.klayout.de/klayout-0.21.16-win32.zip
http://www.klayout.de/klayout-0.21.16-win32-install.exe
http://www.klayout.de/klayout-0.21.16-win64.zip
http://www.klayout.de/klayout-0.21.16-win64-install.exe

Chapter 4. Release Notes and Tar-Kits 4.2. Version 0.21.15

• e GDS reader now is somewhat less strict and also accepts certain broken versions (i.e. missing
ENDEL records).

• Several bug fixes related to scripting applications: Proc objects are held by the application now,
Application does not abort in non-GUI mode in operations that take some time and try to display a
progress bar.

• DXF bugfix: layer names now do no longer contain blanks which made files unreadable by other
tools like AutoCad.

• Bugfix: foreground objects (i.e. rulers) are now correctly rendered in printout.

4.2 RN Version 0.21.15

Release Date: 2012-03-05

Tar-Kits

Sources for all systems klayout-0.21.15.tar.gz
WIN32 binaries and DLL’s klayout-0.21.15-win32.zip
WIN32 installer klayout-0.21.15-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.15-win64.zip
WIN64 installer klayout-0.21.15-win64-install.exe

Features

• Bugfix: the correct initial cell now is selected. Formerly, the largest cell was selected even it is was
not a top cell.

• ..Layers context ..Show only selected in the layer panel does not clear the selection any longer.

• GDS reader now is less strict with respect to record order of STRANS, MAG and ANGLE.

• Excellon drill file reader is now conforming to the specification in many respects.

• Instances are not selected if the cell does not contain shapes in visible layers.

• Marker browser does now work correctly when layer view transformations are present.

• DXF reader enhancements: read LAYER table and assign GDS layers in that order, except for layer
which got a layer name through their name (i.e. L1D100).

Bugfix: don’t suppress INSERT’s if the layer is not mapped. Write TEXT and MTEXT correctly
(multi-line support, small chunks for MTEXT, character alignment).

New option: keep all cells for DXF reader. Added elliptic interpolation edge type (not really tested
yet). HATCH objects with bulges and various edge types are implemented now. MTEXT supported
now.

New option: convert text to polygon for Unicode support.

• Changed default sorting of layers: always sort by layer number first, even if there is a name. If there
is no layer number, sort by name.

4.3 RN Version 0.21.14

Release Date: 2011-11-28

KLayout Version 0.21 23

http://www.klayout.de/klayout-0.21.15.tar.gz
http://www.klayout.de/klayout-0.21.15-win32.zip
http://www.klayout.de/klayout-0.21.15-win32-install.exe
http://www.klayout.de/klayout-0.21.15-win64.zip
http://www.klayout.de/klayout-0.21.15-win64-install.exe

Chapter 4. Release Notes and Tar-Kits 4.4. Version 0.21.13

Tar-Kits

Sources for all systems klayout-0.21.14.tar.gz
WIN32 binaries and DLL’s klayout-0.21.14-win32.zip
WIN32 installer klayout-0.21.14-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.14-win64.zip
WIN64 installer klayout-0.21.14-win64-install.exe

Features

• ..View ..Synchronized views and ..View ..Select Top Level Objects configuration shortcuts added.

• Gerber reader bug fixes and enhancements: less strict parsing of aperture definitions, rotation of
aperture macro elements is not considered correctly. Enhanced drill file reader.

• Disabled cell copy & paste in viewer mode (was not working correctly).

• Bug fix: it was possible to create an invalid configuration when removing all default stipples (lead
to a crash on the next KLayout start).

• Bug fix: an error appeared when switching the tabs in the layer panel in certain configuration in-
volving groups.

• Correct initialization of ruby interpreter to support Ruby 1.9.2 and later.

• Bug fix: marker browser was only partially reporting collected markers for certain categories.

• XOR now has an option to make use of multiple cores using a configurable number of threads.

• Bug fix: reset of configuration required a restart.

• Bug fix: OASIS reader now is more robust against overflow for g-deltas.

• GDS reader enhancement: An invalid angle (outside the range of -360 to 360 degree) now is no
longer an error and the angle is automatically restricted to the valid range.

4.4 RN Version 0.21.13

Release Date: 2011-09-19

Tar-Kits

Sources for all systems klayout-0.21.13.tar.gz
WIN32 binaries and DLL’s klayout-0.21.13-win32.zip
WIN32 installer klayout-0.21.13-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.13-win64.zip
WIN64 installer klayout-0.21.13-win64-install.exe
MacOS 10.7 klayout-0.21.13.intel-lion.dmg

Features

• A bug in the clip function was fixed which was related to empty cells (reported in the forum).

• By default, the first level of hierarchy is shown now if a new layout is opened. at feature can be
adjusted using the ..Default levels of hierarchy seing on the ..File, Setup, General dialog page.

• For multiple top cells, the cell with the larges footprint is selected initially.

• A simple print function available in the ..File ..Print menu.

24 Version 0.21 KLayout

http://www.klayout.de/klayout-0.21.14.tar.gz
http://www.klayout.de/klayout-0.21.14-win32.zip
http://www.klayout.de/klayout-0.21.14-win32-install.exe
http://www.klayout.de/klayout-0.21.14-win64.zip
http://www.klayout.de/klayout-0.21.14-win64-install.exe
http://www.klayout.de/klayout-0.21.13.tar.gz
http://www.klayout.de/klayout-0.21.13-win32.zip
http://www.klayout.de/klayout-0.21.13-win32-install.exe
http://www.klayout.de/klayout-0.21.13-win64.zip
http://www.klayout.de/klayout-0.21.13-win64-install.exe
http://www.klayout.de/klayout-0.21.13.intel-lion.dmg

Chapter 4. Release Notes and Tar-Kits 4.5. Version 0.21.12

• Support for command 93 in CIF (AREF).

• Improved handling of single point paths. In particular with round ends. ey now render a circle in
OASIS. In reverse, OASIS circles now render single-point paths with round ends in GDS.

• Ruby scripts now work more reliably under ruby 1.9 (i.e. Windows binary). Formerly, some opera-
tions failed due to improper initialization of the encoding system (i.e. Dir.glob).

• Clean uninstaller under Windows (removes all registry entries).

4.5 RN Version 0.21.12

Release Date: 2011-07-29

Tar-Kits

Sources for all systems klayout-0.21.12.tar.gz
WIN32 binaries and DLL’s klayout-0.21.12-win32.zip
WIN32 installer klayout-0.21.12-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.12-win64.zip
WIN64 installer klayout-0.21.12-win64-install.exe

Features

• Bug fix: GDS2Text format was not recognized correctly in some cases.

• Texts: strings with line breaks can be edited now (line breaks are shown as \n). Text size is shown
more realistic now. Alignment flags are supported in GDS2 and can be edited now.

• Layer and datatype is shown in addition to OASIS layer names in the layer list. e old behavior
can be configured by deselect the ..File ..Setup ..Layer List ..Always show layer and datatype check box.

• For most File dialogs, the specific filter is the default now (i.e. *.lyp instead of All files for the
layer properties file dialogs.)

• ere is a all layout files filter for the ..File ..Open , ..File ..Open In Same Panel and ..File, Open In New Panel

dialogs.

4.6 RN Version 0.21.11

Release Date: 2011-06-26

Tar-Kits

Sources for all systems klayout-0.21.11.tar.gz
WIN32 binaries and DLL’s klayout-0.21.11-win32.zip
WIN32 installer klayout-0.21.11-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.11-win64.zip
WIN64 installer klayout-0.21.11-win64-install.exe

KLayout Version 0.21 25

http://www.klayout.de/klayout-0.21.12.tar.gz
http://www.klayout.de/klayout-0.21.12-win32.zip
http://www.klayout.de/klayout-0.21.12-win32-install.exe
http://www.klayout.de/klayout-0.21.12-win64.zip
http://www.klayout.de/klayout-0.21.12-win64-install.exe
http://www.klayout.de/klayout-0.21.11.tar.gz
http://www.klayout.de/klayout-0.21.11-win32.zip
http://www.klayout.de/klayout-0.21.11-win32-install.exe
http://www.klayout.de/klayout-0.21.11-win64.zip
http://www.klayout.de/klayout-0.21.11-win64-install.exe

Chapter 4. Release Notes and Tar-Kits 4.7. Version 0.21.10

Features

• Bug fix: command line option -p was not working correctly.

• Bug fix: writing layouts with large coordinates was producing invalid OASIS files in some cases.

• e tar-kit now contains the files necessary for a build with Visual Studio on Windows.

4.7 RN Version 0.21.10

Release Date: 2011-05-07

Tar-Kits

Sources for all systems klayout-0.21.10.tar.gz
WIN32 binaries and DLL’s klayout-0.21.10-win32.zip
WIN32 installer klayout-0.21.10-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.10-win64.zip
WIN64 installer klayout-0.21.10-win64-install.exe

Features

• Bug fix: content of cell was not shown correctly when the cell was moved.

• Bug fix: PCB import was not working properly (Boom mounting mode was broken, top cell and
dbu were not set correctly when a PCB project file was imported directly).

• Bug fix: RVE reader was not correctly handling check names with a dot.

4.8 RN Version 0.21.9

Release Date: 2011-04-20

Tar-Kits

Sources for all systems klayout-0.21.9.tar.gz
WIN32 binaries and DLL’s klayout-0.21.9-win32.zip
WIN32 installer klayout-0.21.9-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.9-win64.zip
WIN64 installer klayout-0.21.9-win64-install.exe

Features

• Bug fix: Loading of layer files with tabswas notworking properly: the first tab’s namewas discarded.

4.9 RN Version 0.21.8

Release Date: 2011-04-06

26 Version 0.21 KLayout

http://www.klayout.de/klayout-0.21.10.tar.gz
http://www.klayout.de/klayout-0.21.10-win32.zip
http://www.klayout.de/klayout-0.21.10-win32-install.exe
http://www.klayout.de/klayout-0.21.10-win64.zip
http://www.klayout.de/klayout-0.21.10-win64-install.exe
http://www.klayout.de/klayout-0.21.9.tar.gz
http://www.klayout.de/klayout-0.21.9-win32.zip
http://www.klayout.de/klayout-0.21.9-win32-install.exe
http://www.klayout.de/klayout-0.21.9-win64.zip
http://www.klayout.de/klayout-0.21.9-win64-install.exe

Chapter 4. Release Notes and Tar-Kits 4.10. Version 0.21.7

Tar-Kits

Sources for all systems klayout-0.21.8.tar.gz
WIN32 binaries and DLL’s klayout-0.21.8-win32.zip
WIN32 installer klayout-0.21.8-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.8-win64.zip
WIN64 installer klayout-0.21.8-win64-install.exe

Features

• Bug fix: navigator was broken. It was not functional if KLayout was closed with the navigator
open.

4.10 RN Version 0.21.7

Release Date: 2011-03-24

Tar-Kits

Sources for all systems klayout-0.21.7.tar.gz
WIN32 binaries and DLL’s klayout-0.21.7-win32.zip
WIN32 installer klayout-0.21.7-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.7-win64.zip
WIN64 installer klayout-0.21.7-win64-install.exe

Features

• DXF bug fixes (arc interpolation of polylines).

• Performance enhancement of ..Layer context ..Test For Shapes In View feature.

4.11 RN Version 0.21.6

Release Date: 2011-02-20

Tar-Kits

Sources for all systems klayout-0.21.6.tar.gz
WIN32 binaries and DLL’s klayout-0.21.6-win32.zip
WIN32 installer klayout-0.21.6-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.6-win64.zip
WIN64 installer klayout-0.21.6-win64-install.exe

Features

• DXF enhancements (support for bulges for polylines).

• Bug fix: RBA::Edge.intersect? reports intersections correctly also if edges are collinear.

• Performance bug fix: selection was slow for certain cases of hierarchy.

KLayout Version 0.21 27

http://www.klayout.de/klayout-0.21.8.tar.gz
http://www.klayout.de/klayout-0.21.8-win32.zip
http://www.klayout.de/klayout-0.21.8-win32-install.exe
http://www.klayout.de/klayout-0.21.8-win64.zip
http://www.klayout.de/klayout-0.21.8-win64-install.exe
http://www.klayout.de/klayout-0.21.7.tar.gz
http://www.klayout.de/klayout-0.21.7-win32.zip
http://www.klayout.de/klayout-0.21.7-win32-install.exe
http://www.klayout.de/klayout-0.21.7-win64.zip
http://www.klayout.de/klayout-0.21.7-win64-install.exe
http://www.klayout.de/klayout-0.21.6.tar.gz
http://www.klayout.de/klayout-0.21.6-win32.zip
http://www.klayout.de/klayout-0.21.6-win32-install.exe
http://www.klayout.de/klayout-0.21.6-win64.zip
http://www.klayout.de/klayout-0.21.6-win64-install.exe

Chapter 4. Release Notes and Tar-Kits 4.12. Version 0.21.5

4.12 RN Version 0.21.5

Release Date: 2011-02-03

Tar-Kits

Sources for all systems klayout-0.21.5.tar.gz
WIN32 binaries and DLL’s klayout-0.21.5-win32.zip
WIN32 installer klayout-0.21.5-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.5-win64.zip
WIN64 installer klayout-0.21.5-win64-install.exe

Features

• DXF enhancements (some poly lines now have the correct width).

• An option to select how instances are placed (at origin or lower le corner of bounding box).

• Bug fix: when placing an instance at the lower le bounding box corner, it is guaranteed that the
origin is on grid.

• Stable operation on UTF-8 file systems and with non-English locales on Linux (i.e. consistent use
of dot as decimal point). However, UTF-8 file names are not correctly displayed although the file is
opened correctly. is will be fixed in the next major release.

4.13 RN Version 0.21.4

Release Date: 2011-01-19

Tar-Kits

Sources for all systems klayout-0.21.4.tar.gz
WIN32 binaries and DLL’s klayout-0.21.4-win32.zip
WIN32 installer klayout-0.21.4-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.4-win64.zip
WIN64 installer klayout-0.21.4-win64-install.exe

Features

• Correct installation of the image reader plug-ins for the Windows packages.

• Bug fix: rotate counterclockwise was clockwise and vice versa.

• Bug fix: ..File ..Setup ..Display ..Optimization ..Array ..Draw only border instances in detailed view feature was
broken.

• Fixed a ruby crash on some systems (related to an initial require on a rubymodule loaded with option
“-rm”).

• CIF reader enhancement: “DS” statements are now accepted with a single value also.

• e Windows installation now also includes the standard Ruby modules.

28 Version 0.21 KLayout

http://www.klayout.de/klayout-0.21.5.tar.gz
http://www.klayout.de/klayout-0.21.5-win32.zip
http://www.klayout.de/klayout-0.21.5-win32-install.exe
http://www.klayout.de/klayout-0.21.5-win64.zip
http://www.klayout.de/klayout-0.21.5-win64-install.exe
http://www.klayout.de/klayout-0.21.4.tar.gz
http://www.klayout.de/klayout-0.21.4-win32.zip
http://www.klayout.de/klayout-0.21.4-win32-install.exe
http://www.klayout.de/klayout-0.21.4-win64.zip
http://www.klayout.de/klayout-0.21.4-win64-install.exe

Chapter 4. Release Notes and Tar-Kits 4.14. Version 0.21.3

4.14 RN Version 0.21.3

Release Date: 2010-12-27

Tar-Kits

Sources for all systems klayout-0.21.3.tar.gz
WIN32 binaries and DLL’s klayout-0.21.3-win32.zip
WIN32 installer klayout-0.21.3-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.3-win64.zip
WIN64 installer klayout-0.21.3-win64-install.exe

Features

• DXF reader and writer enhancements. e reader now allows to specify how POLYLINE entities
are read. In most cases, the “Automatic” mode will be appropriate. e writer was enhanced by
providing an option which determines how to write polygons. e default method is POLYLINE. A
comprehensive description of the DXF format, as KLayout understands it, together with a descrip-
tion of the modes, is given in section 6.5: DXF format.

4.15 RN Version 0.21.2

Release Date: 2010-12-19

Tar-Kits

Sources for all systems klayout-0.21.2.tar.gz
WIN32 binaries and DLL’s klayout-0.21.2-win32.zip
WIN32 installer klayout-0.21.2-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.2-win64.zip
WIN64 installer klayout-0.21.2-win64-install.exe

Features

• RBA bug fix: RdbItem.each_value was not working on constant references.

• DXF reader and writer enhancements for improved interoperability with other tools.

• Unit option for DXF input (to specify the units of the drawing).

• Bug fix: layer mapping was not working correctly for DXF and CIF output.

4.16 RN Version 0.21.1

Release Date: 2010-12-06

KLayout Version 0.21 29

http://www.klayout.de/klayout-0.21.3.tar.gz
http://www.klayout.de/klayout-0.21.3-win32.zip
http://www.klayout.de/klayout-0.21.3-win32-install.exe
http://www.klayout.de/klayout-0.21.3-win64.zip
http://www.klayout.de/klayout-0.21.3-win64-install.exe
http://www.klayout.de/klayout-0.21.2.tar.gz
http://www.klayout.de/klayout-0.21.2-win32.zip
http://www.klayout.de/klayout-0.21.2-win32-install.exe
http://www.klayout.de/klayout-0.21.2-win64.zip
http://www.klayout.de/klayout-0.21.2-win64-install.exe

Chapter 4. Release Notes and Tar-Kits 4.17. Version 0.21

Tar-Kits

Sources for all systems klayout-0.21.1.tar.gz
WIN32 binaries and DLL’s klayout-0.21.1-win32.zip
WIN32 installer klayout-0.21.1-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21.1-win64.zip
WIN64 installer klayout-0.21.1-win64-install.exe

Features

• Added cell margins for fill utility.

• A couple of bugs fixed (related to Diff tool, marker database reader, Ruby scripting).

• Source is compatible with earlier versions of Qt now (down to 4.2.3).

• Bug fix: persistence of reader options was broken.

• Enhanced DXF and CIF reader and writer functionality with improved compatibility with other
systems.

4.17 RN Version 0.21

Release Date: 2010-11-28

Tar-Kits

Sources for all systems klayout-0.21.tar.gz
WIN32 binaries and DLL’s klayout-0.21-win32.zip
WIN32 installer klayout-0.21-win32-install.exe
WIN64 binaries and DLL’s klayout-0.21-win64.zip
WIN64 installer klayout-0.21-win64-install.exe

Features

• Support for DXF format (reading and writing).
ASCII and binary format are supported. ere is an open issue how to represent layouts with mul-
tiple top cells. Currently, the ENTITY section is always empty and all cells are put into BLOCKS
sections. DXF units will be micron and the database unit must be selected manually when layouts
are read.

• Support for CIF format (reading and writing).
ere is an open issue how to deal with paths. By default, CIF states that paths are supposed to
have round ends. Obviously that interpretation is not commonly used. Options are provided which
control how path objects are read and wrien.

• Tabs for the layer panel. is feature is explained in section 8.3.2: Using multiple layer properties
setups with tabs.

• Flat cell list and cell list sorting modes. e feature is explained in section 8.1.6: Configuring the cell
list.

• Dockable tool boxes.
Layer list, cell list, layer toolbox and navigator are now dock-able and can be dragged to another
location, torn off the main window or closed with Qt’s standard dock-able window controls. e
position and the state of the dock-able windows is saved in the seings and session files.

30 Version 0.21 KLayout

http://www.klayout.de/klayout-0.21.1.tar.gz
http://www.klayout.de/klayout-0.21.1-win32.zip
http://www.klayout.de/klayout-0.21.1-win32-install.exe
http://www.klayout.de/klayout-0.21.1-win64.zip
http://www.klayout.de/klayout-0.21.1-win64-install.exe
http://www.klayout.de/klayout-0.21.tar.gz
http://www.klayout.de/klayout-0.21-win32.zip
http://www.klayout.de/klayout-0.21-win32-install.exe
http://www.klayout.de/klayout-0.21-win64.zip
http://www.klayout.de/klayout-0.21-win64-install.exe

Chapter 4. Release Notes and Tar-Kits 4.18. Version 0.20.2

• A ruler embedded in the background image.
Now, a small ruler is embedded into the background which shows the dimension scale similar to a
map. It can be disabled with the ..File ..Setup ..Display ..Background ..Show grid net ..Show Ruler check-
box.

• Image quality enhancement by oversampling. is feature is explained in section 8.3.13: More con-
figuration options.

• e Diff tool. e Diff tool produces a marker database containing a description of the differences.
A detailed description can be found in section 10.2: e Diff tool.

• Snapping to objects is provided as an option for edit mode. In this mode, the mouse snaps to ver-
tices and edges of visible objects. is mode can be enabled with the ..Edit ..Editor Options ..Snapping

..Objects ..Snap to other objects check-box. is menu is available via keysF3 shortcut.

• e reference point for the placement of instances now is the lower le point of the placed cell’s
bounding box, not the origin.

• Dialog geometry persistent now.

Marker, shape and instance browsers now save their geometries and splier pane configurations
when the application exits.

• Instance placement now uses bbox origin, not cell origin. is simplifies placement of cells with
their origin not aligned with the content.

• e Fill (tiling) tool. e tool is found in ..Edit, Utilities, Fill Tool . A detailed description can be found in
section 10.3: e fill (tiling) utility.

• In some places, particular in the ruler display string, expressions can be used. For rulers, the previous
display string placeholder scheme is replaced by the more powerful expression expansion scheme
(see section 8.3.7: Ruler properties for details).

• Build support for VC++ and Visual Studio 2010. e Windows 64 bit build now is based on that
environment.

Note: Visual Studio 2010 no longer supports Windows 2000.

To use KLayout on Windows 2000, a legacy build based on MinGW is provided.

4.18 RN Version 0.20.2

Release Date: 2010-05-25

Tar-Kits

Sources for all systems klayout-0.20.2.tar.gz
WIN32 binaries and DLL’s klayout-0.20.2-win32.zip
WIN32 installer klayout-0.20.2-win32-install.exe
WIN64 binaries and DLL’s klayout-0.20.2-win64.zip experimental
MacOS 10.7 klayout-0.20.2.intel-snowleopard.dmg.zip

Features

• Bug fix: marker browser crashed when opened from menu and the maximum number of markers
was set differently from default.

KLayout Version 0.21 31

http://www.klayout.de/klayout-0.20.2.tar.gz
http://www.klayout.de/klayout-0.20.2-win32.zip
http://www.klayout.de/klayout-0.20.2-win32-install.exe
http://www.klayout.de/klayout-0.20.2-win64.zip
http://www.klayout.de/klayout-0.20.2.intel-snowleopard.dmg.zip

Chapter 4. Release Notes and Tar-Kits 4.19. Version 0.20.1

4.19 RN Version 0.20.1

Release Date: 2010-05-23

Tar-Kits

Sources for all systems klayout-0.20.1.tar.gz
WIN32 binaries and DLL’s klayout-0.20.1-win32.zip
WIN32 installer klayout-0.20.1-win32-install.exe
WIN64 binaries and DLL’s klayout-0.20.1-win64.zip experimental

Features

• Navigator now allows to drag a zoom box in the usual way.

• Paths with odd width (in database units) are shown correctly.

• Some bug fixes concerning the net tracer and the Gerber import feature. For a detailed list of fixed
bugs see section 5.8: Version 0.20, Known Bugs).

• Support for Ruby 1.9 experimental.

• Support for 64 bit Windows experimental.

4.20 RN Version 0.20

Release Date: 2010-05-01

Tar-Kits

Sources for all systems klayout-0.20.tar.gz
WIN32 binaries and DLL’s klayout-0.20-win32.zip
WIN32 installer klayout-0.20-win32-install.exe

Features

• Import option for Gerber PCB data ..File ..Import ..Gerber PCB . Details about this function can be found
in section 10.4: Importing Gerber PCB files.

• A function to import another stream file into the current file ..Import ..Other File Into Current . is
avoids having to use copy & paste and provides a couple of nice options. Details about this function
can be found in section 10.5: Importing other layout files.

• A simple XOR tool providing a flat XOR between two layouts. A tolerance can be set to suppress
small deviations. A tiling option is provided to reduce memory requirements for large layouts. e
flat approach probably limits the application to “almost flat”, small to medium sized layouts. Details
about this function can be found in section 10.1: e XOR tool.

• A net tracing tool to trace single nets of conductive layers connected through via shapes. e func-
tion is intended for extracting single small nets and it’s not performance optimized for the case of
huge power nets. Details about this function can be found in section 10.6: e net tracing feature.

• A navigator window that shows current view’s rectangle and allows to control the rectangle by
dragging or resizing it.

32 Version 0.21 KLayout

http://www.klayout.de/klayout-0.20.1.tar.gz
http://www.klayout.de/klayout-0.20.1-win32.zip
http://www.klayout.de/klayout-0.20.1-win32-install.exe
http://www.klayout.de/klayout-0.20.1-win64.zip
http://www.klayout.de/klayout-0.20.tar.gz
http://www.klayout.de/klayout-0.20-win32.zip
http://www.klayout.de/klayout-0.20-win32-install.exe

Chapter 4. Release Notes and Tar-Kits 4.21. Version 0.19.3

• Multi threading support for drawing increases the drawing performance on multi-core CPU’s by
rendering different layers on different CPU’s. e number of threads to use can be set in the

..File, Setup, Display, Optimization page. By default, a single thread is used.

• “Make array” method to multiply the selection into an array arrangement, menu ..Edit ..Selection
..Make Array .

• A function to add a layout already loaded to a view, menu ..File ..Pull In Other Layout .

• A function to scan a layer’s geometry and create a marker database from that. e menu function
is found in the ..Tools ..Verification menu. It will scan all selected layers either flat or hierarchical and
create a marker database containing the shapes as markers.

• Layer mapping on input: the reader options now allow to specify a mapping together with a layer
specification. In addition to specifying the layers to read, a target can be given which specifies which
layer the shapes will be stored under, see the dialog page ..File, Reader Options, Layout Reader Options .

• A couple of new display options:

– Abstract mode (shows only the outer interfacing shapes of child cells).

– Child hierarchy level layout can be configured to be shown in different brightness, hollow fill
or static neutral color to differentiate top level from boom level layout.

– Enhancements for the hierarchy level specifications in the layer source notation.

• A log viewer is provided to catch warning messages. emenu entry to open the log viewer is found
in the ..File ..Log Viewer menu.

• e ..File, Setup dialog has been reorganized to make room for more property pages.

• Instances now show the cell’s content when being moved instead just a rectangle. is feature can
be disabled.

• Various usability enhancements (i.e. mouse cursor now shows activity, status bar shows short shape
statistics etc.).

• An option to not write empty cells.

• Support for missing cells in the input layout: those cells get marked and are not produced in the
output unless they have received content. at allows to load and save layouts with missing cells
without producing empty cells for those missing cells.

• Some new functions in the layer list context menu: ..Show All , ..Hide All , ..Show Only Selected .

• Various bug fixes (i.e. for clip function).

• A couple of new RBA methods.

4.21 RN Version 0.19.3

Release Date: 2009-12-17

Tar-Kits

Sources for all systems klayout-0.19.3.tar.gz
WIN32 binaries and DLL’s klayout-0.19.3-win32.zip
WIN32 installer klayout-0.19.3-win32-install.exe

KLayout Version 0.21 33

http://www.klayout.de/klayout-0.19.3.tar.gz
http://www.klayout.de/klayout-0.19.3-win32.zip
http://www.klayout.de/klayout-0.19.3-win32-install.exe

Chapter 4. Release Notes and Tar-Kits 4.22. Version 0.19.2

Features

• Some bug fixes. For a detailed list of fixed bugs see section 5.10: Version 0.19.2, Known Bugs.

• To specify the installation path (where the .rbm files are looked up), a new environment variable
KLAYOUT_PATH is provided. is variable currently supports a single entry only. In that sense it’s
not a “path” right now.

4.22 RN Version 0.19.2

Release Date: 2009-12-05

Tar-Kits

Sources for all systems klayout-0.19.2.tar.gz
WIN32 binaries and DLL’s klayout-0.19.2-win32.zip
WIN32 installer klayout-0.19.2-win32-install.exe

Features

• Some bug fixes. For a detailed list of fixed bugs see section 5.11: Version 0.19.1, Known Bugs.

4.23 RN Version 0.19.1

Release Date: 2009-11-30

Tar-Kits

Sources for all systems klayout-0.19.1.tar.gz
WIN32 binaries and DLL’s klayout-0.19.1-win32.zip
WIN32 installer klayout-0.19.1-win32-install.exe

Features

• Some bug fixes. For a list of fixed bugs see section 5.12: Version 0.19, Known Bugs.

4.24 RN Version 0.19

Release Date: 2009-11-21

Tar-Kits

Sources for all systems klayout-0.19.tar.gz
WIN32 binaries and DLL’s klayout-0.19-win32.zip
WIN32 installer klayout-0.19-win32-install.exe
Universal binary for Mac OS 10.5.7 including Qt

klayout-0.19-mac-leopard.tgz

34 Version 0.21 KLayout

http://www.klayout.de/klayout-0.19.2.tar.gz
http://www.klayout.de/klayout-0.19.2-win32.zip
http://www.klayout.de/klayout-0.19.2-win32-install.exe
http://www.klayout.de/klayout-0.19.1.tar.gz
http://www.klayout.de/klayout-0.19.1-win32.zip
http://www.klayout.de/klayout-0.19.1-win32-install.exe
http://www.klayout.de/klayout-0.19.tar.gz
http://www.klayout.de/klayout-0.19-win32.zip
http://www.klayout.de/klayout-0.19-win32-install.exe
http://www.klayout.de/klayout-0.19-mac-leopard.tgz

Chapter 4. Release Notes and Tar-Kits 4.25. Version 0.18.2

Features

• Images: Now it is possible to load image files (JPG, GIF, TIFF etc.) and display them below the
drawn layout. e display of the images can be adjusted in many ways, i.e. placement, scaling,
rotation, mirroring, color/contrast/brightness adjustments and false color mapping for gray level
images. Images are fully supported by RBA.e feature is described in detail in section 8.3.8: Adding
images.

• Marker browser: e marker browser is based on the report database (RDB). is is a new concept
that has been introduced as a container for report items, in particular marker objects but also for a
number of additional annotations including screen shots for documentation. An import of Calibre
DRC databases is provided. e RDB is fully supported by RBA. e feature is described in detail in
section 8.3.11: e marker browser.

• Some enhancements for the layer views: Now invisible layers are shown differently in a “collapsed”
way. us, the layer’s colors and styles are still recognizable. e new features are described in
detail in section 8.2.3: Telling used from unused layers.

• In the layer list, now unused layers can be hidden and layers without shapes in view can be marked
unused or hidden. e normal mode of marking layers unused when the cell does not contain any
shapes at all is still available. Both modes are available as check-able items in the layer list’s context
menu.

• A ..View menu has been added with fast access to certain display options, i.e. turn grid on and off
..View ..Show Grid . A number of default grids can be defined ..File ..Setup ..Application ..Default Grids for

quick selection in the ..View menu. On request, the tool bar can now be hidden as well as the layer
and hierarchy lists.

• A key binding editor is provided ..File ..Setup ..Application ..Kex Bindings . is way, all menu functions
can be assigned arbitrary key shortcuts in a more comfortable ways.

• e mid mouse buon can be used to pan (drag) the view window now.

• Various RBA enhancements, i.e. a method to compute the intersection point between edges.

4.25 RN Version 0.18.2

Release Date: 2009-11-05

Tar-Kits

Sources for all systems klayout-0.18.2.tar.gz
WIN32 binaries and DLL’s klayout-0.18.2-win32.zip
WIN32 installer klayout-0.18.2-win32-install.exe

Features

• Enhancements for building with gcc 4.4.x and Qt 4.5.x.

• OASIS reader now also supports text objects with forward references to text string definitions.

4.26 RN Version 0.18.1

Release Date: 2009-08-02

KLayout Version 0.21 35

http://www.klayout.de/klayout-0.18.2.tar.gz
http://www.klayout.de/klayout-0.18.2-win32.zip
http://www.klayout.de/klayout-0.18.2-win32-install.exe

Chapter 4. Release Notes and Tar-Kits 4.27. Version 0.18

Tar-Kits

Sources for all systems klayout-0.18.1.tar.gz
WIN32 binaries and DLL’s klayout-0.18.1-win32.zip
WIN32 installer klayout-0.18.1-win32-install.exe
Universal binary for Mac OS 10.5.7 - requires Qt 4.5.2

klayout-0.18.1-mac-leopard.gz

Features

• Some bug fixes. For a detailed list of fixed bugs see section 5.13: Version 0.18, Known Bugs, in
particular for Mac OS users.

4.27 RN Version 0.18

Release Date: 2009-07-07

Tar-Kits

Sources for all systems klayout-0.18.tar.gz
WIN32 binaries and DLL’s klayout-0.18-win32.zip
WIN32 installer klayout-0.18-win32-install.exe

Features

• Some bug fixes. For a detailed list of fixed bugs see section 5.14: Version 0.17.2, Known Bugs.

• Added support for the GDS2 text format. is is a contribution by Romain Gauci from Oscillated
Recall Technology, hp://www.or-tech.co.jp.

• Session persistence: sessions (files, layers, bookmarks, setup) can be saved and restored. Details for
this feature can be found in section 8.3.16: Saving and restoring a session.

• Reader options can be specified in a dialog now, ..File ..Reader Options menu. Some GDS2 specific
reader options are available: allow multi XY, allow big records and several box record handling
modes. Details for this feature can be found in section 8.1.2: Loading a file.

• GDS2 specific writer options (max vertex option, multi XY record option, max cell name length).

• e stipple palee now is editable. A dialog page has been added ..File ..Setup ..Display ..Stipple Palee .

• Flaen Cell function. A cell can be flaened which will remove the cell and all the sub-cells unless
not specified otherwise. is function can be found in the menus ..Cell context ..Flaen Cell and ..Edit

..Cell ..Flaen Cell . Details for this feature can be found in section 9.3.3: Flaen cells.

• e ..Edit ..Selection ..Make Cell operation provides a nice origin now. Before, the origin of the new
cell was far off sometimes.

• Accept drag & drop of .lyb, .lys, .lyp, .rb, .rbm and layout files.

• Switched to standard file dialogs where this has not been the case yet. In particular on the Windows
platform, the application will behave somewhat more consistent.

• Added an option to “draw only border instances of arrays”. is option can be set by the check-box
..File ..Setup ..Optimization ..Array ..Draw only border instances in detailed view .

• Added the capability to define global ruby modules using the .rbm extension and puing them into
the installation directory.

36 Version 0.21 KLayout

http://www.klayout.de/klayout-0.18.1.tar.gz
http://www.klayout.de/klayout-0.18.1-win32.zip
http://www.klayout.de/klayout-0.18.1-win32-install.exe
http://www.klayout.de/klayout-0.18.1-mac-leopard.gz
http://www.klayout.de/klayout-0.18.tar.gz
http://www.klayout.de/klayout-0.18-win32.zip
http://www.klayout.de/klayout-0.18-win32-install.exe
http://www.or-tech.co.jp

Chapter 4. Release Notes and Tar-Kits 4.28. Version 0.17.2

• Full cell copy & paste functions can now be found in hierarchy panel context menu.

• Enhancement of grid snapping in partial mode. Before, a off-grid vertex could not be brought on-grid
because movement was confined to grid steps.

• Number of points for polygons is shown now in the polygon property dialog.

• Hole resolution for GDS2 and OASIS writer. Before, polygons with holes (which can be produced
by scripts) were rejected.

• Some bug fixes for clip, using booleans for clip to overcome some problems with hole connectors
and spikes - slow but safe.

• Character “#” is no longer used when creating cell variants – instead character “$” is used to enhance
the compatibility with other tools which do not allow character “#” as part of cell names.

• On paste, a “fit selection” is done to show what has been pasted. is behavior can be set by check-
box ..File ..Setup ..Navigation ..New Cell ..On Cell Change ..Fit window to cell when cell is changed .

• Mouse wheel mode is configurable now (shi/ctrl modifier behavior). e Mouse wheel mode can
be set by check-box ..Edit ..Setup ..Navigation ..Zoom and Pan ..Mouse wheel alternative mode .

• Option to clear all rulers when cell is changed. is option can be set by check-box ..File ..Setup
..Navigation ..New Cell ..On Cell Change ..Clear all rulers .

RBA enhancements

• A new class: ICplxTrans and related functions.

• A recursive shape iterator simplifies hierarchical region queries and “as if flat” traversal of cells.

• Polygon: hull and hole can be assigned now, compress method, point accessors.

• e installation path is now available.

• Added a method which allows to display a message in the status bar.

• e transient selection now is available for RBA procedures.

• New events are generated if selection and transient selection changes.

• Added a generic assign method for copyable objects.

• Added new classes LayerMap and LoadLayoutOptions.

• Added two read methods to Layout class.

• Added a couple of methods to LayerInfo (constructors, compare, …).

• Added a load_layout method to LayoutView.

• Added more cm_* methods to MainWindow.

4.28 RN Version 0.17.2

Release Date: 2009-04-20

Tar-Kits

Sources for all systems klayout-0.17.2.tar.gz
WIN32 binaries and DLL’s klayout-0.17.2-win32.zip
WIN32 installer klayout-0.17.2-win32-install.exe

KLayout Version 0.21 37

http://www.klayout.de/klayout-0.17.2.tar.gz
http://www.klayout.de/klayout-0.17.2-win32.zip
http://www.klayout.de/klayout-0.17.2-win32-install.exe

Chapter 4. Release Notes and Tar-Kits 4.29. Version 0.17.1

Features

• Some bugs are fixed now. For a detailed list of fixed bugs see section 5.15: Version 0.17.1, Known
Bugs.

• e GDS2 writer now normalizes AREF records. is way compatibility with other EDA systems is
enhanced.

4.29 RN Version 0.17.1

Release Date: 2009-03-27

Tar-Kits

Sources for all systems klayout-0.17.1.tar.gz
WIN32 binaries and DLL’s klayout-0.17.1-win32.zip
WIN32 installer klayout-0.17.1-win32-install.exe

Features

• e display freezing bug on Windows is fixed now, see section 5.16: Version 0.17, Known Bugs.

4.30 RN Version 0.17

Release Date: 2009-03-23

Tar-Kits

Sources for all systems klayout-0.17.tar.gz
WIN32 binaries and DLL’s klayout-0.17-win32.zip
WIN32 installer klayout-0.17-win32-install.exe

Features

• Various layer operations are now available: Boolean operations AND, XOR, NOT, as well as layer
merge and sizing. For a detailed description see section 9.3.4: Layer Boolean operations and sec-
tion 9.3.5: Layer sizing. ese operations are also available in RBA, see EdgeProcessor and Shape-
Processor.

• Boolean and sizing operations are also available, see section 9.3.6: Shape-wise Boolean operations
and section 9.3.7: Shape-wise sizing.

• Objects can now be aligned. For a detailed description of the alignment function see section 9.3.8:
Object alignment.

• e cell origin can be adjusted relative to the cell’s bounding box. For a detailed description see
section 9.3.10: Cell origin adjustment.

• A “corner rounding” function has been implemented to support so-cornered layout which is com-
mon in power applications. For a detailed description see section 9.3.9: Corner rounding.

38 Version 0.21 KLayout

http://www.klayout.de/klayout-0.17.1.tar.gz
http://www.klayout.de/klayout-0.17.1-win32.zip
http://www.klayout.de/klayout-0.17.1-win32-install.exe
http://www.klayout.de/klayout-0.17.tar.gz
http://www.klayout.de/klayout-0.17-win32.zip
http://www.klayout.de/klayout-0.17-win32-install.exe

Chapter 4. Release Notes and Tar-Kits 4.31. Version 0.16.1

• Various layer operations are now implemented in edit mode: clear layer, delete layer and edit layer
properties. For a detailed description see section 9.3.11: Layer operations: clear, delete, edit specifi-
cation.

• e selection can now be scaled ..Edit ..Selection ..Scale .

• An option is available that allows to select all hierarchy levels automatically when a cell is opened
..Edit ..Setup ..Display ..General ..Hierarchy Depth ..Initial hierarchy depth when opening a new panel . Check-

box ..File ..Setup ..Navigation ..New Cell ..On Cell Change ..Select all hierarchy levels must be unchecked.

• Various bug fixes, see section 5.16: Version 0.17, Known Bugs.

4.31 RN Version 0.16.1

Release Date: 2009-01-07

Tar-Kits

Sources for all systems klayout-0.16.1.tar.gz
WIN32 binaries and DLL’s klayout-0.16.1-win32.zip
WIN32 installer klayout-0.16.1-win32-install.exe

Features

• Various bug fixes, see section 5.17: Version 0.16.1, Known Bugs in Version 0.16.1.

4.32 RN Version 0.16

Release Date: 2008-12-27

Tar-Kits

Sources for all systems klayout-0.16.tar.gz
WIN32 binaries and DLL’s klayout-0.16-win32.zip
WIN32 installer klayout-0.16-win32-install.exe

Features

• Some new editing capabilities: flaen, make cell, clear layer and a clip function.

• Some RBA extensions, in particular the ability to modify layout by deleting shapes and instances,
replacing and transforming them, changing property handles etc.

• Support for global preset of configuration (through a file called layviewrc beside the executable
binary) and a global RBA initialization file (a file called rbainit beside the executable binary).

• Transient selection: indicates by a faint selection marker what object is below the mouse (can be
disabled).

• e layer specification (layer, datatype, name) can be now be edited which allows tomove a complete
layer to a different one.

• Undo buffering can now be disabled on the command linewith the “-i” option. is saves thememory
otherwise required for storing the replay information.

KLayout Version 0.21 39

http://www.klayout.de/klayout-0.16.1.tar.gz
http://www.klayout.de/klayout-0.16.1-win32.zip
http://www.klayout.de/klayout-0.16.1-win32-install.exe
http://www.klayout.de/klayout-0.16.tar.gz
http://www.klayout.de/klayout-0.16-win32.zip
http://www.klayout.de/klayout-0.16-win32-install.exe

Chapter 4. Release Notes and Tar-Kits 4.33. Version 0.15

• Directional constraints can be modified by using the Shi and Ctrl modifiers on various operations
such as rulers, movement, drawing etc.

• Now there is a “most recently used” list ..File ..Open Recent which shows the last layouts opened for
easy re-opening.

• Reduced memory requirements for particular OASIS constructs (random repetitions)

• e instance browser now has a “Choose cell” buon where the cell can be chosen whose instances
will be presented.

• For most editing operations, the status bar will now indicate more detailed information such as move
distance.

• Pasted shapes and instances now are selected initially.

• Enhanced OASIS compression mode (can be chosen from the options dialog on saving). Reduces
file size considerably by creating regular shape arrays if possible at the cost of higher memory con-
sumption and longer writing times.

• Various bug fixes, see section 5.18: Version 0.16, Known Bugs.

4.33 RN Version 0.15

Release Date: 2008-08-16

Tar-Kits

Sources for all systems klayout-0.15.tar.gz
WIN32 binaries and DLL’s klayout-0.15-win32.zip
WIN32 installer klayout-0.15-win32-install.exe

Features

• Editing capabilities. KLayout in it’s basic form still operates as pure viewer. However, a mode is
available that enables editing capabilities. See chapter 9: ick Start Manual – Editor Mode for a
more detailed description.

• Some RBA extensions: i.e. conversion from “double” type polygons to “integer” type ones.

• A default layer table can be configured by ..File, Setup, Application, Layer List, □Use default layer table menu
item. is table will be loaded whenever a layout is opened or created.

• A installer for Windows is provided now.

• Properties are supported on instances now as well.

• Code is compatible with gcc 4.3.0 now.

• Enhanced compatibility with SunStudio 11 compiler (in particular in RBA).

• Various bug fixes (i.e. in GDS reader and OASIS writer).

4.34 RN Version 0.14

Release Date: 2008-04-04

40 Version 0.21 KLayout

http://www.klayout.de/klayout-0.15.tar.gz
http://www.klayout.de/klayout-0.15-win32.zip
http://www.klayout.de/klayout-0.15-win32-install.exe

Chapter 4. Release Notes and Tar-Kits 4.35. Version 0.13

Tar-Kits

Sources for all systems klayout-0.14.tar.gz
WIN32 binaries and DLL’s klayout-0.14-win32.zip

Features

• Several RBA extensions: i.e. alternative methods added replacing different “new” variants by one
new method. Markers now can be filled.

• Fixes for the bugs mentioned in the issues list.

• OASIS and GDS writing capabilities. Menu functions are provided to save a layout and single cells.
See section 8.3.15: Saving a layout or parts of it. RBA extensions added that allow to write a layout.

Figure 4.1. Ruler with halo Figure 4.2. Ruler without halo

4.35 RN Version 0.13

Release Date: 2008-01-16

Tar-Kits

Sources for all systems klayout-0.13.tar.gz
WIN32 binaries and DLL’s klayout-0.13-win32.zip

Features

• A couple of RBA extensions: API’s for shape properties, rulers and geometry selections.

• A bug fix for the OASIS reader (sometimes crashing the reader on CBLOCK-compressed input)

• A function to descend into a cell in the hierarchy but keeping the context, which is shown in dimmed
colors. is function can be found in ..Display ..Descend . To use this function, select a shape or instance
inside the cell into which to descend. ..Display ..Descend then enters the next cell along the path that
leads to the selected shape or instance.

• e mouse wheel can be used to zoom in and out.

• Shi+right mouse buon pressed now allows to “drag” layout in a “Google maps” fashion.

• Copy & paste now is available for layers as well.

• A ruby console is provided where ruby commands can be executed interactively ..Tools ..RBA Console .

• e way how the selection is displayed can be configured now (color, line width and vertex size).

• e interrupt signal now is enabled again even if Ruby is activated (..Ctrl + ..C now works again).

KLayout Version 0.21 41

http://www.klayout.de/klayout-0.14.tar.gz
http://www.klayout.de/klayout-0.14-win32.zip
http://www.klayout.de/klayout-0.13.tar.gz
http://www.klayout.de/klayout-0.13-win32.zip

Chapter 4. Release Notes and Tar-Kits 4.36. Version 0.12

4.36 RN Version 0.12

Release Date: 2007-11-02

Tar-Kits

Sources for all systems klayout-0.12.tar.gz
WIN32 binaries and DLL’s klayout-0.12-win32.zip

Features

• Support for arbitrary angles on cell instances.

• A bug fix for the OASIS reader (CTRAPEZOIDS have not been read-in in some cases). e OASIS
reader now uses shape arrays to achieve are smaller memory footprint in some cases.

• Multiple transformations are now allowed on layer source expressions, see section 6.3: Transforma-
tions in KLayout for a detailed description.

• Rulers now are configurable to a large extent. Multiple ruler templates may be defined from which
a certain ruler type can be chosen. Some of the new ruler styles are no longer “rulers” but rather
“annotations”. See section 8.3.7: Ruler properties for a description of that feature.

• Last, but not least: KLayout now can be scripted to some extend using Ruby as the scripting lan-
guage. For more information about this feature, see chapter 11: RBA Introduction.

4.37 RN Version 0.11

Release Date: 2007-06-26

Tar-Kits

Sources for all systems klayout-0.11.tar.gz
WIN32 binaries and DLL’s klayout-0.11-win32.zip

Features

• Some bugs were fixed in the OASIS implementation. CBLOCK compression now is supported. For-
ward cell name references (numerical ID is used before being associated with a string) are supported
as now. File global properties are now read correctly. A bug reading certain CTRAPEZOID objects
was fixed. (Still, forward references are not allowed for text/property strings or property names).

• A layout properties dialog has been added that shows basic properties of the layout such as top cells,
layers and others.

• e ..Display ..Select Cell dialog has been enhanced with the capability to hide and show multiple cells
in the cell list.

• A “zoom fit” mouse gesture was implemented: moving the mouse up and right with the right mouse
buon pressed now fits the current cell into the window. Moving up and le still zooms out.

• A bug in the GDS2 reader, dropping polygon points in rare cases, was fixed.

42 Version 0.21 KLayout

http://www.klayout.de/klayout-0.12.tar.gz
http://www.klayout.de/klayout-0.12-win32.zip
http://www.klayout.de/klayout-0.11.tar.gz
http://www.klayout.de/klayout-0.11-win32.zip

Chapter 4. Release Notes and Tar-Kits 4.38. Version 0.10

4.38 RN Version 0.10

Release Date: 2007-05

Tar-Kits

Sources for all systems klayout-0.10.tar.gz

Features

• e build script has been enhanced and supports Qt installations with different locations for binaries,
libraries and headers. See chapter 2: Download and Build for details about this.

• OASIS files can be read as well now. e reader automatically determines the kind of file. OASIS
layer names are supported. Due to the complexity of the OASIS specification, or more precisely the
effort required to test a reader for meeting the specification, OASIS support currently is regarded to
be in “beta” state.

• Layers can now be organized hierarchically. Layers can be grouped which allows to control visibility
and other properties for the group as a whole. Layers can be removed from the layer view list or
new layer views can be created.

• e layout can be transformed (rotated, shied, mirrored) now. is transformation is specified in
the layer panel as a part of the layer source specification. An optional transformation can be applied
per layer or layer group. is way for example, different layouts can be aligned over each other.

• Shape properties now are supported. Each shape may carry optional properties that are read from
GDS or OASIS files. A property selector can be applied per layer view, so that a layer only shows
these shapes that match the given property selection.

• As an experimental feature, the inverse layout tree can be visualized by allowing the minimum
hierarchy level to go into the negative range. e effect of this is, that a cell is shown in the context
of all of it’s direct parents, if the first hierarchy level is set to -1. If set to -2, the cell is shown in the
context of all of it’s parents and grandparents and so on. Since there is no particular optimization
for this feature, performance may be poor, if a cell must be painted in a huge number of contexts. In
addition, the context displayed does not participate in selection or ruler snapping.

4.39 RN Version 0.9

Release Date: 2006-04

Tar-Kits

Sources for all systems klayout-0.9.tar.gz

e first official release.

KLayout Version 0.21 43

http://www.klayout.de/klayout-0.10.tar.gz
http://www.klayout.de/klayout-0.9.tar.gz

Chapter 5. Known Bugs and Issues

Chapter 5

Known Bugs and Issues

ese are some lists of known, more or less, serious issues.

Please give me a hint, if there are some more. Or as Einstein said: “e only source of knowledge is
experience” …

Content

5.1 Version 0.21.5
5.1.1 DXF reader
5.1.2 Performance issues on select
5.1.3 RBA:Edge.intersect? delivers

wrong results when the edges are
collinear

5.2 Version 0.21.4
5.2.1 DXF reader
5.2.2 Problems with non-English locales

and UTF-8 file names on Linux
5.3 Version 0.21.3
5.3.1 CIF reader
5.3.2 Rotate methods swapped
5.3.3 “Draw border instances of arrays”

feature broken
5.3.4 Ruby crash

5.4 Version 0.21.2
5.4.1 DXF reader still not complete

5.5 Version 0.21.1
5.5.1 RBA: RdbItem.each_value is not

working on const objects
5.5.2 DXF reader still not complete
5.5.3 Layer mapping broken for DXF and

CIF readers, writers
5.6 Version 0.21
5.6.1 Persistence of reader options is broken
5.6.2 RBA: each_selected is broken
5.6.3 DXF andCIF readers andwriters in-

complete
5.7 Version 0.20.1
5.7.1 Program crashes when the marker

browser is opened
5.8 Version 0.20
5.8.1 Net tracing does not extract net correctly
5.8.2 Gerber reader does not correctly

read certain macros

5.9 Version 0.19.3
5.9.1 Polygon cut algorithm for reducing

the number of points per polygon in
the GDS2 writer

5.10 Version 0.19.2
5.10.1 Crashes on Qt 4.6.0
5.10.2 Ruby modules not loaded from the

installation path on UNIX
5.10.3 OASIS reader too picky

5.11 Version 0.19.1
5.11.1 “Test for shapes in view” feature

does not work properly for AREF’s
5.11.2 RBA scripts crash in tight loops on

Ruby 1.8.7 (i.e. Ubuntu 9.10)
5.11.3 GDS text reader problems
5.11.4 Interactive stretching of images is

broken
5.12 Version 0.19
5.12.1 Crash when selecting “…” node in

the marker browser item list
5.12.2 “Test for shapes in view” feature in

layer list is extremely slow in some cases
5.13 Version 0.18
5.13.1 Crash when selecting “instance”

mode on empty layout
5.13.2 Issues on Mac OS X

5.14 Version 0.17.2
5.14.1 Sizing bugs
5.14.2 Build not working for Mac OS X
5.14.3 Crash when double-clicking a path

end in partial mode
5.14.4 “Fit selection” is not working properly
5.14.5 Wrong DBU read from GDS2 files
5.14.6 Round paths are not wrien prop-

erly to OASIS files

44 Version 0.21 KLayout

Chapter 5. Known Bugs and Issues 5.1. Version 0.21.5

5.14.7 Windows repaint problem for hid-
den canvas content

5.14.8 Space representation in vector fonts
5.15 Version 0.17.1
5.15.1 Program hangs if the properties di-

alog is closed with the system menu
5.15.2 Program crashes if many text ob-

jects have identical location
5.15.3 OASIS reader problems when prop-

erty name and string ID’s are de-
fined aer they are used

5.15.4 AREF row and column description
was swapped and misleading

5.16 Version 0.17
5.16.1 Display freezes on some Windows

installations
5.17 Version 0.16.1
5.17.1 Some flaws in partial edit mode and

polygon or path creation
5.17.2 Order of recent file list was latest last
5.17.3 Selection of very large arrays hap-

pened to be very slow
5.18 Version 0.16
5.18.1 Compile problems when ruby sup-

port is not enabled

5.18.2 “open recent” function is not work-
ing correctly on Windows

5.18.3 “change layer” function is not
working properly

5.19 Version 0.15
5.19.1 Child cells are shown multiple

times in cell hierarchy
5.19.2 “Save” saves all layers if none

should be saved
5.19.3 Text objects are not shown cor-

rectly if a scalable font is selected
for them

5.20 Version 0.14
5.20.1 Crash on Windows when the pro-

gram is called first time
5.21 Version 0.13
5.21.1 Crash on Windows when the layer

list becomes very small
5.21.2 KLayout does not start on some

platforms and exits with a segmen-
tation fault

5.22 General
5.22.1 Layout loading time
5.22.2 Drawing speed versus high display

precision

5.1 Version 0.21.5

5.1.1 DXF reader

Bulges are not supported for poly lines.

5.1.2 Performance issues on select

Select (transient or on click) is slow in some cases. is happens in particular if cells in the hierarchy
overlap heavily and many layers are present.

5.1.3 RBA:Edge.intersect? delivers wrong results when the edges are collinear

e edges will be reported to intersect even if they don’t. A workaround is to test if the bounding boxes
overlap and the edges intersect.

5.2 Version 0.21.4

5.2.1 DXF reader

Some POLYLINE examples were using a global width which was overridden by a per-vertex width. In that
case the global width is taken rather than the correct local one.

KLayout Version 0.21 45

Chapter 5. Known Bugs and Issues 5.3. Version 0.21.3

5.2.2 Problems with non-English locales and UTF-8 file names on Linux

On KDE, files cannot be opened when the path contains non-ASCII characters on UTF-8 file systems. In
some cases, the decimal point is inconsistently “,” instead of “.”, which is the standard for KLayout.

5.3 Version 0.21.3

5.3.1 CIF reader

e CIF reader currently does not understand “DS” commands without a scale specification (i.e. “DS 20”).
It always requires two additional numbers specifying the scale as a ratio of two integers (i.e. “DS 20 1 10”).

5.3.2 Rotate methods swapped

e clockwise rotate method rotates counterclockwise and vice versa.

5.3.3 “Draw border instances of arrays” feature broken

Much is drawn and much more isn’t ….

5.3.4 Ruby crash

On some systems, the program crashes when a ruby script is loaded (i.e. with the -rm option) with a
message “[BUG] terminated node (0x2a9708ca70)” or similar. is seems in particular to Comment: end
of sentence missing

5.4 Version 0.21.2

5.4.1 DXF reader still not complete

In particular, interpretation of POLYLINE and LWPOLYLINE entities is not clear yet. In comparison to
other converters, no merging of separate lines into polygons is provided.

5.5 Version 0.21.1

5.5.1 RBA: RdbItem.each_value is not working on const objects

is is important, because const RdbItem objects are commonly encountered when scanning through a
marker database with RBA.

5.5.2 DXF reader still not complete

e interpretation of certain features (i.e. array instances, extrusion direction) is not clear yet.

5.5.3 Layer mapping broken for DXF and CIF readers, writers

Incorrect layers are wrien for example when a layer subset is wrien. In addition, mapping or selection
of input layers does not work correctly for DXF and CIF readers.

46 Version 0.21 KLayout

Chapter 5. Known Bugs and Issues 5.6. Version 0.21

5.6 Version 0.21

5.6.1 Persistence of reader options is broken

e program does not remember reader options when the dialog is closed.

5.6.2 RBA: each_selected is broken

A segmentation fault occurs on Windows in the each_selected method of LayoutView.

5.6.3 DXF and CIF readers and writers incomplete

DXF and CIF readers and writers implement only very basic features. Some important capabilities are
missing, in particular for the DXF part.

5.7 Version 0.20.1

5.7.1 Program crashes when the marker browser is opened

When the marker browser is opened with a maximum number of markers set to a value not equal to 1000
(the default), the program crashes if the marker browser window is opened from the menu (it works when
the marker database is loaded from the command line with the -m switch).

5.8 Version 0.20

5.8.1 Net tracing does not extract net correctly

is bug is related to branching conditions. In such cases, a net might not be extracted correctly.

5.8.2 Gerber reader does not correctly read certain macros

e “outline” macro is read as a thin outline also in the “closed” case by the RS274X reader.

5.9 Version 0.19.3

5.9.1 Polygon cut algorithm for reducing the number of points per polygon in the
GDS2 writer

When the GDS2 writer has to reduce the number of points of a polygon, it will cut the polygon into smaller
pieces. Under some circumstances, this algorithm fails. To avoid this problem, use the Multi XY record
mode if possible.

5.10 Version 0.19.2

5.10.1 Crashes on Qt 4.6.0

Due to a bug in Qt’s QPixmap constructor in Qt 4.6.0, KLayout does not work with this version.

KLayout Version 0.21 47

Chapter 5. Known Bugs and Issues 5.11. Version 0.19.1

5.10.2 Ruby modules not loaded from the installation path on UNIX

In most cases, ruby modules are not looked for in the wrong path. e intention was to search for .rbm
files in the directory where KLayout is installed. Instead, the current or any other directory is searched
depending on how the KLayout executable is specified on the command line.

5.10.3 OASIS reader too picky

eOASIS reader does not accept files with forward references of the special “S_GDS_PROPNAME” prop-
erty name.

5.11 Version 0.19.1

5.11.1 “Test for shapes in view” feature does not work properly for AREF’s

In some cases, array references are not considered and layers appear to be empty even if they are not.

5.11.2 RBA scripts crash in tight loops on Ruby 1.8.7 (i.e. Ubuntu 9.10)

at is a ruby problem, see also hp://www.ruby-forum.com/topic/198545. e problem is known and a
new libruby version should be available soon.

5.11.3 GDS text reader problems

In some build environments, problems have been encountered with GDS text files with negative values.

5.11.4 Interactive stretching of images is broken

e interactive stretching of images with the square handles is sometimes leading to invalid results and
does not work properly.

5.12 Version 0.19

5.12.1 Crash when selecting “…” node in the marker browser item list

e item list is abbreviated using a dummy item labeled “…”. When clicking at this item, the application
crashes.

5.12.2 “Test for shapes in view” feature in layer list is extremely slow in some cases

is feature marks a layer “unused” when no shape is shown on that layer in the view area. Currently, the
application becomes very slow in some cases when this option is used.

48 Version 0.21 KLayout

http://www.ruby-forum.com/topic/198545

Chapter 5. Known Bugs and Issues 5.13. Version 0.18

5.13 Version 0.18

5.13.1 Crash when selecting “instance” mode on empty layout

When the layout is empty (no cell present, i.e. top cell was deleted) and “Instance” mode is selected in
editor mode, the program crashes with an internal error.

5.13.2 Issues on Mac OS X

ere are still some issues on Mac OS X, as well for the build as for the program itself — in particular with
Qt 4.5.x. For example, with accessibility enabled, the program crashes when a file is loaded. is will be
fixed in version 0.18.1.

5.14 Version 0.17.2

5.14.1 Sizing bugs

e sizing function sometimes produces invalid results, in particular when doing a strong undersize.

5.14.2 Build not working for Mac OS X

e ’ar’ call has been changed such that the Mac OS X build should work now (not tested since no test
system was available).

5.14.3 Crash when double-clicking a path end in partial mode

When double-clicking on a path end in partial edit mode (dragging just the path end), the program crashed
in some cases.

5.14.4 “Fit selection” is not working properly

Not all instances are taken into account.

5.14.5 Wrong DBU read from GDS2 files

e DBU per user unit is used, which is not correct. Instead the DBU per meter unit should be used.

5.14.6 Round paths are not written properly to OASIS files

5.14.7 Windows repaint problem for hidden canvas content

Strange effects occur when a non-modal front dialog is moved over the canvas area.

5.14.8 Space representation in vector fonts

Space characters are not represented.

KLayout Version 0.21 49

Chapter 5. Known Bugs and Issues 5.15. Version 0.17.1

5.15 Version 0.17.1

5.15.1 Program hangs if the properties dialog is closed with the system menu

When the properties dialog is closed using the system menu (the “X” buon in the window title bar),
KLayout goes into an unusable state. is does not happen if the dialog is closed using the “Close”
buon.

5.15.2 Program crashes if many text objects have identical location

is happens if more than 100 text objects are present that have identical locations.

5.15.3 OASIS reader problems when property name and string ID’s are defined aer
they are used

is was a known limitation but came up recently in a certain application.

5.15.4 AREF row and column description was swapped and misleading

In GDS files, row and column vectors can be arbitrary x/y value pairs. However, some tools implement
a more strict interpretation in which only orthogonal row and column vectors are allowed. Also, row
and column must be oriented in a certain way. In addition, the description of row and column vectors is
swapped.

5.16 Version 0.17

5.16.1 Display freezes on some Windows installations

Apparently due to a problem with Qt’s grabMouse function on some Windows installations the dis-
play freezes when a zoom box or selection box is opened. By switching to the Task manager using
“Ctrl+Alt+Del”, the display can be unfrozen but zoom or selection operations a not possible. is problem
existed in all previous versions as well and apparently occurred in particular on Windows XP.

5.17 Version 0.16.1

5.17.1 Some flaws in partial edit mode and polygon or path creation

In certain cases, the closing point of polygons was not created correctly, path segments did not snap
correctly to 45 degree edges or partial edit mode was behaving in a strange way.

5.17.2 Order of recent file list was latest last

…which is contrary to what other programs implement.

5.17.3 Selection of very large arrays happened to be very slow

is happened because many markers have been drawn for such arrays. is has been changed such
that the array is not drawn as individual markers for large arrays. Instead, a representative geometrical
description is given.

50 Version 0.21 KLayout

Chapter 5. Known Bugs and Issues 5.18. Version 0.16

5.18 Version 0.16

5.18.1 Compile problems when ruby support is not enabled

5.18.2 “open recent” function is not working correctly on Windows

5.18.3 “change layer” function is not working properly

5.19 Version 0.15

5.19.1 Child cells are shown multiple times in cell hierarchy

Under certain circumstances, child cells are shown multiple times in the cell tree, i.e. a cell “A” which is a
child of “TOP” might appear multiple times in the tree below “TOP”. is is not intended — child cells are
supposed to appear just once, even if instantiated multiple times.

5.19.2 “Save” saves all layers if none should be saved

If the layers to be saved are confined, i.e. to visible ones, it may happen that, if no layer is visible for
example, all layers are saved instead. A workaround is to create a new layer (i.e. layer 1000, datatype 0)
and save it. Such an empty layer will be saved but won’t appear in the OASIS or GDS2 file, since it does
not contain any shapes.

5.19.3 Text objects are not shown correctly if a scalable font is selected for them

Depending on the transformation of the text, the text may appear at unexpected locations for example. A
workaround is to use the “default” font.

5.20 Version 0.14

5.20.1 Crash on Windows when the program is called first time

On windows, crashes have been observed, when the program is started the first time aer installation.
is indicates some problem with Qt installation in the registry. However, this bug was not tracked down
yet, because it is not easy to reproduce. Since it only happens once, it is not considered prey serious.

5.21 Version 0.13

5.21.1 Crash on Windows when the layer list becomes very small

e program crashes on Windows, if the layer list becomes too small to be displayed. is happens for
example, if at the default size of the programwindow, the color panel, the frame color panel and the stipple
panel are opened in that order. en, the height of the layer list becomes a few pixels and the program
crashes.

KLayout Version 0.21 51

Chapter 5. Known Bugs and Issues 5.22. General

5.21.2 KLayout does not start on some platforms and exits with a segmentation fault

is problem has been found on the 64bit Ubuntu 7.10 platform for example. e program does not start
up and exits immediately with a segmentation fault.

Here is a small patch that fixes that problem:

Console Input 5.1: C++ Patch – file layApplication.h. line 53, Version 0.13

/* use following code */
Application (int &argc, char *argv []);
/* instead of: */
Application (int argc, char *argv []);

Console Input 5.2: C++ Patch – file layApplication.cc, line 50, Version 0.13

/* use following code */
Application::Application (int &argc, char *argv [])
/* instead of: */
Application::Application (int argc, char *argv [])

5.22 General

5.22.1 Layout loading time

e viewer internally builds look-up tables for fast geometrical look-up in huge data sets. is “sorting”
procedure takes considerable amount of time when loading a layout. How much time it takes depends on
the “flatness” of a layout. On the other hand, these structures allow fast access to small clips of the layout.

5.22.2 Drawing speed versus high display precision

e objective of high display precision sometimes competes with high drawing speed. Usually however,
drawing performance is quite good.

52 Version 0.21 KLayout

Part II

Documentation

KLayout Version 0.21 53

Chapter 6. Resources

Chapter 6

Resources

Content

6.1 Typographic Conventions
6.1.1 Input Dialog Conventions
6.1.2 RBA Typographic Conventions
6.1.3 Listing Conventions

6.2 Command-line arguments
6.2.1 General Options
6.2.2 Special Options

6.3 Transformations in KLayout
6.4 RDB format
6.4.1 Basic structure
6.4.2 Detailed description

6.5 DXF format
6.5.1 General DXF structure
6.5.2 DXF structure that KLayout un-

derstand
6.5.3 Other topics

6.6 Expression syntax
6.6.1 String interpolation
6.6.2 Basic data types
6.6.3 Constants
6.6.4 Operators and precedence
6.6.5 Functions

6.1 Typographic Conventions

Comment: Where to place this section?

It is essential that the presentation of the very different material, covered by this document, conveys its
function immediately in the framework of the text. erefore, this section presents the typographic con-
ventions used in this document.

Comment: verbalize the single items below into full sentences

A cross reference, e.g. to this section, is presented as section 6.1: Typographic Conventions, while a refer-
ence to an internet page can be displayed as URL, like this hp://www.klayout.de/, or as named reference,
like this KLayout’s Home Page.

A KLayout menu item is displayed like this ..Menu Item .
A menu item with sub menu item is shown as ..Main Menu ..Sub Menu .
A menu item or option with check box is given as ..□ check this one or as ..# an option if only one option is
selectable from a list.

A dialog Dialog Name or a dialog section Input Options is given in this way.
In case the key “Ctrl” or the buon “OK” should be pressed this is visualized as key ..Ctrl or buon ..OK .

A path and file C:/Program Files/KLayout/klayout.exe, as well as a file extension lyp is
wrien in a mono spaced font.

Sometimes an important hint is given which looks like
Hint: is is a hint

54 Version 0.21 KLayout

http://www.klayout.de/
http://www.klayout.de/

Chapter 6. Resources 6.1. Typographic Conventions

6.1.1 Input Dialog Conventions

Angle brackets <> encloses parameters, e.g. <layer>/<datatype> – first the layer number, sec-
ond the data type.

Curly brackets { } encloses optional entries, e.g. <layer>/<datatype>{@<layout index>} – the
layout index. is is in opposite to the usual convention where square bracket
are used, e.g. for displaying console command input. But become necessary
because the input dialog uses square bracket as active characters.

Bar or Pipe | separates parameters given in a list from which only one can be selected at
time, e.g. r<angle>|m<angle>.

6.1.2 RBA Typographic Conventions

e typographic conventions for the ruby based automation API are as listed below. Unfortunately, they
doesn’t math the conventions used in ruby code listings at present. For a detailed description see sec-
tion 11.6: Brief overview over the API.

RBA Class A class name.
RBA Method A method name.
[const] e constant aribute of a method.
[static] e static aribute of a method.
[event] e event aribute of a method.

yield e iterator aribute of a method.
const A constant value like Π.
ref A reference, e.g. for return values.
boolean A Boolean value like true or false.
integer An integer value like 10. Comment: explain in more detail, sign, bit count

unsigned Explicit an unsigned integer.
long Explicit a long integer.

long long Explicit a double long integer.
double Explicit a double integer, i.e. a floating point value Comment: same as above? .

string A string like KLayout.
value A value like trans, in this case a transformation expression.

6.1.3 Listing Conventions

Console Input 6.1: Typographic Conventions Example – Console Input

klayout [-<options>] [<file>] ..

Angle brackets < > encloses parameters.
Square brackets [] encloses optional entries.
Bar or Pipe | separates parameters in a list from which only one can be selected.

Console Input 6.2: Typographic Conventions Example – XML File

1 <description>XML File Typographic Example</description>

KLayout Version 0.21 55

Chapter 6. Resources 6.2. Command-line arguments

Console Input 6.3: Typographic Conventions Example – DXF File

1 <Group-Code> <Value>

Console Input 6.4: Typographic Conventions Example – C++ File

/* C++ File Typographic Example */
Application (int &argc, char *argv []);

Console Input 6.5: Typographic Conventions Example – Dialog Input

{ ({<dx>,<dy>} {r<angle> | m<angle>} {*<mag>}) }

Console Input 6.6: Typographic Conventions Example – Ruby Code

1 # Comment
2 RBA::Application.instance.exec

6.2 Command-line arguments

Following a brief description of KLayout’s command-line options.

KLayout’s command line basically looks like this:

Console Input 6.7: KLayout Command Line Input – Basics

klayout [-<options>] [<file>] ..

Options start with a hyphen (“-”) and can be mixed with file names. Files given on the command line
without an option are treated as layout files (GDS, OASIS, …). Each option must be specified separately,
i.e. “-ne” is not option “n” and “e”. Option arguments must be separated by a space from the option itself.
For example:

Console Input 6.8: KLayout Command Line Input – Example

klayout -s file1.gds file2.gds -l layers.lyp

is command will open file1.gds and file2.gds in the same view (option “-s”) and use the layer
properties file layers.lyp.

A detail description of KLayout’s command-line options follows below.

6.2.1 General Options

-c <config file> Use the specified configuration file (reading it on start and writing it on exit)
instead of the default configuration file. is option allows to switch between
different configurations.

-d <debug level> Controls the verbosity of the log output. Values are:
0 silent
10 basic info
11 basic info plus basic timing
20 detailed info

56 Version 0.21 KLayout

Chapter 6. Resources 6.2. Command-line arguments

21 detailed info plus detailed timing
up to 40 more detailed info plus detailed timing
41 for noisy log output and timing respectively

-e Enter edit mode even if non-edit mode was specified in the configuration as de-
fault mode.

-ne Enter viewer mode even if edit mode was specified in the configuration as default
mode. If neither option “-e” nor “-ne” is specified, the default mode from the
configuration will be used.

-i Disable undo buffering (less memory requirements).

-ni Enable undo buffering. is is the default. is option overrides previously set
”-i” options.

-l <lyp file> Use the specified layer properties file instead of the default layer properties.
-lx Used with option “-l”: add other layers to the layer properties even if they are not

defined in the properties file.
-lf Used with option “-l”: use the lyp file as it is (no expansion to multiple layouts).
-m <database file> Load the given report database together with the previously defined layout. is

option must follow a layout file argument.
-p <plugin> Load the plugin (a shared object). is option can be used multiple times.
-r <script> Run the given Ruby script in interpreter mode. In that mode, KLayout will exit

aer the script is executed. To start KLayout, the script must contain a Applica-
tion.exec call. e script is executed aer all other requisites from the command
line have been loaded (files, plug-ins etc.) is option can be combined with “-z”
(no GUI). at way, KLayout is converted into a ruby interpreter.

-rm <script> Run the given Ruby script beforeKLayout starts the user interface. In contrast to
option “-r”,KLayout continues normal execution aer the script is executed suc-
cessfully. is is the preferred way to install user interface add-ons (“Modules”).
In addition to the modules specified by “-rm”, KLayout collects files with exten-
sion .rbm from various places, i.e. the place specified with $KLAYOUTPATH
Comment: $KLAYOUT_PATH ? on Unix or the installation folder onWindows.

-rd <name>=<value> Define the variable in the Ruby context with the given string value. e variable
will be accessible as “$name”.

-s Load files into same view.
-u <file name> Restore the session from the given session file.
-v Print program version and exit.

-x Synchronous drawing mode (non-threaded). is mode can be useful if scripts
are run which produce screen snapshots. By using this option is made sure that
all drawing operations have finished before the snapshot method returns.

-z Non-GUI mode. KLayoutwill not bring up the user interface. See the “-r” option
for useful applications of this option.

6.2.2 Special Options

-gr <file name> Record GUI actions in the given file for test purposes.
-gp <file name> Replay the GUI actions from the given file for test purposes.
-gb <line number> Stop replaying GUI actions at the given line for test purposes.
-gx <milliseconds> Replay rate for GUI test file for test purposes.
-gi Incremental logs on the GUI record file (crash safe logging).

-rx Ignore global rbainit and .rbm files. Used to establish a defined basis for tests.

KLayout Version 0.21 57

Chapter 6. Resources 6.3. Transformations in KLayout

6.3 Transformations in KLayout

A specification of affine transformations in KLayout.

KLayout supports a subset of affine transformations with the following contributions:

Rotation and/or mirroring Rotation by a given angle or mirroring at a given axis.
Scaling Magnification by the given factor.
Translation A displacement by the given vector.

e execution order is displacement aer rotation, mirroring and scaling. Transformations are used for
example to describe the instantiation of a cell. e content of a cell appears in the parent cell aer the
given transformation has been applied to the content of the cell.

e transformations supported byKLayout cover the transformations employed within GDS2, OASIS and
other layout formats. KLayout does not support shearing currently.

Figure 6.1 illustrates the effect of the transformation “r90 *2 7,9”. is notation specifies a transformation
composed of a rotation by 90 degree, a scaling with factor 2 and a displacement by 7 units in x- and 9
units in y-direction. In that example, the “F” shape is first rotated by 90 degree around the origin. Because
the “F” is already displaced from the origin, this will also move the “F” shape. e shape then is scaled.
Again it will move because every point of the polygon moves away from the origin. Finally it is displaced
by the given displacement vector. e notation shown here is used in many places within KLayout. It

Figure 6.1. Illustration of Transformation – Overview

is basically composed of the following parts which are combined puing one or more blanks in between.
e order the parts are specified is arbitrary: the displacement is always applied aer the rotation.

<x>,<y> A displacement (applied aer rotation and scaling) in micron units. If no displacement is
specified, “0,0” is assumed.

r<a>or m<a> A rotation by angle “a” (in degrees) or mirroring at the “a” axis (the x axis rotated by “a”
degree). If no rotation or mirroring is specified, no rotation is assumed.

*<s> A scaling by the factor “s”. If no scaling is specified, no scaling is assumed.

Here are some examples:

0,100 A shi by 100 units up-wards.
r90 A rotation by 90 degree counterclockwise (positive in the mathematical sense).
m0 Mirroring at the x-axis.

58 Version 0.21 KLayout

Chapter 6. Resources 6.4. RDB format

m45 100,-200 Swap x and y (mirror at 45 degree axis), shi 100 units to the right and 200 units down.
r22.5 *1.25 Rotate by 22.5 degree and scale by factor 1.25.

e distance units are usually micron. In some cases (i.e. transformations inside a database), the unit is
database units and dx and dy are integer values.

Mirroring and rotation are exclusive and mirroring includes a rotation. In fact, a mirror operation at a
certain axis is identical to a mirror operation at the x-axis, followed by a rotation by twice the angle “a”.
Figure 6.2 illustrates rotation and mirroring with the eight basic transformations involving rotations by
multiples of 90 degree:

Figure 6.2. Illustration of Transformation – Basics

KLayout is not restricted to these basic operations. Arbitrary angles are supported (i.e. “r45” or “m22.5”).
Usually however, this implies grid snapping and other issues. is also is true for arbitrary scaling values.
KLayout is also more effective when using simple transformations involving only rotations by multiples
of 90 degree and do not use scaling.

6.4 RDB format

A description of the report database format.

is is a brief description of the report database format used by KLayout to represent the content of a
report database. KLayout uses a report database to present results of checks or extraction operations. A
report database can be viewed with the marker browser, available in the ..Tools ..Verification menu. KLay-
out can import other report database formats. Writing is supported only in the format described here.
is description covers the structure of the file. is structure closely matches the internal structure (for
example accessible through RBA), and this document may be helpful to understand that internal API as
well.

KLayout Version 0.21 59

Chapter 6. Resources 6.4. RDB format

6.4.1 Basic structure

e suffix used by KLayout for report databases is .lyrdb. e file format is XML representing the
object structure of the report database. e root element is “report-database”. is is an abbreviated
sample file:

Console Input 6.9: XML File – Report Database Sample

1 <?xml version="1.0" encoding="utf-8"?>
2 <report-database>
3 <description>Diff of 'x.gds, Cell RINGO' vs. 'x.gds[1], Cell INV2'</description>
4 <original-file/>
5 <generator/>
6 <top-cell>RINGO</top-cell>
7 <tags>
8 <tag>
9 <name>red</name>

10 <description>Red flag</description>
11 </tag>
12 ...
13 </tags>
14 <categories>
15 <category>
16 <name>1/0</name>
17 <description>Differences in layer 1/0</description>
18 <categories>
19 <category>
20 <name>A</name>
21 <description>Shapes in A but not in B, on Layer 1/0</description>
22 </category>
23 ...
24 </categories>
25 </category>
26 </categories>
27 <cells>
28 <cell>
29 <name>RINGO</name>
30 <variant>1</variant>
31 <references>
32 ...
33 </references>
34 </cell>
35 ...
36 </cells>
37 <items>
38 <item>
39 <tags/>
40 <category>'1/0'.A</category>
41 <cell>RINGO:1</cell>
42 <visited>true</visited>
43 <multiplicity>1</multiplicity>
44 <image/>
45 <values>
46 <value>text: 'item: polygon'</value>
47 <value>polygon: (1.4,1.8;-1.4,1.8;-1.4,3.8;1.4,3.8)</value>
48 </values>
49 </item>
50 ...
51 </items>
52 </report-database>

e components of a report database are:

items Items represent one basic element of the report. Usually an item represents a marker in-

60 Version 0.21 KLayout

Chapter 6. Resources 6.4. RDB format

dicating a geometric entity with a shape. Items can also represent texts such as errors or
warnings not related to geometry. Items carry information with a set of values. Values
are the parts forming the information of an item. Currently, each item has an ordered list
of values. KLayout does not make an assumption about the type or order of the values.
Items can also be flagged with “tags” (see below) and have an image aached. Currently
an image is a special property of the item, not part of the values.

values A value represents an information part of the database item. In the report database context,
a value is a string encoding the type of the value and the actual value.

categories e report database defines a hierarchy of categories and sub-categories. Each database
item is associated with a category or sub-category within that tree.

cells e report database also defines a hierarchy of cells. e cell hierarchy may be complete,
i.e. a copy of a layout hierarchy or specify representative instances or no instances at all.
Database items can be associated with a cell which allowsKLayout to display a marker in
the context of a certain cell. KLayout supports cell variants. A cell is not only identified
with a name by may also carry a variant identifier. An item can be associated with a
particular variant of a cell if necessary.

tags Tags are basically flags that can be aached to database items. KLayout uses tags to mark
items as “waived” or “important”.

Figure 6.3 shows how the marker database objects are related with elements of the marker browser dialog.

Figure 6.3. Marker Database Browser Dialog

KLayout Version 0.21 61

Chapter 6. Resources 6.4. RDB format

6.4.2 Detailed description

e marker databases structure is conveniently described with a UML class diagram, see fig. 6.4. It shows
the objects of the database and their relationship. Aggregation in XML is implemented by including the
object in the XML, association is implemented with an element carrying a suitable reference string. In the
class diagram, some container classes appear (i.e. “Cells”) which represent a list of individual objects (in
that case “Cell”). ey are present to match the XML structure, which uses an enclosing element around
the list (in that example “<cells>…</cells>”).

e aribute names in the UML class diagram match the XML element names where the underscore is
replaced by the hyphen (i.e. aribute “top_cell” is represented in XML as “top-cell”). is convention is
a tribute to the usual XML convention which contrasts with the aribute names used in the code. e

Figure 6.4. Marker Database Browser – UML Diagram

following is a detailed description of some classes and important aributes. As a general rule, the marker
database uses micron units. It is independent of the layout database unit.

6.4.2.1 Class Database (element “report-database”)

is is the root element of the XML file and the object representing the whole database. It has the following
aributes (the XML element names are shown):

description A general description text shown in the marker database browser for that database.
original-file (optional) e file from which the report was generated.

generator (optional) A string describing information about the module that generated the report
database. It is intended to formalize the generator information so it is possible to re-run
a reporting tool.

top-cell e name of the top cell in the layout from which the report was created from.
tags A list of Tag objects (child elements “tag”) declaring the tag identifiers available.

62 Version 0.21 KLayout

Chapter 6. Resources 6.4. RDB format

cells A list of Cell objects (child elements “cell”) declaring the cells, optionally specifying a
partial or complete hierarchy in the form of a cell graph.

category A list of Category objects (child elements “category”) declaring the first level of categories.

6.4.2.2 Class Category (element “category”)

A Category object specifies one category and optional sub-categories forming a branch in the tree of
categories. It has the following aributes (the XML element names are shown):

name An arbitrary string identifying a category in a “category path” (see RdbItem class).
e name is also shown in the category tree. A category name must be unique in the
context of the category list (not across the category hierarchy).

description A description string shown in the title of the item panel.
sub-categories An optional list of child categories (further Category objects).

6.4.2.3 Class Tag (element “tag”)

A Tag object declares a tag for the items. It has the following aributes (the XML element names are
shown):

name An arbitrary string identifying a tag in item’s tag list. e tag name must be unique in
the context of the database.

description An optional description string.

6.4.2.4 Class Cell (element “cell”)

A Cell object declares a cell and optionally the cell’s relationship, hence forming a cell graph. It has the
following aributes (the XML element names are shown):

name An arbitrary string identifying the cell. e cell name is matched against cell names
in the layout when displaying geometrical markers to locate the marker in the layout.
e instantiation information is used to locate the marker in the top-level context if the
specific cell is not available. A geometrical marker is always specified in the context
of the cell it refers to.

variant An arbitrary string identifying the variant of the cell.
references An list of Reference objects which specifies from which cells and how this cell is in-

stantiated.

Hint: If a cell exists with an empty name, it is displayed as “All cells”. All items
which are not associated with a cell (i.e. global warning messages), can be
associated with this special cell by specifying an empty cell name for that
item.

6.4.2.5 Class Reference (element “reference”)

AReference object represents a cell reference and states parent cell and transformation. It has the following
aributes (the XML element names are shown):

parent e parent cell name. If multiple variants exist for a cell, this must be a qualified name:
the cell name, a colon and the variant id (for example “A:1”).

trans e transformation by which this cell’s content is transformed into the parent cell
Comment: (⁇? correct?) . e transformation is specified in KLayout’s transfor-
mation notation.

KLayout Version 0.21 63

Chapter 6. Resources 6.4. RDB format

e transformation specification follows the standard notation in KLayout, see chapter 2: Download and
Build. For example, “r90 *1 17.5,-25” describes a rotation by 90 degree (in the mathematical sense), no
scaling and a displacement of 17.5 micron in x-direction and -25 micron in y direction. Since “*1” is the
default, this is equivalent to “r90 17.5,-25”. Also, the order of the parts is not important, so “17.5,-25 r90”
gives the same results.

6.4.2.6 Class Item (element “item”)

Items are the basic elements of the report database. An Item class has the following aributes (the XML
element names are shown):

tags A comma-separated list of tag names aached to this item.

category A category path describing the category this item is aached to. A category path is a
list of category names joined with dots. For example “A.B” is the “B” sub-category of
the “A” category. e category path notation allows to quote category names by single
or double quotes so that category names can also contain dots.

cell e cell that this item is associated with. e cell name can be empty indicating that
the item is not associated with a specific cell. In that case, the item is listed under
“All cells”. Currently, in that case a dummy cell declaration is required that declares a
cell without a name (see Cell class). e cell name is a “qualified name”. at means
it consists of a cell name, optionally followed by a colon and the variant string. For
example, “A:1” is the “1” variant of the “A” cell. is specification is only required if
there are cell variants.

visited A value indicating whether the item has been visited already (true or false).
multiplicity is value specifies if an item represents multiple actual instances of an item. is

value can be used to compute total number of markers within a category for example.
e value can be necessary if for example the cell given by the “cell” aribute has just
one reference instantiation but in reality represents a large number of actual instances.
By specifying the multiplicity, the item is given the appropriate weight.

image An optional image aached to the item. is string is a text representation of a image
file in one of the standard formats supported by KLayout (preferred format is PNG)
in base64 encoding.

values e list of values for this item.

6.4.2.7 Class Value (element “value”)

A value is not a class for it’s own, although in the code, values are represented by specific classes. In the
report database, a value is simply a string representing various types of values. e general format is a
type code, followed by a colon and a specific value string.

If a value represents a geometrical object, the coordinates are given inmicron units and the object is located
inside the associated cell and is transformed by the marker browser into the currently active cell using the
reference information derived from the database or the current layout. is implies that all values with
geometric interpretation must be associated with a cell.

Currently these value formats are supported:

text: <text> A message text (no geometry).

box: (<x1>,<y1>;<x2>,<y2>) A box (geometrical object).
edge: (<x1>,<y1>;<x2>,<y2>) An edge (geometrical object).
polygon: (<x>,<y>;…) A polygon (geometrical object). e points in brackets form the polygons’

outline.

64 Version 0.21 KLayout

Chapter 6. Resources 6.5. DXF format

polygon: (<x>,<y>;…/<x>,<y>;…/…) A polygon with holes (geometrical object). e points in brackets
before the slash form the polygons’ outline, the point sequences aer the slash
form the hole contours. Each slash enters a new hole.

label: (’<text>’,<trans>) A text (geometrical object). “trans” is the text transformation in KLayout’s
transformation notation.

path: (<x>,<y>;…) w=<width> bx=<begin-ext> ex=<end-ext> r=<round-flag>
A path (geometrical object). e points in brackets form the path’s center line.
“ex” and “bx2” specify begin and end extension, “w” specifies the width and
“r” is true, if the path has round ends.

e value string of the geometrical objects is derived from KLayout’s string representation which can be
created within RBA with the to_s method for example.

6.5 DXF format

A brief description of how KLayout understands DXF input.

is is a brief description of the DXF format or more precisely: the subset of DXF that KLayout under-
stands. Syntactically, DXF is a very simple format. e basic problem when reading DXF however is how
to interpret it. Apparently, it is more or less a dump of the object properties of the CAD tool, and many
questions regarding the interpretation of the properties are le open.

e implementation of KLayout is based on a number of test cases and comparison with other viewers. In
some cases, the interpretation of features was varying (for example, the interpretation of array instances).
In that case, TrueView (see link below) was believed to be the main authority in DXF interpretation.

Here are some links and references to other free viewers:

• DXF page on Wikipedia

• DXF specification page

• TrueView viewer for Windows

• Online viewer (www.ShareCAD.org)

• eDrawings viewer SolidWorks eDrawings 2009 supports Microso® XP Service Pack 2 or later and
SolidWorks eDrawings 2009 for Mac supports Macintosh® Mac OS 10.4 (Tiger) or later.

6.5.1 General DXF structure

e DXF format consists of records based on a very simple structure:

Console Input 6.10: DXF Code – Simple DXF Record Structure

1 <Group-Code> <Value>

e group code is an integer which implicitly defines the value type and acts as a key for the value. In
ASCII DXF, group codes and values are wrien in a single line each. ese are the group codes and values
relevant for layout data:

0 string (keyword)
2 string (arbitrary)

6 string
8 string
10…13 double precision coordinate
20…23 double precision coordinate

KLayout Version 0.21 65

http://en.wikipedia.org/wiki/AutoCAD_DXF
http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=12272454&linkID=10809853
http://usa.autodesk.com/adsk/servlet/pc/index?id=6703438&siteID=123112
http://www.sharecad.org/
http://www.edrawingsviewer.com/

Chapter 6. Resources 6.5. DXF format

30…33 double precision coordinate
39 double precision coordinate

40…45 double precision floating point value
50 double precision angle (in degree)
62 16 bit integer value
66 16 bit integer value
70 16 bit integer value
210 double precision coordinate

220 double precision coordinate
230 double precision coordinate

Pure ASCII DXF allows the lines to contain leading or trailing blanks. KLayout also tries to identify stray
blank lines and skip them. Some systems generate such files.

ere is also a binary version of the DXF format with this basic structure:

Header (22 Bytes) “AutoCAD Binary DXF<CR><LF><SUB><NULL>”
16 bit integers 2 btyes, LSB first Comment: misspelled “first” on Home Page
double 8 bytes, LSB first Comment: misspelled “first” on Home Page
string zero-terminated

Apparently the binary format is rarely used. It suffers from a prey basic issue: since the data type of a
value - hence the byte count - is implicitly determined by the group code, exact knowledge of the data type
associated with each group code is required.

6.5.2 DXF structure that KLayout understand

is is the general structure of a DXF file as KLayout understands it. is is a schematic representation.
Lines starting with “//” are comments and not part of the file - they are provided for readability. In addition,
group codes and values have been wrien on one line. In ASCII DXF, group codes and values are on
separate lines. e indentation indicates coherent sections. Lines containing “…” indicates that other
group code / value pairs may be present which are read over:

Console Input 6.11: Simple DXF Record Structure

// header section
0 "SECTION"
2 "HEADER"
...
0 "ENDSEC"
...
// tables section
0 "SECTION"
2 "TABLES"
...
// layer table
0 "TABLE"
2 "LAYER"
70 (# of layers - do not use for reading)
...

// each layer
0 "LAYER"
2 (layer name)
62 (color code)
6 (line style)
...

0 "ENDTAB"

66 Version 0.21 KLayout

Chapter 6. Resources 6.5. DXF format

...
0 "ENDSEC"
...
// blocks section
0 "SECTION"
2 "BLOCKS"
...

// each block
0 "BLOCK"
8 (layer name - always 0?)
2 (block name)
70 (flags - always 64?)
10 (base point X)
20 (base point Y)
...
// each entity
0 (entity type)
... (specific for entity)

...
0 "ENDBLK"

...
0 "ENDSEC"
...
// entities (top level cell)
0 "SECTION"
2 "ENTITIES"
...

// each entity
0 (entity type)
... (specific for entity)

...
0 "ENDSEC"
...
// end of file
0 "EOF"

KLayout reads following entities which are described in detail below:

POLYLINE polygon, paths
LWPOLYLINE polygon, paths
INSERT cell ref

LINE parts of polygon contours, path
SOLID triangle or tetragon
HATCH a filled area (polygon)
CIRCLE a circle (a round-ended path with one point)
TEXT text

6.5.2.1 POLYLINE entity

Console Input 6.12: DXF Code – DXF Record Structure – POLYLINE

1 0 "POLYLINE"
2 8 (layer name)
3 210 (extrusion direction x)
4 220 (extrusion direction y)
5 230 (extrusion direction z)
6 70 (flags - bit 0 for closed (1) or open (0) polyline)
7 40 (start width - 0?)
8 41 (end width - 0?)

KLayout Version 0.21 67

Chapter 6. Resources 6.5. DXF format

9 ...
10 // each vertex
11 0 "VERTEX"
12 8 (layer name - what for?)
13 10 (position X)
14 20 (position Y)
15 ...
16 0 "SEQEND"

A closed poly-line with a width of 0 usually creates a polygon (unless in “keep lines” mode, see below).
A poly-line with a width > 0 creates a path. A non-closed poly-line with a width of 0 creates a path with
width = 0 or contributes to the edges that will be merged in “merge lines” mode.

Individual widths are not supported – all widths must be equal or just a common width must be given.

For paths: no round ends are provided. Variable extensions have to be emulated by extending the first and
last segment.

6.5.2.2 LWPOLYLINE entity for polygons

Console Input 6.13: DXF Record Structure – LWPOLYLINE

1 0 "LWPOLYLINE"
2 8 (layer name)
3 210 (extrusion direction x)
4 220 (extrusion direction y)
5 230 (extrusion direction z)
6 70 (flags - see POLYLINE)
7 43 (common width)
8 ...
9 // each vertex

10 10 (position X)
11 20 (position Y)
12 40 (start width of segment)
13 41 (end width of segment)
14 ...
15 0 "SEQEND"

LWPOLYLINE entities are alternative representations of POLYLINE entities and are treated alike.

6.5.2.3 SOLID entity

Console Input 6.14: DXF Record Structure – SOLID

1 0 "SOLID"
2 8 (layer name - what for?)
3 210 (extrusion direction x)
4 220 (extrusion direction y)
5 230 (extrusion direction z)
6 2 (block name)
7 10 (position1 X)
8 20 (position1 Y)
9 11 (position2 X)

10 21 (position2 Y)
11 12 (position3 X)
12 22 (position3 Y)
13 13 (position4 X)
14 23 (position4 Y)
15 ...

68 Version 0.21 KLayout

Chapter 6. Resources 6.5. DXF format

To get a correctly ordered tetragon, points 3 and 4 must be swapped. A triangle is formed by seing
position 3 and 4 to the same coordinates.

6.5.2.4 INSERT entity

Console Input 6.15: DXF Record Structure – INSERT

1 0 "INSERT"
2 8 (layer name)
3 2 (block name)
4 10 (position X)
5 20 (position Y)
6 41 (scale factor X - can be negative for mirroring)
7 42 (scale factor Y - can be negative for mirroring)
8 50 (rotation angle)
9 70 (number of columns - optional)

10 71 (number of rows - optional)
11 44 (column spacing - optional)
12 45 (row spacing - optional)
13 ...

e layer specified overrides the “0” layer inside the block. is requires layer specific variants. is
override is inherited by child cells as well.

e array vectors specified by number of column spacing and row spacing is rotated by the given angle,
but not scaled or mirrored.

6.5.2.5 LINE entity

Console Input 6.16: DXF Record Structure – LINE

1 0 "LINE"
2 8 (layer name)
3 210 (extrusion direction x)
4 220 (extrusion direction y)
5 230 (extrusion direction z)
6 10 (start position X)
7 20 (start position Y)
8 11 (start position X)
9 21 (start position Y)

10 41 (scale factor X - can be -1 for mirroring)
11 42 (scale factor Y - can be -1 for mirroring)
12 39 (thickness - can be 0)
13 ...

Lines are converted into paths with the specified width or contribute to the lines merged in “merge lines”
mode.

6.5.2.6 CIRCLE entity

Console Input 6.17: DXF Record Structure – CIRCLE

1 0 "CIRCLE"
2 8 (layer name)
3 210 (extrusion direction x)
4 220 (extrusion direction y)
5 230 (extrusion direction z)
6 10 (center position X)

KLayout Version 0.21 69

Chapter 6. Resources 6.5. DXF format

7 20 (center position Y)
8 40 (radius)
9 ...

Circles are converted to single-point, round-ended paths.

6.5.2.7 TEXT entity

Console Input 6.18: DXF Record Structure – TEXT

1 0 "TEXT"
2 8 (layer name)
3 210 (extrusion direction x)
4 220 (extrusion direction y)
5 230 (extrusion direction z)
6 10 (position X)
7 20 (position Y)
8 40 (height)
9 50 (rotation)

10 1 (text string)

6.5.2.8 HATCH entity

Console Input 6.19: DXF Record Structure – HATCH

1 0 "HATCH"
2 8 (layer name)
3 210 (extrusion direction x)
4 220 (extrusion direction y)
5 230 (extrusion direction z)
6 91 (number of loops (contours))
7 // each loop:
8 92 (flags, usually 3: External (bit 0) | Polyline (bit 1))
9 93 (number of edges in the first loop)

10 // each point:
11 10 (position X)
12 20 (position Y)
13 ... more points with 10/20 group codes
14 ... more loops (group codes 92, 93, 10, 20 ...)
15 ...

6.5.3 Other topics

6.5.3.1 Polygon formation and LINE/POLYLINE interpretation

ere are several ways to form polygons from DXF input, which are controlled by the LINE/POLYLINE
mode seing on the reader options page. e following modes are provided:

• Automatic

• Keep lines

• Create polygons from closed poly-lines with width = 0

• Merge lines with width = 0 into polygons

• Merge lines and auto-close open contours

70 Version 0.21 KLayout

Chapter 6. Resources 6.6. Expression syntax

“Automatic” mode will select the following modes:

• “Keep lines” if at least one SOLID or HATCH entity is present

• “Create polygons from closed poly-lines with width = 0” if at least one closed POLYLINE or LW-
POLYLINE entity with width = 0 is present

• “Merge lines with width = 0 into polygons” otherwise.

e modes have the following effect:

• SOLID entities always form filled tetragons or triangles.

• HATCH entities always form complex polygons.

• Closed POLYLINE or LWPOLYLINE entities with width = 0 form polygons unless “keep lines” mode
is selected. In “auto-close” mode, non-closed polylines will form a closed polygon by connecting the
first and last point.

• Multiple segments specified by either LINE or POLYLINE/LWPOLYLINE entities with width = 0 are
joined and, if they form a loop, create a polygon in the “merge lines” modes. In “auto-close” mode,
open contours will be closed by connecting the first and last point.

6.5.3.2 Extrusion direction

e extrusion direction specified by the group codes 210, 220 and 230 is by default (0,0,1). is is the
normal case. Extrusion direction (0,0,-1) is also supported. In this case, the shapes will be mirrored at the
Y axis.

6.5.3.3 INSERT entities with layer specification

Layer “0” is a “wild-card” layer and can be overridden on a per-instance basis by a instance specific layer.
If the instance has itself “0” layer assigned, no override takes place (or it does not have any effect).

6.6 Expression syntax

A brief description of KLayout’s expression syntax used, for example, to format ruler labels.

Beside a ruby programming API, KLayout provides support for simple expressions in some places. In
particular this feature is employed to generate dynamic strings, for example when deriving the label text
for a ruler.

6.6.1 String interpolation

e feature of inserting dynamic content into a string is called interpolation. e SyntaxKLayout uses for
string interpolation is a dollar character followed by the expression which is evaluated. Simple expressions
can be put directly aer the dollar character. Others must be put into brackets.

Every dollar expression is evaluated and the expression is substituted by the result string. For example:

String Evaluates to
An irrational number: $sqrt(2) 1.4142136
1+2: $(1+2) 3.

KLayout Version 0.21 71

Chapter 6. Resources 6.6. Expression syntax

6.6.2 Basic data types

Expressions use different data types to represent strings or numeric values. e following data types are
supported currently:

Type Examples
Numeric 1.2

-0.5e-6
String “abc”

‘x’
Boolean true

false
Array [1,5,4]
Undefined (no value) nil

6.6.3 Constants

e following constants are defined currently:

Constant Description
M_PI e mathematical constant ‘pi’
M_E e mathematical constant ‘e’
false ‘false’ Boolean value
true ‘true’ Boolean value
nil e ‘undefined’ value

6.6.4 Operators and precedence

KLayout’s expressions support the following operators with the given precedence:

Prec. Operator Data types Result type Description
1 (…) Any Grouping of sub-expressions
2 […,…] Any Array Array formation
3 !… Boolean Boolean Logical NOT
3 ̃… Numeric Numeric Bit-wise NOT (evaluated as 32 bit integers)
3 −… Numeric Numeric Negation
4 … ̂ … Numeric Numeric Bit-wise XOR (evaluated as 32 bit integers)
4 …&… Numeric Numeric Bit-wise AND (evaluated as 32 bit integers)
4 …|… Numeric Numeric Bit-wise OR (evaluated as 32 bit integers)
5 …%… Numeric Numeric Modulo
5 …/… Numeric Numeric Division
5 …*… Numeric Numeric Product

Numeric*String String String multiplication (n times the same string)
6 …−… Numeric Numeric Subtraction
6 …+… Numeric Numeric Addition

String String Concatenation
7 …<<… Numeric Numeric Bit shi to le
7 …>>… Numeric Numeric Bit shi to right
8 …==… Any Boolean Equality
8 …!=… Any Boolean Inequality
8 …<=… Any Boolean Less or equal

72 Version 0.21 KLayout

Chapter 6. Resources 6.6. Expression syntax

Prec. Operator Data types Result type Description
8 …<… Any Boolean Less
8 …>=… Any Boolean Greater or equal
8 …>… Any Boolean Greater
9 …&&… Boolean Boolean Logical AND
9 …||… Boolean Boolean Logical OR

10 …?…:… Boolean?Any:Any Any Conditional evaluation

6.6.5 Functions

KLayout’s expression supports the following functions:

Function Data types Result type Description
absolute_file_path(x) String String Convert a relative file path to an absolute

one
absolute_path(x) String String Returns the absolute path component of a

file specification
acos(x) Numeric Numeric Inverse cosine function
asin(x) Numeric Numeric Inverse sine function
atan2(x,y) Numeric Numeric Inverse tangent of x/y
atan(x) Numeric Numeric Inverse tangent function
basename(x) String String Returns the base-name component of a file

specification
ceil(x) Numeric Numeric Round up
combine(x,y) String String Combines the path components x and y us-

ing the system specific separator
cosh(x) Numeric Numeric Hyperbolic cosine function
cos(x) Numeric Numeric Cosine function
env(x) String String Access an environment variable
error(x) String Raise an error
exp(x) Numeric Numeric Exponential function
extension(x) String String Returns the extension component of a file

specification
file_exists(x) String Boolean Returns true if the given file exists
find(s,t) String Numeric Finds the first occurrence of t in s and re-

turns the position (where 0 is the first char-
acter)

floor(x) Numeric Numeric Round down
gsub(s,x,y) String String Substitute all occurrences of x in s by y
is_array(x) Any Boolean True if the argument is an array
is_dir(x) String Boolean Returns true if the given path is a directory
is_nil(x) Any Boolean True if the argument is undefined
is_numeric(x) Any Boolean True if the argument is numeric
is_string(x) Any Boolean True if the argument is a string
item(a,i) Array Any Access a certain item of an array
join(a,s) Array, String String Join all array members in a into a string us-

ing the separator s
len(x) String Numeric Return the length of a string
log10(x) Numeric Numeric Base 10 logarithm function
log(x) Numeric Numeric Natural logarithm function

KLayout Version 0.21 73

Chapter 6. Resources 6.6. Expression syntax

Function Data types Result type Description
max(a,b …) Numeric Numeric Maximum of the given arguments
min(a,b …) Numeric Numeric Minimum of the given arguments
path(x) String String Return the path component of a file speci-

fication
pow(x,y) Numeric Numeric Power function (x to the power of y)
rfind(s,t) String Numeric Find last occurrence of t in s and return the

position (where 0 is the first character)
round(x) Numeric Numeric Round up or down
sinh(x) Numeric Numeric Hyperbolic sine function
sin(x) Numeric Numeric Sine function
split(t,s) String Array Split t into elements using the separator s
sprintf(f,a …) String, Any String Implement of C-like sprintf. Provides not

all features, but the commonly most used
ones: precision, field width, alignment,
zero padding and the e, g, f, d, x, u and s
formats

sqrt(x) Numeric Numeric Square root
substr(t,f[,l]) String String Return a sub-string of t (starting from posi-

tion f with length l). l is optional. If omit-
ted, the tail of the string is returned.

sub(s,x,y) String String Substitute first occurrence of x in s by y
tanh(x) Numeric Numeric Hyperbolic tangent function
tan(x) Numeric Numeric Tangent function
to_f(x) Any Numeric Convert argument to numeric if possible
to_i(x) Any Numeric (int.) Convert argument to numeric (32 bit inte-

ger)
to_s(x) Any String Convert argument to string

74 Version 0.21 KLayout

Chapter 7. Useful Ruby Modules

Chapter 7

Useful Ruby Modules

is is a collection of hopefully useful ruby modules. ese scripts may also serve as a starting point for
custom developments. All scripts are installed the following way:

Windows by copying the file to the installation path of KLayout (the folder where klayout.exe is
located). is is usually C:/Program Files/KLayout.

Unix by copying the file to an arbitrary folder and seing $KLAYOUT_PATH to it’s path.

Alternatively, KLayout can be started with the -rm option to load the ruby module:

Console Input 7.1: KLayout Command Line Input — Ruby Module

klayout -rm script.rbm [other options]

Available Ruby Scripts

7.1 Compute the total area of all selected
shapes

7.2 Compute the total area of all selected
layers (hierarchical)

7.3 A layer processing framework
7.4 Import a Cadence techfile
7.5 Import a LEF file
7.6 A simple technology manager
7.7 Search for odd-width paths

7.8 Replace cells with others from an-
other file

7.9 Write all child cells of the current cell
to new files

7.10 Dump all shapes of the current cell
recursively to a XML file

7.11 List all layers under a ruler
7.12 Rename all cells
7.13 Compute the bounding box of a cell

7.1 Compute the total area of all selected shapes

is script installs a new sub menu entry ..Tools ..Compute total area of selected shapes . It sums up the area of
all shapes selected.

Caution: is is a simple sum of areas. Areas where the shapes overlap are counted
twice.

Download: calc_area.rbm

7.2 Compute the total area of all selected layers (hierarchical)

is script installs a new sub menu entry ..Tools ..Compute layer area . It computes the total area of all layers
selected.

KLayout Version 0.21 75

http://www.klayout.de/resources/calc_area.rbm

Chapter 7. Useful Ruby Modules 7.3. A layer processing framework

Caution: is is a simple sum of shape areas, weighted with the cell’s instant counts.
Areas where the shapes overlap are counted twice.

Download: calc_area_hier.rbm

7.3 A layer processing framework

is script installs a new menu entry ..Tools ..Processing Scripts . is menu entry asks for a processing script
and executes it. Such a layer processing script contains commands to process layers such as sizing, Boolean
operations and similar. e exact syntax of the scripts is described in the header of the ruby module script.

e module also maintains a list of recently used processing scripts and presents them below the menu
item ..Tools ..Processing Scripts ..Processing Scripts .

Download: layer_proc.rbm

7.4 Import a Cadence techfile

is script requires at least version 0.21.13.

is script installs a newmenu entry ..File ..Import Cadence Techfile . It asks for the path of a Cadence technol-
ogy file. It also requires a display resource file which it looks for in the folder where the technology file is
located. If it finds multiple files with drf extension, it asks for a specific one. Also, if no stream layers are
specified in the technology file, the script will try to find and load a layer mapping file (extension lyp).

e script will import the technology file and set the layer properties accordingly. ese properties can
then be saved using menu item ..File ..Save Layer Properties .

Note: e script is able to parse simple forms of technology files but will not ex-
ecute embedded Skill code correctly. e best way is to dump a Cadence
ASCII technology file and import that file.

Download: import_tf.rbm

7.5 Import a LEF file

is script installs a new menu entry ..File ..Open LEF , also available via shortcut ..Ctrl + ... + ..L . It asks for
the path of a LEF file and imports it into a new layout.

Download: LEF.rbm

7.6 A simple technology manager

is script installs a new menu ..Technology . It allows to summarize some configuration seings and as-
sociate them with a technology. If a technology is selected, it will switch the following configuration
seings:

Grids Current grid plus default grids.
Default layer properties Takes the one set on the ..File ..Setup ..Layer List dialog page. is will not be

the currently loaded ones, but rather switch the ones applied on the next load
of a layout.

Database unit To be used for new layouts.
Net tracer setup Layer stack.

76 Version 0.21 KLayout

http://www.klayout.de/resources/calc_area_hier.rbm
http://www.klayout.de/resources/layer_proc.rbm
http://www.klayout.de/resources/import_tf.rbm
http://www.klayout.de/resources/LEF.rbm

Chapter 7. Useful Ruby Modules 7.7. Search for odd-width paths

To set up a new technology, select the respective seings in the ..File ..Setup ..Seings dialog page, close this
dialog and choose ..Technology ..Save . A dialog pops up asking for the technology name. e given name
will appear as new sub menu entry, e.g. like ..Technologies ..My New Tech .

To remove a setup, choose ..Technology ..Remove . A dialog pops up and provides a list of available technology
seings. Select the one to remove.

To apply a setup, choose the respective entry in the ..Technology menu. Please note, that the effect of a
seing, specifically the default layer properties, will become active on the next load of a layout, not on the
currently loaded one.

Hint: e settings are stored in the file $HOME/.klayout_tech_info.txt.

Download: tech_manager.rbm

7.7 Search for odd-width paths

is script installs the sub menu ..Tools ..Find Paths With Odd Width . It will find all paths with an odd width
in database units in the current layout and report them. Such paths cannot be saved to OASIS, hence it’s
important to remove them before a layout can be wrien to OASIS.

Download: search_odd_width_paths.rbm

7.8 Replace cells with others from another file

e script installs a new menu entry ..Cells Context ..Replace Cells With Others at the end of the cell list context
menu. is function asks for a file containing a couple of other (top) cells, even with their own hierarchy.
It will copy these cells into the existing layout and replace the corresponding cells in the current layout
with the ones from the replacement library.

Hint: e script requires the database unit of the replacement and original file to
be identical.

Download: replace_cells.rbm

7.9 Write all child cells of the current cell to new files

e script installs a new menu entry ..Cells Context ..Write Child Cells at the end of the cell list context menu.
is function asks for the hierarchy level and writes all cells at this level (below the current cell) to files
called <cellname>.gds.

Download: write_childcells.rbm

7.10 Dump all shapes of the current cell recursively to a XML file

is script installs a menu entry ..Tools ..Dump Flat Shapes . It asks for a file name and writes a flat dump of
the current cell to this file. is dump contains all shapes of the cell and their chip cells projected into the
top cell.

e format of the dump file is XML with that layout:

Example 7.2: XML File – Cell Shape Dump File

KLayout Version 0.21 77

http://www.klayout.de/resources/tech_manager.rbm
http://www.klayout.de/resources/search_odd_width_paths.rbm
http://www.klayout.de/resources/replace_cells.rbm
http://www.klayout.de/resources/write_childcells.rbm

Chapter 7. Useful Ruby Modules 7.11. List all layers under a ruler

1 <shape_dump cell="{cell name}" dbu="{database unit}">
2 <layer source="{layer}">
3 .. shapes on that layer using these XML elements: ..
4 <box>{box description}</box>
5 <path>{path description}</path>
6 <polygon>{polygon description}</polygon>
7 <text>{text description}</text>
8 .. more shapes ..
9 </layer>

10 .. more layers ..
11 </shape_dump>

Download: dump_flat_shapes.rbm

7.11 List all layers under a ruler

is script will install a new entry ..Tools ..List Layers . Before this function can be used, a single ruler must
be drawn. e script looks for shapes that are crossed by this ruler and reports the layers of those shapes.
e script can operate on multiple layouts as well.

Download: list_layers.rbm

7.12 Rename all cells

is script will install a new entry ..Tools ..Rename Cells . It will ask for a rename expression and rename
all cells of the current layout. In the expression, “*” is a placeholder for the current cell name and “#” a
placeholder for the cell index. Hence it is possible, for example. to add an “A” prefix by using an expression
of “A*”. Also it’s possible to remove all traces of macro names by using “CELL#” as the expression.

Download: rename_cells.rbm

7.13 Compute the bounding box of a cell

is script will install a new entry ..Tools ..Cell Bounding Box . It will compute and output the bounding box
over all layers of the current cell (the one that is shown in the layout view and which is in the active cell
tree). e output will include the corner coordinates as well as width and height.

Download: cell_bbox.rbm

78 Version 0.21 KLayout

http://www.klayout.de/resources/dump_flat_shapes.rbm
http://www.klayout.de/resources/list_layers.rbm
http://www.klayout.de/resources/rename_cells.rbm
http://www.klayout.de/resources/cell_bbox.rbm

Part III

Manuals

KLayout Version 0.21 79

Chapter 8. QSM – Basics and Viewer Mode

Chapter 8

ick Start Manual – Viewer Mode

A brief recipe-type description of the functionality.

e first section describes the main window. Further sections describe simple use cases starting from
scratch based on viewer mode, but likewise valid on edit mode.

Content

8.1 Basic viewing operations
8.1.1 Main window
8.1.2 Loading a file
8.1.3 Managing the panels and loaded

layouts
8.1.4 Choosing a cell
8.1.5 Choosing a hierarchy depth
8.1.6 Configuring the cell list
8.1.7 Hiding cells
8.1.8 Zooming into the layout
8.1.9 Return to a previous view state
8.1.10 Bookmarking views
8.1.11 Descending into a cell with context

8.2 Changing the layers display style
8.2.1 Choosing a layer color
8.2.2 Bringing layers to the front or push-

ing them to the back
8.2.3 Telling used from unused layers
8.2.4 Choosing a fill paern
8.2.5 Animating layers

8.2.6 Changing the display style
8.2.7 Changing the layer visibility

8.3 Advanced viewing operations
8.3.1 Organizing layers hierarchically
8.3.2 Using multiple layer properties se-

tups with tabs
8.3.3 Manipulation on layer views
8.3.4 Loading and saving the layer sets
8.3.5 Creating a screen-shot
8.3.6 Doing measurements
8.3.7 Ruler properties
8.3.8 Adding images
8.3.9 Browsing shapes
8.3.10 Browsing instances
8.3.11 e marker browser
8.3.12 Selecting rulers, shapes or instances
8.3.13 More configuration options
8.3.14 Undo and redo
8.3.15 Saving a layout or parts of it
8.3.16 Saving and restoring a session

8.1 Basic viewing operations

8.1.1 Main window

e main window is divided into four parts by default, compare to fig. 8.1:

• e le panel host the hierarchy browser, labeled Cells, which depicts the cell hierarchy. Cell nodes
can be expanded showing the child nodes. e cell related ..Cells Context menu is available withmouse
right-click in the Cells sub window. e cell selected in the cell browser is shown in the center panel.

Below the hierarchy browser is placed the Navigator. In this window the loaded layout is always
shown entirely. A rectangle marks the layout part displayed in the canvas.

80 Version 0.21 KLayout

Chapter 8. QSM – Basics and Viewer Mode 8.1. Basic viewing operations

In case the hierarchy browser or the navigator is not visible check the ..View ..□ Cells or ..View
..□ Navigator check-box, respectively or the related check-box in the ..Widgets Context menu, which

will appear aer mouse right-click on the main menu.

• e center panel is the actual canvas. ere, the layout is drawn. Click there to zoom or to draw
rulers for measuring distances.

Multiple layouts can be shown at once. Either they can be overlay-ed or they can be shown in
separate views. In this case, a tab panel appears at top of the main window. Switch between the
views by selecting the related tab.

• e right panel host the layer list and the layer drawing style, the Layers sub window. e layer
related ..Layers Context menu is available withmouse right-click in this window. Below, a set of control
panels are located in the Layer Toolbox sub window. e control panels are minimized per default
and can be expanded by checking the check-box placed in front of the label on each header bar.

Several control panels are available allowing to control colors, fill and drawing styles etc. Select one
or many layers in the layer list to apply the selections from the control panels to.

In case the Layers sub window or the Layer Toolbox is not visible check the ..View ..□ Layers or ..View
..□ Layer Toolbox check-box, respectively or the related check-box in the ..Widgets Context menu.

• e Toolbar is placed above the three panels, but below the main menu. In viewer mode it is com-
posed of the three speed-bar buons Select, Move and Ruler. In case the Toolbar is invisible check
the ..View ..□ Toolbar check-box or the related check-box in the ..Widgets Context menu.

Figure 8.1. KLayout Main Window

e le and right panels width is widely adjustable by positioning the mouse over their inner vertical
border. Over the border the mouse courser will change and, aer right-click and hold, the sub window

KLayout Version 0.21 81

Chapter 8. QSM – Basics and Viewer Mode 8.1. Basic viewing operations

follows the mouse movement. Likewise, the horizontal border between to sub windows is adjustable as
well.

Each sub window can be totally exempted from the main window, or moved inside the main window to
another position by mouse right-click and hold on the header bar. Now the sub window follows the mouse
movements. Valid deposition areas in the Main Window will be marked by a blue rectangle if the mouse
comes to there vicinity. For switching off one sub window choose the related sub menu check-box in the

..View menu.

A new window arrangement, differently from the default, can be stored as session ..File ..Save Session , but
is also stored on exit ..File ..Exit or ..Ctrl + ..Q and reused at next start-up of KLayout.

8.1.2 Loading a file

Choose ..File ..Open to close the current view and open a new layout instead of the currently loaded one.

Choose ..File ..Open in Same Panel to open a new layout in addition to the currently loaded one.

Choose ..File ..Open in New Panel to open a new layout in a new view.

Either way, a file selection dialog Load Layout File will appear where a file can be chosen for loading. Aer
choosing the file and clicking ..OK , the file is loaded.

e program will automatically determine the type of the file. Currently, OASIS, GDS2, DXF, CIF and
Gerber PCB formats are supported.

Certain options can be specified for the file loader. Choose ..File ..Reader Options to open the Layout Reader
Options dialog page. is dialog allows to specify certain options for all “Open” actions. Format indepen-
dent options are:

Feature Subset

□ Enable text objects Enable/disable reading of text objects. Disable this option objects to reduce the
memory consumption if you are interested in pure geometrical information.

□ Enable properties Enable/disable reading of properties. Disable this option to reduce the mem-
ory consumption if properties are not required.

Layer Subset And Layer Mapping

□ Read all layers Enable/disable reading of all layers. Disable this option if only a subset of lay-
ers should be read-in or layers should be mapped to a different layer/datatype
specification or name during read-in. e mapping rules may base on a layer
specification set loaded from a layer properties file, see also section 8.3.4: Load-
ing and saving the layer sets.

Format dependent options which mainly control the level of compatibility with other tools are found in
the related tabs:

GDS¹ Compatibility

BOX records Defines how BOX records to be handled: Ignore, Treat as rectangles, Treat as
boundaries or Treat as errors. is seing depends strongly on the stream-out
seings used to generate the GDS file to be read-in.

Big records Check this option if big records (>32767 bytes) should be not allowed. KLay-
out can handle such big records, therefore, a save decision is to allow big
records during read-in, but deny them at write-out for compatibility reasons,
see section 8.3.15: Saving a layout or parts of it.

¹GDSII stream format is a binary database file format.

82 Version 0.21 KLayout

Chapter 8. QSM – Basics and Viewer Mode 8.1. Basic viewing operations

Big polygons Check this option if big polygons with multiple XY records for BOUNDARY
elements. As before,KLayout can handle such big polygons, therefore, a save
decision is to allow big polygons during read-in, but deny them at write-out
for compatibility reasons, see section 8.3.15: Saving a layout or parts of it.

GDS2Text² Compatibility

No specific options available for this format.

OASIS³ Compatibility

No specific options available for this format.

DXF⁴ Input Options

Database unit DefinesKLayout’s database unit in micron. e default value is 0.001 micron.

DXF file unit Defines the DXF file unit in micron. e default value is 1 micron.
Arc interpolation Defines the number of points per full circle used for arc interpolation. Arc

interpolation is mandatory because there are no circle or arc elements defined
in the GDSII format

CIF⁵ Input Options

Wire objects Defines how wire objects (path) to be handled as Square-ended paths, Flush
paths or Round-ended paths.

Database unit DefinesKLayout’s database unit in micron. e default value is 0.001 micron.

GerberPCB⁶, see also section 10.4: Importing Gerber PCB files.

No specific options available for this format.

8.1.3 Managing the panels and loaded layouts

Choose ..File ..Close to remove a layout of a panel and close the panel unless there are still layouts loaded.
If multiple layouts were loaded into the current panel, a dialog appears. is allows to select one or many
layouts for closing.

Choose ..File ..Clone to duplicate a panel. A new panel will be created that is an exact copy of the current
one. Both, the current and the new panel are views to the same layout. is way, only one copy of the
layout is held in memory.

Choose ..File ..Reload to reload a file if the contents have changed. is does not happen automatically.

Choose ..File ..Pull In Other Layout to combine other layouts already loaded into the current panel. Basically,
KLayout allows to view a layout in multiple panels, either on it’s own in different configurations or
together with other layouts. Pull In Other Layout function allows to configure a panel to show another
layout which has been loaded into another panel. In that sense it’s the reverse of closing one layout from
a panel showing multiple layouts.

8.1.4 Choosing a cell

To show a certain cell, select the cell in the cell hierarchy browser to the le. en, right-click in the cell
tree to bring up the cells context menu and choose ..Cells Context ..Show As New Top or simply select the cell

²e binary GDSII format converted to a human readable ASCII format.
³Open Artwork System Interchange Standard is a binary data format. e OASIS file format is not as common as the GDSII

file format.
⁴Drawing Interchange Format, or Drawing Exchange Format is a binary CAD format. e DXF Reader is just under construc-

tion and therefore should not be used for production.
⁵Caltech Intermediate Format is a recent form for the description of integrated circuits.
⁶e Gerber format is a file format used by printed circuit board (PCB) industry soware to describe the images of a printed

circuit board.

KLayout Version 0.21 83

Chapter 8. QSM – Basics and Viewer Mode 8.1. Basic viewing operations

with the middle mouse buon.

To select a cell by name, choose ..Display ..Select Cell . A Select Cell dialog will appear that allows to select a
cell by name or choose from an alphabetically sorted list. Additionally, this dialog allows to navigate the
cell tree by choosing one of the child or parent cells.

8.1.5 Choosing a hierarchy depth

By default, only the bounding box of the cell selected is shown. is corresponds to zero hierarchy levels
being shown. To select more hierarchy levels, choose one of the following methods.

..Display ..Full Hierarchy or press the ..* key to show all hierarchy levels,

..Display ..Box Only or press the ..0 key to show only the bounding box (the default),

..Display ..Top Level Only or press the ..1 key to show the top level elements,

..Display ..Increment Hierarchy or press the ..+ key to show one more hierarchy level,

..Display ..Decrement Hierarchy or press the ..− key to show one hierarchy level less,
or use the hierarchy level entry fields below the cell list to change the current minimum or maximum level.

8.1.6 Configuring the cell list

Two modes are provided for the cell list: a tree view (the default) and a flat cell list. To switch to flat mode,
check the ..Cells Context ..□ Flat Cell List option.

In addition, three sorting modes are provided: alphabetically by name and by cell size (bounding box area),
descending and ascending. e cell size is supposed to reflect the design level: library and leaf cells are
usually small whereas macro blocks are usually large. By using cell size sorting in ascending order, the leaf
cells will be shown first. To change the sorting order, check the corresponding option on the ..Cells Context

..Sorting sub-menus.

8.1.7 Hiding cells

Independent of the hierarchy levels shown, cells can be hidden. In this case, the cell itself is not shown
but its bounding box. To do so, select the cell from the cell list and choose ..Cells Context ..Hide . To show a
cell again, choose ..Cells Context ..Show . To make all cells visible, choose ..Cells Context ..Show All .

8.1.8 Zooming into the layout

Select the zoom area with the right mouse buon in the layout canvas. Press the buon, drag the box to
the desired position and release the buon. To zoom in (enlarge) drag the box right and down. To zoom
out (shrink) drag the box up and le. To choose a new center, single-click the new center point with the
right mouse buon.

Additionally, following functions are available by hot-keys or on the ..Display sub-menus:

Pan to the le, right, top or boom using the arrow keys .. . , ... , ... , ... or choose one of the menu
items ..Display ..Pan Le , ..Display ..Pan Right , ..Display ..Pan Up , ..Display ..Pan Down . Alternatively, pan le and
right by pressing ..Ctrl or pan up and down by pressing ... while using the mouse wheel if available.

Fit the selected cell into the window by pressing ..F2 or choose ..Display ..Zoom Fit .

Zoom in or out by a fixed amount by pressing ..Enter or ... + ..Enter or choose ..Display ..Zoom In or ..Display
..Zoom Out , respectively. Alternatively, zoom in and out by using the mouse wheel if available. e current

mouse location will stay fixed, while the surrounding layout will be enlarged or reduced in size.

Press ... while dragging the mouse with the right mouse buon pressed will drag the layout around in
the canvas, similar to the behavior of recent map service web applications.

84 Version 0.21 KLayout

Chapter 8. QSM – Basics and Viewer Mode 8.2. Changing the layers display style

8.1.9 Return to a previous view state

Choose ..Display ..Last State to return to the last window shown or press ... + Each key press walks
one step back through the shown window stack.

Choose ..Display ..Next state to switch to a more recent state again or press Each key press walks one
step forward through the shown window stack.

8.1.10 Bookmarking views

Views (window, cell) can be bookmarked for later retrieval. Choose ..Bookmarks ..Bookmark This View . A name
is required to be entered for the bookmark, which will then appear as sub menu entry in the ..Bookmarks

..Goto Bookmark list.

e list of bookmarks defined can be loaded or saved by using the ..Bookmarks ..Load Bookmarks or ..Bookmarks
..Save Bookmarks functions.

8.1.11 Descending into a cell with context

A cell can be shown in three ways. Isolated, which is the default if the cell is the current cell, embedded as
a sub-cell of the current cell or as the current cell in the context of another direct or indirect parent cell. In
the laer mode, the cell is highlighted while the context cell is shown in dimmed or another, user-defined
color.

To highlight a cell in a context, first choose the context cell. en select a shape or a cell instance within
the cell to show in the context and choose ..Display ..Descend or press ..Ctrl + ..D . Now, the first child cell
leading to the selected shape is highlighted, while the surrounding shapes of the parent cell (the previous
current cell) is shown in dimmed colors. Choose ..Display ..Descend repeatedly to descend further into the
hierarchy until the selected shape or instance is on the level of the current cell. e current cell is shown
underlined in the cell tree, while the context cell is shown in bold font in the cell tree as usual.

e reverse operation of this is ..Display ..Ascend or ..Ctrl + ..A .

e way how the context layout is shown can be adjusted on the ..File ..Setup ..Display ..Background dialog
page.

8.2 Changing the layers display style

8.2.1 Choosing a layer color

Select one or more layers for which to change the color and open the Color chooser panel in the Layer
Toolbox to the right. Use ... or ..Ctrl at mouse le-click to add or take off a layer from the selected layer
list. If the Layer Toolbox is not visible check the ..View ..□ Layer Toolbox check-box and in case the Color
chooser is not visible in the Layer Toolbox, select the small check-box on the right side of the ..□ Color

header bar. en the Color chooser panel will be expanded.

To change the color, click on the desired color. To select a color not offered in the list, select the ..More …

buon. A Select Color dialog will open.

To choose the color of the frame that is drawn around the shapes, without changing the fill color, use the
..□ Frame Color chooser panel.

Layers can be dimmed by making their color darker or brighter so they contrast less with the background.
To do so, press .. or .. buon on the color panel. Pressing the buon multiple times makes the colors
darker or brighter each time. e darkness or brightness seings can be reset with the .. buon.

KLayout Version 0.21 85

Chapter 8. QSM – Basics and Viewer Mode 8.2. Changing the layers display style

8.2.2 Bringing layers to the front or pushing them to the back

Layers can be brought to the front so they get obscured. To do so, select the layers and push the ..

buon below the layer list. is will bring the selected layers to the end, the top of the stack, thus making
them the last to be drawn. Analogous, layers can be pushed one level to front using the .. buon or one
level to back using the .. buon. Furthermore, selected layers can be pushed to boom of the stack thus
making them the first one to be drawn by using the .. buon.

e layer stacking order is saved with the ..File ..Save Layer Properties function.

8.2.3 Telling used from unused layers

In some applications, the layer list will grow very large and keeping track of the important layers may be
hard. KLayout provides support for that task in two ways: KLayout checks whether a layer carries any
information and displays the layers in a different way in the layer list, if it is empty.

Two ways of checking the information content of a layer are provided: either a layer is said to be empty
if the current cell does not have any shapes on it. Alternatively, a layer can be identified to be empty by
checking if any shape is shown in the current view (more precisely if any shape’s bounding box overlaps
with the current view rectangle). e laer mode can be selected in the layer list’s context menu with the
option ..Layers Context ..□ Test For Shapes in View .

If a layer is determined to be empty, it is either grayed out or it is not shown at all. e laer option keeps
the layer list short and is selected with option ..Layers Context ..□ Hide Empty Layers .

8.2.4 Choosing a fill pattern

To choose a fill paern, select one or more layers for which to change the fill paern and choose the fill
paern from the ..□ Stipple panel.

More predefined fill paern are selectable from the Select Stipple dialog aer pressing the ..More … buon.

Custom defined paern can be created with the ..Custom Paern … buon. A paern editor will come up that
allows to create new paern. While predefined paern cannot be changed, new created paern will be
add to the list of the Select Stipple dialog. To select a new paern, select ..More … from the paern selection
panel and choose the new paern from the list. New fill paerns are saved with the layer properties ..File

..Save Layer Properties function.

8.2.5 Animating layers

Layers can be animated, i.e. made blinking or the fill paern scroll. Select the layer or the layers for which
to change the animation style and choose the animation style from the ..□ Animation panel. To make the fill
paern of a layer scrolling choose ..Scroll . For blinking mode, two phases can be selected: ..Blink and ../Blink .
Choosing different phases for two layers makes the layers appear alternatively. Choose ..None to reset an
animation.

8.2.6 Changing the display style

e line width of the element’s frame can be changed by using the width buons on the ..□ Style panel aer
having selected the layers to apply the change on. ..0px removes the line, ..1px draws a single-pixel wide
line (the default), ..2px a somewhat thicker line two pixel wide and ..3px a more thicker line three pixel wide.

..Simple is the normal draw mode while ..Marked draws a cross on each vertex of the element. e cross
size is constant so the shapes stay visible even on large scale where the elements would otherwise become
single pixels.

86 Version 0.21 KLayout

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

8.2.7 Changing the layer visibility

e selected layers can be made invisible by choosing the ..Hide option on the ..□ Visibility panel. Choosing
..Show makes the layers visible again. Alternatively, choose ..Layers Context ..Hide or ..Layers Context ..Show or

double le-click on the layer entry in the layer list toggles the layer’s visibility as well, which is the fastest
way to do so.

To make a layer transparent (i.e. let the other layers show through), select ..Transp. on the ..□ Visibility panel.
To make it opaque again, select ..Opaque , which is the default seing.

8.3 Advanced viewing operations

8.3.1 Organizing layers hierarchically

Layers can be organized hierarchically. For example, certain layers can be grouped together. Select the
layers to be grouped, right-click in the Layers panel and choose ..Layers Context ..Group . e selected layers
will be replaced by a tree node that represents these layers. Click on the tree node to expand or collapse
this group.

Once layers are grouped, they can be hidden or made visible with a single double-click on the node rep-
resentative. e node representative also controls the appearance of the layers in the group: if a color or
style is assigned to the representative, it overrides the respective style of all layers contained in the group.
is way for example, the color of the layers contained in the group can be changed at once. To remove a
color override of a node representative, set the color to ..None .

To resolve a group, select the group representative and choose ..Layers Context ..Ungroup .

A variety of automatic groupingmethods are provided. e ..Layers Context ..Regroup Layer Views ..By Layout Index ,
for example, will collect all layers and put them into one group per layout shown in the panel. Automatic
grouping can be reset with the ..Layers Context ..Regroup Layer Views ..Flaen function.

8.3.2 Using multiple layer properties setups with tabs

With version 0.21, a new feature was introduced. Using tabs in the layer panel it is very simple to switch
between different setups.

A layer tab can be created by choosing ..Layers Context ..Tabs ..New Tab in the layer list context menu. A new
tab will appear at the top of the layer properties panel. Initially this tab will be a copy of the current setup.
Any edits on the layer properties will apply to this tab only. When switching to a different tab, the layout
view will reflect the new tab’s seings. at way, different setups can be prepared and easily exchanged.

When the layer properties are saved, the layer properties file will contain all tabs. us, a multi-page setup
can easily be stored and retrieved.

e initial title of the tab will be the tab number, but it can be renamed with the ..Layers Context ..Tabs
..Rename Tab function. To remove a tab choose ..Layers Context ..Tabs ..Remove Tab .

8.3.3 Manipulation on layer views

e layers shown in the layer list are rather pointers to the actual layout layers and representing them
only. Because of this, these layers are more precisely referred to as views. Layer views can be removed
and created again without affecting the actual layout data.

KLayout Version 0.21 87

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

8.3.3.1 Removing and adding layers to the layer set

To create a layer, choose ..Layers Context ..Insert Layer View from the layer list context menu by right mouse
buon click on the layer list. en, an input dialog Select Source prompts for the source specification. e
source specification tells from which actual data layer to take the displayed data from. e most simple
form of a source specification is layer/datatype (i.e. “5/0”) or the layer name, if an OASIS layer name is
present. is specification can be enhanced by a layout index. e first layout loaded in the panel is
referred to with “@1” or by omiing this specification. e source specification “10/5@2” therefore refers
to layer 10 and datatype 5 of the second layout loaded in the panel.

Listing 8.1: Dialog Select Source – Layer Source Specification

1 <layer>/<datatype>{@<layout index>} // general valid
2 */<datatype>{@<layout index>} // valid in group context, see next paragraph
3 <layer>/*{@<layout index>} // for detailed description
4 <Layer Name> // valid if OASIS layer name exists

Source specifications can be wild-carded. at means, either layer, data type or layout index can be spec-
ified by “*”. In this case, such a layer must be contained in a group and the group parent must provide the
missing specifications. For example, if a layer is specified as “10/*” and the parent is specified as “*/5”, the
effective layer looked for will be “10/5”. Unlike the behavior for the display styles, the children override
(or specialize) the parent’s definition in the case of the source specification.

e layer list can be cleaned up to remove layer views that do not correspond to actual layout layers using
the function ..Layers Context ..Clean Up Views from the context menu. Similar, layers that are present in the
layout, but no view created, can be added using the ..Layers Context ..Add Other Views method.

8.3.3.2 Transforming views

e source specification described in the section before is much more powerful than just allowing to de-
scribe the data source. In addition to that, the layer can be geometrically transformed and the display can
be confined to shapes that belong to a certain class described by a property selector.

A geometrical transformation is specified by appending a transformation in round brackets to the layer /
datatype source specification. e format of this transformation is (not necessarily in this order):

Listing 8.2: Dialog Select Source – Transformation

{ ({<dx>,<dy>} {r<angle>|m<angle>}{*<mag>}) }

For example:

(r90) specifies a rotation by 90 degree counter-clockwise.
(0,100.0 m45 *0.5) will shrink the layout to half the size, flip at the 45 degree-axis (swap x and y

axes) and finally shi the layout by 100 micron upwards.

A comprehensive explanation of the transformation syntax can be found in section 6.3: Transformations
in KLayout.

Transformations accumulate over the layer hierarchy. is means, that if a layer is transformed and the
layer is inside a groupwhose representative specifies a transformation as well, the resulting transformation
is the combination of the layer’s transformation (first applied) and the group representative’s transforma-
tion.

Multiple transformations can be present. In this case, the layout is shown in multiple instances.

A particular application is to regroup layers by layout index and assign a transformation to the group
representative belonging to a certain layout such that the layouts get aligned.

88 Version 0.21 KLayout

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

8.3.3.3 Property selectors

e property selector is specified in square brackets. A selector combines several expressions of the form
“property==value” or “!=” with operators “&&”, “||”, “!” and allows usage to round brackets to prioritize
the evaluation of these operators:

Listing 8.3: Dialog Select Source – Expression

{ [<expr>] }

In GDS2 files, the property is always named with an integer value which is wrien with a single hash
characters, i.e. “#43”. e value of a GDS property is always a string. A string is either wrien as a text
atom or can be enclosed in single or double quotes.

10/5 [#43==X] is an example for a valid property selector for GDS files. With this source specification,
the layer will show all shapes from layer 10 and datatype 5, which have a user property with number 43
and value string “X”.

10/5 [!(#43==X&&(#2==Y||#2==U))] is a more complex example.

With OASIS files, the properties can be named as string. In this case, the property selector can be wrien
like this [prop==X], for example. In addition, the value can be an integer or a double value. is is
reflected by the choice of the value and will check, if the property named “prop” has an integer value
[prop==#200], which is “200” in this case, or a 32 bit integer value of “0.5” in this case [prop==##0.5].

Property selectors combine over a layer hierarchy. is means, that if a group representative specifies a
property selector and a layer in this group specifies a selector as well, only those shapes will be shown
that meet both criteria.

8.3.3.4 Specifying explicit hierarchy levels for one layer or a group

By default, only the hierarchy levels that are selected in the hierarchy level selection boxes are shown, i.e.
if levels “0” to “1” are selected, just the top level shapes and instances are shown. is selection can be
modified for certain layers or layer groups. To specify a different hierarchy selection for a certain layer,
use an optional source specification element, the hierarchy level selector:

Listing 8.4: Dialog Select Source – Hierarchy Level Selector

#{<lower-level>..|..}{<upper-level>|*}

Upper and lower level can be omied. In this case, the respective level is not overridden. e upper level
can be “*” which means: every level that is available. If just one level and no “..” is given, it is taken as
upper level and the lower level is set to zero.

Following examples might illustrate this.

#* Display all hierarchy levels.
#0..1 Display top level only.
#..5 Override upper level with 5.
#2.. Override lower level with 2.
#..* Override upper level seing by “all levels”.

Modifications of this notation are provided in order to support more use cases. Instead of specifying a
single number for the level, the following alternative notations are supported:

(1) Relative specification: Hierarchy level 1 related to the current cell’s level.
e effective specification differs in “Descend” mode where the current cell is on a lower hier-
archy level than the context cell which is the top cell drawn.

KLayout Version 0.21 89

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

<1 Constrained specification: Hierarchy level 1 or less if the upper or lower default level set in the
user interface is less.

>1 Constrained specification: Hierarchy level 1 or greater if the upper or lower default level set in
the user interface is greater.

(>1) Combined specification: Hierarchy level 1 related to the current cell’s level or less.

>* Equals the currently set maximum hierarchy level.

For example:

#(0)..(1) e top level of the current cell (works also in “Descend” mode).
#>0..<1 Everything exactly on top level unless the top level is not selected in the controls.
#>1..<* Everything below the context cell’s top level unless not selected by the user interface controls.
#(>1)..<* Same than before but related to the current cell, not the context cell.

8.3.4 Loading and saving the layer sets

e visual layer properties can be saved to a file with the default extension lyp using the function ..File
..Save Layer Properties . e saved list can be loaded again using the ..File ..Load Layer Properties function.

8.3.5 Creating a screen-shot

To save the canvas as a PNG file, choose ..File ..Screenshot or press the ..Print key. A file dialog box will appear
in which the file can be specified where the screen-shot is saved to.

8.3.6 Doing measurements

A measurement can be performed by choosing ..Ruler mode in the toolbar and le-clicking a point in the
layout followed by le-clicking at another point. A ruler will be shown that indicates the distance mea-
sured.

Various options can be specified for the rulers. Choose the setup dialog ..File ..Setup ..Ruler And Annotations

menu and select one of the sub entries or choose ..Edit ..Ruler And Marker Setup which shows all available
options on one page.

On the Rulers And Annotation dialog, various options can be selected. A ruler can be made to snap to
edges of objects by checking ..□ Snap to edge / vertex or the ruler orientations can be constrained by using
the ..Angle constraint options, by example.

While drawing or moving one point of a ruler, the direction constraint can be overridden with the ...
and ..Ctrl keys: pressing ... while moving the mouse will enforce orthogonal constraint, ..Ctrl will enforce
diagonal constraint, and pressing both keys ... + ..Ctrl will release any direction constraint.

e number of rulers displayed in the canvas can be limited by entering a number in the field of menu
..Appearance ..Limit number of annotations to <number> . If the number of rulers specified is two, for example,

only the last two rulers are shown.

All rulers can be cleared using the ..Edit ..Clear All Rulers And Marker function or by pressing ..Ctrl + ..K .

Ruler dragging can be canceled with the ..Esc key or by using the ..Edit ..Cancel function.

Rulers can be moved by selecting ..Move mode with the speed-bar buons in the toolbar or by choosing
the ..Edit ..Mode ..Move sub-menu. en le-click and drag the ruler or the ruler end point that should be
changed.

Rulers can be deleted selectively by selecting a ruler in ..Select mode and pressing ..Del. .

90 Version 0.21 KLayout

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

Rulers can be modified in a variety of ways. For example, rulers can be shown as arrows or as box. To
edit the properties of a ruler, double-click the ruler or select it and use ..Edit ..Properties or press ..Q . See
section 8.3.7: Ruler properties for a detailed description.

Multiple templates can be configured to be available for rulers. If multiple templates are available, the ..Ruler

toolbar buon will show a drop-down menu which allows to select one template to be used. Templates
can be edited in the ruler setup page available with ..File ..Setup ..Rulers And Annotations ..Templates or with

..Edit ..Ruler And Marker Setup .

8.3.7 Ruler properties

ese are the properties that can be configured for rulers:

Labels Depending on the outline of the ruler, up to three labels can be present. Each label
can be configured individually to either show a text or the measurement values.
e main label is always present, X and Y labels are only present, if the ruler has an
explicit vertical or horizontal component (all outline styles except “diagonal”).

Style e style determines how the ruler or it’s components are drawn. is can be “ruler-
like” (with ticks), arrow style or a plain line.

Outline eoutline determines how the two points forming the ruler are connected to render
the ruler shape. is is either just one line (“diagonal”), a horizontal and a vertical
line (in some outline styles combined with the diagonal line) or a box given by the
two points of the ruler.

Angle constraint e orientation of the ruler can be restricted in several ways, i.e. just being hori-
zontal. By default, the ruler uses the global seing, but can be configured to provide
it’s own constraint.

Object snapping Each ruler can be configure to snap to the closest object edge or vertex. By default,
the rulers use the global seing. It may, however, be disabled for each individual
ruler.

e label format is an arbitrary text with embedded expressions that may represent a measurement value.
Each such expression starts with a dollar sign, followed by the expression string. e expression syntax
support are the basic operations (*, /, +, −, ..), bit-wise operations (|, &, ..), the conditional operator (x:y?z),
as well as some functions, like i.e. abs, sqrt, exp and includes a sprintf function. Here are some examples:

$X e value of the “X” variable (the horizontal distance, see below for a complete list
of variables).

$(sprintf(’%.2f’,X)) e value of the “X” variable formaed as two digit fixed precision value.
$(abs(X)+abs(Y)) e manhaan distance of the ruler.
$min(X,Y) e minimum of “X” and “Y”.

A description of the expression syntax and the functions available can be found in section 6.6: Expression
syntax.

Following a list of all variables available:

D e length of the ruler in micron units.

L e manhaan length of the ruler in micron units.
U e x-position of the ruler’s first point in micron units.
V e y-position of the ruler’s first point in micron units.
P e x-position of the ruler’s second point in micron units.
Q e y-position of the ruler’s second point in micron units.
X e horizontal extension of the ruler in micron units.

Y e vertical extension of the ruler in micron units.
A e area enclosed by the ruler (if it was a box) in square millimeters.

KLayout Version 0.21 91

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

8.3.8 Adding images

For some applications it is necessary to show flat pixel data together with the layout. at can either be
a SEM image taken or some output of a simulation tool. KLayout provides a way to add images to the
display and show them below the drawn layout.

Currently, images can be read from any commonly used image format available in Qt (i.e. PNG, JPG, TIF,
and others). Color and monochrome images are supported. Internally an image is stored as a matrix of
float values. It is possible to write custom importers using RBA.

To add an image, use the ..Edit ..Add Image function. An Image Properties dialog will appear where the image
can be specified. Choose an image using the ..Browse buon next to the file name box.

An image has a variety of properties which mainly affect the way it is displayed:

Pixel size e size of one pixel in micron units. is affects the total size of the image.

Offset is is the point where the lower le corner of the image is placed (in micron
units).

Rotation An arbitrary angle by which the image is rotated.
□ Mirror flag If this option is checked, the image is mirrored at the boom edge before it is

rotated.
Pixel value range e pixel value corresponding to minimum and maximum. For normal 8 bit

image formats, these values are 0 and 255. ey can be adjusted which allows
brighten or darken images. For float images (i.e. simulation data), this value
should reflect the bounds of the output values, i.e. 0.0 and 1.0 for normalized
data.

Color mapping For monochrome images, the values are converted to colors with a mapping
function. e image properties page contains a tab for specifying an arbitrary
mapping of data values to colors. is is achieved by placing color sample
points on the data range axis and assigning colors to them. Double click at
the axis to set new points, click on them to select them and adjust their color
with the color box. Select and press “Del” to delete a sample point.

Brightness, Contrast and Gamma ree sliders for changing these values are provided on the respec-
tive tab.

RGB channel gains Additionally, each color channel can be weighted with a given factor on the
respective tab.

□ Preview (Auto apply) If this option is checked, the image seings are applied immediately.
..Reset eColor mapping, Brightness, Contrast and Gamma, and RGB channel gains

seings can be reset to the default values with this buon.

Once an image is placed, it can be moved and re-sized using the ..Move function from the speed-bar. e
images properties can be adjusted using the ..Edit ..Properties function or by double-click the image.

An arbitrary number of images can be placed on the layout view. To store the setup, save the session using
the ..File ..Save Session function.

8.3.9 Browsing shapes

A simple shape browser allows to browse all shapes on a layer. To do so, select the layer to browse in the
layer list and choose ..Tools ..Browse shapes .

A browser dialog will appear that lists the cells, shapes and cell instances. Selecting a cell will display all
shapes in the cell in the middle list and the cell’s instances with respect to the top cell in the right list.

If a shape is selected, the layout canvas highlights this shape by drawing a marker box around the shape
and zooming to the shape. How the shape is shown can be configured on the Shape Browser Setup dialog

92 Version 0.21 KLayout

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

which is available via the buon ..Configure of the Browse Shapes dialog or on the respective page in the
..File ..Setup ..Browsers ..Shape Browser dialog page.

8.3.10 Browsing instances

All instances of a cell can be browsed by selecting the cell in the cell list (not making it top), and choos-
ing ..Tools, Browse instances . A simple instance browser comes up that shows all cells that the given cell is
instantiated in and how the cell is instantiated.

If a shape is selected, the layout canvas highlights this shape by drawing a marker box around the shape
and zooming to the shape. How the shape is shown can be configured on the Instance Browser Setup dialog
which is available via the buon ..Configure of the Browse Instances dialog or on the respective page in the
..File ..Setup ..Browsers ..Cell Instance Browser dialog page.

8.3.11 e marker browser

KLayout offers a generic concept of storing error markers or related information. is concept is called
the “Report database” (RDB). An arbitrary number of report databases can be associated with a layout
view. Usually each database refers to a certain layout but that is not a strict requirement.

A report database primarily is a generic collection of values, which can be strings or other items. Usually a
value is a collection of geometrical objects which somehowflag some position or drawn geometry. Multiple
of such values comprise a marker item. e report database associates these marker items with additional
information’s:

Tags Flags that indicate certain conditions. e marker browser uses a couple of predefined tags like
important, waived and visited which can be set or reset by the user indicating whether a marker
item is considered important or an error has been waived, as example.

Image A marker can be assigned to a screen-shot image which serves for documentation purposes.

Marker items are organized into categories. Each marker item must be associated with a category. Cat-
egories themselves can be organized hierarchically, i.e. categories can be split into sub-categories. is
offers a way of improving the organization of such categories.

Marker items are usually associated with a cell, i.e. where an error was detected. By default, a marker
item is simply associated with the top cell.

e report database uses a proprietary format based on XML which is capable of storing the annotations
provided by the database. It is possible, however, to import Calibre DRC ASCII format files.

e marker browser is a tool to browse a report database associated with a view. e marker browser
can be started using the ..Tools ..Marker Browser function. e marker browser tracks whether a marker has
already been visited similar to the “read” flag in a mail client. is allows to track a review session. e
“visited” state is reflected in the database file.

In the marker browser, use the ..Open buon to load a XML database file or import files from other formats.
Choose ..Reload to reload a file and ..Save As to write a database in XML format.

e marker browser offers three panels:

Directory is panel lists the categories and cells of the database. Categories or cells with unvisited
markers will be shown in bold font. Such with no markers at all are shown in green color. It is
possible to suppress these categories or cells by deselecting ..Show All in the directory’s context
menu. To have the lists sorted by marker count, click at the header of the count column.

Markers is panel lists the markers in the selected category and/or cell. A length of the list is limited
and can be changed on the configuration page (..Configure buon on the marker browser or on
the ..File ..Setup ..Marker Database Browser ..Setup dialog). Various tags are shown in this panel as
well. e list can be sorted in various ways by clicking at the respective header.

KLayout Version 0.21 93

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

When a marker is selected in this list, it will be highlighted in the layout, assumed a suitable
layout is associated. e way a marker is highlighted and how the view is adjusted can be
specified on the configuration page.

Info is panel summarizes the information for the selected marker. If a screen-shot was associated
with the marker it is shown here. Click on the thumbnail image to show it in a separate window
in the original size.

Similar to the shape and instance browsers, the marker browser offers navigation buons to select the next
marker, category or cell.

8.3.12 Selecting rulers, shapes or instances

Rulers, shapes or instances can be selected by either clicking on the shape in ..Select mode or by dragging a
selection rectangle with the le mouse buon pressed. In this case, all shapes inside the selection rectangle
will be selected.

Pressing the ... key in addition to selecting shapes or instances will extend the current selection. Pressing
..Ctrl key will remove all selected shapes or instances from the selection.

Only such cells will be selected as instances, of which the bounding box is shown. With the check boxes of
the ..Edit ..Select sub menu, the kind of shapes that participate in the selection can be changed. In addition,
selection of instances or rulers can be enabled or disabled.

e properties of the selected objects can be browsed with the ..Edit ..Properties function. A dialog appears
that shows the properties of the first object selected. In case of a rectangle, for example, these are the
coordinates of the corners. Additionally, the instantiation path of the object can be shown by pressing the

..Instantiation buon. e dialog that shows up then will state the cell that contains the object (this is the
lowest cell) and the cells in which these cell is instantiated up to the top cell. Similar, ..User properties shows
a list of properties aached to this object.

8.3.13 More configuration options

e option dialog available with the ..File ..Setup function offers numerous configuration options from
background color to rulers configuration.

In this dialog for example, the color palee can be edited, so that different colors are available or the stipple
palee can be configured. In addition, it is possible to define the order how these colors or stipples are
assigned to layers initially and which colors are not used for layer coloring.

A particular useful feature is the oversampling scheme. Oversampling is provided as an option to enhance
the image quality. e image is rendered at a higher resolution and then down-sampled to the screen
resolution. In effect, lines appear thinner and more details can be resolved. As a negative side effect
currently the stipple paern becomes finer and the crosses in marker mode are smaller. On the other hand
the resolution effect can be quite impressive.

Oversampling can be enabled on the ..Edit ..Setup ..Display ..General dialog page. Two times and three times
oversampling is provided. e following screen-shots illustrate the effect of oversampling:

94 Version 0.21 KLayout

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

Figure 8.2. Display without Oversampling (1x, Normal)

Figure 8.3. Display with 2x Oversampling

KLayout Version 0.21 95

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

Figure 8.4. Display with 3x Oversampling

8.3.14 Undo and redo

Most operations such as changing of layer colors can be undone using the ..Edit ..Undo function or keys
..Ctrl + ..Z . Analogous, the operations can be redone again using the ..Edit ..Redo function or keys ..Ctrl +
..Y .

8.3.15 Saving a layout or parts of it

A layout or a sub-cell of it can be saved to several formats. In general, to save a layout, choose ..File ..Save As

function. To save just a cell, select the cell in the cell tree (it does not need to be the currently shown one)
and select ..Cells Context ..Save Current Cell As by mouse right-click on the cell tree.

A Save Layout File dialog will pop up to enter or select the file name to which to write the cell or layout.
Aer a file name and file extension has been selected, a format dependent Layout Writer Option dialog will
be shown to specify format dependent options. In this dialog, it is possible to constrain saving to a subset
of layers, i.e. just visible ones. Also, the database unit can be changed or the layout can be scaled by a
given factor.

Format independent options are as follows:

Layout Writer Option

Format Select the output format, preset according to file extension.
gzip Select compression with GNU zip.

Generic Options

Layers to save Select one option which layers to save:
All layers even empty layers, or
Layers shown in list a sub-set of layer, or
Visible layers only another sub-set of layer.

Database unit Enter a database unit in micron, preset is current database unit.
Scaling factor Enter a scaling factor, preset is 1.0.

Write non-empty cells only Select this check-box to skip empty cells.

96 Version 0.21 KLayout

Chapter 8. QSM – Basics and Viewer Mode 8.3. Advanced viewing operations

Format dependent options for GDS2 stream or GDS2 text stream format are:

GDS2 Writer Options

Library name Enter the GDS library name, preset is “LIB”.
Max. cell name length Enter the maximum allowed cell name length, preset is 32000.
Max. vertices Enter themaximum allowed number of vertices per object. A number less than

4000 is recommended, while 8191 is the absolute limit. Preset is Comment:
⁇⁇ or the last entry.

Multi-XY record mode for boundaries Select this check-box to enable infinitely large polygons at
the cost of compatibility.

Write current time to time stamps Checked by default. e current time is wrien to the file to
simplify comparison of binary stream files for example.

for OASIS stream format:

OASIS Writer Options

Compression level Select a compression level.
Level 0 No particular aempt is made to compress shapes.
Level > 0 Shapes are classified and array compression is tried.

Level >> 0 e higher the level, the more tests are made to compress shapes into
arrays. In particular for flat layouts, compression of shapes requires some
memory and slows down OASIS writing considerably.

for DXF⁷ stream format:

DXF Writer Options

Polygon handling Select how to handle polygons:
Write POLYLINE entity use the original entity type.

Write LWPOLYLINE entity use this entity type.
Decompose into SOLID entities use this entity type – a 2D solid entity with three or four sides

(triangle or tetragon).
Write HATCH entity use this entity type – a filled area.

and for CIF stream format:

CIF Writer Options

none

8.3.16 Saving and restoring a session

A session can be saved and restored later. A session involves the files loaded, bookmarks, annotations,
layer and hierarchy seings, and application setup. Sessions are stored as XML files with the suffix lys.

To save a session, choose ..File ..Save Session function. To restore a session, choose ..File ..Restore Session .
KLayout can be started with a certain session using the “-u” option on the command line followed by
the session file. On Windows installations, session files are registered as being opened automatically by
KLayout.

⁷e DXF Writer is just under construction and therefore should not be used for production.

KLayout Version 0.21 97

Chapter 9. QSM – Editor Mode

Chapter 9

ick Start Manual – Editor Mode

is user manual is a brief description of how to use KLayout in editor mode. KLayout can be put into
editing mode by simply supplying the “-e” option on the command line:

Listing 9.1: KLayout Command Line Input — Layer Property File

klayout -e [<input file>] [-l <layer properties file>]

Accordingly, with the command line option “-ne”, non-editable mode – viewer mode – can be enforced.

KLayout can be configured to use editing mode as default when started. To enable editing by default,
check the ..File ..Setup ..Application ..Edit mode ..□ Use editing mode by default check box.

In editing mode, some optimizations are disabled. is results in somewhat longer loading times and a
somewhat higher memory consumption. e actual increase strongly depends on the nature of the input
file: for example, OASIS shape arrays are not kept as such in editing mode and resolved into individual
shapes.

is document covers the functionality in a basic section and as brief recipe-type descriptions of the main
editing functions.

Basic Editor Mode, Basic and Advanced Editing Operation

9.1 Basic principles of editor mode
9.1.1 Pick and drop principle
9.1.2 Basic editor mode options
9.1.3 Selection
9.1.4 Partial editing vs. full element editing

9.2 Basic editing operations
9.2.1 Creating a layout from scratch
9.2.2 Creating a new layer
9.2.3 Creating a new cell
9.2.4 Creating a polygon
9.2.5 Creating a box
9.2.6 Creating a path
9.2.7 Creating a text object
9.2.8 Placing an instance of a cell
9.2.9 Moving the selection
9.2.10 Other transformations of the selection
9.2.11 Partial editing
9.2.12 Moving the selection to a different layer

9.2.13 Other layer operations
9.2.14 Copy and paste of the selection
9.2.15 Delete a cell
9.2.16 Rename a cell
9.2.17 Copy and paste of cells

9.3 Advanced editing operations
9.3.1 Hierarchical operations
9.3.2 Creating clips
9.3.3 Flaen cells
9.3.4 Layer Boolean operations
9.3.5 Layer sizing
9.3.6 Shape-wise Boolean operations
9.3.7 Shape-wise sizing
9.3.8 Object alignment
9.3.9 Corner rounding
9.3.10 Cell origin adjustment
9.3.11 Layer operations

98 Version 0.21 KLayout

Chapter 9. QSM – Editor Mode 9.1. Basic principles of editor mode

9.1 Basic principles of editor mode

9.1.1 Pick and drop principle

Most drawing programs employ the click-and-drag paradigm: le-click on an element and drag it to the
destination keeping the mouse buon pressed. Although being prey intuitive, this principle has one
disadvantage: it is hard to do something other than dragging, while you keep the mouse buon pressed.
In particular this means: no zooming (or would you like to press the right mouse buon as well, draw the
zoom box and then release just the right mouse buon …?). In order to allow zoom and potentially other
operations, KLayout employs the pick-and-drop-principle.

In pick-and-drop, you pick an element by clicking at it with the le mouse buon, move it (without any
mouse buon pressed) and drop it (by le-clicking at the target position). Since the mouse buon is not
pressed, the mouse is free for other operations: just the dragged item is “sticking” to the mouse cursor.

In addition, while dragging the object, ... and ..Ctrl keys can be used to force certain direction constraints
or override the ones specified in the options (i.e. “move” or “edit” options): e ... key forces KLayout
into orthogonal mode: movements are restricted to horizontal or vertical unless not applicable. While
..Ctrl key forces KLayout into diagonal mode: movements are restricted to horizontal, vertical or the

diagonal axes. Pressing ..Ctrl + ... will release all directional constraints - movements will be allowed in
any direction.

9.1.2 Basic editor mode options

Most tools being using in editing mode have certain options, i.e. when drawing a path, the width and
extension mode has to be specified. ere exists a general setup dialog for editing options. It can be
opened using ..Edit ..Editor Options or using the ..F3 shortcut (unless overridden).

In the dialog there is always a generic seings tab and – depending on the tool chosen – a tool specific
tab. On the generic tab, these seings can be changed:

Snapping

Grid Every editing operation is confined to that grid. It can be either
No grid disabled,
Global grid aligned with the global grid (used i.e. for rulers and display) or
Other grid specified explicitly. It can even be anisotropic, i.e. there can be a different grid in y

than in x direction.
Objects Snap to other objects can be either2� Snap to grid and to other objects.

□ Snap to grid only.

Angle Constraints

Connections When a connection is drawing, i.e. a segment of a path or an edge of a polygon, this
mode determines, if the segment or edge is confined to certain directions. It can be
either

Any Angle there is no such confinement.

Diagonal the edge or segment can be vertical, horizontal or in one of the two diagonal direc-
tions.

Manhattan only horizontal and vertical edges or segments are allowed.
Movement When something is dragged (i.e. moved), this mode determines if the movement is

confined to certain directions. It can be either
Any Direction unconfined, or
Diagonal restricted to orthogonal and diagonal directions, or

KLayout Version 0.21 99

Chapter 9. QSM – Editor Mode 9.2. Basic editing operations

Manhattan restricted to orthogonal directions.

Selection Mode

Hierarchy Select top level objects only can be either2� Top level selection mode: only elements on the level of the currently shown cell
are individually selectable, where top level refers to the top level of the currently
shown cell here. at means, If shapes from a sub-cell are selected, the whole
instance of this sub-cell is selected.

□ Hierarchical selection mode: elements are selected from sub-cells as well. is
mode allows to in-place edit sub-cells which is a powerful feature but also can
create strange side effects because all other instances of this cell placed anywhere
changes as well.

Instance Display

2� Show shapes when moving (max. <number> shapes), with 1000 shapes as default.
□ Don’t show shapes when moving.

Whenever you change something in the seings dialog, use ..Apply or ..OK to apply your changes.

9.1.3 Selection

ebasic entity that some operationsworkwith is the selection. is is basically a set of shapes of instances
on which an operation should be applied. A selection can be established by either clicking on a element
in ..Select mode or by dragging a selection rectangle. When the mouse is released, all elements inside the
selection rectangle are selected.

e selection set can be modified by adding elements (press the ... buon in addition to selecting el-
ements), by removing elements (press ..Ctrl in addition) or by toggling the selecting (press ... + ..Ctrl in
addition: remove already selected ones and add new ones).

9.1.4 Partial editing vs. full element editing

Partial editing is a powerful feature that allows to modify shapes. It allows to move edges or segments of
polygons resp. paths, to delete vertices, edges or segments from polygons or paths and to insert new points
into polygons and paths. Partial editing can be applied to a complex partial selection: Multiple edges or
vertices can be selected and deleted or moved.

e normal selection works in full element mode. By this, the whole shape is being moved or deleted. Only
in full element mode, shapes or instances can be sent to the clipboard.

9.2 Basic editing operations

9.2.1 Creating a layout from scratch

To start with a fresh, empty layout, choose ..File ..New function. A form is opened that requires you to
specify some basic parameters. ese are:

Top cell is is the name of the first (and only) cell that will be present in the layout.
Database unit is is the database unit (the conversion factor between integer coordinates

and micron units and is basically the “resolution” of the layout).
Initial window size is is the size of the initial window shown, when the top cell is opened the

first time. Since the initial view is empty, there is no geometrical guidance. By
specifying an initial size, at least the “canvas” dimensions are known.

100 Version 0.21 KLayout

Chapter 9. QSM – Editor Mode 9.2. Basic editing operations

If a default layer properties file is specified on the ..File ..Setup ..Application ..Layer List dialog page, this is
loaded into the layer view list automatically. Without such a file, the layer list is empty at the beginning
and layers must be created with ..Edit ..Layer ..New Layer , before any shapes can be drawn.

9.2.2 Creating a new layer

You can create a new layer using the ..Edit ..Layer ..New Layer function. You are prompted to enter GDS
layer and data-type number and optionally an OASIS layer name. Clicking ..OK , the layer will be created
and inserted into the layer panel.

9.2.3 Creating a new cell

You can create a new cell using the ..Cells context ..New Cell function by right mouse click on the cell list.
You are prompted to enter the new cell’s name, whereby a cell with that name must not exists yet, and to
enter a window size to that the canvas will be set.

9.2.4 Creating a polygon

Select ..Polygon mode from the speed-bar and choose a layer from the layers panel in which to create the
new polygon. Le-click at the first vertex of the polygon. Move the mouse to the next vertex and place a
new one with a mouse le-click. Move to the next vertex. Depending on the connection mode, the edges
created are confined to certain directions. See connection angle constraints description in section 9.1.2:
Basic editor mode options for a detailed description of the modes. Use the ..Edit ..Object Editor Options dialog
(shortcut ..F3) to change the mode, even during editing.

Double-click at the final point to finish the polygon. Press the ..Esc key to cancel the operation.

A polygon will never be open: there are always edges connecting the current vertex with the initial one.
Depending on themode, this final connection is either a straight line or a combination of edges. In diagonal
mode, there are manifold possibilities to create a final connection in a more or less smart way. e program
uses some heuristics to determine one feasible combination. Although this heuristics is not infinite smart,
it should be easy to lead the algorithm to the desired solution, by pointing the mouse into the desired
direction.

9.2.5 Creating a box

Select ..Box mode from the speed-bar. Choose a layer from the layer panel in which to create a new box.
Le click at the first point, move the mouse to the second point and finish the box by le-clicking at the
second point. Press the ..Esc key to cancel the operation.

Hint: A box, once created, will remain a box.

For example, it is not possible to delete one vertex of it, thus forming a triangle. is is only possible for
polygons.

9.2.6 Creating a path

Select ..Path mode from the speed-bar. eObject Editor Options dialog, Path tab will open that additionally
prompts for basic path parameters, such as width and extension scheme. When a path is being drawn, it
will receive the seings entered into this dialog. e path properties can even be changed, while the path
is being drawn. Don’t forget to click on ..Apply to take over the current entries. If the dialog has been closed
unintentionally, it can be reopened with the ..F3 shortcut.

KLayout Version 0.21 101

Chapter 9. QSM – Editor Mode 9.2. Basic editing operations

To actually draw a path, choose a layer from the layer panel in which to create the new path. Le-click
at the first vertex, move the mouse to the second vertex, click to place this one and continue to the last
vertex. Double le-click at the last vertex to finish the path. Press the ..Esc key to cancel the operation.

For paths, as for polygons, the segments created are subject to certain direction restrictions as imposed
by the connection angle constraints. See connection angle constraints description in section 9.1.2: Basic
editor mode options for a detailed description of the modes. Use the ..File ..Objects Editor Options dialog page
(shortcut ..F3) to change the mode, even during editing.

9.2.7 Creating a text object

Select ..Text mode from the speed-bar. e Object Editor Options dialog, Text tab will open that additionally
prompts for the text string. Don’t forget to click on ..Apply to take over the current string. If the dialog has
been closed unintentionally, it can be reopened with the ..F3 shortcut.

To actually draw the text, move the mouse to the desired location and le-click to place it.

A text can be given a size which is stored in a GDS2 file (OASIS files do not provide this feature). e size of
the text is only shown in the layout if a scalable text font is selected and text scaling is enabled, whereby the
“Default” font is not scalable. In order to do so, choose a scalable font from the ..File ..Setup ..Display ..Texts

dialog. Check ..□ Show texts or properties check-box and check the ..□ Apply text scaling and rotation check-box
on the same page.

e text can also be rotated, which is shown as well only if text scaling and rotation is enabled. To rotate a
text while placing it, click the right mouse buon. is will rotate the text by 90 degree counterclockwise
each click.

9.2.8 Placing an instance of a cell

Select ..Instance mode from the speed-bar. e Object Editor Options dialog, Instance tab will open that
additionally prompts for some instance parameters. e most important one, of course, is the cell that
shall be placed. Geometrically, the rotation angle can be specified, the mirror option can be set and the
instance may be specified as a regular array. As an array, the instance represents multiple placements
of the cell, arranged in regular grid which is specified by the two axis vectors and instance counts in
each direction. Don’t forget to click ..Apply to take over the current seings. If the dialog has been closed
unintentionally, it can be reopened with the ..F3 shortcut.

To place the instance, move the mouse to the desired location and le-click to place it. While moving, the
right mouse buon can be used to rotate the instance by 90 degree counterclockwise each click. Press the
..Esc key to cancel the operation.

9.2.9 Moving the selection

e whole selection can be moved in ..Move mode. If some elements are already selected, choose ..Move

mode from speed-bar and select a reference point by le-clicking at the position. e reference point will
be used as the “dragging handle” - each element is moved relative to this position. If no elements are
selected when entering move mode, simply click at the element to move and place it somewhere else with
a le mouse click.

While moving, the whole selection can be rotated by 90 degree counterclockwise with a mouse right-click.
e ..Esc key will cancel the operation.

For movements, the movement direction constraint apply. See movement direction constraint description
in section 9.1.2: Basic editor mode options for details about the modes available. For example, in manhat-
tan mode, only horizontal and vertical movements are allowed. e global movement constraint can be

102 Version 0.21 KLayout

Chapter 9. QSM – Editor Mode 9.2. Basic editing operations

overridden by pressing ... key for orthogonal, ..Ctrl for orthogonal and diagonal or both keys ... + ..Ctrl

for any angle direction constraints while moving the mouse.

9.2.10 Other transformations of the selection

e selection can be flipped at x- or y-axis, rotated as a whole ormoved by a certain distance using the func-
tions available in the ..Edit ..Selection sub-menu. For example, ..Edit ..Selection ..Flip Vertically flips the selection
at the x-axis. A selection can be rotated by an arbitrary angle using the ..Edit ..Selection ..Rotation By Angle

function.

9.2.11 Partial editing

When objects have to be modified aer they have been created, partial editing comes into play. Partial
refers to the fact that just parts of a polygon or path are edited. For example, just one vertex or an edge
of a polygon can be moved. Partial editing mode also allows to delete single vertices or edges or to insert
new ones. In partial editing mode, multiple edges or vertices can be selected, even a whole shape can be
selected and can then be moved or deleted.

When moving the selected parts, the movement direction constraint applies. See movement direction
constraint description in section 9.1.2: Basic editor mode options, for details about the modes available.
For example, in manhaan mode, only horizontal and vertical movements of parts are allowed. Again, the
global movement constraint can be overridden by pressing ... key for orthogonal, ..Ctrl for orthogonal
and diagonal or both keys ... + ..Ctrl for any angle direction constraints while moving the mouse.

To enter partial mode, click on the ..Partial buon in the speed-bar. Parts (edges or vertices) can then be
selected either by simply clicking at them or by dragging a selection rectangle. As in normal selection
mode, the modifier keys ... and ..Ctrl can be used to add a selection to the existing one or to remove
elements from the existing selection. Partial selection is subject to the “top level only” constraint, see
description of top level selection mode in section 9.1.2: Basic editor mode options.

Simply clicking at an item immediately enters “move” mode. In this mode, you can position the element
at the desired target location and place it there by le-clicking at the position. Press ..Esc key to cancel the
operation. When a complex selection is made, move mode is entered by clicking at one of the selected
items (the edges or vertices, not the shape to which they belong).

When moving parts, certain constraints apply, i.e. single edges can only be moved perpendicular to their
current position. In addition, the movement is confined to the editing grid.

e selected items can be deleted by using the ..Edit ..Delete function or pressing the ..Del. key. If not enough
vertices remain to form a valid object, the object is deleted (i.e. a polygon with less then 3 points).

By double-clicking at an edge or path segment, an additional point is created on this edge at the cursor’s
position. You can create a bend on a path by placing two new vertices on that segment and moving the
connecting segment between these vertices away from the former center line. is basically requires two
double-clicks on the path’s center-line, a single click on the newly formed segment and a single click to
drop it at the new position.

9.2.12 Moving the selection to a different layer

Selected shapes can be moved to a different layer as a whole. For this, choose ..Edit ..Selection ..Change Layer

function. All selected shapes are moved to the layer that is the current one in the layer list (marked with
a rectangle or blue underlay-ed). e shapes will not be moved across the hierarchy but just inside their
cell.

All layers (source and target) must be located in the same layout. To move shapes to a different layout,
use copy & paste, see section 9.2.14: Copy and paste of the selection.

KLayout Version 0.21 103

Chapter 9. QSM – Editor Mode 9.2. Basic editing operations

9.2.13 Other layer operations

e layer specification can be edited using the ..Edit ..Layer ..Edit Layer Specification method. A dialog is
shown in which the layer, datatype and (OASIS) name of the layer currently selected in the layer panel
can be edited. On save, the shapes are then mapped to the new layer.

A layer can be cleared either cell-wise, on a cell’s hierarchy or for all cells using the ..Edit ..Layer ..Clear Layer

method.

9.2.14 Copy and paste of the selection

Of course, copy and paste is supported as usual. Shapes can be copied between layouts: by opening two
layouts, shapes can be moved from one layout to another. e shapes are mapped to the same layer than
they have been on in the source layout. If a layer does not exist yet in the target layout, it is created.

Shapes in the selection are simply copied to the clipboard in the way they appear in the current cell. is
means, if the shapes are pasted into a different layout they are put on the same position, but flat into the
current cell. is provides a way to flaen a hierarchy in hierarchical selectionmode. is mode is enabled
if ..Edit ..Editor Options ..Selection Mode ..Hierarchy ..□ Select top level objects only is deselected, now select the
shapes to flaen and copy everything to a different cell.

In non-hierarchical selection mode, this mode is enabled if ..Edit ..Editor Options ..Selection Mode ..Hierarchy
..□ Select top level objects only is checked or by clicking on a cell frame when the hierarchy levels are limited,

instances can be selected as well. When copying instances to the clipboard by pressing ..Ctrl + ..C , two
possible methods are offered by the Copy Options dialog:

Shallow copy In this mode, just the instance is copied. When it is pasted into any target layout, the
target cell of the instance is looked up and instantiated.

Deep copy Not only the instance but the instantiated cell is copied as well. When pasting that into
a different layout, the target cell will be created as well. If a cell with that name already
exists, a variant is created and instantiated.

9.2.15 Delete a cell

To delete a whole cell, select the cell in the hierarchy browser and choose ..Cells Context ..Delete Cell by
mouse right-click. is time, three possible modes are offered by the Delete Cell Options dialog:

Shallow delete Just the cell (it’s shapes and instances) are deleted, not any cells referenced by this cell.
Since cells might no longer be referenced aer that, they may appear as new top cells
in the layout.

Deep delete e cell and all it’s sub-cells are deleted, unless the sub-cells are referenced otherwise
(by cells that are not deleted). In this delete mode a complete hierarchy of cells can be
removed without any side effects.

Complete delete e cell and all it’s sub-cells are deleted, even if other cells would reference these sub-
cells.

9.2.16 Rename a cell

To rename a cell, select the cell in the hierarchy browser and choose ..Cells Context ..Rename Cell by mouse
right-click. e Rename Cell dialog prompts for a new name which must not exist yet.

104 Version 0.21 KLayout

Chapter 9. QSM – Editor Mode 9.3. Advanced editing operations

9.2.17 Copy and paste of cells

Whole cells can be copied to the clipboard as well. To copy a whole cell, select the cell in the hierarchy
browser (make sure the focus is in that window) and choose ..Edit ..Copy , shortcut ..Ctrl + ..C , or ..Edit ..Cut ,
shortcut ..Ctrl + ..X . To paste such a cell into a target layout, choose ..Edit ..Paste , shortcut ..Ctrl + ..V .

Copying a cell from one layout to another provides a way to merge two layouts into one: simply copy the
top cell of the first layout into the second one and instantiate both in a new top cell for example.

9.3 Advanced editing operations

9.3.1 Hierarchical operations: flatten instances, make cell from selection, move up in
hierarchy

KLayout provides several operations that move shapes or instances up and down in hierarchy. All these
operations are accessible through the ..Edit ..Selection menu:

..Flaen Instances Replace the selected instances by the contents of the instantiated cell. KLayout will
ask, if all levels or just the first level of the cell should be expanded. If all levels are
expanded, the cell will be resolved into a set of shapes in the current cell’s hierarchy.

..Move Up In Hierarchy Applies only to selections inside child cells of the current cell (thus does not make
sense if ..□ Select top level objects only mode is active). e selected shapes and instances
are brought up to the current cell’s level and removed from the original cell. A non-
destructive way of moving a shape up in the hierarchy is to copy and paste the shape.
is does an explicit flaening of the shapes selected when inserting them, see sec-
tion 9.2.14: Copy and paste of the selection.

Hint: e current implementation removes the selected object from it’s original
cell. Since it only creates new copies for the selected instances, the object is
lost for all other instances of the cell. is may create undesired side effects
and it is likely that this behavior will change in future implementations.

..Make Cell Removes the currently selected objects and places them into a new cell whose name can
be specified in the Make Cell dialog.

9.3.2 Creating clips

KLayout provides a utility to create rectangular clips from a given cell ..Edit ..Utilities ..Clip Tool . One or
more rectangles can be specified. e current cell is cut along the edges of these rectangles. For each
rectangle, a new cell is created containing the clipped content for the rectangle. Finally, if more than one
rectangle is specified, all the clips are combined into a master top cell which appears as a new top cell in
the cell hierarchy.

e clips can be either specified by coordinates, taken from another layer (whichmust contain boxes which
then are copied into the output as well) or taken from the rulers. In the laer case, the rulers’ start and
end points are taken as the corners of the clip rectangles. It is convenient therefore to create a new ruler
type with a box appearance for this purpose.

Clips are done hierarchically: child cells are clipped as well, potentially creating variants (which may be
shared by several clips). is way, large clips can be created from large layouts in an efficient way.

Hint: Clipping will not work exactly if the layout contains cell instances with ar-
bitrary rotation angles such as 45 degree.

KLayout Version 0.21 105

Chapter 9. QSM – Editor Mode 9.3. Advanced editing operations

9.3.3 Flatten cells

e ..Edit ..Cell ..Flaen Cell operation flaens a cell into all of it’s parents. is basically removes a cell by
promoting its shapes and instances up in the hierarchy.

e flaen operation offers three options on the Flaen Instances dialog, how deep to go through the
hierarchy levels to flaen and one option how to deal with child cells which become obsolete through this
operation. By enabling this ..□ Prune option, all child cells are removed when they are no longer needed.
Otherwise, new top level cells will appear - these are the cells which are not longer instantiated.

9.3.4 Layer Boolean operations

KLayout now comes with a set of Boolean operations. e Boolean operations are available in the ..Edit
..Layers ..Boolean Operation menu functions). A Boolean Operation Setup dialog will open that allows to

specify input layers, mode, output layer and certain other options.
..Union (OR) e output layer will contain all areas which are covered by shapes from layer

A and layer B.
..Intersection (AND) e output layer will contain all areas where shapes from layer A and layer B

overlap.
..Difference (A NOT B) e output layer will contain all areas where shapes from layer A are not

overlapping with shapes from layer B.
..Difference (B NOT A) e output layer will contain all areas where shapes from layer B are not over-

lapping with shapes from layer A.
..Symmetric difference (XOR) e output layer will contain all areas where shapes from layer A are not

overlapping with shapes from layer B and vice versa.

In addition, a special Boolean operation is provided, the merge operation ..Edit ..Layers ..Merge . A Merge
Operation Setup dialog will open that allows to specify input layer, overlap threshold, output layer and
certain other options. is function is a single-layer operation that joins (merges) all shapes on the layer.
As a special feature, this operation allows to select a minimum overlap count: “0” means that output
is produced when at least one shape is present. “1” means that two shapes have to overlap to produce
an output and so on. is does not apply for single polygons because self-overlaps of polygons are not
detected in this mode.

All Boolean operations can be performed in three hierarchical modes:
..Flat Both layers in Boolean operation or the layer in merge operation are flaened

and the results are put into the current top cell.
..Top cell only Perform the operation on shapes in the top cell only.

..Individually for current and sub cells Perform the operation on shapes of all cells below the current top cell
individually. is mode is allowed only if the layout of input layer(s) and
output layer are the same.

For the first two modes, the source and target layout can be different, provided that all layouts are loaded
into the same view. is allows to combine layers of different layouts, i.e. compare them using a XOR
function.

As a special feature, KLayout’s Boolean implementation allows to choose how kissing corner situations
are resolved. KLayout allows two modes:

..□ Minimum coherence Checked: e output will contain as few, coherent polygons as possible. ese
polygons may contain points multiple times, since the contour may return to
the same point without closing the contour.
Unchecked: e output will contain as much, potentially touching polygons
as possible.

106 Version 0.21 KLayout

Chapter 9. QSM – Editor Mode 9.3. Advanced editing operations

Figure 9.1. Illustration of maximum coherence Figure 9.2. Illustration of minimum coherence

e screen-shots fig. 9.1 and fig. 9.2 illustrate the maximum and the minimum coherence modes for a XOR
operation between two rectangles.

e Boolean operations are currently implemented flat and based on a full-level edge representation. is
means, that the complete layer is flaened (if ..Flat mode is requested) and converted into a set of edges
which the processor runs on. is will lead to huge resource requirements for very large layouts and is
not recommended for such applications currently.

e Boolean processor is based on an iterative approach to cover grid snap effects which makes it highly
accurate but somewhat slower than a single-pass scan line implementation. Performance penalty is about
two times slower compared to an efficiently implemented single-pass algorithm.

9.3.5 Layer sizing

A sizing operation allows to grow or shrink the shapes of a layer by a given offset, which is applied per
edge. Choose the sizing function by le-click on the ..Edit ..Layer ..Size menu. A Sizing Operation Setup
dialog will open that allows to specify input layer, sizing value, cutoff mode, output layer and certain other
options.

e sizing value must be given in micron, where positive values will enlarge the shapes while negative
values will shrink the shapes. A single value stands for same sizing in x and y direction while a comma-
separated list of two values stands for different sizing in the two directions (i.e. “0.2,0.1”). However, the
sign of both values must be identical (i.e. “0.5,0” or “1.0,0.2”, but not “0.2,-0.2”).

e cutoff strategy for sharp edges can be chosen from strict to virtually unlimited. e screen-shot fig. 9.3
demonstrates the effect for ..Strict (diagonal) (red curve) to ..Weak (sharps bends >135 deg.) (purple curve) cutoff
modes.

As for the Boolean operations, hierarchical mode and kissing corner resolution can be specified, see sec-
tion 9.3.4: Layer Boolean operations for a description of these modes.

9.3.6 Shape-wise Boolean operations

Boolean operations are also available on selected shape sets. ese operations use the concept of primary
and secondary selection. e primary selection contains all shapes that are selected in the first step. e
secondary selection contains all shapes that are selected in additional steps using the ... modifier key.

KLayout Version 0.21 107

Chapter 9. QSM – Editor Mode 9.3. Advanced editing operations

Figure 9.3. Illustration of “strict” (red curve) to “weak” (purple curve) cutoff modes

e following operations are available in the ..Edit ..Selection sub-menu:
..Merge Shapes Merge all shapes in the primary and secondary selection and write the results

to the layer of the primary selection.
..Intersection – Other With First Compute the intersection (AND) of primary and secondary selection and

write the results to the layer of the primary selection.
..Subtraction – Others From First Compute the difference (A NOT B) of primary (A) and secondary (B) se-

lection and write the results to the layer of the primary selection.

9.3.7 Shape-wise sizing

e selected shapes can be sized with a given enlargement and shrink distance, similar to the layer oper-
ation but with less options. e sizing function is given in the ..Edit ..Selection ..Size Shapes menu. A Sizing
dialog will open that prompts for the sizing value in micron, where one value stands for same sizing in
x and y direction, while two comma-separated values stands for different sizing in x and y direction. In
contrast to section 9.3.5: Layer sizing, the sign of both values must not be identical, but joining to points
or negative values, as result of this operation, are not supported and generates invalid shapes.

9.3.8 Object alignment

Object alignment is available on selected object sets. is operation use the concept of primary and sec-
ondary selection. e primary selection contains all objects that are selected in the first step. e secondary
selection contains all objects that are selected in additional steps using the ... modifier key.

e object alignment function allows to align all objects in the secondary selection to the objects in the
primary selection (i.e. objects in the primary selection define the reference points but are not moved). A
valid object can be a shape or an instance of a cell.

Choose the alignment function by le-click on the ..Edit ..Selection ..Align menu aer selection of a set of
objects. An Alignment Options dialog will open which allows to specify the alignment mode and bounding
box computation mode for cell instances. e dialog offers following seings:

Horizontal alignment
⊙ none no changes, or

le align le sides, or

108 Version 0.21 KLayout

Chapter 9. QSM – Editor Mode 9.3. Advanced editing operations

center align centers, or
right align right sides.

Vertical alignment
⊙ none no changes, or
top align top sides, or
center align centers, or
bottom align boom sides.

Layers for alignment of instances
⊙ Use all layers for cell instance bounding box to referee to, or
Use visible layers only for cell instance bounding box to referee to.

9.3.9 Corner rounding

In some applications, i.e. power devices, it is desirable to have round corners instead of sharp corners to
limit the electrical field. KLayout now offers a convenient way to create such structures. e basic idea
is to draw the structures with sharp, 90 degree corners and then soen the corners by rounding them to
a given radius. e resulting polygons can then be wrien to GDS files, even though GDS does not have
the concept of so (or circular) geometries.

e interesting part is: the corner rounding function can be re-applied on such geometries on a polygon
basic. at means, that even if such a modified polygons are saved to GDS or is otherwise modified, the
original geometry can be reconstructed and the corner radius can be changed again. No special geometrical
objects or special GDS annotation is required to achieve this. is requirement imposes some (probably
weak) limitations:

• e number of points per corner must not be too small (currently at least 32 on the full circle).

• e original geometry must not exhibit sharp corners and the original segments must be at least
twice the corner radius in length.

• e corner segments must be perceivable as such, i.e the angle between adjacent edges must be
nearly 180 degree. is imposes some restrictions on the minimum length of such a segment and on
the accuracy by which they can be expressed in database units. is boils down to a certain length
limit in terms of database units.

e screen-shot fig. 9.4 illustrates the round corners function. As can be seen in this example, it is necessary
to allow a different radius specification for inner and outer corners.

e corner rounding function operates on selected shapes. It can be chosen by mouse le-click on ..Edit
..Selection ..Round Corners menu. A Dialog will open which allows to specify the outer corner radius, the

inner corner radius, both in micron, as well as desired number of points (for full circle). If the selected
polygon already has rounded corners, the corner rounding will be removed and the original polygon re-
constructed before the new corner rounding is applied. By specifying “0” for the radius, the original sharp
corners will be recovered.

9.3.10 Cell origin adjustment

e cell origin is important for a cell because this point is the instantiation anchor for cell instances. e
cell origin adjustment function allows to shi the origin to a certain place relative to a cell’s bounding box.
is can be either the center, a corner or the middle of an edge of the bounding box. e bounding box
can either be computed from all or just from the visible layers.

e cell origin adjustment function can be chosen by le-click on the ..Edit ..Cell ..Adjust Origin menu.

KLayout Version 0.21 109

Chapter 9. QSM – Editor Mode 9.3. Advanced editing operations

Figure 9.4. Illustration of round corners function

9.3.11 Layer operations: clear, delete, edit specification

ree full-layer operations are implemented and available in the ..Edit ..Layers sub-menu:
..Clear Clear but don’t delete the currently active layer in the layer list.
..Delete Clear and delete the currently active layer in the layer list.

..Edit Layer Specification Edit the layer specification of the currently active layer in the layer list.

e layer specification describes how a layer is saved to GDS or OASIS streams and, if chosen, a (New)
Layer will open which allows to specify or change the Layer Properties. It consists of a layer and data
type number and optionally a layer name for OASIS streams. Only layers with valid layer and data type
specification are wrien to GDS or OASIS files.

110 Version 0.21 KLayout

Chapter 10. Advanced Functions

Chapter 10

Advanced Functions

is chapter briefly describes a couple of KLayout’s advanced features.

Content

10.1 e XOR tool
10.2 e Diff tool
10.3 e fill (tiling) utility
10.4 Importing Gerber PCB files
10.4.1 e import dialog

10.4.2 e layer stack flow
10.4.3 e free layer mapping flow
10.4.4 General options

10.5 Importing other layout files
10.6 e net tracing feature

10.1 e XOR tool

e XOR tool performs a geometrical XOR (also A NOT B and B NOT A for asymmetric differences) on
two layouts by performing the respective Boolean operations layer by layer. e XOR tool is started using

..Tools ..Verification ..XOR Tool menu. Currently, the tool compares all or just the visible layers. Currently, it
compares layers from one layout vs. the identical layers from the other layout.

e current implementation employs a flat XOR processor. is limits the application somewhat to small
and medium sized layouts and does not make use of hierarchy, which basically excludes applications for
very hierarchical layouts (i.e. memory arrays). e memory footprint associated with the flat approach
can be mitigated by using the tiling feature which performs the operation on a tile with limited size. is
does not reduce the run times but the memory requirements.

eXOR tool allows to specify tolerances. Basically a tolerance is an undersized step following the Boolean
operation. is way, small markers can be suppressed. is is particular useful to remove markers result-
ing from tiny differences between the layouts being compared. Multiple tolerances can be specified. In
that case, multiple undersize steps are performed to create sets of layers with different tolerances each.
For example, a tolerance specification of “0,0.001,0.005,0.010” will create four sets (marker categories) con-
taining all difference markers and others for markers indicating differences larger than 1 nm, 5 nm and
10 nm.

Tiling can be enabled by entering a tile size into the entry box. For semi-flat layouts such as standard cell
blocks, a tile size of 1000 micron is a good starting point. e choice of the tile size mainly determines
memory requirements.

e XOR tool allows to send the output either to a marker database or to another or one of the input
layouts. e mode can be selected with the ..Output drop-down box. If output is sent to one of the original
inputs, it is mandatory to specify a layer offset which maps the original layer to a new layer. An offset of

KLayout Version 0.21 111

Chapter 10. Advanced Functions 10.2. e Diff tool

“1000/0” for example means, that differences between shapes on layer “16/0” will be sent to “1016/0” for
the first tolerance category and “2016/0” for the second.

10.2 e Diff tool

As the XOR tool, the Diff tool performs a comparison of two layouts. In contrast to the XOR tool, it does a
cell-by-cell and object-by-object comparison and reports differing cells, instances and geometrical objects.
In effect, the comparison is more strict and not purely geometry-related. It does not verify the identity of
the layouts on mask level but rather the exact identity of the objects that comprise the layout file. On the
other hand, the Diff tool usually detects the actual changes rather than their effect on geometry.

Usually, that kind of comparison is very sensitive to cosmetic changes, i.e. cell renaming. KLayout’s Diff
tool tries to mitigate this effect with these features:

• Before it does the cell-by-cell comparison it tries to detect cells which have been renamed by com-
paring their instantiation. at way, it can compare the right cells even though their names may be
different.

• It allows some level of control over the strictness of the compare. For example, cell arrays can be
expanded before the individual instances are compared. By default, some second-order information
like users properties or certain text properties are not compared.

• e diff tool can also work in “XOR” mode. In that mode, the differences found are used to provide
input for a subsequent, polygon-only XOR step. e result is a fair approximation of a true, as-if-flat
XOR which delivers a super-set of the true XOR’s results. It may report some locations as being dif-
ferent which are not in fact, but it will not fail to report differences where there are some. Compared
with the XOR tool’s functionality, some options are missing (i.e. tolerance), but the performance is
much beer.

e Diff tool is found in the ..Tools ..Verification ..Diff Tool menu. A Diff Tool dialog will open that allows to
specify the two layouts to be processed and certain other option.

Input

Layout A select the first layout and
Layout B select the second layout to process.

Options

□ Run XOR on differences check to select the “XOR” mode, which disables the following options
only available in pure “Di” mode.

2� Summarize missing layers check to have missing layers reported as one difference instead of one
per shape.

2� Detailed information check to receive detailed information about every difference. Without that
option, only the number of differing shapes or instances are reported.

□ Expand cell arrays check to compare individual instances of array instances.
□ Exact compare check to include second-order information (i.e. user properties, text orienta-

tion) in the compare.

e Diff tool will create a marker database and show the results in the marker database browser.

10.3 e fill (tiling) utility

e fill utility creates a regular paern of fill unit cell instances in certain areas of a layout. is feature
is usually referred to as tiling or fill. It is based on a rectangular unit cell which is repeated in x- and

112 Version 0.21 KLayout

Chapter 10. Advanced Functions 10.3. e fill (tiling) utility

y-direction to fill the available space. In most cases, the intention is to fill empty areas in the layout to
enhance the layout uniformity for a beer process performance.

Before the fill utility can be used, a fill cell must be prepared in the layout that is filled. e dimension of
the cell are defined by a box drawn on an arbitrary layer. is box must represent the footprint of the cell.
is is the space that one instance will cover in the region to be filled.

e fill utility can be found in the ..Edit ..Utilities ..Fill Tool menu and is available in edit mode only. A Clip
Tool dialog Comment: Wrong dialog name will open and offers the following seings:

• In section Fill Area select the outer boundary of the fill region (“what to fill”). Available choices are:
..All (whole cell) ,
..Shapes on layer … the interior or the polygons on a given layer, ..<layer > select the layer,
..Selected shapes the interior of all selected polygons,
..Single box with … a single box and select the box boundaries or
..Ruler bounding boxes an area defined by a ruler.

• Specify a border distance if the fill area should keep a certain minimum distance to the border of the
fill region in the ..Keep distance to border of fill area of <distance> µm entry field.

• In section Exclude Area specify the regions within the fill region which must not be filled. Available
choices are:

..All layers which doesn’t create fill over any polygon drawn,
..All visible layers which doesn’t create fill over any polygon visible,
..Selected layers or

..No exclude don’t exclude anything.

• Specify a spacing distance if the fill tiles must keep a certain minimum distance from the exclude
regions in the ..Spacing around exclude areas <distance> µm entry field.

• In section Fill cell specify the fill cell.

– Enter a cell name in the ..Fill cell entry field or chose one using the dialog Select Cell by le-click
on ..… buon.

– Specify the ..Fill cell margin <distance> µm .

– Choose the ..Boundary layer <layer > which defines the cell’s footprint and controls tiling raster of
the cells.

• in section Options specify ..□ Enhanced fill option which allows the fill tool to leave fixed raster for
enhanced fill of small regions.

– By default, unchecked, the fill utility operates on a fixed raster. is can lead to a poor fill
efficiency in some cases.

– Checked, the fill utility tries to find a cell arrangement which is not necessarily on a common
raster but provides a beer fill performance.

• Check ..□ Second-order fill cell for remaining regions option and a second – usually smaller – fill cell can
be specified, which is used to fill the remaining areas of the layout. e boundary layer must be the
same for the second order fill cell.

– Enter a second cell name in the ..Fill cell entry field or chose one using the dialog Select Cell by
le-click on ..… buon.

– specify a ..Fill cell margin <distance> µm .

e screen-shots figs. 10.1 to 10.3 show the effect of the different fill modes for some artificial fill problem.

KLayout Version 0.21 113

Chapter 10. Advanced Functions 10.4. Importing Gerber PCB files

Figure 10.1. Illustration of Default Fill Option (Top Le)

Figure 10.2. Illustration of Enhanced Fill Option (Top
Right)

Figure 10.3. Illustration of Second Order Fill Option
(Boom Le)

10.4 Importing Gerber PCB files

Gerber PCB import allows to create GDS layout data from Gerber PCB files or to add Gerber files to GDS
files as new layers. e import function supports a majority of the RS274X features for artwork files and
a couple of different formats for the drill files. e importer will take a set of files and convert them to
layout geometry. e importer offers some functionality to adjust the data appropriately, i.e. to define
output layers and apply geometrical transformations. Another basic capability is to merge the geometry
of a layer to remove overlaps and join paths into larger polygons.

Because of the manifold options, the import specification can become prey complex. erefore, it can be
saved into a file in XML format which contains the importer specifications. e suggested suffix for this
file is .pcb. Once such a file is created, KLayout can read this file like usual stream files, i.e. it can be
specified on the command line and use it as a recipe to import the associated Gerber files.

e PCB import functions are available as sub menus of the menu ..File ..Import ..Gerber PCB . Different
entries are given that start a new project ..New Project or a new project that allows to specify arbitrary
mapping between PCB files and layout layers (free layer mapping) ..New Project – Free Layer Mapping , open an
existing project ..Open Project or continue with the last project ..Last Project .

e work-flow to import PCB data is as follows and meant as an overview, whereby the basic decision is
how to specify the layer mapping. Each dialog is explained in detail in the subsections later on.

114 Version 0.21 KLayout

Chapter 10. Advanced Functions 10.4. Importing Gerber PCB files

• On dialog page General, section Base Directory , specify the directory where the PCB data files are
located (the “base” directory) using the entry field or choose one by le-click on ..… buon which
offers a file browser dialog Get Base Directory .

• In section Import Mode specify the import mode, which means, select the destination of the layout
data. Available choices are:

..# Import into current layout where layers are added or overwrien,
..⊙ Import as new layout in same panel or
..# Import as new layout in new panel .

• Decide about the layer mapping mode ..□ Free layer mapping .

is option checked allows an arbitrary mapping between PCB layers and GDS layers:

– Specify the files to load on the next dialog page Files.

– Specify the target layers for the layout on the Layout Layers dialog page.

– Fill-in the input to output mapping matrix which assigns one or many output layers to each
input file on the Layer Stack dialog page.

While unchecked allows metal stack mapping which is the most flexible one but is tedious to enter.
Metal stack mapping is easier to specify but confined to mapping a set of PCB files to a metal-via-
metal stack scheme:

– Specify the target layers for the layout, the GDS layer stack, which means the complete stack
available for mapping PCB data into on the Layout Layers dialog page. e idea is basically to
put another set of metal-via-metal layers series on top of the GDS layer stack. e target layers
should reflect the physical layer stack as seen from the chip for flip-chipmounting. Metal layers
interleave with via layers. e first layer specified will be the closest to the chip surface.

– Specify the chip mounting that determines the order by which the artwork layers are assigned
to layout layers on the Layer Stack dialog page. To assign the top PCB layer to the first layout
layer select ..Top Mounting or else, select ..Boom Mounting to assign the top PCB layer to the last
layout layer.

On the same dialog page enter the number of metal layers and via types.

– Enter the file names of the artwork files on the Artwork Files dialog page.

– Specify drill types, i.e. the start layer, the stop layer and the related drill file on the Drill Types
And Files dialog page. Specify what metal layers are connected by the (plated) drill holes. Since
a drill hole can connect multiple layers in the stack, a connection information is always of the
type “from metal to metal” with the drill holes connecting all metal layers between from and
to.

• On the second last dialog page Coordinate Mapping, specify up to three reference point coordinates
on PCB and layout, each. Leave fields empty to specify less reference points. One point is used to de-
rive the displacement, further points are used to derive the orientation. Currently no magnification
is implied and only simple rotations are derived from the mapping points.

Alternatively a transformation imported to existing layout can be specified using the entry field
..Explicit transformation <transformation expression> , whereby reference points have a higher priority. For

the transformation expression use the common notation, i.e. “(*2 r90 10,-100)”, referee to section 6.3:
Transformations in KLayout.

• On the last dialog page Options specify a layer properties file to load or leave this entry field empty
to not load any file. A loaded file is applied to the final layout. Hence, if PCB data are imported to
an existing layout, the layer properties file should not only contain the PCB layer properties but the
layout layer properties as well.

KLayout Version 0.21 115

Chapter 10. Advanced Functions 10.4. Importing Gerber PCB files

On the Import Options section specify the number of points per circle, where the minimum number
is four points. Select weather polygons should be merged to remove all overlaps aer importing or
not. Specify the database unit for new layouts, whereat the preset value is 0.001 micron. And enter
the top cell name for new layouts, whereat the preset name is “PCB”.

• Aer filling in all specification save the seings to a file for later re-use by use the ..File … buon,
entry ..Save Project . Aer that import the PCB Gerber data by pressing ..Import buon.

10.4.1 e import dialog

e import dialog is organized in multiple pages that reflect the work-flow for the import specification.
On every page, the ..File … buon allows to save the current seings as a PCB import project ..Save Project ,
to open an existing project ..Open Project or to create a new project and restart from scratch ..New Project .

e first dialog page General offers some basic options, compare with fig. 10.4:

Base directory is is the directory where all the PCB files are found. Not necessarily all files must be
located there but are looked for relative to this directory. If all files are moved, just the base directory
must change. e base directory is not stored in a project file. Instead, the base directory is the
directory where the project file is stored. Basically this implies, that all data files will be referred to
relative to the project file.

Import mode PCB data can be imported into the current layout (into the current cell). Usually, in this
case, layers will be added to the current layout. Alternatively, a new layout can be created which
will be either added to the current panel or placed into a new one.

..# Import into current layout where layers are added or overwrien,
..⊙ Import as new layout in same panel or
..# Import as new layout in new panel .

Layer mapping mode Specify here whether to use free or layer stack mode ..□ Free layer mapping . Check
the box to use free layer mapping mode.

Figure 10.4. Import Dialog — General

116 Version 0.21 KLayout

Chapter 10. Advanced Functions 10.4. Importing Gerber PCB files

10.4.2 e layer stack flow

In the layer stack flow, on the first dialog page, Layout Layers, compare with fig. 10.5, a sequence of metal
and via layers must be specified. e assignment of metal and via layers is done automatically. e
sequence is always a metal layer followed by a via layer. e number of layers must be odd so the last
layer is a metal layer again. Via layers will connect the adjacent metal layers only.

Use the .. buon to add new layers. Move layers by selecting them and moving them up or down with
the arrow buons .. and .. . Use the .. buon to remove all selected layers.

Figure 10.5. Import Dialog — Layout Layers

Figure 10.6. Import Dialog — Layer Stack

On the next dialog page, Layer Stack, see fig. 10.6, the chip mounting position needs to be specified. In
..Top Mounting mode, it is assumed that the chip is placed surface down on the top (first) PCB layer. us

KLayout Version 0.21 117

Chapter 10. Advanced Functions 10.4. Importing Gerber PCB files

the first metal above the chip stack will be the top PCB layer. In ..Boom Mounting mode, the last PCB metal
layer will be the first metal layer above the chip stack.

In addition the number of artwork and drill files needs to be specified. Later, the actual files need to be
entered and assigned to metal or via layers.

On theArtwork Files dialog page, see fig. 10.7, the artfile file namesmust be entered. ey are automatically
assigned to the respective metal layers. e assignment order depends on the mounting mode.

Figure 10.7. Import Dialog — Artwork Files

On the Drill Types And Files dialog page, compare fig. 10.8, the drill file names must be entered. Each drill
file describes a certain drill step, which can connect multiple metal layers. On this page, this specifica-
tion must be made. e first and last metal layer connected by the plated hole must be specified. e
corresponding via layers will then be used to create via shapes.

Figure 10.8. Import Dialog — Drill Types And Files

118 Version 0.21 KLayout

Chapter 10. Advanced Functions 10.4. Importing Gerber PCB files

10.4.3 e free layer mapping flow

On the Files dialog page, see fig. 10.9, all PCB data files must be specified. is includes artwork and drill
files. e order is not important but it is recommended to follow the physical stacking. is simplifies
the assignment to GDS layers later. Use the arrow buons .. and .. to move the selected entries up or
down. Use the .. buon to delete files from the list and use the .. buon to add new files.

Figure 10.9. Import Dialog — Files

On the Layout Layers dialog page, compare fig. 10.10, all target layers must be specified. Provide a list with
all layers that are used as target layers for the import. Again, the order is not important but maintaining
a technological order will simplify the assignment in the next step.

As on the previous page use the arrow buons .. and .. to move selected entries and the .. or ..

buon to add new entries or deleted the selected ones, respectively.

Figure 10.10. Import Dialog — Layout Layers

KLayout Version 0.21 119

Chapter 10. Advanced Functions 10.4. Importing Gerber PCB files

On the Layer Mapping dialog page, see fig. 10.11, each file can be assigned to one or more GDS layers. e
assignment is described in form of a matrix where an X means that the file or layer given by the row is
imported into the layer given by the column. A file can be imported into multiple layers which basically
will duplicate the shapes. Click at the boxes to set or reset the mark. Use the .. buon on the le to reset
all marks for the rows selected.

Figure 10.11. Import Dialog — Layer Mapping

10.4.4 General options

e Coordinate Mapping dialog page, see fig. 10.12, allows to specify the transformation of the PCB data
into the GDS space. Since PCB and GDS rarely share the origin, a transformation can be specified which
is applied to the shapes when importing them.

Figure 10.12. Import Dialog — Coordinate Mapping

120 Version 0.21 KLayout

Chapter 10. Advanced Functions 10.4. Importing Gerber PCB files

A specification can be made in two ways:

By specifying matching points e transformation will be computed such that the given PCB coordi-
nates are mapped to the given GDS coordinates. Up to three coordinate pairs can be given. If one
coordinate pair is given, a displacement is derived. If two coordinate pairs are given, the rotation is
computed as well (only multiples of 90 degree are supported currently). If three coordinate pairs are
give, the algorithm can derive mirroring as well.

By explicitly specifying the transformation e transformation can be specified explicitly in the en-
try field at boom. e format is “x,y” for a simple translation (x, y are given in micron units), “rx”
or “mx” for a rotation by the angle “x” or mirroring at the line with angle “x” and “*x” for a mag-
nification of “x”. All specifications can be combined, i.e. “r90 170,-5100” specifies a rotation by 90
degree and displacement by 170 micron in horizontal and -5.1 mm in vertical direction.
For a comprehensive description of that string, see section 6.3: Transformations in KLayout.

Hint: Both specifications can be combined, i.e. one coordinate pair can be given to
define the displacement and the rotation can be specified explicitly.

Finally, on the Options dialog page, compare with fig. 10.13, various options can be set:

Layer properties file If specified, this layer properties file will be loaded aer the layers have been im-
ported. e file is specified relative to the base directory.

Number of points per circle KLayout resolves the circular apertures commonly used in PCB layout
into polygons to perform geometrical operations. is options allows to choose how many points
will be used for the approximation of a full circle. Less points will mean less accurate representation
but smaller polygons hence beer performance on Boolean operations used to compute clear areas
for example.

Merge polygons If this option is set, all polygons will be joined if they overlap or touch. Note, that
merging also happens implicitly if clear layers are used because the Boolean operations used to cut
out clear regions will implicitly merge the previous layout. is implicit merging cannot be disabled.

Database unit and top cell name is option allows to choose the database unit and top cell name for
new layouts. is applies only, if the import mode implies a new layout.

Figure 10.13. Import Dialog — Options

KLayout Version 0.21 121

Chapter 10. Advanced Functions 10.5. Importing other layout files

10.5 Importing other layout files

is function can merge other layouts into the layout loaded. Merging means that the hierarchy of the
specified layout is inserted into the given layout. Different modes are available that control the way how
the hierarchy is merged. is function is available as ..File ..Import ..Other File Into Current .

e work-flow for importing a different layout is this:

• Specify the file to input. At least the file name is required. Additionally, a cell can be specified. In
that case, only the cells referred to by the given cell (directly or indirectly) are imported. Reader
options can be specified separately for the import. Reader options are applied the same way than
the reader options are used for the standard load function.

• Specify the import mode. e modes are described below.

• Specify the layer mapping. Either the shapes are imported on their original layer or an offset can be
used that will be added to the layer to form the target layer of the import. An offset of “1000/0” for
example specifies to add 1000 to the layer and use the original data-type.

• Specify an optional transformation. e imported layout will be transformed accordingly. e trans-
formation can be specified explicitly or with up to three points which are mapped onto each other.

Four import modes are available that control how the hierarchy of the imported layout is inserted into the
existing layout:

Merge In this mode, the contents of the imported cell will be put into the current cell and the child
hierarchy is added below the current cell.

Extra cells In this mode, new top level cells containing the hierarchy tree of the imported cell or cells
will be created. In this mode, multiple cells can be imported if the imported layout contains multiple
top cells. Leave the cell specification empty for this.

Instantiate e imported cell will be instantiated into the current cell as a separate hierarchy.

Merge hierarchy e fourth mode is a lile bit more complex. Basically it works like “Merge”, but iden-
tifies corresponding cells and merges the contents for the corresponding imported cells into the
original cells. e algorithm identifies corresponding cells by requiring that the flat instances of
the imported child cell exactly equal the flat instances of the corresponding original cell (where flat
refers to the instances of a cell in the context of the current cell). is is done by selectively thinning
out the candidate list and finally employing a name similarity measure to resolve ambiguities.

e import function will create new cell names using the “$x” suffix to avoid name ambiguities.

10.6 e net tracing feature

e net tracing function allows to trace a net by detecting touching shapes that together form a con-
ductive region. It allows to specify a metal stack of metal (or in general “conductive”) layers optionally
connected through via shapes. e net tracing algorithm will follow connections over the via shapes to
form connections to other metal layers.

e algorithm is intended for extracting single nets and employs an incremental extraction approach.
erefore extraction of a single small net is comparatively fast while extraction of large nets such as power
nets is considerably slower compared to hierarchical LVS tools currently.

e net tracing function can be found in the ..Tools menu. e user interface allows to trace multiple nets
which are stored in a list of nets extracted. If labels are found on the nets, these are used to derive a net
name. Beside that, the cells which are traversed in the net extraction are listed, so the cells being connected
by this net can be identified.

Before nets can be extracted, a layer stack must be specified. Press ..Layer Stack on the user interface Net
Trace to open the layer stack dialog. Layers must be specified in the layer/datatype notation. e via

122 Version 0.21 KLayout

Chapter 10. Advanced Functions 10.6. e net tracing feature

specification is optional. If no via layer is specified, both metal layer shapes are required to touch in order
to form a connection. If a via layer is specified, a via shape must be present to form the connection.

If a layer stack has been defined, a net can be traced by pressing the ..Trace Net buon and clicking on a
point in the layout. Starting from shapes found under this point, the net is extracted and listed in the net
info list on the le side of the net tracing dialog. If ..□ Lock is checked, another net can be traced by clicking
at another point without having to press the ..Trace Net buon again.

e net info is displayed in more details if buon ..□ Detailed is pressed and can be exported as new cell
using buon ..Export or as text to a file using ..Export To Text . In the first case a dialog Export Net opens where
the cell name to export to can be entered, while in the later a dialog Save Export Net opens where a file
name to export to in XML format can be entered using the default extension lyn.

e ..Trace Path function works similar but allows to specify two points and let the algorithm find the short-
est connection (in terms of shape count, not geometrical length) between those points. If the points are
not connected, a message is given which indicates that no path leads from one point to the other.

e display of the nets can be configured in many ways. e configuration dialog is opened when ..Configure

is pressed in the Net Trace dialog. Beside the color and style of the markers used to display the net it can
be specified if and how the window is changed to fit the net.

KLayout Version 0.21 123

Part IV

Ruby Scripting Interface (RBA)

124 Version 0.21 KLayout

Chapter 11. RBA Introduction

Chapter 11

RBA Introduction

An introduction into the ruby based automation API.

Content

11.1 Using RBA scripts
11.2 Basic RBA
11.3 A simple example
11.4 Extending the example
11.5 Events
11.6 Brief overview over the API

11.7 RBA and QtRuby
11.7.1 Execution context
11.7.2 Interfacing between QtRuby and

RBA objects
11.8 What can be done and what can’t
11.9 More information

11.1 Using RBA scripts

To use RBA scripts, KLayoutmust be compiled with the ruby interpreter. is is done by giving the build
script the paths to the ruby headers and library.

For example:

Listing 11.1: Command Line Input – Build Script for Ruby Support

build.sh -rblib /usr/lib/libruby1.8.so \
-rbinc /usr/lib/ruby/1.8/i486-linux

Build script option “-rblib” takes the path to the ruby shared object, option “-rbinc” the location of the ruby
headers, specifically ruby.h. Currently, ruby version 1.8 is required.

To use RBA, the script location must be passed to KLayout using the “-r” option. In this example the file
hello_world.rb is placed in the directory defined by $KLAYOUTPATH:

Listing 11.2: KLayout Command Line Input – Ruby Script

klayout -r hello_world.rb

If used this way, all RBA functionality must be put into one script. Usually, this script will provide all the
classes and definitions required and register new menu items and handlers.

KLayout Version 0.21 125

Chapter 11. RBA Introduction 11.2. Basic RBA

11.2 Basic RBA

e ruby script given with the “-r” option is executed before the actual application is started. In fact, the
application execution is initiated by the script, if one is given. In order to make the application start, the
ruby script must contain at least this statement:

Listing 11.3: Ruby Code – Application Start

1 RBA::Application.instance.exec

“RBA” is the module provided by KLayout. Application is the main controller class (a singleton) that
refers to the application as a whole. It provides the exec method which runs the application and returns if
the main window is closed.

In most cases, the script will perform initialization steps before calling exec and may do cleanup once the
application returned. Initialization may involve loading of layouts, registering menu items, initializing
other resources etc.

In larger applications however, source code is usually organized into libraries and a main code part. Li-
braries and supplementary code can be loaded prior to the loading of themain sourcewith the “-rm” option.
In contrast to Files containing main source code, and therefore loaded with “-r” option, Files loaded with
“-rm” option do not need to (and in fact must not) contain the RBA::Application.instance.exec call. is
allows to provide independent libraries and initialization code to a RBA script environment:

Listing 11.4: KLayout Command Line Input – Ruby Libraries And Module

klayout -rm setup1.rb -rm setup2.rb -r hello_world.rb

RBA code can be installed globally by creating a file called rbainit in the same directory than the
KLayout binary. If such a file is encountered, it will be executed as the first and before all files specified
with “-rm” and “-r” are read.

11.3 A simple example

is example script registers a new menu item in the toolbar, which displays a message box saying “Hello,
world!” when selected, and runs the application:

Listing 11.5: Ruby Code – New Menu – Hello World

1 class MenuHandler < RBA::Action
2 def triggered
3 RBA::MessageBox::info("Info", "Hello, world!",
4 RBA::MessageBox::b_ok)
5 end
6 end
7

8 app = RBA::Application.instance
9

10 $menu_handler = MenuHandler.new
11 $menu_handler.title = "RBA test"
12

13 menu = app.main_window.menu
14 menu.insert_item("@toolbar.end", "rba_test", $menu_handler)
15 menu.insert_item("tools_menu.end", "rba_test", $menu_handler)
16

17 app.exec

126 Version 0.21 KLayout

Chapter 11. RBA Introduction 11.4. Extending the example

is simple example already demonstrates some important concepts:

Reimplementation e menu item’s functionality is implemented by reimplementing the Action ob-
ject’s triggered method. is method is called when the menu item is selected.

Delegation e menu item is not implemented directly but the implementation is delegated to an Action
object. e action provides the “slot” that the menu item refers to. One action may be used for
multiple menu items. e action does not only provide the implementation but the title, keyboard
shortcut and other properties of the menu item. is way, the action may be used in multiple places
(i.e. menu and toolbar) and still appear the same.

Menu item addressing e menu item is addressed by a “path” expression. In this case, the path is
used for specifying the place where to insert the item. e path “@toolbar.end” instructs the menu
controller to insert the item at the end of the toolbar. e path “tools_menu.end” instructs it to
insert the item at the end of the ..Tools menu. e second string passed to “insert” is the name of
the new item. Aer inserting, the new item can be addressed with the path “@toolbar.rba_test” and
“tools_menu.rba_test”.

Ownership of objects RBA is not able to guarantee a certain lifetime of an object, because Ruby and C++
implement different lifetime management models. Specifically, for the action object this means, that
the menu controller, which is implemented in C++ cannot tell ruby that it keeps a reference to the
action object. Without further measures, ruby will ignore this relationship and delete the action
object – the menu item will disappear. To overcome this problem, an explicit reference to the action
object must be held. In this case, a global variable is used (“$menu_handler”). is could as well be
a member of an object or an array member.
It is very important to keep this aspect in mind when designing RBA applications.

Documentation for the various classes involved can be found in chapter 13: RBA Reference.

11.4 Extending the example

To give the menu callback a more “ruby style” look, a wrapper can be created what allows to aach code
to the menu in the style of a ruby iterator. Now the callback uses “yield” to execute the code aached to
the menu. In addition, the menu item now uses an icon and the keyboard shortcut ... + ..F7 :

Listing 11.6: Ruby Code – New Menu – Hallo World Extended

1 class MenuHandler < RBA::Action
2 def initialize(t, k, i, &action)
3 self.title = t
4 self.shortcut = k
5 self.icon = i
6 @action = action
7 end
8 def triggered
9 @action.call(self)

10 end
11 private
12 @action
13 end
14

15 app = RBA::Application.instance
16

17 $menu_handler = MenuHandler.new("RBA test", "Shift+F7",
18 "icon.png") { RBA::MessageBox::info("Info",
19 "Hello, world!", RBA::MessageBox::b_ok)
20 }
21

22 menu = app.main_window.menu
23 menu.insert_item("@toolbar.end", "rba_test", $menu_handler)

KLayout Version 0.21 127

Chapter 11. RBA Introduction 11.5. Events

24 menu.insert_item("tools_menu.end", "rba_test", $menu_handler)
25

26 app.exec

11.5 Events

Starting with version 0.21 RBA features “events”. Events allow to specify a Ruby block which is called
when a certain condition takes place. Using events eliminates the need for deriving a method from an
existing class. In particular, with version 0.21 RBA::Action features one event called on_triggered. A block
associated with this event is called, when the action is triggered.

With events the example looks like that:

Listing 11.7: New Menu – Hallo World Using Events

1 app = RBA::Application.instance
2

3 $menu_handler = RBA::Action.new
4 $menu_handler.title = "RBA test"
5 $menu_handler.shortcut = "Shift+F7"
6 $menu_handler.icon = "icon.png"
7

8 # install the event
9 $menu_handler.on_triggered {

10 RBA::MessageBox::info("Info", "Hello, world!",
11 RBA::MessageBox::b_ok)
12 }
13

14 menu = app.main_window.menu
15 menu.insert_item("@toolbar.end", "rba_test", $menu_handler)
16 menu.insert_item("tools_menu.end", "rba_test", $menu_handler)
17

18 app.exec

11.6 Brief overview over the API

is section describes the main classes that the API provides. e link provides detailed information about
the classes. e documentation uses a special notation to describe the characteristics or a method and the
arguments:

[static] A class method is “static” (this is the terminology used in C). Such a method can be called
without an object using the notation Class.Method or Class::Method. Oen these methods are
constructors, i.e. they create objects given a set of parameters.

[event] is definition is an “event”. An event is a block of code that is executed when the specified
event happens. See the events example above how to use events. e parameters specified in
an event declaration describe the block arguments that are passed to the event handler block.

[const] Amethod is “const”, if it does not change the state of an object. is for example applies to read
accecsors that just retrieve information but do not alter the object’s state.

ref (for return values) Some methods return references to objects. is means that Ruby does not re-
ceive a copy of the object but rather a pointer. From the Ruby perspective, this does not make
a difference. From the C++ perspective it means, that the C++ code is the owner of the object
and controls the object’s lifetime.

[const] ref (for return values) Constance references are similar to references. However, on such refer-
ences, only “const” methods may be called.

128 Version 0.21 KLayout

Chapter 11. RBA Introduction 11.7. RBA and QtRuby

ref (for arguments) Such arguments receive a reference to the given object. From the C++ perspective
this means, that Ruby is controlling the object’s lifetime. Specifically that means that ruby must
maintain an explicit reference to such an object since otherwise the object gets destroyed by
Ruby’s garbage collection mechanism which will either withdraw the object from C++ context
or (worse) leave an invalid reference within C++.
e Action objects are special in this respect: Technically, Action objects are references itself.
Even through Action objects are passed by value, they behave as being passed by reference.

yield … Some methods are iterators. is means that code can be aached to them, which is called for
each object are value delivered by this iterator. is follows the philosophy of Ruby. However,
in some places, “real” iterators are used, i.e. LayerPropertiesIterator.

Following a brief description of the main classes and the concepts connected with them:

Class Description
Application is is themain application class, see section 13.5. ere is only one instance representing

the application (a “singleton”). e instance can be retrieved with the instance method.
e Application object allows to configure the application on a high level and to retrieve
the MainWindow object, the next basic object.

MainWindow is class represents the main window, see section 13.44. Since there is only one main
window per application currently, there is only one MainWindow object. is object is
managed by the Application object.
e main window mainly acts as a container for the “layout views”, represented by Lay-
outView objects. Each view is equivalent to a tab panel in the main window. e main
window manages the views and allows to close views, open new ones and allows to re-
trieve references to the corresponding LayoutView objects.

LayoutView A Layout View represents the “canvas” on which one or more layouts are drawn, see
section 13.42. e layouts to draw are called “cell views”, because basically they show a
single cell from a collection of cells. A cell view is represented by a CellView object, see
section 13.13. Multiple cell views can be present in a single LayoutView object.
e “layer views” control, how the cell views are drawn. Basically each layer view is a
recipe how to draw one layer of one cell view and how to show it (colors, fill paern,
transformations etc.). Layer views can be arranged hierarchically such that groups are
formed with parent nodes controlling the appearance of a group of layer views from
a central point. Layer views are represented by LayerPropertiesNode objects, see sec-
tion 13.40.

Layout e Layout object represents the layout database, see section 13.41. Layouts are associ-
ated with CellView objects. In principle, multiple CellView objects may refer to the same
Layout. A layout is organized in cells and layers. Each cell contains shapes on the same
set of layers and optionally a set of instances of other cells.
Layout layers must not be confused with the layer views: a layer view is the recipe how
to display a layer from a layout object.
A set of various classes comprise the layout API. e main classes are: Cell, Shape,
CellInstArray, Trans, Box, Polygon and others.

11.7 RBA and QtRuby

QtRuby is a binding of the Qt API which has been made available for Ruby. is project also supports the
Qt4 API (qtruby4). It is available as package for all major Linux distributions. SinceKLayout is built upon
Ruby, it integrates very well with QtRuby. In particular:

• QtRuby can accessKLayout’s widget hierarchy and use Qt’s meta object interface to identifyKLay-
out’s widget classes.

KLayout Version 0.21 129

Chapter 11. RBA Introduction 11.7. RBA and QtRuby

• QtRuby and KLayout share the same message loop which enables advanced applications such as
running a TCP server within KLayout’s process for IPC purposes.

• QtRuby can modify KLayout’s widget hierarchy and modify or alter the appearance of KLayout.
is feature has to be used carefully however since KLayout does not take only limited care of
foreign code modifying the UI.

I have prepared two examples which demonstrate how to use QtRuby:

1. Using QtRuby I – Adding a custom dialog section 12.8 and
2. Using QtRuby II – Transforming KLayout into a HTTP server section 12.9.

e following sub sections describes a few technical notes in detail.

11.7.1 Execution context

By default, theKLayout application runs outside the Ruby interpreter’s context. e interpreter is entered
only on request (i.e. if a menu is bound to a ruby script and the script needs to be executed. For QtRuby
however, it is necessary that the whole application runs in the interpreter context. Otherwise Ruby code
being executed in response to a UI event can crash the application (because it runs outside the interpreter).
In particular error handling is not provided in that case and the application will issue a segmentation fault.

To run KLayout in the interpreter context, provide a central script that contains this line as the last line
of code:

Ruby Code 11.8: Application Start

1 RBA::Application.instance.exec

Run this script with the “-r” option, so KLayout does not use it’s own exec() call. en, the whole appli-
cation will run inside the interpreter and Ruby errors are handled properly.

11.7.2 Interfacing between QtRuby and RBA objects

Although RBA and QtRuby seem similar on the first glance, they are built upon a different system. For
some objects, namely the main window object, QtRuby and RBA provide two different views to the same
basic Qt object. e RBA view gives access to the methods and properties exported by RBA while the
QtRuby view accesses the QtMainWindow interface. Both can interact but usually that is a bad idea
because it will interfere with KLayout’s internal bookkeeping. It’s safe however to control Qt features
(such as adding dialogs as logical children) through the QtRuby interface andKLayout’s features through
the RBA interface.

Because it’s particular interesting, here is the code to obtain the main window’s QtRuby and RBA inter-
face:

Ruby Code 11.9: Ruby Code – QtRuby interface of the main window

1 # QtRuby interface of the main window
2 qt_main_window = Qt::Application.topLevelWidgets.select {
3 |w| w.class.to_s == "lay::MainWindow"
4 } [0]

Ruby Code 11.10: Ruby Code – RBA interface

1 # RBA interface of the main window
2 rba_main_window = RBA::Application.instance.main_window

130 Version 0.21 KLayout

Chapter 11. RBA Introduction 11.8. What can be done and what can’t

For a brief introduction into QtRuby see KDE TechBase Ruby.

11.8 What can be done and what can’t

Following examples for what can be done with RBA:

• Customizing the menu, i.e. redefining the keyboard shortcuts or rearranging the menu
• Customizing the layer view list, managing custom stipple paern
• Automation of tasks like loading of layouts, doing screen shots etc.
• Generating layouts dynamically, i.e. for annotation of other layout or visualization purposes
• Linking KLayout to other applications or databases for example
• Adding custom browsers using the HTML browser dialog (see BrowserDialog documentation)
• Scanning the layout database (i.e. for marker shapes) and performing actions on the results
• Handling properties on shape level (adding and removing)
• Controlling rulers and markers (query, remove and create)
• Combining RBA with qtruby4 (a Ruby wrapper for Qt) to implement custom dialogs etc.
• Generating layout files (there is a “write” function to write a layout to a file).

And here comes an example for what can’t be done with RBA currently:

• Responding to mouse clicks in the canvas (since there is no API for this yet).

11.9 More information

e basic source for more information is the RBA reference documentation. For a deeper understanding
of the API, a look at the RBA examples given in chapter 12 might be helpful.

Documentation for older API versions are provided on KLayout’s Home Page:
Version 0.20, Version 0.19, Version 0.18, Version 0.17, Version 0.16.

KLayout Version 0.21 131

http://techbase.kde.org/Development/Languages/Ruby
http://www.klayout.de/0.20/rba_index.html
http://www.klayout.de/0.19/rba_index.html
http://www.klayout.de/0.18/rba_index.html
http://www.klayout.de/0.17/rba_index.html
http://www.klayout.de/0.16/rba_index.html

Chapter 12. RBA Examples

Chapter 12

RBA Examples

is chapter contains some example scripts that hopefully are instructive and may serve as starting point
for own experiments.

Content
12.1 Using the HTML browser dialog I: A location browser
12.2 Using the HTML browser dialog II: A screen-shot gallery
12.3 Dynamic database manipulation: A “Sokoban” implementation
12.4 Creating layouts I: e Koch curve
12.5 Creating layouts II: Data visualization
12.6 Menus: Dumping the menu structure
12.7 Editing: Hierarchical propagation
12.8 Using QtRuby I: Adding a custom dialog
12.9 Using QtRuby II: Transforming KLayout into a HTTP server.

12.1 Using the HTML browser dialog I: A location browser

e code for this example can be found here: browser.rb.
See chapter 11: RBA Introduction, for a description of how to run that script.

Figure 12.1. RBA Example 1 – Using the HTML browser dialog I – A location browser.

eHTML browser dialog is very handy to implement simple UI’s based on HTML code and a client/server
scheme. is setup is similar to that of the HTTP client/server pair. e BrowserDialog object acts as a
HTML browser and a BrowserSource object can be used to deliver the HTML code for that browser.

132 Version 0.21 KLayout

http://www.klayout.de/browser.rb

Chapter 12. RBA Examples 12.1. A screen-shot gallery

More specific, each link with the “int:” scheme that the HTML browser encounters is resolved not by
loading the appropriate resource but by asking the BrowserSource object to deliver the data for that URL.
is scheme can be used to build user interfaces in the same way that a web application would implement
a simple user interface.

In addition to simply delivering data, the BrowserSource object may perform actions on theKLayoutAPI,
such as zooming to a certain location, opening files, etc. is enables a new class of applications based on
HTML and direct interaction with the application core.

e example given here employs this technique to implement a simple location browser: given a set of
three locations, the user can browse to one of these locations by clicking the link. To try this application,
load a layout and select the ..Browser item in the toolbar.

12.2 Using the HTML browser dialog II: A screen-shot gallery

e code for this example can be found here: sreenshots.rb.
See chapter 11: RBA Introduction, for a description of how to run that script.

Figure 12.2. RBA Example 2 – Using the HTML browser dialog II – A screen-shot gallery

is example employs the HTML browser dialog to implement a simple screen-shot gallery: by clicking
on the ..Add screenshot item in the toolbar, a screen-shot is taken and placed in the HTML browser window.
Each screen-shot will be represented by a thumbnail image and a screen-size image. e browser will
display the thumbnails together with a link that will put the viewer to the original location. By clicking
on the thumbnail image, the enlarged version is shown in the browser window.

12.3 Dynamic database manipulation: A “Sokoban” implementation

e code for this example can be found here: sokoban.rb.
See RBA Introduction, for a description of how to run that script.

is toy application dynamically changes the database to realize a game arena. As a trial application, it
implements one level of the famous “Sokoban” game.

KLayout Version 0.21 133

http://www.klayout.de/sreenshots.rb
http://www.klayout.de/sokoban.rb

Chapter 12. RBA Examples 12.3. e Koch curve

Figure 12.3. RBA Example 3 – Dynamic database manipulation – A “Sokoban” implementation

12.4 Creating layouts I: e Koch curve

e code for this example can be found here: fractal.rb.
See RBA Introduction, for a description of how to run that script.

Figure 12.4. RBA Example 4 – Creating layouts I – e Koch curve.

134 Version 0.21 KLayout

http://www.klayout.de/fractal.rb

Chapter 12. RBA Examples 12.4. Data visualization

is application creates a Koch curve which is constructed by the recursive application of a generation
recipe. In our case, this recipe is implemented by instantiating cells. An exact implementation would
require a cell to call itself, but this is not allowed in this frame-word. Instead, a set of up to 20 cells is
created with each cell calling the successive one in the same fashion.

When zooming deeply into the curve, the viewer gets prey slow which is a consequence of the per-
formance de-rating of the underlying quad tree when the quads get really small. However, since this
application is a prey artificial one, I hope that this is not a serious imperfection ….

12.5 Creating layouts II: Data visualization

e code for this example can be found here: datamap.rb.
See RBA Introduction, for a description of how to run that script.

Figure 12.5. RBA Example 5 – Creating layouts II – Data visualization.

is application creates a 2-dimensional function plot by employing differently colored layers to display
the pixel of the data map. 256 Layers are created representing values from -1.0 to 1.0 of the function
“sin(r)/r”. e function is evaluated on the 500 x 500 grid, each grid point is assigned a value, the value is
mapped to a layer and a box is created to represent the pixel.

12.6 Menus: Dumping the menu structure

e code for this example can be found here: dump_menu.rb.
See RBA Introduction, for a description of how to run that script.

KLayout Version 0.21 135

http://en.wikipedia.org/wiki/Koch_snowflake
http://www.klayout.de/datamap.rb
http://www.klayout.de/dump_menu.rb

Chapter 12. RBA Examples 12.6. Hierarchical propagation

Figure 12.6. RBA Example 6 – Menus – Dumping the menu structure.

is application dumps the menu structure into a HTML browser window. Beyond acting as an example,
this script is quite useful to visualize the menu structure and to determine insert points when installing
new items.

12.7 Editing: Hierarchical propagation

e code for this example can be found here: flaen.rb.
See RBA Introduction, for a description of how to run that script.

is application provides two new toolbar entries bound to keys ..F7 and ..F8 . e first function brings up
all selected shapes and instances to the current cell level and removes them from their original cell. is
makes sense only if the selection contains objects from sub-cells (hence not in “top level only” selection
mode). e second function brings up such objects one level in hierarchy. Both functions just bring up
objects along the selection path, not into all instances of the selected cell. ey are very similar to the
function ..Edit ..Selection ..Move up in hierarchy menu.

e new functions can only be used in “Edit” mode and require version 0.16 or later.

is code demonstrates in particular:

• How to use the selection set of objects.
• How to modify geometrical objects (transform, erase, copy).
• How to implement undo/redo support, which is prey simple using the LayoutView’s transaction
and commit methods.

136 Version 0.21 KLayout

http://www.klayout.de/flatten.rb

Chapter 12. RBA Examples 12.8. Using QtRuby I: Adding a custom dialog

12.8 Using QtRuby I: Adding a custom dialog

e code for this example can be found here: qtrubydialog.rb.

Figure 12.7. RBA Example 8 – Using QtRuby I – Adding a custom dialog.

For this script, it is important that it is run KLayout with the “-r” option, i.e.

Console Input 12.1: KLayout Command Line Input – Basics

klayout -r qtrubyserver.rb

e script will add a new dialog to KLayout which is opened when KLayout starts. It offers a ..Screenshot

buon which will take a screen-shot and display it in a label above the buon.

is script demonstrates the basic technique of mixingKLayout objects with RBA objects. Although both
live in different object spaces (RBA is built on a different basis that QtRuby), both share the same Qt object
below. For that reason, QtRuby shares the event loop with KLayout and can access and even modify
KLayoutś Qt widget hierarchy.

In particular, this line of code demonstrates how to obtain KLayout’s MainWindow widget:

Ruby Code 12.2: QtRuby interface of the main window

1 # QtRuby interface of the main window
2 qt_main_window = Qt::Application.topLevelWidgets.select {

KLayout Version 0.21 137

http://www.klayout.de/qtrubydialog.rb

Chapter 12. RBA Examples 12.8. Transforming KLayout into a HTTP server

3 |w| w.class.to_s == "lay::MainWindow"
4 } [0]

12.9 Using QtRuby II: Transforming KLayout into a HTTP server.

e code for this example can be found here: qtrubyserver.rb.

Figure 12.8. RBA Example 9 – Using QtRuby II – Transforming KLayout into a HTTP server

For this script, it is important that it is run KLayout with the “-r” option, i.e.

Console Input 12.3: KLayout Command Line Input – QtRuby Server

klayout -r qtrubyserver.rb

e script will open a TCP socket on port 8081 and listen to it while KLayout runs. In this example,
the script will respond to incoming connections and implements and rather simple version of the HTTP
protocol. If a browser is used on the local host to open this URL:

Console Input 12.4: Dialog Input – Transformation

http://127.0.0.1:8081/screenshot.html

138 Version 0.21 KLayout

http://www.klayout.de/qtrubyserver.rb

Chapter 12. RBA Examples 12.9. Transforming KLayout into a HTTP server

Our simple server will respond with a HTML page containing a single image which shows a snapshot of
the current screen. For a remote connection, 127.0.0.1 can of course be replaced by the IP address of the
host runningKLayout. Please note, that to run the example, you need to disable the proxy if your browser
is configured to use one.

is script demonstrates the cooperation of QtRuby and KLayout which share the same event loop: e
TcpServer object lives in the context of the application and can control the application through RBA ob-
jects. is principle opens a wide field of applications where KLayout is remotely controlled by external
processes and over the network.

KLayout Version 0.21 139

Chapter 13

RBA Reference

A comprehensive documentation of the ruby based automation API.

Class overview in alphabetic principle of arrangement
AbstractMenu e abstract menu class.
Action is class implements an event handler for a menu event.
ActionBase An action.
Annotation is class implements an “annotation object”.
Application e application object.
ArgType e description of a type (argument or return value).
Box A box class.
BrowserDialog e HTML browser dialog.
BrowserSource e BrowserDialog source for “int” URL’s.
Cell e cell object.
CellInstArray A single or array cell instance.
CellMapping A cell mapping derived from two hierarchies.
CellView A “cell view” reference.
Class e interface to the declarations of classes and methods.
CplxTrans A complex transformation.
DBox A box class.
DCplxTrans A complex transformation.
DEdge An edge class.
DPath An path class.
DPoint A point class with double (floating-point) coordinates.
DPolygon A polygon class.
DSimplePolygon A simple polygon class.
DText A text object.
DTrans A simple transformation.
DoubleValue Encapsulate a floating point value.
Edge An edge class.
EdgeProcessor e edge processor (boolean, sizing, merge).
FileDialog Various methods to request a file name.
ICplxTrans A complex transformation.
Image An image to be stored as a layout annotation.
ImageDataMapping A structure describing the data mapping of an image object.
InputDialog Various methods to open a dialog requesting data entry.
InstElement An element in an instantiation path.

140 Version 0.21 KLayout

Chapter 13. RBA Reference

Instance An instance proxy.
IntValue Encapsulate an integer value.
LayerInfo A structure encapsulating the layer properties.
LayerMap An object representing an arbitrary mapping of physical to logical layers.
LayerProperties e layer properties structure.
LayerPropertiesIterator Flat layer iterator.
LayerPropertiesNode A layer properties node structure.
Layout e layout object.
LayoutView e view object presenting one or more layout objects.
LoadLayoutOptions Layout reader options.
MainWindow e main application window and central controller object.
Manager A transaction manager class.
Marker e floating-point coordinate marker object.
MessageBox Various methods to display message boxes.
Method e interface to a method declaration.
ObjectInstPath A class describing a selected shape or instance.
Observer is class implements an event handler for use with ’observer’ interfaces.
ObserverBase e “Observer” base class.
ParentInstArray A parent instance.
Path An path class.
Point An integer point class.
Polygon A polygon class.
RdbCategory e report database category.
RdbCell A report database cell representation.
RdbItem A RDB item.
RdbItemValue A RDB value object.
RdbReference A cell reference.
RecursiveShapeIterator An iterator delivering shapes that touch or overlap the given region recursively.
ReportDatabase e report database object.
SaveLayoutOptions Options for saving layouts.
Shape A shape proxy.
ShapeProcessor e shape processor (boolean, sizing, merge on shapes).
Shapes A collection of shapes.
SimplePolygon A simple polygon class.
StringListValue Encapsulate a string list.
StringValue Encapsulate a string value.
Text A text object.
Trans A simple transformation.

KLayout Version 0.21 141

Chapter 13. RBA Reference 13.0. Class AbstractMenu (version 0.21)

13.1 Class AbstractMenu (version 0.21)
e abstract menu class.

e abstract menu is a class that stores a main menu and several pop-up menus in a generic form such
that they can be manipulated and converted into GUI objects.

Each item can be associated with an Action, which delivers a title, enabled/disable state etc. e Action is
either provided when new entries are inserted or created upon initialization.

e abstract menu class provides methods to manipulate the menu structure (the state of the menu items,
their title and shortcut key is provided and manipulated through the Action object).

Menu items and sub menus are referred to by a “path”. e path is a string with this interpretation:

“” is the root
“[<path>.]<name>” is an element of the submenu given by <path>. If <path> is omied, this refers

to an element in the root.
“[<path>.]end” refers to the item past the last item of the sub menu given by <path> or root.
“[<path>.]begin” refers to the first item of the sub menu given by <path> or root.

“[<path>.]#<n>” refers to the nᵗʰ item of the sub menu given by <path> or root (n is an integer
number).

Menu items can be put into groups. e path strings of each group can be obtained with the groupmethod.
An item is put into a group by appending “:<group-name>” to the item’s name. is specification can be
used several times.

Detached menus (i.e. for use in context menus) can be created as virtual top-level sub menus with a name
of the form “@<name>”. A special detached menu is “@toolbar” which describes all elements placed
into the toolbar.

Method Overview

action Get the reference to an Action object associated with the given path.
items Get the sub items for a given sub menu.
is_menu ery if an item is a menu item.
is_separator ery if an item is a separator.
is_valid ery if a path is a valid one.
insert_item Insert a new item before the item given by the path.
insert_separator Insert a new separator before the item given by the path.
insert_menu Insert a new sub menu before the item given by the path.
delete_item Delete the item given by the path.
group Get the group members.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.1.1 [const] ActionBase action(path)
Get the reference to an Action object associated with the given path.

Input: path e path to the item. is must be a valid path.
Return: ref A reference to an Action object associated with this path.

142 Version 0.21 KLayout

Chapter 13. RBA Reference 13.1. Class AbstractMenu (version 0.21)

13.1.2 delete_item(path)
Delete the item given by the path.

Input: path e path to the item to delete.
Return: No return.

13.1.3 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.1.4 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object wasn’t destroyed.

13.1.5 [const] string[] group(group)
Get the group members.

Input: group
Return: string[] A vector of all members (by path) of the group.

13.1.6 insert_item(path, name, ActionBase action)
Insert a new item before the one given by the path.

e Action object passed as the third parameter references the handler which both implements the action
to perform and the menu item’s appearance such as title, icon and keyboard shortcut.

Input: path e path to the item as string to insert the new item before it.
name e name of the new item to insert.
action e Action object to insert.

13.1.7 insert_menu(path, name, title)
Insert a new sub menu before the item given by the path.

e title string optionally encodes the key shortcut and icon resource in the form:
<text>[“(“<shortcut>”)”][“<“<icon-resource>”>”].

Input: path e path to the item before which to insert the sub menu.
name e name of the sub menu to insert
title e title of the sub menu to insert.

13.1.8 insert_separator(path, name)
Insert a new separator before the item given by the path.

Input: path e path to the item as string to insert the separator before it.
name e name of the separator as string to insert.

KLayout Version 0.21 143

Chapter 13. RBA Reference 13.1. Class AbstractMenu (version 0.21)

13.1.9 [const] boolean is_menu(path)
ery if an item is a menu.

Input: path e path to the item.
Return: true e path is valid.

false e path is not valid or is not a menu item.

13.1.10 [const] boolean is_separator(path)
ery if an item is a separator.

is method has been introduced in version 0.19.

Input: path e path to the item.
Return: true e path is valid.

false e path is not valid or is not a menu item.

13.1.11 [const] boolean is_valid(path)
ery if a path is a valid one.

Input: path e path to check.
Return: true e path is valid.

false e path is not valid or is not a menu item.

13.1.12 [const] string[] items(path)
Get the sub items for a given sub menu.

Input: path e path to the sub menu.
Return: string[] Empty vector if the path is not valid or the item does not have children.

path e path string for the child item.
path(1)…path(n) A vector path string for the child items.

144 Version 0.21 KLayout

Chapter 13. RBA Reference 13.1. Class Action (version 0.21)

13.2 Class Action (version 0.21)
e event handler for menu events.

is class allows to re-implement the “triggered” handler to receive menu events. e Actionclass is de-
rived from class ActionBase and inherits all it’s methods.

Method Overview

triggered is method is called if the menu item is selected.
on_triggered is event is called if the menu item is selected.
title= Set the title.
title Get the title.
shortcut= Set the keyboard shortcut.
shortcut Get the keyboard shortcut.
is_checkable? “is_checkable” aribute.
is_checked? “is_checked” aribute.
is_enabled? “is_enabled” aribute.
is_visible? “is_visible” aribute.
checkable= Make the item(s) check-able or not.
enabled= Enable or disable the action.
visible= Show or hide.
checked= Check or uncheck.
icon= Set the icon to the given picture.
icon_text= Set the icon’s text.
icon_text Get the icon’s text.
trigger Trigger the action programmatic-ally.
assign Assign the contents of another object to self.
dup Creates a copy of self..
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.2.1 assign(Action other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.2.2 checkable=(boolean)
Make the item(s) check able or not.

Input: true Make the item check able.
false Make the item not check able.

13.2.3 checked=(boolean)
Check or unchecked

Input: true Make the item checked.
false Make the item unchecked.

KLayout Version 0.21 145

Chapter 13. RBA Reference 13.2. Class Action (version 0.21)

13.2.4 destroyExplicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.2.5 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.2.6 [const] Action dup
Creates a copy of self.

Return: Action e copy of self.

13.2.7 enabled=(boolean)
Enable or disable the action.

Return: true Enable the item.
false Disable the item.

13.2.8 icon=(file)
Set the icon to the given picture.

Input: file e image file to load as icon for the menu item. Passing an empty string will
reset the icon.

13.2.9 [const] icon_text
Get the icon’s text.

Input: icon_text e current icon text as string.

13.2.10 icon_text=(icon_text)
Set the icon’s text.

Input: icon_text e icon text as string to be set below the icon. If no icon text is given the
normal text will be used for the icon. Passing an empty string will reset the
icon’s text.

13.2.11 [const] boolean is_checkable?
“is_checkable” attribute.

Return: true e item is check able.
false e item is not check able.

146 Version 0.21 KLayout

Chapter 13. RBA Reference 13.2. Class Action (version 0.21)

13.2.12 [const] boolean is_checked?
“is_checked” attribute.

Return: true e item is checked.
false e item is unchecked.

13.2.13 [const] boolean is_enabled?
“is_enabled” attribute.

Return: true e item is enabled.
false e item is disabled.

13.2.14 [const] boolean is_visible?
“is_visible” attribute.

Return: true e item is visible.
false e item is invisible.

13.2.15 [event] on_triggered
is event is called if the menu item is selected.

is event has been introduced in version 0.21.

13.2.16 [const] string shortcut
Get the keyboard shortcut.

Return: shortcut e keyboard shortcut as a string.

13.2.17 shortcut=(shortcut)
Set the keyboard shortcut.

Input: shortcut e keyboard shortcut as string (i.e. ’Ctrl+C’).

13.2.18 [const] string title
Get the title.

Return: title e current title as string.

13.2.19 title=(title)
Set the title.

Input: title e title to set as string.

KLayout Version 0.21 147

Chapter 13. RBA Reference 13.2. Class Action (version 0.21)

13.2.20 trigger
Trigger the action programmatically.

13.2.21 triggered
is method is called if the menu item is selected.

13.2.22 visible=(boolean)
Show or hide.

Input: true Make the item visible.
false Make the item invisible.

148 Version 0.21 KLayout

Chapter 13. RBA Reference 13.2. Class ActionBase (version 0.21)

13.3 Class ActionBase (version 0.21)
An action.

Actions act as a generalization of menu entries. e action provides the appearance of a menu entry such
as title, key shortcut etc. and dispatches the menu events. e action can be manipulated to change to
appearance of a menu entry and can be aached an observer that receives the events when the menu item
is selected.

Multiple action objects can in fact refer to the same action internally, in which case the information and
event handler is copied between the incarnations.

Method Overview

triggered is method is called if the menu item is selected.
on_triggered is event is called if the menu item is selected.
title= Set the title.
title Get the title.
shortcut= Set the keyboard shortcut.
shortcut Get the keyboard shortcut.
is_checkable? “is_checkable” aribute.
is_checked? “is_checked” aribute.
is_enabled? “is_enabled” aribute.
is_visible? “is_visible” aribute.
checkable= Make the item(s) check-able or not.
enabled= Enable or disable the action.
visible= Show or hide.
checked= Check or uncheck.
icon= Set the icon to the given picture.
icon_text= Set the icon’s text.
icon_text Get the icon’s text.
trigger Trigger the action programmatic-ally.
assign Assign the contents of another object to self.
dup Creates a copy of self..
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.3.1 assign(ActionBase other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.3.2 checkable=(boolean)
Make the item(s) check able or not.

Input: true Make the item check able.
false Make the item not check able.

KLayout Version 0.21 149

Chapter 13. RBA Reference 13.3. Class ActionBase (version 0.21)

13.3.3 checked=(boolean)
Check or unchecked

Input: true Make the item checked.
false Make the item unchecked.

13.3.4 destroyExplicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.3.5 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.3.6 [const] ActionBase dup
Creates a copy of self.

Return: ActionBase e copy of self.

13.3.7 enabled=(boolean)
Enable or disable the action.

Return: true Enable the item.
false Disable the item.

13.3.8 icon=(file)
Set the icon to the given picture.

Input: file e image file to load as icon for the menu item. Passing an empty string will
reset the icon.

13.3.9 [const] icon_text
Get the icon’s text.

Input: icon_text e current icon text as string.

13.3.10 icon_text=(icon_text)
Set the icon’s text.

Input: icon_text e icon text as string to be set below the icon. If no icon text is given the
normal text will be used for the icon. Passing an empty string will reset the
icon’s text.

150 Version 0.21 KLayout

Chapter 13. RBA Reference 13.3. Class ActionBase (version 0.21)

13.3.11 [const] boolean is_checkable?
“is_checkable” attribute.

Return: true e item is check able.
false e item is not check able.

13.3.12 [const] boolean is_checked?
“is_checked” attribute.

Return: true e item is checked.
false e item is unchecked.

13.3.13 [const] boolean is_enabled?
“is_enabled” attribute.

Return: true e item is enabled.
false e item is disabled.

13.3.14 [const] boolean is_visible?
“is_visible” attribute.

Return: true e item is visible.
false e item is invisible.

13.3.15 [event] on_triggered
is event is called if the menu item is selected.

is event has been introduced in version 0.21.

13.3.16 [const] string shortcut
Get the keyboard shortcut.

Return: shortcut e keyboard shortcut as a string.

13.3.17 shortcut=(shortcut)
Set the keyboard shortcut.

Input: shortcut e keyboard shortcut as string (i.e. ’Ctrl+C’).

13.3.18 [const] string title
Get the title.

Return: title e current title as string.

13.3.19 title=(title)
Set the title.

Input: title e title to set as string.

KLayout Version 0.21 151

Chapter 13. RBA Reference 13.3. Class ActionBase (version 0.21)

13.3.20 trigger
Trigger the action programmatically.

13.3.21 triggered
is method is called if the menu item is selected.

13.3.22 visible=(boolean)
Show or hide.

Input: true Make the item visible.
false Make the item invisible.

152 Version 0.21 KLayout

Chapter 13. RBA Reference 13.3. Class Annotation (version 0.21)

13.4 Class Annotation (version 0.21)
e annotation object.

is class implements an “annotation object”.

Method Overview

new Create a new ruler or marker with the default aributes.
p1 Get the first point of the ruler or marker.
p2 Get the second point of the ruler or marker.
p1= Set the first point of the ruler or marker.
p2= Set the second point of the ruler or marker.
box Get the bounding box of the object (not including text).
transformed Transform the ruler or marker with the given simple transformation.
transformed_cplx Transform the ruler or marker with the given complex transformation.
transformed_cplx Transform the ruler or marker with the given complex transformation.
fmt= Set the format used for the label.
fmt Returns the format used for the label.
fmt_x= Set the format used for the x-axis label.
fmt_x Returns the format used for the x-axis label.
fmt_y= Set the format used for the y-axis label.
fmt_y Returns the format used for the y-axis label.
style= Set the style used for drawing the annotation object.
style Returns the style of the annotation object.
style_… Various style_… codes used by the style method.

style_ruler style_ruler code.
style_arrow_end style_arrow_end code.
style_arrow_start style_arrow_start code.
style_arrow_both style_arrow_both code.
style_line style_line code.

outline= Set the outline style used for drawing the annotation object.
outline Returns the outline style of the annotation object.
outline_… Various outline_… codes used by the outline method.

outline_diag outline_diag code.
outline_xy outline_xy code.
outline_diag_xy outline_diag_xy.
outline_yx outline_yx code.
outline_diag_yx outline_diag_yx code.
outline_box outline_box code.

snap= Set the “snap to objects” aribute.
snap? Return the “snap to objects” aribute.
angle_constraint= Set the angle constraint aribute.
angle_constraint Return the angle constraint aribute.
angle_… Various angle_… codes used by the angle_constraint method.

angle_any angle_any code.
angle_diagonal angle_diagonal code.
angle_ortho angle_ortho code.
angle_horizontal angle_horizontal code.
angle_vertical angle_vertical code.
angle_global angle_global code.

text_x Return the formaed text for the x-axis label.
text_y Return the formaed text for the y-axis label.
text Return the formaed text for the main label.

KLayout Version 0.21 153

Chapter 13. RBA Reference 13.4. Class Annotation (version 0.21)

to_s Returns the string representation of the ruler.
== Equality operator.
!= Inequality operator.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.4.1 [const] boolean !=Annotation
Inequality operator.

Return: true e two types are unequal.
false e two types are equal.

13.4.2 [const] boolean ==Annotation
Equality operator.

Return: true e two types are equal.
false e two types are unequal.

13.4.3 [const] integer angle_constraint
Return the angle constraint attribute.

See angle_constraint= method for more detailed description.

13.4.4 angle_constraint=(flag)
Set the angle constraint attribute.

Input: flag e angle constraint aribute. is aribute controls if an angle constraint is
applied when moving one of the ruler’s points. e various angle_… values
can be used for this purpose.

13.4.5 [static] integer angle_…
Various angle_… code used by the angle_constraint method.

13.4.5.1 [static] integer angle_any – angle_any code.

13.4.5.2 [static] integer angle_diagonal – angle_diagonal code.

13.4.5.3 [static] integer angle_global – angle_global code.

is code will tell the ruler or marker to use the angle constraint defined globally.

154 Version 0.21 KLayout

Chapter 13. RBA Reference 13.4. Class Annotation (version 0.21)

13.4.5.4 [static] integer angle_horizontal – angle_horizontal code.

13.4.5.5 [static] integer angle_ortho – angle_ortho code.

13.4.5.6 [static] integer angle_vertical – angle_vertical code.

13.4.6 assign(Annotation other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.4.7 [const] DBox box
Get the bounding box of the object (not including text).

Return: e bounding box

13.4.8 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.4.9 destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.4.10 [const] Annotation dup
Creates a copy of self.

Return: Annotation e copy of self.

13.4.11 [const] string fmt
Get the format used for the label.

Return: format e format string.

13.4.12 fmt=(format)
Set the format used for the label.

Input: format e format string.

13.4.13 [const] string fmt_x
Get the format used for the x-axis label.

Return: format e format string.

KLayout Version 0.21 155

Chapter 13. RBA Reference 13.4. Class Annotation (version 0.21)

13.4.14 fmt_x=(format)
Set the format used for the x-axis label.

X-axis labels are only used for styles that have a horizontal component.

Input: format

13.4.15 [const] string fmt_y
Get the format used for the y-axis label.

Return: format e format string.

13.4.16 fmt_y=(format)
Set the format used for the y-axis label.

Y-axis labels are only used for styles that have a vertical component.

Input: format

13.4.17 [static] Annotation new
Create a new ruler or marker with the default attributes.

13.4.18 [const] integer outline
Get the outline style of the annotation object.

Return: style e outline style as integer.

13.4.19 outline=(outline)
Set the outline style used for drawing the annotation object.

Input: outline e outline style used for drawing the annotation object. e outline_… val-
ues can be used for defining the annotation object’s outline. e outline style
determines what components are drawn.

13.4.20 [static] integer outline_…
Various outline_… code used by the angle_constraint method.

13.4.20.1 [static] integer outline_box – outline_box code.

13.4.20.2 [static] integer outline_diag – outline_diag code.

13.4.20.3 [static] integer outline_diag_xy – outline_diag_xy code.

13.4.20.4 [static] integer outline_diag_yx – outline_diag_yx code.

13.4.20.5 [static] integer outline_xy – outline_xy code.

13.4.20.6 [static] integer outline_yx – outline_yx code.

13.4.21 [const] const ref p1
Get the first point of the ruler or marker.

e points of the ruler or marker are always given in micron units in floating-point coordinates.

156 Version 0.21 KLayout

Chapter 13. RBA Reference 13.4. Class Annotation (version 0.21)

Return: point e first point.

13.4.22 p1=(DPoint point)
Set the first point of the ruler or marker.

e points of the ruler or marker are always given in micron units in floating-point coordinates.

Input: point e first point.

13.4.23 [const] const ref p2
Get the first point of the ruler or marker.

e points of the ruler or marker are always given in micron units in floating-point coordinates.

Return: point e second point.

13.4.24 p2=(DPoint point)
Set the first point of the ruler or marker.

e points of the ruler or marker are always given in micron units in floating-point coordinates.

Input: point e second point.

13.4.25 snap=(flag)
Set the “snap to objects” attribute.

Input: true e ruler or marker snaps to other objects when moved.
false e ruler or marker moves without any snap.

13.4.26 [const] boolean snap?
Get the “snap to objects” attribute.

Return: true|false e ’snap to objects’ aribute status.

13.4.27 [const] integer style
Get the style of the annotation object.

Return: style e style of the annotation object as integer.

13.4.28 style=(style)
Set the style used for drawing the annotation object.

Input: style e style used for drawing the annotation object. e various style_… values
can be used for defining the annotation object’s style. e style determines if
ticks or arrows are drawn.

KLayout Version 0.21 157

Chapter 13. RBA Reference 13.4. Class Annotation (version 0.21)

13.4.29 [static] integer style_…
Various style_… code used by the angle_constraint method.

13.4.29.1 [static] integer style_arrow_both – style_arrow_both code.

13.4.29.2 [static] integer style_arrow_end – style_arrow_end code.

13.4.29.3 [static] integer style_arrow_start – style_arrow_start code.

13.4.29.4 [static] integer style_line – style_line code.

13.4.29.5 [static] integer style_ruler – style_ruler code.

13.4.30 [const] string text
Get the formatted text for the main label.

Return: string e formaed text for the main label.

13.4.31 [const] string text_x
Get the formatted text for the x-axis label.

Return: string e formaed text for the x-axis label.

13.4.32 [const] string text_y
Get the formatted text for the y-axis label.

Return: string e formaed text for the y-axis label.

13.4.33 [const] string to_s
Get the string representation of the ruler.

is method was introduced in version 0.19.

Return: string e string representation of the ruler.

13.4.34 [const] Annotation transformed(DTrans t)
Transform the ruler or marker with the given simple transformation.

Input: t e simple transformation to apply.
Return: Annotation e transformed object.

13.4.35 [const] Annotation transformed_cplx(DCplxTrans t)
Transform the ruler or marker with the given complex transformation.

Input: t e complex transformation to apply.
Return: Annotation e transformed object.

158 Version 0.21 KLayout

Chapter 13. RBA Reference 13.4. Class Annotation (version 0.21)

13.4.36 [const] Annotation transformed_cplx(ICplxTrans t)
Transform the ruler or marker with the given complex transformation.

Input: t e complex transformation to apply.
Return: Annotation e transformed object (in this case an integer coordinate object).

KLayout Version 0.21 159

Chapter 13. RBA Reference 13.4. Class Application (version 0.21)

13.5 Class Application (version 0.21)
e application object.

eapplication object is themain port fromwhich to access all the internals of the application, in particular
the main window.

Method Overview

instance Return the singleton instance of the application.
version Return the application’s version string.
inst_path Return the application’s installation path (where the executable is located).
write_config Write configuration to a file.
read_config Read the configuration from a file.
get_config_names ery all valid configuration parameter names.
get_config ery the value of a valid configuration parameter.
set_config Set a configuration parameter with the given name to the given value.
is_editable? Return true if the application is in editable mode.
main_window Return a reference to the main window.
exec Execute the application’s main loop.
process_events Process pending events.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.5.1 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

Return: singleton e singleton instance of the application. Does the same as instance, if entered
in RBA console.

Console Input 13.1:

> RBA::Application.instance.destroy
#<RBA::Application:0x7f39c58f67a8>

13.5.2 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive

Console Input 13.2:

> RBA::Application.instance.destroyed
false

160 Version 0.21 KLayout

Chapter 13. RBA Reference 13.5. Class Application (version 0.21)

13.5.3 integer exec
Execute the application’s main loop.

is method must be called in order to execute the application in the main script if a script is provided.

Return:

Comment: Returns “-1” if entered in RBA Console. What’s the meaning? Are there other return
codes?

Console Input 13.3: Call exec from RBA Console

> RBA::Application.instance.exec
-1

13.5.4 [const] string get_config(name)
ery a configuration parameter.

is method returns the value of the given configuration parameter name. If the parameter is not known,
an exception will be thrown. Use get_config_names to obtain a list of all configuration parameter names
available.

Configuration parameters are always stored as strings. e actual format of this string is specific to the
configuration parameter. e values delivered by this method correspond to the values stored in the con-
figuration file.

Input: name e name as string of the configuration parameter whose value shall be ob-
tained.

Return: value e value of the parameter.

Console Input 13.4: ery valid configuration parameter

> RBA::Application.instance.get_config("grid-micron")
10

Console Input 13.5: ery invalid configuration parameter

RBA::Application.instance.get_config("grid-micro")

13.5.5 [const] string[] get_config_names
ery the configuration parameter names.

ismethod returns a list of valid configuration parameter. Comment: For better reading and probably
handling the names should be listed with usual delimiter (comma, space ?). ese names can be
used to get and set configuration parameter values.

Return: string[] A vector string containing all valid configuration parameter names.

Console Input 13.6: ery the configuration parameter names

KLayout Version 0.21 161

Chapter 13. RBA Reference 13.5. Class Application (version 0.21)

> RBA::Application.instance.get_config_names
grid-micronsynchronized-viewsdefault-gridsdbumrutechnologiesreader-enable-text-o\
bjectsreader-enable-propertiesshow-navigatornavigator-show-all-hier-levelsnaviga\
tor-show-imagesshow-toolbarshow-layer-toolboxshow-hierarchy-panelshow-layer-pane\
lwindow-statewindow-geometrykey-bindingstip-window-hiddendigits-microndigits-dbu\
reader-layer-mapreader-create-other-layersreader-enable-text-objectsreader-enabl\
e-propertiespcb-import-specstream-import-specedit-modedefault-layer-propertiesde\
fault-add-other-layerslayers-always-show-ldlayers-always-show-layout-indextest-s\
hapes-in-viewflat-cell-listcell-list-sortinghide-empty-layersmin-inst-label-size\
inst-label-fontinst-label-transforminst-colorinst-visibletext-colortext-visiblet\
ext-lazy-renderingshow-propertiesapply-text-transdefault-text-sizetext-fontsel-c\
olorsel-line-widthsel-vertex-sizesel-dither-patternsel-halosel-transient-modebac\
kground-colorcontext-colorcontext-dimmingcontext-hollowchild-context-colorchild-\
context-dimmingchild-context-hollowchild-context-enabledabstract-mode-widthabstr\
act-mode-enabledfit-new-cellfull-hierarchy-new-cellinitial-hier-depthclear-ruler\
-new-cellmouse-wheel-modepan-distanceabsolute-unitsdbu-unitsdrawing-workersdrop-\
small-cellsdrop-small-cells-conditiondrop-small-cells-valuedraw-array-border-ins\
tancesbitmap-oversamplingcolor-palettestipple-palettestipple-offsetno-stipplegri\
d-colorgrid-style0grid-style1grid-style2grid-visiblegrid-show-rulerrulersruler-s\
nap-rangeruler-colorruler-haloruler-snap-moderuler-obj-snapruler-grid-snapruler-\
templatescurrent-ruler-templateedit-text-stringedit-text-sizeedit-text-halignedi\
t-text-valignedit-path-widthedit-path-ext-typeedit-path-ext-var-beginedit-path-e\
xt-var-endedit-inst-cell-nameedit-inst-angleedit-inst-mirroredit-inst-arrayedit-\
inst-scaleedit-inst-rowsedit-inst-row_xedit-inst-row_yedit-inst-columnsedit-inst\
-column_xedit-inst-column_yedit-inst-place-originedit-max-shapes-of-instancesedi\
t-show-shapes-of-instancesedit-top-level-selectionedit-gridedit-snap-to-objectse\
dit-move-angle-modeedit-connect-angle-modeoasis-compressiongds2-box-record-modeg\
ds2-allow-big-recordsgds2-allow-multi-xy-boundariesgds2-multi-xy-recordsgds2-max\
-vertex-countgds2-max-cellname-lengthgds2-libnamecif-wire-modecif-dbudxf-dbudxf-\
unitdxf-polyline-modedxf-circle-pointsdxf-polygon-modeshb-context-cellshb-contex\
t-modeshb-window-modeshb-window-stateshb-window-dimshb-max-inst-countshb-max-sha\
pe-countgds2-multi-xy-recordsgds2-max-vertex-countgds2-max-cellname-lengthgds2-l\
ibnamecib-context-cellcib-context-modecib-window-modecib-window-statecib-window-\
dimcib-max-inst-countrdb-context-moderdb-window-moderdb-window-staterdb-window-d\
imrdb-max-marker-countrdb-marker-colorrdb-marker-line-widthrdb-marker-vertex-siz\
erdb-marker-halordb-marker-dither-patternnt-window-modent-window-dimnt-max-shape\
s-highlightednt-marker-colornt-marker-line-widthnt-marker-vertex-sizent-marker-h\
alont-marker-dither-patternnt-marker-intensity

13.5.6 [const] string inst_path
ery the application’s installation path (where the executable is located).

is method has been added in version 0.18.

Return: inst_path e application’s installation path or the value of environment variable $KLAY-
OUT_PATH, if set.

Console Input 13.7: ery the application’s installation path

> RBA::Application.instance.inst_path
/home/peter/.klayout

13.5.7 [static] ref Application instance
Return the singleton instance of the application.

ere is exactly one instance of the application. is instance can be obtained with this method.

Return: singleton Returns singleton instance of the application.

162 Version 0.21 KLayout

Chapter 13. RBA Reference 13.5. Class Application (version 0.21)

Console Input 13.8: Return the singleton instance of the application

> RBA::Application.instance
#<RBA::Application:0x7f39c58f9e08>

13.5.8 [const] boolean is_editable?
ery the edit mode of the application.

Return: true Edit mode.
false Viewer mode.

Console Input 13.9:

> RBA::Application.instance.is_editable?
true

13.5.9 [const] ref MainWindow main_window
ery a reference of the main window.

Return: singleton Returns an object reference to the main window object.

Console Input 13.10: ery a reference of the main window

> RBA::Application.instance.main_window
#<RBA::MainWindow:0x7f39c591e500>

13.5.10 process_events
Process pending events.

is method processes pending events and dispatches them internally. Calling this method periodically
during a long operation keeps the application “alive”.

Console Input 13.11:

> RBA::Application.instance.process_events

13.5.11 boolean read_config(file_name)
Read the configuration from a file.

is method slightly does nothing, if the config file does not exist. If it does and an error occurred, the
error message is printed on stderr. In both cases, false is returned.

Return: true Config read from given file.
false Config not read from given file.

Console Input 13.12: file klayout-configuration exists and is readable

> RBA::Application.instance.read_config("klayout-configuration")
true

KLayout Version 0.21 163

Chapter 13. RBA Reference 13.5. Class Application (version 0.21)

Console Input 13.13: file klayout-config does not exists

> RBA::Application.instance.read_config("klayout-config")
false

Console Input 13.14: file klayout-configuration exists, but is not readable

> RBA::Application.instance.read_config("klayout-configuration")
Ruby error: '(eval):0:in `read_config': Problem reading config file klayout-conf\
iguration: XML parser error: unexpected end of file in line 1, column 1' (Runti\
meError)
(eval)
(eval):0

13.5.12 set_config(name, value)
Set a configuration parameter with the given name to the given value.

is method sets the configuration parameter with the given name to the given value. Values can only be
strings. Numerical values have to be converted into strings first. e actual format of the value depends
on the configuration parameter. e namemust be one of the names returned by get_config_names. ere
is no return in any case, even if the name of the configuration parameter is misspelled.

Input: name e name as string of the configuration parameter to be set.
value e value to which the configuration parameter to be set.

Console Input 13.15: Set a configuration parameter with the given name to the given value

> RBA::Application.instance.set_config("grid-micron","10")

13.5.13 [const] version
ery the application’s version string.

Return: version Returns the application’s version string.

Console Input 13.16: ery the application’s version string

> RBA::Application.instance.version
KLayout 0.21.14

13.5.14 boolean write_config(file_name)
Write configuration to a file.

If the configuration file cannot be wrien, false is returned but no exception is thrown.

Return: true Config successfully wrien to given file.
false Write config to given file fails.

Console Input 13.17: file klayout-configuration does not exists, or exists and is write able

164 Version 0.21 KLayout

Chapter 13. RBA Reference 13.5. Class Application (version 0.21)

> RBA::Application.instance.write_config("klayout-configuration")
true

Console Input 13.18: file klayout-configuration is set to read only

> RBA::Application.instance.write_config("klayout-configuration")
false

KLayout Version 0.21 165

Chapter 13. RBA Reference 13.5. Class ArgType (version 0.21)

13.6 Class ArgType (version 0.21)
e description of a type.

e description of a type (argument or return value).

Method Overview

type Get the basic type.
t_… Various t_… constants.

t_void Type void.
t_bool Type boolean.
t_int Type integer.
t_uint Type unsigned integer.
t_long Type long integer.
t_ulong Type unsigned long integer.
t_longlong Type long long integer.
t_double Type floating point.
t_string_ccptr Type string ⁇.
t_string Type string.
t_var Type variable.
t_object_ref Type object reference.
t_object_cref Type object constant reference.
t_object_new Type object new.
t_object Type object.

is_vector? ery if the type is a vector of the basic type.
is_ref? ery if the type is a reference to the given type.
is_iter? ery if the return value is an iterator rendering the given type.
cls Specifies the class for t_object…types.
to_s Convert to a string.
== Equality of two types.
!= Inequality of two types.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.6.1 [const] boolean !=(ArgType)
Inequality test of two types.

Return: true e two types are unequal.
false e two types are equal.

13.6.2 [const] boolean ==(ArgType)
Equality test of two types.

Return: true e two types are equal.
false e two types are unequal.

166 Version 0.21 KLayout

Chapter 13. RBA Reference 13.6. Class ArgType (version 0.21)

13.6.3 assign(ArgType other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

Input: other e other object.

13.6.4 [const] const ref Class cls
Specifies the class for t_object_… types.

13.6.5 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.6.6 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.6.7 [const] ArgType dup
Creates a copy of self.

Return: ArgType e copy of self.

13.6.8 [const] boolean is_iter?
ery if the return value is an iterator rendering the given type (Return value
only).

Return: true e return value is an iterator rendering the given type. (Return value only.)
false e return value is no iterator.

13.6.9 [const] boolean is_ref?
ery if the type is a reference to the given type.

Return: true e type is a reference to the given object.
false e type is not a reference to the given object.

13.6.10 [const] boolean is_vector?
ery if the type is a vector of the basic type.

Return: true e type is a vector of the basic type.
false e type is not a vector.

KLayout Version 0.21 167

Chapter 13. RBA Reference 13.6. Class ArgType (version 0.21)

13.6.11 [const] integer type
Return the basic type (see various t_… constants).

13.6.12 [const] integer t_…
Various t_… constants).

13.6.12.1 [static] integer t_bool – Type boolean constant.

13.6.12.2 [static] integer t_double – Type floating point constant.

13.6.12.3 [static] integer t_int – Type integer constant.

13.6.12.4 [static] integer t_long – Type long integer constant.

13.6.12.5 [static] integer t_longlong – Type long long integer constant.

13.6.12.6 [static] integer t_object – Type object constant.

13.6.12.7 [static] integer t_object_cref – Type object constant reference constant.

13.6.12.8 [static] integer t_object_new – Type object new constant.

13.6.12.9 [static] integer t_object_ref – Type object reference constant.

13.6.12.10 [static] integer t_string – Type string constant.

13.6.12.11 [static] integer t_string_ccptr – Type string constant. Comment: ⁇⁇

13.6.12.12 [static] integer t_uint – Type unsigned integer constant.

13.6.12.13 [static] integer t_ulong – Type unsigned long integer constant.

13.6.12.14 [static] integer t_var – Type variable constant.

13.6.12.15 [static] integer t_void – Type void constant.

13.6.13 [static] string to_s
Convert to a string constant.

Return: string e constant converted to a string.

168 Version 0.21 KLayout

Chapter 13. RBA Reference 13.6. Class Box (version 0.21)

13.7 Class Box (version 0.21)
A box class with integer coordinates.

is object represents a box (a rectangular shape).

e notation is: p1 is the lower le point (x1, y1), p2 the upper right one (x2, y2), compare with fig. 13.1.

A box can be empty. An empty box represents no area (not even a point).

A box can be a point or a single line. In this case, the area is zero but the box still can overlap other boxes.

Figure 13.1. Box notation.

Method Overview

from_dbox Construct an integer box from a floating-point coordinate box.
new Default constructor: creates an empty (invalid) box.
new Constructor with four coordinates.
new Constructor with two points.
p1 Get the lower le point of the box.
p2 Get the upper right point of the box.
center Get the center of the box.
le Get the le coordinate of the box.
right Get the right coordinate of the box.
boom Get the boom coordinate of the box.
top Get the top coordinate of the box.
width Get the width of the box.
height Get the height of the box.
le= Set the le coordinate of the box.
right= Set the right coordinate of the box.
boom= Set the boom coordinate of the box.
top= Set the top coordinate of the box.
p1= Set the lower le point of the box.
p2= Set the upper right point of the box.
contains? Test if a point is inside the box.
empty? Test if this box is of type empty box.
inside? Test if this box is inside the argument box.
touches? Test if this box touches the argument box.
overlaps? Test if this box overlaps the argument box.
area Compute the box area
is_point? Test if the box is a single point
+ Join a box with a point.
+ Joining of two boxes.

KLayout Version 0.21 169

Chapter 13. RBA Reference 13.7. Class Box (version 0.21)

& Intersection of two boxes.
* Convolve two boxes.
move Moves the box by a certain distance.
moved Get the box moved by a certain distance.
enlarge Enlarges the box by a certain amount.
enlarged Get the box enlarged by a certain amount.
transformed Transform the box with the given simple transformation
transformed_cplx Transform the box with the given complex transformation
transformed_cplx Transform the box with the given complex transformation
< Less operator.
== Equality operator.
!= Inequality operator.
to_s Convert to a string.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.7.1 [const] boolean !=(Box box)
Inequality test of two boxes.

Test if this box and the given box are not equal.

Input: box e given box.
Return: true is and the given box are unequal.

false is and the given box are equal.

13.7.2 Box &(Box box)
Intersection of two boxes.

e intersection of two boxes is the largest box common to both boxes. e intersection may be empty if
both boxes to not touch. If the boxes do not overlap but touch the result may be a single line or point with
an area of zero. Overwrites this box with the result.

Input: box e box to take the intersection with.
Return: Box e intersection box.

13.7.3 Box *(Box box)
Convolve two boxes.

e * operator convolve the first box with the one given as the second argument. e box resulting from
“convolution” is the outer boundary of the union set formed by placing the second box at every point of
the first. In other words, the returned box of (p1,p2)*(q1,q2) is (p1+q1,p2+q2).

Input: box e given box.
Return: Box e intersection box.

13.7.4 Con Box +(Point point)
Join a box with a point.

e + operator joins a point with the box. e resulting box will enclose both the original box and the
point.

170 Version 0.21 KLayout

Chapter 13. RBA Reference 13.7. Class Box (version 0.21)

Input: point e point to join with this box.
Return: Box e box joined with the point.

13.7.5 Box +(Box box)
Joining of two boxes.

e + operator joins the first box with the one given as the second argument. Joining constructs a box
that encloses both boxes given. Empty boxes are neutral: they do not change another box when joining.
Overwrites this box with the result.

Input: box e box to join with this box.
Return: Box e joined box.

13.7.6 [const] boolean <(Box box)
Less operator.

Input: box is box.
Return: true is box is ‘less’ with respect to first and second point (in this order).

false is box is ‘greater’.

13.7.7 [const] boolean ==(Box box)
Equality operator.

Input: box is box.
Return: true is box and the given box are equal.

false is box and the given box are unequal.

13.7.8 [const] double area
Compute the box area.

Return: double integer e box area, or
0 the box is empty.

13.7.9 assign(Box other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

Input: other e contents of another object.

13.7.10 boom=(y1)
Set the bottom coordinate of the box.

Input: y1 e boom coordinate of the box.

13.7.11 [const] y1 boom
ery the bottom coordinate of the box.

Return: y1 e boom coordinate of the box.

KLayout Version 0.21 171

Chapter 13. RBA Reference 13.7. Class Box (version 0.21)

13.7.12 [const] Point center
ery the center of the box.

Return: Point e center coordinate of the box.

13.7.13 [const] boolean contains?(Point point)
Tests if a point is inside the box.

Input: point e coordinate to be tested.
Return: true e point is placed inside the box or on the box contour.

false e point is placed completely outside the box.

13.7.14 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.7.15 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.7.16 [const] Box dup
Creates a copy of self.

Return: Box e copy of self.

13.7.17 [const] boolean empty?
Test if the box is of type empty box.

An empty box may be created with the default constructor for example. Such a box is neutral when
combining it with other boxes and renders empty boxes if used in box intersections and false in geometrical
relationship tests.

Return: true e box is empty.
false e box is not empty.

13.7.18 ref Box enlarge(Point enlargement)
Enlarges the box by a certain amount.

Enlarges the box by x and y value specified in the vector passed. Positive values with grow the box,
negative ones will shrink the box. e result may be an empty box if the box disappears. e amount
specifies the grow or shrink per edge. e width and height will change by twice the amount. Does not
check for coordinate overflows.

Input: enlargement e grow or shrink amount in x and y direction.
Return: ref A reference to the enlarged box.

172 Version 0.21 KLayout

Chapter 13. RBA Reference 13.7. Class Box (version 0.21)

13.7.19 [const] Box enlarged(Point enlargement)
Get the box enlarged by a certain amount.

Enlarges the box by x and y value specified in the vector passed. Positive values will grow the box, negative
ones will shrink the box. e result may be an empty box if the box disappears. e amount specifies the
grow or shrink per edge. e width and height will change by twice the amount. Does not modify this
box. Does not check for coordinate overflows.

Input: enlargement e grow or shrink amount in x and y direction.
Return: Box e enlarged box.

13.7.20 [static] Box from_dbox(DBox double_box)
Construct an integer box from a floating-point coordinate box.

Create a integer coordinate box from a floating-point coordinate box.

Input: double_box e floating-point coordinate box.
Return: Box e integer coordinate box.

13.7.21 [const] height height
ery the height of the box.

Return: height e height of the box, where the equation height = y2− y1 is valid.

13.7.22 [const] boolean inside?(Box box)
Test if this box is inside the argument box.

Input: box e given box.
Return: true is box is inside the given box, i.e. the box intersection renders this box.

false is box is not inside the given box.

13.7.23 [const] boolean is_point?
Test if the box is a single point.

Return: true e box is a single point.
false e box is not a single point.

13.7.24 le=(x1)
Set the le coordinate of the box.

Input: x1 e le coordinate of the box.

13.7.25 [const] x1 le
ery the le coordinate of the box.

Return: x1 e le coordinate of the box.

KLayout Version 0.21 173

Chapter 13. RBA Reference 13.7. Class Box (version 0.21)

13.7.26 ref Box move(Point distance)
Moves the box by a certain distance.

Moves the box by a given offset and returns the moved box. Does not check for coordinate overflows.

Input: distance e offset to move the box.
Return: ref A reference to this box.

13.7.27 [const] Box moved(Point distance)
Get the box moved by a certain distance.

Moves the box by a given offset and returns the moved box. Does not modify this box. Does not check for
coordinate overflows.

Input: distance e offset to move the box.
Return: Box e moved box.

13.7.28 [static] Box new
Default constructor: creates an empty (invalid) box.

Return: Box e new empty box.

13.7.29 [static] Box new(le, bottom, right, top)
Constructor with four coordinates.

Synonym for [static] Box new_lbrt(le, boom, right, top)

Four coordinates are given to create a new box. If the coordinates are not provided in the correct order
(i.e. right <le), these are swapped.

Input: le, boom,
right, top

Four coordinates given to create a new box, where le equals to x1, boom to
y1, right to x2 and top to y2.

Return: Box e new box.

13.7.30 [static] Box new(Point lower_le, Point upper_right)
Box constructor with two points.

Synonym for [static] Box new_pp(Point lower_le, Point upper_right).

Two points are given to create a new box. If the coordinates are not provided in the correct order (i.e. right
<le), these are swapped.

Input: lower_le,
upper_right

Two points given to create a new box.

Return: Box e new box.

13.7.31 [const] boolean overlaps?(Box box)
Test if this box overlaps the argument box.

Input: box e argument box.
Return: true e intersection box of this box with the argument box exists and has a non-

vanishing area.
false e intersection box of this box with the argument box does not exists or has a

vanishing area.

174 Version 0.21 KLayout

Chapter 13. RBA Reference 13.7. Class Box (version 0.21)

13.7.32 [const] ref Point p1
ery the lower le point of the box.

Return: lower_le e lower le point of the box, where lower_le equals to x1, y1.

13.7.33 p1=(Point lower_le)
Set the lower le point of the box.

Input: lower_le e lower le point of the box, where lower_le equals to x1, y1.

13.7.34 [const] ref Point p2
ery the upper right point of the box.

Return: upper_right e upper right point of the box, where upper_right equals to x2, y2.

13.7.35 p2=(Point upper_right)
Set the upper right point of the box.

Input: upper_right e upper right point of the box, where upper_right equals to x2, y2.

13.7.36 [const] x2 right
ery the right coordinate of the box.

Return: x2 e right coordinate of the box.

13.7.37 right=(x2)
Set the right coordinate of the box.

Input: x2 e right coordinate of the box.

13.7.38 [const] string to_s
Convert a value to a string.

Return: string e converted value as string.

13.7.39 [const] y2 top
ery the top coordinate of the box.

Return: y2 e top coordinate of the box.

13.7.40 top=(y2)
Set the top coordinate of the box.

Input: y2 e top coordinate of the box.

KLayout Version 0.21 175

Chapter 13. RBA Reference 13.7. Class Box (version 0.21)

13.7.41 [const] boolean touches?(Box box)
Test if this box touches the argument box.

Input: box e argument box
Return: true is box has at least one point common with the argument box.

false is box has none point common with the argument box.

13.7.42 [const] Box transformed(Trans t)
Transform the box with the given simple transformation.

Input: t e simple transformation to apply.
Return: Box e transformed box.

13.7.43 [const] DBox transformed_cplx(CplxTrans t)
Transform the box with the given complex transformation.

Input: t e complex transformation to apply.
Return: DBox e transformed box (a DBox now).

13.7.44 [const] Box transformed_cplx(ICplxTrans t)
Transform the box with the given complex transformation.

is method has been introduced in version 0.18.

Input: t e complex transformation to apply.
Return: Box e transformed box (in this case an integer coordinate box).

13.7.45 [const] integer width
ery the width of the box.

Return: width e width of the box, where width equals to x2 - x1.

176 Version 0.21 KLayout

Chapter 13. RBA Reference 13.7. Class BrowserDialog (version 0.21)

13.8 Class BrowserDialog (version 0.21)
e HTML browser dialog.

e HTML browser dialog, see section 12.1: Using the HTML browser dialog I: A location browser and
section 12.2: Using the HTML browser dialog II: A screen-shot gallery, Using the HTML Browser Dialog I
and II, respectively. e HTML browser displays HTML code in a browser panel. It receives the code by
retrieving it from a given URL.

URL’s with the special scheme ”int” are retrieved from a BrowserSource object. is will act as a kind of
server for these URL’s.

Method Overview

hide Hide the HTML browser window.
show Show the HTML browser window in a non-modal way.
exec Execute the HTML browser dialog as a modal window.
load Load the given URL into the browser dialog.
set_source Connect to a source object.
set_size Set the size of the dialog window.
set_caption Set the caption of the window.
reload Reload the current page.
set_home Set the browser’s initial and current URL which is selected if the “home” loca-

tion is chosen.
closed Callback when the dialog is closed.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.8.1 closed
Callback when the dialog is closed.

is callback can be reimplemented to implement cleanup functionality when the dialog is closed.

13.8.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.8.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

KLayout Version 0.21 177

Chapter 13. RBA Reference 13.8. Class BrowserDialog (version 0.21)

13.8.4 integer exec
Execute the HTML browser dialog as a modal window.

13.8.5 hide
Hide the HTML browser window.

13.8.6 load(string)
Load the given URL into the browser dialog.

Input: string e given URL.

13.8.7 reload
Reload the current page.

13.8.8 set_caption(caption)
Set the caption of the window.

Input: caption e caption of the window.

13.8.9 set_home(home_url)
Set the browser’s initial and currentURLwhich is selected if the “home” location
is chosen.

Input: home_url e browser’s initial and current URL.

13.8.10 set_size(width, height)
Set the size of the dialog window.

Input: width, height e dialog window width and height as integer.

13.8.11 set_source(ref BrowserSource source)
Connect to a source object.

Input: source e source object.
Caution: is will use the object as the source but not hold a reference to that object.

In order not to loose the source object (i.e. in RBA), a separate reference is
required.

13.8.12 show
Show the HTML browser window in a non-modal way.

178 Version 0.21 KLayout

Chapter 13. RBA Reference 13.8. Class BrowserSource (version 0.21)

13.9 Class BrowserSource (version 0.21)
e BrowserDialog source for “int” URL’s.

e BrowserDialog source for “int” URL’s, see the examples given in section 12.1: Using the HTML browser
dialog I: A location browser and section 12.2: Using the HTML browser dialog II: A screen-shot gallery.

e source object basically acts as a “server” for special URL’s using “int” as the scheme. Classes that want
to implement such functionality must derive from BrowserSource and re-implement the get method. is
method is supposed to deliver a HTML page for the given URL.

Alternatively to implementing this functionality, a source object may be instantiated using the new_html
constructor. is will create a source object that simply displays the given string as the initial and only
page.

Method Overview

new_html Construct a BrowserSource object with a default HTML string.
get Get the HTML code for a given ”int” URL.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.9.1 assign(BrowserSource other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.9.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.9.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.9.4 [const] BrowserSource dup
Creates a copy of self.

Return: BrowserSource e copy of self.

KLayout Version 0.21 179

Chapter 13. RBA Reference 13.9. Class BrowserSource (version 0.21)

13.9.5 string get(url)
Get the HTML code for a given “int” URL.

Input: url e HTML code for a given “int” URL.
Return: empty e browser will not be set to a new location. is allows to implement any

functionality behind such links.
content e content of this string is displayed in the HTML browser page.

13.9.6 [static] BrowserSource new_html(string)
Construct a BrowserSource object with a default HTML string.

e default HTML string is sent when no specific implementation is provided.

Input: string e default HTML string.

180 Version 0.21 KLayout

Chapter 13. RBA Reference 13.9. Class Cell (version 0.21)

13.10 Class Cell (version 0.21)
e cell object.

A cell object consists of a set of shape containers (called layers), a set of child cell instances and auxiliary
information such as the parent instance list. A cell is identified through an index given to the cell upon
instantiation. Cell instances refer to single instances or array instances. Both are encapsulated in the same
object, the CellInstArray object. In the simple case, this object refers to a single instance. In the general
case, this object may refer to a regular array of cell instances as well.

Starting from version 0.16, the child_inst and erase_inst methods are no longer available since they were
using index addressing which is no longer supported. Instead, instances are now addressed with the In-
stance reference objects.

Method Overview

shapes Return the shapes list of the given layer.
clear_shapes Clear all shapes in the cell.
clear_insts Clear the instance list.
erase Erase the instance given by the Instance object.
swap Swap the layers given.
move Move the shapes from the source to the target layer.
copy Copy the shapes from the source to the target layer.
clear Clear the shapes on the given layer.
replace_prop_id Replace (or install) the properties of a cell.
transform Transform the instance given by the instance with the given transformation.
transform Transform the instance given by the instance with the given complex trans-

formation.
replace Replace a cell instance (array) with a different one.
replace Replace a cell instance (array) with a different one with properties.
insert Insert a cell instance given by another reference.
insert Insert a cell instance (array).
insert Insert a cell instance (array) with properties.
cell_index e cell index accessor method.
child_instances Number of child instances.
caller_cells Return a list of all caller cells.
called_cells Return a list of all called cells.
bbox Retrieve the bounding box of the cell.
bbox_per_layer Retrieve the per-layer bounding box of the cell.
each_overlapping_inst Region query for the instances in “overlapping” mode.
each_touching_inst Region query for the instances in “touching” mode.
each_child_cell Iterate over all child cells.
child_cells Report the number of child cells.
each_inst Iterate over all child instances (which may actually be instance arrays).
each_parent_inst Iterate over the parent instance list (which may actually be instance arrays).
parent_cells Report the number of parent cells.
each_parent_cell Iterate over all parent cells.
is_top? Tell if the cell is a top-level cell.
is_leaf? Tell if the cell is a leaf cell.
is_valid? Test if the given Instance object is still pointing to a valid object.
each_shape Iterate all shapes of a given layer.
each_shape Iterate all shapes of a given layer.
each_touching_shape Iterate all shapes of a given layer that touch the given box.
each_touching_shape Iterate all shapes of a given layer that touch the given box.
each_overlapping_shape Iterate all shapes of a given layer that overlap the given box.

KLayout Version 0.21 181

Chapter 13. RBA Reference 13.10. Class Cell (version 0.21)

each_overlapping_shape Iterate all shapes of a given layer that overlap the given box.
hierarchy_levels Return the number of hierarchy levels below (expensive).
is_empty? Returns a value indicating whether the cell is empty.
is_ghost_cell? Returns a value indicating whether the cell is a “ghost cell”.
ghost_cell= Sets the “ghost cell” flag.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.10.1 [const] const ref Box bbox
Retrieve the bounding box of the cell.

Return: Box e bounding box of the cell.

13.10.2 [const] const ref Box bbox_per_layer(unsigned int layer_index)
Retrieve the per-layer bounding box of the cell.

Return: Box e bounding box of the cell considering only the given layer.

13.10.3 [const] integer[] called_cells
Return a list of all called cells.

is method determines all cells which are called either directly or indirectly by the cell.

is method has been introduced in version 0.19.

Return: integer[] A list of cell indices.

13.10.4 [const] integer[] caller_cells
Return a list of all caller cells.

is method determines all cells which call this cell either directly or indirectly.

is method has been introduced in version 0.19.

Return: integer[] A list of cell indices.

13.10.5 [const] integer cell_index
e cell index accessor method.

Return: unsigned int e cell index of the cell.

13.10.6 [const] integer child_cells
Report the number of child cells.

Return: integer e number of child cells (not child instances!).
CAUTION: is method is SLOW!

13.10.7 [const] integer child_instances
Number of child instances.

Return: integer Returns the number of cell instances.

182 Version 0.21 KLayout

Chapter 13. RBA Reference 13.10. Class Cell (version 0.21)

13.10.8 clear(integer)
Clear the shapes on the given layer.

Input: integer e layer index.

13.10.9 clear_insts
Clear the instance list.

13.10.10 clear_shapes
Clear all shapes in the cell.

13.10.11 copy(src, dest)
Copy the shapes from the source to the target layer.

e target layer is not overwrien. Instead, the shapes are added to the shapes of the target layer. If source
and target layer are identical, this method does nothing.

is method has been introduced in version 0.19.

Input: src e layer index of the source layer.
dest e layer index of the destination layer.

13.10.12 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.10.13 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.10.14 yield integer each_child_cell
Iterate over all child cells.

Return: integer e child cell indices, not every instance.

13.10.15 yield Instance each_inst
Iterate over all child instances (which may actually be instance arrays).

Starting with version 0.15, this iterator delivers Instance objects, rather than CellInstArray objects.

Return: Instance e delivered objects as yield.

KLayout Version 0.21 183

Chapter 13. RBA Reference 13.10. Class Cell (version 0.21)

13.10.16 yield Instance each_overlapping_inst(Box b)
Region query for the instances in “overlapping” mode.

is will iterate over all child cell instances overlapping with the given region box.

Starting with version 0.15, this iterator delivers Instance objects, rather than CellInstArray objects.

Input: b e given region box.
Return: Instance e delivered objects as yield.

13.10.17 yield Shape each_overlapping_shape(integer Box b)
Iterate all shapes of a given layer that overlap the given box.

is call is equivalent to each_overlapping_shape(layer_index,box,RBA::Shapes::s_all). is convenience
method has been introduced in version 0.16.

Input: b e region to query the shapes.
integer e layer on which to run the query.

Return: Shape e delivered objects as yield.

13.10.18 [const] yield Shape each_overlapping_shape(layer_index, Box box, flags)
Iterate all shapes of a given layer that overlap the given box.

Input: flags An “or”-ed combination of the s_… constants of the Shape class.
box e box by which to query the shapes.
layer_index e layer on which to run the query.

Return: Shape e delivered objects as yield.

13.10.19 [const] yield integer[] each_parent_cell
Iterate over all parent cells.

is iterator will iterate over the parent cells, just returning their cell index.

Return: integer[] e cell indexes.

13.10.20 yield ParentInstArray each_parent_inst
Iterate over the parent instance list (which may actually be instance arrays).

Return: ParentInstArray e parent instance list.

13.10.21 [const] yield Shape each_shape(integer)
Iterate all shapes of a given layer.

is call is equivalent to each_shape(layer_index,RBA::Shapes::s_all). is convenience method has been
introduced in version 0.16.

Input: integer e layer on which to run the query.
Return: Shape e delivered objects as yield.

184 Version 0.21 KLayout

Chapter 13. RBA Reference 13.10. Class Cell (version 0.21)

13.10.22 [const] yield Shape each_shape(layer_index, flags)
Iterate all shapes of a given layer.

is call is equivalent to each_shape(layer_index,RBA::Shapes::s_all). is convenience method has been
introduced in version 0.16.

Input: layer_index e layer on which to run the query.
flags An “or”-ed combination of the s_.. constants of the Shapes class.

Return: Shape e delivered objects as yield.

13.10.23 yield Instance each_touching_inst(Box b)
Region query for the instances in “touching” mode.

is will iterate over all child cell instances touching the given region b.

Starting with version 0.15, this iterator delivers Instance objects, rather than CellInstArray objects.

Input: b e region to query.
Return: Instance e delivered objects as yield.

13.10.24 [const] yield Shape each_touching_shape(layer_index, Box b)
Iterate all shapes of a given layer that touch the given box.

is call is equivalent to each_touching_shape(layer_index,box,RBA::Shapes::s_all). is convenience
method has been introduced in version 0.16.

Input: b e region to query.
layer_index e layer on which to run the query.

Return: Shape e delivered objects as yield.

13.10.25 [const] yield Shape each_touching_shape(layer_index, Box b, flags)
Iterate all shapes of a given layer that touch the given box.

Input: flags An “or”-ed combination of the s_… constants of the Shapes class.
box e box by which to query the shapes.
layer_index e layer on which to run the query.

Return: Shape e delivered objects as yield.

13.10.26 erase(Instance inst)
Erase the instance given by the Instance object.

is method has been introduced in version 0.16. It can only be used in editable mode.

Input: inst e instance object to be erased..

13.10.27 ghost_cell=(boolean)
Sets the “ghost cell” flag.

See is_ghost_cell? for a description of this property.

is method has been introduced in version 0.20.

Input: boolean e “ghost cell” flag.

KLayout Version 0.21 185

Chapter 13. RBA Reference 13.10. Class Cell (version 0.21)

13.10.28 [const] integer hierarchy_levels
Return the number of hierarchy levels below (expensive).

Return: integer e number of hierarchy levels below.

13.10.29 Instance cell_inst_array(CellInstArray cell_inst_array)
Insert a cell instance (array).

With version 0.16, this method returns an Instance object that represents the new instance. It’s use is
discouraged in read-only mode, since it invalidates other Instance references.

Input: cell_inst_array e given cell instance (array).
Return: Instance e new instance object.

13.10.30 Instance insert(Instance inst)
Insert a cell instance given by another reference.

is method allows to copy instances taken from a reference (an Instance object). It has been added in
version 0.16.

Input: inst e instant object to be inserted.
Return: Instance e new instance object.

13.10.31 Instance insert(CellInstArray cell_inst_array)
Insert a cell instance (array).

With version 0.16, this method returns an Instance object that represents the new instance. It’s use is
discouraged in read-only mode, since it invalidates other Instance references.

Input: cell_inst_array e given cell instance (array).
Return: Instance e new instance object.

13.10.32 Instance insert(CellInstArray cell_inst_array, property_id)
Insert a cell instance (array) with properties.

eproperty Idmust be obtained from the Layout object’s property_idmethodwhich associates a property
set with a property Id. With version 0.16, this method returns an Instance object that represents the new
instance. It’s use is discouraged in read-only mode, since it invalidates other Instance references.

Input: cell_inst_array e given cell instance (array).
property_id e property set Id.

Return: Instance e new instance object.

13.10.33 [const] boolean is_empty?
Returns a value indicating whether the cell is empty.

An empty cell is a cell not containing instances nor any shapes.

is method has been introduced in version 0.20.

Return: true e cell is empty.
false e cell is not empty.

186 Version 0.21 KLayout

Chapter 13. RBA Reference 13.10. Class Cell (version 0.21)

13.10.34 [const] boolean is_ghost_cell?
Returns a value indicating whether the cell is a “ghost cell”.

e ghost cell flag is used by the GDS reader for example to indicate that the cell is not located inside the
file. Upon writing the reader can determine whether to write the cell or not. To satisfy the references
inside the layout, a dummy cell is created in this case which has the “ghost cell” flag set to true.

is method has been introduced in version 0.20.

Return: true e cell is a “ghost cell”.
false e cell is no “ghost cell”.

13.10.35 [const] boolean is_leaf?
Tell if the cell is a leaf cell.

A cell is a leaf cell if there are no child instantiations.

Return: true e cell is a leaf cell.
false e cell is not a leaf cell.

13.10.36 [const] boolean is_top?
Tell if the cell is a top-level cell.

A cell is a top-level cell if there are no parent instantiations.

Return: true e cell is a top-level cell.
false e cell is not a top-level cell.

13.10.37 [const] boolean is_valid?(Instance inst)
Test if the given Instance object is still pointing to a valid object.

is method has been introduced in version 0.16.

Return: true Another instance has been inserted already that occupies the original instances
position.

false e instance represented by the given reference has been deleted.

13.10.38 move(src, dest)
Move the shapes from the source to the target layer.

e target layer is not overwrien. Instead, the shapes are added to the shapes of the target layer.

is method has been introduced in version 0.19.

Input: src e layer index of the source layer.
dest e layer index of the destination layer.

13.10.39 [const] integer parent_cells
Report the number of parent cells.

Return: integer e number of parent cells (cells which reference to this cell).

KLayout Version 0.21 187

Chapter 13. RBA Reference 13.10. Class Cell (version 0.21)

13.10.40 Instance replace(classInstance inst, CellInstArray cell_inst_array)
Replace a cell instance (array) with a different one.

is method has been introduced in version 0.16. It can only be used in editable mode. e instance given
by the instance object (first argument) is replaced by the given instance (second argument). e new object
will not have any properties.

Input: inst e instance object to be replaced.
cell_inst_array e given cell instance (array).

Return: Instance e new instance object without any properties.

13.10.41 Instance replace(Instance inst, CellInstArray cell_inst_array, property_id)
Replace a cell instance (array) with a different one with properties.

is method has been introduced in version 0.16. It can only be used in editable mode. e instance
given by the instance object (first argument) is replaced by the given instance (second argument) with the
given properties Id. e property Id must be obtained from the Layout object’s property_id method which
associates a property set with a property Id. e new object will not have any properties.

Input: inst e instance object to be replaced.
cell_inst_array e given cell instance (array).
property_id e property set Id.

Return: Instance e new instance object.

13.10.42 Instance replace_prop_id(Instance inst, unsigned int property_id)
Replace (or install) the properties of a cell.

is method has been introduced in version 0.16. It can only be used in editable mode. Changes the
properties Id of the given instance or install a properties Id on that instance if it does not have one yet. e
property Id must be obtained from the Layout object’sproperty_id method which associates a property set
with a property Id.

Input: inst e instance object to be replaced or installed.
property_id e property set Id.

Return: Instance e new instance object.

13.10.43 ref Shapes shapes(integer)
Return the shapes list of the given layer.

is method allows to access the shapes list on a certain layer. If the layer does not exist yet, it is created.

Input: integer e layer index of the shapes list to retrieve.
Return: ref A reference to the shapes list.

13.10.44 swap(layer_index1, layer_index2)
Swap the layers given.

Input: layer_index1 e first layer index.
layer_index2 e second layer index.

188 Version 0.21 KLayout

Chapter 13. RBA Reference 13.10. Class Cell (version 0.21)

13.10.45 Instance transform(Instance inst, Trans t)
Transform the instance given by the instance with the given transformation.

is method has been introduced in version 0.16. e original instance may be deleted and re-inserted by
this method. erefore, a new reference is returned. It is permied in editable mode only.

Input: inst e instance to be transformed.
t e simple transformation to be performed.

Return: Instance A reference (an Instance object) to the new instance.

13.10.46 Instance transform(Instance inst, CplxTrans t)
Transform the instance given by the instance with the given complex trans-
formation.

is method has been introduced in version 0.16. e original instance may be deleted and re-inserted by
this method. erefore, a new reference is returned. It is permied in editable mode only.

Input: inst e instance to be transformed.
t e complex transformation to be performed.

Return: Instance A reference (an Instance object) to the new instance.

KLayout Version 0.21 189

Chapter 13. RBA Reference 13.10. Class CellInstArray (version 0.21)

13.11 Class CellInstArray (version 0.21)
A single or array cell instance.

is object represents either single or array cell instances. A cell instance array is a regular array, described
by two displacement vectors (a, b) and the instance count along that axes (na, nb).

In addition, this object represents either instances with simple transformations or instances with complex
transformations. e laer includes magnified instances and instances rotated by an arbitrary angle.

Method Overview

new Default constructor.
new Create a single cell instance.
new Create a single cell instance with a complex transformation.
new Create a single cell instance.
new Create a single cell instance with a complex transformation.
bbox e bounding box of the array.
bbox_per_layer e bounding box of the array with respect to one layer.
size e number of single instances in the array.
cell_index Get the cell index of the cell instantiated.
cplx_trans Get the complex transformation of the first instance in the array.
trans Get the transformation of the first instance in the array.
invert Invert an array reference.
transformed Returns the transformed cell instance.
transformed Returns the transformed cell instance (complex transformation).
transformed Returns the transformed cell instance (complex transformation).
transform Transform the cell instance with the given transformation.
transform Transform the cell instance with the given complex transformation.
transform Transform the cell instance with the given complex transformation.
< Less operator.
== Compare operator for equality.
!= Compare operator for inequality.
is_complex? Test, if the array is a complex array.
is_regular_array? Test, if this instance is a regular array.
a Return the displacement vector for the ‘a’ axis.
b Return the displacement vector for the ‘b’ axis.
na Return the number of instances in the ‘a’ axis.
nb Return the number of instances in the ‘b’ axis.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.11.1 [const] boolean !=(CellInstArray inst)
Compare operator for inequality.

Input: inst is instance.
Return: true is instance and the given instance are unequal.

false is instance and the given instance are equal.

190 Version 0.21 KLayout

Chapter 13. RBA Reference 13.11. Class CellInstArray (version 0.21)

13.11.2 [const] boolean <(CellInstArray inst)
Less operator.

Input: inst is instance.
Return: true is instance is ‘less’ than the given instance.

false is instance is ‘greater’ than the given instance.

13.11.3 [const] boolean ==(CellInstArray inst)
Compare operator for equality.

Input: inst is instance.
Return: true is instance and the given instance are equal.

false is instance and the given instance are unequal.

13.11.4 [const] Point a
Return the displacement vector for the ‘a’ axis.

Return: Return the displacement vector for the ‘a’ axis.

13.11.5 assign(CellInstArray other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.11.6 [const] Point b
Return the displacement vector for the ‘b’ axis.

Return: Return the displacement vector for the ‘b’ axis.

13.11.7 [const] Box bbox(Layout layout)
e bounding box of the array.

e bounding box incorporates all instances that the array represents. It needs the layout object to access
the actual cell from the cell index.

13.11.8 [const] Box bbox_per_layer(Layout layout, layer_index)
e bounding box of the array with respect to one layer.

e bounding box incorporates all instances that the array represents. It needs the layout object to access
the actual cell from the cell index.

13.11.9 [const] integer cell_index
Get the cell index of the cell instantiated.

13.11.10 [const] CplxTrans cplx_trans
Get the complex transformation of the first instance in the array.

is method is always valid compared to trans, since simple transformations can be expressed as complex
transformations as well.

KLayout Version 0.21 191

Chapter 13. RBA Reference 13.11. Class CellInstArray (version 0.21)

13.11.11 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.11.12 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.11.13 [const] CellInstArray dup
Creates a copy of self.

Return: CellInstArray e copy of self.

13.11.14 invert
Invert an array reference.

e inverted array reference describes in which transformations the parent cell is seen from the current
cell.

13.11.15 [const] boolean is_complex?
Test, if the array is a complex array.

Return: true e array represents complex instances (that is, with magnification and arbi-
trary rotation angles).

false e array represents simple instances.

13.11.16 [const] boolean is_regular_array?
Test, if this instance is a regular array.

Return: true e array represents regular instances (that is, without magnification and arbi-
trary rotation angles).

false e array represents simple instances.

13.11.17 [const] long na
Return the number of instances in the ‘a’ axis.

Return: long e number of instances in the ‘a’ axis.

13.11.18 [const] long nb
Return the number of instances in the ‘b’ axis.

Return: long e number of instances in the ‘b’ axis.

192 Version 0.21 KLayout

Chapter 13. RBA Reference 13.11. Class CellInstArray (version 0.21)

13.11.19 [static] CellInstArray new
Default constructor.

13.11.20 [static] CellInstArray new(cell_index, Trans t)
Create a single cell instance.

A synonym of: [static] CellInstArray new_inst(cell_index, Trans t).

Input: cell_index e cell to instantiate.
t e complex transformation by which to instantiate the cell.

Return: CellInstArray e newly created cell instance array.

13.11.21 [static] CellInstArray new(cell_index, CplxTrans t)
Create a single cell instance with a complex transformation.

A synonym of: [static] CellInstArray new_inst_cplx(cell_index, CplxTrans t).

Input: cell_index e cell to instantiate.
t e complex transformation by which to instantiate the cell.

Return: CellInstArray e newly created cell instance array.

13.11.22 [static] CellInstArray new(cell_index, Trans t,Point a, Point b, na, nb)
Create a single cell instance.

A synonym of: [static] CellInstArray new_inst_array(cell_index, Trans t,Point a, Point b, na, nb).

Input: cell_index e cell to instantiate.
t e complex transformation by which to instantiate the cell.
a e displacement vector of the array in the ‘a’ axis.
b e displacement vector of the array in the ‘b’ axis.
na e number of placements in the ‘a’ axis.
nb e number of placements in the ‘b’ axis.

Return: CellInstArray e newly created cell instance array.

13.11.23 [static] CellInstArray new(cell_index, CplxTrans t, Point b, Point b, na,nb)
Create a single cell instance with a complex transformation.

A synonym of: [static] CellInstArray new_inst_array_cplx(cell_index, CplxTrans t, Point b, Point b, na,nb
).

Input: cell_index e cell to instantiate.
t e complex transformation by which to instantiate the cell.
a e displacement vector of the array in the ‘a’ axis.
b e displacement vector of the array in the ‘b’ axis.
na e number of placements in the ‘a’ axis.
nb e number of placements in the ‘b’ axis.

Return: CellInstArray e newly created cell instance array.

13.11.24 [const] integer size
e number of single instances in the array.

If the instance represents a single instance, the count is 1. Otherwise it is na*nb.

KLayout Version 0.21 193

Chapter 13. RBA Reference 13.11. Class CellInstArray (version 0.21)

13.11.25 [const] const refTrans trans
Get the transformation of the first instance in the array.

e transformation returned is only valid if the array does not represent a complex transformation array.

13.11.26 transform(Trans t)
Transform the cell instance with the given transformation.

is method has been introduced in version 0.20.

13.11.27 transform(CplxTrans t)
Transform the cell instance with the given complex transformation.

is method has been introduced in version 0.20.

13.11.28 transform(ICplxTrans t)
Transform the cell instance with the given complex transformation.

is method has been introduced in version 0.20.

13.11.29 [const] CellInstArray transformed(Trans t)
Returns the transformed cell instance.

is method has been introduced in version 0.20.

13.11.30 [const] CellInstArray transformed(CplxTrans t)
Returns the transformed cell instance (complex transformation).

is method has been introduced in version 0.20.

13.11.31 [const] CellInstArray transformed(ICplxTrans t)
Returns the transformed cell instance (complex transformation).

is method has been introduced in version 0.20.

194 Version 0.21 KLayout

Chapter 13. RBA Reference 13.11. Class CellMapping (version 0.21)

13.12 Class CellMapping (version 0.21)
A cell mapping derived from two hierarchies.

A cell mapping is an association of cells in two layouts forming pairs of cells, i.e. on cell corresponds to
another cell in the other layout. Correspondency is defined by exact identity of both flat instantiations in
the given staring cell. erefore, when a cell is mapped to another cell, shapes can be transferred from
one cell to another while effectively rendering the same flat geometry (in the context of the given starting
cells).

A cell might not be mapped to another cell which basically means that there is no corresponding cell.
In this case, flaening to the next mapped cell is an option to transfer geometries despite the missing
mapping.

A cell mapping is created by instantiating a cell mapping object. Pass two layouts and two starting cells
to specify which cell trees to map.

Method Overview

new Create a new cell mapping.
has_mapping? Determine if a layout_b cell has a mapping to a layout_a cell.
cell_mapping Determine cell mapping to a layout_b cell to the corresponding layout_a cell.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object
destroyed Tell, if the object was destroyed

13.12.1 assign(CellMapping other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.12.2 [const] cell_index_a cell_mapping(cell_index_b)
Determine cell mapping to a layout_b cell to the corresponding layout_a cell.

Input: cell_index_b e index of the cell in layout_b whose mapping is requested.
Return: cell_index_a e cell index in layout_a.

13.12.3 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.12.4 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

KLayout Version 0.21 195

Chapter 13. RBA Reference 13.12. Class CellMapping (version 0.21)

13.12.5 [const] CellMapping dup
Creates a copy of self.

Return: CellMapping e copy of self.

13.12.6 [const] boolean has_mapping?(cell_index_b)
Determine if a cell layout_b has a mapping to a layout_a cell.

Input: cell_index_b e index of the cell in layout_b whose mapping is requested.
Return: true e cell has a mapping.

false e cell has no mapping.

13.12.7 [static]CellMappingnew(Layout layout_a, cell_index_a, Layout layout_b, cell_-
index_b)
Create a new cell mapping.

e cell mapping is created for cells below cell_a and cell_b in the respective layouts.

196 Version 0.21 KLayout

Chapter 13. RBA Reference 13.12. Class CellView (version 0.21)

13.13 Class CellView (version 0.21)
A “cell view” reference.

Acell view reference points to a certain cell within a certain layout. e layout pointer can be nil, indicating
that it is invalid. Also, the cell view describes a cell within that layout. e cell is addressed by a cell index
or a cell object reference.

e cell is not only identified by it’s index or object but as well by the path leading to that cell. is path
describes how to find the cell in the context of it’s parent cells.

e path is in fact composed in two ways: once in an unspecific fashion, just describing which parent cells
are used. e target of this path is called the context cell. It is accessible by the ctx_cell_index or ctx_cell
methods.

Additionally the path may further identify a certain instance of a certain sub-cell in the context cell. is
is done through a set of InstElement objects. e target of this context path is the actual cell addressed by
the cell view. is target cell is accessible by the cell_index or cell methods. In the viewer, the target cell
is shown in the context of the context cell. e hierarchy levels are counted from the context cell, which
is on level 0. If the context path is empty, the context cell is identical with the target cell.

Method Overview

== Equality: compares the cell the view points to, not the path.
is_valid? Test if the view points to a valid cell.
set_path Set the unspecific part of the path explicitly.
set_context_path Set the context path explicitly.
set_cell Set the path to the given cell.
set_cell_name Set the cell by name.
reset_cell Reset the cell.
ctx_cell_index Get the context cell’s index.
ctx_cell Get the reference to the context cell currently addressed.
cell_index Get the target cell’s index.
cell Get the reference to the target cell currently addressed.
filename Get file name associated with the layout behind the cell view.
name Get the unique name associated with the layout behind the cell view.
path Get the cell’s unspecific part of the path leading to the context cell.
context_path Get the cell’s context path.
layout Get the reference to the layout object addressed by this view.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.13.1 [const] boolean ==(CellView other)
Equality test compares the cell the view points to, not the path.

13.13.2 assign(CellView other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

KLayout Version 0.21 197

Chapter 13. RBA Reference 13.13. Class CellView (version 0.21)

13.13.3 [const] ref Cellcell
Get the reference to the target cell currently addressed.

13.13.4 [const] integer cell_index
Get the target cell’s index.

13.13.5 [const] InstElement[] context_path
Get the cell’s context path.

e context path leads from the context cell to the target cell in a specific fashion, i.e. describing each
instance in detail, not just be cell indices. If the context and target cell are identical, the context path is
empty.

13.13.6 [const] ref Cell ctx_cell
Get the reference to the context cell currently addressed.

13.13.7 [const] integer ctx_cell_index
Get the context cell’s index.

13.13.8 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.13.9 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.13.10 [const] CellView dup
Creates a copy of self.

Return: CellView e copy of self.

13.13.11 [const] string filename
Get the file name associated with the layout behind the cell view.

Return: string e file name associated with the layout.

13.13.12 [const] boolean is_valid?
Test if the view points to a valid cell.

Return: true e view points to a valid cell.
false e view points to an invalid cell.

198 Version 0.21 KLayout

Chapter 13. RBA Reference 13.13. Class CellView (version 0.21)

13.13.13 [const] ref Layout layout
Get the reference to the layout object addressed by this view.

Return: ref e reference to the layout.

13.13.14 [const] string name
Get the unique name associated with the layout behind the cell view.

Return: string e unique name associated with the layout.

13.13.15 [const] integer[] path
Get the cell’s unspecific part of the path leading to the context cell.

Return: integer[] e cell’s unspecific part of the path leading to the context cell.

13.13.16 reset_cell
Reset the cell.

e cell view will become invalid. e layout object will still be aached to the cellview.

13.13.17 set_cell(integer)
Set the path to the given cell.

is method will construct any path to this cell, not a particular one. It will clear the context path and
update the context and target cell.

13.13.18 set_cell_name(string)
Set the cell by name.

If the name is not a valid one, the cell view will become invalid. is method will construct any path to
this cell, not a particular one. It will clear the context path and update the context and target cell.

13.13.19 set_context_path(InstElement path[])
Set the context path explicitly.

is method assumes that the unspecific part of the path is established already and that the context path
starts from the context cell.

13.13.20 set_path(integerpath[])
Set the unspecific part of the path explicitly.

Seing the unspecific part of the path will clear the context path component and update the context and
target cell.

KLayout Version 0.21 199

Chapter 13. RBA Reference 13.13. Class Class (version 0.21)

13.14 Class Class (version 0.21)
e interface to the declarations of classes and methods.

Method Overview

each_class Iterate over all classes.
each_method Iterate over all methods of this class.
name e name of the class.
can_copy True if the class offers assignment.
doc e documentation string for this class.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.14.1 [const] boolean can_copy
True if the class offers assignment.

Return: true e class offers assignment.
false e class offers no assignment.

13.14.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.14.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.14.4 [const] string doc
e documentation string for this class.

Return: string e documentation string.

13.14.5 [static] yield const ref Class each_class
Iterate over all classes.

Return: yield An array of references to all methods of all classes.

13.14.6 [static] yield ref each_method
Iterate over all methods of this class.

Return: yield An array of references to all methods of this class.

200 Version 0.21 KLayout

Chapter 13. RBA Reference 13.14. Class Class (version 0.21)

13.14.7 [const] string name
e name of the class.

Return: string e name of the class.

KLayout Version 0.21 201

Chapter 13. RBA Reference 13.14. Class CplxTrans (version 0.21)

13.15 Class CplxTrans (version 0.21)
A complex transformation.

A complex transformation provides magnification, mirroring at the x-axis, rotation by an arbitrary angle
and a displacement. is version can transform integer-coordinate objects into floating-point coordinate
objects, which is the generic and exact case.

Method Overview

from_dtrans Conversion constructor from an floating-point transformation.
new Creates a unit transformation.
new Conversion constructor from a fix-point transformation.
new Constructor from a magnification.
new Constructor from a simple transformation and a magnification.
new Constructor from a simple transformation alone.
new e standard constructor using magnification, angle, mirror flag and displace-

ment.
inverted Inversion.
invert In-place inversion.
ctrans e transformation of a distance.
trans e transformation of a point.
* Multiplication (concatenation) of transformations.
< A sorting criterion.
== Equality test.
!= Inequality test.
to_s String conversion.
disp Gets the displacement.
disp= Sets the displacement.
rot Returns the respective rotation code if possible.
is_mirror? Gets the mirror flag.
mirror= Sets the mirror flag.
is_unity? Test, whether this is a unit transformation.
is_ortho? Test, if the transformation is an orthogonal transformation.
s_trans Extract the simple transformation part.
angle Gets the angle.
angle= Sets the angle.
mag Gets the magnification.
is_mag? Test, if the transformation is a magnifying one.
mag= Sets the magnification.
m_*/r_* Various angle/mirror codes for the named transformation.

r0 “unrotated” transformation.
r90 “rotated by 90 degree counterclockwise” transformation.
r180 “rotated by 180 degree counterclockwise” transformation.
r270 “rotated by 270 degree counterclockwise” transformation.
m0 “mirrored at the x-axis” transformation.
m45 “mirrored at the 45 degree axis” transformation.
m90 “mirrored at the y (90 degree) axis” transformation.
m135 “mirrored at the 135 degree axis” transformation.

assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

202 Version 0.21 KLayout

Chapter 13. RBA Reference 13.15. Class CplxTrans (version 0.21)

13.15.1 [const] boolean !=(CplxTrans)
Inequality test.

Input: CplxTrans text e object to compare against.
Return: true is object and the given one are not equal.

false ⁇?.

13.15.2 [const] CplxTrans *(CplxTrans t)
Multiplication (concatenation) of transformations.

e * operator returns self*t (”t is applied before this transformation”).

Input: t e transformation to apply before.
Return: CplxTrans e modified transformation.

13.15.3 [const] boolean <(CplxTrans)
A sorting criterion.

Input: e e object to compare against.
Return: true e object is ’less’ than the other.

false ⁇.

13.15.4 [const] boolean ==(CplxTrans)
Equality test.

Input: e e object to compare against.
Return: true Equality.

false ⁇.

13.15.5 [const] double angle
Gets the angle.

To check, if the transformation represents a rotation by a angle that is a multiple of 90 degree, use this
predicate.

Return: double e rotation angle this transformation provides in degree units (0..360 deg).

13.15.6 angle=(double a)
Sets the angle.

Input: a e new angle.

13.15.7 assign(CplxTrans other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

KLayout Version 0.21 203

Chapter 13. RBA Reference 13.15. Class CplxTrans (version 0.21)

13.15.8 [const] double ctrans(d)
e transformation of a distance.

e ctransethod transforms the given distance: e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

Input: d e distance to transform.
Return: double e transformed distance.

13.15.9 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.15.10 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.15.11 [const] u DPoint disp
Gets the displacement.

Return: u e displacement.

13.15.12 disp=(DPoint u)
Sets the displacement.

Input: u e new displacement.

13.15.13 [const] CplxTrans dup
Creates a copy of self.

Return: CplxTrans e copy of self.

13.15.14 [static] CplxTrans from_dtrans(CplxTrans dbl_trans)
Conversion constructor from an floating-point transformation.

13.15.15 CplxTrans invert
In-place inversion.

Inverts the transformation and replaces this transformation by the inverted one.

Return: CplxTrans e inverted transformation.

13.15.16 [const] CplxTrans inverted
Inversion.

Return: CplxTrans e inverted transformation.

204 Version 0.21 KLayout

Chapter 13. RBA Reference 13.15. Class CplxTrans (version 0.21)

13.15.17 [const] boolean is_mag?
Test, if the transformation is a magnifying one.

is is the recommended test for checking if the transformation represents a magnification.

Return: true e transformation is a magnifying.
false ⁇?.

13.15.18 [const] boolean is_mirror?
Gets the mirror flag.

Return: true e transformation is composed of a mirroring at the x-axis followed by a ro-
tation by the angle given by the angle property.

false ⁇?.

13.15.19 is_ortho?
Test, if the transformation is an orthogonal transformation.

Return: true e rotation is by a multiple of 90 degree.
false e rotation is not orthogonal.

13.15.20 [const] boolean is_unity?
Test, whether this is a unit transformation.

Return: true A unit transformation.
false Any other transformation.

13.15.21 [static] integer m_*/r_*
Various angle/mirror codes for the named transformation.

13.15.21.1 [static] integer m0 – “mirrored at the x-axis”.

Return: integer e angle/mirror code for this transformation.

13.15.21.2 [static] integer m135 – “mirrored at the 135 degree axis”

Return: integer e angle/mirror code for this transformation.

13.15.21.3 [static] integer m45 – “mirrored at the 45 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.15.21.4 [static] integer m90 – “mirrored at the 90 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.15.21.5 [static] integer r0 – “unrotated”.

Return: integer e angle/mirror code for this transformation.

KLayout Version 0.21 205

Chapter 13. RBA Reference 13.15. Class CplxTrans (version 0.21)

13.15.21.6 [static] integer r180 – “rotated by 180 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.15.21.7 [static] integer r270 – “rotated by 270 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.15.21.8 [static] integer r90 – “rotated by 90 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.15.22 [const] double mag
Gets the magnification.

Return: integer e angle/mirror code for this transformation.

13.15.23 mag=(double m)
Sets the magnification.

Input: double m e new magnification.

13.15.24 mirror=(boolean)
Sets the mirror flag.

”mirroring” describes a reflection at the x-axis which is included in the transformation prior to rotation.

Input: boolean e new mirror flag.

13.15.25 [static] CplxTrans new
Creates a unit transformation.

13.15.26 [static] CplxTrans new(f)
Conversion constructor from a fix-point transformation.

A synonym of: [static] CplxTrans new_f(f).

is constructor will create a transformation with a fix point transformation but no displacement.

Input: f e rotation/mirror code (r0 .. m135 constants).

13.15.27 [static] CplxTrans new(double m)
Constructor from a magnification.

A synonym of: [static] CplxTrans new_m(double m).

Creates a magnifying transformation without displacement and rotation given the magnification m.

Input: double m e magnification.

206 Version 0.21 KLayout

Chapter 13. RBA Reference 13.15. Class CplxTrans (version 0.21)

13.15.28 [static] CplxTrans new(Trans t, double m)
Constructor from a simple transformation and a magnification.

A synonym of: [static] CplxTrans new_tm(Trans t, double m).

Input: t e transformation.
double m e magnification.

Return: CplxTrans e resulting complex transformation from a simple transformation and a mag-
nification.

13.15.29 [static] CplxTrans new(Trans t)
Constructor from a simple transformation alone.

A synonym of: [static] CplxTrans new_t(Trans t).

Input: t e transformation.
Return: CplxTrans e resulting complex transformation from a simple transformation and a mag-

nification of 1.0.

13.15.30 [static] CplxTrans new(double m, double r, boolean, DPoint u)
e standard constructor usingmagnification, angle,mirrorflag and displace-
ment.

A synonym of: [static] CplxTrans new_mrmu(double m, double r, boolean, DPoint u).

e sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Input: double m e magnification.
double r e rotation angle in units of degree.
boolean True, if mirrored at x axis.
u e displacement.

13.15.31 [const] integer rot
Returns the respective rotation code if possible.

If this transformation is orthogonal (is_ortho = true), then this method will return the corresponding
fix point transformation, not taking into account magnification and displacement. Otherwise, the result
reflects the quadrant the rotation goes into with the guarantee to reproduce the correct quadrant in the
exact case.

13.15.32 [const] Trans s_trans
Extract the simple transformation part.

e simple transformation part does not reflect magnification not arbitrary angles. On the angle contri-
bution up to a multiple of 90 degree is reflected.

13.15.33 [const] string to_s
String conversion.

Return: string e resulting string.

KLayout Version 0.21 207

Chapter 13. RBA Reference 13.15. Class CplxTrans (version 0.21)

13.15.34 [const] DPoint trans(Point p)
e transformation of a point.

e “trans” method transforms the given point q = t(p).

Input: p e point to transform.
Return: DPoint e transformed point.

208 Version 0.21 KLayout

Chapter 13. RBA Reference 13.15. Class DBox (version 0.21)

13.16 Class DBox (version 0.21)
A box class with double (floating-point) coordinates.

is object represents a box (a rectangular shape).

e notation is: p1 is the lower le point (x1, y1), p2 the upper right one (x2, y2), compare with fig. 13.2.

A box can be empty. An empty box represents no area (not even a point).

A box can be a point or a single line. In this case, the area is zero but the box still can overlap other boxes.

Figure 13.2. Box notation.

Method Overview

from_ibox Construct a floating-point coordinate box from an integer coordinate box.
new Default constructor: creates an empty (invalid) box.
new Constructor with four coordinates.
new Constructor with two points.
p1 Get the lower le point of the box.
p2 Get the upper right point of the box.
center Get the center of the box.
le Get the le coordinate of the box.
right Get the right coordinate of the box.
boom Get the boom coordinate of the box.
top Get the top coordinate of the box.
width Get the width of the box.
height Get the height of the box.
le= Set the le coordinate of the box.
right= Set the right coordinate of the box.
boom= Set the boom coordinate of the box.
top= Set the top coordinate of the box.
p1= Set the lower le point of the box.
p2= Set the upper right point of the box.
contains? Test if a point is inside the box.
empty? Test if this box is of type empty box.
inside? Test if this box is inside the argument box.
touches? Test if this box touches the argument box.
overlaps? Test if this box overlaps the argument box.
area Compute the box area
is_point? Test if the box is a single point
+ Join a box with a point.
+ Joining of two boxes.

KLayout Version 0.21 209

Chapter 13. RBA Reference 13.16. Class DBox (version 0.21)

& Intersection of two boxes.
* Convolve two boxes.
move Moves the box by a certain distance.
moved Get the box moved by a certain distance.
enlarge Enlarges the box by a certain amount.
enlarged Get the box enlarged by a certain amount.
transformed Transform the box with the given simple transformation
transformed_cplx Transform the box with the given complex transformation
< Less operator.
== Equality operator.
!= Inequality operator.
to_s Convert to a string.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.16.1 [const] boolean !=(DBox box)
Inequality test of two boxes.

Test if this box and the given box are not equal.

Input: box e given box.
Return: true is and the given box are unequal.

false is and the given box are equal.

13.16.2 DBox &(DBox box)
Intersection of two boxes.

e intersection of two boxes is the largest box common to both boxes. e intersection may be empty if
both boxes to not touch. If the boxes do not overlap but touch the result may be a single line or point with
an area of zero. Overwrites this box with the result.

Input: box e box to take the intersection with.
Return: DBox e intersection box.

13.16.3 DBox *(DBox box)
Convolve two boxes.

e * operator convolve the first box with the one given as the second argument. e box resulting from
’convolution’ is the outer boundary of the union set formed by placing the second box at every point of
the first. In other words, the returned box of (p1,p2)*(q1,q2) is (p1+q1,p2+q2).

Input: box e given box.
Return: DBox e intersection box.

13.16.4 [const] DBox +(DPoint point)
Join a box with a point.

e + operator joins a point with the box. e resulting box will enclose both the original box and the
point.

210 Version 0.21 KLayout

Chapter 13. RBA Reference 13.16. Class DBox (version 0.21)

Input: point e point to join with this box.
Return: DBox e box joined with the point.

13.16.5 DBox +(DBox box)
Joining of two boxes.

e + operator joins the first box with the one given as the second argument. Joining constructs a box
that encloses both boxes given. Empty boxes are neutral: they do not change another box when joining.
Overwrites this box with the result.

Input: box e box to join with this box.
Return: DBox e joined box.

13.16.6 [const] boolean <(DBox box)
Less operator.

Input: box is box.
Return: true is box is ’less’ with respect to first and second point (in this order).

false is box is ’greater’.

13.16.7 [const] boolean ==(DBox box)
Equality operator.

Input: box is box.
Return: true is box and the given box are equal.

false is box and the given box are unequal.

13.16.8 [const] double area
Compute the box area.

Return: double integer e box area, or
0 the box is empty.

13.16.9 assign(DBox other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

Input: other e contents of another object.

13.16.10 boom=(y1)
Set the bottom coordinate of the box.

Input: y1 e boom coordinate of the box.

13.16.11 [const] y1 boom
ery the bottom coordinate of the box.

Return: y1 e boom coordinate of the box.

KLayout Version 0.21 211

Chapter 13. RBA Reference 13.16. Class DBox (version 0.21)

13.16.12 [const] DPoint center
ery the center of the box.

Return: DPoint e center coordinate of the box.

13.16.13 [const] boolean contains?(DPoint point)
Tests if a point is inside the box.

Input: point e coordinate to be tested.
Return: true e point is placed inside the box or on the box contour.

false e point is placed completely outside the box.

13.16.14 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.16.15 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.16.16 [const] DBox dup
Creates a copy of self.

Return: DBox e copy of self.

13.16.17 [const]booleanempty?
Test if the box is of type empty box.

An empty box may be created with the default constructor for example. Such a box is neutral when
combining it with other boxes and renders empty boxes if used in box intersections and false in geometrical
relationship tests.

Return: true e box is empty.
false e box is not empty.

13.16.18 ref DBox enlarge(DPoint enlargement)
Enlarges the box by a certain amount.

Enlarges the box by x and y value specified in the vector passed. Positive values with grow the box,
negative ones will shrink the box. e result may be an empty box if the box disappears. e amount
specifies the grow or shrink per edge. e width and height will change by twice the amount. Does not
check for coordinate overflows.

Input: enlargement e grow or shrink amount in x and y direction.
Return: ref A reference to the enlarged box.

212 Version 0.21 KLayout

Chapter 13. RBA Reference 13.16. Class DBox (version 0.21)

13.16.19 [const] DBox enlarged(DPoint enlargement)
Get the box enlarged by a certain amount.

Enlarges the box by x and y value specified in the vector passed. Positive values will grow the box, negative
ones will shrink the box. e result may be an empty box if the box disappears. e amount specifies the
grow or shrink per edge. e width and height will change by twice the amount. Does not modify this
box. Does not check for coordinate overflows.

Input: enlargement e grow or shrink amount in x and y direction.
Return: DBox e enlarged box.

13.16.20 [static] DBox from_ibox(Box int_box)
Construct a floating-point coordinate box from an integer coordinate box.

Create a floating-point coordinate box from an integer coordinate box.

Input: int_box e floating-point coordinate box.
Return: DBox e integer coordinate box.

13.16.21 [const] height height
ery the height of the box.

Return: height e height of the box as double integer, where the equation height = y2− y1
is valid.

13.16.22 [const] boolean inside?(DBox box)
Test if this box is inside the argument box.

Input: box e given box.
Return: true is box is inside the given box, i.e. the box intersection renders this box.

false is box is not inside the given box.

13.16.23 [const] boolean is_point?
Test if the box is a single point.

Return: true e box is a single point.
false e box is not a single point.

13.16.24 le=(x1)
Set the le coordinate of the box.

Input: x1 e le coordinate of the box.

13.16.25 [const] x1 le
ery the le coordinate of the box.

Return: x1 e le coordinate of the box as double integer.

KLayout Version 0.21 213

Chapter 13. RBA Reference 13.16. Class DBox (version 0.21)

13.16.26 ref DBox move(DPoint distance)
Moves the box by a certain distance.

Moves the box by a given offset and returns the moved box. Does not check for coordinate overflows.

Input: distance e offset to move the box.
Return: ref A reference to this box.

13.16.27 [const] DBox moved(DPoint distance)
Get the box moved by a certain distance.

Moves the box by a given offset and returns the moved box. Does not modify this box. Does not check for
coordinate overflows.

Input: distance e offset to move the box.
Return: DBox e moved box.

13.16.28 [static] DBox new
Default constructor: creates an empty (invalid) box.

Return: DBox e new empty box.

13.16.29 [static] DBox new(le, bottom, right, top)
Constructor with four coordinates.

Synonym for [static] DBox new-lbrt(le, boom, right, top)

Four coordinates are given to create a new box. If the coordinates are not provided in the correct order
(i.e. right <le), these are swapped.

Input: le, boom,
right, top

Four coordinates given to create a new box, where le equals to x1, boom to
y1, right to x2 and top to y2.

Return: DBox e new box.

13.16.30 [static] DBox new(DPoint lower_le, DPoint upper_right)
Box constructor with two points.

Synonym for [static] DBox new_pp(DPoint lower_le, DPoint upper_right).

Two points are given to create a new box. If the coordinates are not provided in the correct order (i.e. right
<le), these are swapped.

Input: lower_le,
upper_right

Two points given to create a new box.

Return: DBox e new box.

13.16.31 [const] boolean overlaps?(DBox box)
Test if this box overlaps the argument box.

Input: box e argument box.
Return: true e intersection box of this box with the argument box exists and has a non-

vanishing area.
false e intersection box of this box with the argument box does not exists or has a

vanishing area.

214 Version 0.21 KLayout

Chapter 13. RBA Reference 13.16. Class DBox (version 0.21)

13.16.32 [const] ref DPoint p1
ery the lower le point of the box.

Return: lower_le e lower le point of the box, where lower_le equals to x1, y1.

13.16.33 p1=(DPoint lower_le)
Set the lower le point of the box.

Input: lower_le e lower le point of the box, where lower_le equals to x1, y1.

13.16.34 [const] ref DPoint p2
ery the upper right point of the box.

Return: upper_right e upper right point of the box, where upper_right equals to x2, y2.

13.16.35 p2=(DPoint upper_right)
Set the upper right point of the box.

Input: upper_right e upper right point of the box, where upper_right equals to x2, y2.

13.16.36 [const] x2 right
ery the right coordinate of the box.

Return: x2 e right coordinate of the box as double integer.

13.16.37 right=(x2)
Set the right coordinate of the box.

Input: x2 e right coordinate of the box.

13.16.38 [const] string to_s
Convert a value to a string.

Return: string e converted value as string.

13.16.39 [const]y2 top
ery the top coordinate of the box.

Return: y2 e top coordinate of the box as double integer.

13.16.40 top=(y2)
Set the top coordinate of the box.

Input: y2 e top coordinate of the box.

KLayout Version 0.21 215

Chapter 13. RBA Reference 13.16. Class DBox (version 0.21)

13.16.41 [const] boolean touches?(DBox box)
Test if this box touches the argument box.

Input: box e argument box
Return: true is box has at least one point common with the argument box.

false is box has none point common with the argument box.

13.16.42 [const] DBox transformed(DTrans t)
Transform the box with the given simple transformation.

Input: t e simple transformation to apply.
Return: Box e transformed box.

13.16.43 [const] DBox transformed_cplx(DCplxTrans t)
Transform the box with the given complex transformation.

Input: t e complex transformation to apply.
Return: DBox e transformed box (a DBox now).

13.16.44 [const] width width
ery the width of the box.

Return: width e width of the box as double integer, where width equals to x2 - x1.

216 Version 0.21 KLayout

Chapter 13. RBA Reference 13.16. Class DCplxTrans (version 0.21)

13.17 Class DCplxTrans (version 0.21)
A complex transformation.

A complex transformation provides magnification, mirroring at the x-axis, rotation by an arbitrary angle
and a displacement. is version can transform integer-coordinate objects into floating-point coordinate
objects, which is the generic and exact case.

Method Overview

from_itrans Conversion constructor from an integer coordinate transformation.
new Creates a unit transformation.
new Conversion constructor from a fix-point transformation.
new Constructor from a magnification.
new Constructor from a simple transformation and a magnification.
new Constructor from a simple transformation alone.
new e standard constructor using magnification, angle, mirror flag and displace-

ment.
inverted Inversion.
invert In-place inversion.
ctrans e transformation of a distance.
trans e transformation of a point.
* Multiplication (concatenation) of transformations.
< A sorting criterion.
== Equality test.
!= Inequality test.
to_s String conversion.
disp Gets the displacement.
disp= Sets the displacement.
rot Returns the respective rotation code if possible.
is_mirror? Gets the mirror flag.
mirror= Sets the mirror flag.
is_unity? Test, whether this is a unit transformation.
is_ortho? Test, if the transformation is an orthogonal transformation.
s_trans Extract the simple transformation part.
angle Gets the angle.
angle= Sets the angle.
mag Gets the magnification.
is_mag? Test, if the transformation is a magnifying one.
mag= Sets the magnification.
m_*/r_* Various angle/mirror codes for the named transformation.

r0 “unrotated” transformation.
r90 “rotated by 90 degree counterclockwise” transformation.
r180 “rotated by 180 degree counterclockwise” transformation.
r270 “rotated by 270 degree counterclockwise” transformation.
m0 “mirrored at the x-axis” transformation.
m45 “mirrored at the 45 degree axis” transformation.
m90 “mirrored at the y (90 degree) axis” transformation.
m135 “mirrored at the 135 degree axis” transformation.

assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

KLayout Version 0.21 217

Chapter 13. RBA Reference 13.17. Class DCplxTrans (version 0.21)

13.17.1 [const] boolean !=(DCplxTrans)
Inequality test.

Input: DTrans text e object to compare against.
Return: true is object and the given one are not equal.

false ⁇?.

13.17.2 [const] DCplxTrans *(DCplxTrans t)
Multiplication (concatenation) of transformations.

e * operator returns self*t (”t is applied before this transformation”).

Input: t e transformation to apply before.
Return: DCplxTrans e modified transformation.

13.17.3 [const] boolean <(DCplxTrans)
A sorting criterion.

Input: e e object to compare against.
Return: true e object is ’less’ than the other.

false ⁇.

13.17.4 [const] boolean ==(DCplxTrans)
Equality test.

Input: e e object to compare against.
Return: true Equality.

false ⁇.

13.17.5 [const] double angle
Gets the angle.

To check, if the transformation represents a rotation by an angle that is a multiple of 90 degree, use this
predicate.

Return: double e rotation angle this transformation provides in degree units (0..360 deg).

13.17.6 angle=(double)
Sets the angle.

Input: double e new angle.

13.17.7 assign(DCplxTrans other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

218 Version 0.21 KLayout

Chapter 13. RBA Reference 13.17. Class DCplxTrans (version 0.21)

13.17.8 [const] double ctrans(d)
e transformation of a distance.

e ctransethod transforms the given distance: e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

Input: d e distance to transform as double integer.
Return: double e transformed distance.

13.17.9 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.17.10 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.17.11 [const] const ref DPoint disp
Gets the displacement.

13.17.12 disp=(DPoint u)
Sets the displacement.

Input: u e new displacement.

13.17.13 [const] DCplxTrans dup
Creates a copy of self.

Return: DCplxTrans e copy of self.

13.17.14 [static] DCplxTrans from_itrans(DCplxTrans dbl_trans)
Conversion constructor from an floating-point transformation.

13.17.15 DCplxTrans invert
In-place inversion.

Inverts the transformation and replaces this transformation by the inverted one.

Return: DCplxTrans e inverted transformation.

13.17.16 [const] DCplxTrans inverted
Inversion.

Return: DCplxTrans e inverted transformation.

KLayout Version 0.21 219

Chapter 13. RBA Reference 13.17. Class DCplxTrans (version 0.21)

13.17.17 [const] boolean is_mag?
Test, if the transformation is a magnifying one.

is is the recommended test for checking if the transformation represents a magnification.

13.17.18 [const] boolean is_mirror?
Gets the mirror flag.

Return: true e transformation is composed of a mirroring at the x-axis followed by a ro-
tation by the angle given by the angle property.

false ⁇?.

13.17.19 [const] boolean is_ortho?
Test, if the transformation is an orthogonal transformation.

Return: true e rotation is by a multiple of 90 degree.
false e rotation is not orthogonal.

13.17.20 [const] boolean is_unity?
Test, whether this is a unit transformation.

Return: true A unit transformation.
false An other transformation.

13.17.21 [static] integer m_*/r_*
Various angle/mirror codes for the named transformation.

13.17.21.1 [static] integer m0 – “mirrored at the x-axis”.

Return: integer e angle/mirror code for this transformation.

13.17.21.2 [static] integer m135 – “mirrored at the 135 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.17.21.3 [static] integer m45 – “mirrored at the 45 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.17.21.4 [static] integer m90 – “mirrored at the 90 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.17.21.5 [static] integer r0 – “unrotated”.

Return: integer e angle/mirror code for this transformation.

220 Version 0.21 KLayout

Chapter 13. RBA Reference 13.17. Class DCplxTrans (version 0.21)

13.17.21.6 [static] integer r180 – “rotated by 180 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.17.21.7 [static] integer r270 – “rotated by 270 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.17.21.8 [static] integer r90 – “rotated by 90 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.17.22 [const] double mag
Gets the magnification.

Return: integer e angle/mirror code for this transformation.

13.17.23 mag=(double m)
Sets the magnification.

Input: m e new magnification.

13.17.24 mirror=(boolean)
Sets the mirror flag.

“mirroring” describes a reflection at the x-axis which is included in the transformation prior to rotation.

Input: boolean e new mirror flag.

13.17.25 [static] DCplxTrans new
Creates a unit transformation.

13.17.26 [static] DCplxTrans new(f)
Conversion constructor from a fix-point transformation.

A synonym of: [static] DCplxTrans new_f(f).

is constructor will create a transformation with a fixpoint transformation but no displacement.

Input: f e rotation/mirror code (r0 .. m135 constants).

13.17.27 [static] DCplxTrans new(double m)
Constructor from a magnification.

A synonym of: [static] DCplxTrans new_m(double m).

Creates a magnifying transformation without displacement and rotation given the magnification m.

Input: double m e magnification.

KLayout Version 0.21 221

Chapter 13. RBA Reference 13.17. Class DCplxTrans (version 0.21)

13.17.28 [static] DCplxTrans new(Trans t, double m)
Constructor from a simple transformation and a magnification.

A synonym of: [static] DCplxTrans new_tm(Trans t, double m).

Creates a magnifying transformation from a simple transformation and a magnification.

13.17.29 [static] DCplxTrans new(Trans t)
Constructor from a simple transformation alone.

A synonym of: [static] DCplxTrans new_t(Trans t).

Creates a magnifying transformation from a simple transformation and a magnification of 1.0.

13.17.30 [static] DCplxTrans new(double m, double r, boolean, DPoint u)
e standard constructor usingmagnification, angle,mirrorflag and displace-
ment.

A synonym of: [static] DCplxTrans new_mrmu(double m, double r, boolean, DPoint u).

e sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Input: double m e magnification.
double r e rotation angle in units of degree.
boolean True, if mirrored at x axis.
u e displacement.

13.17.31 [const] integer rot
Returns the respective rotation code if possible.

If this transformation is orthogonal (is_ortho () == true), then this method will return the corresponding
fix-point transformation, not taking into account magnification and displacement. If the transformation
is not orthogonal, the result reflects the quadrant the rotation goes into with the guarantee to reproduce
the correct quadrant in the exact case.

13.17.32 [const] DTrans s_trans
Extract the simple transformation part.

e simple transformation part does not reflect magnification not arbitrary angles. On the angle contri-
bution up to a multiple of 90 degree is reflected.

13.17.33 [const] string to_s
String conversion.

Return: string e resulting string.

13.17.34 [const] DPoint trans(Point p)
e transformation of a point.

e trans method transforms the given point. q = t(p).

Input: p e point to transform.
Return: DPoint e transformed point.

222 Version 0.21 KLayout

Chapter 13. RBA Reference 13.17. Class DEdge (version 0.21)

13.18 Class DEdge (version 0.21)
An edge class with double (floating-point) coordinates.

An edge is a connection between points, usually participating in a larger context such as a polygon. An
edge has a defined direction (from p1 to p2).

Method Overview

from_iedge Construct a floating-point coordinate edge from an integer coordinate edge
new Default constructor: creates a degenerated edge 0,0 to 0,0.
new Constructor with two coordinates given as single values.
new Constructor with two points.
< Less operator.
== Equality test.
!= Inequality test.
moved Returns the moved edge.
enlarged Returns the enlarged edge.
transformed Transform the edge.
transformed_cplx Transform the edge.
move Moves the edge.
enlarge Enlarges the edge.
p1 e first point.
p2 e second point.
dx e horizontal extend of the edge.
dy e vertical extend of the edge.
x1 Shortcut for p1.x.
y1 Shortcut for p1.y.
x2 Shortcut for p2.x.
y2 Shortcut for p2.y.
dx_abs e absolute value of the horizontal extend of the edge.
dy_abs e vertical extend of the edge.
bbox Return the bounding box of the edge.
is_degenerate? Test for degenerated edge.
length e length of the edge.
sq_length e square of the length of the edge.
ortho_length e orthogonal length of the edge (“manhaan-length”).
to_s Convert to a string.
is_parallel? Test for being parallel.
contains? Test whether a point is on an edge.
contains_excl? Test whether a point is on an edge excluding the endpoints.
coincident? Coincidence check.
intersect? Intersection test.
intersection_point Returns the intersection point of two edges.
distance Distance between the edge and a point.
side_of Indicates at which side the point is located relative to the edge.
distance_abs Absolute distance between the edge and a point.
swap_points Swap the points of the edge.
crossed_by? Check, if an edge is cut by a line (given by an edge).
crossing_point Returns the crossing point on two edges.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

KLayout Version 0.21 223

Chapter 13. RBA Reference 13.18. Class DEdge (version 0.21)

13.18.1 [const] boolean !=(DEdge e)
Inequality test.

Input: e e object to compare against.
Return: true Inequality.

false ⁇?.

13.18.2 [const] boolean <(DEdge e)
Less operator.

Input: e e object to compare against.
Return: true e edge is ’less’ than the other edge with respect to first and second point.

false ⁇?.

13.18.3 [const] boolean ==(DEdge e)
Equality test.

Input: e e object to compare against.
Return: true Equality.

false ⁇?.

13.18.4 assign(DEdge other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.18.5 [const] DBox bbox
Return the bounding box of the edge.

Return: DBox e bounding box of the edge.

13.18.6 [const] boolean coincident?(DEdge e)
Coincidence check.

Checks whether a edge is coincident with another edge. Coincidence is defined by being parallel and that
at least one point of one edge is on the other edge.

Input: e e edge to test with.
Return: true e edges are coincident.

false ⁇?.

13.18.7 [const] boolean contains?(DPoint p)
Test whether a point is on an edge.

A point is on a edge if it is on (or at least closer than a grid point to) the edge.

224 Version 0.21 KLayout

Chapter 13. RBA Reference 13.18. Class DEdge (version 0.21)

Input: p e point to test with the edge.
Return: true e is on the edge.

false ⁇?.

13.18.8 [const] boolean contains_excl?(DPoint p)
Test whether a point is on an edge excluding the endpoints.

A point is on a edge if it is on (or at least closer than a grid point to) the edge.

Input: p e point to test with the edge.
Return: true e is on the edge but not equal p1 or p2.

false ⁇?.

13.18.9 [const] boolean crossed_by?(DEdge e)
Check, if an edge is cut by a line (given by an edge).

is method returns true if p1 is in one semispace while p2 is in the other, or one of them is on the line
through the edge “e”.

Input: e e edge representing the line that the edge must be crossing.
Return: true e line crosses the edge.

false ⁇?.

13.18.10 [const] DPoint crossing_point(DEdge e)
Returns the crossing point on two edges.

is method delivers the point where the given edge (sel) crosses the line given by the edge in argument
“e” If self does not cross this line, the result is undefined. See crossed_by? for a description of the crossing
predicate.

is method has been introduced in version 0.19.

Input: e e edge representing the line that self must be crossing.
Return: DPoint e point where self crosses the line given by “e”.

13.18.11 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.18.12 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

KLayout Version 0.21 225

Chapter 13. RBA Reference 13.18. Class DEdge (version 0.21)

13.18.13 [const] double distance(DPoint p)
Distance between the edge and a point.

Returns the distance between the edge and the point. e distance is measured by projecting the point
onto the line through the edge. If the edge is degenerated, the distance is not defined.

Input: p e point to test.
Return: -1 e point is “le” of the edge.

0 e point is on the edge.
1 e point is “right” of the edge.

13.18.14 [const] double distance_abs(DPoint p)
Absolute distance between the edge and a point.

Input: p e point to test.
Return: unsigned integere distance as unsigned double integer.

13.18.15 [const] DEdge dup
Creates a copy of self.

Return: DEdge e copy of self.

13.18.16 [const] double dx
e horizontal extend of the edge.

13.18.17 [const] double dx_abs
e absolute value of the horizontal extend of the edge.

13.18.18 [const] double dy
e vertical extend of the edge.

13.18.19 [const] double dy_abs
e vertical extend of the edge.

13.18.20 ref DEdge enlarge(DPoint p)
Enlarges the edge.

Enlarges the edge by the given distance and returns the enlarged edge. e edge is overwrien.

Input: p e distance to move the edge points.
Return: ref Reference to the enlarged edge.

13.18.21 [const] DEdge enlarged(DPoint p)
Returns the enlarged edge.

Enlarges the edge by the given offset and returns the moved edge. e edge is not modified. Enlargement
means that the first point is shied by -p, the second by p.

Input: p e distance to enlarge the edge points.
Return: DEdge e enlarged edge.

226 Version 0.21 KLayout

Chapter 13. RBA Reference 13.18. Class DEdge (version 0.21)

13.18.22 [static] DEdge from_iedge(Edge int_edge)
Construct a floating-point coordinate edge from an integer coordinate edge.

Create a floating-point coordinate edge from an integer edge.

Input: int_edge A integer coordinate edge.
Return: DEdge e resulting floating-point coordinate edge.

13.18.23 [const] boolean intersect?(DEdge e)
Intersection test.

Input: e e edge to test.
Return: true e edges intersect. Two edges intersect if they share at least one point. If the

edges coincide, they also intersect. For degenerated edges, the intersection is
mapped to point containment tests.

false e edges does not intersect.

13.18.24 [const] DPoint intersection_point(DEdge e)
Returns the intersection point of two edges.

is method delivers the intersection point. If the edges do not intersect, the result is undefined.

is method has been introduced in version 0.19.

Input: e e edge to test.
Return: DPoint e point where the edges intersect.

13.18.25 [const] boolean is_degenerate?
Test for degenerated edge.

Return: true is edge is degenerated, that means end and start point are identical.
false End and start point are different.

13.18.26 [const] boolean is_parallel?(DEdge e)
Test for being parallel.

Input: e e edge to test against.
Return: true e edges are parallel.

false e edges are not parallel.

13.18.27 [const] double length
Get the length of the edge.

Return: double e length of the edge.

13.18.28 ref DEdge move(DPoint p)
Moves the edge.

Moves the edge by the given offset and returns the moved edge. e edge is overwrien.

Input: p e distance to move the edge.
Return: ref Reference to the enlarged edge.

KLayout Version 0.21 227

Chapter 13. RBA Reference 13.18. Class DEdge (version 0.21)

13.18.29 [const] DEdge moved(DPoint p)
Returns the moved edge.

Moves the edge by the given offset and returns the moved edge. e edge is not modified.

Input: p e distance to move the edge.
Return: DEdge e enlarged edge.

13.18.30 [static] DEdge new
Default constructor: creates a degenerated edge 0,0 to 0,0.

13.18.31 [static] DEdge new(double x1, double y1, double x2, double y2)
Constructor with two coordinates given as single values.

A synonym for:[static] DEdge new_xyxy(double x1, double y1, double x2, double y2).par Four values,
denotes two coordinates, are given to create a new edge.

Input: double x1 e x part of the first coordinate.
double y1 e y part of the first coordinate.
double x2 e x part of the second coordinate.
double y2 e y part of the second coordinate.

Return: DEdge e resulting edge.

13.18.32 [static] DEdge new(DPoint p1 DPoint p2)
Constructor with two points.

A synonym for:[static] DEdge new_pp(DPoint p1 DPoint p2).

Two points are given to create a new edge.

Input: DPoint p1 e first point.
DPoint p2 e second point.

Return: DEdge e resulting edge.

13.18.33 [const] double ortho_length
e orthogonal length of the edge “manhattan-length”).

Return: double e orthogonal length equals to abs(dx) + abs(dy).

13.18.34 [const] const ref DPointp1
e first point.

13.18.35 [const] const ref DPointp2
e second point.

13.18.36 [const] integer side_of(DPoint p)
Indicates at which side the point is located relative to the edge.

Input: p e point to test.
Return: -1 e point is “le” of the edge.

0 e point is on the edge.
1 e point is “right” of the edge.

228 Version 0.21 KLayout

Chapter 13. RBA Reference 13.18. Class DEdge (version 0.21)

13.18.37 [const] double sq_length
e square of the length of the edge.

13.18.38 swap_points
Swap the points of the edge.

13.18.39 [const] string to_s
Convert to a string.

Return: string e resulting string.

13.18.40 [const] DEdge transformed(DTrans t)
Transform the edge.

Transforms the edge with the given complex transformation. Does not modify the edge but returns the
transformed edge.

Input: t e transformation to apply.
Return: DEdge e transformed edge.

13.18.41 [const] DEdge transformed_cplx(DCplxTrans t)
Transform the edge.

Transforms the edge with the given complex transformation. Does not modify the edge but returns the
transformed edge.

Input: t e transformation to apply.
Return: DEdge e transformed edge.

13.18.42 [const] double x1
Shortcut for p1.x.

13.18.43 [const] double x2
Shortcut for p2.x.

13.18.44 [const] double y1
Shortcut for p1.y.

13.18.45 [const] double y2
Shortcut for p2.y.

KLayout Version 0.21 229

Chapter 13. RBA Reference 13.18. Class DPath (version 0.21)

13.19 Class DPath (version 0.21)
An path class with double (floating-point) coordinates.

A path consists of an sequence of line segments forming the ’spine’ of the path and a width. In addition,
the starting point can be drawn back by a certain extent (the ’begin extension’) and the end point can be
pulled forward somewhat (by the ’end extension’). A path may have round ends for special purposes.

Method Overview

new Default constructor: creates an empty (invalid) path with width 0.
new Constructor given the points of the path’s spine and the width.
new Constructor given the points of the path’s spine, the width and the extensions.
new Constructor given the points of the path’s spine, the width, the extensions and

the round end flag.
< Less operator.
== Equality test.
!= Inequality test.
points= Set the points of the path.
each_point Get the points that make up the path’s spine.
points Get the number of points.
width= Set the width.
width Get the width.
bgn_ext= Set the begin extension.
bgn_ext Get the begin extension.
end_ext= Set the end extension.
end_ext Get the end extension.
round= Set the ’round ends’ flag.
is_round? Tell, if the path has round ends.
move Moves the path.
moved Returns the moved path.
transformed Transform the path.
transformed_cplx Transform the path.
to_s Convert to a string.
simple_polygon Convert the path to a simple polygon.
polygon Convert the path to a polygon.
bbox Return the bounding box of the path.
from_ipath Construct a floating-point coordinate path from an integer coordinate one.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.19.1 [const] boolean !=(DPath p)
Inequality test.

Input: p e object to compare against.
Return: true Inequality.

false ⁇?.

230 Version 0.21 KLayout

Chapter 13. RBA Reference 13.19. Class DPath (version 0.21)

13.19.2 [const] boolean <(DPath p)
Less operator.

is operator is provided to establish some, not necessarily a certain sorting order.

Input: p e object to compare against.
Return: true e path is less then the argument path.

false e path is greater then the argument path.

13.19.3 [const] boolean ==(DPath p)
Equality test.

Input: p e object to compare against.
Return: true Equality.

false ⁇?.

13.19.4 assign(DPath other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.19.5 [const] DBox bbox
Return the bounding box of the path.

Return: DBox e bounding box.

13.19.6 [const] double bgn_ext
Get the begin extension.

Return: double e begin extension.

13.19.7 bgn_ext=(double)
Set the begin extension.

Input: double e begin extension.

13.19.8 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.19.9 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

KLayout Version 0.21 231

Chapter 13. RBA Reference 13.19. Class DPath (version 0.21)

13.19.10 [const] DPath dup
Creates a copy of self.

Return: DPath e copy of self.

13.19.11 [const] yield DPoint each_point
Get the points that make up the path’s spine.

Return: yield e points that make up the path’s spine.

13.19.12 [const] double end_ext
Get the end extension.

Return: double e end extension.

13.19.13 end_ext=(double)
Set the end extension.

Input: double e end extension.

13.19.14 [static] DPath from_ipath(Path int_path)
Construct a floating-point coordinate path from an integer coordinate one.

is method has been added in version 0.15.

13.19.15 [const] boolean is_round?
Tell, if the path has round ends.

Return: true e path has round ends.
false e path has other ends.

13.19.16 ref DPath move(DPoint p)
Moves the path.

Moves the path by the given offset and returns the reference of the moved path. e path is overwrien.

Input: p e distance to move the path.
Return: ref e reference of the moved path.

13.19.17 [const] DPath moved(DPoint p)
Returns the moved path.

Moves the path by the given offset and returns the reference of the moved path. e path is not modified.

Input: p e distance to move the path.
Return: DPath e moved path.

13.19.18 [static] DPath new
Default constructor: creates an empty (invalid) path with width 0.

Return: DPath e empty (invalid) path.

232 Version 0.21 KLayout

Chapter 13. RBA Reference 13.19. Class DPath (version 0.21)

13.19.19 [static] DPath new(DPoint pts[], double width)
Constructor given the points of the path’s spine and the width.

A synonym for: [static] DPath new_pw(DPoint pts[], double width).

Input: pts[] e points forming the spine of the path.
double width e width of the path.

Return: DPath e resulting path.

13.19.20 [static] DPath new(DPoint pts[], double width, double bgn_ext, double end_-
ext)
Constructor given the points of the path’s spine, thewidth and the extensions.

A synonym for: [static] DPath new_pwx(DPoint pts[], double width, double bgn_ext, double end_ext).

Input: pts[] e points forming the spine of the path.
double width e width of the path.
double bgn_ext e begin extension of the path.
double end_ext e end extension of the path.

Return: DPath e resulting path.

13.19.21 [static] DPath new(DPoint pts[], double width, double bgn_ext, double end_-
ext, boolean round)
Constructor given the points of the path’s spine, the width, the extensions
and the round end flag.

A synonym for: [static] DPath new_pwxr(DPoint pts[], double width, double bgn_ext, double end_ext,
boolean round).

Input: pts[] e points forming the spine of the path.
double width e width of the path.
double bgn_ext e begin extension of the path.
double end_ext e end extension of the path.
boolean round If this flag is true, the path will get rounded ends.

Return: DPath e resulting path.

13.19.22 [const] unsigned points
Get the number of points.

Return: unsigned e number of points.

13.19.23 points=(DPoint pts[])
Set the points of the path.

Input: pts[] An area of points forming the spine of the path.

13.19.24 [const] DPolygon polygon
Convert the path to a polygon.

e returned polygon is not guaranteed to be non-self overlapping. is may happen if the path overlaps
itself or contains very short segments.

Return: DPolygon e resulting polygon.

KLayout Version 0.21 233

Chapter 13. RBA Reference 13.19. Class DPath (version 0.21)

13.19.25 round=(boolean)
Set the “round ends” flag.

Input: true “round ends”.
false Other ends.

13.19.26 [const] DSimplePolygon simple_polygon
Convert the path to a simple polygon.

e returned polygon is not guaranteed to be non-selfoverlapping. is may happen if the path overlaps
itself or contains very short segments.

Return: DSimplePolygone resulting polygon.

13.19.27 [const] string to_s
Convert to a string.

Return: string e resulting string.

13.19.28 [const] DPath transformed(DTrans t)
Transform the path.

Transforms the path with the given transformation. Does not modify the path but returns the transformed
path.

Input: t e transformation to apply.
Return: DPath e transformed path.

13.19.29 [const] DPath transformed_cplx(DCplxTrans t)
Transform the path.

Transforms the path with the given complex transformation. Does not modify the path but returns the
transformed path.

Input: t e transformation to apply.
Return: DPath e transformed path.

13.19.30 [const] double width
Get the width.

Return: double e width of the path.

13.19.31 width=(double)
Set the width.

Input: double e width of the path.

234 Version 0.21 KLayout

Chapter 13. RBA Reference 13.19. Class DPoint (version 0.21)

13.20 Class DPoint (version 0.21)
A point class with double (floating-point) coordinates.

Method Overview

from_ipoint Create a floating-point coordinate point from an integer coordinate point.
new Default constructor: creates a point at 0,0.
new Constructor for a point from two coordinate values.
+ Add one point to another.
− Subtract one point from another.
< ”less” comparison operator.
== Equality test operator.
!= Inequality test operator.
x Accessor to the x coordinate.
y Accessor to the y coordinate.
x= Write accessor to the x coordinate.
y= Write accessor to the y coordinate.
* Scaling by some factor.
distance e euclidean distance to another point.
sq_distance e square euclidean distance to another point.
to_s String conversion.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.20.1 [const] boolean !=(DPoint p)
Inequality test operator.

Input: p e given floating-point coordinate point.
Return: true is and the given point are unequal.

false is and the given point are equal.

13.20.2 [const] DPoint *(double f)
Scaling by some factor.

Input: double f e given floating-point scaling factor.
Return: DPoint e scaled floating-point coordinate point.

13.20.3 [const] DPoint +(DPoint p)
Add one point to another.

Add point p to self by adding the coordinates.

Input: p e given floating-point coordinate point.
Return: DPoint e resulting floating-point coordinate point.

KLayout Version 0.21 235

Chapter 13. RBA Reference 13.20. Class DPoint (version 0.21)

13.20.4 [const] DPoint −(DPoint p)
Subtract one point to another.

Subtract point p from self by subtracting the coordinates.

Input: p e given floating-point coordinate point.
Return: DPoint e resulting floating-point coordinate point.

13.20.5 [const] boolean <(DPoint p)
”less” comparison operator.

is operator is provided to establish a sorting order.

Input: p e given floating-point coordinate point.
Return: true is point is ’less’.

false is point is ’greater’.

13.20.6 [const] boolean ==(DPoint p)
Equality test operator.

Input: p e given floating-point coordinate point.
Return: true is point and the given point are equal.

false is point and the given point are unequal.

13.20.7 assign(DPoint other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.20.8 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.20.9 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.20.10 [const] double distance(DPoint d)
e euclidean distance to another point.

Input: d e other point to compute the distance to.
Return: double e euclidean distance.

236 Version 0.21 KLayout

Chapter 13. RBA Reference 13.20. Class DPoint (version 0.21)

13.20.11 [const] DPoint dup
Creates a copy of self.

Return: DPoint e copy of self.

13.20.12 [static] DPoint from_ipoint(Point p)
Create a floating-point coordinate point from an integer coordinate point.

Input: p e integer coordinate point.
Return: DPoint e created floating-point coordinate point.

13.20.13 [static] DPoint new
Default constructor: creates a point at 0,0.

Return: DPoint e new floating-point coordinate point at 0,0.

13.20.14 [static] DPoint new(double x, double y)
Constructor for a point from two coordinate values.

Input: double x e floating-point x part of the coordinate.
double y e floating-point y part of the coordinate.

Return: DPoint e new floating-point coordinate point.

13.20.15 [const] double sq_distance(DPoint d)
e square euclidean distance to another point.

Input: d e other point to compute the distance to.
Return: double e square euclidean distance.

13.20.16 [const] string to_s
String conversion.

Return: string e floating-point coordinate point as string.

13.20.17 [const] double x
Accessor to the x part of the coordinate.

Return: integer e x part of the floating-point coordinate point.

13.20.18 x=(double)
Write accessor to the x part of the coordinate.

Input: integer e x part of the floating-point coordinate point.

13.20.19 [const] double y
Accessor to the y part of the coordinate.

Return: integer e y part of the floating-point coordinate point.

KLayout Version 0.21 237

Chapter 13. RBA Reference 13.20. Class DPoint (version 0.21)

13.20.20 y=(double)
Write accessor to the y part of the coordinate.

Input: integer e y part of the floating-point coordinate point.

238 Version 0.21 KLayout

Chapter 13. RBA Reference 13.20. Class DPolygon (version 0.21)

13.21 Class DPolygon (version 0.21)
A polygon class with double (floating-point) coordinates.

A polygon consists of an outer hull and zero to many holes. Each contour consists of several points. e
point list is normalized such that the lemost, lowest point is the first one. e orientation is normalized
such that the orientation of the hull contour is clockwise, while the orientation of the holes is counter-
clockwise.

It is in no way checked that the contours are not over-lapping. is must be ensured by the user of the
object when filling the contours.

Method Overview

new Default constructor: creates an empty (invalid) polygon.
new Constructor given the points of the polygon hull.
new Constructor converting a box to a polygon.
< Less operator.
== Equality test.
!= Inequality test.
hull= Set the points of the hull of polygon.
assign_hole Set the points of the given hole of the polygon.
points Get the total number of points (hull plus holes).
point_hull Get a specific point of the hull@args p.
point_hole Get a specific point of a hole@args n,p.
points_hull Get the number of points of the hull.
points_hole Get the number of points of the given hole.
insert_hole Insert a hole with the given points.
each_point_hull Iterate over the points that make up the hull.
each_point_hole Iterate over the points that make up the nᵗʰ hole.
size Sizing (biasing).
size Sizing (biasing).
holes Get the number of holes.
each_edge Iterate over the edges that make up the polygon.
inside Test, if the given point is inside the polygon.
compress Compress the polygon.
move Moves the polygon.
moved Returns the moved polygon.
transformed Transform the polygon.
transformed_cplx Transform the polygon with a complex transformation.
to_s Convert to a string.
area e area of the polygon.
bbox Return the bounding box of the polygon.
from_ipoly Construct a floating-point coordinate polygon from an integer coordinate one.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

KLayout Version 0.21 239

Chapter 13. RBA Reference 13.21. Class DPolygon (version 0.21)

13.21.1 [const] boolean !=(DPolygon p)
Inequality test.

Input: p e object to compare against.
Return: true Inequality.

false ⁇?.

13.21.2 [const] boolean <(DPolygon p)
Less operator.

is operator is provided to establish some, not necessarily a certain sorting order.

Input: p e object to compare against.
Return: true is polygon is less than the given one.

false ⁇?.

13.21.3 [const] boolean ==(DPolygon p)
Equality test.

Input: p e object to compare against.
Return: true e polygons are equal.

false ⁇?.

13.21.4 [const] double area
e area of the polygon.

e area is correct only if the polygon is not self-overlapping and oriented clockwise.

Return: double e area of the polygon.

13.21.5 assign(DPolygon other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.21.6 assign_hole(unsigned, DPoint p[])
Set the points of the given hole of the polygon.

If the hole index is not valid, this method does nothing.

is method was introduced in version 0.18.

Input: unsigned e index of the hole to which the points should be assigned.
p[] An array of points to assign to the polygon’s hole.

13.21.7 [const] const refDBox bbox
Return the bounding box of the polygon.

13.21.8 compress(boolean)
Compress the polygon.

Removes redundant points from the polygon, such as points being on a line formed by two other points.

240 Version 0.21 KLayout

Chapter 13. RBA Reference 13.21. Class DPolygon (version 0.21)

Input: true Additionally removes points if the two adjacent edges form a spike.
false Basic behavior.

13.21.9 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.21.10 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.21.11 [const] DPolygon dup
Creates a copy of self.

Return: DPolygon e copy of self.

13.21.12 yield DEdge each_edge
Iterate over the edges that make up the polygon.

Return: yield e array of the edges that make up the polygon.

13.21.13 [const] yield DPoint each_point_hole(unsigned)
Iterate over the points that make up the nth hole.

Input: unsigned e hole number, which must be equal or less than the number of holes (see
holes)

13.21.14 [const] yield DPoint each_point_hull
Iterate over the points that make up the hull.

Return: yield e array of the points that make up the hull.

13.21.15 [static] DPolygon from_ipoly(Polygon int_poly)
Construct a floating-point coordinate polygon from an integer coordinate
one.

is method has been added in version 0.15.

13.21.16 [const] unsigned holes
Get the number of holes.

Return: unsigned e number of holes.

KLayout Version 0.21 241

Chapter 13. RBA Reference 13.21. Class DPolygon (version 0.21)

13.21.17 hull=(DPoint p[])
Set the points of the hull of polygon.

A synonym for: assign_hull(DPoint p[]).

e ’assign_hull’ variant is provided in analogy to ’assign_hole’.

Input: p[] An array of points to assign to the polygon’s hull.

13.21.18 insert_hole(DPoint p[])
Insert a hole with the given points.

Input: p[] An array of points to insert as a new hole.

13.21.19 [const] boolean inside(DPoint p)
Test, if the given point is inside the polygon.

is tests works well only if the polygon is not self-overlapping and oriented clockwise.

Input: true e given point is inside the polygon.
false e given point is outside the polygon.

13.21.20 ref DPolygon move(DPoint p)
Moves the polygon.

Moves the polygon by the given offset and returns the reference of the moved polygon. e polygon is
overwrien.

Input: p e distance to move the polygon.
Return: ref e reference of the moved polygon.

13.21.21 [const] DPolygon moved(DPoint p)
Returns the moved polygon.

Moves the polygon by the given offset and returns the moved polygon. e polygon is not modified.

Input: p e distance to move the polygon.
Return: DPolygon e moved polygon.

13.21.22 [static] DPolygon new
Default constructor: creates an empty (invalid) polygon.

13.21.23 [static] DPolygon new(DPoint p[])
Constructor given the points of the polygon hull.

A synonym for: [static] DPolygon new_p(DPoint p[]).

Input: p[] An array of points to insert as a new polygon hull.

13.21.24 [static] DPolygon new(DBox box)
Constructor converting a box to a polygon.

A synonym for: [static] DPolygon new_b(DBox box).

Input: box e box to convert to a polygon.

242 Version 0.21 KLayout

Chapter 13. RBA Reference 13.21. Class DPolygon (version 0.21)

13.21.25 DPoint point_hole(unsigned n, unsigned p)
Get a specific point of a hole@args n,p.

is method was introduced in version 0.18.

Input: unsigned n e index of the hole to which the points should be assigned.
unsigned p e index of the point to get.

Return: DPoint e specific hole point. If the index of the point or of the hole is not valid, a
default value is returned.

13.21.26 DPoint point_hull(unsigned p)
Get a specific point of a hull@args p.

is method was introduced in version 0.18.

Input: unsigned p e index of the point to get.
Return: DPoint e specific hull point. If the index of the point is not a valid index, a default

value is returned.

13.21.27 unsigned points
Get the total number of points (hull plus holes).

is method was introduced in version 0.18.

Return: unsigned e total number of points.

13.21.28 unsigned points_hole(unsigned n)
Get the number of points of the given hole.

e argument gives the index of the hole of which the number of points are requested. e index must be
less than the number of holes, see holes.

Input: unsigned n e given hole.
Return: unsigned e number of points.

13.21.29 unsigned points_hull
Get the number of points of the hull.

Return: unsigned e number of points of the hull.

13.21.30 size(double dx, double dy, unsigned mode)
Sizing (biasing).

Shis the contour outwards (dx,dy>0) or inwards (dx,dy<0). May create invalid (self-overlapping, reverse
oriented) contours. e sign of dx and dy should be identical.

Input: double dx e x value to shi the contour.
double dy e y value to shi the contour.
0 Bending angle cutoff occurs at greater than 0 degree.
1 Bending angle cutoff occurs at greater than 45 degree.
2 Bending angle cutoff occurs at greater than 90 degree.
3 Bending angle cutoff occurs at greater than 135 degree.
4 Bending angle cutoff occurs at greater than approximately 168 degree.
other Bending angle cutoff occurs at greater than approximately 179 degree.

KLayout Version 0.21 243

Chapter 13. RBA Reference 13.21. Class DPolygon (version 0.21)

13.21.31 size(double d, unsigned mode)
Sizing (biasing).

Shis the contour outwards (d>0) or inwards (d<0). May create invalid (self-overlapping, reverse oriented)
contours.

Input: double d e distance to shi the contour in x and y direction.
0 Bending angle cutoff occurs at greater than 0 degree.
1 Bending angle cutoff occurs at greater than 45 degree.
2 Bending angle cutoff occurs at greater than 90 degree.
3 Bending angle cutoff occurs at greater than 135 degree.
4 Bending angle cutoff occurs at greater than approximately 168 degree.
other Bending angle cutoff occurs at greater than approximately 179 degree.

13.21.32 string to_s
Convert to a string.

Return: string e resulting string.

13.21.33 [const] DPolygon transformed(DTrans t)
Transform the polygon.

Transforms the polygon with the given transformation. Does not modify the polygon but returns the
transformed polygon.

Input: t e transformation to apply.
Return: DPolygon e transformed polygon.

13.21.34 [const] DPolygon transformed_cplx(DCplxTrans t)
Transform the polygon.

Transforms the polygon with the given transformation. Does not modify the polygon but returns the
transformed polygon.

Input: t e transformation to apply.
Return: DPolygon e transformed polygon.

244 Version 0.21 KLayout

Chapter 13. RBA Reference 13.21. Class DSimplePolygon (version 0.21)

13.22 Class DSimplePolygon (version 0.21)
A polygon class.

A simple polygon consists of an outer hull only. e contour consists of several points. e point list is
normalized such that the lemost, lowest point is the first one. e orientation is normalized such that
the orientation of the hull contour is clockwise.

It is in no way checked that the contours are not over-lapping. is must be ensured by the user of the
object when filling the contours.

Method Overview

new Default constructor: creates an empty (invalid) polygon.
new Constructor given the points of the simple polygon hull.
new Constructor converting a box to a polygon.
== Equality test.
!= Inequality test.
points= Set the points of the simple polygon.
point Get a specific point.
points Get the number of points.
each_point Iterate over the points that make up the simple polygon.
each_edge Iterate over the edges that make up the polygon.
inside Test, if the given point is inside the polygon.
compress Compress the polygon.
move Moves the polygon.
moved Returns the moved polygon.
transformed Transform the polygon.
transformed_cplx Transform the polygon with a complex transformation.
to_s Convert to a string.
area e area of the polygon.
bbox Return the bounding box of the polygon.
from_ipoly Construct a floating-point coordinate polygon from an integer coordinate one.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.22.1 [const] boolean !=(DSimplePolygon p)
Inequality test.

Input: p e object to compare against.
Return: true Inequality.

false ⁇?.

13.22.2 [const] boolean ==(DSimplePolygon p)
Equality test.

Input: p e object to compare against.
Return: true e polygons are equal.

false ⁇?.

KLayout Version 0.21 245

Chapter 13. RBA Reference 13.22. Class DSimplePolygon (version 0.21)

13.22.3 [const] double area
e area of the polygon.

e area is correct only if the polygon is not self-overlapping and oriented clockwise.

Return: double e area of the polygon.

13.22.4 assign(DSimplePolygon other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.22.5 [const] const refDBox bbox
Return the bounding box of the polygon.

13.22.6 compress(boolean)
Compress the polygon.

Removes redundant points from the polygon, such as points being on a line formed by two other points.

Input: true Additionally removes points if the two adjacent edges form a spike.
false Basic behavior.

13.22.7 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.22.8 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.22.9 [const] DSimplePolygon dup
Creates a copy of self.

Return: DSimplePolygone copy of self.

13.22.10 yield DEdge each_edge
Iterate over the edges that make up the simple polygon.

Return: yield e array of the edges that make up the simple polygon.

13.22.11 [const] yield DPoint each_point
Iterate over the points that make up the simple polygon.

Return: yield e array of the points that make up the simple polygon.

246 Version 0.21 KLayout

Chapter 13. RBA Reference 13.22. Class DSimplePolygon (version 0.21)

13.22.12 [static] DSimplePolygon from_ipoly(SimplePolygon int_poly)
Construct a floating-point coordinate polygon from an integer coordinate
one.

is method has been added in version 0.15.

13.22.13 [const] boolean inside(DPoint p)
Test, if the given point is inside the polygon.

is tests works well only if the polygon is not self-overlapping and oriented clockwise.

Input: true e given point is inside the polygon.
false e given point is outside the polygon.

13.22.14 ref DSimplePolygon move(DPoint p)
Moves the simple polygon.

Moves the simple polygon by the given offset and returns the reference of the moved polygon. e polygon
is overwrien.

Input: p e distance to move the polygon.
Return: ref e reference of the moved polygon.

13.22.15 [const] DSimplePolygon moved(DPoint p)
Returns the moved polygon.

Moves the polygon by the given offset and returns the moved polygon. e polygon is not modified.

Input: p e distance to move the polygon.
Return: DSimplePolygone moved polygon.

13.22.16 [static] DSimplePolygon new
Default constructor: creates an empty (invalid) polygon.

13.22.17 [static] DSimplePolygon new(DPoint p[])
Constructor given the points of the simple polygon.

A synonym for: [static] DSimplePolygon new_p(DPoint p[]).

Input: p[] An array of points to insert as a new polygon hull.

13.22.18 [static] DSimplePolygon new(DBox box)
Constructor converting a box to a polygon.

A synonym for: [static] DSimplePolygon new_b(DBox box).

Input: box e box to convert to a polygon.

13.22.19 DPoint point(unsigned p)
Get a specific point of a contour@args p.

is method was introduced in version 0.18.

KLayout Version 0.21 247

Chapter 13. RBA Reference 13.22. Class DSimplePolygon (version 0.21)

Input: unsigned p e index of the point to get.
Return: DPoint e specific contour point. If the index of the point is not a valid index, a default

value is returned.

13.22.20 unsigned points
Get the number of points.

Return: unsigned e number of points.

13.22.21 points=(DPoint p[])
Set the points of the simple polygon.

Input: p[] An array of points to assign to the simple polygon.

13.22.22 string to_s
Convert to a string.

Return: string e resulting string.

13.22.23 [const] DSimplePolygon transformed(DTrans t)
Transform the simple polygon.

Transforms the simple polygon with the given transformation. Does not modify the polygon but returns
the transformed polygon.

Input: t e transformation to apply.
Return: DSimplePolygone transformed simple polygon.

13.22.24 [const] DSimplePolygon transformed_cplx(DCplxTrans t)
Transform the simple polygon.

Transforms the simple polygon with the given transformation. Does not modify the polygon but returns
the transformed polygon.

Input: t e transformation to apply.
Return: DSimplePolygone transformed simple polygon.

248 Version 0.21 KLayout

Chapter 13. RBA Reference 13.22. Class DText (version 0.21)

13.23 Class DText (version 0.21)
A text object.

A text object has a point (location), a text, a text transformation, a text size and a font id. Text size and
font id are provided to be able to render the text correctly.

Method Overview

from_itext Construct an floating-point coordinate text object from an integer coordinate
text

new Default constructor.
new Constructor with string and transformation.
new Constructor with string, transformation, text height and font.
string= Assign a text string to this object.
string Get the text string.
trans= Assign a transformation (text position and orientation) to this object.
trans Get the transformation.
size= Set the text height of this object.
size Get the text height.
font= Set the font number.
font Get the font number.
move Moves the text by a certain distance.
moved Returns the text moved by a certain distance.
transformed Transform the text with the given simple transformation.
transformed_cplx Transform the text with the given complex transformation.
< Less operator.
!= Equality test.
== Inequality test.
to_s Convert to a string.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.23.1 [const] boolean !=(DText text)
Inequality test.

Input: DText text e text object and the given text to compare against.
Return: true is text object and the given text are not equal.

false ⁇?.

13.23.2 [const] boolean <(DText t)
Less operator.

is operator is provided to establish some, not necessarily a certain sorting order.

Input: t e object to compare against.
Return: true is object is less than the given one.

false ⁇?.

KLayout Version 0.21 249

Chapter 13. RBA Reference 13.23. Class DText (version 0.21)

13.23.3 [const] boolean ==(DText text)
Equality test.

Input: DText text e object and the given text to compare against.
Return: true is text object and the given text are not equal.

false ⁇?.

13.23.4 assign(DText other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.23.5 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.23.6 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.23.7 [const] DText dup
Creates a copy of self.

Return: DText e copied text object.

13.23.8 integer font
Get the font number.

Return: integer e font number.

13.23.9 font=(integer)
Set the font number.

Input: integer e font number.

13.23.10 [static] DText from_itext(Text text)
Construct an floating-point coordinate text object from an integer coordinate
text.

Input: text Integer coordinate text object.
Return: DText Floating-point coordinate text object.

250 Version 0.21 KLayout

Chapter 13. RBA Reference 13.23. Class DText (version 0.21)

13.23.11 ref DText move(DPoint p)
Moves the text by a certain distance.

Moves the text by a given offset and returns the moved text. Does not check for coordinate overflows.

Input: p e distance to move the text.
Return: ref e reference to the moved text object.

13.23.12 [const] DText moved(DPoint p)
Returns the text moved by a certain distance.

Moves the text by a given offset and returns the moved text. Does not modify *this. Does not check for
coordinate overflows.

Input: p e distance to move the text.
Return: DText e moved text.

13.23.13 [static] DText new
Default constructor.

Creates a text with unit transformation and empty text.

13.23.14 [static] DText new(string, DTrans t)
Constructor with string and transformation.

A string and a transformation is provided to this constructor. e transformation specifies the location
and orientation of the text object. In addition, the text height and font can be specified.

Input: string e text string.
t e transformation to apply.

Return: DText e new text object.

13.23.15 [static] DText new(string, DTrans t, double height, font_id)
Constructor with string, transformation, text height and font number.

A string and a transformation is provided to this constructor. e transformation specifies the location
and orientation of the text object. In addition, the text height and font can be specified.

Input: string e text string.
t e transformation to apply.
double height e text height as double integer.
font_id e font number as integer.

Return: DText e new text object.

13.23.16 [const] double size
Get the text height.

Return: integer e font height as double integer.

13.23.17 size=(double)
Set the text height of this object.

Input: integer e text height as double integer.

KLayout Version 0.21 251

Chapter 13. RBA Reference 13.23. Class DText (version 0.21)

13.23.18 [const] string string
Get the text string.

Return: string e text string.

13.23.19 string=(string)
Assign a text string to this object.

Input: string e text string.

13.23.20 string to_s
Convert to a string.

Return: string e resulting string.

13.23.21 [const] const ref DTrans trans
Get the transformation.

13.23.22 trans=(DTrans t)
Assign a transformation (text position and orientation) to this object.

Input: t e transformation to assign.

13.23.23 [const] DText transformed(DTrans t)
Transform the text with the given simple transformation.

Input: t e transformation to apply.
Return: DText e transformed text object.

13.23.24 [const] DText transformed_cplx(DCplxTrans t)
Transform the text with the given complex transformation.

Input: t e transformation to apply.
Return: DText e transformed text object.

252 Version 0.21 KLayout

Chapter 13. RBA Reference 13.23. Class DTrans (version 0.21)

13.24 Class DTrans (version 0.21)
A simple transformation.

e simple transformation applies a displacement vector and a simple fix-point transformation. is ver-
sion acts on double coordinates.

Method Overview

from_itrans Conversion constructor from an integer transformation.
new Creates a unit transformation.
new Conversion constructor from a fix-point transformation.
new e standard constructor using angle and mirror flag.
new e standard constructor using angle and mirror flag and two coordinate val-

ues for displacement.
new e standard constructor using a code rather than angle and mirror.
new e standard constructor using a code rather than angle and mirror and two

coordinate values for displacement.
new e standard constructor using a displacement only.
new e standard constructor using a displacement given as two coordinates.
inverted Inversion.
invert In-place inversion.
ctrans e transformation of a distance.
trans e transformation of a point.
* Multiplication (concatenation) of transformations.
< A sorting criterion.
== Equality test.
!= Inequality test.
to_s String conversion.
disp Accessor to the point.
rot Returns the respective rotation code if possible.
angle Gets the angle.
is_mirror? Gets the mirror flag.
angle= Sets the angle.
disp= Sets the displacement.
mirror= Sets the mirror flag.
rot= Sets the angle/mirror code for the named transformation.

r0 “unrotated”.
r90 “rotated by 90 degree counterclockwise”.
r180 “rotated by 180 degree counterclockwise”.
r270 “rotated by 270 degree counterclockwise”.
m0 “mirrored at the x-axis”.
m45 “mirrored at the 45 degree axis”.
m90 “mirrored at the y (90 degree) axis”.
m135 “mirrored at the 135 degree axis”.

assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

KLayout Version 0.21 253

Chapter 13. RBA Reference 13.24. Class DTrans (version 0.21)

13.24.1 [const] boolean !=(DTrans)
Inequality test.

Input: DTrans text e object to compare against.
Return: true is object and the given one are not equal.

false ⁇?.

13.24.2 [const] DTrans *(DTrans t)
Multiplication (concatenation) of transformations.

e * operator returns self*t (”t is applied before this transformation”).

Input: t e transformation to apply before.
Return: DTrans e modified transformation.

13.24.3 [const] boolean <(DTrans)
A sorting criterion.

Input: e e object to compare against.
Return: true e object is ’less’ than the other.

false ⁇.

13.24.4 [const] boolean ==(DTrans)
Equality test.

Input: e e object to compare against.
Return: true Equality.

false ⁇.

13.24.5 [const] double angle
Gets the angle in units of 90 degree.

is value delivers the rotation component. In addition, a mirroring at the x axis may be applied before if
the is_mirror? property is true.

Return: integer e rotation angle in units of 90 degree.

13.24.6 angle=(double a)
Sets the angle in units of 90 degree.

is method was introduced in version 0.20.

Input: a e new angle.

13.24.7 assign(DTrans other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

254 Version 0.21 KLayout

Chapter 13. RBA Reference 13.24. Class DTrans (version 0.21)

13.24.8 [const] double ctrans(d)
e transformation of a distance.

e ctransethod transforms the given distance: e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

Input: d e distance to transform.
Return: double e transformed distance.

13.24.9 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.24.10 [const]booleandestroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.24.11 [const] const ref DPoint disp
Accessor to the point.

Return: ref e accessor to the point.

13.24.12 disp=(DPoint u)
Sets the displacement.

is method was introduced in version 0.20.

Input: u e new displacement.

13.24.13 [const] DTrans dup
Creates a copy of self.

Return: DTrans e copy of self.

13.24.14 [static] DTrans from_itrans(DTrans int_trans)
Conversion constructor from an integer coordinate transformation.

Input: int_trans e integer coordinate transformation.
Return: DTrans e floating-point coordinate transformation.

13.24.15 DTrans invert
In-place inversion.

Inverts the transformation and replaces this transformation by the inverted one.

Return: DTrans e inverted and replaced transformation.

KLayout Version 0.21 255

Chapter 13. RBA Reference 13.24. Class DTrans (version 0.21)

13.24.16 [const] DTrans inverted
Inversion.

Return: DTrans e inverted transformation.

13.24.17 [const] boolean is_mirror?
Gets the mirror flag.

Return: true e transformation is composed of a mirroring at the x-axis followed by a ro-
tation by the angle given by the angle property.

false ⁇?.

13.24.18 [static] integer m_*/r_*
Various angle/mirror codes for the named transformation.

13.24.18.1 [static] integer m0 – “mirrored at the x-axis”.

Return: integer e angle/mirror code for this transformation.

13.24.18.2 [static] integer m135 – “mirrored at the 135 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.24.18.3 [static] integer m45 – “mirrored at the 45 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.24.18.4 [static] integer m90 – “mirrored at the 90 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.24.18.5 [static] integer r0 – “unrotated”.

Return: integer e angle/mirror code for this transformation.

13.24.18.6 [static] integer r180 – “rotated by 180 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.24.18.7 [static] integer r270 – “rotated by 270 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.24.18.8 [static] integer r90 – “rotated by 90 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

256 Version 0.21 KLayout

Chapter 13. RBA Reference 13.24. Class DTrans (version 0.21)

13.24.19 [const] double mag
Gets the magnification.

Return: integer e angle/mirror code for this transformation.

13.24.20 mirror=(boolean)
Sets the mirror flag.

”mirroring” describes a reflection at the x-axis which is included in the transformation prior to rotation.

is method was introduced in version 0.20.

Input: boolean e new mirror flag.

13.24.21 [static] DTrans new
Creates a unit transformation.

13.24.22 [static] DTrans new(f)
Conversion constructor from a fix-point transformation.

A synonym of: [static] DTrans new_f(f).

is constructor will create a transformation with a fixpoint transformation but no displacement.

Input: f e rotation/mirror code (r0 .. m135 constants).

13.24.23 [static] DTrans new(rot, boolean, ref DPoint u)
e standard constructor using angle and mirror flag.

A synonym of: [static] DTrans new_rmu(rot, boolean, ref DPoint u).

e sequence of operations is: mirroring at x axis, rotation, application of displacement.

Input: rot e rotation in units of 90 degree.
boolean True, if mirrored at x axis.
u e displacement.

13.24.24 [static] DTrans new(f, double x, double y)
e standard constructor using a code rather than angle and mirror and two
coordinate values for displacement.

A synonym of: [static] DTrans new_fxy(f, double x, double y).

e sequence of operations is: mirroring at x axis, rotation, application of displacement.

Input: f e rotation/mirror code (r0 .. m135 constants).
double x e horizontal displacement.
double y e vertical displacement.

13.24.25 [static] DTrans new(f, DPoint u)
e standard constructor using a code rather than angle and mirror.

A synonym of: [static] DTrans new_fu(f, DPoint u).

Input: f e rotation/mirror code (r0 .. m135 constants).
u e displacement.

KLayout Version 0.21 257

Chapter 13. RBA Reference 13.24. Class DTrans (version 0.21)

13.24.26 [static] DTrans new(rot, boolean, double x, double y)
e standard constructor using angle and mirror flag and two coordinate val-
ues for displacement.

A synonym of: [static] DTrans new_rmxy(rot, boolean, double x, double y).

e sequence of operations is: mirroring at x axis, rotation, application of displacement.

Input: rot e rotation in units of 90 degree.
boolean True, if mirrored at x axis.
double x e horizontal displacement.
double y e vertical displacement.

13.24.27 [static] DTrans new(DPoint u)
e standard constructor using a displacement only.

A synonym of: [static] DTrans new_u(DPoint u).

Input: u e displacement.

13.24.28 [static] DTrans new(double x, double y)
e standard constructor using a displacement given as two coordinates.

Input: double x e horizontal displacement.
double y e vertical displacement.

13.24.29 [const] integer rot
Gets the angle/mirror code.

e angle/mirror code is one of the constants r0, r90, r180, r270, m0, m45, m90 and m135. rx is the rotation
by an angle of x counter clockwise. mx is the mirroring at the axis given by the angle x (to the x-axis).

13.24.30 rot=(r)
Sets the angle/mirror code.

is method was introduced in version 0.20.

Input: r e new angle/rotation code (see rot property).

13.24.31 [const] string to_s
String conversion.

Return: string e string representing the object.

13.24.32 [const] DPoint trans(DPoint p)
e transformation of a point.

e trans method transforms the given point. q = t(p).

Input: p e point to transform.
Return: DPoint e transformed point.

258 Version 0.21 KLayout

Chapter 13. RBA Reference 13.24. Class DoubleValue (version 0.21)

13.25 Class DoubleValue (version 0.21)
Encapsulate a floating point value.

is class is provided as a return value of InputDialog::get_double. By using an object rather than a pure
value, an object with has_value?= false can be returned indicating that the “Cancel” buon was pressed.

Method Overview

has_value? True, if a value is present.
to_f Get the actual value (a synonym for value).
value Get the actual value.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.25.1 assign(DoubleValue other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.25.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.25.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.25.4 [const] DoubleValue dup
Creates a copy of self.

Return: DoubleValue e copy of self.

13.25.5 [const] boolean has_value?
ery weather a value is present.

Return: true A value is present.
false Indication that the “Cancel” buon was pressed.

13.25.6 [const] double to_f
Get the actual value (a synonym for value).

Return: double e actual value.

KLayout Version 0.21 259

Chapter 13. RBA Reference 13.25. Class DoubleValue (version 0.21)

13.25.7 [const] double value
Get the actual value.

Return: double e actual value.

260 Version 0.21 KLayout

Chapter 13. RBA Reference 13.25. Class Edge (version 0.21)

13.26 Class Edge (version 0.21)
An edge class with integer coordinates.

An edge is a connection between points, usually participating in a larger context such as a polygon. An
edge has a defined direction (from p1 to p2).

Method Overview

from_dedge Construct an integer coordinate edge from a floating-point coordinate edge
new Default constructor: creates a degenerated edge 0,0 to 0,0.
new Constructor with two coordinates given as single values.
new Constructor with two points.
< Less operator.
== Equality test.
!= Inequality test.
moved Returns the moved edge.
enlarged Returns the enlarged edge.
transformed Transform the edge.
transformed_cplx Transform the edge.
transformed_cplx Transform the edge.
move Moves the edge.
enlarge Enlarges the edge.
p1 e first point.
p2 e second point.
dx e horizontal extend of the edge.
dy e vertical extend of the edge.
x1 Shortcut for p1.x.
y1 Shortcut for p1.y.
x2 Shortcut for p2.x.
y2 Shortcut for p2.y.
dx_abs e absolute value of the horizontal extend of the edge.
dy_abs e vertical extend of the edge.
bbox Return the bounding box of the edge.
is_degenerate? Test for degenerated edge.
length e length of the edge.
sq_length e square of the length of the edge.
ortho_length e orthogonal length of the edge (“manhaan-length”).
to_s Convert to a string.
is_parallel? Test for being parallel.
contains? Test whether a point is on an edge.
contains_excl? Test whether a point is on an edge excluding the endpoints.
coincident? Coincidence check.
intersect? Intersection test.
intersection_point Returns the intersection point of two edges.
distance Distance between the edge and a point.
side_of Indicates at which side the point is located relative to the edge.
distance_abs Absolute distance between the edge and a point.
swap_points Swap the points of the edge.
crossed_by? Check, if an edge is cut by a line (given by an edge).
crossing_point Returns the crossing point on two edges.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.

KLayout Version 0.21 261

Chapter 13. RBA Reference 13.26. Class Edge (version 0.21)

destroyed Tell, if the object was destroyed.

13.26.1 [const] boolean !=(Edge e)
Inequality test.

Input: e e object to compare against.
Return: true Inequality.

false ⁇?.

13.26.2 [const] boolean <(Edge e)
Less operator.

Input: e e object to compare against.
Return: true e edge is “less” than the other edge with respect to first and second point.

false ⁇?.

13.26.3 [const] boolean ==(Edge e)
Equality test.

Input: e e object to compare against.
Return: true Equality.

false ⁇?.

13.26.4 assign(Edge other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.26.5 [const] Box bbox
Return the bounding box of the edge.

Return: Box e bounding box of the edge.

13.26.6 [const] boolean coincident?(Edge e)
Coincidence check.

Checks whether a edge is coincident with another edge. Coincidence is defined by being parallel and that
at least one point of one edge is on the other edge.

Input: e e edge to test with.
Return: true e edges are coincident.

false ⁇?.

262 Version 0.21 KLayout

Chapter 13. RBA Reference 13.26. Class Edge (version 0.21)

13.26.7 [const] boolean contains?(DPoint p)
Test whether a point is on an edge.

A point is on a edge if it is on (or at least closer than a grid point to) the edge.

Input: p e point to test with the edge.
Return: true e is on the edge.

false ⁇?.

13.26.8 [const] boolean contains_excl?(DPoint p)
Test whether a point is on an edge excluding the endpoints.

A point is on a edge if it is on (or at least closer than a grid point to) the edge.

Input: p e point to test with the edge.
Return: true e is on the edge but not equal p1 or p2.

false ⁇?.

13.26.9 [const] boolean crossed_by?(Edge e)
Check, if an edge is cut by a line (given by an edge).

is method returns true if p1 is in one semispace while p2 is in the other, or one of them is on the line
through the edge “e”.

Input: e e edge representing the line that the edge must be crossing.
Return: true e line crosses the edge.

false ⁇?.

13.26.10 [const] DPoint crossing_point(Edge e)
Returns the crossing point on two edges.

is method delivers the point where the given edge (sel) crosses the line given by the edge in argument
“e”. If self does not cross this line, the result is undefined. See crossed_by? for a description of the crossing
predicate.

is method has been introduced in version 0.19.

Input: e e edge representing the line that self must be crossing.
Return: DPoint e point where self crosses the line given by “e”.

13.26.11 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.26.12 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

KLayout Version 0.21 263

Chapter 13. RBA Reference 13.26. Class Edge (version 0.21)

13.26.13 [const] integer distance(Point p)
Distance between the edge and a point.

Returns the distance between the edge and the point. e distance is measured by projecting the point
onto the line through the edge. If the edge is degenerated, the distance is not defined.

Input: p e point to test.
Return: -1 e point is “le” of the edge.

0 e point is on the edge.
1 e point is “right” of the edge.

13.26.14 [const] integer distance_abs(Point p)
Absolute distance between the edge and a point.

Input: p e point to test.
Return: integer e distance as unsigned double integer.

13.26.15 [const] Edge dup
Creates a copy of self.

Return: Edge e copy of self.

13.26.16 [const] integer dx
e horizontal extend of the edge.

Return: integer e horizontal extend of the edge.

13.26.17 [const] integer dx_abs
e absolute value of the horizontal extend of the edge.

Return: integer e absolute value of the horizontal extend of the edge.

13.26.18 [const] integer dy
e vertical extend of the edge.

Return: integer e vertical extend of the edge.

13.26.19 [const] integer dy_abs
e absolute value of the vertical extend of the edge.

Return: integer e absolute value of the vertical extend of the edge.

13.26.20 ref Edge enlarge(DPoint p)
Enlarges the edge.

Enlarges the edge by the given distance and returns the enlarged edge. e edge is overwrien.

Input: p e distance to move the edge points.
Return: ref Reference to the enlarged edge.

264 Version 0.21 KLayout

Chapter 13. RBA Reference 13.26. Class Edge (version 0.21)

13.26.21 [const] Edge enlarged(DPoint p)
Returns the enlarged edge.

Enlarges the edge by the given offset and returns the moved edge. e edge is not modified. Enlargement
means that the first point is shied by -p, the second by p.

Input: p e distance to enlarge the edge points.
Return: Edge e enlarged edge.

13.26.22 [static] Edge from_dedge(DEdge double_edge)
Construct an integer coordinate edge from a floating-point coordinate edge.

Input: double_edge A floating-point coordinate edge.
Return: Edge e resulting integer coordinate edge.

13.26.23 [const] boolean intersect?(Edge e)
Intersection test.

Input: e e edge to test.
Return: true e edges intersect. Two edges intersect if they share at least one point. If the

edges coincide, they also intersect. For degenerated edges, the intersection is
mapped to point containment tests.

false e edges does not share any point.

13.26.24 [const] DPoint intersection_point(Edge e)
Returns the intersection point of two edges.

is method delivers the intersection point. If the edges do not intersect, the result is undefined.

is method has been introduced in version 0.19.

Input: e e edge to test.
Return: DPoint e point where the edges intersect.

13.26.25 [const] boolean is_degenerate?
Test for degenerated edge.

Return: true is edge is degenerated, that means end and start point are identical.
false End and start point are different.

13.26.26 [const] boolean is_parallel?(Edge e)
Test for being parallel.

Input: e e edge to test against.
Return: true e edges are parallel.

false e edges are not parallel.

13.26.27 [const] unsigned length
Get the length of the edge.

Return: unsigned e length of the edge.

KLayout Version 0.21 265

Chapter 13. RBA Reference 13.26. Class Edge (version 0.21)

13.26.28 ref Edge move(Point p)
Moves the edge.

Moves the edge by the given offset and returns the moved edge. e edge is overwrien.

Input: p e distance to move the edge.
Return: ref Reference to the enlarged edge.

13.26.29 [const] Edge moved(DPoint p)
Returns the moved edge.

Moves the edge by the given offset and returns the moved edge. e edge is not modified.

Input: p e distance to move the edge.
Return: Edge e enlarged edge.

13.26.30 [static] Edge new
Default constructor: creates a degenerated edge 0,0 to 0,0.

13.26.31 [static] Edge new(x1, y1, x2, y2)
Constructor with two coordinates given as single values.

A synonym for:[static] Edge new_xyxy(x1, y1, x2, y2).par Four values, denotes two coordinates, are given
to create a new edge.

Input: x1 e x part of the first coordinate.
y1 e y part of the first coordinate.
x2 e x part of the second coordinate.
y2 e y part of the second coordinate.

Return: Edge e resulting edge.

13.26.32 [static] Edge new(Point p1 Point p2)
Constructor with two points.

A synonym for:[static] Edge new_pp(Point p1 Point p2).

Two points are given to create a new edge.

Input: Point p1 e first point.
Point p2 e second point.

Return: Edge e resulting edge.

13.26.33 [const] unsigned ortho_length
e orthogonal length of the edge (“manhattan-length”).

Return: unsigned e orthogonal length equals to abs(dx) + abs(dy).

266 Version 0.21 KLayout

Chapter 13. RBA Reference 13.26. Class Edge (version 0.21)

13.26.34 [const] const ref Pointp1
e first point.

13.26.35 [const] const ref Pointp2
e second point.

13.26.36 [const] integer side_of(Point p)
Indicates at which side the point is located relative to the edge.

Input: p e point to test.
Return: -1 e point is “le” of the edge.

0 e point is on the edge.
1 e point is “right” of the edge.

13.26.37 [const] long sq_length
e square of the length of the edge.

Return: long e square of the length of the edge.

13.26.38 swap_points
Swap the points of the edge.

13.26.39 [const] string to_s
Convert to a string.

Return: string e resulting string.

13.26.40 [const] Edge transformed(Trans t)
Transform the edge.

Transforms the edge with the given complex transformation. Does not modify the edge but returns the
transformed edge.

Input: t e transformation to apply.
Return: Edge e transformed edge.

13.26.41 [const] Edge transformed_cplx(CplxTrans t)
Transform the edge.

Transforms the edge with the given complex transformation. Does not modify the edge but returns the
transformed edge.

Input: t e transformation to apply.
Return: DEdge e transformed edge.

13.26.42 [const] Edge transformed_cplx(ICplxTrans t)
Transform the edge.

Transforms the edge with the given complex transformation. Does not modify the edge but returns the
transformed edge.

is method has been introduced in version 0.18.

KLayout Version 0.21 267

Chapter 13. RBA Reference 13.26. Class Edge (version 0.21)

Input: t e transformation to apply.
Return: Edge e transformed edge (in this case an integer coordinate edge).

13.26.43 [const] double x1
Shortcut for p1.x.

Return: double e x coordinate value of the first point.

13.26.44 [const] double x2
Shortcut for p2.x.

Return: double e x coordinate value of the second point.

13.26.45 [const] double y1
Shortcut for p1.y.

Return: double e y coordinate value of the first point.

13.26.46 [const] double y2
Shortcut for p2.y.

Return: double e y coordinate value of the second point.

268 Version 0.21 KLayout

Chapter 13. RBA Reference 13.26. Class EdgeProcessor (version 0.21)

13.27 Class EdgeProcessor (version 0.21)
e edge processor (boolean, size, merge).

e edge processor implements the boolean and edge set operations (size, merge). Because the edge pro-
cessor might allocate resources which can be reused in later operations, it is implemented as an object that
can be used several times.

Method Overview

simple_merge_p2e Merge the given polygons in a simple “non-zero wrap count” fashion
simple_merge_p2p Merge the given polygons in a simple “non-zerowrap count” fashion into poly-

gons
simple_merge_e2e Merge the given edges in a simple “non-zero wrap count” fashion
simple_merge_e2p Merge the given edges in a simple “non-zero wrap count” fashion into poly-

gons
merge_p2e Merge the given polygons
merge_p2p Merge the given polygons
size_p2e Size the given polygons
size_p2p Size the given polygons into polygons
size_p2e Size the given polygons (isotropic)
size_p2p Size the given polygons into polygons (isotropic)
boolean_p2e Boolean operation for a set of given polygons, creating edges
boolean_p2p Boolean operation for a set of given polygons, creating polygons
boolean_e2e Boolean operation for a set of given edges, creating edges
boolean_e2p Boolean operation for a set of given edges, creating polygons
mode_and Boolean method’s mode value for AND operation
mode_or Boolean method’s mode value for OR operation
mode_xor Boolean method’s mode value for XOR operation
mode_anotb Boolean method’s mode value for A NOT B operation
mode_bnota Boolean method’s mode value for B NOT A operation
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.27.1 assign(EdgeProcessor other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.27.2 Edge[] boolean_e2e(Edge a[], Edge b[], mode)
Boolean operation for a set of given edges, creating edges.

A synonym for: Edge[] boolean(Edge a[], Edge b[], mode).

ismethod computes the result for the given boolean operation on two sets of edges. e input edgesmust
form closed contours where holes and hulls must be oriented differently. e input edges are processed
with a simple non-zero wrap count rule as a whole.

e result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while holes
are oriented counter-clockwise.

KLayout Version 0.21 269

Chapter 13. RBA Reference 13.27. Class EdgeProcessor (version 0.21)

Prior to version 0.21 this method was called “boolean”. It was renamed to avoid ambiguities for empty
input arrays. e old version is still available but deprecated.

Input: a[] e input edges (first operand).
b[] e input edges (second operand).
mode e boolean mode (one of the mode_…values).

Return: Edge[] e output edges.

13.27.3 Polygon[] boolean_e2p(Edge a[], Edge b[], mode, resolve_holes, min_coher-
ence)
Boolean operation for a set of given edges, creating polygons.

Synonym for: Polygon[] boolean_to_polygon(Edge a[], Edge b[], mode, resolve_holes, min_coherence).

ismethod computes the result for the given boolean operation on two sets of edges. e input edgesmust
form closed contours where holes and hulls must be oriented differently. e input edges are processed
with a simple non-zero wrap count rule as a whole.

is method produces polygons on output and allows to fine-tune the parameters for that purpose.

Prior to version 0.21 this method was called “boolean_to_polygon”. Is was renamed to avoid ambiguities
for empty input arrays. e old version is still available but deprecated.

Input: a[] e input polygon (first operand).
b[] e input polygon (second operand).
mode e boolean mode (one of the mode_…values).
resolve_holes True, if holes should be resolved into the hull.
min_coherence True, if touching corners should be resolved into less connected contours.

Return: Polygon[] e output polygons.

13.27.4 Edge[] boolean_p2e(Polygon a[],Polygon b[], mode)
Boolean operation for a set of given polygons, creating edges.

A synonym for: Edge[] boolean(Polygon a[],Polygon b[], mode).

is method computes the result for the given boolean operation on two sets of polygons. e result is
presented as a set of edges forming closed contours. Hulls are oriented clockwise while holes are oriented
counter-clockwise.

is is a convenience method that bundles filling of the edges, processing with a Boolean operator and
puts the result into an output vector.

Prior to version 0.21 this method was called “boolean”. Is was renamed to avoid ambiguities for empty
input arrays. e old version is still available but deprecated.

Input: a[] e input polygon (first operand).
b[] e input polygon (second operand).
mode e boolean mode (one of the mode_…values).

Return: Edge[] e output edges.

13.27.5 Polygon[] boolean_p2p(Polygon a[], Polygon b[], mode, resolve_holes, min_-
coherence)
Boolean operation for a set of given edges, creating polygons.

A synonym for: Polygon[] boolean_to_polygon(Polygon a[], Polygon b[], mode, resolve_holes, min_-
coherence).

270 Version 0.21 KLayout

Chapter 13. RBA Reference 13.27. Class EdgeProcessor (version 0.21)

is method computes the result for the given boolean operation on two sets of polygons. is method
produces polygons on output and allows to fine-tune the parameters for that purpose.

is is a convenience method that bundles filling of the edges, processing with a Boolean operator and
puts the result into an output vector.

Prior to version 0.21 this method was called “boolean_to_polygon”. Is was renamed to avoid ambiguities
for empty input arrays. e old version is still available but deprecated.

Input: a[] e input polygon (first operand).
b[] e input polygon (second operand).
mode e boolean mode (one of the mode_…values).
resolve_holes True, if holes should be resolved into the hull.
min_coherence True, if touching corners should be resolved into less connected contours.

Return: Polygon[] e output polygons.

13.27.6 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.27.7 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.27.8 [const] DText dup
Creates a copy of self.

Return: EdgeProcessor e copied text object.

13.27.9 Edge[] merge_p2e(Polygon in[], unsigned min_wc)
Merge the given polygons.

A synonym for: Edge[] merge(Polygon in[], unsigned min_wc).

In contrast to “simple_merge”, this merge implementation considers each polygon individually before
merging them. us self-overlaps are effectively removed before the output is computed and holes are
correctly merged with the hull. In addition, this method allows to select areas with a higher wrap count
which allows to compute overlaps of polygons on the same layer. Because this method merges the poly-
gons before the overlap is computed, self-overlapping polygons do not contribute to higher wrap count
areas.

e result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while holes
are oriented counter-clockwise.

Prior to version 0.21 this method was called “merge”. Is was renamed to avoid ambiguities for empty input
arrays. e old version is still available but deprecated.

KLayout Version 0.21 271

Chapter 13. RBA Reference 13.27. Class EdgeProcessor (version 0.21)

Input: in[] e input polygons.
min_wc e minimum wrap count for output (0: all polygons, 1: at least two overlap-

ping).
Return: Edge[] e output edges.

13.27.10 Polygon[] merge_p2p(Polygon in[], unsigned min_wc, resolve_holes, min_-
coherence)
Merge the given polygons.

A synonym for: Polygon[]merge_to_polygon(Polygon in[], unsigned min_wc, resolve_holes, min_coher-
ence).

In contrast to “simple_merge”, this merge implementation considers each polygon individually before
merging them. us self-overlaps are effectively removed before the output is computed and holes are
correctly merged with the hull. In addition, this method allows to select areas with a higher wrap count
which allows to compute overlaps of polygons on the same layer. Because this method merges the poly-
gons before the overlap is computed, self-overlapping polygons do not contribute to higher wrap count
areas.

is method produces polygons and allows to fine-tune the parameters for that purpose.

Prior to version 0.21 this method was called “merge_to_polygon”. Is was renamed to avoid ambiguities for
empty input arrays. e old version is still available but deprecated.

Input: in[] e input polygons.
min_wc e minimum wrap count for output (0: all polygons, 1: at least two overlap-

ping).
resolve_holes True, if holes should be resolved into the hull.
min_coherence True, if touching corners should be resolved into less connected contours.

Return: Edge[] e output edges.

13.27.11 [static] integer mode_and
boolean method’s mode value for AND operation.

13.27.12 [static] integer mode_anotb
boolean method’s mode value for A NOT B operation.

13.27.13 [static] integer mode_bnota
boolean method’s mode value for B NOT A operation.

13.27.14 [static] integer mode_or
boolean method’s mode value for OR operation.

13.27.15 [static] integer mode_xor
boolean method’s mode value for XOR operation.

13.27.16 Edge[] simple_merge_e2e(Edge in[])
Merge the given edges in a simple “non-zero wrap count” fashion.

A synonym for: Edge[] simple_merge(Edge in[]).

e egdes provided must form valid closed contours. Contours oriented differently “cancel” each other.
Overlapping contours are merged when the orientation is the same.

e result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while holes
are oriented counter-clockwise.

272 Version 0.21 KLayout

Chapter 13. RBA Reference 13.27. Class EdgeProcessor (version 0.21)

is is a convenience method that bundles filling of the edges, processing with a SimpleMerge operator
and puts the result into an output vector.

Prior to version 0.21 this method was called “simple_merge”. Is was renamed to avoid ambiguities for
empty input arrays. e old version is still available but deprecated.

Input: in[] e input edges.
Return: Edge[] e output edges.

13.27.17 Polygon[] simple_merge_e2p(Edge in[], resolve_holes, min_coherence)
Merge the given edges in a simple “non-zero wrap count” fashion into poly-
gons.

A synonym for: Polygon[] simple_merge_to_polygon(Edge in[], resolve_holes, min_coherence).

e egdes provided must form valid closed contours. Contours oriented differently “cancel” each other.
Overlapping contours are merged when the orientation is the same.

is method produces polygons and allows to fine-tune the parameters for that purpose.

is is a convenience method that bundles filling of the edges, processing with a SimpleMerge operator
and puts the result into an output vector.

Prior to version 0.21 this method was called “simple_merge_to_polygon”. Is was renamed to avoid ambi-
guities for empty input arrays. e old version is still available but deprecated.

Input: in[] e input edges.
resolve_holes True, if holes should be resolved into the hull.
min_coherence True, if touching corners should be resolved into less connected contours.

Return: Polygon[] e output polygons.

13.27.18 Edge[] simple_merge_p2e(Polygon in[])
Merge the given polygons in a simple “non-zero wrap count” fashion.

A synonym for: Edge[] simple_merge(Polygon in[]).par e wrap count is computed over all polygons,
i.e. overlapping polygons may “cancel” if they have different orientation (since a polygon is oriented by
construction that is not easy to achieve). e other merge operation provided for this purpose is “merge”
which normalizes each polygon individually before merging them. “simple_merge” is somewhat faster
and consumes less memory.

e result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while holes
are oriented counter-clockwise.

is is a convenience method that bundles filling of the edges, processing with a SimpleMerge operator
and puts the result into an output vector.

Prior to version 0.21 this method was called “simple_merge”. Is was renamed to avoid ambiguities for
empty input arrays. e old version is still available but deprecated.

Input: in[] e input polygons.
Return: Edge[] e output edges.

13.27.19 Polygon[] simple_merge_p2p(Polygon in[], resolve_holes, min_coherence)
Merge the given polygons in a simple “non-zero wrap count” fashion into
polygons.

A synonym for: Polygon[] simple_merge_to_polygon(Polygon in[], resolve_holes, min_coherence).

KLayout Version 0.21 273

Chapter 13. RBA Reference 13.27. Class EdgeProcessor (version 0.21)

ewrap count is computed over all polygons, i.e. overlapping polygonsmay “cancel” if they have different
orientation (since a polygon is oriented by construction that is not easy to achieve). e other merge
operation provided for this purpose is “merge” which normalizes each polygon individually beforemerging
them. “simple_merge” is somewhat faster and consumes less memory.

is method produces polygons and allows to fine-tune the parameters for that purpose.

is is a convenience method that bundles filling of the edges, processing with a SimpleMerge operator
and puts the result into an output vector.

Prior to version 0.21 this method was called “simple_merge_to_polygon”. Is was renamed to avoid ambi-
guities for empty input arrays. e old version is still available but deprecated.

Input: in[] e input polygons.
resolve_holes True, if holes should be resolved into the hull.
min_coherence True, if touching corners should be resolved into less connected contours.

Return: Polygon[] e output polygons.

13.27.20 Edge[] size_p2e(Polygon in[], dx, dy, unsigned mode)
Size the given polygons (anisotropic).

A synonym for: Edge[] size(Polygon in[], dx, dy, unsigned mode).

is method sizes a set of polygons. Before the sizing is applied, the polygons are merged. Aer that,
sizing is applied on the individual result polygons of the merge step. e result may contain overlapping
contours, but no self-overlaps.

dx and dy describe the sizing. A positive value indicates oversize (outwards) while a negative one describes
undersize (inwards). e sizing applied can be chosen differently in x and y direction. In this case, the
sign must be identical for both dx and dy.

e “mode” parameter describes the corner fill strategy. Mode 0 connects all corner segments directly.
Mode 1 is the “octagon” strategy in which square corners are interpolated with a partial octagon. Mode
2 is the standard mode in which corners are filled by expanding edges unless these edges form a sharp
bend with an angle of more than 90 degree. In that case, the corners are cut off. In Mode 3, no cutoff
occurs up to a bending angle of 135 degree. Mode 4 and 5 are even more aggressive and allow very sharp
bends without cutoff. is strategy may produce long spikes on sharply bending corners. e result is
presented as a set of edges forming closed contours. Hulls are oriented clockwise while holes are oriented
counter-clockwise.

Prior to version 0.21 this method was called “size”. Is was renamed to avoid ambiguities for empty input
arrays. e old version is still available but deprecated.

Input: in[] e input polygons.
dx e sizing value in x direction.
dy e sizing value in y direction.
mode e sizing mode (standard is 2).

Return: Edge[] e output edges.

13.27.21 Edge[] size_p2e(Polygon in[], d, unsigned mode)
Size the given polygons (isotropic).

A synonym for: Edge[] size(Polygon in[], d, unsigned mode).

is method is equivalent to calling the anisotropic version with identical dx and dy.

Prior to version 0.21 this method was called “size”. Is was renamed to avoid ambiguities for empty input
arrays. e old version is still available but deprecated.

274 Version 0.21 KLayout

Chapter 13. RBA Reference 13.27. Class EdgeProcessor (version 0.21)

Input: in[] e input polygons.
d e sizing value in x and y direction.
mode e sizing mode (standard is 2).

Return: Edge[] e output edges.

13.27.22 Polygon[] size_p2p(Polygon in[], d, unsigned mode, resolve_holes, min_co-
herence)
Size the given polygons into polygons (isotropic).

A synonym for: Polygon[] size_to_polygon(Polygon in[], d, unsigned mode, resolve_holes, min_coher-
ence).

is method is equivalent to calling the anisotropic version with identical dx and dy.

Prior to version 0.21 this method was called “size_to_polygon”. Is was renamed to avoid ambiguities for
empty input arrays. e old version is still available but deprecated.

Input: in[] e input polygons.
d e sizing value in x and y direction.
mode e sizing mode (standard is 2).
resolve_holes True, if holes should be resolved into the hull.
min_coherence True, if touching corners should be resolved into less connected contours.

Return: Polygon[] e output polygons.

13.27.23 Polygon[] size_p2p(Polygon in[], dx, dy, unsignedmode, resolve_holes,min_-
coherence)
Size the given polygons into polygons.

A synonym for: Polygon[] size_to_polygon(Polygon in[], dx, dy, unsigned mode, resolve_holes, min_-
coherence).

is method sizes a set of polygons. Before the sizing is applied, the polygons are merged. Aer that,
sizing is applied on the individual result polygons of the merge step. e result may contain overlapping
polygons, but no self-overlapping ones. Polygon overlap occurs if the polygons are close enough, so a
positive sizing makes polygons overlap.

dx and dy describe the sizing. A positive value indicates oversize (outwards) while a negative one describes
undersize (inwards). e sizing applied can be chosen differently in x and y direction. In this case, the
sign must be identical for both dx and dy.

e “mode” parameter describes the corner fill strategy. Mode 0 connects all corner segments directly.
Mode 1 is the “octagon” strategy in which square corners are interpolated with a partial octagon. Mode 2
is the standard mode in which corners are filled by expanding edges unless these edges form a sharp bend
with an angle of more than 90 degree. In that case, the corners are cut off. In Mode 3, no cutoff occurs
up to a bending angle of 135 degree. Mode 4 and 5 are even more aggressive and allow very sharp bends
without cutoff. is strategy may produce long spikes on sharply bending corners. is method produces
polygons and allows to fine-tune the parameters for that purpose.

Prior to version 0.21 this method was called “size_to_polygon”. Is was renamed to avoid ambiguities for
empty input arrays. e old version is still available but deprecated.

KLayout Version 0.21 275

Chapter 13. RBA Reference 13.27. Class EdgeProcessor (version 0.21)

Input: in[] e input polygons.
dx e sizing value in x direction.
dy e sizing value in y direction.
mode e sizing mode (standard is 2).
resolve_holes True, if holes should be resolved into the hull.
min_coherence True, if touching corners should be resolved into less connected contours.

Return: Polygon[] e output polygons.

276 Version 0.21 KLayout

Chapter 13. RBA Reference 13.27. Class FileDialog (version 0.21)

13.28 Class FileDialog (version 0.21)
Various methods to request a file name.

Method Overview

get_existing_dir Open a dialog to select a directory.
get_open_file_names Select one or multiple files for opening.
get_open_file_name Select one file for opening.
get_save_file_name Select one file for writing.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.28.1 assign(FileDialog other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.28.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.28.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.28.4 [const] DText dup
Creates a copy of self.

Return: FileDialog e copied object of self.

13.28.5 [static] StringValue get_existing_dir(title, dir)
Open a dialog to select a directory.

Input: title e title of the dialog.
dir e directory selected initially.

Return: StringValue A StringValue object that contains the directory path selected or ⁇? with has_-
value?= false if “Cancel” was pressed.

KLayout Version 0.21 277

Chapter 13. RBA Reference 13.28. Class FileDialog (version 0.21)

13.28.6 [static] StringValue get_open_file_name(title, dir, filter)
Select one file for opening.

Input: title e title of the dialog.
dir e directory selected initially.
filter e filters available, for example Images (*.png, *.xpm, *.jpg); Text files

(*.txt); XML files (*.xml).
Return: StringValue A StringValue object that contains the file selected or ⁇? with has_value?=

false if “Cancel” was pressed.

13.28.7 [static] StringListValue get_open_file_names(title, dir, filter)
Select one or multiple files for opening.

Input: title e title of the dialog.
dir e directory selected initially.
filter e filters available, for example Images (*.png, *.xpm, *.jpg); Text files

(*.txt); XML files (*.xml). .
Return: StringListValue A StringListValue object that contains the files selected or ⁇? with has_value?=

false if “Cancel” was pressed.

13.28.8 [static] StringValue get_save_file_name(title, dir, filter)
Select one file for writing.

Input: title e title of the dialog.
dir e directory selected initially.
filter e filters available, for example Images (*.png, *.xpm, *.jpg); Text files

(*.txt); XML files (*.xml).
Return: StringValue A StringValue object that contains the file selected or ⁇? with has_value?=

false if “Cancel” was pressed.

278 Version 0.21 KLayout

Chapter 13. RBA Reference 13.28. Class ICplxTrans (version 0.21)

13.29 Class ICplxTrans (version 0.21)
A complex transformation.

A complex transformation provides magnification, mirroring at the x-axis, rotation by an arbitrary angle
and a displacement. is version can transform integer-coordinate objects into floating-point coordinate
objects, which is the generic and exact case.

Method Overview

from_dtrans Conversion constructor from an floating-point transformation.
from_trans Conversion constructor from an exact complex transformation.
new Creates a unit transformation.
new Conversion constructor from a fix-point transformation.
new Constructor from a magnification.
new Constructor from a simple transformation and a magnification.
new Constructor from a simple transformation alone.
new e standard constructor using magnification, angle, mirror flag and displace-

ment.
inverted Inversion.
invert In-place inversion.
ctrans e transformation of a distance.
trans e transformation of a point.
* Multiplication (concatenation) of transformations.
< A sorting criterion.
== Equality test.
!= Inequality test.
to_s String conversion.
disp Gets the displacement.
disp= Sets the displacement.
rot Returns the respective rotation code if possible.
is_mirror? Gets the mirror flag.
mirror= Sets the mirror flag.
is_unity? Test, whether this is a unit transformation.
is_ortho? Test, if the transformation is an orthogonal transformation.
s_trans Extract the simple transformation part.
angle Gets the angle.
angle= Sets the angle.
mag Gets the magnification.
is_mag? Test, if the transformation is a magnifying one.
mag= Sets the magnification.
m_*/r_* Various angle/mirror codes for the named transformation.

r0 “unrotated” transformation.
r90 “rotated by 90 degree counterclockwise” transformation.
r180 “rotated by 180 degree counterclockwise” transformation.
r270 “rotated by 270 degree counterclockwise” transformation.
m0 “mirrored at the x-axis” transformation.
m45 “mirrored at the 45 degree axis” transformation.
m90 “mirrored at the y (90 degree) axis” transformation.
m135 “mirrored at the 135 degree axis” transformation.

assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

KLayout Version 0.21 279

Chapter 13. RBA Reference 13.29. Class ICplxTrans (version 0.21)

13.29.1 [const] boolean !=(ICplxTrans)
Inequality test.

Input: ICplxTrans text e object to compare against.
Return: true is object and the given one are not equal.

false ⁇?.

13.29.2 [const] ICplxTrans *(ICplxTrans t)
Multiplication (concatenation) of transformations.

e * operator returns self*t (“t is applied before this transformation”).

Input: t e transformation to apply before.
Return: ICplxTrans e modified transformation.

13.29.3 [const] boolean <(ICplxTrans)
A sorting criterion.

Input: e e object to compare against.
Return: true e object is ’less’ than the other.

false ⁇.

13.29.4 [const] boolean ==(ICplxTrans)
Equality test.

Input: e e object to compare against.
Return: true is object and the given one are equal.

false ⁇.

13.29.5 [const] double angle
Gets the angle.

To check, if the transformation represents a rotation by a angle that is a multiple of 90 degree, use this
predicate.

Return: double e rotation angle this transformation provides in degree units (0..360 deg).

13.29.6 angle=(double a)
Sets the angle.

Input: a e new angle.

13.29.7 assign(ICplxTrans other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

280 Version 0.21 KLayout

Chapter 13. RBA Reference 13.29. Class ICplxTrans (version 0.21)

13.29.8 [const] integer ctrans(d)
e transformation of a distance.

e ctransethod transforms the given distance: e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

Input: d e distance to transform.
Return: integer e transformed distance.

13.29.9 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.29.10 [const]booleandestroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.29.11 [const] const ref Point disp
Gets the displacement.

13.29.12 disp=(Point u)
Sets the displacement.

Input: u e new displacement.

13.29.13 [const] ICplxTrans dup
Creates a copy of self.

Return: ICplxTrans e copy of self.

13.29.14 [static] ICplxTrans from_dtrans(DCplxTrans dbl_trans)
Conversion constructor from an floating-point transformation.

13.29.15 [static] ICplxTrans from_trans(CplxTrans dbl_trans)
Conversion constructor from an exact complex transformation.

13.29.16 ICplxTrans invert
In-place inversion.

Inverts the transformation and replaces this transformation by the inverted one.

Return: ICplxTrans e inverted transformation.

13.29.17 [const] ICplxTrans inverted
Inversion.

Return: ICplxTrans e inverted transformation.

KLayout Version 0.21 281

Chapter 13. RBA Reference 13.29. Class ICplxTrans (version 0.21)

13.29.18 [const] boolean is_mag?
Test, if the transformation is a magnifying one.

is is the recommended test for checking if the transformation represents a magnification.

13.29.19 [const] boolean is_mirror?
Gets the mirror flag.

Return: true e transformation is composed of a mirroring at the x-axis followed by a ro-
tation by the angle given by the angle property.

false ⁇?.

13.29.20 [const] boolean is_ortho?
Test, if the transformation is an orthogonal transformation.

Return: true e rotation is by a multiple of 90 degree.
false e rotation is not orthogonal.

13.29.21 [const] boolean is_unity?
Test, whether this is a unit transformation.

Return: true A unit transformation.
false An other transformation.

13.29.22 [static] integer m_*/r_*
Various angle/mirror codes for the named transformation.

13.29.22.1 [static] integer m0 – “mirrored at the x-axis”.

Return: integer e angle/mirror code for this transformation.

13.29.22.2 [static] integer m135 – “mirrored at the 135 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.29.22.3 [static] integer m45 – “mirrored at the 45 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.29.22.4 [static] integer m90 – “mirrored at the 90 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.29.22.5 [static] integer r0 – “unrotated”.

Return: integer e angle/mirror code for this transformation.

282 Version 0.21 KLayout

Chapter 13. RBA Reference 13.29. Class ICplxTrans (version 0.21)

13.29.22.6 [static] integer r180 – “rotated by 180 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.29.22.7 [static] integer r270 – “rotated by 270 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.29.22.8 [static] integer r90 – “rotated by 90 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.29.23 [const] double mag
Gets the magnification.

Return: integer e angle/mirror code for this transformation.

13.29.24 mag=(double m)
Sets the magnification.

Input: m e new magnification.

13.29.25 mirror=(boolean)
Sets the mirror flag.

“mirroring” describes a reflection at the x-axis which is included in the transformation prior to rotation.

Input: boolean e new mirror flag.

13.29.26 [static] ICplxTrans new
Creates a unit transformation.

13.29.27 [static] ICplxTrans new(f)
Conversion constructor from a fix-point transformation.

A synonym of: [static] ICplxTrans new_f(f).

is constructor will create a transformation with a fixpoint transformation but no displacement.

Input: f e rotation/mirror code (r0 .. m135 constants).

13.29.28 [static] ICplxTrans new(double m)
Constructor from a magnification.

A synonym of: [static] ICplxTrans new_m(double m).

Creates a magnifying transformation without displacement and rotation given the magnification m.

Input: double m e magnification.

KLayout Version 0.21 283

Chapter 13. RBA Reference 13.29. Class ICplxTrans (version 0.21)

13.29.29 [static] ICplxTrans new(Trans t, double m)
Constructor from a simple transformation and a magnification.

A synonym of: [static] ICplxTrans new_tm(Trans t, double m).

Creates a magnifying transformation from a simple transformation and a magnification.

13.29.30 [static] ICplxTrans new(Trans t)
Constructor from a simple transformation alone.

A synonym of: [static] ICplxTrans new_t(Trans t).

Creates a magnifying transformation from a simple transformation and a magnification of 1.0.

13.29.31 [static] ICplxTrans new(double m, double r, boolean, DPoint u)
e standard constructor usingmagnification, angle,mirrorflag and displace-
ment.

A synonym of: [static] ICplxTrans new_mrmu(double m, double r, boolean, DPoint u).

e sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Input: double m e magnification.
double r e rotation angle in units of degree.
boolean True, if mirrored at x axis.
u e displacement.

13.29.32 [const] integer rot
Returns the respective rotation code if possible.

If this transformation is orthogonal (is_ortho? = true), then this method will return the corresponding
fix point transformation, not taking into account magnification and displacement. Otherwise, the result
reflects the quadrant the rotation goes into with the guarantee to reproduce the correct quadrant in the
exact case.

13.29.33 [const] Trans s_trans
Extract the simple transformation part.

e simple transformation part does not reflect magnification not arbitrary angles. On the angle contri-
bution up to a multiple of 90 degree is reflected.

13.29.34 [const] string to_s
String conversion.

Return: string e resulting string.

13.29.35 [const] Point trans(Point p)
e transformation of a point.

e trans method transforms the given point. q = t(p).

Input: p e point to transform.
Return: Point e transformed point.

284 Version 0.21 KLayout

Chapter 13. RBA Reference 13.29. Class Image (version 0.21)

13.30 Class Image (version 0.21)
An image to be stored as a layout annotation.

Images can be put onto the layout canvas as annotations, along with rulers and markers. Images can
be monochrome (represent scalar data) as well as color (represent color images). e display of images
can be adjusted in various ways, i.e. color mapping (translation of scalar values to colors), geometrical
transformations (including rotation by arbitrary angles) and similar. Images are always based on floating
point data. e actual data range is not fixed and can be adjusted to the data set (i.e. 0 … 255 or -1 … 1). is
gives a great flexibility when displaying data which is the result of some measurement or calculation for
example. e basic parameters of an image are the width and height of the data set, the width and height
of one pixel, the geometrical transformation to be applied, the data range (from min_value to max_value)
and the data mapping which is described by an own class, ImageDataMapping.

Method Overview

new Create a new image with the default aributes.
new Constructor from a image file.
new Constructor from a image file.
new Constructor for a monochrome image with the given pixel values.
new Constructor for a monochrome image with the given pixel values.
new Constructor for a color image with the given pixel values.
new Constructor for a color image with the given pixel values.
box Get the bounding box of the image.
transformed Transform the ruler or marker with the given simple transformation.
transformed Transform the image with the given simple transformation.
transformed_cplx Transform the image with the given complex transformation.
width Get the width of the image in pixels.
height Get the height of the image in pixels.
filename Get the name of the file loaded of an empty string if not file is loaded.
is_empty? Returns true, if the image does not contain any data (i.e. is default constructed).
is_color? Returns true, if the image is a color image.
set_pixel Set one pixel (monochrome).
set_pixel Set one pixel (color).
get_pixel Accessor to one pixel (monochrome and color).
get_pixel Accessor to one pixel (monochrome and color).
set_data Write the image data field (monochrome).
set_data Write the image data field (color).
pixel_width= Set the pixel width.
pixel_width Get the pixel width.
pixel_height= Set the pixel height.
pixel_height Get the pixel height.
trans= Set the transformation.
trans Return the pixel-to-micron transformation.
min_value= Set the minimum value.
min_value Get the lower limit of the values in the data set.
max_value= Set the maximum value.
max_value Get the upper limit of the values in the data set.
visible= Set the visibility.
is_visible? Get a flag indicating whether the image object is visible.
id Get the Id.
data_mapping= Set the data mapping object.
data_mapping Get the data mapping.
to_s Convert the image to a string.

KLayout Version 0.21 285

Chapter 13. RBA Reference 13.30. Class Image (version 0.21)

assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.30.1 assign(Image other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.30.2 [const] DBox box
Get the bounding box of the image.

Return: DBox e bounding box.

13.30.3 [const] const ref ImageDataMapping data_mapping
.Get the data mapping

e data mapping describes the transformation of a pixel value (any double value) into pixel data which
can be sent to the graphics cards for display. See ImageDataMapping for a more detailed description.

Return: ImageDataMapping e data mapping object.

13.30.4 data_mapping=(ImageDataMapping data_mapping)
Set the data mapping object.

e data mapping describes the transformation of a pixel value (any double value) into pixel data which
can be sent to the graphics cards for display. See ImageDataMapping for a more detailed description.

13.30.5 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.30.6 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.30.7 [const] Image dup
Creates a copy of self.

Return: Image e copy of self.

286 Version 0.21 KLayout

Chapter 13. RBA Reference 13.30. Class Image (version 0.21)

13.30.8 [const] string filename
Get the name of the file loaded or an empty string if no file is loaded.

Return: string e loaded path and file name or empty if no file is loaded.

13.30.9 [const] double get_pixel(unsigned x, unsigned y)
Accessor to one pixel (monochrome and color).

If the component index, x or y value exceeds the image bounds, this method returns 0.0.

Input: unsigned x e x coordinate of the pixel (in mathematical order: 0 is the lowest, 0 …
width()-1 is the range).

unsigned y e y coordinate of the pixel (in mathematical order: 0 is the lowest, 0 …
height()-1 is the range).

13.30.10 [const] double get_pixel(unsigned x, unsigned y, unsigned component)
Accessor to one pixel (monochrome and color).

If the component index, x or y value exceeds the image bounds, this method returns 0.0. For monochrome
images, the component index is ignored.

Input: unsigned x e x coordinate of the pixel (in mathematical order: 0 is the lowest, 0 …
width()-1 is the range).

unsigned y e y coordinate of the pixel (in mathematical order: 0 is the lowest, 0 …
height()-1 is the range).

unsigned
component

0 for red, 1 for green, 2 for blue.

13.30.11 [const] unsigned height
Get the height of the image in pixels.

Return: unsigned e height of the image in pixels.

13.30.12 [const] integer id
Get the Id.

e Id is an arbitrary integer that can be used to track the evolution of an image object. e Id is not
changed when the object is edited. On initialization, a unique Id is given to the object. e Id cannot be
changed.

is behavior has been modified in version 0.20.

Return: integer e image Id.

13.30.13 [const] boolean is_color?
Returns true, if the image is a color image.

Return: true e image is a color image.
false e image is a monochrome image.

KLayout Version 0.21 287

Chapter 13. RBA Reference 13.30. Class Image (version 0.21)

13.30.14 [const] boolean is_empty?
Returns true, if the image does not contain anydata (i.e. is default constructed).

Return: true e image is empty.
false e image contains data.

13.30.15 [const] boolean is_visible?
Gets a flag indicating whether the image object is visible.

An image object can be made invisible by seing the visible property to false.

is method has been introduced in version 0.20.

Return: true e image is visible.
false e image is invisible.

13.30.16 [const] double max_value
Get the upper limit of the values in the data set.

is value determines the upper end of the data mapping (i.e. white value etc.). It does not necessarily
correspond to the maximum value of the data set but it must be larger than that.

Return: double e maximum value.

13.30.17 max_value=(double)
Set the maximum value.

See the max_value method for the description of the maximum value property.

Input: double e maximum value.

13.30.18 [const] double min_value
Get the lower limit of the values in the data set.

is value determines the upper end of the data mapping (i.e. black value etc.). It does not necessarily
correspond to the minimum value of the data set but it must be larger than that.

Return: double e minimum value.

13.30.19 min_value=(double)
Set the minimum value.

See min_value for the description of the minimum value property.

Input: double e minimum value.

13.30.20 [static] Image new
Create a new image with the default attributes.

is will create an empty image without data and no particular pixel width or related. Use the ⁇ or
set_data methods to set image properties and pixel values. Comment: Method Image.read_file not
described.

288 Version 0.21 KLayout

Chapter 13. RBA Reference 13.30. Class Image (version 0.21)

13.30.21 [static] Image new(filename, DCplxTrans t)
Constructor from a image file.

is constructor creates an image object from a file (which can have any format supported by Qt) and a
transformation. e image will originally be put to position 0, 0 (lower le corner) and each pixel will
have a size of 1. e transformation describes how to transform this image into micron space.

Input: filename e file name and path to the image file to load.
t e transformation to apply to the image when displaying it.

Return: Image e image object.

13.30.22 [static] Image new(filename)
Constructor from a image file.

is constructor creates an image object from a file (which can have any format supported by Qt) and a
unit transformation. e image will originally be put to position 0, 0 (lower le corner) and each pixel will
have a size of 1 (micron).

Input: filename e file name and path to the image file to load.
Return: Image e image object.

13.30.23 [static] Image new(unsigned w, unsigned h, double data[])
Constructor for a monochrome image with the given pixel values.

is constructor creates an image from the given pixel values. e values have to be organized line by
line. Each line must consist of “w” values where the first value is the lemost pixel. Note, that the rows
are oriented in the mathematical sense (first one is the lowest) contrary to the common convention for
image data. Initially the pixel width and height will be 1 micron and the data range will be 0 to 1.0 (black
to white level). To adjust the data range use the min_value and max_value properties.

Input: unsigned w e width of the image.
unsigned h e height of the image.
double data[] e data set which will become owned by the image.

Return: Image e image object.

13.30.24 [static] Image new(unsigned w, unsigned h, DCplxTrans t, double data[])
Constructor for a monochrome image with the given pixel values.

is constructor creates an image from the given pixel values. e values have to be organized line by
line. Each line must consist of “w” values where the first value is the lemost pixel. Note, that the rows
are oriented in the mathematical sense (first one is the lowest) contrary to the common convention for
image data. Initially the pixel width and heigt will be 1 micron and the data range will be 0 to 1.0 (black
to white level). To adjust the data range use the min_value and max_value properties.

Input: unsigned w e width of the image.
unsigned h e height of the image.
t e transformation from pixel space to micron space.
double data[] e data set which will become owned by the image.

Return: Image e image object.

KLayout Version 0.21 289

Chapter 13. RBA Reference 13.30. Class Image (version 0.21)

13.30.25 [static] Image new(unsigned w, unsigned h, double red[], double green[],
double blue[])
Constructor for a color image with the given pixel values.

is constructor creates an image from the given pixel values. e values have to be organized line by line
and separated by color channel. Each line must consist of “w” values where the first value is the lemost
pixel. Note, that the rows are oriented in the mathematical sense (first one is the lowest) contrary to the
common convention for image data. Initially the pixel width and height will be 1 micron and the data
range will be 0 to 1.0 (black to white level). To adjust the data range use the min_value and max_value
properties.

Input: unsigned w e width of the image.
unsigned h e height of the image.
double red[] e red channel data set which will become owned by the image.
double green[] e green channel data set which will become owned by the image.
double blue[] e blue channel data set which will become owned by the image.

Return: Image e image object.

13.30.26 [static] Image new(unsigned w, unsigned h, DCplxTrans t, double red[], dou-
ble green[], double blue[])
Constructor for a color image with the given pixel values.

is constructor creates an image from the given pixel values. e values have to be organized line by line
and separated by color channel. Each line must consist of “w” values where the first value is the lemost
pixel. Note, that the rows are oriented in the mathematical sense (first one is the lowest) contrary to the
common convention for image data. Initially the pixel width and height will be 1 micron and the data
range will be 0 to 1.0 (black to white level). To adjust the data range use the min_value and max_value
properties.

Input: unsigned w e width of the image.
unsigned h e height of the image.
t e transformation from pixel space to micron space.
double red[] e red channel data set which will become owned by the image.
double green[] e green channel data set which will become owned by the image.
double blue[] e blue channel data set which will become owned by the image.

Return: Image e image object.

13.30.27 [const] double pixel_height
Get the pixel height.

See pixel_height= for a description of that property.

Return: double e pixel height.

13.30.28 pixel_height=(double)
Set the pixel height.

e pixel height determines the height of on pixel in the original space which is transformed to micron
space with the transformation.

Input: double e pixel height.

290 Version 0.21 KLayout

Chapter 13. RBA Reference 13.30. Class Image (version 0.21)

13.30.29 [const] double pixel_width
Get the pixel height.

See pixel_width= for a description of that property.

Return: double e pixel width.

13.30.30 pixel_width=(double)
Set the pixel height.

e pixel width determines the width of on pixel in the original space which is transformed to micron
space with the transformation.

Input: double e pixel width.

13.30.31 set_data(unsigned w, unsigned h, double d[])
Write the image data field (monochrome).

See the constructor description for the data organisation in that field.

Input: unsigned w e width of the new data.
unsigned h e height of the new data.
double d[] e monochrome data to load into the image.

13.30.32 set_data(unsigned w, unsigned h, double red[], double green[], double blue[]
)
Write the image data field (color).

See the constructor description for the data organization in that field.

Input: unsigned w e width of the new data.
unsigned h e height of the new data.
double red[] e red channel data to load into the image.
double green[] e green channel data to load into the image.
double blue[] e blue channel data to load into the image.

13.30.33 set_pixel(unsigned x, unsigned y, double v)
Set one pixel (monochrome).

If the component index, x or y value exceeds the image bounds, or the image is a color image, this method
does nothing.

Input: unsigned x e x coordinate of the pixel (in mathematical order: 0 is the lowest, 0 …
width()-1 is the range).

unsigned y e y coordinate of the pixel (in mathematical order: 0 is the lowest, 0 …
height()-1 is the range).

double v e value.

13.30.34 set_pixel(unsigned x, unsigned y, double red, double green, double blue)
Set one pixel (color).

If the component index, x or y value exceeds the image bounds, or the image is a color image, this method
does nothing.

KLayout Version 0.21 291

Chapter 13. RBA Reference 13.30. Class Image (version 0.21)

Input: unsigned x e x coordinate of the pixel (in mathematical order: 0 is the lowest, 0 …
width()-1 is the range).

unsigned y e y coordinate of the pixel (in mathematical order: 0 is the lowest, 0 …
height()-1 is the range).

double red e red component.
double green e green component.
double blue e blue component.

13.30.35 string to_s
Convert to a string.

Return: string e string.

13.30.36 [const] const refDCplxTrans trans
Return the pixel-to-micron transformation.

is transformation converts pixel coordinates (0,0 being the lower le corner and each pixel having the
dimension of pixel_width and pixel_height) to micron coordinates. e coordinate of the pixel is the lower
le corner of the pixel.

13.30.37 trans=(DCplxTrans t)
Set the transformation.

is transformation converts pixel coordinates (0,0 being the lower le corner and each pixel having the
dimension of pixel_width and pixel_height) to micron coordinates. e coordinate of the pixel is the lower
le corner of the pixel.

Input: t e transformation to apply.

13.30.38 [const] Image transformed(DTrans t)
Transform the ruler or marker with the given simple transformation.

Comment: Same as image transformation ?

Input: t e transformation to apply.
Return: Image e transformed image object.

13.30.39 [const] Image transformed(DTrans t)
Transform the image with the given simple transformation.

Input: t e transformation to apply.
Return: Image e transformed image object.

13.30.40 [const] Image transformed_cplx(DCplxTrans t)
Transform the image with the given complex transformation.

Input: t e transformation to apply.
Return: Image e transformed image object.

292 Version 0.21 KLayout

Chapter 13. RBA Reference 13.30. Class Image (version 0.21)

13.30.41 visible=(boolean)
Set the visibility.

See the is_visible? method for a description of this property.

is method has been introduced in version 0.20.

Input: true Set to visible.
false set to invisible.

13.30.42 [const] unsigned width
Get the width of the image in pixels.

Return: unsigned e width of the image in pixels.

KLayout Version 0.21 293

Chapter 13. RBA Reference 13.30. Class ImageDataMapping (version 0.21)

13.31 Class ImageDataMapping (version 0.21)
A structure describing the data mapping of an image object.

Data mapping is the process of transforming the data into RGB pixel values. is implementation provides
four adjustment steps:

1. In the case of monochrome data, the data is converted to a RGB triplet using the color map. e
default color map will copy the value to all channels rendering a gray scale.

2. e data is normalized to 0 … 1, corresponding to themin_value andmax_value, and a color channel-
independent brightness and contrast adjustment is applied.

3. A per-channel multiplier (red_gain, green_gain, blue_gain) is applied.

4. e gamma function is applied, the result converted into a 0 … 255 pixel value range and clipped.

Method Overview

new Create a new data mapping object with default seings
clear_colormap e the color map of this data mapping object.
add_colormap_entry Add a color map entry for this data mapping object.
num_colormap_entries Returns the current number of color map entries.
colormap_color Returns the color for a given color map entry.
colormap_value Returns the value for a given color map entry.
brightness= Set the brightness value.
brightness Get the brightness value.
contrast= Set the contrast value.
contrast Get the contrast value.
gamma= Set the gamma value.
gamma Get the gamma value.
red_gain= Set the red channel gain.
red_gain Get the red channel gain.
green_gain= Set the green channel gain.
green_gain Get the green channel gain.
blue_gain= Set the blue channel gain.
blue_gain Get the blue channel gain.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.31.1 add_colormap_entry(double value, unsigned color)
Add a colormap entry for this data mapping object.

is seings establishes a color mapping for a given value in the monochrome channel. e color must be
given as a 32 bit integer, where the lowest order byte describes the blue component (0 to 255), the second
byte the green component and the third byte the red component, i.e. 0xff0000 is red and 0x0000ff is blue.

Input: double value e value at which the given color should be applied.
unsigned color e color to apply (a 32 bit RGB value).

294 Version 0.21 KLayout

Chapter 13. RBA Reference 13.31. Class ImageDataMapping (version 0.21)

13.31.2 assign(ImageDataMapping other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.31.3 [const] double blue_gain
Get the blue channel gain.

is value is the multiplier by which the blue channel is scaled aer applying false color transformation
and contrast/brightness/gamma.

1.0 is a neutral value. e gain should be >=0.0.

Return: double e blue channel gain.

13.31.4 blue_gain=(double)
Set the blue channel gain.

See blue_gain for a description of this property.

Input: double e blue channel gain.

13.31.5 [const] double brightness
Get the brightness value.

e brightness is a double value between roughly -1.0 and 1.0. Neutral (original) brightness is 0.0.

Return: double e brightness value.

13.31.6 brightness=(double)
Set the brightness value.

See brightness for a description of this property.

Input: double e brightness value.

13.31.7 clear_colormap
Clear the color map of this data mapping object.

13.31.8 [const] unsigned colormap_color(unsigned n)
Returns the color for a given color map entry.

Input: unsigned n e index of the entry (0 … num_colormap_entries-1).
Return: unsigned e color (see add_colormap_entry for a description).

13.31.9 [const] double colormap_value(unsigned n)
Returns the vlue for a given color map entry.

Input: unsigned n e index of the entry (0 … num_colormap_entries-1).
Return: unsigned e color (see add_colormap_entry for a description).

KLayout Version 0.21 295

Chapter 13. RBA Reference 13.31. Class ImageDataMapping (version 0.21)

13.31.10 [const] double contrast
Get the contrast value.

e contrast is a double value between roughly -1.0 and 1.0. Neutral (original) contrast is 0.0.

Return: double e contrast value.

13.31.11 contrast=(double)
Set the contrast value.

See contrast for a description of this property.

Input: double e contrast value.

13.31.12 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.31.13 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.31.14 [const] ImageDataMapping dup
Creates a copy of self.

Return: ImageDataMapping e copy of self.

13.31.15 [const] double gamma
Get the gamma value.

e gamma value allows to adjust for non-linearity in the display chain and to enhance contrast. A value
for linear intensity reproduction on the screen is roughly 0.5. e exact value depends on the monitor
calibration. Values below 1.0 give a “soer” appearance while values above 1.0 give a “harder” appearance.

Return: double e gamma value.

13.31.16 gamma=(double)
Set the gamma value.

See gamma for a description of this property.

Input: double e gamma value.

296 Version 0.21 KLayout

Chapter 13. RBA Reference 13.31. Class ImageDataMapping (version 0.21)

13.31.17 [const] double green_gain
Get the green channel gain.

See blue_gain for a description of this property.

Return: double e green channel gain.

13.31.18 green_gain=(double)
Set the green channel gain.

See blue_gain for a description of this property.

Input: double e green channel gain.

13.31.19 [static] ImageDataMapping new
Create a new data mapping object with default settings.

13.31.20 [const] unsigned num_colormap_entries
Returns the current number of color map entries.

Return: unsigned e number of color map entries.

13.31.21 [const] double red_gain
Get the red channel gain.

See blue_gain for a description of this property.

Return: double e red channel gain.

13.31.22 red_gain=(double)
Set the red channel gain.

See blue_gain for a description of this property.

Input: double e red channel gain.

KLayout Version 0.21 297

Chapter 13. RBA Reference 13.31. Class InputDialog (version 0.21)

13.32 Class InputDialog (version 0.21)
Various methods to open a dialog requesting data entry.

Method Overview

get_string Open an input dialog requesting a string.
get_item Open an input dialog requesting an item from a list.
get_string_password Open an input dialog requesting a string without showing the actual charac-

ters entered.
get_double Open an input dialog requesting a floating-point value.
get_double_ex Open an input dialog requesting a floating-point value with. enhanced capa-

bilities
get_int Open an input dialog requesting an integer value.
get_int_ex Open an input dialog requesting an integer value with enhanced capabilities.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.32.1 assign(InputDialog other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.32.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.32.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.32.4 [const] InputDialog dup
Creates a copy of self.

Return: InputDialog e copy of self.

298 Version 0.21 KLayout

Chapter 13. RBA Reference 13.32. Class InputDialog (version 0.21)

13.32.5 [static] DoubleValue get_double(title, label, double value, digits)
Open an input dialog requesting a floating-point value.

Input: title e title to display for the dialog.
label e label text to display for the dialog.
double value e initial value for the input field.
digits e number of digits allowed.

Return: DoubleValue A DoubleValue object with has_value? set to true, if “Ok” was pressed and the
value given in it’s value aribute.

13.32.6 [static]DoubleValue get_double_ex(title, label, double value, doublemin, dou-
ble max, digits)
Open an input dialog requesting a floating-point value.

Input: title e title to display for the dialog.
label e label text to display for the dialog.
double value e initial value for the input field.
double min e minimum value allowed.
double max e maximum value allowed.
digits e number of digits allowed.

Return: IntValue A IntValue object with has_value? set to true, if “Ok” was pressed and the value
given in it’s value aribute.

13.32.7 [static] IntValue get_int(title, label, integer)
Open an input dialog requesting a integer value.

Input: title e title to display for the dialog.
label e label text to display for the dialog.
integer e initial value for the input field.

Return: IntValue A IntValue object with has_value? set to true, if “Ok” was pressed and the value
given in it’s value aribute.

13.32.8 [static] IntValue get_int_ex(title, label, value, min, max, step)
Open an input dialog requesting an integer value with enhanced capabilities.

Input: title e title to display for the dialog.
label e label text to display for the dialog.
value e initial value for the input field.
min e minimum value allowed.
max e maximum value allowed.
step e step size for the spin buons.

Return: IntValue A IntValue object with has_value? set to true, if “Ok” was pressed and the value
given in it’s value aribute.

KLayout Version 0.21 299

Chapter 13. RBA Reference 13.32. Class InputDialog (version 0.21)

13.32.9 [static] StringValue get_item(title, label, items[], selection)
Open an input dialog requesting an item from a list.

Input: title e title to display for the dialog.
label e label text to display for the dialog.
items[] e list of items to show in the selection element.
selection e initial selection (index of the element selected intially).

Return: StringValue A StringValue object with has_value? set to true, if “Ok” was pressed and the
value given in it’s value aribute.

13.32.10 [static] StringValue get_string(title, label, value)
Open an input dialog requesting a string.

Input: title e title to display for the dialog.
label e label text to display for the dialog.
value e initial value for the input field.

Return: StringValue A StringValue object with has_value? set to true, if “Ok” was pressed and the
value given in it’s value aribute.

13.32.11 [static] StringValue get_string_password(title, label, value)
Open an input dialog requesting a string without showing the actual charac-
ters entered.

Input: title e title to display for the dialog.
label e label text to display for the dialog.
value e initial value for the input field.

Return: StringValue A StringValue object with has_value? set to true, if “Ok” was pressed and the
value given in it’s value aribute.

300 Version 0.21 KLayout

Chapter 13. RBA Reference 13.32. Class InstElement (version 0.21)

13.33 Class InstElement (version 0.21)
An element in an instantiation path.

is objects are used to reference a single instance in a instantiation path. e object is composed of a
CellInstArray object (accessible through the cell_inst accessor) that describes the basic instance, whichmay
be an array. e particular instance within the array can be further retrieved using the array_member_-
trans, specific_trans or specific_cplx_trans methods.

Method Overview

new Default constructor.
new Create an instance element from a single instance alone.
new Create an instance element from an array instance pointing into a certain array

member.
cell_inst Accessor to the cell instance (array).
prop-id Accessor to the property aached to this instance.
< Provide an order criterion for two InstElement objects.
!= Inequality test of two InstElement objects.
== Equality test of two InstElement objects.
specific_trans Returns the specific transformation for this instance.
specific_cplx_trans Returns the specific complex transformation for this instance.
array_member_trans Returns the transformation for this array member.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.33.1 [const] boolean !=(InstElement b)
Inequality test of two InstElement objects.

Warning:: is operator returns true if both instance elements refer to the same in-
stance, not just identical ones.

Input: InstElement b e text object to compare against.
Return: true e objects are unequal.

false e objects are equal.

13.33.2 [const] boolean <(InstElement b)
Less operator that provides an order criterion for two InstElement objects.

is operator is provided to establish any order, not necessarily a particular one.

Input: InstElement b e object to compare against.
Return: true is object is “less” than the given one.

false is object is “greater” or equal than the given one.

13.33.3 [const] boolean ==(InstElement b)
Equality test.

Warning:: is operator returns true if both instance elements refer to the same in-
stance, not just identical ones.

KLayout Version 0.21 301

Chapter 13. RBA Reference 13.33. Class InstElement (version 0.21)

Input: InstElement b e object to compare against.
Return: true e objects are equal or refers to the same instance.

false e objects are unequal or refers not to the same instance.

13.33.4 [const] Trans array_member_trans
Returns the transformation for this array member.

e array member transformation is the one applicable in addition to the global transformation for the
member selected from an array. If this instance is not an array instance, the specific transformation is a
unit transformation without displacement.

13.33.5 assign(InstElement other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.33.6 [const] const ref CellInstArray cell_inst
Accessor to the cell instance (array).

13.33.7 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.33.8 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.33.9 [const] InstElement dup
Creates a copy of self.

Return: InstElement e copy of self.

13.33.10 [static] InstElement new
Default constructor.

13.33.11 [static] InstElement new(Instance inst)
Create an instance element from a single instance alone.

A synonym for: [static] InstElement new_i(Instance inst).

Starting with version 0.15, this method takes an Instance object (an instance reference) as the argument.

302 Version 0.21 KLayout

Chapter 13. RBA Reference 13.33. Class InstElement (version 0.21)

13.33.12 [static] InstElement new(Instance inst, a_index, b_index)
Create an instance element from an array instance pointing into a certain
array member.

A synonym for: [static] InstElement new_iab(Instance inst, a_index, b_index).

Starting with version 0.15, this method takes an Instance object (an instance reference) as the argument.

Input: Instance inst e instance reference.
a_index e index a as unsigned long integer.
b_index e index b as unsigned long integer.

Return:

13.33.13 [const] unsigned prop-id
Accessor to the property attached to this instance.

Return: unsigned e property Id.

13.33.14 [const] CplxTrans specific_cplx_trans
Returns the specific complex transformation for this instance.

e specific transformation is the one applicable for the member selected from an array. is is the effec-
tive transformation applied for this array member. array_member_trans gives the transformation applied
additionally to the instances’ global transformation (in other words, specific_cplx_trans = array_mem-
ber_trans * cell_inst.cplx_trans).

13.33.15 [const] Trans specific_trans
Returns the specific transformation for this instance.

e specific transformation is the one applicable for the member selected from an array. is is the effec-
tive transformation applied for this array member. array_member_trans gives the transformation applied
additionally to the instances’ global transformation (in other words, specific_cplx_trans = array_member_-
trans * cell_inst.trans). is method delivers a simple transformation that does not include magnification
components. To get these as well, use specific_cplx_trans.

KLayout Version 0.21 303

Chapter 13. RBA Reference 13.33. Class Instance (version 0.21)

13.34 Class Instance (version 0.21)
An instance proxy.

An instance proxy is basically a pointer to an instance of different kinds, similar to Shape, the shape proxy.
Instance objects can be duplicated without creating copies of the instances itself: the copy will still point
to the same instance than the original.

Method Overview

prop_id Get the properties Id associated with the instance.
has_prop_id? Check, if the instance is associated with a properties Id.
is_null? Check, if the instance is a valid one.
parent_cell_index Retrieve the reference to the parent cell.
cell_index Get the index of the cell this instance refers to.
is_regular_array? Test, if this instance is a regular array.
a Return the displacement vector for the “a” axis.
b Return the displacement vector for the “b” axis.
na Return the number of instances in the “a” axis.
nb Return the number of instances in the “b” axis.
cplx_trans Get the complex transformation of the instance or the first instance in the

array.
trans Get the transformation of the first instance in the array.
size e number of single instances in the instance array.
is_complex? Test, if the array is a complex array.
cell_inst Get the basic CellInstArray object associated with this instance reference.
< Less operator that provides an order criterion for two Instance objects.
!= Equality test.
== Inequality test.
to_s Create a string showing the contents of the reference.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.34.1 [const] boolean !=(Instance b)
Inequality of two Instance objects.

Warning: is operator returns true if both objects refer to the same instance, not just
identical ones.

Input: Instance b e text object to compare against.
Return: true e objects are not equal.

false e objects are equal.

13.34.2 [const] boolean <(Instance b)
Provide an order criterion for two Instance objects.

Warning: is operator is just provided to establish any order, not a particular one.

Input: Instance b e object to compare against.
Return: true is object is “less” than the given one.

false is object is “greater” or equal than the given one.

304 Version 0.21 KLayout

Chapter 13. RBA Reference 13.34. Class Instance (version 0.21)

13.34.3 [const] boolean ==(Instance b)
Equality of two Instance objects.

Warning: is operator returns true if both objects refer to the same instance, not just
identical ones.

Input: Instance b e object to compare against.
Return: true e objects are equal or refers to the same instance.

false e objects are unequal or refers not to the same instance.

13.34.4 [const] Point a
Return the displacement vector for the “a” axis.

Return: Point e displacement vector for the “a” axis.

13.34.5 assign(Instance other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.34.6 [const] Point b
Return the displacement vector for the “b” axis.

Return: Point e displacement vector for the “b” axis.

13.34.7 [const] unsigned cell_index
Get the index of the cell this instance refers to.

Return: unsigned e index of the cell this instance refers to.

13.34.8 [const] const ref CellInstArray cell_inst
Get the basic CellInstArray object associated with this instance reference.

13.34.9 [const] CplxTrans cplx_trans
Get the complex transformation of the instance or the first instance in the ar-
ray.

is method is always valid compared to trans, since simple transformations can be expressed as complex
transformations as well.

13.34.10 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

KLayout Version 0.21 305

Chapter 13. RBA Reference 13.34. Class Instance (version 0.21)

13.34.11 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.34.12 [const] Instance dup
Creates a copy of self.

Return: Instance e copy of self.

13.34.13 [const] boolean has_prop_id?
Check, if the instance is associated with a properties Id.

Return: true e instance is associated with a properties Id.
false e instance has no properties Id.

13.34.14 [const] boolean is_complex?
Test, if the array is a complex array.

Return: true e array represents complex instances (that is, with magnification and arbi-
trary rotation angles).

false e array represents simple instances (that is, without magnification and arbi-
trary rotation angles).

13.34.15 [const] boolean is_null?
Check, if the instance is a valid one.

Return: true e instance is a valid one.
false e instance is an invalid one.

13.34.16 [const] boolean is_regular_array?
Test, if this instance is a regular array.

Return: true is instance is a regular array.
false is instance is not a regular array.

13.34.17 [const] unsigned long na
Return the number of instances in the “a” axis.

Return: unsigned long e number of instances in the “a” axis.

13.34.18 [const] unsigned long nb
Return the number of instances in the “b” axis.

Return: unsigned long e number of instances in the “b” axis.

306 Version 0.21 KLayout

Chapter 13. RBA Reference 13.34. Class Instance (version 0.21)

13.34.19 [const] unsigned parent_cell_index
Retrieve the reference to the parent cell.

Return: unsigned e reference to the parent cell.

13.34.20 [const] unsigned prop_id
Get the properties Id associated with the instance.

Return: unsigned e associated properties Id.

13.34.21 [const] unsigned size
e number of single instances in the instance array.

If the instance represents a single instance, the count is 1. Otherwise it is na*nb.

Return: unsigned e number of single instances in the instance array.

13.34.22 [const] string to_s
Create a string showing the contents of the reference.

is method has been introduced with version 0.16.

Return: string e contents of the reference as string.

13.34.23 [const] const ref Trans trans
Get the transformation of the first instance in the array.

e transformation returned is only valid if the array does not represent a complex transformation array.

KLayout Version 0.21 307

Chapter 13. RBA Reference 13.34. Class IntValue (version 0.21)

13.35 Class IntValue (version 0.21)
Encapsulate an integer value.

is class is provided as a return value of InputDialog::get_int. By using an object rather than a pure value,
an object with has_value?= false can be returned indicating that the “Cancel” buon was pressed.

Method Overview

has_value? True, if a value is present.
to_i Get the actual value (a synonym for value).
value Get the actual value.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.35.1 assign(IntValue other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.35.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.35.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.35.4 [const] IntValue dup
Creates a copy of self.

Return: IntValue e copy of self.

13.35.5 [const] boolean has_value?
ery weather a value is present.

Return: true A value is present.
false Indication that the “Cancel” buon was pressed.

13.35.6 [const] double to_i
Get the actual value (a synonym for value).

Return: integer e actual value.

308 Version 0.21 KLayout

Chapter 13. RBA Reference 13.35. Class IntValue (version 0.21)

13.35.7 [const] double value
Get the actual value.

Return: integer e actual value.

KLayout Version 0.21 309

Chapter 13. RBA Reference 13.35. Class LayerInfo (version 0.21)

13.36 Class LayerInfo (version 0.21)
A structure encapsulating the layer properties.

e layer properties describe how a layer is stored in a GDSII or OASIS file for example.

Method Overview

new e default constructor.
new e constructor for a layer/data type pair.
new e constructor for a named layer.
new e constructor for a named layer with layer and data type.
to_s Convert the layer info object to a string
== Equality test of two layer info objects.
!= Inequality test of two layer info objects.
is_equivalent? Equivalence of two layer info objects.
is_named? Returns true, if the layer is purely specified by name.
name= Set the layer name.
name Gets the layer name.
layer= Sets the layer number.
layer Gets the layer number.
datatype= Set the data type.
datatype Gets the data type.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.36.1 [const] boolean !=(LayerInfo b)
Inequality of two layer info objects.

is method was added in version 0.18.

Input: p e object to compare against.
Return: true Inequality, both are not equal.

false ⁇?.

13.36.2 [const] boolean ==
Equality of two layer info objects.

is method was added in version 0.18.

Input: p e object to compare against.
Return: true Equality, both are equal.

false ⁇?.

13.36.3 assign(LayerInfo other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

310 Version 0.21 KLayout

Chapter 13. RBA Reference 13.36. Class LayerInfo (version 0.21)

13.36.4 [const] integer datatype
Gets the data type.

Return: integer e data type.

13.36.5 datatype=(integer)
Sets the data type.

Input: integer e data type.

13.36.6 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.36.7 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.36.8 [const] LayerInfo dup
Creates a copy of self.

Return: LayerInfo e copy of self.

13.36.9 [const] boolean is_equivalent?(LayerInfo b)
Equivalence of two layer info objects.

First, layer and data type are compared. e name is of second order and used only if no layer or data type
is given. is is basically a weak comparison that reflects the search preferences.

is method was added in version 0.18.

Return: true Layer and data type are equivalent, or names are equivalent. Later used as fall
back if no layer and data type is given.

false Layer and data type, if given, or names are different.

13.36.10 [const] boolean is_named?
Returns true, if the layer is purely specified by name.

is method was added in version 0.18.

Return: true e layer is purely specified by name.
false Layer or data type is given.

13.36.11 [const] integer layer
Gets the layer number.

Return: integer e layer number.

KLayout Version 0.21 311

Chapter 13. RBA Reference 13.36. Class LayerInfo (version 0.21)

13.36.12 [const] integer layer=
Sets the layer number.

Input: integer e layer number.

13.36.13 [const] string name
Gets the layer name.

Return: string e layer name.

13.36.14 name=(string)
Sets the layer name.

e name is set on OASIS input for example, if the layer has a name.

Input: string e layer name.

13.36.15 [static] LayerInfo new
e default constructor.

Creates a default LayerInfo object.

is method was added in version 0.18.

Return: LayerInfo e new object.

13.36.16 [static] LayerInfo new(layer, datatype)
e constructor for a layer/data type pair.

is method was added in version 0.18.

Input: layer e layer number.
datatype e data type number.

Return: LayerInfo e new object representing a layer and data type.

13.36.17 [static] LayerInfo new(name)
e constructor for a named layer.

is method was added in version 0.18.

Input: name e name.
Return: LayerInfo e new object representing a named layer.

13.36.18 [static] LayerInfo new(layer, datatype, name)
e constructor for a named layer with layer and data type.

is method was added in version 0.18.

Input: layer e layer number.
datatype e data type number.
name e name.

Return: LayerInfo e new object representing a named layer with layer and data type.

312 Version 0.21 KLayout

Chapter 13. RBA Reference 13.36. Class LayerInfo (version 0.21)

13.36.19 [const] string to_s
Convert the layer info object to a string.

is method was added in version 0.18.

Return: string A string representing the layer info.

KLayout Version 0.21 313

Chapter 13. RBA Reference 13.36. Class LayerMap (version 0.21)

13.37 Class LayerMap (version 0.21)
An object representing an arbitrary mapping of physical layers to
logical layers.

“Physical” layers are stream layers or other separated layers in a CAD file. “Logical” layers are the layers
present in a Layout object. Logical layers are represented by an integer index while physical layers are
given by a layer and data type number or name. A logical layer is created automatically in the layout on
reading if it does not exist yet.

e mapping describes an association of a set of physical layers to a set of logical ones, where multiple
physical layers can be mapped to a single logical one, which effectively merges the layers.

is class has been introduced in version 0.18.

Method Overview

is_mapped? Check, if a given physical layer is mapped.
logical Returns the logical layer (the layer index in the layout object) for a given phys-

ical layer.
mapping_str Returns the mapping string for a given logical layer.
mapping Returns the mapped physical (or target if one is specified) layer for a given

logical layer.
map Maps a physical layer to a logical one.
map Maps a physical layer to a logical one with a target layer.
map Maps a physical layer interval to a logical one.
map Maps a physical layer interval to a logical one with a target layer.
map Maps a physical layer given by a string to a logical one.
clear Clears the map.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.37.1 assign(LayerMap other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.37.2 clear
Clears the map.

13.37.3 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

314 Version 0.21 KLayout

Chapter 13. RBA Reference 13.37. Class LayerMap (version 0.21)

13.37.4 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.37.5 [const] LayerMap dup
Creates a copy of self.

Return: LayerMap e copy of self.

13.37.6 [const] boolean is_mapped?(LayerInfo layer)
Check, if a given physical layer is mapped.

Return: true e layer is mapped.
false ⁇?.

13.37.7 [const] integer logical(LayerInfo layer)
Returns the logical layer (the layer index in the layout object) for a given phys-
ical layer.

Input: layer e physical layer specified with a LayerInfo object.
Return: integer e logical layer index, or

-1 if the layer is not mapped.

13.37.8 map(LayerInfo phys_layer, unsigned log_layer)
Maps a physical layer to a logical one.

In general, there may be more than one physical layer mapped to one logical layer. is method will add
the given physical layer to the mapping for the logical layer.

Input: phys_layer e physical layer (a LayerInfo object).
unsigned
log_layer

e logical layer to which the physical layer is mapped.

13.37.9 map(LayerInfo phys_layer, unsigned log_layer, LayerInfo target_layer)
Maps a physical layer to a logical one with a target layer.

In general, there may be more than one physical layer mapped to one logical layer. is method will add
the given physical layer to the mapping for the logical layer.

is method has been added in version 0.20.

Input: phys_layer e physical layer (a LayerInfo object).
unsigned
log_layer

e logical layer to which the physical layer is mapped.

target_layer e properties of the layer that will be created unless it already exists.

KLayout Version 0.21 315

Chapter 13. RBA Reference 13.37. Class LayerMap (version 0.21)

13.37.10 map(LayerInfo pl_start, LayerInfo pl_stop, unsigned log_layer)
Maps a physical layer interval to a logical one.

is method maps an interval of layers l1 … l2 and data types d1 … d2 to the mapping for the given logical
layer. l1 and d1 are given by the pl_start argument, while l2 and d2 are given by the pl_stop argument.

Input: pl_start e first physical layer (a LayerInfo object).
pl_stop e last physical layer (a LayerInfo object).
unsigned
log_layer

e logical layer to which the physical layers are mapped.

13.37.11 map(LayerInfopl_start, LayerInfopl_stop, unsigned log_layer, LayerInfo tar-
get_layer)
Maps a physical layer interval to a logical one with a target layer.

is method maps an interval of layers l1 … l2 and data types d1 … d2 to the mapping for the given logical
layer. l1 and d1 are given by the pl_start argument, while l2 and d2 are given by the pl_stop argument.

is method has been added in version 0.20.

Input: pl_start e first physical layer (a LayerInfo object).
pl_stop e last physical layer (a LayerInfo object).
unsigned
log_layer

e logical layer to which the physical layers are mapped.

target_layer e properties of the layer that will be created unless it already exists.

13.37.12 map(map_expr, unsigned log_layer)
Maps a physical layer given by a string to a logical one.

e string expression is constructed using the syntax: “list[/list][;..]” for layer/data type pairs. “list” is a
sequence of numbers, separated by comma values or a range separated by a hyphen. Examples are: “1/2”,
“1-5/0”, “1,2,5/0”, “1/5;5/6”.

A target layer can be specified with the “:<target>” notation where the target is a valid layer specification
string (i.e. “1/0”).

Target mapping has been added in version 0.20.

Input: map_expr e string describing the physical layer to map.
unsigned
log_layer

e logical layer to which the physical layers are mapped.

13.37.13 [const] LayerInfo mapping(unsigned log_layer)
Returns the mapped physical (or target if one is specified) layer for a given
logical layer.

In general, there may be more than one physical layer mapped to one logical layer. is method will return
a single one of them. It will return the one with the lowest layer and data type.

Input: unsigned
log_layer

e logical layer to which the physical layers are mapped.

Return: LayerInfo A LayerInfo object which is the physical layer mapped to the logical layer.

316 Version 0.21 KLayout

Chapter 13. RBA Reference 13.37. Class LayerMap (version 0.21)

13.37.14 [const] string mapping_str(unsigned log_layer)
Returns the mapping string for a given logical layer.

e mapping string is compatible with the string that the map method accepts.

Input: unsigned
log_layer

e logical layer to which the physical layers are mapped.

Return: string A string describing the mapping.

KLayout Version 0.21 317

Chapter 13. RBA Reference 13.37. Class LayerProperties (version 0.21)

13.38 Class LayerProperties (version 0.21)
e layer properties structure.

e layer properties encapsulate the seings relevant for the display and source of a layer.

Each aribute is present in two incarnations: local and real. “real” refers to the effective aribute aer
collecting the aributes from the parents to the leaf property node. In the spirit of this distinction, all read
accessors are present in “local” and “real” form. e read accessors take a boolean parameter “real” that
must be set to true, if the real value shall be returned.

“brightness” is an index that indicates how much to make the color brighter to darker rendering the effec-
tive color (eff_frame_color, eff_fill_color). It’s value is roughly between -255 and 255.

Method Overview

== Equality.
!= Inequality.
eff_frame_color Get the effective frame color.
eff_fill_color Get the effective frame color.
frame_color Get the frame color.
frame_color= Set the frame color to the given value.
clear_frame_color Reset the frame color.
has_frame_color? Test, if the frame color is set.
fill_color Get the fill color.
fill_color= Set the fill color to the given value.
clear_fill_color Reset the fill color.
has_fill_color? Test, if the frame color is set.
frame_brightness= Set the frame brightness.
frame_brightness Get the frame brightness value.
fill_brightness= Set the fill brightness.
fill_brightness Get the fill brightness value.
flat Return the “flaened” object.
dither_paern= Set the dither paern index.
eff_dither_paern Get the effective dither paern index.
dither_paern Get the dither paern index.
clear_dither_paern Clear the dither paern.
has_dither_paern? Test, if the dither paern is set.
visible= Set the visibility state.
visible? Get the visibility state.
transparent= Set the transparency state.
transparent? Get the transparency state.
width= Set the line width to the given width.
width Get the line width.
marked= Set the marked state.
marked? Get the marked state.
animation= Set the animation state.
animation Get the animation state.
name= Set the name to the given string.
name Get the name.
trans Get the transformations that the layer is transformed with.
trans= Set the transformations that the layer is transformed with.
source_cellview Get the cell view index that this layer refers to.
source_cellview= Set the cell view index that this layer refers to.
source_layer_index Get the layer index that the shapes are taken from.

318 Version 0.21 KLayout

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

source_layer_index= Set the layer index specification that the shapes are taken from.
source_layer Get the stream layer that the shapes are taken from.
source_layer= Set the stream layer that the shapes are taken from.
source_datatype Get the stream data type that the shapes are taken from.
source_datatype= Set the stream data type that the shapes are taken from.
clear_source_name Remove any stream layer name specification from this layer.
source_name Get the stream name that the shapes are taken from.
has_source_name Tell, if a stream layer name is specified for this layer.
source_name= Set the stream layer name that the shapes are taken from.
upper_hier_level e upper hierarchy level shown.
upper_hier_level_relative Specifies if the upper hierarchy level is relative.
upper_hier_level_mode Specifies the mode for the upper hierarchy level.
upper_hier_level= Specify a upper hierarchy level.
set_upper_hier_level Specify the upper hierarchy level and if it is relative to the context cell.
set_upper_hier_level Specify the upper hierarchy level, if it is relative to the context cell and the

mode.
has_upper_hier_level? True, if a upper hierarchy level is explicitly specified.
clear_upper_hier_level Disable a upper hierarchy level specification.
lower_hier_level e lower hierarchy level shown.
lower_hier_level_relative Specifies if the lower hierarchy level is relative..
lower_hier_level_mode Specifies the mode for the lower hierarchy level.
lower_hier_level= Specify a lower hierarchy level.
set_lower_hier_level Specify the lower hierarchy level and if it is relative to the context cell.
set_lower_hier_level Specify the lower hierarchy level, if it is relative to the context cell and the

mode.
has_lower_hier_level? True, if a lower hierarchy level is explicitly specified.
clear_lower_hier_level Disable a lower hierarchy level specification.
source e source specification.
source= Load the source specification from a string.
cellview Access to the cell view index.
layer_index Access to the layer index.
assign Assign the contents of another object to self.
dup Creates a copy of self..
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.38.1 [const] boolean !=(LayerProperties other)
Inequality test.

Input: other e other object to compare against.
Return: true Inequality.

false ⁇?.

13.38.2 [const] boolean ==(LayerProperties other)
Equality test.

Input: other e other object to compare against.
Return: true Equality.

false ⁇?.

KLayout Version 0.21 319

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

13.38.3 [const] integer animation(boolean)
Get the animation state.

Input: true Return the real value.
false Return the local value.

Return: integer e animation state is an integer either being
0 static,
1 scrolling,
2 blinking or
3 inversely blinking.

13.38.4 animation=(integer)
Set the animation state.

See the description of the animation method for details about the animation state.

13.38.5 assign(LayerProperties other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.38.6 [const] integer cellview
Access to the cell view index.

is is the index of the actual cell view to use. Basically, this method returns source_cellview in “real”
mode. e result may be different, if the cell view is not valid for example. In this case, a negative value is
returned.

13.38.7 clear_dither_paern
Clear the dither pattern.

13.38.8 clear_fill_color
Reset the fill color.

13.38.9 clear_frame_color
Reset the frame color.

13.38.10 clear_lower_hier_level
Disable a lower hierarchy level specification.

See has_lower_hier_level? for a description of this property.

13.38.11 clear_source_name
Remove any stream layer name specification from this layer.

13.38.12 clear_upper_hier_level
Disable a upper hierarchy level specification.

See has_upper_hier_level? for a description of this property.

320 Version 0.21 KLayout

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

13.38.13 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.38.14 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.38.15 [const] integer dither_paern(boolean)
Get the dither pattern index.

is method may deliver an invalid dither paern index if it is not set.

Input: true Return the real value.
false Return the local value.

Return: integer e dither paern index.

13.38.16 dither_paern=(integer)
Set the dither pattern index.

e dither paern index must be one of the valid indices. Indices 0 to 31 denote built-in paern, indices
above 32 denote one of the custom paern. Index 0 is always solid filled and 1 is always the hollow filled
paern. Input: integer e dither paern index.

13.38.17 [const] LayerProperties dup
Creates a copy of self.

Return: LayerProperties e copy of self.

13.38.18 [const] unsigned eff_dither_paern(boolean)
Get the effective dither pattern index.

e effective dither paern index is always a valid index, even if no dither paern is set.

Input: true Return the real value.
false Return the local value.

Return: unsigned e effective dither paern index.

13.38.19 [const] unsigned eff_fill_color(boolean)
Get the effective fill color.

e effective fill color is computed from the frame color brightness and the frame color.

Input: true Return the real value.
false Return the local value.

Return: unsigned e effective fill color.

KLayout Version 0.21 321

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

13.38.20 [const] unsigned eff_frame_color(boolean)
Get the effective frame color.

e effective fill color is computed from the frame color brightness and the frame color.

Input: true Return the real value.
false Return the local value.

Return: unsigned e effective frame color.

13.38.21 [const] integer fill_brightness(boolean)
Get the fill brightness value.

If the brightness is not set, this method may return an invalid value.

Input: true Return the real value.
false Return the local value.

Return: integer e fill brightness value.

13.38.22 fill_brightness=(integer)
Set the fill brightness.

For neutral brightness set this value to 0. For darker colors set it to a negative value (down to -255), for
brighter colors to a positive value (up to 255)

Input: integer e fill brightness.

13.38.23 [const] integer fill_color(boolean)
Get the fill color.

is method may return an invalid color if the color is not set.

Input: true Return the real value.
false Return the local value.

Return: integer e fill color.

13.38.24 fill_color=(unsigned)
Set the fill color to the given value.

e color is a 32 bit value encoding the blue value in the lower 8 bits, the green value in the next 8 bits
and the red value in the 8 bits above that.

Input: unsigned e fill color.

13.38.25 flat
⁇.

Comment: Method not described.

13.38.26 [const] integer frame_brightness(boolean)
Get the frame brightness.

For neutral brightness set this value to 0. For darker colors set it to a negative value (down to -255), for
brighter colors to a positive value (up to 255)

322 Version 0.21 KLayout

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

Input: true Return the real value.
false Return the local value.

Return: integer e frame color.

13.38.27 frame_brightness=(integer)
Set the frame brightness.

If the brightness is not set, this method may return an invalid value.

Input: integer e frame brightness.

13.38.28 frame_color(integer)
Get the frame color.

If the brightness is not set, this method may return an invalid value.

Input: true Return the real value.
false Return the local value.

Return: integer e frame color.

13.38.29 frame_color=(integer)
Set the frame color.

e color is a 32 bit value encoding the blue value in the lower 8 bits, the green value in the next 8 bits
and the red value in the 8 bits above that..

Input: integer e frame color.

13.38.30 [const] boolean has_dither_paern?(boolean)
Test, if the dither pattern is set.

Input: true Return the real value.
false Return the local value.

Return: true e dither paern is set.
false e dither paern is not set.

13.38.31 [const] boolean has_fill_color?(boolean)
Test, if the fill color is set.

Input: true Return the real value.
false Return the local value.

Return: true e fill color is set.
false e fill color is not set.

13.38.32 [const] boolean has_frame_color?(boolean)
Test, if the frame color is set.

Input: true Return the real value.
false Return the local value.

Return: true e frame color is set.
false e frame color is not set.

KLayout Version 0.21 323

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

13.38.33 [const] boolean has_lower_hier_level?(boolean)
True, if a lower hierarchy level is explicitly specified.

Input: true Return the real value.
false Return the local value.

Return: true A lower hierarchy level is explicitly specified.
false No lower hierarchy level is explicitly specified.

13.38.34 [const] boolean has_source_name(boolean)
Tell, if a stream layer name is specified for this layer.

Input: true Return the real value.
false Return the local value.

Return: true A stream layer name is specified for this layer.
false No stream layer name is specified for this layer.

13.38.35 [const] boolean has_upper_hier_level?(boolean)
True, if a upper hierarchy level is explicitly specified.

Input: true Return the real value.
false Return the local value.

Return: true An upper hierarchy level is explicitly specified.
false No upper hierarchy level is explicitly specified.

13.38.36 [const] integer layer_index
Access to the layer index.

is is the index of the actual layer used. e source specification given by source_layer, source_datatype,
source_name is evaluated and the corresponding layer is looked up in the layout object. If a source_layer_-
index is specified, this layer index is taken as the layer index to use.

Return: integer e layer index.

13.38.37 [const] integer lower_hier_level(boolean)
e lower hierarchy level shown.

is is the hierarchy level at which the drawing starts. is property is only meaningful, if has_lower_-
hier_level? is true. e hierarchy level can be relative in which case, 0 refers to the context cell’s level. A
mode can be specified for the hierarchy level which is 0 for absolute, 1 for minimum of specified level and
set level and 2 for maximum of specified level and set level.

Input: true Return the real value.
false Return the local value.

Return: integer e lower hierarchy level.

13.38.38 lower_hier_level=(integer)
Specify a lower hierarchy level.

If this method is called, the lower hierarchy level is enabled. See lower_hier_level for a description of this
property.

324 Version 0.21 KLayout

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

13.38.39 [const] integer lower_hier_level_mode(boolean)
Specifies the mode for the lower hierarchy level.

See lower_hier_level for a description of this property.

is method has been introduced in version 0.20.

Comment: Really a boolean as input argument?

Input: true Set the lower hierarchy level to relative.
false Set the lower hierarchy level to absolute.

Return: integer ⁇?.

13.38.40 [const] boolean lower_hier_level_relative(boolean)
Specifies if the lower hierarchy level is relative.

See lower_hier_level for a description of this property.

is method has been introduced in version 0.19.

Input: true Set the lower hierarchy level to relative.
false Set the lower hierarchy level to absolute.

Return: true ⁇?.
false ⁇?.

13.38.41 marked=(boolean)
Set the marked state.

Input: true Set the marked state.
false Unset the marked state.

13.38.42 [const] boolean marked?(boolean)
Get the marked state.

Input: true Return the real value.
false Return the local value.

Return: true e marked state is set.
false e marked state is unset.

Comment: Check input argument and return value.

13.38.43 [const] string name
Get the name.

Return: integer e layer name.

13.38.44 name=(string)
Set the name to the given string.

Input: integer e layer name.

KLayout Version 0.21 325

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

13.38.45 set_lower_hier_level(level, boolean[, mode])
Specify the lower hierarchy level, if it is relative to the context cell [and the
mode].

If this method is called, the lower hierarchy level is enabled. See lower_hier_level for a description of this
property.

is method has been extended by mode selection in version 0.20.

is method (w/o mode selection) has been introduced in version 0.19.

Input: level e lower hierarchy level.
true Set relative to the context cell.
false Set absolute to the context cell.
mode e mode.

13.38.46 set_upper_hier_level(level, boolean[, mode])
Specify the upper hierarchy level, if it is relative to the context cell [and the
mode].

If this method is called, the lower hierarchy level is enabled. See upper_hier_level for a description of this
property.

is method has been extended by mode selection in version 0.20.

is method (w/o mode selection) has been introduced in version 0.19.

Input: level e upper hierarchy level.
true Set relative to the context cell.
false Set absolute to the context cell.
mode e mode.

13.38.47 [const] string source(boolean)
e source specification.

Input: true Return the real value.
false Return the local value.

Return: string e source specification.

13.38.48 source=(string)
Load the source specification from a string.

Input: string Sets the source specification to the given string. e source specification may
contain the cell view index, the source layer (given by layer/data type or layer
name), transformation, property selector etc. is method throws an exception
if the specification is not valid.

Comment: Syntax?

13.38.49 [const] integer source_cellview(boolean)
Get the cell view index that this layer refers to.

Input: true Return the real value.
false Return the local value.

Return: integer e cell view index that this layer refers to.

326 Version 0.21 KLayout

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

13.38.50 source_cellview=(integer)
Set the cell view index that this layer refers to.

See cellview for a description of the transformations.

Input: integer e index of the actual cell view to use. Basically, this method returnssource_-
cellview in “real” mode. e result may be different, if the cell view is not valid
for example. In this case, a negative value is returned.

13.38.51 [const] integer source_datatype(boolean)
Get the stream data type that the shapes are taken from.

Input: true Return the real value.
false Return the local value.

Return: integer e stream data type that the shapes are taken from.
If the data type is positive, the actual layer is looked up by this stream data type.
If a name or layer index is specified, the stream data type is not used.

13.38.52 source_datatype=(integer)
Set the stream data type that the shapes are taken from.

See source_datatype for a description of this property.

Input: integer e stream data type that the shapes are taken from.

13.38.53 [const] integer source_layer(boolean)
Get the stream layer that the shapes are taken from.

Input: true Return the real value.
false Return the local value.

Return: integer e stream layer that the shapes are taken from.
If the layer is positive, the actual layer is looked up by this stream layer.
If a name or layer index is specified, the stream layer is not used.

13.38.54 source_layer=(integer)
Set the stream layer that the shapes are taken from.

See source_layer for a description of this property.

Input: integer e stream layer that the shapes are taken from.

13.38.55 [const] integer source_layer_index(boolean)
Get the layer index that the shapes are taken from.

Input: true Return the real value.
false Return the local value.

Return: integer e layer index that the shapes are taken from.
If the layer index is positive, the shapes drawn are taken from this layer rather
than searched for by layer and data type.
is property is stronger than the layer/data type or name specification.

e similar method layer_index returns the actual layer index used, not the given one. e laer may be
negative indicating that layer/data type or name specifications are used.

KLayout Version 0.21 327

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

13.38.56 source_layer_index=(integer)
Set the layer index specification that the shapes are taken from.

See source_layer_index for a description of this property.

13.38.57 [const] string source_name(boolean)
Get the stream name that the shapes are taken from.

Input: true Return the real value.
false Return the local value.

Return: string e stream name that the shapes are taken from.
If the name is non-empty, the actual layer is looked up by this stream layer
name.
If a layer index (see layer_index) is specified, the stream data type is not used.
A name is only meaningful for OASIS files.

13.38.58 source_name=(string)
Set the stream layer name that the shapes are taken from.

See name for a description of this property.

13.38.59 [const] CplxTrans[] trans(boolean)
Get the transformations that the layer is transformed with.

e transformations returned by this accessor is the one used for displaying this layer. e layout is
transformed with each of these transformations before it is drawn.

Input: true Return the real value.
false Return the local value.

Return: CplxTrans[] e returned transformations is the one used for displaying this layer. e
layout is transformed with each of these transformations before it is drawn.

13.38.60 CplxTrans(trans= t_vector[])
Set the transformations that the layer is transformed with.

See trans for a description of the transformations.

13.38.61 transparent=(boolean)
Set the transparency state.

Input: true Set the transparency state.
false Set the opaque state.

13.38.62 [const] boolean transparent?(boolean)
Get the transparency state.

Input: true Return the real value.
false Return the local value.

Return: true e transparency state is set.
false e opaque state is set.

328 Version 0.21 KLayout

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

13.38.63 [const] integer upper_hier_level(boolean)
e upper hierarchy level shown.

is is the hierarchy level at which the drawing ends. is property is only meaningful, if has_upper_-
hier_level? is true. e hierarchy level can be relative in which case, 0 refers to the context cell’s level. A
mode can be specified for the hierarchy level which is 0 for absolute, 1 for minimum of specified level and
set level and 2 for minimum of specified level and set level.

Input: true Return the real value.
false Return the local value.

Return: integer e lower hierarchy level.

13.38.64 upper_hier_level=(integer)
Specify a upper hierarchy level.

If this method is called, the lower hierarchy level is enabled. See upper_hier_level for a description of this
property.

13.38.65 [const] integer upper_hier_level_mode(boolean)
Specifies the mode for the upper hierarchy level.

See upper_hier_level for a description of this property.

is method has been introduced in version 0.20.

Comment: Really a boolean as input argument?

13.38.66 [const] boolean upper_hier_level_relative(boolean)
Specifies if the upper hierarchy level is relative.

See upper_hier_level for a description of this property.

is method has been introduced in version 0.19.

Input: true Set the upper hierarchy level to relative.
false Set the upper hierarchy level to absolute.

Return: true ⁇?.
false ⁇?.

13.38.67 visible=(boolean)
Set the visibility state.

Input: true Set the visibility state.
false Set the invisibility state.

13.38.68 [const] boolean visible?(boolean)
Get the visibility state.

Input: true Return the real value.
false Return the local value.

Return: true e visibility state is set.
false e invisibility state is set.

KLayout Version 0.21 329

Chapter 13. RBA Reference 13.38. Class LayerProperties (version 0.21)

13.38.69 width=(integer)
Set the line width to the given width.

Input: integer e line width.

13.38.70 [const] integer width(boolean)
Get the line width.

Input: true Return the real value.
false Return the local value.

Return: integer e line width.

330 Version 0.21 KLayout

Chapter 13. RBA Reference 13.38. Class LayerPropertiesIterator (version 0.21)

13.39 Class LayerPropertiesIterator (version 0.21)
Flat layer iterator.

is iterator provides a flat view for the layers in the layer tree.

Method Overview

!= Inequality test.
== Equality test.
< Comparison.
at_top? At-the-top property.
at_end? At-the-end property.
is_null? “is null” predicate.
next Increment operator.
up Move up.
next_sibling Move to the next sibling by a given distance.
to_sibling Move to the sibling with the given index.
num_siblings Return the number of siblings.
down_first_child Move to the first child.
down_last_child Move to the last child.
current Access to the current element.
parent Obtain the parent iterator.
first_child Obtain the iterator pointing to the first child.
last_child Obtain the iterator pointing to the last child.
child_index Obtain the index of the child within the parent.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.39.1 [const] boolean !=(LayerPropertiesIterator other)
Inequality test.

Input: other e other object to compare against.
Return: true e objects are not equal.

false ⁇?.

13.39.2 [const] boolean <(LayerPropertiesIterator other)
Comparison.

Input: other e other object to compare against.
Return: true Self points to an object that comes before other.

false ⁇?.

13.39.3 [const] boolean ==(LayerPropertiesIterator other)
Equality test.

Input: other e other object to compare against.
Return: true e objects are equal.

false ⁇?.

KLayout Version 0.21 331

Chapter 13. RBA Reference 13.39. Class LayerPropertiesIterator (version 0.21)

13.39.4 assign(LayerPropertiesIterator other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.39.5 [const] boolean at_end?
At-the-end property.

Return: true e iterator is at the end of either all elements or at the end of the child list (if
down_last_child or down_first_child is used to iterate).

false ⁇?.

13.39.6 [const] boolean at_top?
At-the-top property.

Return: true At top - there is no parent level.
false ⁇?.

13.39.7 [const] unsigned child_index
Obtain the index of the child within the parent.

Return: unsigned e index in the list of children of it’s parent, that the element pointed to.
If the element does not have a parent, the index of the element in the global list.

13.39.8 [const] const ref current
Access to the current element.

Return: ref e reference to the current element.

13.39.9 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.39.10 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.39.11 down_first_child
Move to the first child.

is method moves to the first child of the current element. If there is no child, at_end? will be true. Even
then, the iterator points to the child level and method up can be used to move back.

332 Version 0.21 KLayout

Chapter 13. RBA Reference 13.39. Class LayerPropertiesIterator (version 0.21)

13.39.12 down_last_child
Move to the last child.

is method moves to the last child of the current element. If there is no child, at_end? will be true. Even
then, the iterator points to the child level and method up can be used to move back.

13.39.13 [const] LayerPropertiesIterator dup
Creates a copy of self.

Return: LayerPropertiesIterator e copy of self.

13.39.14 [const] LayerPropertiesIterator first_child
Obtain the iterator pointing to the first child.

Return: LayerPropertiesIterator Obtain the iterator pointing to the first child.
If there is no children, the iterator will be a valid insert point but not
pointing to any valid element. It will report at_end? = true.

13.39.15 [const] boolean is_null?
“is null” predicate.

Return: true e iterator is “null”. Such an iterator can be created with the default construc-
tor or by moving a top-level iterator up.

false ⁇?.

13.39.16 [const] LayerPropertiesIterator last_child
Obtain the iterator pointing to the first child.

Return: LayerPropertiesIterator Obtain the iterator pointing to the last child.
If there is no children, the iterator will be a valid insert point but not
pointing to any valid element. It will report at_end? = true.

13.39.17 ref next
Increment operator.

e iterator will be incremented to point to the next layer entry. It will descend into the hierarchy to
address children if there are any.

13.39.18 next_sibling(n)
Move to the next sibling by a given distance.

e iterator is moved to the nᵗʰ next sibling of the current element.

Input: n e distance to move.

13.39.19 [const] unsigned num_siblings
Return the number of siblings.

Return: unsigned e number of siblings.

KLayout Version 0.21 333

Chapter 13. RBA Reference 13.39. Class LayerPropertiesIterator (version 0.21)

13.39.20 [const] LayerPropertiesIterator parent
Obtain the parent iterator.

Return: LayerPropertiesIterator Obtain the iterator pointing to parent.
If there is no parent, the returned iterator will “null”.

13.39.21 to_sibling(index)
Move to the sibling with the given index.

e iterator is moved to the nᵗʰ next sibling of the current element.

Input: index e given index.

13.39.22 ref up
Move up.

e iterator is moved to point to the current element’s parent. If the current element does not have a
parent, the iterator will be undefined.

334 Version 0.21 KLayout

Chapter 13. RBA Reference 13.39. Class LayerPropertiesNode (version 0.21)

13.40 Class LayerPropertiesNode (version 0.21)
e layer properties structure.

is class is derived from LayerProperties. Objects of this class are used in the hierarchy of layer views
that are arranged in a tree while the LayerProperties object reflects the properties of a single node.

Method Overview

== Equality test on LayerProperties.
!= Inequality test on LayerProperties.
flat Return the “flaened” object.
has_children? Test, if there are children.
bbox Compute the bounding box of this layer.
id Obtain the unique ID.
== Equality test on LayerPropertiesNode.
!= Inequality test on LayerPropertiesNode.
eff_frame_color Get the effective frame color.
eff_fill_color Get the effective frame color.
frame_color Get the frame color.
frame_color= Set the frame color to the given value.
clear_frame_color Reset the frame color.
has_frame_color? Test, if the frame color is set.
fill_color Get the fill color.
fill_color= Set the fill color to the given value.
clear_fill_color Reset the fill color.
has_fill_color? Test, if the frame color is set.
frame_brightness= Set the frame brightness.
frame_brightness Get the frame brightness value.
fill_brightness= Set the fill brightness.
fill_brightness Get the fill brightness value.
dither_paern= Set the dither paern index.
eff_dither_paern Get the effective dither paern index.
dither_paern Get the dither paern index.
clear_dither_paern Clear the dither paern.
has_dither_paern? Test, if the dither paern is set.
visible= Set the visibility state.
visible? Get the visibility state.
transparent= Set the transparency state.
transparent? Get the transparency state.
width= Set the line width to the given width.
width Get the line width.
marked= Set the marked state.
marked? Get the marked state.
animation= Set the animation state.
animation Get the animation state.
name= Set the name to the given string.
name Get the name.
trans Get the transformations that the layer is transformed with.
trans= Set the transformations that the layer is transformed with.
source_cellview Get the cell view index that this layer refers to.
source_cellview= Set the cell view index that this layer refers to.
source_layer_index Get the layer index that the shapes are taken from.
source_layer_index= Set the layer index specification that the shapes are taken from.

KLayout Version 0.21 335

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

source_layer Get the stream layer that the shapes are taken from.
source_layer= Set the stream layer that the shapes are taken from.
source_datatype Get the stream data type that the shapes are taken from.
source_datatype= Set the stream data type that the shapes are taken from.
clear_source_name Remove any stream layer name specification from this layer.
source_name Get the stream name that the shapes are taken from.
has_source_name Tell, if a stream layer name is specified for this layer.
source-name= Set the stream layer name that the shapes are taken from.
upper_hier_level e upper hierarchy level shown.
upper_hier_level_relative Specifies if the upper hierarchy level is relative.
upper_hier_level_mode Specifies the mode for the upper hierarchy level.
upper_hier_level= Specify a upper hierarchy level.
set_upper_hier_level Specify the upper hierarchy level and if it is relative to the context cell.
set_upper_hier_level Specify the upper hierarchy level, if it is relative to the context cell and the

mode.
has_upper_hier_level? True, if a upper hierarchy level is explicitly specified.
clear_upper-hier_level Disable a upper hierarchy level specification.
lower_hier_level e lower hierarchy level shown.
lower_hier_level_relative Specifies if the lower hierarchy level is relative..
lower_hier_level_mode Specifies the mode for the lower hierarchy level.
lower_hier_level= Specify a lower hierarchy level.
set_lower_hier_level Specify the lower hierarchy level and if it is relative to the context cell.
set_lower_hier_level Specify the lower hierarchy level, if it is relative to the context cell and the

mode.
has_lower_hier_level? True, if a lower hierarchy level is explicitly specified.
clear_lower_hier_level Disable a lower hierarchy level specification.
source e source specification.
source= Load the source specification from a string.
cellview Access to the cell view index.
layer_index Access to the layer index.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.40.1 [const] boolean !=(LayerProperties other)
Inequality test.

Input: other e other object to compare against.
Return: true Inequality.

false ⁇?.

13.40.2 [const] boolean !=(LayerPropertiesNode other)
Inequality test.

Input: other e other object to compare against.
Return: true Inequality.

false ⁇?.

336 Version 0.21 KLayout

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

13.40.3 [const] boolean ==(LayerProperties other)
Equality test.

Input: other e other object to compare against.
Return: true Equality.

false ⁇?.

13.40.4 [const] boolean ==(LayerPropertiesNode other)
Equality test.

Input: other e other object to compare against.
Return: true Equality.

false ⁇?.

13.40.5 [const] integer animation(boolean)
Get the animation state.

Return: e animation state is an integer either being
0 static,
1 scrolling,
2 blinking or
3 inversely blinking.

13.40.6 animation=(integer)
Set the animation state.

See the description of the animation method for details about the animation state.

13.40.7 assign(LayerPropertiesNode other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.40.8 [const] DBox bbox
Compute the bbox of this layer.

is takes the layout and path definition (supported by the given default layout or path, if no specific is
given). e node must have been aached to a view to make this operation possible.

Return: DBox A bbox in micron units.

13.40.9 [const] integer cellview
Access to the cell view index.

is is the index of the actual cell view to use. Basically, this method returns source_cellview in “real”
mode. e result may be different, if the cell view is not valid for example. In this case, a negative value is
returned.

KLayout Version 0.21 337

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

13.40.10 clear_dither_paern
Clear the dither pattern.

13.40.11 clear_fill_color
Reset the fill color.

13.40.12 clear_frame_color
Reset the frame color.

13.40.13 clear_lower_hier_level
Disable a lower hierarchy level specification.

See has_lower_hier_level? for a description of this property.

13.40.14 clear_source_name
Remove any stream layer name specification from this layer.

13.40.15 clear_upper-hier_level
Disable a upper hierarchy level specification.

See has_upper_hier_level? for a description of this property.

13.40.16 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.40.17 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.40.18 [const] integer dither_paern(boolean)
Get the dither pattern index.

is method may deliver an invalid dither paern index if it is not set.

Input: true Return the real value.
false Return the local value.

Return: integer e dither paern index.

13.40.19 dither_paern=(integer)
Set the dither pattern index.

e dither paern index must be one of the valid indices. Indices 0 to 31 denote built-in paern, indices
above 32 denote one of the custom paern. Index 0 is always solid filled and 1 is always the hollow filled
paern.

Input: integer e dither paern index.

338 Version 0.21 KLayout

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

13.40.20 [const] LayerPropertiesNode dup
Creates a copy of self.

Return: LayerPropertiesNode e copy of self.

13.40.21 [const] unsigned eff_dither_paern(boolean)
Get the effective dither pattern index.

e effective dither paern index is always a valid index, even if no dither paern is set.

Input: true Return the real value.
false Return the local value.

Return: unsigned e effective dither paern index.

13.40.22 [const] unsigned eff_fill_color(boolean)
Get the effective fill color.

e effective fill color is computed from the frame color brightness and the frame color.

Input: true Return the real value.
false Return the local value.

Return: unsigned e effective fill color.

13.40.23 [const] unsigned eff_frame_color(boolean)
Get the effective frame color.

e effective fill color is computed from the frame color brightness and the frame color.

Input: true Return the real value.
false Return the local value.

Return: unsigned e effective frame color.

13.40.24 [const] integer fill_brightness(boolean)
Get the fill brightness value.

If the brightness is not set, this method may return an invalid value.

Input: true Return the real value.
false Return the local value.

Return: integer e fill brightness value.

13.40.25 fill_brightness=(integer)
Set the fill brightness.

For neutral brightness set this value to 0. For darker colors set it to a negative value (down to -255), for
brighter colors to a positive value (up to 255).

Input: integer e fill brightness.

KLayout Version 0.21 339

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

13.40.26 [const] integer fill_color(boolean)
Get the fill color.

is method may return an invalid color if the color is not set.

Input: true Return the real value.
false Return the local value.

Return: integer e fill color.

13.40.27 fill_color=(unsigned)
Set the fill color to the given value.

e color is a 32 bit value encoding the blue value in the lower 8 bits, the green value in the next 8 bits
and the red value in the 8 bits above that.

Input: unsigned e fill color.

13.40.28 [const] flat
Return the “flattened” object.

Contrary to what the name suggests, this method does not flaen the hierarchy but rather returns an
object that does not need a parent for the “real” properties. See flat for a description of this process. e
child list of the returned object will be the same that of the original object.

13.40.29 [const] integer frame_brightness(boolean)
Get the frame brightness.

For neutral brightness set this value to 0. For darker colors set it to a negative value (down to -255), for
brighter colors to a positive value (up to 255)

Input: true Return the real value.
false Return the local value.

Return: integer e frame color.

13.40.30 frame_brightness=(integer)
Set the frame brightness.

If the brightness is not set, this method may return an invalid value.

Input: integer e frame brightness.

13.40.31 frame_color(integer)
Get the frame color.

If the brightness is not set, this method may return an invalid value.

Input: true Return the real value.
false Return the local value.

Return: integer e frame color.

340 Version 0.21 KLayout

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

13.40.32 frame_color=(integer)
Set the frame color.

e color is a 32 bit value encoding the blue value in the lower 8 bits, the green value in the next 8 bits
and the red value in the 8 bits above that..

Input: integer e frame color.

13.40.33 [const] boolean has_children?
Test, if there are children.

Return: true ere are children.
false ere are no children.

13.40.34 [const] boolean has_dither_paern?(boolean)
Test, if the dither pattern is set.

Input: true Return the real value.
false Return the local value.

Return: true e dither paern is set.
false e dither paern is not set.

13.40.35 [const] boolean has_fill_color?(boolean)
Test, if the fill color is set.

Input: true Return the real value.
false Return the local value.

Return: true e fill color is set.
false e fill color is not set.

13.40.36 [const] boolean has_frame_color?(boolean)
Test, if the frame color is set.

Input: true Return the real value.
false Return the local value.

Return: true e frame color is set.
false e frame color is not set.

13.40.37 [const] boolean has_lower_hier_level?(boolean)
True, if a lower hierarchy level is explicitly specified.

Input: true Return the real value.
false Return the local value.

Return: true A lower hierarchy level is explicitly specified.
false No lower hierarchy level is explicitly specified.

KLayout Version 0.21 341

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

13.40.38 [const] boolean has_source_name(boolean)
Tell, if a stream layer name is specified for this layer.

Input: true Return the real value.
false Return the local value.

Return: true A stream layer name is specified for this layer.
false No stream layer name is specified for this layer.

13.40.39 [const] boolean has_upper_hier_level?(boolean)
True, if a upper hierarchy level is explicitly specified.

Input: true Return the real value.
false Return the local value.

Return: true An upper hierarchy level is explicitly specified.
false No upper hierarchy level is explicitly specified.

13.40.40 [const] unsigned id
Obtain the unique ID.

Each layer properties node object has a unique ID that is created when a new LayerPropertiesNode object
is instantiated. e ID is copied when the object is copied. e ID can be used to identify the object
irregardless of it’s content.

Return: unsigned e unique object ID.

13.40.41 [const] integer layer_index
Access to the layer index.

is is the index of the actual layer used. e source specification given by source_layer, source_datatype,
source_name is evaluated and the corresponding layer is looked up in the layout object. If a source_layer_-
index is specified, this layer index is taken as the layer index to use.

Return: integer e layer index.

13.40.42 [const] integer lower_hier_level(boolean)
e lower hierarchy level shown.

is is the hierarchy level at which the drawing starts. is property is only meaningful, if has_lower_-
hier_level? is true. e hierarchy level can be relative in which case, 0 refers to the context cell’s level. A
mode can be specified for the hierarchy level which is 0 for absolute, 1 for minimum of specified level and
set level and 2 for maximum of specified level and set level.

Input: true Return the real value.
false Return the local value.

Return: integer e lower hierarchy level.

13.40.43 lower_hier_level=(integer)
Specify a lower hierarchy level.

If this method is called, the lower hierarchy level is enabled. See lower_hier_level for a description of this
property.

342 Version 0.21 KLayout

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

13.40.44 [const] integer lower_hier_level_mode(boolean)
Specifies the mode for the lower hierarchy level.

See lower_hier_level for a description of this property.

is method has been introduced in version 0.20.

Comment: Really a boolean as input argument?

13.40.45 [const] boolean lower_hier_level_relative(boolean)
Specifies if the lower hierarchy level is relative.

See lower_hier_level for a description of this property.

is method has been introduced in version 0.19.

Input: true Set the lower hierarchy level to relative.
false Set the lower hierarchy level to absolute.

Return: true ⁇?.
false ⁇?.

13.40.46 marked=(boolean)
Set the marked state.

Input: true Set the marked state.
false Unset the marked state.

13.40.47 [const] boolean marked?(boolean)
Get the marked state.

Input: true Return the real value.
false Return the local value.

Return: true e marked state is set.
false e marked state is unset.

Comment: Check input argument and return value.

13.40.48 [const] string name
Get the name.

Return: integer e layer name.

13.40.49 name=(string)
Set the name to the given string.

Input: integer e layer name.

13.40.50 set_lower_hier_level(level, boolean[, mode])
Specify the lower hierarchy level, if it is relative to the context cell [and the
mode].

If this method is called, the lower hierarchy level is enabled. See lower_hier_level for a description of this
property.

KLayout Version 0.21 343

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

is method has been extended by mode selection in version 0.20.

is method (w/o mode selection) has been introduced in version 0.19.

Input: level e lower hierarchy level.
true Set relative to the context cell.
false Set absolute to the context cell.
mode e mode.

13.40.51 set_upper_hier_level(level, boolean[, mode])
Specify the upper hierarchy level, if it is relative to the context cell [and the
mode].

If this method is called, the lower hierarchy level is enabled. See upper_hier_level for a description of this
property.

is method has been extended by mode selection in version 0.20.

is method (w/o mode selection) has been introduced in version 0.19.

Input: level e upper hierarchy level.
true Set relative to the context cell.
false Set absolute to the context cell.
mode e mode.

13.40.52 [const] string source(boolean)
e source specification.

Input: true Return the real value.
false Return the local value.

Return: string e source specification.

13.40.53 source=(string)
Load the source specification from a string.

Input: string Sets the source specification to the given string. e source specification may
contain the cell view index, the source layer (given by layer/data type or layer
name), transformation, property selector etc. is method throws an exception
if the specification is not valid.

Comment: Syntax?

13.40.54 [const] integer source_cellview(boolean)
Get the cell view index that this layer refers to.

Input: true Return the real value.
false Return the local value.

Return: integer e cell view index that this layer refers to.

13.40.55 source_cellview=(integer)
Set the cell view index that this layer refers to.

See cellview for a description of the transformations.

344 Version 0.21 KLayout

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

Input: integer e index of the actual cell view to use. Basically, this method returnssource_-
cellview in “real” mode. e result may be different, if the cell view is not valid
for example. In this case, a negative value is returned.

13.40.56 [const] integer source_datatype(boolean)
Get the stream data type that the shapes are taken from.

Input: true Return the real value.
false Return the local value.

Return: integer e stream data type that the shapes are taken from.
If the data type is positive, the actual layer is looked up by this stream data type.
If a name or layer index is specified, the stream data type is not used.

13.40.57 source_datatype=(integer)
Set the stream data type that the shapes are taken from.

See source_datatype for a description of this property.

Input: integer e stream data type that the shapes are taken from.

13.40.58 [const] integer source_layer(boolean)
Get the stream layer that the shapes are taken from.

Input: true Return the real value.
false Return the local value.

Return: integer e stream layer that the shapes are taken from.
If the layer is positive, the actual layer is looked up by this stream layer.
If a name or layer index is specified, the stream layer is not used.

13.40.59 source_layer=(integer)
Set the stream layer that the shapes are taken from.

See source_layer for a description of this property.

Input: integer e stream layer that the shapes are taken from.

13.40.60 [const] integer source_layer_index(boolean)
Get the layer index that the shapes are taken from.

Input: true Return the real value.
false Return the local value.

Return: integer e layer index that the shapes are taken from.
If the layer index is positive, the shapes drawn are taken from this layer rather
than searched for by layer and data type.
is property is stronger than the layer/data type or name specification.

e similar method layer_index returns the actual layer index used, not the given one. e laer may be
negative indicating that layer/data type or name specifications are used.

KLayout Version 0.21 345

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

13.40.61 source_layer_index=(integer)
Set the layer index specification that the shapes are taken from.

See source_layer_index for a description of this property.

13.40.62 [const] string source_name(boolean)
Get the stream name that the shapes are taken from.

Input: true Return the real value.
false Return the local value.

Return: string e stream name that the shapes are taken from.
If the name is non-empty, the actual layer is looked up by this stream layer
name.
If a layer index (see layer_index) is specified, the stream data type is not used.
A name is only meaningful for OASIS files.

13.40.63 source-name=(string)
Set the stream layer name that the shapes are taken from.

See name for a description of this property.

13.40.64 [const] CplxTrans[] trans(boolean)
Get the transformations that the layer is transformed with.

e transformations returned by this accessor is the one used for displaying this layer. e layout is
transformed with each of these transformations before it is drawn.

Input: true Return the real value.
false Return the local value.

Return: CplxTrans[] e returned transformations is the one used for displaying this layer. e
layout is transformed with each of these transformations before it is drawn.

13.40.65 CplxTrans(trans= t_vector[])
Set the transformations that the layer is transformed with.

See trans for a description of the transformations.

13.40.66 transparent=(boolean)
Set the transparency state.

Input: true Set the transparency state.
false Set the opaque state.

13.40.67 [const] boolean transparent?(boolean)
Get the transparency state.

Input: true Return the real value.
false Return the local value.

Return: true e transparency state is set.
false e opaque state is set.

346 Version 0.21 KLayout

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

13.40.68 [const] integer upper_hier_level(boolean)
e upper hierarchy level shown.

is is the hierarchy level at which the drawing ends. is property is only meaningful, if has_upper_-
hier_level? is true. e hierarchy level can be relative in which case, 0 refers to the context cell’s level. A
mode can be specified for the hierarchy level which is 0 for absolute, 1 for minimum of specified level and
set level and 2 for minimum of specified level and set level.

Input: true Return the real value.
false Return the local value.

Return: integer e lower hierarchy level.

13.40.69 upper_hier_level=(integer)
Specify the upper hierarchy level.

If this method is called, the lower hierarchy level is enabled. See upper_hier_level for a description of this
property.

13.40.70 [const] integer upper_hier_level_mode(boolean)
Specifies the mode for the upper hierarchy level.

See upper_hier_level for a description of this property.

is method has been introduced in version 0.20.

Comment: Really a boolean as input argument?

13.40.71 [const] boolean upper_hier_level_relative(boolean)
Specifies if the upper hierarchy level is relative.

See upper_hier_level for a description of this property.

is method has been introduced in version 0.19.

Input: true Set the upper hierarchy level to relative.
false Set the upper hierarchy level to absolute.

Return: true ⁇?.
false ⁇?.

13.40.72 visible=(boolean)
Set the visibility state.

Input: true Set the visibility state.
false Set the invisibility state.

13.40.73 [const] boolean visible?(boolean)
Get the visibility state.

Input: true Return the real value.
false Return the local value.

Return: true e visibility state is set.
false e invisibility state is set.

KLayout Version 0.21 347

Chapter 13. RBA Reference 13.40. Class LayerPropertiesNode (version 0.21)

13.40.74 width=(integer)
Set the line width to the given width.

Input: integer e line width.

13.40.75 [const] integer width(boolean)
Get the line width.

Input: true Return the real value.
false Return the local value.

Return: integer e line width.

348 Version 0.21 KLayout

Chapter 13. RBA Reference 13.40. Class Layout (version 0.21)

13.41 Class Layout (version 0.21)
e layout object.

e layout object basically wraps the cell graphs and adds functionality for managing cell names and layer
names. e cell graph is a container for the cells and their hierarchical arrangement. e cell graph is
constructed by creating cells and adding child instances to it.

Method Overview

new Create a layout object aached to a manager.
new Create a layout object.
clear Clears the layout.
properties_id Get the properties ID for a given properties set.
properties Get the properties set for a given properties ID.
has_cell? Tell, if the cell with a given name exists.
cell_by_name Get the cell index for a given name.
cell_name Get the name for a cell with the given index.
add_cell Add a cell with the given name.
rename_cell Rename a cell with the given name.
delete_cell Delete a cell.
delete_cells Delete multiple cells.
prune_subcells Delete all sub cells of the cell which are not used otherwise down to the spec-

ified level of hierarchy.
prune_cell Delete a cell plus sub cells not used otherwise.
delete_cell_rec Delete a cell plus all sub cells.
flaen Flaen the given cell.
start_changes Signal the start of an operation bringing the layout into invalid state.
end_changes Cancel the “in changes” state (see start_changes).
under_construction Tell if the layout object is under construction.
update Update the internals of the layout.
dbu= Database unit write accessor.
dbu Database unit read accessor.
insert_layer Insert a new layer with the given properties.
insert_layer_at Insert a new layer with the given properties at the given index.
insert_special_layer Insert a new special layer with the given properties.
insert_special_layer_at Insert a new special layer with the given properties at the given index.
set_info Set the info structure for a specified layer.
get_info Get the info structure for a specified layer.
cells Return the number of cells.
cell Address a cell by index.
each_cell Iterate the unsorted cell list.
each_cell_boom_up Iterate the boom-up sorted cell list.
each_cell_top_down Iterate of the top-down sorted cell list.
each_top_cell Iterate the top cells.
swap_layers Swap layers.
move_layer Move a layer.
copy_layer Copy a layer.
clear_layer Clear a layer.
delete_layer Delete a layer.
layer_indices Return a list of valid layer indices.
layers Return the number of layers.
is_valid_cell_index? Tell, if a cell index is a valid index.
is_valid_layer? Tell, if a layer index is a valid index.

KLayout Version 0.21 349

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

is_special_layer? Tell, if a layer index is a special layer index.
begin_shapes Delivers a recursive shape iterator for the shapes below the given cell on the

given layer.
begin_shapes_touching Delivers a recursive shape iterator for the shapes below the given cell on the

given layer using a region search.
begin_shapes_overlapping Delivers a recursive shape iterator for the shapes below the given cell on

the given layer using a region search.
write Write the layout to a stream file.
write Write the layout to a stream file with options.
clip Clips the given cell by the given rectangle and produce a new cell with the

clip.
clip_into Clips the given cell by the given rectangle and produce a new cell with the

clip.
multi_clip Clips the given cell by the given rectangles and produce new cells with the

clips, one for each rectangle..
multi_clip_into Clips the given cell by the given rectangles and produce new cells with the

clips, one for each rectangle..
read Load the layout from the given file.
read Load the layout from the given file with options.
assign Assign the contents of another object to self.
dup Creates a copy of self..
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.41.1 unsigned add_cell(name)
Add a cell with the given name.

Input: name e given name.
Return: unsigned e index of the newly created cell.

13.41.2 assign(Layout other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.41.3 [const] RecursiveShapeIterator begin_shapes(unsigned cell_index, unsigned
layer)
Delivers a recursive shape iterator for the shapes below the given cell on the
given layer.

For details see the description of the RecursiveShapeIterator class.

is method has been added in version 0.18.

Input: unsigned cell_index e index of the starting cell.
unsigned layer e layer from which to get the shapes.

Return: RecursiveShapeIterator A suitable iterator.

350 Version 0.21 KLayout

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

13.41.4 [const] RecursiveShapeIterator begin_shapes_overlapping(unsigned cell_in-
dex, unsigned layer, Box region)
Delivers a recursive shape iterator for the shapes below the given cell on the
given layer using a region search.

For details see the description of the RecursiveShapeIterator class. is version gives an iterator delivering
shapes whose bounding box overlaps the given region.

is method has been added in version 0.18.

Input: unsigned cell_index e index of the starting cell.
unsigned layer e layer from which to get the shapes.
Box region e search region.

Return: RecursiveShapeIterator A suitable iterator.

13.41.5 [const] RecursiveShapeIterator begin_shapes_touching(unsigned cell_index,
unsigned layer, Box region)
Delivers a recursive shape iterator for the shapes below the given cell on the
given layer using a region search.

For details see the description of the RecursiveShapeIterator class. is version gives an iterator delivering
shapes whose bounding box touches the given region.

is method has been added in version 0.18.

Input: unsigned cell_index e index of the starting cell.
unsigned layer e layer from which to get the shapes.
Box region e search region.

Return: RecursiveShapeIterator A suitable iterator.

13.41.6 ref Cell cell(unsigned i)
Address a cell by index.

Input: unsigned i e cell index.
Return: ref Cell A reference to the cell.

13.41.7 unsigned cell_by_name(name)
Get the cell index for a given name.

Input: name e given cell name.
Return: unsigned e associated cell index. If no cell with this name exists, an exception is

thrown.

13.41.8 [const] name cell_name(unsigned)
Get the name for a cell with the given index.

Input: unsigned e given cell index.
Return: name e associated cell name.

13.41.9 [const] unsigned cells
Return the number of cells.

Return: unsigned e number of cells (the maximum cell index).

KLayout Version 0.21 351

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

13.41.10 clear
Clears the layout.

Clears the layout completely.

13.41.11 clear_layer(unsigned layer_index)
Clear a layer.

Clears the layer: removes all shapes.

is method was introduced in version 0.19.

Input: unsigned
layer_index

e index of the layer to delete.

13.41.12 unsigned clip(unsigned cell_index, Box region)
Clips the given cell by the given rectangle and produce a new cell with the
clip.

is method will cut a rectangular region given by the box from the given cell. e clip will be stored in
a new cell whose index is returned. e clip will be performed hierarchically. e resulting cell will hold
a hierarchy of child cells, which are potentially clipped versions of child cells of the original cell.

is method has been added in version 0.21.

Input: unsigned cell_index e cell index of the cell to clip.
Box region e search region.

Return: unsigned e index of the new cell.

13.41.13 unsigned clip_into(unsigned cell_index, ref Box box, Layout target)
Clips the given cell by the given rectangle and produce a new cell with the
clip.

is method will cut a rectangular region given by the box from the given cell. e clip will be stored in
a new cell in the target layout. e clip will be performed hierarchically. e resulting cell will hold a
hierarchy of child cells, which are potentially clipped versions of child cells of the original cell.

Please note that it is important that the database unit of the target layout is identical to the database unit
of the source layout to achieve the desired results.is method also assumes that the target layout holds
the same layers than the source layout. It will copy shapes to the same layers than they have been on the
original layout.

is method has been added in version 0.21.

Input: unsigned cell_index e cell index of the cell to clip.
Box box e clip box in database units.
Layout target e target layout.

Return: unsigned e index of the new cell in the target layout.

13.41.14 copy_layer(unsigned src, unsigned dest)
Copy a layer.

Copy a layer from the source to the target. e target is not cleared before, so that this method merges
shapes from the source with the target layer.

is method was introduced in version 0.19.

352 Version 0.21 KLayout

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

Input: unsigned src e layer index of the source layer.
unsigned dest e layer index of the destination layer.

13.41.15 [const] double dbu
Database unit read accessor.

Return: double e database unit.

13.41.16 dbu=(double)
Database unit write accessor.

Input: double e database unit.

13.41.17 delete_cell(unsigned cell_index)
Delete a cell .

is deletes a cell but not the sub cells of the cell. ese sub cells will likely become new top cells unless
they are used otherwise. All instances of this cell are deleted as well.

Hint:: To delete multiple cells, use delete_cells which is far more efficient in this
case.

is method has been introduced in version 0.20.

Input: unsigned cell_index e cell index of the cell to delete.

13.41.18 delete_cell_rec(unsigned cell_index)
Delete a cell plus all sub cells.

is deletes a cell and also all sub cells of the cell. In contrast to prune_cell, all cells are deleted together
with their instances even if they are used otherwise.

is method has been introduced in version 0.20.

Input: unsigned cell_index e cell index of the cell to delete.

13.41.19 delete_cells(unsigned cell_index_list[])
Delete multiple cells.

is deletes the cells but not the sub cells of these cells. ese sub cells will likely become new top cells
unless they are used otherwise. All instances of these cells are deleted as well.

is method has been introduced in version 0.20.

Input: unsigned cell_index_list[] An array of cell indices of the cells to delete.

13.41.20 delete_layer(unsigned layer_index)
Delete a layer.

is does free the shapes of the cells and remembers the layer’s index for recycling.

Input: unsigned layer_index e index of the layer to delete.

KLayout Version 0.21 353

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

13.41.21 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.41.22 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.41.23 [const] Layout dup
Creates a copy of self.

Return: Layout e copy of self.

13.41.24 yield ref Cell each_cell
Iterate the unsorted cell list.

Return: yield unsigned An array of unsorted cell indices.

13.41.25 yield unsigned each_cell_boom_up
Iterate the bottom-up sorted cell list.

In boom-up traversal a cell is not delivered before the last child cell of this cell has been delivered. e
boom-up iterator does not deliver cells but cell indices actually.

Return: yield unsigned An array of cell indices boom-up sorted.

13.41.26 yield unsigned each_cell_top_down
Iterate the top-down sorted cell list.

e top-down cell list has the property of delivering all cells before they are instantiated. In addition the
first cells are all top cells. ere is at least one top cell. e top-down iterator does not deliver cells but
cell indices actually.

Return: yield unsigned An array of cell indices top-down sorted.

13.41.27 yield unsigned each_top_cell
Iterate the top cells.

A layout may have an arbitrary number of top cells. e usual case however is that there is one top cell.
Return: yield unsigned An array of top cell indices.

354 Version 0.21 KLayout

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

13.41.28 end_changes
Cancel the “in changes” state (see start_changes).

13.41.29 flaen(unsigned cell_index, levels, prune)
Flatten the given cell.

is method propagates all shapes from the specified number of hierarchy levels below into the given cell.
It also removes the instances of the cells from which the shapes came from, but does not remove the cells
themselves if prune is set to false. If prune is set to true, these cells are removed if not used otherwise.

is method has been introduced in version 0.20.

Input: unsigned
cell_index

e cell which should be flaened.

levels e number of hierarchy levels to flaen (-1: all, 0: none, 1: one level etc.).
prune Set to true to remove orphan cells.

13.41.30 [const] const ref LayerInfo get_info(unsigned index)
Get the info structure for a specified layer.

13.41.31 boolean has_cell?(name)
Tell, if the cell with a given name exists.

Return: true e layout has a cell with the given name.
false is layout has no cell with the given name.

13.41.32 unsigned insert_layer(LayerInfo props)
Insert a new layer with the given properties.

Input: LayerInfo props e given properties.
Return: unsigned e index of the newly created layer.

13.41.33 insert_layer_at(unsigned index, LayerInfo props)
Insert a new layer with the given properties at the given index.

Input: unsigned index e given index.
LayerInfo props e given properties.

13.41.34 unsigned insert_special_layer(LayerInfo props)
Insert a new special layer with the given properties.

Special layers can be used to represent objects that should not participate in normal viewing or other
related operations. Special layers are not reported as valid layers.

Input: LayerInfo props e given properties.
Return: unsigned e index of the newly created layer.

13.41.35 insert_special_layer_at(unsigned index, LayerInfo props)
Insert a new special layer with the given properties at the given index.

See insert_special_layer for a description of special layers.

KLayout Version 0.21 355

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

Input: unsigned index e given index.
LayerInfo props e given properties.

13.41.36 [const] boolean is_special_layer?(unsigned index)
Tell, if a layer index is a special layer index.

Return: true e layer is a special layer.
false e layer is a usual layer.

13.41.37 [const] boolean is_valid_cell_index?(unsigned index)
Tell, if a cell index is valid index.

Return: true e cell index is a valid index.
false e cell index is invalid.

13.41.38 [const] boolean is_valid_layer?(unsigned index)
Tell, if a layer index is a valid index.

Return: true e layer index is a valid index.
false e layer index is invalid.

13.41.39 [const] unsigned[] layer_indices
Return a list of valid layer indices.

is method was introduced in version 0.19.

Return: unsigned[] An array with layer indices representing valid layers.

13.41.40 [const] unsignedlayers
Return the number of layers.

e number of layers reports the maximum (plus 1) layer index used so far. Not all of the layers with an
index in the range of 0 to layers-1 needs to be a valid layer. ese layers can be either valid, special or
unused. Use is_valid_layer? and is_special_layer? to test for the first two states.

Return: unsigned[] e maximum (plus 1) layer index used so far.

13.41.41 move_layer(unsigned src, unsigned dest)
Move a layer.

Move a layer from the source to the target. e target is not cleared before, so that this method merges
shapes from the source with the target layer. e source layer is empty aer that operation. is method
was introduced in version 0.19.

Input: unsigned src e layer index of the source layer.
unsigned dest e layer index of the destination layer.

356 Version 0.21 KLayout

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

13.41.42 unsigned[] multi_clip(unsigned, Box boxes[])
Clips the given cell by the given rectangles and produce new cells with the
clips, one for each rectangle.

is method will cut rectangular regions given by the boxes from the given cell. e clips will be stored in
a new cells whose indexed are returned. e clips will be performed hierarchically. e resulting cells will
hold a hierarchy of child cells, which are potentially clipped versions of child cells of the original cell. is
version is somewhat more efficient than doing individual clips because the clip cells may share clipped
versions of child cells.

is method has been added in version 0.21.

Input: unsigned e cell index of the cell to clip.
Box boxes[] e clip boxes in database units.

Return: unsigned[] e indexes of the new cells.

13.41.43 unsigned[] multi_clip_into(unsigned, ref Box boxes[], Layout target)
Clips the given cell by the given rectangles and produce new cells with the
clips, one for each rectangle.

is method will cut rectangular regions given by the boxes from the given cell. e clips will be stored in
a new cells in the given target layout. e clips will be performed hierarchically. e resulting cells will
hold a hierarchy of child cells, which are potentially clipped versions of child cells of the original cell. is
version is somewhat more efficient than doing individual clips because the clip cells may share clipped
versions of child cells.

Please note that it is important that the database unit of the target layout is identical to the database unit
of the source layout to achieve the desired results. is method also assumes that the target layout holds
the same layers than the source layout. It will copy shapes to the same layers than they have been on the
original layout.

is method has been added in version 0.21.

Input: unsigned e cell index of the cell to clip.
Box boxes[] e clip boxes in database units.
Layout target e target layout.

Return: unsigned[] e indexes of the new cells.
Comment: Box and Layout exchanged.

13.41.44 [static] Layout new
Create a layout object.

13.41.45 [static] Layout new(ref Manager)
Create a layout object attached to a manager.

is method was introduced in version 0.19.

13.41.46 [const] [] properties(unsigned)
Get the properties set for a given properties ID.

Input: unsigned e properties ID to get the properties for.
Return: [] e array of variants (see properties_id).

KLayout Version 0.21 357

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

13.41.47 unsigned properties_id(properties[])
Get the properties ID for a given properties set.

Before a set of properties can be aached to a shape, it must be converted into an ID that is unique for
that set. e properties set must be given as a list of pairs of variants, each pair describing a name and
a value. e name acts as the key for the property and does not need to be a string (it can be an inte-
ger or double value as well). e backward conversion can be performed with the ’properties’ method.
Input: properties[] e array of pairs of variants (both elements can be integer, double or string).
Return: unsigned e unique properties ID for that set.

13.41.48 prune_cell(unsigned cell_index, levels)
Delete a cell plus sub cells not used otherwise.

is deletes a cell and also all sub cells of the cell which are not used otherwise. e number of hierarchy
levels to consider can be specified as well. One level of hierarchy means that only the direct children of
the cell are deleted with the cell itself. All instances of this cell are deleted as well.

is method has been introduced in version 0.20.

Input: unsigned
cell_index

e index of the cell to delete.

levels e number of hierarchy levels to consider (-1: all, 0: none, 1: one level etc.).

13.41.49 prune_subcells(unsigned cell_index, levels)
Delete all sub cells of the cell which are not used otherwise down to the spec-
ified level of hierarchy.

is deletes all sub cells of the cell which are not used otherwise. All instances of the deleted cells are
deleted as well. It is possible to specify how many levels of hierarchy below the given root cell are consid-
ered.

is method has been introduced in version 0.20.

Input: unsigned
cell_index

e index of the cell to delete.

levels e number of hierarchy levels to consider (-1: all, 0: none, 1: one level etc.).

13.41.50 LayerMap read(filename, LoadLayoutOptions options)
Load the layout from the given file with options.

e format of the file is determined automatically and automatic unzipping is provided. In this version,
some reader options can be specified.

is method has been added in version 0.18.

Input: filename e name of the file to load.
LoadLayoutOptions
options

e options object specifying further options for the reader.

Return: LayerMap A layer map that contains the mapping used by the reader including the layers
that have been created.

358 Version 0.21 KLayout

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

13.41.51 LayerMap read(filename)
Load the layout from the given file.

e format of the file is determined automatically and automatic unzipping is provided. No particular
options can be specified.

is method has been added in version 0.18.

Input: filename e name of the file to load.
Return: LayerMap A layer map that contains the mapping used by the reader including the layers

that have been created.

13.41.52 rename_cell(unsigned, name)
Rename a cell.

Input: unsigned e index of the cell to rename.
name e new cell name.

13.41.53 set_info(unsigned, LayerInfo properties)
Set the info structure for a specified layer.

Input: unsigned e index of the layer.
LayerInfo
properties

e info structure for a specified layer.

13.41.54 start_changes
Signal the start of an operation bringing the layout into invalid state.

is method should be called whenever the layout is about to be brought into an invalid state. Aer calling
this method, under_construction returns false, which tells foreign code (such as update, which might be
called asynchronously, for example, because of a repaint event) not to use this layout object.

is state is cancelled by the end_changesmethod. e start_changesmethod can be called multiple times
and must be cancelled the same number of times.

Using this method is only required currently if a repaint event may happen while the layout object is in
an invalid state.

13.41.55 swap_layers(unsigned a, unsigned b)
Swap layers.

Swaps the shapes of both layers.

is method was introduced in version 0.19.

Input: unsigned a e first of the layers to swap.
unsigned b e second of the layers to swap.

13.41.56 [const] boolean under_construction
Tell if the layout object is under construction.

Return: true e layout object is either under construction if a transaction is ongoing or the
layout is brought into invalid state by start_changes.

false e layout object is neither under construction nor brought into invalid state.

KLayout Version 0.21 359

Chapter 13. RBA Reference 13.41. Class Layout (version 0.21)

13.41.57 update
Update the internals of the layout.

is method updates the internal state of the layout. Usually this is done automatically. is method is
provided to ensure this state explicitly.

13.41.58 [const] write(filename, gzip, SaveLayoutOptions options)
Write the layout to a stream file.

Input: filename e file to which to write the layout.
gzip True, if the file should be compressed.
SaveLayoutOptions
options

e option set to use for writing. See SaveLayoutOptions for details.

13.41.59 write[const] write(filename)
Write the layout to a stream file.

Input: filename e file to which to write the layout.

360 Version 0.21 KLayout

Chapter 13. RBA Reference 13.41. Class LayoutView (version 0.21)

13.42 Class LayoutView (version 0.21)
e view object presenting one or more layout objects.

e visual part of the view is the tab panel in the main window. e non-visual part are the redraw thread,
the layout handles, cell lists, layer view lists etc. is object controls these aspects of the view and controls
the appearance of the data.

Method Overview

stop_redraw Stop the redraw thread.
set_title Set the title of the view.
reset_title Reset the title to the standard title.
title Return the view’s title string.
save_layer_props Save the layer properties.
load_layer_props Load the layer properties.
load_layer_props Load the layer properties with options.
load_layer_props Load the layer properties with more options.
min_hier_levels= Set the minimum hierarchy level at which to display geometries.
min_hier_levels? ery the minimum hierarchy level at which to display geometries.
max_hier_levels= Set the maximum hierarchy level up to which to display geometries.
max_hier_levels? ery the maximum hierarchy level up to which to display geometries.
reload_layout Reload the given cell view.
create_layout Create a new, empty layout.
erase_cellview Erase the cell view with the given index.
rename_cellview Rename the cell view with the given index.
load_layout Load a (new) file into the layout view.
load_layout Load a (new) file into the layout view.
active_cellview Get the active cell view (shown in hierarchy browser).
active_cellview_index Get the index of the active cell view (shown in hierarchy browser).
set_active_cellview_index Make the cell view with the given index the active one (shown in hierarchy

browser).
get_current_cell_path Cell path of the current cell.
set_current_cell_path Set the path to the current cell.
cellviews Get the number of cell views.
cellview Get the cell view object for a given index.
zoom_fit Fit the contents of the current view into the window.
zoom_box Set the view port to the given box.
zoom_in Zoom in somewhat.
zoom_out Zoom out somewhat.
pan_up Pan upward.
pan_down Pan down.
pan_le Pan to the le.
pan_right Pan to the right.
pan_center Pan to the given point.
box Return the displayed box in micron space.
viewport_trans Return the transformation that converts micron coordinates to pixels.
viewport_width Return the view port width in pixels.
viewport_height Return the view port height in pixels.
bookmark_view Bookmark the current view under the given name.
add_missing_layers Add new layers to layer list.
remove_unused_layers Remove unused layers from layer list.
init_layer_properties Fill the layer properties for a new layer.
cancel Cancel all edit operations.

KLayout Version 0.21 361

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

stop Stop redraw thread and close any browsers.
enable_edits Enable or disable editing.
select_cell_path Select a cell by cell index for a certain cell view.
select_cell Select a cell by index for a certain cell view.
descend Descend further into the hierarchy.
ascend Ascend upwards in the hierarchy.
is_cell_hidden Tell, if the cell is hidden.
hide_cell Hide the given cell for the given cell view.
show_cell Show the given cell for the given cell view (cancel effect of hide-cell).
show_all_cells Make all cells shown (cancel effects of hide_cell).
update_content Update the layout view to the current state.
max_hier Select all hierarchy levels available.
save_screenshot Save a screen shot to the given file.
save_image Save the layout as an image to the given file.
save_as Save a layout to the given stream file.
set_layer_properties Set the layer properties of the layer pointed to by the iterator.
set_layer_properties Set the layer properties of the layer pointed to by the iterator for the given

layer properties list.
expand_layer_properties Expands the layer properties for all tabs.
expand_layer_properties Expands the layer properties for the given tab.
replace_layer_node Replace the layer node at the position given by “iter” with a new one.
replace_layer_node Replace the layer node at the position given by “iter” with a new one for the

given layer properties list.
insert_layer Insert the given layer properties node into the list before the given position.
insert_layer Insert the given layer properties node into the list before the given position

for the given layer properties list.
delete_layer Delete the layer properties node.
delete_layer Delete the layer properties node for the given layer properties list.
begin_layers Begin iterator for the layers.
end_layers End iterator for the layers.
begin_layers Begin iterator for the layers for the given layer properties list.
end_layers End iterator for the layers for the given layer properties list.
clear_layers Clear all layers.
clear_layers Clear all layers for the given layer properties list.
delete_layer_list Deletes the given properties list.
insert_layer_list Inserts a new layer properties list at the given index.
current_layer_list Gets the index of the currently selected layer properties tab..
set_current_layer_list Sets the index of the currently selected layer properties tab..
rename_layer_list Sets the title of the given layer properties tab..
remove_stipple Remove the stipple paern with the given index.
clear_stipples Remove all stipple paern.
add_stipple Add a stipple paern.
current_layer Get the current layer view.
selected_layers Get the selected layers.
add_cellview_list_observer Add a cell view list observer.
remove_cellview_list_observer Remove a cell view list observer.
add_cellview_observer Add a cell view observer.
remove_cellview_observer Remove a cell view observer.
add_file_open_observer Add a file open observer.
remove_file_open_observer Remove a file open observer.
add_viewport_changed_observer Add a view port changed observer.
remove_viewport_changed_observer Remove a view port changed observer.
add_layer_list_observer Add a layer list observer.

362 Version 0.21 KLayout

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

remove_layer_list_observer Remove a layer list observer.
add_cell_visibility_observer Add a cell visibility observer.
remove_cell_visibility_observer Remove a cell visibility observer.
add_transient_selection_changed_observer Add a transient selection observer.
remove_transient_selection_changed_observer Remove a transient selection observer.
add_selection_changed_observer Add a selection observer.
remove_selection_changed_observer Remove a selection observer.
add_rdb-list_changed_observer Add a observer for the list of report databases.
remove_rdb_list_changed_observer Remove a observer for the list of report databases.
num_rdbs Get the number of report databases loaded into this view.
remove_rdb Remove a report database with the given index.
rdb Gets the report database with the given index.
create_rdb Creates a new report database and returns the index of the new database.
clear_config Clear the local configuration parameters.
get_config ery a local configuration parameter.
set_config Set a local configuration parameter with the given name to the given value.
transaction Begin a transaction.
commit End a transaction.
transacting Tell, if a transaction is ongoing.
clear_transactions Clear all transactions.
has_object_selection? Returns true, if geometrical objects (shapes or cell instances) are selected in

this view.
each_object_selected Iterate over each selected geometrical object, yielding a ObjectInstPath object

for each of them.
has_transient_object_selection? Returns true, if geometrical objects (shapes or cell instances) are se-

lected in this view in the transient selection.
each_object_selected_transient Iterate over each geometrical objects in the transient selection, yield-

ing a ObjectInstPath object for each of them.
clear_images Clear all images on this view.
replace_image Replace an image object with the new image.
erase_image Erase the given image.
show_image Shows or hides the given image.
insert_image Insert an image object into the given view.
each_image Iterate over all images aached to this view.
has_image_selection? Returns true, if images are selected in this view.
each_image_selected Iterate over each selected image object, yielding a Image object for each of

them.
clear_annotations Clear all annotations on this view.
insert_annotation Insert an annotation object into the given view.
each_annotation Iterate over all annotations aached to this view.
has_annotation_selection? Returns true, if annotations (rulers) are selected in this view.
each_annotation_selected Iterate over each selected annotation objects, yielding a Annotation object

for each of them.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.42.1 [const] const Refe CellView active_cellview
Get the active cell view (shown in hierarchy browser).

is is a convenience method which is equivalent to cellview(active_cellview_index()).

is method has been introduced in version 0.19.

KLayout Version 0.21 363

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.2 [const] integer active_cellview_index
Get the index of the active cell view (shown in hierarchy browser).

13.42.3 add_cell_visibility_observer(ref ObserverBase observer)
Add a cell visibility observer.

If a cell is hidden or shown, this observer is triggered.

13.42.4 add_cellview_list_observer(ref ObserverBase observer)
Add a cellview list observer.

If a cell view is added or removed, this observer is triggered.

13.42.5 add_cellview_observer(ref ObserverBase observer)
Add a cell view observer.

If a cell view is changed (i.e. the cell is changed) this event is sent. e integer argument slot (signal_int)
of the observer will be triggered as well with the index of the cell view that has changed.

13.42.6 add_file_open_observer(ref ObserverBase observer)
Add a file open observer.

If a new file is loaded, this observer is triggered.

13.42.7 add_layer_list_observer(ref ObserverBase observer)
Add a layer list observer.

If the layer list changes, the observer’s signal_int and signal slot is triggered. e integers value bit 0 is
set, if the properties have changed. If the arguments bit 1 is set, the hierarchy has changed.

13.42.8 add_missing_layers
Add new layers to layer list.

is method was introduced in version 0.19.

13.42.9 add_rdb-list_changed_observer(ref ObserverBase observer)
Add a observer for the list of report databases.

If a report database is added or removed, this observer is triggered.

13.42.10 add_selection_changed_observer(ref ObserverBase observer)
Add a selection observer.

If the selection is changed, this observer is triggered.

is method was added in version 0.18.

364 Version 0.21 KLayout

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.11 unsigned add_stipple(name, unsigned data[], unsigned bits)
Add a stipple pattern.

Input: name e name under which this paern will appear in the stipple editor.
unsigned data[] An array of unsigned integers describing the bits that make up the stipple pat-

tern. If the array has less than 32 entries, the paern will be repeated vertically.
e number of bits used can be less than 32 bit which can be specified by the
“bits” parameter. Logically, the paern will be put at the end of the list.

unsigned bits e number of bits used.
Return: unsigned e index of the newly created stipple paern, which can be used as the dither

paern index of LayerProperties.

13.42.12 add_transient_selection_changed_observer(ref ObserverBase observer)
Add a transient selection observer.

If the transient selection is changed, this observer is triggered.

is method was added in version 0.18.

13.42.13 add_viewport_changed_observer(ref ObserverBase observer)
Add a view port changed observer.

If the view port (the rectangle that is shown) changes, this observer is triggered.

13.42.14 InstElement ascend(index)
Ascend upwards in the hierarchy.

Removes one element from the specific path of the cell view with the given index.

Input: index e cell view with the given index.
Return: InstElement e removed element.

13.42.15 [const] LayerPropertiesIterator begin_layers
Begin iterator for the layers.

is iterator delivers the layers of this view, either in a recursive or non-recursive fashion, dependingwhich
iterator increment methods are used. e iterator delivered by end_layers is the past-the-end iterator. It
can be compared against a current iterator to check, if there are no further elements.

13.42.16 [const] LayerPropertiesIterator begin_layers(unsigned index)
Begin iterator for the layers.

is iterator delivers the layers of this view, either in a recursive or non-recursive fashion, dependingwhich
iterator increment methods are used. e iterator delivered by end_layers is the past-the-end iterator. It
can be compared against a current iterator to check, if there are no further elements. is version addresses
a specific list in a multi-tab layer properties arrangement with the “index” parameter.

is method has been introduced in version 0.21.

KLayout Version 0.21 365

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.17 bookmark_view(name)
Bookmark the current view under the given name.

Input: name e name under which to bookmark the current state.

13.42.18 [const] DBox box
Return the displayed box in micron space.

Return: DBox e displayed box in micron space.

13.42.19 cancel
Cancel all edit operations.

13.42.20 [const] const ref CellView cellview(unsigned index)
Get the cell view object for a given index.

Input: unsigned index e cell view index for which to get the object for.

13.42.21 [const] unsigned cellviews
Get the number of cell views.

Return: unsigned e number of cell views.

13.42.22 clear_annotations
Clear all annotations on this view.

13.42.23 clear_config
Clear the local configuration parameters.

See set_config for a description of the local configuration parameters.

13.42.24 clear_images
Clear all images on this view.

13.42.25 clear_layers
Clear all layers.

13.42.26 clear_layers(unsigned index)
Clear all layers for the given layer properties list.

is method has been introduced in version 0.21.

Input: unsigned index A specific list in a multi-tab layer properties arrangement.

13.42.27 clear_stipples
Remove all stipple pattern.

All stipple paern except the fixed ones are removed. If any of the custom stipple paern is still used by
the layers displayed, the results will not be predictable.

366 Version 0.21 KLayout

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.28 clear_transactions
Clear all transactions.

Discard all actions in the undo buffer. Aer clearing that buffer, no undo is available. It is important to
clear the buffer when making database modifications outside transactions, i.e aer that modifications have
been done. If failing to do so, “undo” operations are likely to produce invalid results.

is method was introduced in version 0.16.

13.42.29 commit
End a transaction.

See transaction for a detailed description of transactions.

is method was introduced in version 0.16.

13.42.30 unsigned index create_layout(add_cellview)
Create a new, empty layout.

Input: true Create a new cell view.
false Clear all cell views before.

Return: unsigned index e index of the cellview created.

13.42.31 unsigned create_rdb(name)
Creates a new report database and returns the index of the new database.

is method returns an index of the new report database. Use rdb to get the actual object. If a report
database with the given name already exists, a unique name will be created. e name will be replaced by
the file name when a file is loaded into the report database.

Input: name e name of the new report database.
Return: unsigned e index of the new database.

13.42.32 [const] LayerPropertiesIterator current_layer
Get the current layer view.

Return: LayerPropertiesIterator e LayerPropertiesIterator pointing to the current layer view (the one
that has the focus). If no layer view is active currently, a null iterator is
returned.

13.42.33 [const] unsigned current_layer_list
Gets the index of the currently selected layer properties tab.

is method has been introduced in version 0.21.

13.42.34 delete_layer(refLayerPropertiesIterator iter)
Delete the layer properties node.

is method deletes the object that the iterator points to and invalidates the iterator since the object that
the iterator points to is no longer valid.

KLayout Version 0.21 367

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.35 delete_layer(unsigned index, refLayerPropertiesIterator iter)
Delete the layer properties node.

is method deletes the object that the iterator points to and invalidates the iterator since the object that
the iterator points to is no longer valid. is version addresses a specific list in a multi-tab layer properties
arrangement with the index parameter.

is method has been introduced in version 0.21.

13.42.36 delete_layer_list(unsigned index)
Deletes the given properties list.

At least one layer properties list must remain. is method may change the current properties list.

is method has been introduced in version 0.21.

13.42.37 descend(InstElement path[], index)
Deletes the given properties list.

At least one layer properties list must remain. is method may change the current properties list.

is method has been introduced in version 0.21.

13.42.38 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.42.39 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.42.40 yield const ref Annotation each_annotation
Iterate over all annotations attached to this view.

13.42.41 [const] yield const ref Annotation each_annotation_selected
Iterate over each selected annotation objects, yielding a Annotation object for
each of them.

is method was introduced in version 0.19.

368 Version 0.21 KLayout

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.42 yield const ref Image each_image
Iterate over all images attached to this view.

13.42.43 [const] yield const ref Image each_image_selected
Iterate over each selected image object, yielding a Image object for each of
them.

is method was introduced in version 0.19.

13.42.44 [const] yield const ref ObjectInstPath each_object_selected
Iterate over each selected geometrical object, yielding aObjectInstPath object
for each of them.

13.42.45 [const] yield const ref ObjectInstPath each_object_selected_transient
Iterate over each geometrical objects in the transient selection, yielding aOb-
jectInstPath object for each of them.

is method was introduced in version 0.18.

13.42.46 enable_edits(enable)
Enable or disable editing.

Input: true Edit mode enabled.
false View mode enabled.

13.42.47 [const] LayerPropertiesIterator end_layers(unsigned index)
End iterator for the layers.

See begin_layers for a description about this iterator is version addresses a specific list in a multi-tab
layer properties arrangement with the index parameter.

is method has been introduced in version 0.21.

13.42.48 [const] LayerPropertiesIterator end_layers
End iterator for the layers.

See begin_layers for a description about this iterator.

13.42.49 erase_cellview(unsigned index)
Erase the cell view with the given index.

is closes the given cell view and unloads the layout associated with it, unless referred to by another cell
view.

13.42.50 erase_image(unsigned id)
Erase the given image.

Erases the image with the given Id. e Id can be obtained with if id method of the image object.

is method has been introduced in version 0.20.

Input: unsigned id e id of the object to erase.

KLayout Version 0.21 369

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.51 expand_layer_properties
Expands the layer properties for all tabs.

is method will expand all wild card specifications in the layer properties by iterating over the specified
objects (i.e. layers, cell views) and by replacing default colors and stipples by the ones specified with the
palees.

is method was introduced in version 0.21.

13.42.52 expand_layer_properties(unsigned)
Expands the layer properties for the given tab.

is method will expand all wild card specifications in the layer properties by iterating over the specified
objects (i.e. layers, cell views) and by replacing default colors and stipples by the ones specified with the
palees.

is method was introduced in version 0.21.

13.42.53 [const] string get_config(name)
ery a local configuration parameter.

See set_config for a description of the local configuration parameters.

Input: name e name of the configuration parameter whose value shall be obtained (a
string).

Return: string e value of the parameter.

13.42.54 [const] unsigned[] get_current_cell_path(index)
Cell path of the current cell.

e current cell is the one highlighted in the browser with the focus rectangle. e current path is returned
for the cell view given by index. e cell path is a list of cell indices from the top cell to the current cell.

Input: index e cell view index.
Return: unsigned[] e current path for the cell view given by index.

13.42.55 [const] boolean has_annotation_selection?
Returns true, if annotations (rulers) are selected in this view.

is method was introduced in version 0.19.

Return: true Annotations (rulers) are selected in this view.
false No annotations (rulers) are selected in this view.

13.42.56 [const] boolean has_image_selection?
Returns true, if images are selected in this view.

is method was introduced in version 0.19.

Return: true ere are selected images in this view.
false No selected images in this view.

370 Version 0.21 KLayout

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.57 [const] boolean has_object_selection?
Returns true, if geometrical objects (shapes or cell instances) are selected in
this view.

Return: true ere are selected geometrical objects in this view.
false No selected geometrical objects in this view.

13.42.58 [const] boolean has_transient_object_selection?
Returns true, if geometrical objects (shapes or cell instances) are selected in
this view in the transient selection.

e transient selection represents the objects selected when the mouse hovers over the layout windows.
is selection is not used for operations but rather to indicate which object would be selected if the mouse
is clicked.

is method was introduced in version 0.18.

Return: true ere are transient selected geometrical objects in this view.
false No transient selected geometrical objects in this view.

13.42.59 hide_cell(unsigned cell_index, cellview_index)
Hide the given cell for the given cell view.

Input: unsigned
cell_index

e cell index.

cellview_index e cell view index.

13.42.60 [const] init_layer_properties(ref LayerProperties props)
Fill the layer properties for a new layer.

is method initializes a layer properties object’s color and stipples according to the defaults for the given
layer source specification. e layer’s source must be set already on the layer properties object.

is method was introduced in version 0.19.

Input: props e layer properties object to initialize.

13.42.61 insert_annotation(Annotation obj)
Insert an annotation object into the given view.

Input: obj e annotation object to insert into this view.

13.42.62 insert_image(Image obj)
Insert an image object into the given view.

Input: obj e image object to insert into this view.

KLayout Version 0.21 371

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.63 [const] refLayerPropertiesNode insert_layer(LayerPropertiesIterator iter, Lay-
erPropertiesNode node)
Insert the given layer properties node into the list before the given position.

Input: node e new properties node to insert.
iter e position to insert before.

Return: [const] ref A constant reference to the element created.

13.42.64 [const] ref LayerPropertiesNode insert_layer(unsigned index, LayerProper-
tiesIterator iter, LayerPropertiesNode node)
Insert the given layer properties node into the list before the given position.

Input: unsigned index e index of a specific list in a multi-tab layer properties arrangement.
node e new properties node to insert.
iter e position to insert before.

Return: [const] ref A constant reference to the element created.

13.42.65 insert_layer_list(unsigned index)
Inserts a new layer properties list at the given index.

is method inserts a new tab at the given position. e current layer properties list will be changed to
the new list.

is method has been introduced in version 0.21.

Input: unsigned index e given position.

13.42.66 [const] boolean is_cell_hidden(unsigned cell_index, unsigned cellview_index
)
Tell, if the cell is hidden.

Input: unsigned
cell_index

e cell index.

cellview_index e cell view index.
Return: true e cell with given cell index is hidden in cell view with given cell view index.

false ⁇?.

13.42.67 load_layer_props(filename)
Load the layer properties.

Input: filename Load the layer properties from this file.

13.42.68 load_layer_props(filename, boolean)
Load the layer properties with options.

is variant has been added on version 0.21.

Input: filename Load the layer properties from this file.
true Use defaults for all other layers.
false Don’t use defaults for all other layers.

372 Version 0.21 KLayout

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.69 load_layer_props(filename, cellview_index, boolean)
Load the layer properties with options.

is variant has been added on version 0.21.

Input: filename Load the layer properties from this file.
cellview_index Load the layer properties for this specific cell view. All present definitions for

this layout will be removed before the properties file is loaded. Or
-1 load the layer properties for each layout individually.
true Use defaults for all other layers.
false Don’t use defaults for all other layers.

13.42.70 unsigned load_layout(filename, LoadLayoutOptions options, boolean)
Load a (new) file into the layout view.

is method has been introduced in version 0.18.

Input: filename Load the layout from this file.
options Use this options.
true Create a new cell view.
false Clear all cell views before load.

Return: unsigned e index of the cell view loaded.

13.42.71 unsigned load_layout(filename, boolean)
Load a (new) file into the layout view.

Input: filename Load the layout from this file.
true Create a new cell view.
false Clear all cell views before load.

Return: unsigned e index of the cell view loaded.

13.42.72 max_hier
Select all hierarchy levels available.

Show the layout in full depth down to the deepest level of hierarchy. is method may cause a redraw.

13.42.73 max_hier_levels=(level)
Set the maximum hierarchy level up to which to display geometries.

is methods allows to set the maximum hierarchy below which to display geometries.is method may
cause a redraw if required.

Input: level e maximum level below which to display something.

13.42.74 [const] level max_hier_levels?
ery the maximum hierarchy level up to which to display geometries.

Return: level e maximum level up to which to display geometries.

KLayout Version 0.21 373

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.75 min_hier_levels=(level)
Set the minimum hierarchy level at which to display geometries.

is methods allows to set the minimum hierarchy above which to display geometries.is method may
cause a redraw if required.

Input: level e minimum level above which to display something.

13.42.76 [const] level min_hier_levels?
ery the minimum hierarchy level at which to display geometries.

Return: level e minimum level at which to display geometries.

13.42.77 [const] unsigned num_rdbs
Get the number of report databases loaded into this view.

Return: unsigned e number of ReportDatabase objects present in this view.

13.42.78 pan_center(DPoint point)
Pan to the given point.

Input: point e window is positioned such this point becomes the new center.

13.42.79 pan_down
Pan downwards.

13.42.80 pan_le
Pan to the le.

13.42.81 pan_right
Pan to the right.

13.42.82 pan_up
Pan upwards.

13.42.83 ref ReportDatabase rdb(index)
Gets the report database with the given index.

Return: ref A reference to the report database object, or
Return: ReportDatabase e report database object, or

nil if the index is invalid.
Comment: Returns the reference to or the report database itself?

13.42.84 reload_layout(unsigned index)
Reload the given cellview.

Input: unsigned index e index of the cell view to reload.

374 Version 0.21 KLayout

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.85 remove_cell_visibility_observer(ref ObserverBase observer)
Remove a cell visibility observer.

13.42.86 remove_cellview_list_observer(ref ObserverBase observer)
Remove a cell view list observer.

13.42.87 remove_cellview_observer(ref ObserverBase observer)
Remove a cell view observer.

13.42.88 remove_file_open_observer(ref ObserverBase observer)
Remove a file open observer.

13.42.89 remove_layer_list_observer(ref ObserverBase observer)
Remove a layer list observer.

13.42.90 remove_rdb(unsigned index)
Remove a report database with the given index.

Input: unsigned index e index of the report database to remove from this view.

13.42.91 remove_rdb_list_changed_observer(ref ObserverBase observer)
Remove a observer for the list of report databases.

13.42.92 remove_selection_changed_observer(ref ObserverBase observer)
Remove a selection observer.

is method was added in version 0.18.

13.42.93 remove_stipple(unsigned index)
Remove the stipple pattern with the given index.

e paern with an index less than 16 cannot be removed. If a stipple paern is removed that is still used,
the results are not predictable.

13.42.94 remove_transient_selection_changed_observer(ref ObserverBase observer)
Remove a transient selection observer.

is method was added in version 0.18.

13.42.95 remove_unused_layers
Remove unused layers from layer list.

is method was added in version 0.19.

KLayout Version 0.21 375

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.96 remove_viewport_changed_observer(ref ObserverBase observer)
Remove a viewport changed observer.

13.42.97 rename_cellview(name, index)
Rename the cell view with the given index.

If the name is not unique, a unique name will be constructed from the name given. e name may be
different from the file name but is associated with the layout object. If a layout is shared between multiple
cell views (which may happen due to a clone of the layout view for example), both cell views are renamed.

Input: name e given name.
index e index of the cell view to rename.

13.42.98 rename_layer_list(unsigned index, name)
Sets the title of the given layer properties tab.

is method has been introduced in version 0.21.

Input: unsigned index e given layer properties tab.
name e title to set.

13.42.99 replace_image(unsigned id, ref Image new_obj
Replace an image object with the new image.

Replaces the image with the given Id with the new object. e Id can be obtained with the id method of
the image object.

is method has been introduced in version 0.20.

Input: unsigned id e id of the object to replace.
new_obj e new object to replace the old one.

13.42.100 replace_layer_node(LayerPropertiesIterator iter, LayerPropertiesNodenode
)
Replace the layer node at the position given by iter with a new one.

is version addresses a specific list in a multi-tab layer properties arrangement with the index parameter.

is method has been introduced in version 0.21.

Input: node e new properties node to insert.
iter e position to insert before.

13.42.101 replace_layer_node(unsigned index, LayerPropertiesIterator iter, LayerProp-
ertiesNode node)
Replace the layer node at the position given by iter with a new one.

is version addresses a specific list in a multi-tab layer properties arrangement with the index parameter.

is method has been introduced in version 0.21.

Input: unsigned index e index of a specific list in a multi-tab layer properties arrangement.
node e new properties node to insert.
iter e position to insert before.

376 Version 0.21 KLayout

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.102 reset_title
Reset the title to the standard title.

See set_title and title for a description about how titles are handled.

13.42.103 save_as(unsigned index, filename, boolean, SaveLayoutOptions options)
Save a layout to the given stream file.

e given layout (with the given index) is wrien to the stream file with the given options. options is a
SaveLayoutOptions object that specifies which format to write and further options such as scaling factor
etc. Calling this method is equivalent to calling “write” on the respective layout object.

Input: unsigned index e cell view index of the layout to save.
filename e file to write.
true Compress the file (gzip).
false No file compress.
options Writer options.

13.42.104 save_image(filename, unsigned width, unsigned height)
Save the layout as an image to the given file.

e image contains the current scene (layout, annotations etc.). e image is wrien as a PNG file to the
given file. e image is drawn synchronously with the given width and height. Drawing may take some
time.

Input: filename e file to which to write the image to.
unsigned width e width of the image to render in pixel.
unsigned height e height of the image to render in pixel.

13.42.105 save_layer_props(filename)
Save the layer properties.

Input: filename e file to which to write the layer properties.

13.42.106 save_screenshot(filename)
Save a screenshot to the given file.

e screen shot is wrien as a PNG file to the given file. is requires the drawing to be complete. Ideally,
synchronous mode is switched on for the application to guarantee this condition. e image will have the
size of the view port showing the current layout.

Input: filename e file to which to write the screen shot to.

13.42.107 select_cell(unsigned cell_index, unsigned cellview_index)
Select a cell by index for a certain cell view.

Select the current (top) cell by specifying a path (a list of cell indices from top to the actual cell) and the
cell view index for which this cell should become the currently shown one. is method selects the cell to
be drawn. In contrast, the set_current_cell_path method selects the cell that is highlighted in the cell tree
(but not necessarily drawn).

KLayout Version 0.21 377

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

Input: unsigned
cell_index

e cell index.

cellview_index e cell view index.

13.42.108 select_cell_path(unsigned cell_index[], unsigned cellview_index)
Select a cell by cell index for a certain cell view.

Select the current (top) cell by specifying a cell index and the cell view index for which this cell should
become the currently shown one. e path to the cell is constructed by selecting one that leads to a top
cell. is method selects the cell to be drawn. In contrast, the set_current_cell_path method selects the
cell that is highlighted in the cell tree (but not necessarily drawn).

Input: unsigned
cell_index

e cell index.

cellview_index e cell view index.

13.42.109 [const] LayerPropertiesIterator[] selected_layers
Get the selected layers.

Return: LayerPropertiesIterator An array of LayerPropertiesIterator objects pointing to the currently se-
lected layers. If no layer view is selected currently, an empty array is
returned.

13.42.110 set_active_cellview_index(index)
Make the cell view with the given index the active one (shown in hierarchy
browser).

See active_cellview_index.

Input: index e cell view index to become active.

13.42.111 set_config(name, value)
Set a local configuration parameter with the given name to the given value.

is method sets a local configuration parameter with the given name to the given value. Values can
only be strings. Numerical values have to be converted into strings first. Local configuration parameters
override global configurations for this specific view. is allows, for example, to override global seings
of background colors. Any local seings are not wrien to the configuration file.

Input: name e name of the configuration parameter to set.
value e value to which to set the configuration parameter.

13.42.112 set_current_cell_path(cellview_index, unsigned[])
Set the path to the current cell.

e current cell is the one highlighted in the browser with the focus rectangle. e cell given by the path
is highlighted and scrolled into view. To select the cell to be drawn, use the select_cell or select_cell_path
method.

Input: cellview_index e cellview index for which to set the current path for (usally this will be the
active cellview index).

path e path to the current cell.
Comment: path?

378 Version 0.21 KLayout

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.113 set_current_layer_list(unsigned index)
Sets the index of the currently selected layer properties tab.

is method has been introduced in version 0.21.

Input: unsigned index e index of the layer properties tab to become current.

13.42.114 set_layer_properties(LayerPropertiesIterator iter, LayerProperties props)
Set the layer properties of the layer pointed to by the iterator.

Input: iter Replace the layer properties of this element.
props e new properties. e hierarchy will not change but just the properties of

the given node.

13.42.115 set_layer_properties(unsigned index, LayerPropertiesIterator iter, Layer-
Properties props)
Set the layer properties of the layer pointed to by the iterator.

is method has been introduced in version 0.21.

Input: unsigned index A specific list in a multi-tab layer properties arrangement.
iter Replace the layer properties of this element.
props e new properties. e hierarchy will not change but just the properties of

the given node.

13.42.116 set_title(title)
Set the title of the view.

Override the standard title of the view indicating the file names loaded by the specified title string. e
title string can be reset with reset_title to the standard title again.

Input: title e new title string to use.

13.42.117 show_all_cells
Make all cells shown (cancel effects of hide_cell).

13.42.118 show_cell(unsigned cell_index, cellview_index)
Show the given cell for the given cellview (cancel effect of hide_cell).

Input: unsigned
cell_index

e index of the cell to show.

cellview_index e index of the cell view.

13.42.119 show_image(unsigned id, visible)
Shows or hides the given image.

Sets the visibility of the image with the given Id. e Id can be obtained with the id method of the image
object.

is method has been introduced in version 0.20.

Input: unsigned id e ID of the image.
Return: true Set to visible.

false Set to invisible.

KLayout Version 0.21 379

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.120 stop
Stop redraw thread and close any browsers.

is method usually does not need to be called explicitly. e redraw thread is stopped automatically.

13.42.121 stop_redraw
Stop the redraw thread.

It is very important to stop the redraw thread before applying changes to the layout or the cell views and
the LayoutView configuration. is is usually done automatically. For rare cases, where this is not the
case, this method is provided.

13.42.122 [const] string title
Return the view’s title string.

e title string is either a string composed of the file names loaded (in some “readable” manner) or a
customized title string set by set_title.

Return: string e title string.

13.42.123 boolean transacting
Tell if a transaction is ongoing.

See transaction for a detailed description of transactions.

is method was introduced in version 0.16.

Return: true Transaction is ongoing.
false Transaction is finished.

13.42.124 transaction(string)
Begin a transaction.

A transaction brackets a sequence of database modifications that appear as a single undo action. Only
modifications that are wrapped inside a transaction…commit call pair can be undone. Each transaction
must be terminated with a commit method call, even if some error occurred. It is advisable therefore to
catch errors and issue a commit call in this case.

is method was introduced in version 0.16.

Input: string A text that appears in the ..undo description.

13.42.125 update_content
Update the layout view to the current state.

is method triggers an update of the hierarchy tree and layer view tree. Usually, this method does not
need to be called. e widgets are updated automatically in most cases.

Currently, this method must be called however, aer the layer view tree has been changed by the insert_-
layer, replace_layer_node or delete_layer methods.

380 Version 0.21 KLayout

Chapter 13. RBA Reference 13.42. Class LayoutView (version 0.21)

13.42.126 [const] integer viewport_height
Return the view port height in pixels.

is method was introduced in version 0.18.

Return: integer e view port height in pixels.

13.42.127 [const] DCplxTrans viewport_trans
Return the transformation that converts micron coordinates to pixels.

Hint: e transformation returned will convert any point in micron coordinate
space into a pixel coordinate. Contrary to usual convention, the y pixel co-
ordinate is given in a mathematically oriented space - which means the bot-
tom coordinate is 0.

is method was introduced in version 0.18.

13.42.128 [const] integer viewport_width
Return the view port height in pixels.

is method was introduced in version 0.18.

Return: integer e view port width in pixels.

13.42.129 zoom_box(DBox box)
Set the viewport to the given box.

Input: box e box to which to set the view in micron coordinates.

13.42.130 zoom_fit
Fit the contents of the current view into the window.

13.42.131 zoom_in
Zoom in somewhat.

13.42.132 zoom_out
Zoom out somewhat.

KLayout Version 0.21 381

Chapter 13. RBA Reference 13.42. Class LoadLayoutOptions (version 0.21)

13.43 Class LoadLayoutOptions (version 0.21)
Layout reader options.

is object describes various layer reader options used for loading layouts.

is class has been introduced in version 0.18.

Method Overview

set_layer_map Set a layer map.
select_all_layers Select all layers.
layer_map Access to the layer map member.
is_creating_other_layers? Tell whether other layers should be created.
create_other_layers= Specifies whether other layers should be created.
is_text_enabled? Tell whether text objects should be read.
text_enabled= Specifies whether text objects should be read.
is_properties_enabled? Tell whether properties should be read.
properties_enabled= Specifies whether properties should be read.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.43.1 assign(LoadLayoutOptions other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.43.2 create_other_layers=(boolean)
Specifies whether other layers should be created.

Input: true Other layers should be created.
false No other layers should be created.

13.43.3 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.43.4 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.43.5 [const] LoadLayoutOptions dup
Creates a copy of self.

Return: LoadLayoutOptions e copy of self.

382 Version 0.21 KLayout

Chapter 13. RBA Reference 13.43. Class LoadLayoutOptions (version 0.21)

13.43.6 [const] boolean is_creating_other_layers?
Tell whether other layers should be created.

Input: true Other layers should be created.
false No other layers should be created.

13.43.7 is_properties_enabled?
Tell whether properties should be read.

Input: true Properties should be read.
false No properties should be read.

13.43.8 is_text_enabled?
Tell whether text objects should be read.

Input: true Text objects should be read.
false No text objects should be read.

13.43.9 ref LayerMap layer_map
Access to the layer map member.

Return: ref Reference to the layer map.

13.43.10 properties_enabled=
Specifies whether properties should be read..

Input: true Properties should be read.
false No properties should be read.

13.43.11 select_all_layers
Select all layers.

is disables any layer map and enables reading of all layers while new layers will be created when re-
quired.

13.43.12 set_layer_map(LayerMap map, boolean)
Set a layer map.

Input: map e layer map to be read.
true Other layers should be created and automatically assign layers to them.
false Only layers in the mapping table should be read.

13.43.13 text_enabled=(boolean)
Specifies whether text objects should be read.

Input: true Text objects should be read.
false No text objects should be read.

KLayout Version 0.21 383

Chapter 13. RBA Reference 13.43. Class MainWindow (version 0.21)

13.44 Class MainWindow (version 0.21)
e main application window and central controller object.

is object first is the main window but also the main controller. e main controller is the port by which
access can be gained to all the data objects, view and other aspects of the program.

Method Overview

menu Return a reference to the abstract menu.
message Display a message in the status bar.
resize Re-size the window.
grid_micron Get the global grid in micron.
create_layout Create a new, empty layout.
load_layout Load a new layout.
clone_current_view Clone the current view and make it current.
save_session Save the session to the given file.
restore_session Restore a session from the given file.
enable_edits Enable or disable edits.
synchronous= Put the main window into synchronous mode.
close_all Closes all views.
close_current_view Close the current view.
cancel Cancel current editing operations.
redraw Redraw the current view.
exit Schedule an exit for the application.
select_view Select the view with the given index.
current_view_index Return the current view’s index.
current_view Return a reference to the current view’s object.
views Return the number of views.
view Return a reference to a view object by index.
reader_options Access to the current reader options.
add_current_view_observer Add an observer for the “current view changed” event.
remove_current_view_observer Remove an observer for the change of the “current view changed”

event.
add_new_view_observer Add an observer for a “new view” event.
remove_new_view_observer Remove an observer for a “new view” event.
cm_… Various command action bound to a menu.

cm_undo “cm_undo” action.
cm_redo “cm_redo” action.
cm_delete “cm_delete” action.
cm_show-properties “cm_show_properties” action.
cm_copy “cm_copy” action.
cm_paste “cm_paste” action.
cm_cut “cm_cut” action.
cm_zoom_fit_sel “cm_zoom_fit_sel” action.
cm_zoom_fit “cm_zoom_fit” action.
cm_zoom_in “cm_zoom_in” action.
cm_zoom_out “cm_zoom_out” action.
cm_pan_up “cm_pan_up” action.
cm_pan_down “cm_pan_down” action.
cm_pan_le “cm_pan_le” action.
cm_pan_right “cm_pan_right” action.
cm_save_session “cm_save_session” action.
cm_restore_session “cm_restore_session” action.

384 Version 0.21 KLayout

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

cm_setup “cm_setup” action.
cm_save_as “cm_save_as” action.
cm_save “cm_save” action.
cm_reload “cm_reload” action.
cm_close “cm_close” action.
cm_clone “cm_clone” action.
cm_layout_props “cm_layout_props” action.
cm_inc_max_hier “cm_inc_max_hier” action.
cm_dec-max-hier “cm_dec_max_hier” action.
cm_max_hier “cm_max_hier” action.
cm_max_hier_0 “cm_max_hier_0” action.
cm_max_hier_1 “cm_max_hier_1” action.
cm_last_display_state “cm_last_display_state” action.
cm_next_display_state “cm_next_display_state” action.
cm_cancel “cm_cancel” action.
cm_redraw “cm_redraw” action.
cm_screenshot “cm_screenshot” action.
cm_save_layer_props “cm_save_layer_props” action.
cm_load_layer_prop “cm_load_layer_props” action.
cm_save_bookmarks “cm_save_bookmarks” action.
cm_load_bookmark “cm_load_bookmarks” action.
cm_select_cell “cm_select_cell” action.
cm_select_current_cell “cm_select_current_cell” action.
cm_exit “exit” action.
cm_view_log “cm_view_log” action.
cm_bookmark_view “cm_bookmark_view” action.
cm_manage_bookmarks “cm_manage_bookmarks” action.
cm_goto_position “cm_goto_position” action.
cm_help_about “cm_help_about” action.
cm_console “cm_console” action.
cm_open_too “cm_open_too” action.
cm_open_new_view “cm_open_new_view” action.
cm_open “cm_open” action.
cm_pull_in “cm_pull_in” action.
cm_reader_options “cm_reader_options” action.
cm_new_layout “cm_new_layout” action.
cm_new_panel “cm_new_panel” action.
cm_adjust_origin “cm_adjust_origin” action.
cm_new_cell “cm_new_cell” action.
cm_new_layer “cm_new_layer” action.
cm_clear_layer “cm_clear_layer” action.
cm_delete_layer “cm_delete_layer” action.
cm_edit_layer “cm_edit_layer” action.
cm_edit_boolean “cm_edit_boolean” action.
cm_edit_size “cm_edit_size” action.
cm_edit_merge “cm_edit_merge” action.
cm_sel_flip_x “cm_sel_flip_x” action.
cm_sel_flip_y “cm_sel_flip_y” action.
cm_sel_rot_cw “cm_sel_rot_cw” action.
cm_sel_rot_ccw “cm_sel_rot_ccw” action.
cm_sel_free_rot “cm_sel_free_rot” action.
cm_sel_scale “cm_sel_scale” action.
cm_sel_move “cm_sel_move” action.

KLayout Version 0.21 385

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

cm_lv_new_tab “cm_lv_new_tab” action.
cm_lv_remove_tab “cm_lv_remove_tab” action.
cm_lv_rename_tab “cm_lv_rename_tab” action.
cm_lv_hide “cm_lv_hide” action.
cm_lv_hide_all “cm_lv_hide_all” action.
cm_lv_show “cm_lv_show” action.
cm_lv_show_all “cm_lv_show_all” action.
cm_lv_show_only “cm_lv_show_only” action.
cm_lv_rename “cm_lv_rename” action.
cm_lv_select_all “cm_lv_select_all” action.
cm_lv_delete “cm_lv_delete” action.
cm_lv_insert “cm_lv_insert” action.
cm_lv_group “cm_lv_group” action.
cm_lv_ungroup “cm_lv_ungroup” action.
cm_lv_source “cm_lv_source” action.
cm_lv_sort_by_name “cm_lv_sort_by_name” action.
cm_lv_sort_by_ild “cm_lv_sort_by_ild” action.
cm_lv_sort_by_idl “cm_lv_sort_by_idl” action.
cm_lv_sort_by_ldi “cm_lv_sort_by_ldi” action.
cm_lv_sort_by_dli “cm_lv_sort_by_dli” action.
cm_lv_regroup_by_index “cm_lv_regroup_by_index” action.
cm_lv_regroup_by_datatype “cm_lv_regroup_by_datatype” action.
cm_lv_regroup_by_layer “cm_lv_regroup_by_layer” action.
cm_lv_regroup_flaen “cm_lv_regroup_flaen” action.
cm_lv_expand_all “cm_lv_expand_all” action.
cm_lv_add_missing “cm_lv_add_missing” action.
cm_lv_remove_unused “cm_lv_remove_unused” action.
cm_cell_delete “cm_cell_delete” action.
cm_cell_rename “cm_cell_rename” action.
cm_cell_copy “cm_cell_copy” action.
cm_cell_cut “cm_cell_cut” action.
cm_cell_paste “cm_cell_paste” action.
cm_cell_select “cm_cell_select” action.
cm_open_current_cell “cm_open_current_cell” action.
cm_save_current_cell_as “cm_save_current_cell_as” action.
cm_cell_hide “cm_cell_hide” action.
cm_cell_flaen “cm_cell_flaen” action.
cm_cell_show “cm_cell_show” action.
cm_cell_show_all “cm_cell_show_all” action.
cm_navigator_close “cm_navigator_close” action.
cm_navigator_freeze “cm_navigator_freeze” action.

destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.44.1 add_current_view_observer(ref ObserverBase observer)
Add an observer for the “current view changed” event.

If the current view changes, this observer is triggered. e integer slot of the observer will receive the
number of the view active before. e current view’s reference is already updated when this event is
issued.

386 Version 0.21 KLayout

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.2 add_new_view_observer(ref ObserverBase observer)
Add an observer for a “new view” event.

If a new view is created, this observer will receive a signal. e integer slot of this observer will receive
the index of the newly created view.

13.44.3 cancel
Cancel current editing operations.

is method call cancels all current editing operations and restores normal mouse mode.

13.44.4 clone_current_view
Clone the current view and make it current.

13.44.5 close_all
Closes all views.

is method unconditionally closes all views. No dialog will be opened if unsaved edits exist.

is method was added in version 0.18.

13.44.6 close_current_view
Close the current view.

is method does not open a dialog to query which cell view to close if multiple cells are opened in the
view but rather closes all cells.

13.44.7 cm_…
Various command action bound to a menu.

13.44.7.1 cm_adjust_origin – “cm_adjust_origin” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.2 cm_bookmark_view – “cm_bookmark_view” action (bound to a menu).

13.44.7.3 cm_cancel – “cm_cancel” action (bound to a menu).

13.44.7.4 cm_cell_copy – “cm_cell_copy” action (bound to a menu).

is method has been added in version 0.20.

13.44.7.5 cm_cell_cut – “cm_cell_cut” action (bound to a menu).

is method has been added in version 0.20.

13.44.7.6 cm_cell_delete – “cm_cell_delete” action (bound to a menu).

is method has been added in version 0.18.

KLayout Version 0.21 387

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.7.7 cm_cell_flaen – “cm_cell_flatten” action (bound to a menu).

13.44.7.8 cm_cell_hide – “cm_cell_hide” action (bound to a menu).

13.44.7.9 cm_cell_paste – “cm_cell_paste” action (bound to a menu).

is method has been added in version 0.20.

13.44.7.10 cm_cell_rename – “cm_cell_rename” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.11 cm_cell_select – “cm_cell_select” action (bound to a menu).

13.44.7.12 cm_cell_show – “cm_cell_show” action (bound to a menu).

13.44.7.13 cm_cell_show_all – “cm_cell_show_all” action (bound to a menu).

13.44.7.14 cm_clear_layer – “cm_clear_layer” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.15 cm_clone – “cm_clone” action (bound to a menu).

13.44.7.16 cm_close – “cm_close” action (bound to a menu).

13.44.7.17 cm_console – “cm_console” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.18 cm_copy – “cm_copy” action (bound to a menu).

13.44.7.19 cm_cut – “cm_cut” action (bound to a menu).

13.44.7.20 cm_dec-max-hier – “cm_dec_max_hier” action (bound to a menu).

13.44.7.21 cm_delete – “cm_delete” action (bound to a menu).

13.44.7.22 cm_delete_layer – “cm_delete_layer” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.23 cm_edit_boolean – “cm_edit_boolean” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.24 cm_edit_layer – “cm_edit_layer” action (bound to a menu).

is method has been added in version 0.18.

388 Version 0.21 KLayout

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.7.25 cm_edit_merge – “cm_edit_merge” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.26 cm_edit_size – “cm_edit_size” action (bound to a menu).

is method has been added in version 0.18.

KLayout Version 0.21 389

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

390 Version 0.21 KLayout

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.7.27 cm_exit – “cm_exit” action (bound to a menu).

13.44.7.28 cm_goto_position – “cm_goto_position” action (bound to a menu).

13.44.7.29 cm_help_about – “cm_help_about” action (bound to a menu).

13.44.7.30 cm_inc_max_hier – “cm_inc_max_hier” action (bound to a menu).

13.44.7.31 cm_last_display_state – “cm_last_display_state” action (bound to a menu).

13.44.7.32 cm_layout_props – “cm_layout_props” action (bound to a menu).

13.44.7.33 cm_load_bookmark – “cm_load_bookmarks” action (bound to a menu).

13.44.7.34 cm_load_layer_prop – “cm_load_layer_props” action (bound to a menu).

13.44.7.35 cm_lv_add_missing – “cm_lv_add_missing” action (bound to a menu).

13.44.7.36 cm_lv_delete – “cm_lv_delete” action (bound to a menu).

13.44.7.37 cm_lv_expand_all – “cm_lv_expand_all” action (bound to a menu).

13.44.7.38 cm_lv_group – “cm_lv_group” action (bound to a menu).

13.44.7.39 cm_lv_hide – “cm_lv_hide” action (bound to a menu).

13.44.7.40 cm_lv_hide_all – “cm_lv_hide_all” action (bound to a menu).

13.44.7.41 cm_lv_insert – “cm_lv_insert” action (bound to a menu).

13.44.7.42 cm_lv_new_tab – “cm_lv_new_tab” action (bound to a menu).

13.44.7.43 cm_lv_regroup_by_datatype – “cm_lv_regroup_by_datatype” action (bound to amenu).

13.44.7.44 cm_lv_regroup_by_index – “cm_lv_regroup_by_index” action (bound to a menu).

13.44.7.45 cm_lv_regroup_by_layer – “cm_lv_regroup_by_layer” action (bound to a menu).

13.44.7.46 cm_lv_regroup_flaen – “cm_lv_regroup_flatten” action (bound to a menu).

13.44.7.47 cm_lv_remove_tab – “cm_lv_remove_tab” action (bound to a menu).

13.44.7.48 cm_lv_remove_unused – “cm_lv_remove_unused” action (bound to a menu).

13.44.7.49 cm_lv_rename – “cm_lv_rename” action (bound to a menu).

13.44.7.50 cm_lv_rename_tab – “cm_lv_rename_tab” action (bound to a menu).

13.44.7.51 cm_lv_select_all – “cm_lv_select_all” action (bound to a menu).

13.44.7.52 cm_lv_show – “cm_lv_show” action (bound to a menu).

13.44.7.53 cm_lv_show_all – “cm_lv_show_all” action (bound to a menu).

13.44.7.54 cm_lv_show_only – “cm_lv_show_only” action (bound to a menu).

is method has been added in version 0.20.
KLayout Version 0.21 391

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.7.55 cm_lv_sort_by_dli – “cm_lv_sort_by_dli” action (bound to a menu).

13.44.7.56 cm_lv_sort_by_idl – “cm_lv_sort_by_idl” action (bound to a menu).

13.44.7.57 cm_lv_sort_by_ild – “cm_lv_sort_by_ild” action (bound to a menu).

13.44.7.58 cm_lv_sort_by_ldi – “cm_lv_sort_by_ldi” action (bound to a menu).

13.44.7.59 cm_lv_sort_by_name – “cm_lv_sort_by_name” action (bound to a menu).

13.44.7.60 cm_lv_source – “cm_lv_source” action (bound to a menu).

13.44.7.61 cm_lv_ungroup – “cm_lv_ungroup” action (bound to a menu).

13.44.7.62 cm_manage_bookmarks – “cm_manage_bookmarks” action (bound to a menu).

13.44.7.63 cm_max_hier – “cm_max_hier” action (bound to a menu).

13.44.7.64 cm_max_hier_0 – “cm_max_hier_0” action (bound to a menu).

13.44.7.65 cm_max_hier_1 – “cm_max_hier_1” action (bound to a menu).

13.44.7.66 cm_navigator_close – “cm_navigator_close” action (bound to a menu).

13.44.7.67 cm_navigator_freeze – “cm_navigator_freeze” action (bound to a menu).

13.44.7.68 cm_new_cell – “cm_new_cell” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.69 cm_new_layer – “cm_new_layer” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.70 cm_new_layout – cm_new_layout” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.71 cm_new_panel – “cm_new_panel” action (bound to a menu).

is method has been added in version 0.20.

13.44.7.72 cm_next_display_state – “cm_next_display_state” action (bound to a menu).

13.44.7.73 cm_open – “cm_open” action (bound to a menu).

13.44.7.74 cm_open_current_cell – “cm_open_current_cell” action (bound to a menu).

is method has been added in version 0.18.

392 Version 0.21 KLayout

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.7.75 cm_open_new_view – “cm_open_new_view” action (bound to a menu).

13.44.7.76 cm_open_too – “cm_open_too” action (bound to a menu).

13.44.7.77 cm_pan_down – “cm_pan_down” action (bound to a menu).

13.44.7.78 cm_pan_le – “cm_pan_le” action (bound to a menu).

13.44.7.79 cm_pan_right – “cm_pan_right” action (bound to a menu).

13.44.7.80 cm_pan_up – “cm_pan_up” action (bound to a menu).

13.44.7.81 cm_paste – “cm_paste” action (bound to a menu).

13.44.7.82 cm_pull_in – “cm_pull_in” action (bound to a menu).

is method has been added in version 0.20.

13.44.7.83 cm_reader_options – “cm_reader_options” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.84 cm_redo – “cm_redraw” action (bound to a menu).

13.44.7.85 cm_redraw – “cm_redraw” action (bound to a menu).

13.44.7.86 cm_reload – “cm_reload” action (bound to a menu).

13.44.7.87 cm_restore_session – “cm_restore_session” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.88 cm_save – “cm_save” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.89 cm_save_as – “cm_save_as” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.90 cm_save_bookmarks – “cm_save_bookmarks” action (bound to a menu).

13.44.7.91 cm_save_current_cell_as – “cm_save_current_cell_as” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.92 cm_save_layer_props – “cm_save_layer_props” action (bound to a menu).

13.44.7.93 cm_save_session – “cm_save_session” action (bound to a menu).

is method has been added in version 0.18.

KLayout Version 0.21 393

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.7.94 cm_screenshot – “cm_screenshot” action (bound to a menu).

13.44.7.95 cm_sel_flip_x – “cm_sel_flip_x” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.96 cm_sel_flip_y – “cm_sel_flip_y” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.97 cm_sel_free_rot – “cm_sel_free_rot” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.98 cm_sel_move – “cm_sel_move” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.99 cm_sel_rot_ccw – “cm_sel_rot_ccw” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.100 cm_sel_rot_cw – “cm_sel_rot_cw” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.101 cm_sel_scale – “cm_sel_scale” action (bound to a menu).

is method has been added in version 0.18.

13.44.7.102 cm_select_cell – “cm_select_cell” action (bound to a menu).

13.44.7.103 cm_select_current_cell – “cm_select_current_cell” action (bound to a menu).

13.44.7.104 cm_setup – “cm_setup” action (bound to a menu).

13.44.7.105 cm_show-properties – “cm_show_properties” action (bound to a menu).

13.44.7.106 cm_undo – “cm_undo” action (bound to a menu).

13.44.7.107 cm_view_log – “cm_view_log” action (bound to a menu).

is method has been added in version 0.20.

13.44.7.108 cm_zoom_fit – “cm_zoom_fit” action (bound to a menu).

13.44.7.109 cm_zoom_fit_sel – “cm_zoom_fit_sel” action (bound to a menu).

is method has been added in version 0.18.

394 Version 0.21 KLayout

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.7.110 cm_zoom_in – “cm_zoom_in” action (bound to a menu).

13.44.7.111 cm_zoom_out – “cm_zoom_out” action (bound to a menu).

13.44.8 [const] ref CellView create_layout(integer)
Create a new, empty layout.

Input: 0 Create a new layout in the current view, replacing the current layouts. Or
1 Create a new layout in a new view and make this view the current one. Or
2 Create a new layout adding it to the current view.

Return: ref A reference to a CellView object in which the layout was created.

13.44.9 ref LayoutView current_view
Return a reference to the current view’s object.

Return: ref A reference to the LayoutView object representing the current view.

13.44.10 [const] integer current_view_index
Return the current view’s index.

Return: integer e index of the current view.

13.44.11 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.44.12 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.44.13 enable_edits(boolean)
Enable or disable edits.

is method allows to put the application into read-only mode by disabling all edit functions. For doing
so, this method has be called with a ’false” argument. Calling it with a ’true” parameter enables all edits
again.

Input: true Enable edits, set the application into edit mode.
false Disable edits, set the application into read-only mode.

13.44.14 exit
Schedule an exit for the application.

is method does not immediately exit the application but sends an exit request to the application which
will cause a clean shutdown of the GUI.

KLayout Version 0.21 395

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.15 [const] double grid_micron
Get the global grid in micron.

e global grid is used at various places, i.e. for ruler snapping, for grid display etc. With this method it
can be set to the desired value.

Return: double e global grid in micron.

13.44.16 [const] ref CellView load_layout(filename, integer)
Load a new layout.

Input: filename e file name to read.
0 Loads the given file in the current view, replacing the current layouts. Or
1 Loads the given file in a new view and make this view the current one. Or
2 Loads the given file adding it to the current view.

Return: ref A reference to a CellView object into which the layout was loaded.

13.44.17 ref AbstractMenu menu
Return a reference to the abstract menu.

Return: ref A reference to an AbstractMenu object representing the menu system.

13.44.18 message(message, time)
Display a message in the status bar.

is given message is shown in the status bar for the given time.

is method has been added in version 0.18.

Input: message e message to display.
time e time how long to display the message in milliseconds.

13.44.19 ref LoadLayoutOptions reader_options
Access to the current reader options.

Modifying the current reader options will have an effect on the next load_layout operation but might
not be reflected correctly in the reader options dialog and changes will be reset when the application is
restarted.

is method was added in version 0.18.

Return: ref A reference to a LoadLayoutOptions object representing the current reader op-
tions.

13.44.20 redraw
Redraw the current view.

Issues a redraw request to the current view. is usually happens automatically, so this method does not
need to be called in most relevant cases.

396 Version 0.21 KLayout

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.21 remove_current_view_observer(ref ObserverBase observer)
Remove an observer for the change of the “current view changed” event.

13.44.22 remove_new_view_observer(ref ObserverBase observer)
Remove an observer for a “new view” event.

13.44.23 resize(width, height)
Re-size the window.

ismethod re-sizes the window to the given target size including decoration such asmenu bar and control
panels

Input: width e new width of the window.
height e new width of the window.

13.44.24 restore_session(filename)
Restore a session from the given file.

e session stored in the given session file is restored. All existing views are closed and all layout edits
are discarded without notification.

is method was added in version 0.18.

Input: filename e path and file name of the session file to restore from.

13.44.25 save_session(filename)
Save the session to the given file.

e session is saved to the given session file. Any existing layout edits are not automatically saved together
with the session. e session just holds display seings and annotation objects. If layout edits must be
saved, this has to be done explicitly in a separate step.

is method was added in version 0.18.

Input: filename e path and file name of the session file to save into.

13.44.26 select_view(integer)
Select the view with the given index.

is method will make the view with the given index the current (front) view.

Input: integer e index of the view to select (0 is the first one).

13.44.27 synchronous=(boolean)
Put the main window into synchronous mode.

A synonym for: synchroneous(boolean).

In synchronous mode, an application is allowed to block on redraw. While redrawing, no user interactions
are possible. Although this is not desirable for smooth operation, it can be beneficial for test or automation
purposes, i.e. if a screen shot needs to be produced once the application has finished drawing.

Input: true e application should behave synchronously.
false e application should behave asynchronously.

KLayout Version 0.21 397

Chapter 13. RBA Reference 13.44. Class MainWindow (version 0.21)

13.44.28 ref LayoutView view(index)
Return a reference to a view object by index.

Return: ref A reference to a LayoutView object representing the view with the given index.

13.44.29 [const] unsigned views
Return the number of views.

Return: unsigned e number of views available so far.

398 Version 0.21 KLayout

Chapter 13. RBA Reference 13.44. Class Manager (version 0.21)

13.45 Class Manager (version 0.21)
A transaction manager class.

Manager objects control layout and potentially other objects in the layout database and allow to queue
operations to form transactions. A transaction is a sequence of operations that can be undone or redone.

In order to equip a layout object with undo/redo support, instantiate the layout object with a manager
aached and embrace the operations to undo/redo with transaction/commit calls.

e use of transactions is subject to certain constraints, i.e. transacted sequences may not be mixed with
non-transacted ones.

is class has been introduced in version 0.19.

Method Overview

transaction Begin a transaction.
commit Close a transaction.
undo Undo the current transaction.
redo Redo the next available transaction.
has_undo? Determine if a transaction is available for “undo”.
transaction_for_undo Return the description of the next transaction for “undo”.
has_redo? Determine if a transaction is available for “redo”.
transaction_for_redo Return the description of the next transaction for “redo”.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.45.1 commit
Close a transaction.

13.45.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.45.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.45.4 [const] boolean has_redo?
Determine if a transaction is available for “redo”.

Return: true A transaction is available.
false No transaction is available.

KLayout Version 0.21 399

Chapter 13. RBA Reference 13.45. Class Manager (version 0.21)

13.45.5 has_undo?
Determine if a transaction is available for “undo”.

Return: true A transaction is available.
false No transaction is available.

13.45.6 redo
Redo the next available transaction.

e next transaction is redone with this method. e has_redo? method can be used to determine whether
there are transactions to undo.

13.45.7 transaction(description)
Begin a transaction.

is call will open a new transaction. A transaction consists of a set of operations issued with the “queue”
method. A transaction is closed with the commit method.

Input: description e description for this transaction.
Comment: Which “queue” method?

13.45.8 [const] description transaction_for_redo
Return the description of the next transaction for “redo”.

Return: description e description of the next transaction for “redo”.

13.45.9 [const] description transaction_for_undo
Return the description of the next transaction for “undo”.

Return: description e description of the next transaction for “undo”.

13.45.10 undo
Undo the current transaction.

e current transaction is undone with this method. e has_undo? method can be used to determine
whether there are transactions to undo.

400 Version 0.21 KLayout

Chapter 13. RBA Reference 13.45. Class Marker (version 0.21)

13.46 Class Marker (version 0.21)
e floating-point coordinate marker object.

e marker is a visual object that “marks” (highlights) a certain area of the layout, given by a database
object. is object accepts database objects with floating-point coordinates in micron values.

Method Overview

new e constructor for a marker.
set Set the box the marker is to display.
set Set the text the marker is to display.
set Set the edge the marker is to display.
set Set the path the marker is to display.
set Set the polygon the marker is to display.
color= Set the color of the marker.
reset_color Reset the color of the marker.
color Get the color of the marker.
has_color? True, if the marker has a specific color.
frame_color= Set the frame color of the marker.
reset_frame_color Reset the frame color of the marker.
frame_color Get the frame color of the marker.
has_frame_color? True, if the marker has a specific frame color.
line_width= Set the line width of the marker.
line_width Get the line width of the marker.
vertex_size= Set the vertex size of the marker.
vertex_size Get the vertex size of the marker.
halo= Set the halo flag.
halo Get the halo flag.
dither_paern= Set the stipple paern index.
dither_paern Get the stipple paern index.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.46.1 [const] unsigned color
Get the color of the marker.

is value is valid only if has_color? is true.

Return: unsigned e color of the marker.

13.46.2 color=(unsigned)
Set the color of the marker.

e color is a 32 bit unsigned integer encoding the RGB values in the lower 3 bytes (blue in the lowest
significant byte). e color can be reset with reset_color, in which case, the default foreground color is
used.

Input: unsigned e color of the marker.

KLayout Version 0.21 401

Chapter 13. RBA Reference 13.46. Class Marker (version 0.21)

13.46.3 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.46.4 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.46.5 [const] index dither_paern
Get the stipple pattern index.

See dither_paern= for a description of the stipple paern index.

Return: index e stipple paern index.

13.46.6 dither_paern=(index)
Set the stipple pattern index.

A value of -1 or less than zero indicates that the marker is not filled. Otherwise, the value indicates which
paern to use for filling the marker.

Input: index e stipple paern index.

13.46.7 [const] unsigned frame_color
Get the frame color of the marker.

is value is valid only if has_frame_color? is true.

e set method has been added in version 0.20.

Return: unsigned e frame color of the marker.

13.46.8 frame_color=(unsigned)
Set the frame color of the marker.

e color is a 32 bit unsigned integer encoding the RGB values in the lower 3 bytes (blue in the lowest
significant byte). e color can be reset with reset_frame_color, in which case the fill color is used.

e set method has been added in version 0.20.

Input: unsigned e frame color of the marker.

13.46.9 [const] integer halo
Get the halo flag.

See halo= for a description of the halo flag.

Return: integer e halo flag.

402 Version 0.21 KLayout

Chapter 13. RBA Reference 13.46. Class Marker (version 0.21)

13.46.10 halo=(integer)
Set the halo flag.

Input: -1 Take the default.
0 Disable the halo.
1 Enable the halo: a pixel border with the background color is drawn around the

marker, the vertices and texts.

13.46.11 [const] boolean has_color?
True, if the marker has a specific color.

Return: true e marker has a specific color.
false e marker has no specific color.

13.46.12 [const] boolean has_frame_color?
True, if the marker has a specific frame color.

e set method has been added in version 0.20.

Return: true e marker has a specific frame color.
false e marker has no specific frame color.

13.46.13 [const] integer line_width
Get the line width of the marker.

See line_width= for a description of the line width.

Return: integer e line width of the marker.

13.46.14 line_width=(integer)
Set the line width of the marker.

is is the width of the line drawn for the outline of the marker.

Input: integer e line width of the marker.

13.46.15 [const] Marker new(ref LayoutView view)
e constructor for a marker.

A marker is always associated with a view, in which it is shown. e view this marker is associated with
must be passed to the constructor.

Input: ref A reference to the view the marker is associated with.
Return: Marker e marker object.

13.46.16 reset_color
Reset the color of the marker.

See color= for a description of the color property of the marker.

KLayout Version 0.21 403

Chapter 13. RBA Reference 13.46. Class Marker (version 0.21)

13.46.17 reset_frame_color
Reset the frame color of the marker.

See frame_color= for a description of the frame color property of the marker.

e set method has been added in version 0.20.

13.46.18 set(DPolygon polygon)
Set the polygon the marker is to display.

A synonym for: set_polygon(DPolygon polygon).

e set method has been added in version 0.20.

Input: polygon Makes the marker show a polygon which must be given in micron units.

13.46.19 set(DPath path)
Set the path the marker is to display.

A synonym for: set_path(DPath path).

e set method has been added in version 0.20.

Input: path Makes the marker show a path which must be given in micron units.

13.46.20 set(DBox box)
Set the box the marker is to display.

A synonym for: set_box(DBox box).

e set method has been added in version 0.20.

Input: box Makes the marker show a box which must be given in micron units. In case the
box is empty, no marker is drawn.

13.46.21 set(DEdge edge)
Set the edge the marker is to display.

A synonym for: set_edge(DEdge edge).

e set method has been added in version 0.20.

Input: edge Makes the marker show an edge which must be given in micron units.

13.46.22 set(DText text)
Set the text the marker is to display.

A synonym for: set_text(DText text).

e set method has been added in version 0.20.

Input: text Makes the marker show a text which must be given in micron units.

13.46.23 vertex_size
Get the vertex size of the marker.

See vertex_size= for a description.

404 Version 0.21 KLayout

Chapter 13. RBA Reference 13.46. Class Marker (version 0.21)

13.46.24 vertex_size=(integer)
Set the vertex size of the marker.

Input: integer e size of the rectangles drawn for the vertices object.

KLayout Version 0.21 405

Chapter 13. RBA Reference 13.46. Class MessageBox (version 0.21)

13.47 Class MessageBox (version 0.21)
Various methods to display message boxes.

Method Overview

b_… Various “b_…” constant describing the respective buon label.
b_ok “b_ok” constant describing the respective buon label.
b_cancel “b_cancel” constant describing the respective buon label.
b_yes “b_yes” constant describing the respective buon label.
b_no “b_no” constant describing the respective buon label.
b_abort “b_abort” constant describing the respective buon label.
b_retry “b_retry” constant describing the respective buon label.
b_ignore “b_ignore” constant describing the respective buon label.

warning Open a warning message box.
question Open a question message box.
info Open a information message box.
critical Open a critical (error) message box.
assign Assign the contents of another object to self.
dup Creates a copy of self..
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.47.1 assign(MessageBox other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.47.2 [static] integer b_…
Various “b_…” constant describing the respective button label.

13.47.2.1 [static] integer b_abort – “b_abort” constant describing the respective button label.

Return: integer e “b_abort” constant.

13.47.2.2 [static] integer b_cancel – “b_cancel” constant describing the respective button label.

Return: integer e “b_cancel” constant.

13.47.2.3 [static] integer b_ignore – “b_ignore” constant describing the respective button label.

Return: integer e “b_ignore” constant.

13.47.2.4 [static] integer b_no – “b_no” constant describing the respective button label.

Return: integer e “b_no” constant.

13.47.2.5 [static] integer b_ok – “b_ok ”constant describing the respective button label.

Return: integer e “b_ok” constant.

406 Version 0.21 KLayout

Chapter 13. RBA Reference 13.47. Class MessageBox (version 0.21)

13.47.2.6 [static] integer b_retry – “b_retry” constant describing the respective button label.

Return: integer e “b_retry” constant.

13.47.2.7 [static] integer b_yes – “b_yes” constant describing the respective button label.

Return: integer e “b_yes” constant.

13.47.3 [static] integer critical(title, text, buttons)
Open a critical (error) message box.

Input: title e title of the window.
text e text to show.
buons A combination (+) of “b_…” constants describing the buons to show for the

message box.
Return: integer e “b_…” constant describing the buon that was pressed.

13.47.4 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.47.5 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.47.6 [const] MessageBox dup
Creates a copy of self.

Return: MessageBox e copy of self.

13.47.7 [static] integer info(title, text, buttons)
Open an information message box.

Input: title e title of the window.
text e text to show.
buons A combination (+) of “b_…” constants describing the buons to show for the

message box.
Return: integer e “b_…” constant describing the buon that was pressed.

KLayout Version 0.21 407

Chapter 13. RBA Reference 13.47. Class MessageBox (version 0.21)

13.47.8 [static] integer question(title, text, buttons)
Open a question message box.

Input: title e title of the window.
text e text to show.
buons A combination (+) of “b_…” constants describing the buons to show for the

message box.
Return: integer e “b_…” constant describing the buon that was pressed.

13.47.9 [static] integer warning(title, text, buttons)
Open a warning message box.

Input: title e title of the window.
text e text to show.
buons A combination (+) of “b_…” constants describing the buons to show for the

message box.
Return: integer e “b_…” constant describing the buon that was pressed.

408 Version 0.21 KLayout

Chapter 13. RBA Reference 13.47. Class Method (version 0.21)

13.48 Class Method (version 0.21)
e interface to a method declaration.

Method Overview

each_argument Iterate over all arguments of this method.
ret_type e return type of this method.
is_const? True, if this method does not alter the object.
is_static? True, if this method is static (a class method).
is_event? True, if this method is an event.
name e name of the class.
doc e documentation string for this method.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.48.1 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.48.2 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.48.3 [const] string doc
e documentation string for this method.

Return: string e documentation string for this method.

13.48.4 [const] yield const ref ArgType each_argument
Iterate over all arguments of this method.

13.48.5 [const] boolean is_const?
True, if this method does not alter the object.

Return: true is method does not alter the object.
false is method alters the object.

13.48.6 [const] boolean is_event?
True, if this method is an event.

Return: true is method is an event.
false is method is not an event.

KLayout Version 0.21 409

Chapter 13. RBA Reference 13.48. Class Method (version 0.21)

13.48.7 is_static?
True, if this method is static (a class method).

Return: true is method is static (a class method).
false is method is not static.

13.48.8 [const] string name
e name of the class.

Return: string e name of the class.

13.48.9 [const] const ref ArgType ret_type
e return type of this method.

410 Version 0.21 KLayout

Chapter 13. RBA Reference 13.48. Class ObjectInstPath (version 0.21)

13.49 Class ObjectInstPath (version 0.21)
A class describing a selected shape or instance.

A shape or instance is addressed by a path which describes all instances leading to the specified object.
ese instances are described through InstElement objects, which describe the instance and, in case of
array instances, the specific array member. For shapes, additionally the layer and the shape itself is speci-
fied. eObjectInstPath objects encapsulates both forms, which can be distinguished with the is_cell_inst?
aribute.

Method Overview

cv_index Accessor to the cell view index that describes which cell view the shape or
instance is located in.

cell_index Accessor to the cell index of the cell that the selection applies to..
source Returns to the cell index of the cell that the selected element resides inside..
trans Accessor to the transformation applicable for the shape.
source_trans Accessor to the transformation applicable for an instance and shape..
layer Accessor to the layer index that describes which layer the selected shape is on.
shape Accessor to the shape object that describes the selected shape geometrically.
inst Deliver the instance represented by this selection.
is_cell_inst? True, if this selection represents a cell instance.
seq e sequence number.
path_length Returns the length of the path (number of elements delivered by each_inst).
path_nth Returns the nᵗʰ element of the path (similar to each_inst but with direct access

through the index).
each_inst Yield the instantiation path.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.49.1 assign(ObjectInstPath other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.49.2 [const] unsigned cell_index
Accessor to the cell index of the cell that the selection applies to.

is method returns the cell index that describes which cell the selected shape is located in or the cell
whose instance is selected if is_cell_inst? is true.

KLayout Version 0.21 411

Chapter 13. RBA Reference 13.49. Class ObjectInstPath (version 0.21)

13.49.3 [const] unsigned cv_index
Accessor to the cell view index that describes which cell view the shape or in-
stance is located in.

13.49.4 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.49.5 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.49.6 [const] ObjectInstPath dup
Creates a copy of self.

Return: ObjectInstPath e copy of self.

13.49.7 [const] yield const ref InstElement each_inst
Yield the instantiation path.

e instantiation path describes by a sequence of InstElement objects the path by which the cell containing
the selected shape is found from the cell view’s current cell. If this object represents an instance, the path
will contain the selected instance as the last element. e elements are delivered top down.

13.49.8 [const] const ref Instance inst
Deliver the instance represented by this selection.

is method delivers valid results only if is_cell_inst? is true. It returns the instance reference (an Instance
object) that this selection represents.

is method has been added in version 0.16.

13.49.9 [const] boolean is_cell_inst?
True, if this selection represents a cell instance.

If this aribute is true, the shape reference and layer are not valid.

13.49.10 [const] unsigned layer
Accessor to the layer index that describes which layer the selected shape is
on.

ismethod delivers valid results only for object selections that represent shapes, i.e for which is_cell_inst?
is false.

412 Version 0.21 KLayout

Chapter 13. RBA Reference 13.49. Class ObjectInstPath (version 0.21)

13.49.11 [const] unsigned path_length
Returns the length of the path (number of elements delivered by each_inst).

is method has been added in version 0.16.

13.49.12 [const] const ref InstElement path_nth(unsigned n)
Returns the ntʰ element of the path (similar to each_inst butwith direct access
through the index).

is method has been added in version 0.16.

Input: unsigned n e index of the element to retrieve (0…path_length-1).

13.49.13 [const] unsigned long seq
e sequence number.

e sequence number describes when the item was selected. A sequence number of 0 indicates that the
item was selected in the first selection action (without ’Shi’ pressed).

13.49.14 [const] const ref Shape shape
Accessor to the shape object that describes the selected shape geometrically.

ismethod delivers valid results only for object selections that represent shapes, i.e for which is_cell_inst?
is false.

13.49.15 [const] unsigned source
Returns the cell index of the cell that the selected element resides inside.

If this reference represents a cell instance, this method delivers the index of the cell in which the cell
instance resides. Otherwise, this method returns the same value than cell_index.

is method has been added in version 0.16.

13.49.16 [const] CplxTrans source_trans
Accessor to the transformation applicable for an instance and shape.

If this object represents a shape, this transformation describes how the selected shape is transformed into
the current cell of the cell view. If this object represents an instance, this transformation describes how the
selected instance is transformed into the current cell of the cell view. is method is similar to trans, except
that the resulting transformation does not include the instance transformation if the object represents an
instance.

is method has been added in version 0.16.

13.49.17 [const] CplxTrans trans
Accessor to the transformation applicable for the shape.

If this object represents a shape, this transformation describes how the selected shape is transformed into
the current cell of the cell view. Basically, this transformation is the accumulated transformation over the
instantiation path. If the ObjectInstPath represents a cell instance, this includes the transformation of the
selected instance as well.

KLayout Version 0.21 413

Chapter 13. RBA Reference 13.49. Class Observer (version 0.21)

13.50 Class Observer (version 0.21)
is class implements an event handler for use with “observer”
interfaces.

Some classes provide callbacks by aaching ’observer’ objects to certain events. Specific actions can be
implemented by reimplementing the “signal…” methods of this class.

Method Overview

signal is method is called when the event without value is issued.
signal_int is method is called when an event associated with an integer is issued.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.50.1 assign(Observer other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.50.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.50.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.50.4 [const] Observer dup
Creates a copy of self.

Return: Observer e copy of self.

13.50.5 signal
is method is called when the event without value is issued.

13.50.6 signal_int(integer)
is method is called when an event associated with an integer is issued.

Input: integer e integer value to associate to the event.

414 Version 0.21 KLayout

Chapter 13. RBA Reference 13.50. Class ObserverBase (version 0.21)

13.51 Class ObserverBase (version 0.21)
is class implements an event handler for use with ’observer’ in-
terfaces.

Some classes provide callbacks by aaching Observer objects to certain events. Specific actions can be
implemented by reimplementing the “signal…” methods of this class.

Method Overview

assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.51.1 assign(ObserverBase other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.51.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.51.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.51.4 [const] ObserverBase dup
Creates a copy of self.

Return: ObserverBase e copy of self.

KLayout Version 0.21 415

Chapter 13. RBA Reference 13.51. Class ParentInstArray (version 0.21)

13.52 Class ParentInstArray (version 0.21)
is class implements an event handler for use with ’observer’ in-
terfaces.

Some classes provide callbacks by aaching Observer objects to certain events. Specific actions can be
implemented by reimplementing the “signal…” methods of this class.

Method Overview

parent_cell_index Retrieve the reference to the parent cell.
child_inst Retrieve the child instance associated with this parent instance.
inst Compute the inverse instance by which the parent is seen from the child.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.52.1 assign(ParentInstArray other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.52.2 [const] Instance child_inst
Retrieve the child instance associated with this parent instance.

Starting with version 0.15, this method returns an Instance object rather than a CellInstArray reference.

13.52.3 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.52.4 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.52.5 [const] ParentInstArray dup
Creates a copy of self.

Return: ParentInstArray e copy of self.

416 Version 0.21 KLayout

Chapter 13. RBA Reference 13.52. Class ParentInstArray (version 0.21)

13.52.6 [const] CellInstArray inst
Compute the inverse instance by which the parent is seen from the child.

13.52.7 [const] unsigned parent_cell_index
Retrieve the reference to the parent cell.

KLayout Version 0.21 417

Chapter 13. RBA Reference 13.52. Class Path (version 0.21)

13.53 Class Path (version 0.21)
An path class with integer coordinates.

A path consists of an sequence of line segments forming the “spine” of the path and a width. In addition,
the starting point can be drawn back by a certain extent (the “begin extension”) and the end point can be
pulled forward somewhat (by the “end extension”). A path may have round ends for special purposes.

Method Overview

new Default constructor: creates an empty (invalid) path with width 0.
new Constructor given the points of the path’s spine and the width.
new Constructor given the points of the path’s spine, the width and the extensions.
new Constructor given the points of the path’s spine, the width, the extensions and

the round end flag.
< Less operator.
== Equality test.
!= Inequality test.
points= Set the points of the path.
each_point Get the points that make up the path’s spine.
points Get the number of points.
width= Set the width.
width Get the width.
bgn_ext= Set the begin extension.
bgn_ext Get the begin extension.
end_ext= Set the end extension.
end_ext Get the end extension.
round= Set the ’round ends’ flag.
is_round? Tell, if the path has round ends.
move Moves the path.
moved Returns the moved path.
transformed Transform the path.
transformed_cplx Transform the path.
transformed_cplx Transform the path.
to_s Convert to a string.
simple_polygon Convert the path to a simple polygon.
polygon Convert the path to a polygon.
bbox Return the bounding box of the path.
from_dpath Construct an integer coordinate path from a floating-point coordinate one.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.53.1 [const] boolean !=(Path p)
Inequality test.

Input: p e object to compare against.
Return: true Inequality.

false ⁇?.

418 Version 0.21 KLayout

Chapter 13. RBA Reference 13.53. Class Path (version 0.21)

13.53.2 [const] boolean <(Path p)
Less operator.

is operator is provided to establish some, not necessarily a certain sorting order.

Input: p e object to compare against.
Return: true e path is less then the argument path.

false e path is greater then the argument path.

13.53.3 [const] boolean ==(Path p)
Equality test.

Input: p e object to compare against.
Return: true Equality.

false ⁇?.

13.53.4 assign(Path other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.53.5 [const] Box bbox
Return the bounding box of the path.

Return: Box e bounding box.

13.53.6 [const] integer bgn_ext
Get the begin extension.

Return: integer e begin extension.

13.53.7 bgn_ext=(integer)
Set the begin extension.

Input: integer e begin extension.

13.53.8 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.53.9 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

KLayout Version 0.21 419

Chapter 13. RBA Reference 13.53. Class Path (version 0.21)

13.53.10 [const] Path dup
Creates a copy of self.

Return: Path e copy of self.

13.53.11 [const] yield DPoint each_point
Get the points that make up the path’s spine.

Return: yield DPoint An array of points.

13.53.12 [const] integer end_ext
Get the end extension.

Return: integer e end extension.

13.53.13 end_ext=(integer)
Set the end extension.

Input: integer e end extension.

13.53.14 [static] Path from_dpath(DPath double_path)
Construct a floating-point coordinate path from an integer coordinate one.

is method has been added in version 0.15.

13.53.15 [const] boolean is_round?
Tell, if the path has round ends.

Return: true e path has round ends.
false e path has other ends.

13.53.16 refPath move(DPoint p)
Moves the path.

Moves the path by the given offset and returns the reference of the moved path. e path is overwrien.

Input: p e distance to move the path.
Return: ref e reference of the moved path.

13.53.17 [const] Path moved(DPoint p)
Returns the moved path.

Moves the path by the given offset and returns the reference of the moved path. e path is not modified.

Input: p e distance to move the path.
Return: Path e moved path.

13.53.18 [static] Path new
Default constructor: creates an empty (invalid) path with width 0.

Return: Path e empty (invalid) path.

420 Version 0.21 KLayout

Chapter 13. RBA Reference 13.53. Class Path (version 0.21)

13.53.19 [static] Path new(Point pts[], width)
Constructor given the points of the path’s spine and the width.

A synonym for: [static] Path new_pw(Point pts[], width).

Input: pts[] e points forming the spine of the path.
width e width of the path.

Return: Path e resulting path.

13.53.20 [static] Path new(DPoint pts[], width, bgn_ext, end_ext)
Constructor given the points of the path’s spine, thewidth and the extensions.

A synonym for: [static] Path new_pwx(DPoint pts[], width, bgn_ext, end_ext).

Input: pts[] e points forming the spine of the path.
width e width of the path.
bgn_ext e begin extension of the path.
end_ext e end extension of the path.

Return: Path e resulting path.

13.53.21 [static] Path new(Point pts[], width, bgn_ext, end_ext, boolean round)
Constructor given the points of the path’s spine, the width, the extensions
and the round end flag.

A synonym for: [static] Path new_pwxr(Point pts[], width, bgn_ext, end_ext, boolean round).

Input: pts[] e points forming the spine of the path.
width e width of the path.
bgn_ext e begin extension of the path.
end_ext e end extension of the path.
boolean round If this flag is true, the path will get rounded ends.

Return: Path e resulting path.

13.53.22 [const] unsigned points
Get the number of points.

Return: unsigned e number of points.

13.53.23 points=(Point pts[])
Set the points of the path.

Input: pts[] An area of points forming the spine of the path.

13.53.24 [const] Polygon polygon
Convert the path to a polygon.

e returned polygon is not guaranteed to be non-selfoverlapping. is may happen if the path overlaps
itself or contains very short segments.

Return: Polygon e resulting polygon.

KLayout Version 0.21 421

Chapter 13. RBA Reference 13.53. Class Path (version 0.21)

13.53.25 round=(boolean)
Set the “round ends” flag.

Input: true “round ends”.
false Other ends.

13.53.26 [const] SimplePolygon simple_polygon
Convert the path to a simple polygon.

e returned polygon is not guaranteed to be non-selfoverlapping. is may happen if the path overlaps
itself or contains very short segments.

Return: SimplePolygon e resulting polygon.

13.53.27 [const] string to_s
Convert to a string.

Return: string e resulting string.

13.53.28 [const] Path transformed(Trans t)
Transform the path.

Transforms the path with the given transformation. Does not modify the path but returns the transformed
path.

Input: t e transformation to apply.
Return: Path e transformed path.

13.53.29 [const] Path transformed_cplx(ICplxTrans t)
Transform the path.

Transforms the path with the given complex transformation. Does not modify the path but returns the
transformed path.

is method has been introduced in version 0.18.

Input: t e transformation to apply.
Return: Path e transformed path (in this case an integer coordinate path).

13.53.30 [const] DPath transformed_cplx(CplxTrans t)
Transform the path.

Transforms the path with the given complex transformation. Does not modify the path but returns the
transformed path.

Input: t e transformation to apply.
Return: Path e transformed path.

13.53.31 [const] integer width
Get the width.

Return: integer e width of the path.

422 Version 0.21 KLayout

Chapter 13. RBA Reference 13.53. Class Path (version 0.21)

13.53.32 width=(integer)
Set the width.

Input: integer e width of the path.

KLayout Version 0.21 423

Chapter 13. RBA Reference 13.53. Class Point (version 0.21)

13.54 Class Point (version 0.21)
A integer point class with integer coordinates.

Method Overview

from_dpoint Create an integer coordinate point from a floating-point coordinate point.
new Default constructor: creates a point at 0,0.
new Constructor for a point from two coordinate values.
+ Add one point to another.
− Subtract one point from another.
< “less” comparison operator.
== Equality test operator.
!= Inequality test operator.
x Accessor to the x coordinate.
y Accessor to the y coordinate.
x= Write accessor to the x coordinate.
y= Write accessor to the y coordinate.
* Scaling by some factor.
distance e euclidean distance to another point.
sq_distance e square euclidean distance to another point.
to_s String conversion.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.54.1 [const] boolean !=(Point p)
Inequality test operator.

Input: p e given integer coordinate point.
Return: true is and the given point are unequal.

false is and the given point are equal.

13.54.2 [const] Point *(double f)
Scaling by some factor.

Scaling may involve rounding for integer coordinate points.

Input: double f e given floating-point scaling factor.
Return: Point e scaled integer coordinate point.

13.54.3 [const] Point +(Point p)
Add one point to another.

Add point p to self by adding the coordinates.

Input: p e given integer coordinate point.
Return: Point e resulting integer coordinate point.

424 Version 0.21 KLayout

Chapter 13. RBA Reference 13.54. Class Point (version 0.21)

13.54.4 [const] Point −(Point p)
Subtract one point to another.

Subtract point p from self by subtracting the coordinates.

Input: p e given integer coordinate point.
Return: Point e resulting integer coordinate point.

13.54.5 [const] boolean <(Point p)
“less” comparison operator.

is operator is provided to establish a sorting order.

Input: p e given integer coordinate point.
Return: true is point is ’less’ than the given one.

false is point is ’greater’ than the given one.

13.54.6 [const] boolean ==(Point p)
Equality test operator.

Input: p e given integer coordinate point.
Return: true is point and the given point are equal.

false is point and the given point are unequal.

13.54.7 assign(Point other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.54.8 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.54.9 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.54.10 [const] double distance(Point d)
e euclidean distance to another point.

Input: d e other point to compute the distance to.
Return: double e euclidean distance.

KLayout Version 0.21 425

Chapter 13. RBA Reference 13.54. Class Point (version 0.21)

13.54.11 [const] Point dup
Creates a copy of self.

Return: Point e copy of self.

13.54.12 [static] Point from_dpoint(DPoint p)
Create an integer coordinate point from a floating-point coordinate point.

Input: p e given floating-point coordinate point.
Return: Point e created integer coordinate point.

13.54.13 [static] Point new
Default constructor: creates a point at 0,0.

Return: Point e created integer coordinate point at coordinate 0,0.

13.54.14 [static] Point new(x, y)
Constructor for a point from two coordinate values.

Input: x e given x part of the coordinate.
y the given y part of the coordinate.

Return: Point e created integer coordinate point.

13.54.15 [const] double sq_distance(Point d)
e square euclidean distance to another point.

Input: d e other point to compute the distance to.
Return: double e square euclidean distance.

13.54.16 [const] string to_s
String conversion.

Return: string e point as string.

13.54.17 [const] integer x
Accessor to the x part of the coordinate.

Return: integer e x part of the integer coordinate point.

13.54.18 x=(integer)
Write accessor to the x part of the coordinate.

Input: integer e x part of the integer coordinate point.

13.54.19 [const] integer y
Accessor to the y part of the coordinate.

Return: integer e y part of the integer coordinate point.

426 Version 0.21 KLayout

Chapter 13. RBA Reference 13.54. Class Point (version 0.21)

13.54.20 y=(integer)
Write accessor to the y part of the coordinate.

Input: integer e y part of the integer coordinate point.

KLayout Version 0.21 427

Chapter 13. RBA Reference 13.54. Class Polygon (version 0.21)

13.55 Class Polygon (version 0.21)
A polygon class with integer coordinates.

A polygon consists of an outer hull and zero to many holes. Each contour consists of several points. e
point list is normalized such that the lemost, lowest point is the first one. e orientation is normalized
such that the orientation of the hull contour is clockwise, while the orientation of the holes is counter-
clockwise.

It is in no way checked that the contours are not over-lapping. is must be ensured by the user of the
object when filling the contours.

Method Overview

new Default constructor: creates an empty (invalid) polygon.
new Constructor given the points of the polygon hull.
new Constructor converting a box to a polygon.
< Less operator.
== Equality test.
!= Inequality test.
hull= Set the points of the hull of polygon.
assign_hole Set the points of the given hole of the polygon.
points Get the total number of points (hull plus holes).
point_hull Get a specific point of the hull@args p.
point_hole Get a specific point of a hole@args n,p.
points_hull Get the number of points of the hull.
points_hole Get the number of points of the given hole.
insert_hole Insert a hole with the given points.
each_point_hull Iterate over the points that make up the hull.
each_point_hole Iterate over the points that make up the nᵗʰ hole.
size Sizing (biasing).
size Sizing (biasing).
holes Get the number of holes.
each_edge Iterate over the edges that make up the polygon.
inside Test, if the given point is inside the polygon.
compress Compress the polygon.
move Moves the polygon.
moved Returns the moved polygon.
transformed Transform the polygon.
transformed_cplx Transform the polygon with a complex transformation.
transformed_cplx Transform the polygon with a complex transformation.
to_s Convert to a string.
area e area of the polygon.
bbox Return the bounding box of the polygon.
from_dpoly Construct an integer coordinate polygon from a floating-point coordinate one.
round_corners Round the corners of the polygon.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

428 Version 0.21 KLayout

Chapter 13. RBA Reference 13.55. Class Polygon (version 0.21)

13.55.1 [const] boolean !=(Polygon p)
Inequality test.

Input: p e object to compare against.
Return: true Inequality.

false ⁇?.

13.55.2 [const] boolean <(Polygon p)
Less operator.

is operator is provided to establish some, not necessarily a certain sorting order.

Input: p e object to compare against.
Return: true is polygon is less than the given one.

false ⁇?.

13.55.3 [const] boolean ==(Polygon p)
Equality test.

Input: p e object to compare against.
Return: true e polygons are equal.

false ⁇?.

13.55.4 [const] long area
e area of the polygon.

e area is correct only if the polygon is not self-overlapping and oriented clockwise.

Return: long e area of the polygon.

13.55.5 assign(Polygon other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.55.6 assign_hole(unsigned, Point p[])
Set the points of the given hole of the polygon.

If the hole index is not valid, this method does nothing.

is method was introduced in version 0.18.

Input: unsigned e index of the hole to which the points should be assigned.
p[] An array of points to assign to the polygon’s hole.

13.55.7 [const] const refBox bbox
Return the bounding box of the polygon.

13.55.8 compress(boolean)
Compress the polygon.

Removes redundant points from the polygon, such as points being on a line formed by two other points.

KLayout Version 0.21 429

Chapter 13. RBA Reference 13.55. Class Polygon (version 0.21)

Input: true Additionally removes points if the two adjacent edges form a spike.
false Basic behavior.

13.55.9 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.55.10 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.55.11 [const] Polygon dup
Creates a copy of self.

Return: Polygon e copy of self.

13.55.12 yield Edge each_edge
Iterate over the edges that make up the polygon.

Return: yield e array of the edges that make up the polygon.

13.55.13 [const] yield Point each_point_hole(unsigned)
Iterate over the points that make up the nth hole.

Input: unsigned e hole number, which must be equal or less than the number of holes (see
holes)

13.55.14 [const] yield Point each_point_hull
Iterate over the points that make up the hull.

Return: yield e array of the points that make up the hull.

13.55.15 [static] Polygon from_dpoly(DPolygon double_poly)
Construct a floating-point coordinate polygon from an integer coordinate
one.

is method has been added in version 0.15.

13.55.16 [const] unsigned holes
Get the number of holes.

Return: unsigned e number of holes.

430 Version 0.21 KLayout

Chapter 13. RBA Reference 13.55. Class Polygon (version 0.21)

13.55.17 hull=(Point p[])
Set the points of the hull of polygon.

A synonym for: assign_hull(Point p[]).

e ’assign_hull’ variant is provided in analogy to ’assign_hole’.

Input: p[] An array of points to assign to the polygon’s hull.

13.55.18 insert_hole(Point p[])
Insert a hole with the given points.

Input: p[] An array of points to insert as a new hole.

13.55.19 [const] boolean inside(Point p)
Test, if the given point is inside the polygon.

is tests works well only if the polygon is not self-overlapping and oriented clockwise.

Input: true e given point is inside the polygon.
false e given point is outside the polygon.

13.55.20 ref Polygon move(Point p)
Moves the polygon.

Moves the polygon by the given offset and returns the reference of the moved polygon. e polygon is
overwrien.

Input: p e distance to move the polygon.
Return: ref e reference of the moved polygon.

13.55.21 [const] Polygon moved(Point p)
Returns the moved polygon.

Moves the polygon by the given offset and returns the moved polygon. e polygon is not modified.

Input: p e distance to move the polygon.
Return: Polygon e moved polygon.

13.55.22 [static] Polygon new
Default constructor: creates an empty (invalid) polygon.

13.55.23 [static] Polygon new(Box box)
Constructor converting a box to a polygon.

A synonym for: [static] Polygon new_b(Box box).

Input: box e box to convert to a polygon.

13.55.24 [static] Polygon new(Point p[])
Constructor given the points of the polygon hull.

A synonym for: [static] Polygon new_p(Point p[]).

Input: p[] An array of points to insert as a new polygon hull.

KLayout Version 0.21 431

Chapter 13. RBA Reference 13.55. Class Polygon (version 0.21)

13.55.25 Point point_hole(unsigned n, unsigned p)
Get a specific point of a hole@args n,p.

is method was introduced in version 0.18.

Input: unsigned n e index of the hole to which the points should be assigned.
unsigned p e index of the point to get. If the index of the point or of the hole is not valid,

a default value is returned.
Return: Point e specific hole point.

13.55.26 Point point_hull(unsigned p)
Get a specific point of a hull@args p.

is method was introduced in version 0.18.

Input: unsigned p e index of the point to get. If the index of the point is not a valid index, a
default value is returned.

Return: Point e specific hull point.

13.55.27 unsigned points
Get the total number of points (hull plus holes).

is method was introduced in version 0.18.

13.55.28 unsigned points_hole(unsigned n)
Get the number of points of the given hole.

e argument gives the index of the hole of which the number of points are requested. e index must be

less than the number of holes, see holes.
Input: unsigned n e given hole.
Return: unsigned e number of holes.

13.55.29 unsigned points_hull
Get the number of points of the hull.

Return: unsigned e number of points of the hull.

13.55.30 [const] Polygon round_corners(double rinner, double router, unsigned n)
Round the corners of the polygon.

Replaces the corners of the polygon with circle segments.

is method was introduced in version 0.20.

Input: double rinner e circle radius of inner corners (in database units).
double router e circle radius of outer corners (in database units).
unsigned n e number of points per full circle.

Return: Polygon e new polygon.

13.55.31 size(d, unsigned mode)
Sizing (biasing).

Shis the contour outwards (d>0) or inwards (d<0). May create invalid (self-overlapping, reverse oriented)
contours.

432 Version 0.21 KLayout

Chapter 13. RBA Reference 13.55. Class Polygon (version 0.21)

Input: double d e distance to shi the contour in x and y direction.
0 Bending angle cutoff occurs at greater than 0 degree.
1 Bending angle cutoff occurs at greater than 45 degree.
2 Bending angle cutoff occurs at greater than 90 degree.
3 Bending angle cutoff occurs at greater than 135 degree.
4 Bending angle cutoff occurs at greater than approximately 168 degree.
other Bending angle cutoff occurs at greater than approximately 179 degree.

13.55.32 size(dx, dy, unsigned mode)
Sizing (biasing).

Shis the contour outwards (dx,dy>0) or inwards (dx,dy<0). May create invalid (self-overlapping, reverse
oriented) contours. e sign of dx and dy should be identical.

Input: double dx e x value to shi the contour.
double dy e y value to shi the contour.
0 Bending angle cutoff occurs at greater than 0 degree.
1 Bending angle cutoff occurs at greater than 45 degree.
2 Bending angle cutoff occurs at greater than 90 degree.
3 Bending angle cutoff occurs at greater than 135 degree.
4 Bending angle cutoff occurs at greater than approximately 168 degree.
other Bending angle cutoff occurs at greater than approximately 179 degree.

13.55.33 string to_s
Convert to a string.

Return: string e string.

13.55.34 [const] Polygon transformed(Trans t)
Transform the polygon.

Transforms the polygon with the given transformation. Does not modify the polygon but returns the
transformed polygon.

Input: t e transformation to apply.
Return: Polygon e transformed polygon.

13.55.35 [const] Polygon transformed_cplx(CplxTrans t)
Transform the polygon.

Transforms the polygon with the given transformation. Does not modify the polygon but returns the
transformed polygon.

Input: t e transformation to apply.
Return: Polygon e transformed polygon.

13.55.36 [const] Polygon transformed_cplx(ICplxTrans t)
Transform the polygon.

Transforms the polygon with the given transformation. Does not modify the polygon but returns the
transformed polygon.

KLayout Version 0.21 433

Chapter 13. RBA Reference 13.55. Class Polygon (version 0.21)

is method was introduced in version 0.18.

Input: t e transformation to apply.
Return: Polygon e transformed polygon (in this case an integer coordinate polygon).

434 Version 0.21 KLayout

Chapter 13. RBA Reference 13.55. Class RdbCategory (version 0.21)

13.56 Class RdbCategory (version 0.21)
e report database category.

Every item in the report database is assigned to a category. A category is a DRC rule check for example.
Categories can be organized hierarchically, i.e. a category may have sub-categories. Item counts are sum-
marized for categories and items belonging to sub-categories of one category can be browsed together for
example. As a general rule, categories not being leaf categories (having child categories) may not have
items.

Method Overview

rdb_id Get the category ID.
name Get the category name.
path Get the category path.
description Get the category description.
description= Set the category description.
each_sub_category Iterate over all sub-categories.
parent Get the parent category of this category.
num_items Get the number of items in this category.
num_items_visited Gets the number of visited items in this category.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.56.1 [const] description description
Get the category description.

Return: description e description string.

13.56.2 description=(description)
Set the category description.

Input: description e description string.

13.56.3 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.56.4 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

KLayout Version 0.21 435

Chapter 13. RBA Reference 13.56. Class RdbCategory (version 0.21)

13.56.5 yield ref RdbCategory each_sub_category
Iterate over all sub-categories.

13.56.6 [const] string name
Get the category name.

e category name is an string that identifies the category in the context of a parent category or inside the
database when it is a top level category. e name is not the path name which is a path to a child category
and incorporates all names of parent categories.

Return: string e category name.

13.56.7 [const] unsigned num_items
Get the number of items in this category.

Return: unsigned e number of items includes the items in sub-categories of this category.

13.56.8 [const] unsigned num_items_visited
Get the number of visited items in this category.

Return: unsigned e number of visited items includes the visited items in sub-categories of this
category.

13.56.9 ref RdbCategory parent
Get the parent category of this category.

Return: ref A reference representing the parent category or nil if this category is a top-level
category.

13.56.10 [const] string path
Get the category path.

e category path is the category name for top level categories. For child categories, the path contains the
names of all parent categories separated by a dot.

Return: string e path for this category.

13.56.11 [const] unsigned rdb_id
Get the category ID.

e category ID is an integer that uniquely identifies the category. It is used for referring to a category in
RdbItem for example.

Return: unsigned e category ID.

436 Version 0.21 KLayout

Chapter 13. RBA Reference 13.56. Class RdbCell (version 0.21)

13.57 Class RdbCell (version 0.21)
A report database cell representation.

is class represents a cell in the report database. ere is not necessarily a 1:1 correspondence of RDB
cells and layout database cells. Cells have an ID, a name, optionally a variant name and a set of references
which describe at least one example instantiation in some parent cell. e references do not necessarily
map to references or cover all references in the layout database.

Method Overview

rdb_id Get the cell ID.
name Get the cell name.
variant Get the cell variant name.
qname Get the cell’s qualified name.
num_items Get the number of items for this cell.
num_items_visited Get the number of visited items for this cell.
add_reference Add a reference to the references of this cell.
clear_references Remove all references from this cell.
each_reference Iterate over all references.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.57.1 add_reference(RdbReference ref)
Adds a reference to the references of this cell.

Input: ref e reference to add.

13.57.2 clear_references
Remove all references from this cell.

13.57.3 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.57.4 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.57.5 yield ref RdbReference each_reference
Iterate over all references.

13.57.6 [const] string name
Get the cell name.

e cell name is a string that identifies the category in the database. Additionally, a cell may carry a variant
identifier which is a string that uniquely identifies a cell in the context of it’s variants. e “qualified name”

KLayout Version 0.21 437

Chapter 13. RBA Reference 13.57. Class RdbCell (version 0.21)

contains both the cell name and the variant name. Cell names are also used to identify report database
cell’s with layout cells.

Return: string e cell name.

13.57.7 [const] unsigned num_items
Get the number of items for this cell.

Return: unsigned e number of items for this cell.

13.57.8 [const] unsigned num_items_visited
Get the number of visited items for this cell.

Return: unsigned e number of visited items for this cell.

13.57.9 [const] string qname
Get the cell’s qualified name.

e qualified name is a combination of the cell name and optionally the variant name. It is used to identify
the cell by name in a unique way.

Return: string e qualified cell name.

13.57.10 [const] unsigned rdb_id
Get the cell ID.

e cell ID is an integer that uniquely identifies the cell. It is used for referring to a cell in RdbItem for
example.

Return: unsigned e cell ID.

13.57.11 [const] string variant
Get the cell variant name.

A variant name additionally identifies the cell when multiple cells with the same name are present. A
variant name is either assigned automatically or set when creating a cell.

Return: string e cell variant name.

438 Version 0.21 KLayout

Chapter 13. RBA Reference 13.57. Class RdbItem (version 0.21)

13.58 Class RdbItem (version 0.21)
A RDB item.

An item is the basic information entity in the RDB. It is associated with a cell and a category. It can be
assigned values which encapsulate other objects such as strings and geometrical objects. In addition, items
can be assigned an image (i.e. a screen shot image) and tags which are basically Boolean flags that can be
defined freely.

Method Overview

cell_id Get the cell ID.
category_id Get the category ID.
is_visited? Get a value indicating whether the item was already visited.
add_tag Add a tag with the given id to the item.
remove_tag Remove the tag with the given id from the item.
has_tag? Return a value indicating whether the item has a tag with the given ID.
tags_str Return a string listing all tags of this item.
tags_str= Set the tags from a string.
image_str Get the image associated with this item as a string.
image_str= Set the image from a string.
add_value Add a value object to the values of this item.
clear_values Remove all values from this item.
each_value Iterate over all values.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.58.1 add_tag(unsigned)
Add a tag with the given id to the item.

Each tag can be added once to the item. e tags of an item thus form a set. If a tag with that ID already
exists, this method does nothing.

Input: unsigned e tag ID.

13.58.2 add_value(RdbItemValue value)
Add a value object to the values of this item.

Input: value e value to add.

13.58.3 [const] unsigned category_id
Get the category ID.

Return: unsigned e ID of the category that this item is associated with.

13.58.4 [const] unsigned cell_id
Get the cell ID.

Return: unsigned e ID of the cell that this item is associated with.

KLayout Version 0.21 439

Chapter 13. RBA Reference 13.58. Class RdbItem (version 0.21)

13.58.5 clear_values
Removes all values from this item.

13.58.6 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.58.7 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.58.8 [const] yield const ref RdbItemValue each_value
Iterate over all values.

13.58.9 [const] boolean has_tag?(unsigned)
Return a value indicating whether the item has a tag with the given ID.

Input: unsigned e given ID.
Return: true e item has a tag with the given ID.

false e item has no tag with the given ID.

13.58.10 [const] string image_str
Get the image associated with this item as a string.

Return: string A base64-encoded image file (usually in PNG format).

13.58.11 image_str=(string)
Set the image from a string.

Input: string A base64-encoded image file (usually in PNG format).

13.58.12 [const] boolean is_visited?
Get a value indicating whether the item was already visited.

Return: true e item has been visited already.
false e item has not been visited already.

13.58.13 remove_tag(unsigned)
Remove the tag with the given id from the item.

If a tag with that ID does not exists on this item, this method does nothing.

Input: unsigned e given ID.

440 Version 0.21 KLayout

Chapter 13. RBA Reference 13.58. Class RdbItem (version 0.21)

13.58.14 [const] string tags_str
Return a string listing all tags of this item.

Return: string A comma-separated list of tags.

13.58.15 tags_str=(string)
Set the tags from a string.

Input: string A comma-separated list of tags.

KLayout Version 0.21 441

Chapter 13. RBA Reference 13.58. Class RdbItemValue (version 0.21)

13.59 Class RdbItemValue (version 0.21)
A RDB value object.

Value objects are aached to items to provide markers. An arbitrary number of such value objects can be
aached to an item. Currently, a value can represent a box, a polygon or an edge. Geometrical objects are
represented in micron units and are therefore “D” type objects (DPolygon, DEdge and DBox).

Method Overview

from_s Create a value object from a string.
new Create a value representing a string.
new Create a value representing a DPolygon object.
new Create a value representing a DEdge object.
new Create a value representing a DBox object.
to_s Convert a value to a string.
is_string? Return true if the value object represents a string.
string Get the string if the value represents one or nil if it does not.
is_polygon? Return true if the value object represents a polygon.
polygon Get the polygon if the value represents one or nil if it does not.
is_edge? Return true if the value object represents an edge.
edge Get the edge if the value represents one or nil if it does not.
is_box? Return true if the value object represents a box.
box Get the box if the value represents one or nil if it does not.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.59.1 assign(RdbItemValue other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.59.2 [const] DBox box
Get the box if the value represents one or nil if it does not.

Return: DBox e DBox object or nil.

13.59.3 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.59.4 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

442 Version 0.21 KLayout

Chapter 13. RBA Reference 13.59. Class RdbItemValue (version 0.21)

13.59.5 [const] RdbItemValue dup
Creates a copy of self.

Return: RdbItemValue e copy of self.

13.59.6 [const] DEdge edge
Get the edge if the value represents one or nil if it does not.

Return: DEdge e copy of self.

13.59.7 [static] RdbItemValue from_s(string)
Create a value object from a string.

Input: string e given string. e string format is the same than obtained by the to_s
method.

Return: RdbItemValue e created value object.

13.59.8 [const] boolean is_box?
Returns true if the value object represents a box.

Return: true e value object represents a box.
false e value object represents not a box.

13.59.9 [const] boolean is_edge?
Returns true if the value object represents an edge.

Return: true e value object represents an edge.
false e value object represents not an edge.

13.59.10 [const] boolean is_polygon?
Returns true if the value object represents a polygon.

Return: true e value object represents a polygon.
false e value object represents not a polygon.

13.59.11 [const] boolean is_string?
Returns true if the value object represents a string.

Return: true e value object represents a string.
false e value object represents not a string.

13.59.12 [static] ref RdbItemValue new(string)
Create a value representing a string.

Input: string e given string.
Return: ref A reference representing a string.

KLayout Version 0.21 443

Chapter 13. RBA Reference 13.59. Class RdbItemValue (version 0.21)

13.59.13 [static] ref RdbItemValue new(DPolygon)
Create a value representing a DPolygon object.

Input: DPolygon e given object.
Return: ref A reference representing a DPolygon object.

13.59.14 [static] ref RdbItemValue new(DBox)
Create a value representing a DBox object.

Input: DBox e given object.
Return: ref A reference representing a DBox object.

13.59.15 [static] ref RdbItemValue new(DEdge)
Create a value representing a DEdge object.

Input: DEdge e given object.
Return: ref A reference representing an DEdge object.

13.59.16 [const] DPolygon polygon
Get the polygon if the value represents one or nil if it does not.

Return: DPolygon e DPolygon object or nil.

13.59.17 [const] string string
Get the string if the value represents one or nil if it does not.

Return: string e string object or nil.

13.59.18 [const] string to_s
Convert a value to a string.

e string can be used by the string constructor to create another object from it.

Return: string e string converted from a value.

444 Version 0.21 KLayout

Chapter 13. RBA Reference 13.59. Class RdbReference (version 0.21)

13.60 Class RdbReference (version 0.21)
A cell reference.

is class describes a cell reference. Such reference object can be aached to cells to describe instantiations
of them in parent cells. Not necessarily all instantiations of a cell in the layout database are represented
by references and in some cases there might even be no references at all. e references are merely a hint
how a marker must be displayed in the context of any other, potentially parent, cell in the layout database.

Method Overview

new Create a reference with a given transformation and parent cell ID.
trans Gets the transformation for this reference.
trans= Sets the transformation for this reference.
parent_cell_id Gets parent cell ID for this reference.
parent_cell_id= Sets the parent cell ID for this reference.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.60.1 assign(RdbReference other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.60.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.60.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.60.4 [const] RdbReference dup
Creates a copy of self.

Return: RdbReference e copy of self.

13.60.5 [static] RdbReference new(DCplxTrans t, unsigned)
Create a reference with a given transformation and parent cell ID.

Input: unsigned e parent cell ID.
t e given transformation.

Return: RdbReference e created reference.

KLayout Version 0.21 445

Chapter 13. RBA Reference 13.60. Class RdbReference (version 0.21)

13.60.6 [const] unsigned parent_cell_id
Get parent cell ID for this reference.

Return: unsigned e parent cell ID.

13.60.7 parent_cell_id=(unsigned)
Set the parent cell ID for this reference.

Input: unsigned e parent cell ID.

13.60.8 [const] const ref DCplxTrans trans
Get the transformation for this reference.

e transformation describes the transformation of the child cell into the parent cell. In that sense that is
the usual transformation of a cell reference.

Return: ref e transformation for this reference.
Comment: Return value(s) not clear.

13.60.9 trans=(DCplxTrans t)
Set the transformation for this reference.

Input: t e transformation for this reference.

446 Version 0.21 KLayout

Chapter 13. RBA Reference 13.60. Class RecursiveShapeIterator (version 0.21)

13.61 Class RecursiveShapeIterator (version 0.21)
is class implements an event handler for use with ’observer’ in-
terfaces.

Some classes provide callbacks by aaching Observer objects to certain events. Specific actions can be
implemented by reimplementing the “signal…” methods of this class.

Method Overview

max_depth= Specify the maximum hierarchy depth to look into.
shape_flags= Specify the shape selection flags.
trans Get the current transformation by which the shapes must be transformed into

the initial cell.
itrans Get the current transformation by which the shapes must be transformed into

the initial cell.
shape Get the current shape.
at_end? End of iterator predicate.
cell_index Get the current cell’s index.
next Increment the iterator.
== Comparison of iterators - equality test.
!= Comparison of iterators - inequality test.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.61.1 [const] boolean !=(RecursiveShapeIterator p)
Inequality test.

Two iterators are not equal if they do not point to the same shape.

Input: p e object to compare against.
Return: true Inequality.

false ⁇?.

13.61.2 [const] boolean ==(RecursiveShapeIterator p)
Equality test.

Two iterators are equal if they point to the same shape.

Input: p e object to compare against.
Return: true Equality.

false ⁇?.

13.61.3 assign(RecursiveShapeIterator other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

KLayout Version 0.21 447

Chapter 13. RBA Reference 13.61. Class RecursiveShapeIterator (version 0.21)

13.61.4 [const] boolean at_end?
End of iterator predicate.

A synonym for: [const] boolean at_end.

Return: true e iterator is at the end of the sequence.
false e iterator is in between the sequence.

13.61.5 [const] unsigned cell_index
Get the current cell’s index.

Return: unsigned e cell index of the current cell.

13.61.6 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.61.7 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.61.8 [const] RecursiveShapeIterator dup
Creates a copy of self.

Return: RecursiveShapeIterator e copy of self.

13.61.9 [const] ICplxTrans itrans
Get the current transformation by which the shapes must be transformed into
the initial cell.

e shapes delivered are not transformed. Instead, this transformation must be applied to get the shape
in the coordinate system of the top cell. is method delivers the integer version which is not accurate in
the strict sense but delivers integer coordinate shapes. is method is somewhat slower than the ’trans’
method.

Return: ⁇? e integer version of the shapes in the coordinate system of the top cell.

13.61.10 max_depth=(integer)
Specify the maximum hierarchy depth to look into.

A depth of 0 instructs the iterator to deliver only shapes from the initial cell. e depth must be specified
before the shapes are being retrieved.

Input: integer e maximum hierarchy depth to look into.

448 Version 0.21 KLayout

Chapter 13. RBA Reference 13.61. Class RecursiveShapeIterator (version 0.21)

13.61.11 next
Increment the iterator.

is moves the iterator to the next shape inside the search scope.

13.61.12 [const] Shape shape
Get the current shape.

Returns the shape currently referred to by the recursive iterator. is shape is not transformed yet and is
located in the current cell.

13.61.13 shape_flags=(unsigned)
Specify the shape selection flags.

eflags are the same then being defined in Shapes (the default is Shapes.s_all). e flagsmust be specified
before the shapes are being retrieved.

Input: unsigned e shape selection flags.

13.61.14 [const] const ref CplxTrans trans
Get the current transformation bywhich the shapesmust be transformed into
the initial cell.

e shapes delivered are not transformed. Instead, this transformation must be applied to get the shape in
the coordinate system of the top cell.

KLayout Version 0.21 449

Chapter 13. RBA Reference 13.61. Class ReportDatabase (version 0.21)

13.62 Class ReportDatabase (version 0.21)
e report database object.

A report database is organized around a set of items which are associated with cells and categories. Cat-
egories can be organized hierarchically by created sub-categories of other categories. Cells are associated
with layout database cells and can come with an example instantiation if the layout database does not al-
low a unique association of the cells. Items in the database can have a variety of aributes: values, tags and
an image object. Values are geometrical objects for example. Tags are a set of boolean flags and an image
can be aached to an item to provide a screen shot for visualization for example. is is the main report
database object. e basic use case of this object is to create one inside a LayoutView and populate it with
items, cell and categories or load it from a file. Another use case is to create a standalone ReportDatabase
object and use the methods provided to perform queries or to populate it.

Method Overview

new Create a report database.
description Get the databases description.
description= Set the databases description.
generator Get the databases generator.
generator= Set the generator string.
filename Get the file name and path where the report database is stored.
name Get the database name.
top_cell_name Get the top cell name.
top_cell_name= Set the top cell name string.
original_file Get the original file name and path.
original_file= Set the original file name and path.
tag_id Get the tag ID for a given tag name.
set_tag_description Set the tag description for the given tag ID.
tag_description Get the tag description for the given tag ID.
each_category Iterate over all top-level categories.
create_category Create a new top level category.
create_category Create a new sub-category.
category_by_path Get a category by path.
category_by_id Get a category by ID.
create_cell Create a new cell.
create_cell Create a new cell, potentially as a variant for a cell with the same name.
variants Get the variants for a given cell name.
cell_by_qname Return the cell for a given qualified name.
cell_by_id Return the cell for a given ID.
each_cell Iterate over all cells.
num_items Return the number of items inside the database.
num_items_visited Return the number of items already visited inside the database.
num_items Return the number of items inside the database for a given cell/category com-

bination.
num_items_visited Return the number of items visited already for a given cell/category combina-

tion.
create_item Create a new item for the given cell/category combination.
is_modified? Return a value indicating whether the database has been modified.
reset_modified Reset the modified flag.
each_item Iterates over all items inside the database.
each_item_per_cell Iterate over all items inside the database which are associated with the given

cell.
each_item_per_category Iterate over all items inside the database which are associated with the given

450 Version 0.21 KLayout

Chapter 13. RBA Reference 13.62. Class ReportDatabase (version 0.21)

category.
each_item_per_cell_and_category Iterate over all items inside the database which are associated with

the given cell and category.
set_item_visited Modify the visited state of an item.
load Load the database from the given file.
save Save the database to the given file.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.62.1 [const] const ref RdbCategory category_by_id(unsigned)
Get a category by ID.

Input: unsigned e ID of the category.
Return: RdbCategory e (const) category object or nil if the ID is not valid.

13.62.2 [const] const ref RdbCategory category_by_path(path)
Get a category by path.

Input: path e full path to the category starting from the top level (subcategories separated
by dots).

Return: RdbCategory e (const) category object or nil if the name is not valid.

13.62.3 [const] const ref RdbCell cell_by_id(unsigned)
Return the cell for a given ID.

Input: unsigned e ID of the cell.
Return: RdbCell e (const) cell object or nil if the ID is not valid.

13.62.4 [const] const ref RdbCell cell_by_qname(qname)
Return the cell for a given qualified name.

Input: qname e qualified name of the cell (name plus variant name optionally).
Return: RdbCell e (const) category object or nil if the name is not valid.

13.62.5 ref RdbCategory create_category(name)
Create a new top level category.

Input: name e name of the category.

13.62.6 ref RdbCategory create_category(ref RdbCategory parent, name)
Create a new sub-category.

Input: parent e category under which the category should be created.
name e name of the category.

KLayout Version 0.21 451

Chapter 13. RBA Reference 13.62. Class ReportDatabase (version 0.21)

13.62.7 ref RdbCell create_cell(name, variant)
Create a new cell, potentially as a variant for a cell with the same name.

Input: name e name of the cell.
parent e variant name of the cell.

13.62.8 ref RdbCell create_cell(name)
Create a new cell.

Input: name e name of the cell.

13.62.9 ref RdbItem create_item(unsigned cell_id, unsigned category_id)
Create a new item for the given cell/category combination.

Input: unsigned cell_id e ID of the cell to which the item is associated.
unsigned
category_id

e ID of the category to which the item is associated.

13.62.10 [const] string description
Get the database description.

edescription is a general purpose string that is supposed to further describe the database and it’s content
in a human-readable form.

Return: string e description string.

13.62.11 description=(string)
Set the databases description.

Input: string e description string.

13.62.12 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.62.13 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

452 Version 0.21 KLayout

Chapter 13. RBA Reference 13.62. Class ReportDatabase (version 0.21)

13.62.14 [const] yield const ref RdbCategory each_category
Iterate over all top-level categories.

13.62.15 [const] yield const ref RdbCell each_cell
Iterate over all cells.

13.62.16 [const] yield const ref RdbItem each_item
Iterate over all item inside the database.

13.62.17 [const] yield const refRdbItemeach_item_per_category(unsigned category_-
id)
Iterate over all items inside the database which are associated with the given
category.

Input: unsigned
category_id

e ID of the category for which all associated items should be retrieved.

13.62.18 [const] yield const ref RdbItem each_item_per_cell(unsigned cell_id)
Iterate over all items inside the database which are associated with the given
cell.

Input: unsigned cell_id e ID of the cell for which all associated items should be retrieved.

13.62.19 [const] yield const ref RdbItem each_item_per_cell_and_category(unsigned
cell_id, unsigned category_id)
Iterate over all items inside the database which are associated with the given
cell and category.

Input: unsigned cell_id e ID of the cell for which all associated items should be retrieved.
unsigned
category_id

e ID of the category for which all associated items should be retrieved.

13.62.20 [const] string filename
Get the file name and path where the report database is stored.

is property is set when a database is saved or loaded. It cannot be set manually.

Return: string e file name and path.

13.62.21 [const] string generator
Get the database generator.

e generator string describes how the database was created, i.e. DRC tool name and tool options. In a
later version this should allow to rerun the tool that created the report.

Return: string e generator string.

13.62.22 generator=(string)
Set the generator string.

Input: string e generator string.

KLayout Version 0.21 453

Chapter 13. RBA Reference 13.62. Class ReportDatabase (version 0.21)

13.62.23 [const] boolean is_modified?
Return a value indicating whether the database has been modified.

Return: true e database has been modified.
false e database is unmodified.

13.62.24 load(string)
Load the database from the given file.

ereader recognizes the format automatically andwill choose the appropriate decoder. “gzip” compressed
files are uncompressed automatically.

Input: string e file name and path.

13.62.25 [const] string name
Get the database name.

e name of the database is supposed to identify the database within a layout view context. e name is
modified to be unique when a database is entered into a layout view.

Return: string e database name.

13.62.26 [static] ReportDatabase new(string)
Create a report database.

e name of the database will be used in the user interface to refer to a certain database.

Input: string e database name.

13.62.27 [const] unsigned num_items
Return the number of items inside the database.

Return: unsigned e total number of items.

13.62.28 [const] unsigned num_items(unsigned cell_id, unsigned category_id)
Return the number of items inside the database for a given cell/category com-
bination.

Input: unsigned cell_id e ID of the cell for which to retrieve the number.
unsigned
category_id

e ID of the category for which to retrieve the number.

Return: unsigned e total number of items.

13.62.29 [const] unsigned num_items_visited
Return the number of items already visited inside the database.

Return: unsigned e total number of items already visited.

454 Version 0.21 KLayout

Chapter 13. RBA Reference 13.62. Class ReportDatabase (version 0.21)

13.62.30 [const] unsigned num_items_visited(unsigned cell_id, unsigned category_id
)
Return the number of items already visited inside the database for a given
cell/category combination.

Input: unsigned cell_id e ID of the cell for which to retrieve the number.
unsigned
category_id

e ID of the category for which to retrieve the number.

Return: unsigned e total number of items already visited.

13.62.31 [const] string original_file
Get the original file name and path.

e original file name is supposed to describe the file from which this report database was generated.

Return: string e original file name and path.

13.62.32 original_file=(string)
Set the original file name and path.

Input: string e original file name and path.

13.62.33 reset_modified
Reset the modified flag.

13.62.34 save(string)
Saves the database to the given file.

e database is always saved in KLayout’s XML-based format.

Input: string e file name and path to which to save the database.

13.62.35 set_item_visited(RdbItem item, boolean)
Modify the visited state of an item.

Input: item e item to modify.
Return: true Set the item to visited state.

false Set the item to none visited state.

13.62.36 set_tag_description(unsigned tag_id, string)
Set the tag description for the given tag ID.

Input: unsigned tag_id e ID of the tag.
string e description string.

13.62.37 [const] string tag_description(unsigned tag_id)
Get the tag description for the given tag ID.

Input: unsigned tag_id e ID of the tag.
Return: string e description string.

KLayout Version 0.21 455

Chapter 13. RBA Reference 13.62. Class ReportDatabase (version 0.21)

13.62.38 [const] unsigned tag_id tag_id(string)
Get the tag ID for a given tag name.

is method will always succeed and the tag will be created if it does not exist yet.

Input: string e description string.
Return: unsigned tag_id e ID of the tag.

13.62.39 [const] string top_cell_name
Get the top cell name.

e top cell name identifies the top cell of the design for which the report was generated. is property
must be set to establish a proper hierarchical context for a hierarchical report database.

Return: string e top cell name.

13.62.40 top_cell_name=(string)
Set the top cell name string.

Input: string e top cell name.

13.62.41 unsigned[] variants(string)
Get the variants for a given cell name.

Input: (string) e basic name of the cell.
Return: unsigned[] An array of ID’s representing cells that are variants for the given base name.

456 Version 0.21 KLayout

Chapter 13. RBA Reference 13.62. Class SaveLayoutOptions (version 0.21)

13.63 Class SaveLayoutOptions (version 0.21)
Options for saving layout.

is class describes the various options for saving a layout to a stream file (GDS2, OASIS).ere are: layers
to be saved, cell or cells to be saved, scale factor, format, database unit and format specific options. Usually
the default constructor provides a suitable object. e layers are specified by either selecting all layers or
by defining layer by layer using the add_layer method. select_all_layers will explicitly select all layers for
saving, deselect_all_layers will explicitly clear the list of layers.

Cells are selected in a similar fashion: by default, all cells are selected. Using add_cell, specific cells can
be selected for saving. All these cells plus their hierarchy will then be wrien to the stream file.

Method Overview

new Default constructor
format= Select a format.
format Get the format name.
add_layer Add a layer to be saved.
select_all_layers Select all layers to be saved.
deselect_all_layers Deselect all layers: no layer will be saved.
add_cell Add a cell (plus hierarchy) to be saved.
select_all_cells Select all cells to save.
dbu= Set the database unit to be used in the stream file.
dbu Get the explicit database unit if one is set.
no_empty_cells= Don’t write empty cells if this flag is set.
no_empty_cells Returns a flag indicating whether empty cells are not wrien..
scale_factor= Set the scaling factor for the saving.
scale_factor Get the scaling factor currently set.
dxf_dbu= Specifies the database unit which the reader uses and produces.
dxf_dbu Specifies the database unit which the reader uses and produces.
cif_wire_mode= How to read “W” objects.
wire_mode Specifies how to read “W” objects.
cif_dbu= Specifies the database unit which the reader uses and produces.
cif_dbu Specifies the database unit which the reader uses and produces.
gds2_max_vertex_count= Set the maximum number of vertices for polygons to write.
gds2_max_vertex_count Get the maximum number of vertices for polygons to write.
gds2_multi_xy_records= Use multiple XY records in BOUNDARY elements for unlimited large poly-

gons.
gds2_multi_xy_records Get the property enabling multiple XY records for BOUNDARY elements.
gds2_max_cellname_length= Maximum length of cell names.
gds2_max_cellname_length Get the maximum length of cell names.
gds2_libname= Set the library name.
gds2_libname Get the library name.
gds2_user_units= Set the users units to write into the GDS file.
gds2_user_units Get the user units.
gds2_box_mode= Specify how to treat BOX records.
box_mode Specifies how to treat BOX records.
gds2_allow_multi_xy_records= Allows the use of multiple XY records in BOUNDARY elements for

unlimited large polygons.
gds2_allow_multi_xy_records Specifies whether to allow big polygons with multiple XY records..
gds2_allow_big_records= Allow big records with more than 32767 bytes.
gds2_allow_big_records Specifies whether to allow big records with a length of 32768 to 65535 bytes.
oasis_compression_level= Set the OASIS compression level.
oasis_compression_level Get the OASIS compression level.

KLayout Version 0.21 457

Chapter 13. RBA Reference 13.63. Class SaveLayoutOptions (version 0.21)

assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.63.1 add_cell(unsigned)
Add a cell (plus hierarchy) to be saved.

is method clears the select_all_cells flag.

Input: unsigned e index of the cell. It must be a valid index in the context of the layout to be
saved.

13.63.2 add_layer(unsigned, LayerInfo properties)
Add a layer to be saved .

Input: unsigned e index of the layer to add to the layer list that will be wrien. If all layers
have been selected previously, this state will be cleared.

properties e properties argument can be used to assign different layer properties than
the ones present in the layout. Pass a default LayerInfo object to this argument
to use the properties from the layout object. Construct a valid LayerInfo object
with explicit layer, data type and possibly a name to override the properties
stored in the layout.

13.63.3 assign(SaveLayoutOptions other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.63.4 [const] unsigned box_mode
Specifies how to treat BOX records.

See gds2_box_mode= method for a description of this mode.

is property has been added in version 0.18.

Return: unsigned e box mode property.

13.63.5 [const] double cif_dbu
Specifies the database unit which the reader uses and produces.

See cif_dbu= method for a description of this property.

is property has been added in version 0.21.

Return: double e database unit.

458 Version 0.21 KLayout

Chapter 13. RBA Reference 13.63. Class SaveLayoutOptions (version 0.21)

13.63.6 cif_dbu=(double)
Specifies the database unit which the reader uses and produces.

is property has been added in version 0.21.

Input: double e database unit.

13.63.7 cif_wire_mode=(unsigned)
How to read “W” objects.

is property has been added in version 0.21.

is property specifies how to read “W” (wire) objects. Allowed values are:
Input: 0 Read wire objects as square ended paths.

1 Read wire objects as flush ended paths.
2 Read wire objects as round ended paths.

13.63.8 [const] double dbu
Get the explicit database unit if one is set.

Return: double e database unit.

13.63.9 dbu=(double)
Set the database unit to be used in the stream file.

By default, the database unit of the layout is used. is method allows to explicitly use a different database
unit. is effectively scales the layout.

Input: double e database unit.

13.63.10 deselect_all_layers
Deselect all layers: no layer will be saved.

is method will clear all layers selected with add_layer so far and clear the select_all_layers flag. Using
this method is the only way to save a layout without any layers.

13.63.11 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.63.12 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

KLayout Version 0.21 459

Chapter 13. RBA Reference 13.63. Class SaveLayoutOptions (version 0.21)

13.63.13 [const] SaveLayoutOptions dup
Creates a copy of self.

Return: SaveLayoutOptions e copy of self.

13.63.14 [const] double dxf_dbu
Specifies the database unit which the reader uses and produces.

See dxf_dbu= method for a description of this property.

is property has been added in version 0.21.

Return: double e database unit used by the reader.

13.63.15 dxf_dbu=(double)
Specifies the database unit which the reader uses and produces.

is property has been added in version 0.21.

Input: double e database unit to be used by the reader.

13.63.16 [const] string format
Get the format name.

Return: GDS2 String for GDS format.
OASIS String for OASIS format.
other Other formats may be available if a suitable plug-in is installed.

13.63.17 format=
Select a format.

Input: GDS2 String for GDS format.
OASIS String for OASIS format.
other Other formats may be available if a suitable plug-in is installed.

13.63.18 [const] boolean gds2_allow_big_records
Specifies whether to allow big records with a length of 32768 to 65535 bytes.

See gds2_allow_big_records= method for a description of this property.

is property has been added in version 0.18.

Return: true Records with more than 32767 bytes allowed.
false Records uses less than 32767 bytes.

13.63.19 gds2_allow_big_records=(boolean)
Allow big records with more than 32767 bytes.

is property has been added in version 0.18.

Input: true e default allows the use of larger records by treating the record length as
unsigned short, which for example allows larger polygons (8000 points rather
than 4000 points) without using multiple XY records.

false For strict standard compatibility the use of larger records is forbidden.

460 Version 0.21 KLayout

Chapter 13. RBA Reference 13.63. Class SaveLayoutOptions (version 0.21)

13.63.20 [const] boolean gds2_allow_multi_xy_records
Specifies whether to allow big polygons with multiple XY records..

See gds2_allow_multi_xy_records= method for a description of this property.

is property has been added in version 0.18.

Return: true e use of big polygons is allowed.
false e use of big polygons is forbidden.

13.63.21 gds2_allow_multi_xy_records=(boolean)
Allows the use of multiple XY records in BOUNDARY elements for unlimited
large polygons.

is property has been added in version 0.18.

Input: true e default allows the use of big polygons that span over multiple XY records.
false For strict standard compatibility the use of big polygons is forbidden.

13.63.22 gds2_box_mode=(unsigned)
Specify how to treat BOX records.

is property has been added in version 0.18.

is property specifies how to treat BOX records. Allowed values are:
Input: 0 Ignore BOX records.

1 Treat BOX records as rectangles. e default.
2 Treat BOX records as boundaries.
3 Treat BOX records as errors.

13.63.23 [const] string gds2_libname
Get the library name.

See gds2_libname= method for a description of the library name.

is property has been added in version 0.18.

Return: string e GDS lib name.

13.63.24 gds2_libname=(string)
Set the library name.

e library name is the string wrien into the LIBNAME records of the GDS file. e library name should
not be an empty string and is subject to certain limitations in the character choice.

is property has been added in version 0.18.

Input: string e GDS lib name.

13.63.25 [const] unsigned gds2_max_cellname_length
Get the maximum length of cell names.

See gds2_max_cellname_length= method for a description of the maximum cell name length.

is property has been added in version 0.18.

Return: unsigned e maximum number of characters for cell names.

KLayout Version 0.21 461

Chapter 13. RBA Reference 13.63. Class SaveLayoutOptions (version 0.21)

13.63.26 gds2_max_cellname_length=(unsigned)
Maximum length of cell names.

is property has been added in version 0.18.

Input: unsigned e maximum number of characters for cell names. Longer cell names will be
shortened.

13.63.27 [const] unsigned gds2_max_vertex_count
Get the maximum number of vertices for polygons to write.

See gds2_max_vertex_count= method for a description of the maximum vertex count.

is property has been added in version 0.18.

Return: unsigned e maximum number of vertices for polygons to write.

13.63.28 gds2_max_vertex_count=(unsigned)
Set the maximum number of vertices for polygons to write.

is property describes the maximum number of points for polygons in GDS2 files. Polygons with more
points will be split. e minimum value for this property is 4. e maximum allowed value is about 4000
or 8000, depending on the GDS2 interpretation. If gds2_multi_xy_records is true, this property is not used.
Instead, the number of points is unlimited.

is property has been added in version 0.18.

Input: unsigned e maximum number of vertices for polygons to write.

13.63.29 [const] boolean gds2_multi_xy_records
Get the property enabling multiple XY records for BOUNDARY elements.

See gds2_multi_xy_records= method for a description of this property.

is property has been added in version 0.18.

Return: true Use of unlimited large polygons is allowed.
false Use of unlimited large polygons is forbidden.

13.63.30 gds2_multi_xy_records=(boolean)
Use multiple XY records in BOUNDARY elements for unlimited large poly-
gons.

is property has been added in version 0.18.

Input: true Allows to produce unlimited large polygons at the cost of incompatible formats
and disables the gds2_max_vertex_count seing.

false For strict standard compatibility the use of unlimited large polygons is forbid-
den.

13.63.31 [const] double gds2_user_units
Get the user units.

See gds2_user_units= method for a description of the user units.

is property has been added in version 0.18.

462 Version 0.21 KLayout

Chapter 13. RBA Reference 13.63. Class SaveLayoutOptions (version 0.21)

Return: double e users units.

13.63.32 gds2_user_units=(double)
Set the users units to write into the GDS file.

e user units of a GDS file are rarely used and usually are set to 1 (micron). e intention of the user
units is to specify the display units. KLayout ignores the user unit and uses microns as the display unit.
e user unit must be larger than zero.

is property has been added in version 0.18.

Input: double e users units.

13.63.33 [static] SaveLayoutOptionsnew
Default constructor.

By default, the scale factor will be 1.0, the database unit is set to ”same as original” and all layers are
selected as well as all cells. e default format is GDS2.

13.63.34 [const] boolean no_empty_cells
Returns a flag indicating whether empty cells are not written.

Return: true Write all cells, even if they are empty.
false Write none empty cells only.

13.63.35 no_empty_cells=(boolean)
Don’t write empty cells if this flag is set.

By default, all cells are wrien (no_empty_cells is false). is applies to empty cells which do not contain
shapes for the specified layers as well as cells which are empty because they reference empty cells only.

Input: true Write none empty cells only.
false Write all cells. e default.

13.63.36 [const] integer oasis_compression_level
Get the OASIS compression level.

See oasis_compression_level= method for a description of the OASIS compression level.

Return: integer e OASIS compression level.

13.63.37 oasis_compression_level=(integer)
Set the OASIS compression level.

e OASIS compression level is an integer number between 0 and 10. 0 basically is no compression, 1
produces shape arrays in a simple fashion. 2 and higher compression levels will use a more elaborate
algorithm to find shape arrays which uses 2ⁿᵈ and further neighbor distances. e higher the level, the
higher the memory requirements and run times. Seing this property clears all format specific options for
other formats such as GDS.

Input: integer e OASIS compression level.

KLayout Version 0.21 463

Chapter 13. RBA Reference 13.63. Class SaveLayoutOptions (version 0.21)

13.63.38 [const] double scale_factor
Get the scaling factor currently set.

Return: double e current scaling factor.

13.63.39 scale_factor=(double)
Set the scaling factor for the saving .

Using a scaling factor will scale all objects accordingly. Using a scaling factor can compensate implicit
scaling by an explicit database unit specification. Seing and scale factor plus an explicit database unit thus
allows to transcribe a layout to a different database unit without changing the layout’s physical dimensions
(beside potential grid snapping effects).

Be aware that rounding effects may occur if fractional scaling factors are used which are not compliant
with any implicit layout grid.

By default, no scaling is applied.

Input: double e current scaling factor.

13.63.40 select_all_cells
Select all cells to save.

is method will clear all cells specified with add_cell so far and set the select_all_cells flag.

is is the default.

13.63.41 select_all_layers
Select all layers to be saved.

is method will clear all layers selected with add_layer so far and set the select_all_cells flag.

is is the default.

13.63.42 [const] unsigned wire_mode
Specifies how to read “W” objects.

See cif_wire_mode= method for a description of this mode.

is property has been added in version 0.21.

464 Version 0.21 KLayout

Chapter 13. RBA Reference 13.63. Class Shape (version 0.21)

13.64 Class Shape (version 0.21)
A shape proxy .

e shape proxy is basically a pointer to a shape of different kinds. No copy of the shape is created: if the
shape proxy is copied the copy still points to the original shape. If the original shape is modified or deleted,
the shape proxy will also point to a modified or invalid shape. e proxy can be ”null” which describes an
invalid reference.

Method Overview

prop_id Get the properties Id associated with the shape.
has_prop_id? Check, if the shape is associated with a properties Id.
each_point Iterate over all points of the object.
each_point_hull Iterate over the hull contour of the object.
each_point_hole Iterate over the points of a hole contour.
holes Return the number of holes.
each_edge Iterate over the edges of the object.
type Return the type of the shape reference.
is_null? Test if the shape proxy is a null object.
is_polygon? Test if the shape proxy points to a polygon.
polygon Instantiate the polygon object.
is_simple_polygon? Test if the shape proxy points to a simple polygon.
simple_polygon Instantiate the simple polygon object.
is_path? Test if the shape proxy points to a path.
path_width Obtain the path width.
round_path? Returns true, if the path has round ends.
path_bgnext Obtain the path’s ”begin” extension.
path_endext Obtain the path’s ”end” extension.
path Instantiate the path object.
is_edge? Test if the shape proxy points to a edge.
edge Instantiate the edge object.
is_text? Test if the shape proxy points to a text.
text Instantiate the text object.
text_string Obtain the text string.
text_trans Obtain the text transformation.
text_size Obtain the text size.
text_font Obtain the text’s font.
is_box? Test if the shape proxy points to a box.
box Instantiate the box object.
is_user_object? Test if the shape proxy points to a user object.
is_array_member? Returns true, if the shape referenced is a member of a shape array.
array_trans Get the array instance member transformation.
bbox Compute the bounding box of the shape that is referenced.
!= Inequality.
== Equality.
to_s Create a string showing the contents of the reference.
t_… Various type constant.

t_null “t_null” constant.
t_polygon “t_polygon” constant.
t_polygon_ref “t_polygon_re” constant.
t_polygon_ptr_array “t_polygon_ptr_array” constant.
t_polygon_ptr_array_member “t_polygon_ptr_array_member” constant.
t_simple_polygon “t_simple_polygon” constant.

KLayout Version 0.21 465

Chapter 13. RBA Reference 13.64. Class Shape (version 0.21)

t_simple_polygon_ref “t_simple_polygon_re” constant.
t_simple_polygon_ptr_array “t_simple_polygon_ptr_array_member” constant.
t_simple_polygon_ptr_array_member “t_simple_polygon_ptr_array_member” constant.
t_edge “t_edge” constant.
t_path “t_path” constant.
t_path_ref “t_path_re” constant.
t_path_ptr_array “t_path_ptr_array” constant.
t_path_ptr_array_member “t_path_ptr_array_member” constant.
t_box “t_box” constant.
t_box_array “t_box_array” constant.
t_box_array_member “t_box_array_member” constant.
t_short_box “t_shor“t_box” constant.
t_short_box_array “t_shor“t_box_array” constant.
t_short_box_array_member “t_shor“t_box_array_member” constant.
t_text “t_text” constant.
t_text_ref “t_text_re” constant.
t_text_ptr_array “t_text_ptr_array” constant.
t_text_ptr_array_member “t_text_ptr_array_member” constant.
t_user_object “t_user_object” constant.

assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.64.1 [const] boolean !=
Inequality test.

Return: true Inequality.
false ⁇?.

13.64.2 [const] boolean ==
Equality test.

Equality of shapes is not specified by the identity of the objects but by the identity of the pointers - both
shapes must reference the same object.

Return: true Equality.
false ⁇?.

13.64.3 [const] const ref Referencessec:Trans array_trans
Get the array instance member transformation.

is aribute is valid only if Referencessec:Shapeis-array-member? is true. e transformation returned
describes the relative transformation of the array member addressed.

13.64.4 assign(Shape other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

466 Version 0.21 KLayout

Chapter 13. RBA Reference 13.64. Class Shape (version 0.21)

13.64.5 [const] Box bbox
Compute the bounding box of the shape that is referenced.

Return: Box e bounding box.

13.64.6 [const] Box box
Instantiate the box object.

If a box is referenced, this object is instantiated by this method.

13.64.7 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.64.8 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.64.9 [const] Shape dup
Creates a copy of self.

Return: Shape e copy of self.

13.64.10 yield Edge each_edge
Iterate over the edges of the object.

is method applies to polygons and simple polygons.

Return: yield e array of the edges.

13.64.11 [const] yield Point each_point
Iterate over all points of the object.

is method applies to paths.

Return: yield e array of all points.

13.64.12 [const] yield Point each_point_hole(unsigned)
Iterate over the points of a hole contour.

is method applies to polygons. Simple polygons deliver an empty sequence.

Input: unsigned e hole index. Simple polygons deliver a zero value.

KLayout Version 0.21 467

Chapter 13. RBA Reference 13.64. Class Shape (version 0.21)

13.64.13 [const] yield Point each_point_hull
Iterate over the hull contour of the object.

is method applies to polygons.

Return: yield e array of the hull contour of the object.

13.64.14 [const] Edge edge
Instantiate the edge object.

If an edge is referenced, this object is instantiated by this method.

13.64.15 [const] boolean has_prop_id?
Check, if the shape is associated with a properties Id.

Return: true e shape is associated with a properties Id.
false Otherwise.

13.64.16 [const] unsigned holes
Return the number of holes.

is method applies to polygons.

Return: unsigned e hole index. Simple polygons deliver a zero value.

13.64.17 [const] boolean is_array_member?
Returns true, if the shape referenced is a member of a shape array.

Return: true e referenced shape is a member of a shape array.
false e referenced shape is not a member of a shape array.

13.64.18 [const] boolean is_box?
Test if the shape proxy points to a box.

Return: true e referenced shape points to a box.
false e referenced shape points not to a box.

13.64.19 [const] boolean is_edge?
Test if the shape proxy points to a edge.

Return: true e referenced shape points to an edge.
false e referenced shape points not to an edge.

13.64.20 [const] boolean is_null?
Test if the shape proxy is a null object.

Return: true e referenced shape is a null object.
false e referenced shape is a not null object.

468 Version 0.21 KLayout

Chapter 13. RBA Reference 13.64. Class Shape (version 0.21)

13.64.21 [const] boolean is_path?
Test if the shape proxy points to a path.

Return: true e referenced shape points to a path.
false e referenced shape points not to a path.

13.64.22 [const] boolean is_polygon?
Test if the shape proxy points to a polygon.

Return: true e referenced shape points to a polygon.
false e referenced shape points not to a polygon.

13.64.23 [const] boolean is_simple_polygon?
Test if the shape proxy points to a simple polygon.

Return: true e referenced shape points to a simple polygon.
false e referenced shape points not to a simple polygon.

13.64.24 [const] boolean is_text?
Test if the shape proxy points to a text.

Return: true e referenced shape points to a text.
false e referenced shape points not to a text.

13.64.25 [const] boolean is_user_object?
Test if the shape proxy points to a user object.

Return: true e referenced shape points to a user object.
false e referenced shape points not to a user object.

13.64.26 [const] Path path
Instantiate the path object.

If a path is referenced, this object is instantiated by this method.

13.64.27 [const] integer path_bgnext
Obtain the path’s ”begin” extension.

Applies to paths only.

Return: integer e ”begin” extension of the path.

13.64.28 [const] integer path_endext
Obtain the path’s ”end” extension.

Applies to paths only.

Return: integer e ”end” extension of the path.

KLayout Version 0.21 469

Chapter 13. RBA Reference 13.64. Class Shape (version 0.21)

13.64.29 [const] integer path_width
Obtain the path width.

Applies to paths only.

Return: integer e width of the path.

13.64.30 [const] Polygon polygon
Instantiate the polygon object.

If a polygon is referenced, this object is instantiated by this method. Paths and boxes are converted to
polygons.

13.64.31 [const] unsigned prop_id
Get the properties Id associated with the shape.

Return: unsigned e properties ID.

13.64.32 [const] boolean round_path?
Returns true, if the path has round ends.

Applies to paths only.

Return: true e path has round ends.
false ⁇?.

13.64.33 [const] SimplePolygon simple_polygon
Instantiate the simple polygon object.

If a simple polygon is referenced, this object is instantiated by this method. Paths and boxes are converted
to polygons.

13.64.34 [static] integer t_…
Various type constant.

13.64.34.1 [static] integer t_box – “t_box” constant.

Return: integer e “t_box” constant.

13.64.34.2 [static] integer t_box_array – “t_box_array” constant.

Return: integer e “t_box_array” constant.

13.64.34.3 [static] integer t_box_array_member – “t_box_array_member” constant.

Return: integer e “t_box_array_member” constant.

13.64.34.4 [static] integer t_edge – “t_edge” constant.

Return: integer e “t_edge” constant.

470 Version 0.21 KLayout

Chapter 13. RBA Reference 13.64. Class Shape (version 0.21)

13.64.34.5 [static] integer t_null – “t_null” constant.

Return: integer e “t_null” constant.

13.64.34.6 [static] integer t_path – “t_path” constant.

Return: integer e “t_path” constant.

13.64.34.7 [static] integer t_path_ptr_array – “t_path_ptr_array” constant.

Return: integer e “t_path_ptr_array” constant.

13.64.34.8 [static] integer t_path_ptr_array_member – “t_path_ptr_array_member” constant.

Return: integer e “t_path_ptr_array_member” constant.

13.64.34.9 [static] integer t_path_ref – “t_path_ref” constant.

Return: integer e “t_path_re” constant.

13.64.34.10 [static] integer t_polygon – “t_polygon” constant.

Return: integer e “t_polygon” constant.

13.64.34.11 [static] integer t_polygon_ptr_array – “t_polygon_ptr_array” constant.

Return: integer e “t_polygon_ptr_array” constant.

13.64.34.12 [static] integer t_polygon_ptr_array_member – “t_polygon_ptr_array_member” con-
stant.

Return: integer e “t_polygon_ptr_array_member” constant.

13.64.34.13 [static] integer t_polygon_ref – “t_polygon_ref” constant.

Return: integer e “t_polygon_re” constant.

13.64.34.14 [static] integer t_short_box – “t_short_box” constant.

Return: integer e “t_short_box” constant.

13.64.34.15 [static] integer t_short_box_array – “t_short_box_array” constant.

Return: integer e “t_short_box_array” constant.

13.64.34.16 [static] integer t_short_box_array_member – “t_short_box_array_member” constant.

Return: integer e “t_short_box_array_member” constant.

KLayout Version 0.21 471

Chapter 13. RBA Reference 13.64. Class Shape (version 0.21)

13.64.34.17 [static] integer t_simple_polygon – “t_simple_polygon” constant.

Return: integer e “t_simple_polygon” constant.

13.64.34.18 [static] integer t_simple_polygon_ptr_array – “t_simple_polygon_ptr_array” con-
stant.

Return: integer e “t_simple_polygon_ptr_array” constant.

13.64.34.19 [static] integer t_simple_polygon_ptr_array_member – “t_simple_polygon_ptr_ar-
ray_member” constant.

Return: integer e “t_simple_polygon_ptr_array_member” constant.

13.64.34.20 [static] integer t_simple_polygon_ref – “t_simple_polygon_ref” constant.

Return: integer e “t_simple_polygon_re” constant

13.64.34.21 [static] integer t_text – “t_text” constant.

Return: integer e “t_text” constant.

13.64.34.22 [static] integer t_text_ptr_array – “t_text_ptr_array” constant.

Return: integer e “t_text_ptr_array” constant.

13.64.34.23 [static] integer t_text_ptr_array_member – “t_text_ptr_array_member” constant.

Return: integer e “t_text_ptr_array_member” constant.

13.64.34.24 [static] integer t_text_ref – “t_text_ref” constant.

Return: integer e “t_text_re” constant.

13.64.34.25 [static] integer t_user_object – “t_user_object” constant.

Return: integer e “t_user_object” constant.

13.64.35 [const] Text text
Instantiate the text object.

If a text is referenced, this object is instantiated by this method.

13.64.36 [const] integer text_font
Obtain the text’s font.

Applies to texts only. Will throw an exception if not a text.

Return: integer e font of the text object.

472 Version 0.21 KLayout

Chapter 13. RBA Reference 13.64. Class Shape (version 0.21)

13.64.37 [const] integer text_size
Obtain the text size.

Applies to texts only. Will throw an exception if not a text.

Return: integer e size of the text object.

13.64.38 [const] string text_string
Obtain the text string.

Applies to texts only. Will throw an exception if not a text.

Return: string e string of the text object.

13.64.39 [const] Trans text_trans
Obtain the text transformation.

Applies to texts only. Will throw an exception if not a text.

Return: Trans e text transformation.

13.64.40 [const] string to_s
Create a string showing the contents of the reference.

is method has been introduced with version 0.16.

Return: string A string showing the contents of the reference.

13.64.41 [const] integer type
Return the type of the shape reference.

Return: integer e returned values are the “t_…” constants available through the correspond-
ing class members.

KLayout Version 0.21 473

Chapter 13. RBA Reference 13.64. Class ShapeProcessor (version 0.21)

13.65 Class ShapeProcessor (version 0.21)
e shape processor (boolean, sizing, merge on shapes).

e shape processor implements the boolean and edge set operations (size, merge). Because the shape
processor might allocate resources which can be reused in later operations, it is implemented as an object
that can be used several times. e shape processor is similar to the EdgeProcessor. e laer is specialized
on handling polygons and edges directly.

Method Overview

merge Merge the given shapes from a layout into a shapes container.
boolean Boolean operation on shapes from layouts.
size Sizing operation on shapes from layouts.
size Sizing operation on shapes from layouts.
merge Merge the given shapes.
merge_to_polygon Merge the given shapes.
merge Merge the given shapes.
merge_to_polygon Merge the given shapes.
boolean Boolean operation on two given shape sets into an edge set.
boolean_to_polygon Boolean operation on two given shape sets into a polygon set.
boolean Boolean operation on two given shape sets into an edge set.
boolean_to_polygon Boolean operation on two given shape sets into a polygon set.
size Size the given shapes.
size Size the given shapes.
size_to_polygon Size the given shapes.
size_to_polygon Size the given shapes.
size Size the given shapes.
size Size the given shapes.
size_to_polygon Size the given shapes.
size_to_polygon Size the given shapes.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.65.1 assign(ShapeProcessor other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.65.2 boolean(Layout layout_a, Cell cell_a, unsigned layer_a, Layout layout_b, Cell
cell_b, unsigned layer_b, ref Shapes out, mode, hierarchical, resolve_holes, co-
herence)
Boolean operation on shapes from layouts.

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes from
layout cells (optionally all in hierarchy) and produces new shapes in a shapes container.

474 Version 0.21 KLayout

Chapter 13. RBA Reference 13.65. Class ShapeProcessor (version 0.21)

Input: layout_a e layout from which to take the shapes for input A.
cell_a e cell (in “layout”) from which to take the shapes for input A.
layer_a e layer (in “layout”) from which to take the shapes for input A.
layout_b e layout from which to take the shapes for input B.
cell_b e cell (in “layout”) from which to take the shapes for input B.
layer_b e layer (in “layout”) from which to take the shapes for input B.
out e shapes container where to put the shapes into (is cleared before).
mode e boolean operation (see EdgeProcessor).
hierarchical If true: Collect shapes from sub cells as well.
resolve_holes If true: Holes should be resolved into the hull.
coherence If true: Minimum polygons should be created for touching corners.

13.65.3 Edge[] boolean(Shape in_a[], CplxTrans trans_a[], Shape in_b[], CplxTrans
trans_b[], mode)
Boolean operation on two given shape sets into an edge set with transforma-
tion.

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an edge set.

Input: in_a[] e set of shapes to use for input A.
trans_a[] A set of transformations to apply before the shapes from input A are used.
in_b[] e set of shapes to use for input B.
trans_b[] A set of transformations to apply before the shapes from input B are used.
mode e boolean operation (see EdgeProcessor).

Return: Edge[] e produced edge set.

13.65.4 Edge[] boolean(Shape in_a[], Shape in_b[], mode)
Boolean operation on two given shape sets into an edge set.

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an edge set.

is version does not allow to specify a transformation for each shape (unity is assumed).

Input: in_a[] e set of shapes to use for input A.
in_b[] e set of shapes to use for input B.
mode e boolean operation (see EdgeProcessor).

Return: Edge[] e produced edge set.

13.65.5 Polygon[] boolean_to_polygon(Shape in_a[], CplxTrans trans_a[], Shape in_-
b[], CplxTrans trans_b[], mode)
Boolean operation on two given shape sets into a polygon set with transforma-
tion.

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces a polygon set.

KLayout Version 0.21 475

Chapter 13. RBA Reference 13.65. Class ShapeProcessor (version 0.21)

Input: in_a[] e set of shapes to use for input A.
trans_a[] A set of transformations to apply before the shapes from input A are used.
in_b[] e set of shapes to use for input B.
trans_b[] A set of transformations to apply before the shapes from input B are used.
mode e boolean operation (see EdgeProcessor).

Return: Polygon[] e produced polygon set.

13.65.6 Polygon[] boolean_to_polygon(Shape in_a[], Shape in_b[], mode)
Boolean operation on two given shape sets into an edge set.

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an edge set.

is version does not allow to specify a transformation for each shape (unity is assumed).

Input: in_a[] e set of shapes to use for input A.
in_b[] e set of shapes to use for input B.
mode e boolean operation (see EdgeProcessor).

Return: Polygon[] e produced polygon set.

13.65.7 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.65.8 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.65.9 [const] ShapeProcessor dup
Creates a copy of self.

Return: ShapeProcessor e copy of self.

13.65.10 Edge[] merge(Shape in[], CplxTrans trans[], unsigned min_wc)
Merge the given shapes.

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an edge set.

Input: in[] e set of shapes to merge.
trans[] A set of transformations to apply before the shapes are used.
min_wc e minimum wrap count for output (0: all polygons, 1: at least two overlap-

ping).
Return: Edge[] e produced edge set.

476 Version 0.21 KLayout

Chapter 13. RBA Reference 13.65. Class ShapeProcessor (version 0.21)

13.65.11 Edge[] merge(Shape in[], unsigned min_wc)
Merge the given shapes.

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an edge set.

is version does not allow to specify a transformation for each shape (unity is assumed).

Input: in[] e set of shapes to merge.
min_wc e minimum wrap count for output (0: all polygons, 1: at least two overlap-

ping).
Return: Edge[] e produced edge set.

13.65.12 merge(Layout layout, Cell cell, unsigned layer, ref Shapes out, hierarchical,
unsigned min_wc, resolve_holes, coherence)
Boolean operation on shapes from layouts.

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes from
layout cells (optionally all in hierarchy) and produces new shapes in a shapes container.

Input: layout e layout from which to take the shapes for input A.
cell e cell (in “layout”) from which to take the shapes for input A.
layer e layer (in “layout”) from which to take the shapes for input A.
out e shapes container where to put the shapes into (is cleared before).
hierarchical If true: Collect shapes from sub cells as well.
min_wc e minimum wrap count for output (0: all polygons, 1: at least two overlap-

ping).
resolve_holes If true: Holes should be resolved into the hull.
coherence If true: Minimum polygons should be created for touching corners.

13.65.13 Polygon[] merge_to_polygon(Shape in[], CplxTrans trans[], unsigned min_-
wc, resolve_holes, coherence)
Merge the given shapes with transformation.

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces a polygon set.

Input: in[] e set of shapes to merge.
trans[] A set of transformations to apply before the shapes are used.
min_wc e minimum wrap count for output (0: all polygons, 1: at least two overlap-

ping).
resolve_holes If true: Holes should be resolved into the hull.
coherence If true: Minimum polygons should be created for touching corners.

Return: Polygon[] e produced polygon set.

13.65.14 Polygon[] merge_to_polygon(Shape in[], CplxTrans trans[], unsigned min_-
wc, resolve_holes, coherence)
Merge the given shapes.

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces a polygon set.

is version does not allow to specify a transformation for each shape (unity is assumed).

KLayout Version 0.21 477

Chapter 13. RBA Reference 13.65. Class ShapeProcessor (version 0.21)

Input: in[] e set of shapes to merge.
min_wc e minimum wrap count for output (0: all polygons, 1: at least two overlap-

ping).
resolve_holes If true: Holes should be resolved into the hull.
coherence If true: Minimum polygons should be created for touching corners.

Return: Polygon[] e produced polygon set.

13.65.15 size(Layout layout, Cell cell, unsigned layer, ref Shapes out, dx, dy, unsigned
mode, hierarchical, resolve_holes, coherence)
Sizing operation on shapes from layouts (anisotropic).

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes from
a layout cell (optionally all in hierarchy) and produces new shapes in a shapes container.

Input: layout e layout from which to take the shapes for input A.
cell e cell (in “layout”) from which to take the shapes for input A.
layer e layer (in “layout”) from which to take the shapes for input A.
out e shapes container where to put the shapes into (is cleared before).
dx e sizing value in x-direction (see EdgeProcessor).
dy e sizing value in y-direction (see EdgeProcessor).
mode e boolean operation (see EdgeProcessor).
hierarchical If true: Collect shapes from sub cells as well.
resolve_holes If true: Holes should be resolved into the hull.
coherence If true: Minimum polygons should be created for touching corners.

13.65.16 size(Layout layout,Cell cell, unsigned layer, ref Shapes out, d, unsignedmode,
hierarchical, resolve_holes, coherence)
Sizing operation on shapes from layouts (isotropic).

See the EdgeProcessor for a description of the boolean operations. is implementation takes is im-
plementation takes shapes from a layout cell (optionally all in hierarchy) and produces new shapes in a
shapes container. is is the isotropic version which does not allow to specify different sizing values in x
and y-direction.

Input: layout e layout from which to take the shapes for input A.
cell e cell (in “layout”) from which to take the shapes for input A.
layer e layer (in “layout”) from which to take the shapes for input A.
out e shapes container where to put the shapes into (is cleared before).
d e sizing value in x-direction (see EdgeProcessor).
mode e boolean operation (see EdgeProcessor).
hierarchical If true: Collect shapes from sub cells as well.
resolve_holes If true: Holes should be resolved into the hull.
coherence If true: Minimum polygons should be created for touching corners.

13.65.17 Edge[] size(Shape in[], CplxTrans trans[], dx, dy, unsigned mode)
Size the given shapes with transformation (anisotropic).

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an edge set.

478 Version 0.21 KLayout

Chapter 13. RBA Reference 13.65. Class ShapeProcessor (version 0.21)

Input: in[] e set of shapes to size.
trans[] A set of transformations to apply before the shapes are used.
dx e sizing value in x-direction (see EdgeProcessor).
dy e sizing value in y-direction (see EdgeProcessor).
mode e boolean operation (see EdgeProcessor).

Return: Edge[] e produced edge set.

13.65.18 Edge[] size(Shape in[], dx, dy, unsigned mode)
Size the given shapes (anisotropic).

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an edge set.

is version does not allow to specify a transformation for each shape (unity is assumed).

Input: in[] e set of shapes to size.
dx e sizing value in x-direction (see EdgeProcessor).
dy e sizing value in y-direction (see EdgeProcessor).
mode e boolean operation (see EdgeProcessor).

Return: Edge[] e produced edge set.

13.65.19 Edge[] size(Shape in[], CplxTrans trans[], d, unsigned mode)
Size the given shapes with transformation (isotropic).

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an edge set.

Input: in[] e set of shapes to size.
trans[] A set of transformations to apply before the shapes are used.
d e sizing value (see EdgeProcessor).
mode e boolean operation (see EdgeProcessor).

Return: Edge[] e produced edge set.

13.65.20 Edge[] size(Shape in[], d, unsigned mode)
Size the given shapes (isotropic).

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an edge set. is is isotropic version that does not allow to specify
different values in x and y direction.

is version does not allow to specify a transformation for each shape (unity is assumed).

Input: in[] e set of shapes to size.
d e sizing value (see EdgeProcessor).
mode e boolean operation (see EdgeProcessor).

Return: Edge[] e produced edge set.

13.65.21 Polygon size_to_polygon(Shape in[],CplxTrans trans[], dx, dy, unsignedmode,
resolve_holes, coherence)
Size the given shapes with transformation (anisotropic).

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an polygon set.

KLayout Version 0.21 479

Chapter 13. RBA Reference 13.65. Class ShapeProcessor (version 0.21)

Input: in[] e set of shapes to size.
trans[] A set of transformations to apply before the shapes are used.
dx e sizing value in x-direction (see EdgeProcessor).
dy e sizing value in y-direction (see EdgeProcessor).
mode e boolean operation (see EdgeProcessor).
resolve_holes If true: Holes should be resolved into the hull.
coherence If true: Minimum polygons should be created for touching corners.

Return: Polygon[] e produced polygon set.

13.65.22 Polygon[] size_to_polygon(Shape in[], dx, dy, unsignedmode, resolve_holes,
coherence)
Size the given shapes (anisotropic).

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an polygon set.

is version does not allow to specify a transformation for each shape (unity is assumed).

Input: in[] e set of shapes to size.
dx e sizing value in x-direction (see EdgeProcessor).
dy e sizing value in y-direction (see EdgeProcessor).
mode e boolean operation (see EdgeProcessor).
resolve_holes If true: Holes should be resolved into the hull.
coherence If true: Minimum polygons should be created for touching corners.

Return: Polygon[] e produced polygon set.

13.65.23 Polygon[] size_to_polygon(Shape in[], CplxTrans trans[], d, unsigned mode,
resolve_holes, coherence)
Size the given shapes with transformation (isotropic).

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes rather
than polygons for input and produces an polygon set.

Input: in[] e set of shapes to size.
trans[] A set of transformations to apply before the shapes are used.
d e sizing value (see EdgeProcessor).
mode e boolean operation (see EdgeProcessor).
resolve_holes If true: Holes should be resolved into the hull.
coherence If true: Minimum polygons should be created for touching corners.

Return: Polygon[] e produced polygon set.

13.65.24 Polygon[] size_to_polygon(Shape in[], d, unsigned mode, resolve_holes, co-
herence)
Size the given shapes (isotropic).

See the EdgeProcessor for a description of the boolean operations. is implementation takes shapes
rather than polygons for input and produces an polygon set. is is isotropic version that does not allow
to specify different values in x and y direction.

is version does not allow to specify a transformation for each shape (unity is assumed).

480 Version 0.21 KLayout

Chapter 13. RBA Reference 13.65. Class ShapeProcessor (version 0.21)

Input: in[] e set of shapes to size.
d e sizing value (see EdgeProcessor).
mode e boolean operation (see EdgeProcessor).
resolve_holes If true: Holes should be resolved into the hull.
coherence If true: Minimum polygons should be created for touching corners.

Return: Polygon[] e produced polygon set.

KLayout Version 0.21 481

Chapter 13. RBA Reference 13.65. Class Shapes (version 0.21)

13.66 Class Shapes (version 0.21)
A collection of shapes.

A shapes collection is a collection of geometrical objects, such as polygons, boxes, paths, edges or text
objects.

Method Overview

insert Insert a shape from a shape reference into the shapes list.
transform Transform the shape given by the reference with the given transformation.
transform Transform the shape given by the reference with the given complex transfor-

mation.
replace Replace the given shape with a box.
replace Replace the given shape with a path.
replace Replace the given shape with an edge object.
replace Replace the given shape with a text object.
replace Replace the given shape with a simple polygon.
replace Replace the given shape with a polygon.
insert Insert a box into the shapes list.
insert Insert a path into the shapes list.
insert Insert a edge into the shapes list.
insert Insert a text into the shapes list.
insert Insert a simple polygon into the shapes list.
insert Insert a polygon into the shapes list.
insert Insert a box with properties into the shapes list.
insert Insert a path with properties into the shapes list.
insert Insert a edge with properties into the shapes list.
insert Insert a text with properties into the shapes list.
insert Insert a simple polygon with properties into the shapes list.
insert Insert a polygon with properties into the shapes list.
each Get all shapes.
each Get all shapes.
each_touching Get all shapes that touch the search box (region).
each_touching Get all shapes that touch the search box (region).
each_overlapping Get all shapes that overlap the search box (region).
each_overlapping Get all shapes that overlap the search box (region).
erase Erase the shape pointed to by the given Shape object.
is_valid? Test if the given Shape object is still pointing to a valid object.
is_empty? Returns a value indicating whether the shapes container is empty.
clear Clear the shape container.
size Report the number of shapes in this container.
replace_prop_id Replace (or install) the properties of a shape.
s_all “s_all” constant.
s_all_with_properties “s_all_with_properties” constant.
s_polygons “s_polygons” constant.
s_boxes “s_boxes” constant.
s_edges “s_edges” constant.
s_paths “s_paths” constant.
s_texts “s_texts” constant.
s_user_objects “s_user_objects” constant.
s_properties “s_properties” constant.
assign Assign the contents of another object to self.
dup Creates a copy of self.

482 Version 0.21 KLayout

Chapter 13. RBA Reference 13.66. Class Shapes (version 0.21)

destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.66.1 assign(Shapes other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.66.2 clear
Clear the shape container.

is method can only be used in editable mode.

is method has been introduced in version 0.16.

13.66.3 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.66.4 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.66.5 [const] Shapes dup
Creates a copy of self.

Return: Shapes e copy of self.

13.66.6 [const] yield Shape each(unsigned)
Get all shapes.

Input: unsigned An ”or”-ed combination of the s_… constants.
Return: Shape An array of shapes.

13.66.7 [const] yield Shape each
Get all shapes.

is call is equivalent to each(s_all).

is convenience method has been introduced in version 0.16.

Return: Shape An array of shapes.

KLayout Version 0.21 483

Chapter 13. RBA Reference 13.66. Class Shapes (version 0.21)

13.66.8 [const] yield Shape each_overlapping(Box region)
Get all shapes that overlap the search box (region).

is call is equivalent to each_overlapping(s_all,region).

is convenience method has been introduced in version 0.16.

Input: region e rectangular search region.
Return: Shape An array of shapes.

13.66.9 [const] yield Shape each_overlapping(unsigned, Box region)
Get all shapes that overlap the search box (region).

is convenience method has been introduced in version 0.16.

Input: unsigned An ”or”-ed combination of the s_… constants.
region e rectangular search region.

Return: Shape An array of shapes.

13.66.10 [const] yield Shape each_touching(Box region)
Get all shapes that overlap the search box (region).

is call is equivalent to each_overlapping(s_all,region).

is convenience method has been introduced in version 0.16.

Input: region e rectangular search region.
Return: Shape An array of shapes.

13.66.11 [const] yield Shape each_touching(unsigned, Box region)
Get all shapes that overlap the search box (region).

is convenience method has been introduced in version 0.16.

Input: unsigned An ”or”-ed combination of the s_… constants.
region e rectangular search region.

Return: Shape An array of shapes.

13.66.12 erase(Shape shape)
Erase the shape pointed to by the given Shape object.

is method can only be used in editable mode.

is method has been introduced in version 0.16.

Input: shape e shape which to destroy. Erasing a shape will invalidate the shape reference.
Access to this reference may then render invalid results.

13.66.13 namerefsec:Shape insert(namerefsec:Shape shape)
Insert a shape from a shape reference into the shapes list.

is method has been introduced in version 0.16.

Input: shape e shape object.
Return: Shape A reference to the new shape (a Shape object).

484 Version 0.21 KLayout

Chapter 13. RBA Reference 13.66. Class Shapes (version 0.21)

13.66.14 Shape insert(Box box)
Insert a box into the shapes list.

A synonym for: Shape insert_box(Box box).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: box e box object.
Return: Shape A reference to the new shape (a Shape object).

13.66.15 Shape insert(Box box, unsigned)
Insert a box with properties into the shapes list.

A synonym for: Shape insert_box_with_properties(Box box, unsigned).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: box e box object with properties.
unsigned e property ID which must be obtained from the Layout object’s property_id

method. is associates a property set with a property Id.
Return: Shape A reference to the new shape (a Shape object).

13.66.16 Shape insert(Edge edge)
Insert an edges into the shapes list.

A synonym for: Shape insert_edge(Edge edge, unsigned).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: edge e edge object with properties.
Return: Shape A reference to the new shape (a Shape object).

13.66.17 Shape insert(Edge edge, unsigned)
Insert an edge with properties into the shapes list.

A synonym for: Shape insert_edge_with_properties(Edge edge, unsigned).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: edge e edge object with properties.
unsigned e property ID which must be obtained from the Layout object’s property_id

method. is associates a property set with a property Id.
Return: Shape A reference to the new shape (a Shape object).

13.66.18 Shape insert(Path path)
Insert a path into the shapes list.

A synonym for: Shape insert_path(Path path).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: path e path object with properties.
Return: Shape A reference to the new shape (a Shape object).

KLayout Version 0.21 485

Chapter 13. RBA Reference 13.66. Class Shapes (version 0.21)

13.66.19 Shape insert(Path path, unsigned)
Insert a path with properties into the shapes list.

A synonym for: Shape insert_path_with_properties(Path path, unsigned).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: path e path object with properties.
unsigned e property ID which must be obtained from the Layout object’s property_id

method. is associates a property set with a property Id.
Return: Shape A reference to the new shape (a Shape object).

13.66.20 Shape insert(Polygon polygon)
Insert a polygon into the shapes list.

A synonym for: Shape insert_polygon(Polygon polygon).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: polygon e polygon object.
Return: Shape A reference to the new shape (a Shape object).

13.66.21 Shape insert(Polygon polygon, unsigned)
Insert a polygon with properties into the shapes list.

A synonym for: Shape insert_polygon_with_properties(Polygon polygon, unsigned).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: polygon e polygon object with properties.
unsigned e property ID which must be obtained from the Layout object’s property_id

method. is associates a property set with a property Id.
Return: Shape A reference to the new shape (a Shape object).

13.66.22 Shape insert(SimplePolygon simple_polygon)
Insert a simple polygon into the shapes list.

A synonym for: Shape insert_simple_polygon(SimplePolygon simple_polygon).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: simple_polygon e simple polygon object with properties.
Return: Shape A reference to the new shape (a Shape object).

13.66.23 Shape insert(SimplePolygon simple_polygon, unsigned)
Insert a simple polygon with properties into the shapes list.

A synonym for: Shape insert_simple_polygon_with_properties(SimplePolygon simple_polygon, unsigned
).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: simple_polygon e simple polygon object with properties.
unsigned e property ID which must be obtained from the Layout object’s property_id

method. is associates a property set with a property Id.
Return: Shape A reference to the new shape (a Shape object).

486 Version 0.21 KLayout

Chapter 13. RBA Reference 13.66. Class Shapes (version 0.21)

13.66.24 Shape insert(Text text)
Insert a text into the shapes list.

A synonym for: Shape insert_text (Text text).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: text e text object.
Return: Shape A reference to the new shape (a Shape object).

13.66.25 Shape insert(Text text, unsigned)
Insert a text with properties into the shapes list.

A synonym for: Shape insert_text_with_properties (Text text, unsigned).

Starting with version 0.16, this method returns a reference to the newly created shape.

Input: text e text object.
unsigned e property ID which must be obtained from the Layout object’s property_id

method. is associates a property set with a property Id.
Return: Shape A reference to the new shape (a Shape object).

13.66.26 [const] boolean is_empty?
Returns a value indicating whether the shapes container is empty.

is method has been introduced in version 0.20.

Return: true An empty object.
false A none empty object.

13.66.27 [const] boolean is_valid?(Shape shape)
Test if the given Shape object is still pointing to a valid object.

is method has been introduced in version 0.16.

Return: true A valid object.
e shape represented by the given reference has been deleted, but another
shape has been inserted already that occupies the original shape’s position.

false e shape represented by the given reference has been deleted.

13.66.28 Shape replace(Shape shape, Box box)
Replace the given shape with a box.

is method replaces the given shape with the object specified. It does not change the property Id. To
change the property Id, use the replace_prop_id method. To replace a shape and discard the property Id,
erase the shape and insert a new shape.

is method is permied in editable mode only.

is method has been introduced with version 0.16.

Input: shape e given shape to replace.
box e specified object.

Return: Shape A reference to the new shape (a Shape object).

KLayout Version 0.21 487

Chapter 13. RBA Reference 13.66. Class Shapes (version 0.21)

13.66.29 Shape replace(Shape shape, Edge edge)
Replace the given shape with an edge object.

is method replaces the given shape with the object specified. It does not change the property Id. To
change the property Id, use the replace_prop_id method. To replace a shape and discard the property Id,
erase the shape and insert a new shape.

is method is permied in editable mode only.

is method has been introduced with version 0.16.

Input: shape e given shape to replace.
edge e specified object.

Return: Shape A reference to the new shape (a Shape object).

13.66.30 Shape replace(Shape shape, Path path)
Replace the given shape with a path.

is method replaces the given shape with the object specified. It does not change the property Id. To
change the property Id, use the replace_prop_id method. To replace a shape and discard the property Id,
erase the shape and insert a new shape.

is method is permied in editable mode only.

is method has been introduced with version 0.16.

Input: shape e given shape to replace.
path e specified object.

Return: Shape A reference to the new shape (a Shape object).

13.66.31 Shape replace(Shape shape, Polygon polygon)
Replace the given shape with a polygon.

is method replaces the given shape with the object specified. It does not change the property Id. To
change the property Id, use the replace_prop_id method. To replace a shape and discard the property Id,
erase the shape and insert a new shape.

is method is permied in editable mode only.

is method has been introduced with version 0.16.

Input: shape e given shape to replace.
polygon e specified object.

Return: Shape A reference to the new shape (a Shape object).

13.66.32 Shape replace(Shape shape, SimplePolygon simple_polygon)
.

is method replaces the given shape with the object specified. It does not change the property Id. To
change the property Id, use the replace_prop_id method. To replace a shape and discard the property Id,
erase the shape and insert a new shape.

is method is permied in editable mode only.

is method has been introduced with version 0.16.

Input: shape e given shape to replace.
simple_polygon e specified object.

Return: Shape A reference to the new shape (a Shape object).

488 Version 0.21 KLayout

Chapter 13. RBA Reference 13.66. Class Shapes (version 0.21)

13.66.33 Shape replace(Shape shape, Text text)
Replace the given shape with a text object.

is method replaces the given shape with the object specified. It does not change the property Id. To
change the property Id, use the replace_prop_id method. To replace a shape and discard the property Id,
erase the shape and insert a new shape.

is method is permied in editable mode only.

is method has been introduced with version 0.16.

Input: shape e given shape to replace.
text e specified object.

Return: Shape A reference to the new shape (a Shape object).

13.66.34 Shape replace_prop_id(Shape shape, unsigned)
Replace (or install) the properties of a shape.

is method changes the properties Id of the given shape or install a properties Id on that shape if it does
not have one yet. e property Id must be obtained from the Layout object’s properties_id method which
associates a property set with a property Id. is method will potentially invalidate the shape reference
passed to it. Use the reference returned for future references. is method is permied in editable mode
only.

is method has been introduced with version 0.16.

Input: shape e given shape to replace.
unsigned e properties Id to change or install.

Return: Shape A reference to the new shape (a Shape object).

13.66.35 [static] unsigned s_all
“s_all” constant.

Return: unsigned .

13.66.36 [static] unsigned s_all_with_properties
“s_all_with_properties” constant.

Return: unsigned .

13.66.37 [static] unsigned s_boxes
“s_boxes” constant.

Return: unsigned .

13.66.38 [static] unsigned s_edges
“s_edges” constant.

Return: unsigned .

13.66.39 [static] unsigned s_paths
“s_paths” constant.

Return: unsigned .

KLayout Version 0.21 489

Chapter 13. RBA Reference 13.66. Class Shapes (version 0.21)

13.66.40 [static] unsigned s_polygons
“s_polygons” constant.

Return: unsigned .

13.66.41 [static] unsigned s_properties
“s_properties” constant.

Return: unsigned .

13.66.42 [static] unsigned s_texts
“s_texts” constant.

Return: unsigned .

13.66.43 [static] unsigned s_user_objects
“s_user_objects” constant.

Return: unsigned .

13.66.44 [const] unsigned size
Report the number of shapes in this container.

is method was introduced in version 0.16

Return: unsigned e number of shapes in this container.

13.66.45 Shape transform(Shape shape, Trans t)
Transform the shape given by the reference with the given transformation.

e original shape may be deleted and re-inserted by this method. erefore, a new reference is returned.

is method is permied in editable mode only.

is method has been introduced in version 0.16.

Input: shape e given shape to replace.
t e given transformation to perform.

Return: Shape A reference to the new shape (a Shape object).

13.66.46 Shape transform(Shape shape, CplxTrans t)
Transform the shape given by the reference with the given complex transfor-
mation.

e original shape may be deleted and re-inserted by this method. erefore, a new reference is returned.

is method is permied in editable mode only.

is method has been introduced in version 0.16.

Input: shape e given shape to replace.
t e given complex transformation to perform.

Return: Shape A reference to the new shape (a Shape object).

490 Version 0.21 KLayout

Chapter 13. RBA Reference 13.66. Class SimplePolygon (version 0.21)

13.67 Class SimplePolygon (version 0.21)
A polygon class with integer coordinates.

A simple polygon consists of an outer hull. e hull contour consists of several points. e point list is
normalized such that the lemost, lowest point is the first one. e orientation is normalized such that
the orientation of the hull contour is clockwise.

It is in no way checked that the contours are not over-lapping. is must be ensured by the user of the
object when filling the contours.

Method Overview

new Default constructor: creates an empty (invalid) polygon.
new Constructor given the points of the simple polygon.
new Constructor converting a box to a simple polygon.
== Equality test.
!= Inequality test.
points= Set the points of the simple polygon.
point Get a specific point of the contour@args p.
points Get the number of points.
each_point Iterate over the points that make up the simple polygon.
each_edge Iterate over the edges that make up the simple polygon.
inside Test, if the given point is inside the simple polygon.
compress Compress the simple polygon.
move Moves the simple polygon.
moved Returns the moved simple polygon.
transformed Transform the simple polygon.
transformed_cplx Transform the simple polygon with a complex transformation.
transformed_cplx Transform the simple polygon with a complex transformation.
to_s Convert to a string.
area e area of the polygon.
bbox Return the bounding box of the polygon.
from_dpoly Construct an integer coordinate polygon from a floating-point coordinate one.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.67.1 [const] boolean !=(SimplePolygon p)
Inequality test.

Input: p e object to compare against.
Return: true Inequality.

false ⁇?.

13.67.2 [const] boolean ==(SimplePolygon p)
Equality test.

Input: p e object to compare against.
Return: true e polygons are equal.

false ⁇?.

KLayout Version 0.21 491

Chapter 13. RBA Reference 13.67. Class SimplePolygon (version 0.21)

13.67.3 [const] long area
e area of the simple polygon.

e area is correct only if the polygon is not self-overlapping and oriented clockwise.

Return: long e area of the polygon.

13.67.4 assign(SimplePolygon other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.67.5 [const] const refBox bbox
Return the bounding box of the simple polygon.

Return: ⁇? e bounding box of the simple polygon.

13.67.6 compress(boolean)
Compress the simple polygon.

Removes redundant points from the polygon, such as points being on a line formed by two other points.

Input: true Additionally removes points if the two adjacent edges form a spike.
false Basic behavior.

13.67.7 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.67.8 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.67.9 [const] SimplePolygon dup
Creates a copy of self.

Return: SimplePolygon e copy of self.

13.67.10 yield Edge each_edge
Iterate over the edges that make up the simple polygon.

Return: yield An array of the edges that make up the simple polygon.

492 Version 0.21 KLayout

Chapter 13. RBA Reference 13.67. Class SimplePolygon (version 0.21)

13.67.11 [const] yield Point each_point(unsigned)
Iterate over the points that make up the simple polygon.

Return: yield An array of the points that make up the simple polygon.

13.67.12 [static] SimplePolygon from_dpoly(DSimplePolygon double_poly)
Construct a floating-point coordinate polygon from an integer coordinate
one.

is method has been added in version 0.15.

Input: double_poly e given integer coordinate simple polygon.
Return: SimplePolygon e resulting floating-point coordinate simple polygon.

13.67.13 [const] boolean inside(Point p)
Test, if the given point is inside the simple polygon.

is tests works well only if the polygon is not self-overlapping and oriented clockwise.

Input: true e given point is inside the polygon.
false e given point is outside the polygon.

13.67.14 ref SimplePolygon move(Point p)
Moves the polygon.

Moves the polygon by the given offset and returns the reference of the moved polygon. e polygon is
overwrien.

Input: p e distance to move the polygon.
Return: ref e reference of the moved polygon.

13.67.15 [const] SimplePolygon moved(Point p)
Returns the moved polygon.

Moves the polygon by the given offset and returns the moved simple polygon. e polygon is not modified.

Input: p e distance to move the polygon.
Return: SimplePolygon e moved polygon.

13.67.16 [static] SimplePolygon new
Default constructor: creates an empty (invalid) polygon.

13.67.17 [static] SimplePolygon new(Point p[])
Constructor given the points of the simple polygon.

A synonym for: [static] SimplePolygon new_p(Point p[]).

Input: p[] An array of points to insert as a new simple polygon.

KLayout Version 0.21 493

Chapter 13. RBA Reference 13.67. Class SimplePolygon (version 0.21)

13.67.18 [static] SimplePolygon new(Box box)
Constructor converting a box to a polygon.

A synonym for: [static] SimplePolygon new_b(Box box).

Input: box e box to convert to a polygon.

13.67.19 Point point(unsigned p)
Get a specific point of a contour@args p.

is method was introduced in version 0.18.

Input: unsigned p e index of the point to get. If the index of the point is not valid, a default
value is returned.

Return: Point e specific hole point.

13.67.20 unsigned points
Get the number of points.

is method was introduced in version 0.18.

Return: unsigned e number of points.

13.67.21 points=(Point p[])
Set the points of the simple polygon.

Input: p[] An array of points to assign to the simple polygon.

13.67.22 string to_s
Convert to a string.

Return: string e string representing the simple polygon.

13.67.23 [const] SimplePolygon transformed(Trans t)
Transform the simple polygon.

Transforms the simple polygon with the given transformation. Does not modify the polygon but returns
the transformed polygon.

Input: t e transformation to apply.
Return: SimplePolygon e transformed simple polygon.

13.67.24 [const] SimplePolygon transformed_cplx(CplxTrans t)
Transform the simple polygon.

Transforms the simple polygon with the given transformation. Does not modify the polygon but returns
the transformed polygon.

Input: t e transformation to apply.
Return: SimplePolygon e transformed simple polygon.

494 Version 0.21 KLayout

Chapter 13. RBA Reference 13.67. Class SimplePolygon (version 0.21)

13.67.25 [const] SimplePolygon transformed_cplx(ICplxTrans t)
Transform the simple polygon.

Transforms the simple polygon with the given transformation. Does not modify the polygon but returns
the transformed polygon.

is method was introduced in version 0.18.

Input: t e transformation to apply.
Return: SimplePolygon e transformed simple polygon (in this case an integer coordinate object).

KLayout Version 0.21 495

Chapter 13. RBA Reference 13.67. Class StringListValue (version 0.21)

13.68 Class StringListValue (version 0.21)
Encapsulate a string list.

is class is provided as a return value of FileDialog. By using an object rather than a pure string list, an
object with has_value? = false can be returned indicating that the ”Cancel” buon was pressed.

Method Overview

has_value? True, if a value is present.
value Get the actual value (a list of strings)
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.68.1 assign(StringListValue other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.68.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.68.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.68.4 [const] StringListValue dup
Creates a copy of self.

Return: StringListValue e copy of self.

13.68.5 [const] boolean has_value?
True, if a value is present.

Return: true A value is present.
false No value is present.

13.68.6 [const] string[] value
Get the actual value (a list of strings).

Return: string[] e actual value(s) as a list of strings.

496 Version 0.21 KLayout

Chapter 13. RBA Reference 13.68. Class StringValue (version 0.21)

13.69 Class StringValue (version 0.21)
Encapsulate a string value.

is class is provided as a return value of InputDialog::get_string, InputDialog::get_item and FileDialog.
By using an object rather than a pure value, an object with has_value? = false can be returned indicating
that the ”Cancel” buon was pressed.

Method Overview

has_value? True, if a value is present.
to_s Get the actual value (a synonym for value).
value Get the actual value.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.69.1 assign(StringValue other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.69.2 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.69.3 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.69.4 [const] StringValue dup
Creates a copy of self.

Return: StringValue e copy of self.

13.69.5 [const] boolean has_value?
True, if a value is present.

Return: true A value is present.
false No value is present.

KLayout Version 0.21 497

Chapter 13. RBA Reference 13.69. Class StringValue (version 0.21)

13.69.6 [const] string to_s
Get the actual value (a synonym for value).

Return: string e actual value(s) as a list of strings.

13.69.7 [const] string value
Get the actual value.

Return: string e actual value(s) as a list of strings.

498 Version 0.21 KLayout

Chapter 13. RBA Reference 13.69. Class Text (version 0.21)

13.70 Class Text (version 0.21)
A text object.

A text object has a point (location), a text, a text transformation, a text size and a font id. Text size and
font id are provided to be be able to render the text correctly.

Method Overview

from_dtext Construct an integer coordinate text object from a floating-point coordinate
text.

transformed_cplx Transform the text with the given complex transformation.
new Default constructor.
new Constructor with string and transformation.
new Constructor with string, transformation, text height and font.
string= Assign a text string to this object.
string Get the text string.
trans= Assign a transformation (text position and orientation) to this object.
trans Get the transformation.
size= Set the text height of this object.
size Get the text height.
font= Set the font number.
font Get the font number.
move Moves the text by a certain distance.
moved Returns the text moved by a certain distance.
transformed Transform the text with the given simple transformation.
transformed_cplx Transform the text with the given complex transformation.
transformed_cplx Transform the text with the given complex transformation.
< Less operator.
== Equality test.
!= Inequality test.
to_s Convert to a string.
assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

13.70.1 [const] boolean !=(Text text)
Inequality test.

Input: text e object to compare against.
Return: true Inequality.

false ⁇?.

13.70.2 [const] boolean <(Text text)
Less operator.

is operator is provided to establish some, not necessarily a certain sorting order.

Input: text e object to compare against.
Return: true is polygon is less than the given one.

false ⁇?.

KLayout Version 0.21 499

Chapter 13. RBA Reference 13.70. Class Text (version 0.21)

13.70.3 [const] boolean ==(Text text)
Equality test.

Input: text e object to compare against.
Return: true e polygons are equal.

false ⁇?.

13.70.4 assign(Text other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

13.70.5 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.70.6 [const] boolean destroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.70.7 [const] Text dup
Creates a copy of self.

Return: Text e copy of self.

13.70.8 integer font
Get the font number.

Return: integer e integer representing a font.

13.70.9 font=(integer)
Set the font number.

Input: integer e integer representing a font.

13.70.10 [static] Text from_dtext(DText double_text)
Construct an integer coordinate text object from a floating-point coordinate
text.

Input: double_text e floating-point coordinate text object.
Return: Text e integer coordinate text object.

500 Version 0.21 KLayout

Chapter 13. RBA Reference 13.70. Class Text (version 0.21)

13.70.11 ref Text move(Point p)
Moves the text by a certain distance.

Moves the text by a given offset and returns the moved text. Does not check for coordinate overflows.

Input: p e offset to move the text.
Return: ref A reference to this text object.

13.70.12 Text moved(Point p)
Returns the text moved by a certain distance.

Moves the text by a given offset and returns the moved text. Does not modify *this. Does not check for
coordinate overflows.

Input: p e offset to move the text.
Return: Text e moved text.

13.70.13 [static] Text new
Default constructor.

Creates a text with unit transformation and empty text.

Return: Text e empty text object.

13.70.14 [static] Text new(string, Trans t)
Constructor with string and transformation.

A synonym for: [static] Text new_st(string, Trans t).

A string and a transformation is provided to this constructor. e transformation specifies the location
and orientation of the text object.

Input: string e given text string.
t e specified transformation.

Return: Text e text object.

13.70.15 [static] Text new(string, Trans t, height, width)
Constructor with string, transformation, text height and font.

A synonym for: [static] Text new_sthr(string, Trans t, height, width).

A string and a transformation is provided to this constructor. e transformation specifies the location
and orientation of the text object. In addition, the text height and font can be specified.

Input: string e given text string.
t e specified transformation.
height e text height.
width e text width.

Return: Text e text object.

13.70.16 [const] integer size
Get the text height.

Return: integer e text height.

KLayout Version 0.21 501

Chapter 13. RBA Reference 13.70. Class Text (version 0.21)

13.70.17 size=(integer)
Set the text height of this object.

Input: integer e text height.

13.70.18 [const] string string
Get the text string.

Return: string e text string.

13.70.19 string=(string)
Assign a text string to this object.

Input: string e text string.

13.70.20 [const] string to_s
Convert to a string.

Return: string e text string.

13.70.21 [const] const ref Trans trans
Get the transformation.

13.70.22 trans=(Trans)
Assign a transformation (text position and orientation) to this object.

13.70.23 [const] Text transformed(Trans t)
Transform the text with the given simple transformation.

Input: t e transformation to apply.
Return: Text e transformed text.

13.70.24 [const] Text transformed_cplx(ICplxTrans t)
Transform the text with the given complex transformation.

Input: t e transformation to apply.
Return: Text e transformed text (in this case an integer coordinate object now).

13.70.25 [const] DText transformed_cplx(CplxTrans t)
Transform the text with the given complex transformation.

Input: t e transformation to apply.
Return: DText e transformed text (a DText now).

502 Version 0.21 KLayout

Chapter 13. RBA Reference 13.70. Class Trans (version 0.21)

13.71 Class Trans (version 0.21)
A simple transformation.

e simple transformation applies a displacement vector and a simple fix point transformation. is ver-
sion acts on integer coordinates.

Method Overview

from_dtrans Conversion constructor from a floating-point transformation.
new Creates a unit transformation.
new Conversion constructor from a fix-point transformation.
new e standard constructor using angle and mirror flag.
new e standard constructor using angle and mirror flag and two coordinate val-

ues for displacement.
new e standard constructor using a code rather than angle and mirror.
new e standard constructor using a code rather than angle and mirror and two

coordinate values for displacement.
new e standard constructor using a displacement only.
new e standard constructor using a displacement given as two coordinates.
inverted Inversion.
invert In-place inversion.
ctrans e transformation of a distance.
trans e transformation of a point.
* Multiplication (concatenation) of transformations.
< A sorting criterion.
== Equality test.
!= Inequality test.
to_s String conversion.
disp Accessor to the point.
rot Returns the respective rotation code if possible.
angle Gets the angle.
is_mirror? Gets the mirror flag.
angle= Sets the angle.
disp= Sets the displacement.
mirror= Sets the mirror flag.
rot= Sets the angle/mirror code
m_*/r_* Various angle/mirror codes for the named transformation.

r0 “unrotated” transformation.
r90 “rotated by 90 degree counterclockwise” transformation.
r180 “rotated by 180 degree counterclockwise” transformation.
r270 “rotated by 270 degree counterclockwise” transformation.
m0 “mirrored at the x-axis” transformation.
m45 “mirrored at the 45 degree axis” transformation.
m90 “mirrored at the y (90 degree) axis” transformation.
m135 “mirrored at the 135 degree axis” transformation.

assign Assign the contents of another object to self.
dup Creates a copy of self.
destroy Explicitly destroy the object.
destroyed Tell, if the object was destroyed.

KLayout Version 0.21 503

Chapter 13. RBA Reference 13.71. Class Trans (version 0.21)

13.71.1 [const] boolean !=(Trans)
Inequality test.

Input: Trans text e object to compare against.
Return: true is object and the given one are not equal.

false ⁇?.

13.71.2 [const] Trans *(Trans t)
Multiplication (concatenation) of transformations.

e * operator returns self*t (“t is applied before this transformation”).

Input: t e transformation to apply before.
Return: Trans e modified transformation.

13.71.3 [const] boolean <(Trans)
A sorting criterion.

Input: e e object to compare against.
Return: true e object is ’less’ than the other.

false ⁇.

13.71.4 [const] boolean ==(Trans)
Equality test.

Input: e e object to compare against.
Return: true Equality.

false ⁇.

13.71.5 [const] integer angle
Gets the angle in units of 90 degree.

is value delivers the rotation component. In addition, a mirroring at the x axis may be applied before if
the is_mirror? property is true.

Return: integer e rotation angle in units of 90 degree.

13.71.6 angle=(integer a)
Sets the angle in units of 90 degree.

is method was introduced in version 0.20.

Input: a e new angle.

13.71.7 assign(Trans other)
Assign the contents of another object to self.

is method assigns the contents of another object to self. is is a deep copy that does not only copy the
reference but the actual content.

504 Version 0.21 KLayout

Chapter 13. RBA Reference 13.71. Class Trans (version 0.21)

13.71.8 [const] integer ctrans(d)
e transformation of a distance.

e ctransmethod transforms the given distance: e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

Input: d e distance to transform.
Return: integer e transformed distance.

13.71.9 destroy
Explicitly destroy the object.

Explicitly destroy the object on C++ side if it was owned by the Ruby interpreter. Subsequent access to
this object will throw an exception. If the object is not owned by Ruby, this method will do nothing.

13.71.10 [const]booleandestroyed
Tell, if the object was destroyed.

Return: true e object was destroyed, either explicitly or by the C++ side. e laer may
happen, if the object is owned by a C++ object which got destroyed itself.

false e object is still alive.

13.71.11 [const] const ref Point disp
Accessor to the point.

Return: ref e accessor to the point.

13.71.12 disp=(Point u)
Sets the displacement.

is method was introduced in version 0.20.

Input: u e new displacement.

13.71.13 [const] Trans dup
Creates a copy of self.

Return: Trans e copy of self.

13.71.14 [static] Trans from_dtrans(DTrans double_trans)
Conversion constructor from an floating-point coordinate transformation.

Input: double_trans e floating-point coordinate transformation.
Return: Trans e integer coordinate transformation.

13.71.15 Trans invert
In-place inversion.

Inverts the transformation and replaces this transformation by the inverted one.

Return: Trans e inverted and replaced transformation.

KLayout Version 0.21 505

Chapter 13. RBA Reference 13.71. Class Trans (version 0.21)

13.71.16 [const] Trans inverted
Inversion.

Return: Trans e inverted transformation.

13.71.17 [const] boolean is_mirror?
Gets the mirror flag.

Return: true e transformation is composed of a mirroring at the x-axis followed by a ro-
tation by the angle given by the angle property.

false ⁇?.

13.71.18 [static] integer m_*/r_*
Various angle/mirror codes for the named transformation.

13.71.18.1 [static] integer m0 – “mirrored at the x-axis”.

Return: integer e angle/mirror code for this transformation.

13.71.18.2 [static] integer m135 – “mirrored at the 135 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.71.18.3 [static] integer m45 – “mirrored at the 45 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.71.18.4 [static] integer m90 – “mirrored at the 90 degree axis”.

Return: integer e angle/mirror code for this transformation.

13.71.18.5 [static] integer r0 – “unrotated”.

Return: integer e angle/mirror code for this transformation.

13.71.18.6 [static] integer r180 – “rotated by 180 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.71.18.7 [static] integer r270 – “rotated by 270 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

13.71.18.8 [static] integer r90 – “rotated by 90 degree counterclockwise”.

Return: integer e angle/mirror code for this transformation.

506 Version 0.21 KLayout

Chapter 13. RBA Reference 13.71. Class Trans (version 0.21)

13.71.19 [const] double mag
Gets the magnification.

Return: integer e angle/mirror code for this transformation.

13.71.20 mirror=(boolean)
Sets the mirror flag.

“mirroring” describes a reflection at the x-axis which is included in the transformation prior to rotation.

is method was introduced in version 0.20.

Input: boolean e new mirror flag.

13.71.21 [static] Trans new
Creates a unit transformation.

13.71.22 [static] Trans new(f)
Conversion constructor from a fix point transformation.

A synonym of: [static] Trans new_f(f).

is constructor will create a transformation with a fix point transformation but no displacement.

Input: f e rotation/mirror code (r0 .. m135 constants).

13.71.23 [static] Trans new(rot, boolean, ref Point u)
e standard constructor using angle and mirror flag.

A synonym of: [static] Trans new_rmu(rot, boolean, ref Point u).

e sequence of operations is: mirroring at x axis, rotation, application of displacement.

Input: rot e rotation in units of 90 degree.
boolean True, if mirrored at x axis.
u e displacement.

13.71.24 [static] Trans new(rot, boolean, x, y)
e standard constructor using angle and mirror flag and two coordinate val-
ues for displacement.

A synonym of: [static] Trans new_rmxy(rot, boolean, x,y).

e sequence of operations is: mirroring at x axis, rotation, application of displacement.

Input: rot e rotation in units of 90 degree.
boolean True, if mirrored at x axis.
x e horizontal displacement.
y e vertical displacement.

13.71.25 [static] Trans new(f, Point u)
e standard constructor using a code rather than angle and mirror.

A synonym of: [static] Trans new_fu(f, Point u).

KLayout Version 0.21 507

Chapter 13. RBA Reference 13.71. Class Trans (version 0.21)

Input: f e rotation/mirror code (r0 .. m135 constants).
u e displacement.

13.71.26 [static] Trans new(f, x, y)
e standard constructor using a code rather than angle and mirror and two
coordinate values for displacement.

A synonym of: [static] Trans new_fxy(f, x, y).

e sequence of operations is: mirroring at x axis, rotation, application of displacement.

Input: f e rotation/mirror code (r0 .. m135 constants).
x e horizontal displacement.
y e vertical displacement.

13.71.27 [static] Transnew(Point u)
e standard constructor using a displacement only.

A synonym of: [static] Trans new_u(Point u).

Input: u e displacement.

13.71.28 new(x, y)
e standard constructor using a displacement given as two coordinates.

Input: x e horizontal displacement.
y e vertical displacement.

13.71.29 [const] integer rot
Gets the angle/mirror code.

e angle/mirror code is one of the constants r0, r90, r180, r270, m0, m45, m90 and m135. rx is the rotation
by an angle of x counter clockwise. mx is the mirroring at the axis given by the angle x (to the x-axis).

Return: integer e angle/mirror code for this transformation.

13.71.30 rot=(r)
Sets the angle/mirror code.

is method was introduced in version 0.20.

Input: r e new angle/rotation code (see rot property).

13.71.31 [const] string to_s
String conversion.

Return: string e string representing the object.

508 Version 0.21 KLayout

Chapter 13. RBA Reference 13.71. Class Trans (version 0.21)

13.71.32 [const] Point trans(Point p)
e transformation of a point.

e trans method transforms the given point. q = t(p).

Input: p e point to transform.
Return: Point e transformed point.

KLayout Version 0.21 509

Chapter 13. RBA Reference 13.71. Class Trans (version 0.21)

e End

Comment: ToDo

GDS = Graphic Database System

GDSII stream format, common acronym GDSII, is a database file format originally developed by Calma in
the 1970s and now owned by Cadence Design Systems. e GDSII format is the de facto industry standard
for data exchange of integrated circuit or IC layout artwork. It is a binary file format representing planar
geometric shapes, text labels, and other information about the layout in hierarchical form. e data can be
used to reconstruct all or part of the artwork to be used in sharing layouts, transferring artwork between
different tools, or creating photo masks.

DXF = Drawing Interchange Format, or Drawing Exchange Format developed by Autodesk, Inc.

OASIS = Open Artwork System Interchange Standard

e trade name OASIS is a registered trademark in the USA of omas J. Grebinski, Alamo, California and
licensed for use exclusively by SEMI

(OASIS™) is a specification for hierarchical integrated circuit mask layout data format for interchange
between EDA soware, IC mask writing tools and mask inspection tools. e name is the trademark of
SEMI. It is developed by SEMI for microelectronics and fabrication industry as a replacement for GDSII
format, the IC industry de facto standard for IC layout data exchange for more than two decades. Like
GDSII, OASIS™is a hardware- and soware-independent binary data format. It delivers the improvements
of a smaller file size over GDSII file format. e smaller file size may result in a faster loading of files, but
due to its internal structure a higher computation power is needed which may lead to longer loading and
saving times. e OASIS file format is not as common as the GDSII file format.

CIF = Caltech Intermediate Format

CIF is a recent form for the description of integrated circuits. Created by the university community, CIF has
provided a common database structure for the integration of many research tools. CIF provides a limited
set of graphics primitives that are useful for describing the two-dimensional shapes on the different layers
of a chip. e format allows hierarchical description, which makes the representation concise. In addition,
it is a terse but human-readable text format. CIF is therefore a concise and powerful descriptive form for
VLSI geometry.

GerberPCB = e Gerber format is a file format used by printed circuit board (PCB) industry soware to
describe the images of a printed circuit board (copper layers, solder mask, legend, drill holes, etc.). e
Gerber format is the de-facto industry standard for printed circuit board image transfer.

e specification can be freely downloaded.

ere are two versions. RS-274X (”extended Gerber”) is the most commonly used today. e previous
version was a subset of EIA RS-274-D (”standard Gerber”); it is deprecated and is largely superseded by
RS-274X.

e Gerber format was developed by Gerber Systems Corp., a company founded by Heinz Joseph “Joe”
Gerber. e format is now controlled and owned by Ucamco through its acquisition of Barco ETS, a
company which previously acquired Gerber Systems Corp.

510 Version 0.21 KLayout

	I About The Project
	KLayout Highlights
	KLayout Features
	General
	Viewer
	Editor

	KLayout is a GDS and OASIS file viewer
	KLayout is more
	KLayout is free
	Current status
	The future of the project

	Download and Build
	Download Current Version
	Development Snapshot
	Packaged Release for Windows
	Building on MacOS
	Building KLayout on Unix
	Building KLayout for Windows 32 bit with MinGW
	Building KLayout for Windows 32 bit and 64 bit with Visual Studio
	All Downloads

	Current Development
	Development Snap Shot Tarkit
	Tar-Kits

	Multithreading for XOR tool
	Diff tool performance enhancements.

	Release Notes and Tar-Kits
	Version 0.21.16
	Version 0.21.15
	Version 0.21.14
	Version 0.21.13
	Version 0.21.12
	Version 0.21.11
	Version 0.21.10
	Version 0.21.9
	Version 0.21.8
	Version 0.21.7
	Version 0.21.6
	Version 0.21.5
	Version 0.21.4
	Version 0.21.3
	Version 0.21.2
	Version 0.21.1
	Version 0.21
	Version 0.20.2
	Version 0.20.1
	Version 0.20
	Version 0.19.3
	Version 0.19.2
	Version 0.19.1
	Version 0.19
	Version 0.18.2
	Version 0.18.1
	Version 0.18
	Version 0.17.2
	Version 0.17.1
	Version 0.17
	Version 0.16.1
	Version 0.16
	Version 0.15
	Version 0.14
	Version 0.13
	Version 0.12
	Version 0.11
	Version 0.10
	Version 0.9

	Known Bugs and Issues
	Version 0.21.5
	DXF reader
	Performance issues on select
	RBA:Edge.intersect? delivers wrong results when the edges are collinear

	Version 0.21.4
	DXF reader
	Problems with non-English locales and UTF-8 file names on Linux

	Version 0.21.3
	CIF reader
	Rotate methods swapped
	``Draw border instances of arrays'' feature broken
	Ruby crash

	Version 0.21.2
	DXF reader still not complete

	Version 0.21.1
	RBA: RdbItem.each_value is not working on const objects
	DXF reader still not complete
	Layer mapping broken for DXF and CIF readers, writers

	Version 0.21
	Persistence of reader options is broken
	RBA: each_selected is broken
	DXF and CIF readers and writers incomplete

	Version 0.20.1
	Program crashes when the marker browser is opened

	Version 0.20
	Net tracing does not extract net correctly
	Gerber reader does not correctly read certain macros

	Version 0.19.3
	Polygon cut algorithm for reducing the number of points per polygon in the GDS2 writer

	Version 0.19.2
	Crashes on Qt 4.6.0
	Ruby modules not loaded from the installation path on UNIX
	OASIS reader too picky

	Version 0.19.1
	``Test for shapes in view'' feature does not work properly for AREF's
	RBA scripts crash in tight loops on Ruby 1.8.7 (i.e. Ubuntu 9.10)
	GDS text reader problems
	Interactive stretching of images is broken

	Version 0.19
	Crash when selecting ``…'' node in the marker browser item list
	``Test for shapes in view'' feature in layer list is extremely slow in some cases

	Version 0.18
	Crash when selecting ``instance'' mode on empty layout
	Issues on Mac OS X

	Version 0.17.2
	Sizing bugs
	Build not working for Mac OS X
	Crash when double-clicking a path end in partial mode
	``Fit selection'' is not working properly
	Wrong DBU read from GDS2 files
	Round paths are not written properly to OASIS files
	Windows repaint problem for hidden canvas content
	Space representation in vector fonts

	Version 0.17.1
	Program hangs if the properties dialog is closed with the system menu
	Program crashes if many text objects have identical location
	OASIS reader problems when property name and string ID's are defined after they are used
	AREF row and column description was swapped and misleading

	Version 0.17
	Display freezes on some Windows installations

	Version 0.16.1
	Some flaws in partial edit mode and polygon or path creation
	Order of recent file list was latest last
	Selection of very large arrays happened to be very slow

	Version 0.16
	Compile problems when ruby support is not enabled
	``open recent'' function is not working correctly on Windows
	``change layer'' function is not working properly

	Version 0.15
	Child cells are shown multiple times in cell hierarchy
	``Save'' saves all layers if none should be saved
	Text objects are not shown correctly if a scalable font is selected for them

	Version 0.14
	Crash on Windows when the program is called first time

	Version 0.13
	Crash on Windows when the layer list becomes very small
	KLayout does not start on some platforms and exits with a segmentation fault

	General
	Layout loading time
	Drawing speed versus high display precision

	II Documentation
	Resources
	Typographic Conventions
	Input Dialog Conventions
	RBA Typographic Conventions
	Listing Conventions

	Command-line arguments
	General Options
	Special Options

	Transformations in KLayout
	RDB format
	Basic structure
	Detailed description
	Class Database (element ``report-database'')
	Class Category (element ``category'')
	Class Tag (element ``tag'')
	Class Cell (element ``cell'')
	Class Reference (element ``reference'')
	Class Item (element ``item'')
	Class Value (element ``value'')

	DXF format
	General DXF structure
	DXF structure that KLayout understand
	POLYLINE entity
	LWPOLYLINE entity for polygons
	SOLID entity
	INSERT entity
	LINE entity
	CIRCLE entity
	TEXT entity
	HATCH entity

	Other topics
	Polygon formation and LINE/POLYLINE interpretation
	Extrusion direction
	INSERT entities with layer specification

	Expression syntax
	String interpolation
	Basic data types
	Constants
	Operators and precedence
	Functions

	Useful Ruby Modules
	Compute the total area of all selected shapes
	Compute the total area of all selected layers (hierarchical)
	A layer processing framework
	Import a Cadence techfile
	Import a LEF file
	A simple technology manager
	Search for odd-width paths
	Replace cells with others from another file
	Write all child cells of the current cell to new files
	Dump all shapes of the current cell recursively to a XML file
	List all layers under a ruler
	Rename all cells
	Compute the bounding box of a cell

	III Manuals
	Quick Start Manual – Viewer Mode
	Basic viewing operations
	Main window
	Loading a file
	Managing the panels and loaded layouts
	Choosing a cell
	Choosing a hierarchy depth
	Configuring the cell list
	Hiding cells
	Zooming into the layout
	Return to a previous view state
	Bookmarking views
	Descending into a cell with context

	Changing the layers display style
	Choosing a layer color
	Bringing layers to the front or pushing them to the back
	Telling used from unused layers
	Choosing a fill pattern
	Animating layers
	Changing the display style
	Changing the layer visibility

	Advanced viewing operations
	Organizing layers hierarchically
	Using multiple layer properties setups with tabs
	Manipulation on layer views
	Removing and adding layers to the layer set
	Transforming views
	Property selectors
	Specifying explicit hierarchy levels for one layer or a group

	Loading and saving the layer sets
	Creating a screen-shot
	Doing measurements
	Ruler properties
	Adding images
	Browsing shapes
	Browsing instances
	The marker browser
	Selecting rulers, shapes or instances
	More configuration options
	Undo and redo
	Saving a layout or parts of it
	Saving and restoring a session

	Quick Start Manual – Editor Mode
	Basic principles of editor mode
	Pick and drop principle
	Basic editor mode options
	Selection
	Partial editing vs. full element editing

	Basic editing operations
	Creating a layout from scratch
	Creating a new layer
	Creating a new cell
	Creating a polygon
	Creating a box
	Creating a path
	Creating a text object
	Placing an instance of a cell
	Moving the selection
	Other transformations of the selection
	Partial editing
	Moving the selection to a different layer
	Other layer operations
	Copy and paste of the selection
	Delete a cell
	Rename a cell
	Copy and paste of cells

	Advanced editing operations
	Hierarchical operations
	Creating clips
	Flatten cells
	Layer Boolean operations
	Layer sizing
	Shape-wise Boolean operations
	Shape-wise sizing
	Object alignment
	Corner rounding
	Cell origin adjustment
	Layer operations

	Advanced Functions
	The XOR tool
	The Diff tool
	The fill (tiling) utility
	Importing Gerber PCB files
	The import dialog
	The layer stack flow
	The free layer mapping flow
	General options

	Importing other layout files
	The net tracing feature

	IV Ruby Scripting Interface (RBA)
	RBA Introduction
	Using RBA scripts
	Basic RBA
	A simple example
	Extending the example
	Events
	Brief overview over the API
	RBA and QtRuby
	Execution context
	Interfacing between QtRuby and RBA objects

	What can be done and what can't
	More information

	RBA Examples
	Using the HTML browser dialog I: A location browser
	Using the HTML browser dialog II: A screen-shot gallery
	Dynamic database manipulation: A ``Sokoban'' implementation
	Creating layouts I: The Koch curve
	Creating layouts II: Data visualization
	Menus: Dumping the menu structure
	Editing: Hierarchical propagation
	Using QtRuby I: Adding a custom dialog
	Using QtRuby II: Transforming KLayout into a HTTP server.

	RBA Reference
	AbstractMenu
	action
	delete_item
	destroy
	destroyed
	group
	insert_item
	insert_menu
	insert_separator
	is_menu
	is_separator
	is_valid
	items

	Action
	assign
	checkable=
	checked=
	destroy
	destroyed
	dup
	enabled=
	icon=
	icon_text
	icon_text=
	is_checkable?
	is_checked?
	is_enabled?
	is_visible?
	on_triggered
	shortcut
	shortcut=
	title
	title=
	trigger
	triggered
	visible=

	ActionBase
	assign
	checkable=
	checked=
	destroy
	destroyed
	dup
	enabled=
	icon=
	icon_text
	icon_text=
	is_checkable?
	is_checked?
	is_enabled?
	is_visible?
	on_triggered
	shortcut
	shortcut=
	title
	title=
	trigger
	triggered
	visible=

	Annotation
	!=
	==
	angle_constraint
	angle_constraint=
	angle_...
	angle_any
	angle_diagonal
	angle_global
	angle_horizontal
	angle_ortho
	angle_vertical

	assign
	box
	destroy
	destroyed
	dup
	fmt
	fmt=
	fmt_x
	fmt_x=
	fmt_y
	fmt_y=
	new
	outline
	outline=
	outline_...
	outline_box
	outline_diag
	outline_diag_xy
	outline_diag_yx
	outline_xy
	outline_yx

	p1
	p1=
	p2
	p2=
	snap=
	snap?
	style
	style=
	style_...
	style_arrow_both
	style_arrow_end
	style_arrow_start
	style_line
	style_ruler

	text
	text_x
	text_y
	to_s
	transformed
	transformed_cplx
	transformed_cplx

	Application
	destroy
	destroyed
	exec
	get_config
	get_config_names
	inst_path
	instance
	is_editable?
	main_window
	process_events
	read_config
	set_config
	version
	write_config

	ArgType
	!=
	==
	assign
	cls
	destroy
	destroyed
	dup
	is_iter?
	is_ref?
	is_vector?
	type
	t_...
	t_bool
	t_double
	t_int
	t_long
	t_longlong
	t_object
	t_object_cref
	t_object_new
	t_object_ref
	t_string
	t_string_ccptr
	t_uint
	t_ulong
	t_var
	t_void

	to_s

	Box
	!=
	&
	*
	+
	+
	<
	==
	area
	assign
	bottom=
	bottom
	center
	contains?
	destroy
	destroyed
	dup
	empty?
	enlarge
	enlarged
	from_dbox
	height
	inside?
	is_point?
	left=
	left
	move
	moved
	new
	new
	new
	overlaps?
	p1
	p1=
	p2
	p2=
	right
	right=
	to_s
	top
	top=
	touches?
	transformed
	transformed_cplx
	transformed_cplx
	width

	BrowserDialog
	closed
	destroy
	destroyed
	exec
	hide
	load
	reload
	set_caption
	set_home
	set_size
	set_source
	show

	BrowserSource
	assign
	destroy
	destroyed
	dup
	get
	new_html

	Cell
	bbox
	bbox_per_layer
	called_cells
	caller_cells
	cell_index
	child_cells
	child_instances
	clear
	clear_insts
	clear_shapes
	copy
	destroy
	destroyed
	each_child_cell
	each_inst
	each_overlapping_inst
	each_overlapping_shape
	each_overlapping_shape
	each_parent_cell
	each_parent_inst
	each_shape
	each_shape
	each_touching_inst
	each_touching_shape
	each_touching_shape
	erase
	ghost_cell=
	hierarchy_levels
	cell_inst_array
	insert
	insert
	insert
	is_empty?
	is_ghost_cell?
	is_leaf?
	is_top?
	is_valid?
	move
	parent_cells
	replace
	replace
	replace_prop_id
	shapes
	swap
	transform
	transform

	CellInstArray
	!=
	<
	==
	a
	assign
	b
	bbox
	bbox_per_layer
	cell_index
	cplx_trans
	destroy
	destroyed
	dup
	invert
	is_complex?
	is_regular_array?
	na
	nb
	new
	new
	new
	new
	new
	size
	trans
	transform
	transform
	transform
	transformed
	transformed
	transformed

	CellMapping
	assign
	cell_mapping
	destroy
	destroyed
	dup
	has_mapping?
	new

	CellView
	==
	assign
	cell
	cell_index
	context_path
	ctx_cell
	ctx_cell_index
	destroy
	destroyed
	dup
	filename
	is_valid?
	layout
	name
	path
	reset_cell
	set_cell
	set_cell_name
	set_context_path
	set_path

	Class
	can_copy
	destroy
	destroyed
	doc
	each_class
	each_method
	name

	CplxTrans
	!=
	*
	<
	==
	angle
	angle=
	assign
	ctrans
	destroy
	destroyed
	disp
	disp=
	dup
	from_dtrans
	invert
	inverted
	is_mag?
	is_mirror?
	is_ortho?
	is_unity?
	m_*/r_*
	m0
	m135
	m45
	m90
	r0
	r180
	r270
	r90

	mag
	mag=
	mirror=
	new
	new
	new
	new
	new
	new
	rot
	s_trans
	to_s
	trans

	DBox
	!=
	&
	*
	+
	+
	<
	==
	area
	assign
	bottom=
	bottom
	center
	contains?
	destroy
	destroyed
	dup
	empty?
	enlarge
	enlarged
	from_ibox
	height
	inside?
	is_point?
	left=
	left
	move
	moved
	new
	new
	new
	overlaps?
	p1
	p1=
	p2
	p2=
	right
	right=
	to_s
	top
	top=
	touches?
	transformed
	transformed_cplx
	width

	DCplxTrans
	!=
	*
	<
	==
	angle
	angle=
	assign
	ctrans
	destroy
	destroyed
	disp
	disp=
	dup
	from_itrans
	invert
	inverted
	is_mag?
	is_mirror?
	is_ortho?
	is_unity?
	m_*/r_*
	m0
	m135
	m45
	m90
	r0
	r180
	r270
	r90

	mag
	mag=
	mirror=
	new
	new
	new
	new
	new
	new
	rot
	s_trans
	to_s
	trans

	DEdge
	!=
	<
	==
	assign
	bbox
	coincident?
	contains?
	contains_excl?
	crossed_by?
	crossing_point
	destroy
	destroyed
	distance
	distance_abs
	dup
	dx
	dx_abs
	dy
	dy_abs
	enlarge
	enlarged
	from_iedge
	intersect?
	intersection_point
	is_degenerate?
	is_parallel?
	length
	move
	moved
	new
	new
	new
	ortho_length
	p1
	p2
	side_of
	sq_length
	swap_points
	to_s
	transformed
	transformed_cplx
	x1
	x2
	y1
	y2

	DPath
	!=
	<
	==
	assign
	bbox
	bgn_ext
	bgn_ext=
	destroy
	destroyed
	dup
	each_point
	end_ext
	end_ext=
	from_ipath
	is_round?
	move
	moved
	new
	new
	new
	new
	points
	points=
	polygon
	round=
	simple_polygon
	to_s
	transformed
	transformed_cplx
	width
	width=

	DPoint
	!=
	*
	+
	−
	<
	==
	assign
	destroy
	destroyed
	distance
	dup
	from_ipoint
	new
	new
	sq_distance
	to_s
	x
	x=
	y
	y=

	DPolygon
	!=
	<
	==
	area
	assign
	assign_hole
	bbox
	compress
	destroy
	destroyed
	dup
	each_edge
	each_point_hole
	each_point_hull
	from_ipoly
	holes
	hull=
	insert_hole
	inside
	move
	moved
	new
	new
	new
	point_hole
	point_hull
	points
	points_hole
	points_hull
	size
	size
	to_s
	transformed
	transformed_cplx

	DSimplePolygon
	!=
	==
	area
	assign
	bbox
	compress
	destroy
	destroyed
	dup
	each_edge
	each_point
	from_ipoly
	inside
	move
	moved
	new
	new
	new
	point
	points
	points=
	to_s
	transformed
	transformed_cplx

	DText
	!=
	<
	==
	assign
	destroy
	destroyed
	dup
	font
	font=
	from_itext
	move
	moved
	new
	new
	new
	size
	size=
	string
	string=
	to_s
	trans
	trans=
	transformed
	transformed_cplx

	DTrans
	!=
	*
	<
	==
	angle
	angle=
	assign
	ctrans
	destroy
	destroyed
	disp
	disp=
	dup
	from_itrans
	invert
	inverted
	is_mirror?
	m_*/r_*
	m0
	m135
	m45
	m90
	r0
	r180
	r270
	r90

	mag
	mirror=
	new
	new
	new
	new
	new
	new
	new
	new
	rot
	rot=
	to_s
	trans

	DoubleValue
	assign
	destroy
	destroyed
	dup
	has_value?
	to_f
	value

	Edge
	!=
	<
	==
	assign
	bbox
	coincident?
	contains?
	contains_excl?
	crossed_by?
	crossing_point
	destroy
	destroyed
	distance
	distance_abs
	dup
	dx
	dx_abs
	dy
	dy_abs
	enlarge
	enlarged
	from_dedge
	intersect?
	intersection_point
	is_degenerate?
	is_parallel?
	length
	move
	moved
	new
	new
	new
	ortho_length
	p1
	p2
	side_of
	sq_length
	swap_points
	to_s
	transformed
	transformed_cplx
	transformed_cplx
	x1
	x2
	y1
	y2

	EdgeProcessor
	assign
	boolean_e2e
	boolean_e2p
	boolean_p2e
	boolean_p2p
	destroy
	destroyed
	dup
	merge_p2e
	merge_p2p
	mode_and
	mode_anotb
	mode_bnota
	mode_or
	mode_xor
	simple_merge_e2e
	simple_merge_e2p
	simple_merge_p2e
	simple_merge_p2p
	size_p2e
	size_p2e
	size_p2p
	size_p2p

	FileDialog
	assign
	destroy
	destroyed
	dup
	get_existing_dir
	get_open_file_name
	get_open_file_names
	get_save_file_name

	ICplxTrans
	!=
	*
	<
	==
	angle
	angle=
	assign
	ctrans
	destroy
	destroyed
	disp
	disp=
	dup
	from_dtrans
	from_trans
	invert
	inverted
	is_mag?
	is_mirror?
	is_ortho?
	is_unity?
	m_*/r_*
	m0
	m135
	m45
	m90
	r0
	r180
	r270
	r90

	mag
	mag=
	mirror=
	new
	new
	new
	new
	new
	new
	rot
	s_trans
	to_s
	trans

	Image
	assign
	box
	data_mapping
	data_mapping=
	destroy
	destroyed
	dup
	filename
	get_pixel
	get_pixel
	height
	id
	is_color?
	is_empty?
	is_visible?
	max_value
	max_value=
	min_value
	min_value=
	new
	new
	new
	new
	new
	new
	new
	pixel_height
	pixel_height=
	pixel_width
	pixel_width=
	set_data
	set_data
	set_pixel
	set_pixel
	to_s
	trans
	trans=
	transformed
	transformed
	transformed_cplx
	visible=
	width

	ImageDataMapping
	add_colormap_entry
	assign
	blue_gain
	blue_gain=
	brightness
	brightness=
	clear_colormap
	colormap_color
	colormap_value
	contrast
	contrast=
	destroy
	destroyed
	dup
	gamma
	gamma=
	green_gain
	green_gain=
	new
	num_colormap_entries
	red_gain
	red_gain=

	InputDialog
	assign
	destroy
	destroyed
	dup
	get_double
	get_double_ex
	get_int
	get_int_ex
	get_item
	get_string
	get_string_password

	InstElement
	!=
	<
	==
	array_member_trans
	assign
	cell_inst
	destroy
	destroyed
	dup
	new
	new
	new
	prop-id
	specific_cplx_trans
	specific_trans

	Instance
	!=
	<
	==
	a
	assign
	b
	cell_index
	cell_inst
	cplx_trans
	destroy
	destroyed
	dup
	has_prop_id?
	is_complex?
	is_null?
	is_regular_array?
	na
	nb
	parent_cell_index
	prop_id
	size
	to_s
	trans

	IntValue
	assign
	destroy
	destroyed
	dup
	has_value?
	to_i
	value

	LayerInfo
	!=
	==
	assign
	datatype
	datatype=
	destroy
	destroyed
	dup
	is_equivalent?
	is_named?
	layer
	layer=
	name
	name=
	new
	new
	new
	new
	to_s

	LayerMap
	assign
	clear
	destroy
	destroyed
	dup
	is_mapped?
	logical
	map
	map
	map
	map
	map
	mapping
	mapping_str

	LayerProperties
	!=
	==
	animation
	animation=
	assign
	cellview
	clear_dither_pattern
	clear_fill_color
	clear_frame_color
	clear_lower_hier_level
	clear_source_name
	clear_upper_hier_level
	destroy
	destroyed
	dither_pattern
	dither_pattern=
	dup
	eff_dither_pattern
	eff_fill_color
	eff_frame_color
	fill_brightness
	fill_brightness=
	fill_color
	fill_color=
	flat
	frame_brightness
	frame_brightness=
	frame_color
	frame_color=
	has_dither_pattern?
	has_fill_color?
	has_frame_color?
	has_lower_hier_level?
	has_source_name
	has_upper_hier_level?
	layer_index
	lower_hier_level
	lower_hier_level=
	lower_hier_level_mode
	lower_hier_level_relative
	marked=
	marked?
	name
	name=
	set_lower_hier_level
	set_upper_hier_level
	source
	source=
	source_cellview
	source_cellview=
	source_datatype
	source_datatype=
	source_layer
	source_layer=
	source_layer_index
	source_layer_index=
	source_name
	source_name=
	trans
	trans=
	transparent=
	transparent?
	upper_hier_level
	upper_hier_level=
	upper_hier_level_mode
	upper_hier_level_relative
	visible=
	visible?
	width=
	width

	LayerPropertiesIterator
	!=
	<
	==
	assign
	at_end?
	at_top?
	child_index
	current
	destroy
	destroyed
	down_first_child
	down_last_child
	dup
	first_child
	is_null?
	last_child
	next
	next_sibling
	num_siblings
	parent
	to_sibling
	up

	LayerPropertiesNode
	!=
	!=
	==
	==
	animation
	animation=
	assign
	bbox
	cellview
	clear_dither_pattern
	clear_fill_color
	clear_frame_color
	clear_lower_hier_level
	clear_source_name
	clear_upper-hier_level
	destroy
	destroyed
	dither_pattern
	dither_pattern=
	dup
	eff_dither_pattern
	eff_fill_color
	eff_frame_color
	fill_brightness
	fill_brightness=
	fill_color
	fill_color=
	flat
	frame_brightness
	frame_brightness=
	frame_color
	frame_color=
	has_children?
	has_dither_pattern?
	has_fill_color?
	has_frame_color?
	has_lower_hier_level?
	has_source_name
	has_upper_hier_level?
	id
	layer_index
	lower_hier_level
	lower_hier_level=
	lower_hier_level_mode
	lower_hier_level_relative
	marked=
	marked?
	name
	name=
	set_lower_hier_level
	set_upper_hier_level
	source
	source=
	source_cellview
	source_cellview=
	source_datatype
	source_datatype=
	source_layer
	source_layer=
	source_layer_index
	source_layer_index=
	source_name
	source-name=
	trans
	trans=
	transparent=
	transparent?
	upper_hier_level
	upper_hier_level=
	upper_hier_level_mode
	upper_hier_level_relative
	visible=
	visible?
	width=
	width

	Layout
	add_cell
	assign
	begin_shapes
	begin_shapes_overlapping
	begin_shapes_touching
	cell
	cell_by_name
	cell_name
	cells
	clear
	clear_layer
	clip
	clip_into
	copy_layer
	dbu
	dbu=
	delete_cell
	delete_cell_rec
	delete_cells
	delete_layer
	destroy
	destroyed
	dup
	each_cell
	each_cell_bottom_up
	each_cell_top_down
	each_top_cell
	end_changes
	flatten
	get_info
	has_cell?
	insert_layer
	insert_layer_at
	insert_special_layer
	insert_special_layer_at
	is_special_layer?
	is_valid_cell_index?
	is_valid_layer?
	layer_indices
	layers
	move_layer
	multi_clip
	multi_clip_into
	new
	new
	properties
	properties_id
	prune_cell
	prune_subcells
	read
	read
	rename_cell
	set_info
	start_changes
	swap_layers
	under_construction
	update
	write
	write

	LayoutView
	active_cellview
	active_cellview_index
	add_cell_visibility_observer
	add_cellview_list_observer
	add_cellview_observer
	add_file_open_observer
	add_layer_list_observer
	add_missing_layers
	add_rdb-list_changed_observer
	add_selection_changed_observer
	add_stipple
	add_transient_selection_changed_observer
	add_viewport_changed_observer
	ascend
	begin_layers
	begin_layers
	bookmark_view
	box
	cancel
	cellview
	cellviews
	clear_annotations
	clear_config
	clear_images
	clear_layers
	clear_layers
	clear_stipples
	clear_transactions
	commit
	create_layout
	create_rdb
	current_layer
	current_layer_list
	delete_layer
	delete_layer
	delete_layer_list
	descend
	destroy
	destroyed
	each_annotation
	each_annotation_selected
	each_image
	each_image_selected
	each_object_selected
	each_object_selected_transient
	enable_edits
	end_layers
	end_layers
	erase_cellview
	erase_image
	expand_layer_properties
	expand_layer_properties
	get_config
	get_current_cell_path
	has_annotation_selection?
	has_image_selection?
	has_object_selection?
	has_transient_object_selection?
	hide_cell
	init_layer_properties
	insert_annotation
	insert_image
	insert_layer
	insert_layer
	insert_layer_list
	is_cell_hidden
	load_layer_props
	load_layer_props
	load_layer_props
	load_layout
	load_layout
	max_hier
	max_hier_levels=
	max_hier_levels?
	min_hier_levels=
	min_hier_levels?
	num_rdbs
	pan_center
	pan_down
	pan_left
	pan_right
	pan_up
	rdb
	reload_layout
	remove_cell_visibility_observer
	remove_cellview_list_observer
	remove_cellview_observer
	remove_file_open_observer
	remove_layer_list_observer
	remove_rdb
	remove_rdb_list_changed_observer
	remove_selection_changed_observer
	remove_stipple
	remove_transient_selection_changed_observer
	remove_unused_layers
	remove_viewport_changed_observer
	rename_cellview
	rename_layer_list
	replace_image
	replace_layer_node
	replace_layer_node
	reset_title
	save_as
	save_image
	save_layer_props
	save_screenshot
	select_cell
	select_cell_path
	selected_layers
	set_active_cellview_index
	set_config
	set_current_cell_path
	set_current_layer_list
	set_layer_properties
	set_layer_properties
	set_title
	show_all_cells
	show_cell
	show_image
	stop
	stop_redraw
	title
	transacting
	transaction
	update_content
	viewport_height
	viewport_trans
	viewport_width
	zoom_box
	zoom_fit
	zoom_in
	zoom_out

	LoadLayoutOptions
	assign
	create_other_layers=
	destroy
	destroyed
	dup
	is_creating_other_layers?
	is_properties_enabled?
	is_text_enabled?
	layer_map
	properties_enabled=
	select_all_layers
	set_layer_map
	text_enabled=

	MainWindow
	add_current_view_observer
	add_new_view_observer
	cancel
	clone_current_view
	close_all
	close_current_view
	cm_...
	cm_adjust_origin
	cm_bookmark_view
	cm_cancel
	cm_cell_copy
	cm_cell_cut
	cm_cell_delete
	cm_cell_flatten
	cm_cell_hide
	cm_cell_paste
	cm_cell_rename
	cm_cell_select
	cm_cell_show
	cm_cell_show_all
	cm_clear_layer
	cm_clone
	cm_close
	cm_console
	cm_copy
	cm_cut
	cm_dec-max-hier
	cm_delete
	cm_delete_layer
	cm_edit_boolean
	cm_edit_layer
	cm_edit_merge
	cm_edit_size
	cm_exit
	cm_goto_position
	cm_help_about
	cm_inc_max_hier
	cm_last_display_state
	cm_layout_props
	cm_load_bookmark
	cm_load_layer_prop
	cm_lv_add_missing
	cm_lv_delete
	cm_lv_expand_all
	cm_lv_group
	cm_lv_hide
	cm_lv_hide_all
	cm_lv_insert
	cm_lv_new_tab
	cm_lv_regroup_by_datatype
	cm_lv_regroup_by_index
	cm_lv_regroup_by_layer
	cm_lv_regroup_flatten
	cm_lv_remove_tab
	cm_lv_remove_unused
	cm_lv_rename
	cm_lv_rename_tab
	cm_lv_select_all
	cm_lv_show
	cm_lv_show_all
	cm_lv_show_only
	cm_lv_sort_by_dli
	cm_lv_sort_by_idl
	cm_lv_sort_by_ild
	cm_lv_sort_by_ldi
	cm_lv_sort_by_name
	cm_lv_source
	cm_lv_ungroup
	cm_manage_bookmarks
	cm_max_hier
	cm_max_hier_0
	cm_max_hier_1
	cm_navigator_close
	cm_navigator_freeze
	cm_new_cell
	cm_new_layer
	cm_new_layout
	cm_new_panel
	cm_next_display_state
	cm_open
	cm_open_current_cell
	cm_open_new_view
	cm_open_too
	cm_pan_down
	cm_pan_left
	cm_pan_right
	cm_pan_up
	cm_paste
	cm_pull_in
	cm_reader_options
	cm_redo
	cm_redraw
	cm_reload
	cm_restore_session
	cm_save
	cm_save_as
	cm_save_bookmarks
	cm_save_current_cell_as
	cm_save_layer_props
	cm_save_session
	cm_screenshot
	cm_sel_flip_x
	cm_sel_flip_y
	cm_sel_free_rot
	cm_sel_move
	cm_sel_rot_ccw
	cm_sel_rot_cw
	cm_sel_scale
	cm_select_cell
	cm_select_current_cell
	cm_setup
	cm_show-properties
	cm_undo
	cm_view_log
	cm_zoom_fit
	cm_zoom_fit_sel
	cm_zoom_in
	cm_zoom_out

	create_layout
	current_view
	current_view_index
	destroy
	destroyed
	enable_edits
	exit
	grid_micron
	load_layout
	menu
	message
	reader_options
	redraw
	remove_current_view_observer
	remove_new_view_observer
	resize
	restore_session
	save_session
	select_view
	synchronous=
	view
	views

	Manager
	commit
	destroy
	destroyed
	has_redo?
	has_undo?
	redo
	transaction
	transaction_for_redo
	transaction_for_undo
	undo

	Marker
	color
	color=
	destroy
	destroyed
	dither_pattern
	dither_pattern=
	frame_color
	frame_color=
	halo
	halo=
	has_color?
	has_frame_color?
	line_width
	line_width=
	new
	reset_color
	reset_frame_color
	set
	set
	set
	set
	set
	vertex_size
	vertex_size=

	MessageBox
	assign
	b_...
	b_abort
	b_cancel
	b_ignore
	b_no
	b_ok
	b_retry
	b_yes

	critical
	destroy
	destroyed
	dup
	info
	question
	warning

	Method
	destroy
	destroyed
	doc
	each_argument
	is_const?
	is_event?
	is_static?
	name
	ret_type

	ObjectInstPath
	assign
	cell_index
	cv_index
	destroy
	destroyed
	dup
	each_inst
	inst
	is_cell_inst?
	layer
	path_length
	path_nth
	seq
	shape
	source
	source_trans
	trans

	Observer
	assign
	destroy
	destroyed
	dup
	signal
	signal_int

	ObserverBase
	assign
	destroy
	destroyed
	dup

	ParentInstArray
	assign
	child_inst
	destroy
	destroyed
	dup
	inst
	parent_cell_index

	Path
	!=
	<
	==
	assign
	bbox
	bgn_ext
	bgn_ext=
	destroy
	destroyed
	dup
	each_point
	end_ext
	end_ext=
	from_dpath
	is_round?
	move
	moved
	new
	new
	new
	new
	points
	points=
	polygon
	round=
	simple_polygon
	to_s
	transformed
	transformed_cplx
	transformed_cplx
	width
	width=

	Point
	!=
	*
	+
	−
	<
	==
	assign
	destroy
	destroyed
	distance
	dup
	from_dpoint
	new
	new
	sq_distance
	to_s
	x
	x=
	y
	y=

	Polygon
	!=
	<
	==
	area
	assign
	assign_hole
	bbox
	compress
	destroy
	destroyed
	dup
	each_edge
	each_point_hole
	each_point_hull
	from_dpoly
	holes
	hull=
	insert_hole
	inside
	move
	moved
	new
	new
	new
	point_hole
	point_hull
	points
	points_hole
	points_hull
	round_corners
	size
	size
	to_s
	transformed
	transformed_cplx
	transformed_cplx

	RdbCategory
	description
	description=
	destroy
	destroyed
	each_sub_category
	name
	num_items
	num_items_visited
	parent
	path
	rdb_id

	RdbCell
	add_reference
	clear_references
	destroy
	destroyed
	each_reference
	name
	num_items
	num_items_visited
	qname
	rdb_id
	variant

	RdbItem
	add_tag
	add_value
	category_id
	cell_id
	clear_values
	destroy
	destroyed
	each_value
	has_tag?
	image_str
	image_str=
	is_visited?
	remove_tag
	tags_str
	tags_str=

	RdbItemValue
	assign
	box
	destroy
	destroyed
	dup
	edge
	from_s
	is_box?
	is_edge?
	is_polygon?
	is_string?
	new
	new
	new
	new
	polygon
	string
	to_s

	RdbReference
	assign
	destroy
	destroyed
	dup
	new
	parent_cell_id
	parent_cell_id=
	trans
	trans=

	RecursiveShapeIterator
	!=
	==
	assign
	at_end?
	cell_index
	destroy
	destroyed
	dup
	itrans
	max_depth=
	next
	shape
	shape_flags=
	trans

	ReportDatabase
	category_by_id
	category_by_path
	cell_by_id
	cell_by_qname
	create_category
	create_category
	create_cell
	create_cell
	create_item
	description
	description=
	destroy
	destroyed
	each_category
	each_cell
	each_item
	each_item_per_category
	each_item_per_cell
	each_item_per_cell_and_category
	filename
	generator
	generator=
	is_modified?
	load
	name
	new
	num_items
	num_items
	num_items_visited
	num_items_visited
	original_file
	original_file=
	reset_modified
	save
	set_item_visited
	set_tag_description
	tag_description
	tag_id
	top_cell_name
	top_cell_name=
	variants

	SaveLayoutOptions
	add_cell
	add_layer
	assign
	box_mode
	cif_dbu
	cif_dbu=
	cif_wire_mode=
	dbu
	dbu=
	deselect_all_layers
	destroy
	destroyed
	dup
	dxf_dbu
	dxf_dbu=
	format
	format=
	gds2_allow_big_records
	gds2_allow_big_records=
	gds2_allow_multi_xy_records
	gds2_allow_multi_xy_records=
	gds2_box_mode=
	gds2_libname
	gds2_libname=
	gds2_max_cellname_length
	gds2_max_cellname_length=
	gds2_max_vertex_count
	gds2_max_vertex_count=
	gds2_multi_xy_records
	gds2_multi_xy_records=
	gds2_user_units
	gds2_user_units=
	new
	no_empty_cells
	no_empty_cells=
	oasis_compression_level
	oasis_compression_level=
	scale_factor
	scale_factor=
	select_all_cells
	select_all_layers
	wire_mode

	Shape
	!=
	==
	array_trans
	assign
	bbox
	box
	destroy
	destroyed
	dup
	each_edge
	each_point
	each_point_hole
	each_point_hull
	edge
	has_prop_id?
	holes
	is_array_member?
	is_box?
	is_edge?
	is_null?
	is_path?
	is_polygon?
	is_simple_polygon?
	is_text?
	is_user_object?
	path
	path_bgnext
	path_endext
	path_width
	polygon
	prop_id
	round_path?
	simple_polygon
	t_...
	t_box
	t_box_array
	t_box_array_member
	t_edge
	t_null
	t_path
	t_path_ptr_array
	t_path_ptr_array_member
	t_path_ref
	t_polygon
	t_polygon_ptr_array
	t_polygon_ptr_array_member
	t_polygon_ref
	t_short_box
	t_short_box_array
	t_short_box_array_member
	t_simple_polygon
	t_simple_polygon_ptr_array
	t_simple_polygon_ptr_array_member
	t_simple_polygon_ref
	t_text
	t_text_ptr_array
	t_text_ptr_array_member
	t_text_ref
	t_user_object

	text
	text_font
	text_size
	text_string
	text_trans
	to_s
	type

	ShapeProcessor
	assign
	boolean
	boolean
	boolean
	boolean_to_polygon
	boolean_to_polygon
	destroy
	destroyed
	dup
	merge
	merge
	merge
	merge_to_polygon
	merge_to_polygon
	size
	size
	size
	size
	size
	size
	size_to_polygon
	size_to_polygon
	size_to_polygon
	size_to_polygon

	Shapes
	assign
	clear
	destroy
	destroyed
	dup
	each
	each
	each_overlapping
	each_overlapping
	each_touching
	each_touching
	erase
	insert
	insert
	insert
	insert
	insert
	insert
	insert
	insert
	insert
	insert
	insert
	insert
	insert
	is_empty?
	is_valid?
	replace
	replace
	replace
	replace
	replace
	replace
	replace_prop_id
	s_all
	s_all_with_properties
	s_boxes
	s_edges
	s_paths
	s_polygons
	s_properties
	s_texts
	s_user_objects
	size
	transform
	transform

	SimplePolygon
	!=
	==
	area
	assign
	bbox
	compress
	destroy
	destroyed
	dup
	each_edge
	each_point
	from_dpoly
	inside
	move
	moved
	new
	new
	new
	point
	points
	points=
	to_s
	transformed
	transformed_cplx
	transformed_cplx

	StringListValue
	assign
	destroy
	destroyed
	dup
	has_value?
	value

	StringValue
	assign
	destroy
	destroyed
	dup
	has_value?
	to_s
	value

	Text
	!=
	<
	==
	assign
	destroy
	destroyed
	dup
	font
	font=
	from_dtext
	move
	moved
	new
	new
	new
	size
	size=
	string
	string=
	to_s
	trans
	trans=
	transformed
	transformed_cplx
	transformed_cplx

	Trans
	!=
	*
	<
	==
	angle
	angle=
	assign
	ctrans
	destroy
	destroyed
	disp
	disp=
	dup
	from_dtrans
	invert
	inverted
	is_mirror?
	m_*/r_*
	m0
	m135
	m45
	m90
	r0
	r180
	r270
	r90

	mag
	mirror=
	new
	new
	new
	new
	new
	new
	new
	new
	rot
	rot=
	to_s
	trans

