
6/05/2014

1

Experiencing

RUP
1 2

A naïve view of RUP

• Rational Unified Process (RUP) is a
process model that defines:
Who

needs to do

What
and

When it must be done by
in order to achieve
Goals defined in Project Vision

3

RUP

• Extremely detailed guidelines
– 30 different “roles” for team members (e.g. “developers” sub-

classified as architects, designers, user-interface designers, capsule designers,

database designers, implementors, integrators)

– Each role characterized by
• List of activities

• List of artefacts that must be produced (e.g. “user-interface

designer” must produce a “navigation map” and a “user interface prototype”)

– Each “discipline” (Requirements, Deployment, …)

characterized by a detailed workflow model

4

Guidelines!

• Project groups aren’t expected to use all
the RUP stuff in any particular project.

• Groups follow those RUP guidelines that
are appropriate given the scope and
nature of the project that they are working
on.¶

¶One of the first tasks is development of the “Development Case” which identifies
those aspects of RUP that will be used.

5

A RUP example

Experience RUP vicariously by
reliving the experience of the

PSP-tools team!

Bit like watching a porno-movie, you don’t participate but you may be inspired

6

6/05/2014

2

“Textbook”

• “Software Development for Small Teams:
A RUP-Centric Approach”,
G. Pollice, L. Augustine, C. Lowe, J.
Madhur.
(PSP-tools team)

• Not a textbook!
• An experience report.

• As an experience report – quite useful.
7

Why did Pollice et al write it?

• It is a challenge for project managers (and, more
generally, software developers) to find the
development process that works best for their
projects.

• Ideally
– Try each of them on equivalent projects
– Pick the best

• Impossible!
• So, instead, take guidance from published

experience reports.

8

“Software Development for Small Teams”

• Small team
• Real, though relatively simple, application

– Essentially a system for recording work records – how much time, what
task, etc, etc.

– Has a few reporting functions that generate summary statistics.

• Team using (slightly simplified) version of Rational
Unified Process¶

– RUP more typically used with somewhat larger projects

• Team’s records (the book) detail an experience
of RUP,
hence you can share their experience and so
decide if RUP is good for you

¶ (Also slightly “contaminated” RUP, they drop into lighter weight XP practices in places.) 9

Not a student project in style of CSCI321!

• Team:
– Diverse
– All experienced
– All familiar (to varying degrees) with

development language and development
tools.

– Some having limited experience in problem
domain.

– All have participated in a number of projects
– All had been employees of Rational and so

knew about RUP and Rational’s tools (UML
tool, project management tool, etc)

10

Not a student project in style of CSCI321!

• Team:
– Each individual has specializations wherein they are

competent.
• Gary – “project lead” - business systems degree, software

engineering grad school, familiar with problem domain (PSP),
30 years experience, different methodologies, limited RUP
experience

• Liz – “technical writer (also tester, tool engineer)” – 20 years
experience, comp. sci. degree, programmer before becoming
tech writer/tools engineer/tester, interested in “light weight”
process

• Chris – “? Developer/tester” – 15 years, C/C++, Windows,
Windows GUI, wants more Java, has heard of RUP

• Jas – “? tester” – had some experience with RUP in a larger
scale project, knows a little about problem domain (PSP)

• Russell – “? Customer/Business manager” – person who
wants a usable PSP-tools product 11

“Project Guideline 1”
• Violated in all student projects!

• Get the right mix of people on your project
– Senior members who lead and teach junior

members (Gary/Chris)

– Senior members have experience on similar
projects (Gary)

– There are team members with existing
technical expertise in all critical areas
(actually they had some problems here, no real database guru).

12

6/05/2014

3

13

Four phases

• PSP-tools group describe their activities
for four phases of RUP
– What they did.
– What parts of RUP got used.
– What they should have done.

• Inception (1 week)
• Elaboration (3 weeks)
• Construction (8 weeks)
• Transition (3 weeks)

14

Actually PSP-tools group had a
pre-inception phase

• Meet as group,
– Introduce selves,
– Explain what you view as your strengths and weaknesses
– Discuss roles that you might take on later
– Begin to notice possible weaknesses of group (hence “risks” that will be

identified in the inception stage)
• Get some idea of project

– PSP-tools group all did
• A little reading about PSP
• A couple of exercises on manually recording times on tasks as if they were

using PSP

• This “pre-inception” phase is not standard
– In real world, most of group will already have worked as colleagues on

other projects in a company and so introductions and identification of
potential roles already accomplished

• GOOD IDEA to try something like this when starting your CSCI321
project or any large group project component in another subject.

15

Inception

•Most of the business modelling

•Chunk of requirements

•A little high level analysis and design

•Project management tasks e.g. who will
do what

•Initial set up of environment

Inception
16

Inception – iterations?

• Usually Inception phase has just one “iteration”
– Might get second iteration if “risk” analysis of first

proposal suggests it will fail, could then try again with
a changed vision for proposed product

• Style of RUP project here is similar to old
waterfall model – business model, requirements,
analysis and design are largely “completed”

• Some agile methodologies would already have
code being generated and its behaviour being
evaluated by the “customer”, final functionality of
product being left incompletely specified

Inception
17

PSP-tools : Inception

• “Development case”
– Really part of the “project management” discipline

– Decide how to use RUP
• “A development case is a brief description of how you should

apply the RUP, what artefacts to produce when and with
what formality, how to map roles to people in your project,
and so on. You typically produce a development case for a
project or a type of project. The development case should be
very short, ideally only a couple of pages long. Rather than
duplicating information in the RUP, you can link to activities,
artefacts, and roles in the RUP from the development case.”

Inception
18

6/05/2014

4

PSP-tools development case:
artefacts

We will create the use-case models in the inception phase modify them during
elaboration; naturally, the “Vision” thing is created at inception. We allocate
responsibility for these artefacts to roles as shown.

Inception
19

PSP-tools : development case

Initial “who does what” map; define the roles that group members will fill.

Inception
20

PSP-tools : Inception

• Start developing environment
(environment discipline)
– PSP-tools group picked up some

“collaborative workspace” product
• Think of it as structured bulletin board

Inception
21

PSP-tools : Inception

• “Iteration plan” for rest of inception phase
(management discipline)
– Artefact, who responsible, when due

Inception
22

PSP-tools : Inception :
the Vision

• What problem are we trying to solve? (Problem
Statement)

• Who are the stakeholders?
Who are the users?
What are their respective needs?

• What are the product features?
• What are the functional requirements? (Use

Cases)
• What are the non-functional requirements?
• What are the design constraints?

Inception
23

PSP-tools: Problem statement

“describe the problem, who it affects, how it affects them, and
what type of solution would ease the pain.”

Inception
24

6/05/2014

5

PSP-tools: “Position statement”

If you could develop software that would solve the problem described in the
Problem statement:

who would buy it
and what would make it unique

Inception
25

Getting the money …

• Sometimes, “Vision” thing is created by
entrepreneurial developers who must then sell it
to venture capitalists.

• PSP-tools team had been commissioned to develop the software
• Most of projects you will be working on in future will similarly have

been commissioned either by marketing seeing some product niche
or by another part of company having some perceived need for
software.
– In these cases, “Vision” thing’s role is to establish some common

understanding of project for development team and commissioning
customer;
Vision will be fleshed out as get into requirements

Inception
26

Identify stakeholders

• Customers

• Management

• Team
• Others

– Some projects will need to satisfy government regulations etc
(e.g. privacy of data), then someone in organization will have to
act as a proxy for government, checking project’s compliance

• PSP-tools stakeholders were the team members and the
customer Russell

Inception
27

Identify some features

• PSP-tools:
– “record personal statistics”

• Time
• Software defects
• Source code size

– “reporting”
• Personal reports
• Team reports

– Viewing
– Statistics
– …

Inception
28

Sketch some high level use cases

• Software Engineer will use
PSP-tools to:
– Create project
– Enter data
– Count items
– Use on line help when needed
– Create report
– …

• Process administrator will use
PSP-tools to:
– Configure system
– Configure project
– Install PSP-tools
– Use on line help when needed
– …

Inception
29

Iterate a bit with your initial use
cases!

• PSP-tools team reduced that initial use
case diagram down to this:

Inception
30

6/05/2014

6

Identify non-functional
requirements

• Typical things:
– Must be implemented using AAA and BBB running on the CCC

operating system (because those are standards for the company)
– Must run reasonably¶ on a machine with following configuration

…
– Must be built using a process that complies with standard xxx
– Must have support for internationalization
– Must meet following security requirements limiting access to

personal data …
– Must have 99.999% availability 24/365
– Must accommodate visually impaired users

• PSP-tools guys don’t appear to have identified any non-functional
requirements during the inception phase.

¶Take care when you see a requirement like that. What seems
“reasonable” to you might seem “pathetically bad” to me! You must
get stakeholder to define a quantifiable measure of “reasonableness”

Inception

James Gibson, the only
real software engineer to
have worked in this department,
says I should use “shall” rather
than “must”!
So quaintly archaic! 31

Non-functional requirements
• Generally aspects such as

– Usability
• Accessibility, aesthetics, consistency, …

– Reliability
• Scheduled downtimes, recoverability after various disasters

– Performance
• Throughput, response times

– Supportability
• Ease of configuration, deployment, …

– Design constraints
• E.g. must work with hierarchical database

– Implementation constraints
• E.g. Use C++

– Interface constraints
• E.g. Must upload data from a Blackberry

– Physical constraints
• Usually only for military and embedded systems – must run on hardware

that fits in this box and uses this much power
32

Initial Project Plan
• Prioritize requirements

– Remember two of the “Spirit of RUP” rules
• Baseline an executable architecture early on
• Stay focussed on executable software

– High priority on getting some minimal subset of overall project running.
– Another high priority is getting some preliminary work done in area of

high risk (areas where difficulties can be expected or where team knows
it lacks significant expertise); starting these early helps quantify risks
(and in worst case means project can be abandoned before too much
effort expended)

– Customer ranking of functionality
– Other priority constraints – e.g. feature X depends on feature Y,

therefore feature Y must have higher priority so it gets done first
• PSP-tools: priorities for use cases

– 1) create database; 2) add data; 3) report data

Inception
33

Initial Project Plan

• Once you have prioritized use-cases, assign
them to iterations in elaboration and construction
phase
– A minimal set of use cases, just enough to start an

“executable architecture”, will get at least partially
implemented in elaboration phase

• Some beginnings of user interface
• Some minimal functionality
• For use in subsequent iterations of negotiation with

“customer”/“users” needed to clarify requirements and
accommodate changed perceptions

– Other use cases
• Assign them to iterations in construction according to priority

order; an iteration will deal with some number of use cases

Inception
34

“Time boxing” iterations

• This is typical.
– Iteration-x, must complete in 3 weeks

• If, when engaged in Iteration-x, you find that it
isn’t going to be completed, you get approval for
lowest priority feature assigned to that iteration
to be pushed into a later iteration.

• As PSP-tools was a more “amateur” project
(they were working in their spare time), they
didn’t do time-boxing (to be honest, they really
didn’t plan the iterations for the construction
phase). They still did feature culling.

35

Initial Project Plan

• Other artefacts
– Initial plan must also specify phase and

iteration in which other artefacts will be
delivered

– Initial plan just defines order, as plans revised
dates get added.

Inception
36

6/05/2014

7

Initial Project Plan

• PSP tools initial plan
1. Plan done by 10th Oct

2. Environment set up …

3. Vision complete by …

4. Supplementary
requirements

5. Initial use cases by ..

6. Risk list

7. Test plan

8. Finish “Inception Iteration”

Inception
37

Identify Risks
• This is the task that is impossible for students who usually end up relying on

undergraduate “humour” (“struck by lightning”, “thrown out of apartment”, “break with girl-friend/boy-

friend/both”, “hard assignments in other core subjects”, …)

• In real-world projects:
– Business manager and project team leader list things that have,

in their past experience, resulted in disruptions to similar
projects.

• Typical things
– Project requires arcane knowledge or obscure technical

experience (e.g. “must utilize the IMS hierarchical database”) – risk is that
you won’t find anyone with the requisite knowledge

– Project requires development environment, or methodology, that
is new to most members

– Constraints on team members (“no recruitment, must use existing
employees”) may constitute risk (“difficult people” etc)

Inception
38

Identify risks – and propose
countermeasures

• No good just identifying risks,
have to outline how they will be reduced.

• Examples:
– Use IMS? !

• Convince customer to allow use of relational database?
• Separate out a distinct sub-process that cruds¶ with IMS,

employ a consultant to implement it

– New Environment, New Methodology?
• Pay for training courses

– Difficult team member?
• Invoke help from the gods

¶crud – create, read, update, delete
Inception

39

PSP-tools

• They did a little more on setting up
environment
– Chose an IDE

– Chose a code-versioning tool

– Chose testing tools

– Chose tools to record management
information such as the plans (could just be a
spreadsheet or even a word-processor
document)

Inception
40

PSP-tools : end of inception

• Artefacts delivered
– An initial project plan

– Vision endorsed by the stakeholders

– Programming guidelines ¶

– Initial requirements

– The development environment set up and ready for
the remainder of the project

– A test plan ¶

– An initial Risk List

– The iteration plan for the Elaboration iteration ¶

Inception¶Book doesn’t contain any details of these in its “Inception” section
41

End of RUP inception –
the Lifecycle Objective Milestone

• Conventional RUP requires an evaluation point – the Lifecycle
Objective Milestone – at end of inception.

• This should verify:
– Stakeholder concurrence on scope definition and cost/schedule

estimates.
– Requirements understanding as evidenced by the fidelity of the primary

use cases.
– Credibility of the cost/schedule estimates, priorities, risks, and

development process.
– Depth and breadth of any architectural prototype that was developed.
– Actual expenditures versus planned expenditures.

• Some of these elements not relevant to PSP-tools as there were no
budgets, costs, etc (it really is more like an open source
collaborative project than a real costed industry project)

42

6/05/2014

8

Inception

• You can vary the formality of RUP for inception
• You can make it like Waterfall

• Complete business modelling
• Work through all requirements
• Hand over to next phase

• Or more like XP
• Minimal requirements
• No “analysis=paralysis”
• Start implementing with “user” on hand

• “Is this what you want?”
• “Is it better now?”
• “What do you want next?”

43

Elaboration

Elaboration

•Tail end of the business modelling

•Requirements refined

•Most of high level analysis and design

•A chunk of implementation

•Unit testing begins

•Version your source code

•Project management tasks

•Improve environment

44

Elaboration - aims

• Not yet the product!
• Aims –

– A “stable architecture”
• No more radical changes (“Hey, I’ve just had a great idea, lets make it

web-based 3-tier client-server instead of a Unix shell-script!”)
• Lesser changes are permitted in later phases

– Use cases elaborated with key scenarios worked through
– Detailed plan for iterations in subsequent construction phase
– Development environment effective and stable
– The beginnings of executable software
– The start of automated re-testing system for subsequent

additions and changes

• Success of elaboration to be evaluated at end when
reach the Lifecycle Architecture Milestone

Elaboration
45

Elaboration
• Artefacts may include

– Updated versions of
• Vision Document.
• Risk List.
• Software Development Plan
• Iteration Plan.
• Use-Case Model.

– Supplementary Specifications
• Finalized documented version of the non-functional requirements

– Prototypes
• explore software ideas
• demonstrate specific behaviour.

– Software Architecture Document—
• Logical View
• Use-Case View
• Process View
• Deployment View

– Design Model.
– Implementation Model

• A collection of components, data, and subsystems that express the product
design.

– Project Specific Templates and Tools
Elaboration

46

PSP-tools: Elaboration Iteration
Plan

Elaboration

Note defining tests – some members started thinking about acceptance tests (use the
system to perform tasks – “black box” testing), others thinking about unit tests (“white box”
Testing)

Who is John?
Oh, he withdrew from
CSCI321 about week-7 of
session-1.
We had to finish without
him.

47

PSP-tools : elaborate the use cases

• Fill in some detail
– HOW?

• Based on experience with similar things in other projects

• Guessing

• They initially created text descriptions

Elaboration

“Open project use
case”

This is their version of “scenarios”
48

6/05/2014

9

And MAGICALLY classes appear

• Gary
– project lead,

– lots of experience on similar projects

• Draws up an initial UML sequence diagram

Elaboration49

Elaboration
50

Classes! ?!

• “mainFrame”

• “openDialog”

• “openManager”

• “databaseFactory”

• “PSPDatabase”

Elaboration
51

Now how did we get to those
classes?

• Magic.

• The textbooks NEVER explain this.

• It is probably the hardest part of this stage of
development.

Elaboration
52

They aren’t classes anyway.

• What Gary has done is introduce a number of
“Categories”
– category: a priori conceptions applied by the mind to sense

impression, or relatively fundamental philosophical concepts

• Gary has worked on similar applications.
• Gary knows that

– There will be a control element that picks up a “Do create
database” command from some form of GUI, so he infers that
there is a something that he declares as a “mainFrame” object

– This will result in display of a dialog where user enters details of
database that is to be created – hence Gary’s openDialog

– Input data will be used
• Firstly to confirm authorization (name/password checks maybe)
• Then to parameterize the code to create the tables.
• Garry is guessing here and picks

– openManager, databaseFactory, and PSPdatabase

Elaboration
53

Lots of use of previous experience

• What is this “databaseFactory”?

• There is nothing in use case’s text description that
suggests the presence of any such class!

• Gary is using a “design pattern” with which he is familiar
– “Factory Method” : define an interface for creating an object but

let subclases decide which class to instantiate

• Gary has used something similar in another project and
has just assumed it will be relevant here.

Elaboration
54

6/05/2014

10

Use previous experience

• There is nothing in use case, or the text
description that suggests the presence of this
factory class!

• In fact, its occurrence will probably turn out later
to be wrong;
– at this stage they imagined that they might be

creating different kinds of database structures – data
for PSP-level-0 differs from data needed for PSP-
level-1 so maybe they needed to created different
kinds of PSPDatabase object.
So, “Factory” – makes it possible to create different
kinds of database object given parameter data

– They will probably simplify that later!

Elaboration
55

Don’t expect these “classes” (categories) to
survive through many iterations

• These won’t be your actual classes.
• A few more iterations are necessary to get your initial class

definitions in terms of “owns” and “does”

• Caution:
– Working from use cases often leads to bad designs where you have

• a “main” class that has essentially all the program’s business logic
• Some “entity” classes that are really just structs representing rows in a

relational database
• A few minor wrapper classes, e.g. a “wrapper” around the datastore code

that allows switching between file-based and relational-table style data
repositories.

– Good designs
• business logic assigned appropriately to meaningful application specific

business classes
• Use of design patterns like “Command”, “Observer”, “Flyweight”, “Singleton”

which suggest groups of classes useful when handling tasks such as those
that emerge in use cases

Elaboration
56

No previous experience?

• So how do you get your classes (categories) if
you don’t have Gary’s experience?

• Try the “Classes Responsibilities Collaborations”
game
– Group members play act roles of things in program

– Try exploring how user requests might be handled

– Note
• the things you need to know for your role,

• The requests that you receive

• The requests that you make to others

Elaboration
57

Classes Responsibilities Collaborations
Game – pick your roles

• Group members play act roles of things in program
– Member-1 “I’m the database; I can crud a table; don’t ask me to do anything

else. I am unique. I am a singleton.”
– Member-2 “I’ll manage the database; creating new PSP-project tables, accessing

existing tables. So I am THE DATABASEMANAGER. I think I’m a singleton, but
there might be more than one of me.”;
“I will also pretend to be another object – something that verifies ‘log-ins’ to make
sure that only authorized people create of use tables. In this role, I’m definitely a
singleton.”

– Member-3 “I like being schizophrenic. I’ll pretend to be each of the GUI data
entry forms and responses. So I represent several objects from several different
classes at different times”

– Member-4 “I’ll take the role of listening for inputs on GUI forms – from my friend
member-3. I am probably several objects – listeners of different classes for
different forms. My role as listener is to get the work done via Member-2 and/or
member-1. I’ll tell member -3 what results to display”

– Member-5 “I’m main(). I create all you other guys and set links so you can talk to
one another. Then my thread sleeps. Don’t ask me to do anything.”

– Member-6 “I suppose I’m the user”

Elaboration
58

Classes Responsibilities Collaborations
Game – play your roles

– Member-6 “I want to create a database”

– Member-3 “I suppose I’d better be a “LoginPanel” object;
somehow #5 had better arrange that I’m displayed first when the
program starts. I show name and password fields and create-
database, connect-to-database buttons”

– Member-6 “I fill in my name in and hit #3’s create button”

– Membe-4 “I’m a createButtonListener object, #5 arranged that I
was waiting for this button press; I ask #3=LoginPanel for the
name and password; there is no password; shucks; I think I can
probably put up an error alert dialog; I’m not going to do anymore
work now; if I can’t put up the error alert, then it will have to be a
responsibility of #3”

Elaboration
59

Guessing classes

LoginPanel

Owns:
textfields Name, Password
buttons create, connect

Does:
access functions readName,

readPassword
maybe showErrorAlert
?

createButtonListener

Owns:
reference to loginPanel
reference to databaseManager

Does:
handle action-event on create button
maybe showErrorAlert
?

Record the things you own, the things you do, who you talk to, what you
ask them to do

60

6/05/2014

11

Classes Responsibilities Collaborations
Game – play your roles

– Member-6 “I close that stupid error alert!
I fill in my name in and my password.
I hit #3’s create button”

– Member-4 “I’m a createButtonListener object,
I ask #3=LoginPanel for the name and password; I ask #2, in her guise
of loginChecker to check the name password combination”

– Member-2 “In my role of loginChecker, I ask #1 database to retrieve the
encrypted password for user with name=… from the users’ table”

– Member-1 “I’m the database. I crud. I return data”
– Member-2 “I encrypt supplied password, compared with crudded data,

they match, I return OK”
– Member-4 “I’m still the createButtonListener, I resume my work on the

login, I now ask #2 DATABASEMANAGER to create database”
– Member-2 “Er, problem here, you haven’t told me anything about the

new database table, should there be some additional input data?
Should login be a separate step from create, using different GUI panels
maybe?”

Elaboration
61

Somehow, magic occurs

• Based on previous experience, or CRC
role-play, you do get
– Some initial classes

• Owns …

• Does …

• Talks to …

– And some guess at an interaction diagram for
the use case that you are working on

Elaboration
62

Elaboration - testing

• Gary + Chris to do most of programming
– Decided to do it xP style with test driven

development and unit testing

• First write the test plan
– “Let’s follow the RUP guidelines”

Elaboration
63

RUP test plan

Elaboration
64

RUP test plan

29 pages like this!

Elaboration
65

RUP test plan template

Data and Database Integrity Testing
• Test Objective:

– Ensure database access methods and processes function properly and
without data corruption.

• Technique:
– Invoke each database access method and process, seeding each with valid

and invalid data or requests for data.
– Inspect the database to ensure the data has been populated as intended, all

database events occurred properly, or review the returned data to ensure that
the correct data was retrieved for the correct reasons

• Completion Criteria:
– All database access methods and processes function as designed and without

any data corruption.
• Special Considerations:

– Testing may require a DBMS development environment or drivers to enter or
modify data directly in the databases.

– Processes should be invoked manually.
– Small or minimally sized databases (limited number of records) should be

used to increase the visibility of any non-acceptable events.]

Elaboration
66

6/05/2014

12

RUP test plan

• Similar detailed templates
– Data and Database Integrity Testing
– Function Testing
– Business Cycle Testing
– User Interface Testing
– Performance Profiling
– Load Testing
– Stress Testing
– Volume Testing
– Security and Access Control Testing
– Failover and Recovery Testing
– Configuration Testing
– Installation Testing

Elaboration
67

PSP-tools

• Er – maybe not, that stuffs for bigger
projects!

• PSP-tools Test Plan
– Each class will have corresponding unit tests.

No code will be checked into version control
unless all unit tests pass.

– Acceptance tests will be run and will pass
before any software is delivered to the
customer.

Elaboration
68

PSP-tools : acceptance tests
• They started sketching these

– Really just a variant on the existing use-case description with a few
annotations.

– A guess as to how eventual user might interact with some interface
element

Elaboration
69

Architecture

• PSP-tools persons admit they cannot give a good
definition of architecture (page 83).

• “Highest level concept of a system in its environment”
• Actually, multiple levels

– Process and inter-process communication level
• What processes make up system?
• What machines do they run on?
• How do they intercommunicate?
• What messages are exchanged?

– Process
• Subparts

– GUI interface, Database interface, Control code, Business logic parts,
…

– “Subpart”
• Principle classes and packages

PSP-tools is a simple, single process application; architectural effort reduced! Elaboration
70

Architecture – PSP-tools

• Slightly odd here
• Under heading “architecture” they discuss

– their first ideas as to user interface
– The “packages” – GUI, managers (control), database,

data-objects and “utilities”
• ?
• The GUI design didn’t really seem to fit the

architecture heading;
RUP puts architecture responsibilities with
“System Architect”
RUP assigns prototype GUI design to another
role – “User Interface Designer”

Elaboration
71

Use previous experience

• “A good analyst is a biased analyst”¶
• The GUI design proposed reflected lots of

experience with Java swing framework.
– Gary + Chris knew swing classes most often

used to create GUIs, and common GUI
configurations

• Classes : JFrame, JPanel, JTree, JTabbedPane
• Configuration:

– Tabbed Pane interface with “tabs” for different input
forms, tabular responses, and message;

– Hierarchical tree-view for selecting subsets of data

¶If you know that “tree views” are easy to implement, this influences your analysis
and you end up suggesting to the user that some data should be displayed in a tree view Elaboration

72

6/05/2014

13

PSP-tools : GUI

Treeview

Tabbed pane – panels for
different “data entry forms”
and responses

Elaboration
73

Menus and dialogs

• Design model 1
– Tabbed Pane has “tabs” for data input forms and for tabular

presentations of selected data

• Design model 2 (the one used by PSP-tools)
– Tabbed Pane only has “tabs” for displays of selected

data
– Data entry to be achieved by using menu to get dialog

displayed, data entered in dialog – action button
submits data and closes dialog

– Data entry updates database and also tree view in left
panel

– Tree view is “active” – click on entry to place selected
data in a structure that can then be viewed in a
tabbed pane panel

74

PSP-tools : “package architecture”

Elaboration
75

Architecture?

• Haven’t really advanced much.

• The “architecture” derived so far:
– Describes essentially every

• Java-GUI/back-end data-store application via JDBC

• C#/Visual-Basic “Winforms” using data access objects and a
back-end data-store

• Developing this architecture was easy for PSP-
tools guys
– We’ve done dozens of applications like this, roll out

the standard elements

Elaboration
76

Not always so easy in CSCI321

• May be required to construct an interface using
a technology with which no group member is
familiar
– TCL/TK for GUI interfaces maybe?

• Does it support “Tree Views”, “Tabbed Panes”?
• Are the GUI elements instances of classes or are they

something else.

• Application may require an architecture more
elaborate than those that you have met:
– Single process
– “Two-tier” (process that talks to database)
– Simple WWW (browser-client, middleware, database)

Elaboration
77

Database design

Elaboration
78

6/05/2014

14

Database design

• Tables (“entities”)
– The different types of data item you wish to store;

– For PSP-tools
• Projects

• Users (many users participate in a project)

• Phases (several phases in a project)

• Tasks (many tasks in a project, each task the responsibility of
one user)

• Time entry (time entry associated with user, phase & hence
project, and task)

• DefectEntry (similar)

Elaboration
79

Database design

• As you refine your ideas, you get to
– Table declarations

• Primary keys (often auto-allocated, e.g. defect
item’s primary key to be allocated by database)

• Foreign keys (defect introduced by user – so
defect record will have a foreign key that is primary
key in user table)

• Other fields
– User

» Name, Initials, encrypted password, …

Elaboration
80

Database

• Effectively defining “entity classes” at same time.
• You read a user-record from database

Either
you only want one field (select password

from users where username=? and initials =?); if
this is always the case, then can take data from
result set,
Or

you want to use more of the data – in which
case you probably want a “class User” that you
can instantiate and fill in details

Elaboration
81

Database classes

• Consider defect:
– In table: unique id, date, type, foreign-keys for phase, task
– In memory

• Unique id, date, type are ok
• Do you want foreign keys as longs

class Defect { private: long id, task, phase; date d; string type; … }
• Or do you also load in phase and task data and build

class Defect { private: long id; Task* tsk; Phase* phs; date d; string
type; …

• You probably don’t know which way to go at this stage;
it is going to depend on the most typical patterns of
processing;
pick simpler style now, but remember you may have to
change later.

Elaboration
82

Database – consistency, etc
• Enumerated type e.g. Defect type –

– how about defining a constraint on values of field in table so database
validates info on entry.

• Foreign keys –
– you cannot expect PSP-tools user to know the unique id for project and

for their identity when recording a defect or time entry;
– implicit requirement that your processing code will have to get this

information from data-tables once user has logged in and identified task
for which they are entering data (in PSP-tools, they load the data into the
tree view);

– how are they going to identify task – your code will have to present a list
showing possible tasks

– Look how just thinking about data-table has given you a whole
series of subtasks that you should record so that they can be
scheduled and allocated

• Deletes – “cascading the changes”
– Remove a task?

Not appropriate in this application, but similar applications will have
deletes.
All time logs, and all defects relating to that task should be deleted.

Elaboration
83

PSP-tools

• Gary devised some SQL create table statements given
their first database design diagram

• Tables created by running scripts – departure from
earlier plan of having application create tables
dynamically.

• Later they considerably simplify their data model and
change all the tables.
– Such a change allowed in “lightweight” approaches.
– More formal (Waterfall) methods would have required them to do

more careful analysis of data model at this stage and then have
had the database design frozen.

– That would have made the implementation problems they had
much more serious.

Elaboration
84

6/05/2014

15

Management activities

• “Engineering backlog”
– Note examples

• CRC role play, participants noted that their
conceived user-interaction hadn’t provided the
data needed to create a tables

• Decisions about data stored for a time record or
defect record identified need to retrieve keys
identifying user and a list of keys and descriptions
for tasks

– Add these to “project engineering backlog”

Elaboration
85

Engineering backlog

Elaboration
86

Engineering backlog

• This is an “agile” feature.

• Less agile approaches require that you
have the foresight to identify all the tasks
before you start the phase, so there won’t
be anything to add.

• Agile is more realistic

Elaboration
87

Management – feature cull and re-
prioritize

• PSP-tools
– Originally, had some idea of allowing users of

PSP-tools to customize it so that they could
select the data to be recorded etc;

– Requires customization of data-entry forms,
data-tables, entity classes etc

– Ooops – too hard

– Defer to “release 2”

Elaboration
88

Management

• Keep records of features
– Their revised priorities

– Iterations for implementation

– “Release”

Elaboration
89

Incidentals

• Things you didn’t ever think of that mess you up and
divert you to work on support tasks
– Cost time
– Time that was never budgeted
– Will make your project run late and cost too much

• PSP-tools
– Installation

• Technically less sophisticated group members (representing
customers) couldn’t install and run the prototypes

• Have to divert effort into obtaining and learning how to use one of
those systems that lets you create “self-installing” applications.

– How to use the GUI?
• Found it necessary to get a Windows screen recording thingy that

let them record “movies” of sessions so that potential users could in
effect watch demonstrations.

Elaboration
90

6/05/2014

16

Elaboration – steps toward the first
executable

• PSP-tools Starting
– Install Java
– Install a database product (Cloudscape)

• Often people choose things like MySQL or Apache Derby for
the database used in development phase

• The “Developer” (or “Express”) editions of DB2, SQLServer,
Oracle etc might be more appropriate

– Picked a code versioning system

• Defined their project in terms of layers – user-
interface, control and business logic, persistent
data;
used this to define an initial package structure

Elaboration
91

Build a GUI

• No functionality behind it
• Just a GUI

• See book for their arguments as to why they made this
their starting point
– More the “agile” style
– They have a tame user, they want to keep Russell constantly

involved, showing him bits and asking “is this right?”
– They argue that changes to GUI have major ripple effects

causing changes to all other parts, hence they argue that do as
much as possible to get the GUI right early on

Elaboration
92

PSP-tools GUI

Faked! Data shown in tree defined by constants in early code.
Data “added” via form-panels isn’t added to anything.

Elaboration
93

Early GUI

• Important to explain to quality testers and
customer representatives that functionality
is limited or non-existent.

• Otherwise
– “Defect report log” gets filled with bug reports

about things not working (when engineers
knew they weren’t implemented yet)

Elaboration
94

They simplified their database
model

Main thing is that now the database represents a single project where
participants are using PSP; so don’t have to keep track of which project
users and tasks belong to etc; a lot of earlier relations between entities
have gone so removing need for foreign keys etc.

Elaboration
95

Simple entity classes

• They defined a number of simple entity classes
– each corresponding to a table.

• Entity objects represent rows.
• “Documented” them with UML class diagrams –

but these are simply lists of the fields (table-
columns)
– No real functionality defined for these classes
– Presumably (though not shown) there are getX

(accessor) and setX (mutator) functions for each field
• UML class diagram maps easily to SQL

createtable

Elaboration
96

6/05/2014

17

PSP-tools Entity classes

Elaboration
97

PSP-tools Entity classes

Elaboration
98

Entity classes

• They really were thinking in terms of the
database tables.

• They could simply have used SQL create-
table statements and created the tables

• Many systems can import meta-data from
database and use this to create entity-
classes or entity class diagrams.

I have feeling that they were hacking a bit at this stage; a little too much agility,
not enough thinking things out.

Elaboration
99

Classes other than entity classes

• They’ve built their GUI
– Used a GUI-builder to assist the process

• See their comments about problems that this can
cause if you switch development environments

• They’ve got their entity classes

• Now they need the bits with the control
logic and the database managers – the
bits that really provide functionality

Elaboration
100

PSP-tools group adopts “Test
Driven Development” strategy

• Really an XP practice.

• You are planning to implement class X which (in this
phase) has functionality f1,f2, and f3

• You start by thinking up tests
– Create an X object
– Initialize it
– Ask for property value
– Invoke f1 operation that should change that property’s value
– Ask for (changed) property value
– Assert difference between original and new values is the

difference that was expected

Elaboration
101

JUnit testing

• They created their unit test cases
• For example

– They plan a class PSPUser
• It has name, and loginname fields, these to be set by the

constructor
• It will have an “equals” operation
• Two PSPUsers are “equal” if they contain same strings in their

name fields, and in their loginname fields

– Hence test

public void testEquals() {
PSPUser u = new PSPUser(“Gary Pollice”, “gpollice”);
Assert.assertTrue(u.equals(new PSPUser(“Gary Pollice”,

“gpollice”);
}

Uhm – I’m still not convince of the value of such micro tests.
Elaboration

102

6/05/2014

18

End of elaboration phase

• Build an executable architecture?
– Er no

• But they have a GUI toy that does nothing, but
does that in an attractive way that pleases the
customer

• They have some faked data inserted into tables so
they will soon be able to start testing data
management code and entity classes

• They have their unit test framework set up;
the tests are scripted; they will be able to
automatically retest after every change from now
on.

Elaboration
103

PSP-tools view of state at end of
elaboration

• We have an executable architecture!

• We have refined the scope
– Taken out some things that would have been

too hard

• We have a sketch of an iteration plan for
construction phase (they don’t appear to
include it in the text)

Elaboration
104

Construction

construction

•Requirements refined again

•Feedback and experience leads to
more analysis and design

•Most of implementation

•Unit testing continues, integration
testing occurs

•Deployment issues explored

•Versioning of all parts through
iterations

•Project management tasks

•Improve environment

105

A bit light on the planning!

• The account in the book suggests that there was
significantly less work done on planning (managerial,
analysis+design, …) then might be expected for a
professional RUP project

• Examples
– Iterations

• Not shown the iteration plan devised for construction phase
• 12 iterations reported

– Twelve iterations in 8 weeks?
– Really these are “after the fact iterations”, they’ve added something and

decided that the extension justifies a new “internal release” to the
customer representative and the quality assurance part of team

– Classes
• Evidence suggests no UML class designs

construction
106

No UML class design?
• Supposedly we

– Create designs
– Diagram them in UML
– Review
– Work out interaction patterns, document these
– Then code

• They dived into coding after only limited design
• Appear to have “Reverse engineered” the code to get UML

diagrams
– Reverse engineering is a feature available in “professional” versions of

things like RationalRose
– Use is meant to be:

• Create UML design overviews for imported or legacy code
• Reduce work involved in updating UML diagrams to maintain consistency

with code after “refactoring”

construction

They don’t put reverse engineering into the versions of RationalRose used when
learning UML – because they don’t want to encourage such hacking! 107

“Agile”

• As noted in text, this wasn’t a pure RUP model.

• They also wanted to get some experience with agile
methods; XP (eXtreme Programming gets a couple of mentions), unit
test strategies were XP motivated.

• Agile methods do tend to go more lightly on the design
documentation – so no UML class diagrams, code first,
reverse engineer afterwards to get documentation

Waterfall---RUP---Agile---Hacker---Student
You can position your work style anywhere along
this axis. Whatever you choose, you will encounter
problems – the particular difficulties you meet vary
with your chosen style.

construction
108

6/05/2014

19

Environment
• RUP diagram shows “hump” for environment discipline at the start of

each phase
– You extend your environment
– Different support tools required in the different phases, you must install,

make available to team members, and possibly train some team
members in their use

• PSP-tools
– A few extra problems
– They switched existing tools as well (Sun Forte Java IDE replaced by

Eclipse etc)
– When doing your CSCI321 project, try to avoid following the example of

this team in regard to environment changes!
• Typically, at start of construction phase

– Start using code versioning system seriously
– Additional testing tools (code coverage, scripted GUI-testers, batch

scripts for regression testing) come into use
– Code generators may be used (possibly necessitating training in their

use)

construction
109

Management

• Put in place system for “defect tracking”
– PSP-tools illustration shows most of “defect

notices” being raised by Russell (Customer)
who continues to be supplied with “executable
releases”

– More typically defects logged by
• Your group’s “Quality assurance” person

performing “black box” testing of the system

• Developer’s flagging problems with code that has
been done in an earlier iteration

construction
110

Defect logging

111

Management

• Requirements traceability
– Get list of agreed requirements (from updated Vision

produced at end of elaboration phase)

– Check that each requirement has a use case
associated with it

– Check that each use case is being developed into
code

construction
112

Traceability matrix

113

Construction

• Executable architecture from “elaboration”
– Nothing relating to

• Generating reports

• Viewing data from time records or defect records

• Recording size data for tasks

• …

– Faked GUI support (but no underlying processing of data or

persistence) for:
• Recording time on tasks

• Recording defects

• …

construction
114

6/05/2014

20

Construction - iterations

• First couple of iterations look as if there may
have been some planning prior to
commencement of construction;
subsequent iterations are “serendipitous”
– “Chris and Gary worked at a steady pace to

implement the needed functionality. Every few
weeks, they produced a build that was ready for
testing. When the build was released, anyone could,
and everyone was expected to test it, and report any
defects found. Russell or Gary often added requests
for enhancements; after considering priority and
effort, the became new requirements. Then Russell
and Gary would reallocate work based on the
priorities. We did this all without a formal planning
cycle.”

construction
115

Construction – a first iteration

• An executable architecture that actually does
something
– Details are not clear from the account but it appears

that a user of the PSPtool program construction-
version-1 could

• Open an existing database

• Add time records and defect records
– still only stored in memory (no persistence to database!)

– Appear in tree view, can be processed when generating
summary reports

• View totals (simple summary reports) in tabbed pane panels

construction
116

Construction – a first iteration

construction
117

Construction – a first iteration

• Time for first iteration not specified.

• Book discusses “delighters” –
– Something that costs nothing to implement and will delight users
– In this case, it lead to a User Preference’s file

• Why a file? Why not a table in database?
If you make it a file, it isn’t the same when user working own main
desktop machine or on own laptop.
If you make it a file, there will be issues with multiple users needing
preferences files – do you understand enough about home
directories on different operating systems so that you can put the
file there?

– At this stage, preferences file records the “database” last used,
the “delighter” feature makes it a one-click step to open this database
(otherwise dialog needed, name must be entered etc)

construction

Cloudscape database = a file; you can have many different “databases”; for things
like DB2 or Oracle you would have to be defining “schema” to achieve same thing

118

Delighters?

• More hacking?

• A more thoroughly planned RUP project would
have identified the need for “user preferences”
and factored these in to the construction
iterations (and also resolved issues of where to store
preferences which apparently became a problem in a later iteration)
– Basic preferences support would have been

scheduled for a construction iteration (probably the
iteration after that where data persistence achieved)

– Different preference features would have been
scheduled into later iterations

construction
119

Construction – Iteration 2

• Features
– Help menu (actually no help at this stage, simply the

“About PSP-Tools” dialog!)
– Improved Project-menu/New User dialog
– “Prettier” dialogs

• (Greater experience with javax.swing classes)

– FINALLY – the data go into the database tables

• Well, OK, now do have a kind of executable
architecture.

• Two weeks (remember they are working part time, so that

probably means about 16 hours work)

construction
120

6/05/2014

21

Construction – Iteration 3

• Features
– Create a database from within PSP-tools

• As noted earlier, this is only meaningful if using small “file-
based” databases like Cloudscape where each database,
with all its tables, is created in a separate file.

• Creating a new schema in a real database would have been
more involved (and usually wouldn’t be possible as only the
database administrator can create schema)

– Right-click pop-up “context sensitive” menus
associated with tree view

construction
121

Construction – Iterations 4-12

construction

Iteration[*] Functionality Added

C4 Incorporated activity time and defect entries. Also implemented activity timer that updates the database
directly. Implemented ability to update task summary information directly from the task summary panel.

C5 Added line counter tool to the program. Improved login dialog. Removed need to run with a Cloudscape
database server.

C6 Installed database schema changes and automatic database upgrade mechanism. Added the Database
Properties dialog box.

C7 Added basic export function. Made user information editable.

C8 Added program size and estimation tab.

C9 Added ability to delete a task.

C10 Delivered a self-extracting archive that unpacked the required files into a target directory and removed
dependencies on the user's environment.

C11 Fixed defects. Released an initial User's Guide.

C12 Added an executable program for Windows that launched PSP Tools. Users no longer needed to run a
batch file, and extra windows no longer appeared on the user's task bar.

122

Balance of effort : new & “improve”

123

Database “versioning”

• They were still hacking re-factoring their entity classes
and the way their program interacted with the database.

• Tables and entity classes being changed
• Consequently “databases” created by QA and customer

are incompatible with later releases of the software.
• Their approach meant that they had to devote effort to

mechanisms for identifying incompatibilities and for
migrating existing data.

• You will probably create similar problems for yourselves
in CSCI321.

construction
124

“Single quotes in fields”

• Curious
– Highlighted as a problem

– Everyone knows that issue easily resolved if use
PreparedStatement rather than Statement

• Varchar field for comment

• SQL of form
– “update datatable1 set description=‘” . Info . “’”

• Get’s unhappy when you put in Gary’s Info

• Well they did note that they didn’t have a
database guru on their team.

construction
125

Testing

• JUnit style tests continued.

• Also made use of a Java code-coverage tool

• But how do you test a GUI?

• They made use of a specialist tool
– Records actions

– Generates a script (their tool generated Java code)

– Can then rerun this script anytime and tool with drive
operations on the program under-test.

construction
126

6/05/2014

22

Testing script code - fragment
// Frame: PSP Tools
PSPMainFrame().click();
PSPMainFrame().click();
menubar().click(atPath("File"));
menubar().click(atPath("File->Open..."));
Filename().click(); JDialog().inputChars("d:\\pspproject\\project1");
Open().click();
PSPLoginDialog().click();
passwordtext().click();
PSPLoginDialog().inputChars("psp");
Login().click();
tree().click(atPath("project1"));
menubar().click(atPath("Project"));
menubar().click(atPath("Project->New Task..."));
…

construction
127

Transition

•Hopefully, nothing for these
disciplines!

•Hopefully not much here either!

•Building self installing versions of
programs

•Finalizing documentation etc

transition
128

Transition

• RUP suggestions
– Users validate product – does it really do what we

specified
• With more agile styles, this requirement should have already

been satisfied by having the users involved in testing all the
incremental releases

– User training
– Product packaging

• Installable code
• Documentation
• Help files (multi-lingual?)

– Support engineering

transition
129

Transition

• PSP-tools
– 3 weeks
– Report – well doesn’t clarify much; it

mentions:
• Fix a bug
• Finalize user manual (on-line help had disappeared

somewhere on route)
• Packaging for distribution (they had really resolved this

earlier because of problems they had had making thing work for
their testers)

• Training of users

transition
130

PostMortem

131

PostMortem phase of a project

• Group meets to discuss project given benefit of hindsight
• Task

– Identify where problems occurred and why
– Identify what worked well

• Aim
– Consolidate your experience

• Build on what you did well
• Take avoiding action early if you see similar problems arising in

another project!
• Remember the final versions of the classes that you developed and

the patterns of interactions among instances of these classes;
next time, start with these as your pre-conceived categories for
analyzing use cases (instead of the rubbish categories that you
used when you started this project).

132

6/05/2014

23

PSP-tools PostMortem

• Some of the problems
– No database guru (5th member John dropped the project

early on, had been designated as database guru)

– Should have spent more time team building
early on

– Should have been more serious about testing

– Should have used a better defect tracking
system

– …

133

PSP-tools

assessment

134

What mark did Pollice’s team get for their
CSCI321 project “PSP-tools”?

• Designers of CSCI222 2005/2006
– 95 HD, great, perfect model for CSCI222,

base all assignments on this work

– 88 HD, yes

– 90 HD, concur (well, to be honest, I didn’t actually read it)
• NABG

– 70 Cr, they hacked

135

Yes – it is more like a CSCI321
project than was intended

• Typical CSCI321 problems
– Group member drops out

– Team members inexperienced in some aspects of
technology

– Most of the tools used were new to team members

– Most of coding work done by a subset of team
members, contribution of other members is limited

– Lack of planning, resort to hacker style development

– Inappropriate assumptions about technology

136

It had an advantage not shared by
CSCI321 projects

• An involved customer – Russell

• His presence made a continuous use
testing approach feasible.
“Executable architecture” did develop fairly
early and subsequent iterations did build
on this.

137

An example of RUP?

• Phases and iterations were followed

• Importance of “executable architecture” was
recognized

• Attention was paid to different RUP disciplines –
they did explicitly consider some of management
and other tasks associated with each phase

• RUP milestones and their deliverables did help
guide what the team did in each phase.

138

6/05/2014

24

Weaknesses

• From a RUP perspective – too little effort
in analysis, design, and planning.

• It has too much the flavor of an XP or
hacker style project.

139

