

Olivier Marchal � Nicolas Ponsart
March � June 2001

Supervised by:
Dr. Harvey Lipkin, Associate Professor at Georgia Institute of Technology

Thierry Nowak, Electrical Engineering Professor at Ecole Nationale d�Ingenieurs de Metz

 Final-Year Project 2001

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

2

Appendices Contents

Appendix 1: Hardware configuration of our system��������P.3

Appendix 2: Visual Basic Program. ��������������P.4

Appendix 3: Introduction to TCP/IP �������������.P.25

Appendix 4: Excel Platform �����.���������...�..P.26

Appendix 5: Quasi-Newton Method������������.�.P.27

Appendix 6: Matlab M-Files����������������..P.28

Appendix 7: User Manual... �����.���������...�..P.39

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

3

Appendix 1

Hardware configuration of our system

Here is the structure with our target and our robot

Here is our camera, which is mounted on the same structure

The distance between the robot and the camera is of 1200 mm.

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

4

Appendix 2

Visual Basic Program

Here is our Visual Basic program. More interesting parts are subroutines
«sckDVT_DataArrival », « Start » and « Timer ».

'***
'Force explicit declaration of all variables
'***

Option Explicit

Dim strMoveJ1 As String 'New joint angle increment retrieved from Matlab
Dim strMoveJ2 As String

Dim FirstMod As Long 'initial switch modification count (mod)
Dim CurrMod As Long 'current switch modification count (mod)
Dim InitialTime As Double 'system Time when parking begins
Dim totaltime As Long 'total system Time (in seconds) parked
Dim EiOK As Long '"Ei Responding" indicator
Dim SwitchValue As Long 'the value of the switch
Dim ErrMsg As String 'temporary message variable
Dim RetryCancel As Byte 'message box result holder

Dim X As Variant 'For error displaying
Dim Msg As String
Dim DescripSiz As Long
Dim RetSiz As Long
Dim ErrDescrip As String 'Create string to hold error description

Dim RobotName As String 'Create string to hold our robot's name.
Dim LptPort As Long 'LPT port to which a Robix Rascal Ei is connected
Dim Irq As Long 'IRQ associated with the above LPT port
Dim NameSize As Long 'size (in bytes) of robot name
Dim RetSize As Long 'number of bytes of robot name copied by DLL
Dim ServoCount As Long 'number of servos assigned to robot
Dim AuxOutputCount As Long 'number of aux outputs assigned to robot
Dim AdcValue

Dim Joint1 As String 'set two variables to initialize the test
Dim Joint2 As String

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

5

'tells if Matlab is launched and is ready to calculate new joint angles increments
Dim MatlabReady As Long
'permits a new calculation step for Matlab. New picture
Dim NextCalculation As Integer
'tells the application started. To avoid errors due to timer before clicking on "Start"
Dim ProgramRunning As Integer

'create an object variable that holds a reference to an excel application
Dim XLApp As New Excel.Application

Dim strData As String 'holds data after retrieval from the Winsock object

Dim Script As String 'script to make the robot move according to the desired
joint angles
Dim RetCode As Long 'scratch variable; records a return value
Dim ConfigPath As String 'path to configuration file, hardware and software settings
Dim EiHandle As Long 'Ei handle
Dim RobotHandle As Long 'Robot handle

Private Sub Restart_Click()

 'Restart robot. Note return code.
 RetCode = rbxRobotRestart(RobotHandle)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error restarting robot.", RetCode
 Exit Sub
 End If

End Sub

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

6

Private Sub sckDVT_DataArrival(ByVal bytesTotal As Long)

'***
' This subroutine executes with every arriving data packet
' at the TCP port specified by the Winsock control
'***
' retrieves the string and stores in strData
sckDVT.GetData strData, vbString

'Send strData to spreadsheet
XLApp.Cells(3, 2) = strData

End Sub

Private Sub Start_Click()

'Tell the timer to start achieving commands
ProgramRunning = 1

'***
' This will allow to make a link with an Excel Spreadsheet, which we need
' to communicate with Matlab
'***

'Set object variable to reference an existing Excel file & open it. This path may change to
fit your settings
XLApp.Workbooks.Open ("C:\My Documents\Nicolas\PFE\Global Visual Servoing
System\Excel\Global_Spreadsheet.xls")

'makes Excel spreadsheet visible if desired. (Not Required)
XLApp.Visible = True

'Initialize NextCalculation to 1 so Matlab does the first calculation
NextCalculation = 1
XLApp.Cells(18, 7) = NextCalculation

'Reset MatlabReady
XLApp.Cells(18, 5) = 0

'Reset the strMoveJ1 and strMoveJ2 to 0 to be ready for the next application launching
XLApp.Cells(20, 2) = 101.27
XLApp.Cells(20, 3) = 0

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

7

'***
' Use the TCP/IP protocol to retrieve data from Framework
'***

' Invoke the connect Method from the Winsock object
' this establishes the connection according to RemoteHost
' and RemotePort properties
sckDVT.Connect

End Sub

Private Sub Stop_Click()

'tells the timer to stop executing commands
ProgramRunning = 0

' Disconnect from the RemoteHost and RemotePort
sckDVT.Close

'Save spreadsheet (Not required)
XLApp.ActiveWorkbook.Save

'close Excel
XLApp.Workbooks.Close

End Sub

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

8

Private Sub Test_Click()

'***
'For test purpose only
'Check if the robot moves correctly with a single test script
'***

' make a single movement. For test purpose
Joint1 = -500
Joint2 = -600

'cancatenation of the script
Script = "Move 1 by " + Joint1 + ", 2 by " + Joint2

'Script = "Move 1 by 600, 2 by -600"
RetCode = rbxScriptExecute(RobotHandle, Script)

'Check return code
If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error moving robot.", RetCode
 Exit Sub
End If

End Sub

Private Sub Exit_Click()

 'ends the program
 Unload Me

End Sub

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

9

'***
'This subroutine is executed when the main form is loaded. In here we
'specify our program variables.
'***

Private Sub Form_Load()
 'A Robix Rascal Configuration (.rbc) file contains information about Ei's
 'and robots. Configuration files are typically generated using the Robix
 'Rascal Software (RascalGUI.exe).

 'IMPORTANT!
 'Three configuration files are supplied with this program:
 ' VB_Config_L1i7.rbc - Ei connected to LPT1 using IRQ7
 ' VB_Config_L1i5.rbc - Ei connected to LPT1 using IRQ5
 ' VB_Config_L2i5.rbc - Ei connected to LPT2 using IRQ5
 '
 'Please specify the appropriate configuration file below according to
 'your hardware settings. If none of the supplied configuration files
 'match your hardware settings, use the Rascal software to create and save
 'a working configuration file and then specify that configuration
 'file below. See the Rascal help system for further discussion of hardware
 'settings.
 'We are using Lpt1 and IRQ 7. We had to reserve IRQ 7 and reboot the PC
 'because of conflicts with our sound card that was previously using IRQ 7

 'Set program variables
 EiHandle = 0 'Ei handle
 RobotHandle = 0 'robot handle

 'Configuration file path
 'You may need to change this path to adapt this program to your application
 ConfigPath = "C:\My Documents\Nicolas\PFE\Global Visual Servoing System \Visual
Basic\VB_Config_L1i7.rbc"

 End Sub

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

10

'***
'This subroutine is executed when the main form becomes active. In here we
'initialize the Rascal DLL (once only).
'***

Private Sub Form_Activate()

 '*********************************
 '*** Initialize the Rascal DLL ***
 '*********************************

 'We do this here instead of in Form_Load() so that an icon will
 'be present during initialization. This helps prevent users
 'from "losing" any dialog messages that may be generated during
 'DLL initialization.

 'Make sure we only initialize the DLL once (when the form first
 'becomes active.
 Static DoThisOnce As Boolean

 If DoThisOnce = False Then
 'Verify DLL version
 RetCode = rbxDLLVersionVerify()
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error verifying DLL version", RetCode
 End
 End If

 'Check DLL functions
 RetCode = rbxDLLFunctionsCheck()
 If RetCode <> RBX_E_SUCCESS Then
 DisplayError "Error checking DLL functions", RetCode
 End
 End If

 DoThisOnce = True
 End If

End Sub

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

11

'***
'This subroutine is executed when the main form is unloaded. In here we
'clear any configuration that may be loaded into the DLL.
'***
Private Sub Form_Unload(Cancel As Integer)

 'Clear the current configuration. Note return code.
 RetCode = rbxConfigClear()

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error clearing configuration.", RetCode
 Exit Sub
 End If

End Sub

'***
'This subroutine is executed when the button labeled "Load Configuration"
'is clicked. This subroutine loads an existing Robix Rascal Configuration
'into the DLL, displays some information about that configuration, and
'assigns a script to an existing robot.
'***
Private Sub bnLoadConfiguration_Click()

 '**************************
 '*** Load Configuration ***
 '**************************

 RetCode = rbxConfigFileLoad(ConfigPath)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error loading configuration file.", RetCode
 Exit Sub
 End If

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

12

 '*************************************
 '*** Get configuration information ***
 '*************************************

 'Now that the configuration is successfully loaded, we need to acquire
 'handles to the existing Ei(s) and robot(s). These handles will be
 'needed for various function calls later. In this demo, we assume that
 'only one Ei and only one robot exists.

 'Get handle of first Ei
 RetCode = rbxLptEiHandleGet(1, EiHandle)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error getting Ei handle.", RetCode
 Exit Sub
 End If

 'Make sure we have a valid handle. Note that handle is zero if Ei does not
 'exist. See RascalDLLDoc.txt - rbxEiHandleGet() for further documentation.
 If EiHandle = 0 Then
 DisplayError "Ei does not exist."
 Exit Sub
 End If

 'Get Ei port information
 RetCode = rbxLptEiPortInfoGet(EiHandle, LptPort, Irq)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error getting Ei port information.", RetCode
 Exit Sub
 End If

 'Create a message with the info we've obtained
 lbEiInfo.Caption = "Ei enabled. LPT" & LptPort & " - IRQ" & Irq

 'Get handle of first robot
 RetCode = rbxRobotHandleGet(1, RobotHandle)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error getting robot handle.", RetCode
 Exit Sub
 End If

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

13

 'Make sure we have a valid handle. Note that handle is zero if robot does not
 'exist. See RascalDLLDoc.txt - rbxRobotHandleGet() for further documentation.
 If RobotHandle = 0 Then
 DisplayError "Robot does not exist."
 Exit Sub
 End If

 'Get the size of our robot's name so we know how big our string
 'will need to be in order to hold the name. Note return code.
 RetCode = rbxRobotNameSizeOf(RobotHandle, NameSize)

 'Check return code
 If (RetCode <> RBX_E_SUCCESS) Then
 DisplayRobixError "Error getting size of robot name.", RetCode
 Exit Sub
 End If

 'IMPORTANT:
 'Some Rascal DLL functions fill an application-provided string with
 'characters, such as rbxRobotNameGet() below. Such functions expect a
 'string large enough to hold all of the characters. In order to dynamically
 'create strings of appropriate size, VB applications must create a string
 'and fill it with the required amount of characters as shown below.
 'If your application passes a string of incorrect size, you may receive a
 'null-pointer error code, an access violation may occur, or some other
 'undesirable activity may occur.

 'Make sure RobotName is large enough to hold the robot's name by filling it
 'with the required number of characters. (NameSize was acquired by calling
 'rbxRobotNameSizeOf() above.) Note that any character can be used
 'here; we just use zero for simplicity.
 RobotName = String(NameSize, "0")

 'Get our robot's name. Note return code.
 RetCode = rbxRobotNameGet(RobotHandle, RobotName, NameSize, RetSize)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error getting robot name.", RetCode
 Exit Sub
 End If

 'Now let's see how many servos and aux outputs are assigned to our robot

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

14

 'Get our robot's servo count. Note return code.
 RetCode = rbxRobotServoCountGet(RobotHandle, ServoCount)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error getting robot's servo count.", RetCode
 Exit Sub
 End If

 'Get our robot's aux output count. Note return code.
 RetCode = rbxRobotAuxOutputCountGet(RobotHandle, AuxOutputCount)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error getting robot's aux output count.", RetCode
 Exit Sub
 End If

 'Display robot info in labels on the main form
 lbRobotInfo.Caption = "Robot built."
 lbRobotName.Caption = "Name: " & RobotName
 lbRobotServos.Caption = "Servos: " & ServoCount
 lbRobotAuxOuts.Caption = "AuxOutputs: " & AuxOutputCount

 '*********************
 '*** Restart robot ***
 '*********************

 'We have now "built" a "logical" robot of some servo and aux outputs
 'by loading the config file, but a "logical" robot could also be built
 'piece by piece using command such as rbxEiEnable(), rbxRobotCreate(),
 'rbxRobotServoAssign(), and rbxRobotAuxOutputAssign(). In any case,
 'after a "logical" robot is "built", the physical Ei's that it uses must
 'be initialized. Failure to restart the robot before use may cause its
 'servos to behave erratically.

 'When a robot is restarted, it will quickly come to "attention" by sending
 'each servo to its initial position (initpos).

 'Restart robot. Note return code.
 RetCode = rbxRobotRestart(RobotHandle)

 'Check return code

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

15

 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error restarting robot.", RetCode
 Exit Sub
 End If

End Sub

'***
'This error-reporting function accepts a variable number of items and
'displays them in a message box along with an OK button. The user must
'click OK to continue.
'***
Public Sub DisplayError(ParamArray Items())

 'Loop through each item and concatenate it to the message string
 For Each X In Items
 Msg = Msg & X
 Next X

 'Display error message
 MsgBox Msg, 0, "Robix Error"
 End Sub

'***
'This error-reporting function accepts a error message string and a Robix
'error code. The description of the Robix error code is obtained, and
'the error message, the error code, and the error description are then
'displayed in a message box.
'***
Public Sub DisplayRobixError(ErrMsg As String, ErrCode As Long)
 On Error GoTo FnError

 'Get the size of the error description so we know how big our character
 'array will need to be in order to hold the description. Note return code.
 RetCode = rbxErrMsgSizeOf(ErrCode, DescripSiz)
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error getting size of error description.", RetCode
 Exit Sub
 End If

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

16

 'Make sure RobotName is large enough to hold the robot's name by filling it
 'with the required number of characters. (DescripSiz was acquired by calling
 'rbxRobotNameSizeOf() above.) Note that any character can be used
 'here; we just use zero for simplicity.
 ErrDescrip = String(DescripSiz, "0")

 'Get the error description. Note return code.
 RetCode = rbxErrMsgGet(ErrCode, ErrDescrip, DescripSiz, RetSiz)
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error getting error description.", RetCode
 Exit Sub
 End If

 'Display the entire error message
 'Note that we display the Robix error code according to the guidelines
 'discussed in RascalDLL.bas
 DisplayError ErrMsg & Chr(10) & "Robix Error Code: RBX_" & ErrCode & Chr(10)
& _
 "Error Description: " & ErrDescrip

 Exit Sub

FnError:
 'Display the error message (description unavailable)
 DisplayError ErrMsg & Chr(10) & "Robix Error Code: RBX_" & ErrCode & Chr(10)
& _
 "Error Description: unavailable"

End Sub

'***
'This function illustrates how to obtain a fresh switch reading safely.
'Ei switch values are read by the DLL only on demand, i.e. only when
'requested by an application. The function returns -1 if the switch is not
'read successfully.
'***
Public Function SwitchParkAndRead(EiHand As Long, SwitchID As Long) As
Long

 'Initialize time variables. Note that "Time()" is a VB function
 InitialTime = Time()
 totaltime = 0

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

17

 '************************
 '*** Read initial mod ***
 '************************

 'Read mod. This signals DLL to obtain a fresh reading. If this
 'function returns RBX_E_SUCCESS, FirstMod will contain the requested
 'switch mod. Note return code.
 RetCode = rbxSwitchModGet(EiHand, SwitchID, FirstMod)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error reading mod for switch " & SwitchID & ".", RetCode
 SwitchParkAndRead = -1
 Exit Function
 End If

 'This while loop reads the current switch mod ("modification count") repeatedly until
the
 'current mod differs from the first mod that was read. When the
 'two differ, this indicates that the switch value has been refreshed ("modified").
 'Also within this while loop, we check to see if the Ei is responding
 'properly, and we do a check to make sure that this loop is not executed
 'indefinitely.

 'Note to advanced programmers:
 'Readings from the Ei's switch and analog inputs can take up to about 20 milliseconds.
 'For many applications this delay is not a problem, and the program can simply
 'wait for a new reading when desired. That is what we do below.
 'On the other hand, for applications where several different inputs
 'need to be read continuously, the waiting time may become excessive
 'and the programmer may need to devise appropriate techniques to maintain
 'a continuous set of readings with little total waiting overhead.
 'This is left as an exercise to the advanced programmer.

 Do
 '***********************
 '*** Check Ei status ***
 '***********************

 'Check status of Ei. If this function returns RBX_E_SUCCESS, EiOK
 'will contain the status of the Ei. Note return code.
 RetCode = rbxLptEiResponding(EiOK)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

18

 DisplayRobixError "Error checking status of Ei.", RetCode
 SwitchParkAndRead = -1
 Exit Function
 End If

 'If Ei is not responding, show message.
 If EiOK = 0 Then
 'Create message
 ErrMsg = "Electronics Interface not responding. "
 ErrMsg = ErrMsg & "Check cables and power light."

 'Display message in a message box with buttons Retry and Cancel
 RetryCancel = MsgBox(ErrMsg, vbRetryCancel, "Robix Error")

 'If Cancel was clicked, exit this function. Otherwise,
 'continue trying to read switch mod.
 If RetryCancel = vbCancel Then
 SwitchParkAndRead = -1
 Exit Function
 End If
 End If

 '**********************
 '*** Check max time ***
 '**********************

 'Calculate total time parked
 totaltime = Time() - InitialTime

 'Check for max timeout period elapsed. This is done to prevent the
 'program from hanging if the switch mod doesn't change.
 'Note that RBX_MAX_EI_TIMEOUT is converted from milliseconds to
 'seconds for comparison with TotalTime
 If totaltime > RBX_MAX_EI_TIMEOUT / 1000 Then
 'Create message
 ErrMsg = "Unknown error reading switch " & SwitchID & ". "
 ErrMsg = ErrMsg + "Switch mod not updated within maximum timeout period."

 'Display message in a message box with buttons Retry and Cancel
 RetryCancel = MsgBox(ErrMsg, vbRetryCancel, "Robix Error")

 'If Retry was clicked, reset InitialTime. If Cancel was clicked,
 'exit this function.
 If RetryCancel = vbRetry Then
 InitialTime = Time()
 Else

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

19

 SwitchParkAndRead = -1
 Exit Function
 End If
 End If

 '**************************
 '*** Read current mod ***
 '**************************

 'Now we read current mod. Note return code.
 RetCode = rbxSwitchModGet(EiHand, SwitchID, CurrMod)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error reading mod for switch " & SwitchID & ".", RetCode
 SwitchParkAndRead = -1
 Exit Function
 End If

 'Allow other applications to process their events
 DoEvents
 Loop While CurrMod = FirstMod

 'We get here when the current mod is different from the first mod.
 'This indicates that the switch's value has been refreshed.

 'Read fresh switch value. If this function returns RBX_E_SUCCESS,
 'SwitchValue will contain the current switch value. Note return code.
 RetCode = rbxSwitchValueGet(EiHand, SwitchID, SwitchValue)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error reading value for switch " & SwitchID & ".", RetCode
 SwitchParkAndRead = -1
 Exit Function
 End If

 'Return switch value
 SwitchParkAndRead = SwitchValue

End Function

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

20

'***
'This function illustrates how to obtain a fresh Adc reading safely.
'Ei Adc values are read by the DLL only on demand, i.e. only when
'requested by an application. The function returns -1 if the Adc is not
'read successfully.
'***

Public Function AdcParkAndRead(EiHand As Long, AdcID As Long)

 'Initialize time variables. Note that "Time()" is a VB function
 InitialTime = Time()
 totaltime = 0

 '************************
 '*** Read initial mod ***
 '************************

 'Read mod. This signals DLL to obtain a fresh reading. If this
 'function returns RBX_E_SUCCESS, FirstMod will contain the requested
 'Adc mod. Note return code.
 RetCode = rbxAdcModGet(EiHand, AdcID, FirstMod)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error reading mod for Adc " & AdcID & ".", RetCode
 AdcParkAndRead = -1
 Exit Function
 End If

 'This while loop reads the current Adc mod ("modification count") repeatedly until the
 'current mod differs from the first mod that was read. When the
 'two differ, this indicates that the Adc value has been refreshed ("modified").
 'Also within this while loop, we check to see if the Ei is responding
 'properly, and we do a check to make sure that this loop is not executed
 'indefinitely.

 'Note to advanced programmers:
 'Readings from the Ei's Adc and analog inputs can take up to about 20 milliseconds.
 'For many applications this delay is not a problem, and the program can simply
 'wait for a new reading when desired. That is what we do below.
 'On the other hand, for applications where several different inputs
 'need to be read continuously, the waiting time may become excessive
 'and the programmer may need to devise appropriate techniques to maintain
 'a continuous set of readings with little total waiting overhead.
 'This is left as an exercise to the advanced programmer.

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

21

 Do
 '***********************
 '*** Check Ei status ***
 '***********************

 'Check status of Ei. If this function returns RBX_E_SUCCESS, EiOK
 'will contain the status of the Ei. Note return code.
 RetCode = rbxLptEiResponding(EiOK)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error checking status of Ei.", RetCode
 AdcParkAndRead = -1
 Exit Function
 End If

 'If Ei is not responding, show message.
 If EiOK = 0 Then
 'Create message
 ErrMsg = "Electronics Interface not responding. "
 ErrMsg = ErrMsg & "Check cables and power light."

 'Display message in a message box with buttons Retry and Cancel
 RetryCancel = MsgBox(ErrMsg, vbRetryCancel, "Robix Error")

 'If Cancel was clicked, exit this function. Otherwise,
 'continue trying to read Adc mod.
 If RetryCancel = vbCancel Then
 AdcParkAndRead = -1
 Exit Function
 End If
 End If

 '**********************
 '*** Check max time ***
 '**********************

 'Calculate total time parked
 totaltime = Time() - InitialTime

 'Check for max timeout period elapsed. This is done to prevent the
 'program from hanging if the Adc mod doesn't change.
 'Note that RBX_MAX_EI_TIMEOUT is converted from milliseconds to
 'seconds for comparison with TotalTime
 If totaltime > RBX_MAX_EI_TIMEOUT / 1000 Then

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

22

 'Create message
 ErrMsg = "Unknown error reading Adc " & AdcID & ". "
 ErrMsg = ErrMsg + "Adc mod not updated within maximum timeout period."

 'Display message in a message box with buttons Retry and Cancel
 RetryCancel = MsgBox(ErrMsg, vbRetryCancel, "Robix Error")

 'If Retry was clicked, reset InitialTime. If Cancel was clicked,
 'exit this function.
 If RetryCancel = vbRetry Then
 InitialTime = Time()
 Else
 AdcParkAndRead = -1
 Exit Function
 End If
 End If

 '**************************
 '*** Read current mod ***
 '**************************

 'Now we read current mod. Note return code.
 RetCode = rbxAdcModGet(EiHand, AdcID, CurrMod)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error reading mod for Adc " & AdcID & ".", RetCode
 AdcParkAndRead = -1
 Exit Function
 End If

 'Allow other applications to process their events
 DoEvents
 Loop While CurrMod = FirstMod

 'We get here when the current mod is different from the first mod.
 'This indicates that the Adc's value has been refreshed.

 'Read fresh Adc value. If this function returns RBX_E_SUCCESS,
 'AdcValue will contain the current Adc value. Note return code.
 RetCode = rbxAdcValueGet(EiHand, AdcID, AdcValue)

 'Check return code
 If RetCode <> RBX_E_SUCCESS Then
 DisplayRobixError "Error reading value for Adc " & AdcID & ".", RetCode
 AdcParkAndRead = -1

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

23

 Exit Function
 End If

 'Return Adc value
 AdcParkAndRead = AdcValue

End Function

Private Sub Timer1_Timer()

'tests if we started the application
If ProgramRunning = 1 Then

MatlabReady = XLApp.Cells(18, 5)

 'tests if Matlab has been launched, so if everything is ready
 If MatlabReady = 1 Then

 'tests if the robot is waiting for instruction. This is to avoid problem
 'due to the fact the robot is already executing a command
 If rbxRobotAction_Wait Then

 'Tell Matlab to pause calculations
 NextCalculation = 0
 XLApp.Cells(18, 7) = NextCalculation

'***
 'Retrieve the new joints increments on the Excel sheet

'***

 strMoveJ1 = XLApp.Cells(18, 2)
 strMoveJ2 = XLApp.Cells(18, 3)

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

24

'***
 'Sends the move command to the robot

'***

 'Write the script to be executed
 Script = "Move 1 to " + strMoveJ1 + ", 2 to " + strMoveJ2

 'Execute the script
 RetCode = rbxScriptExecute(RobotHandle, Script)

 'waits for the robot to be done with the string execution
 Do
 'Allow other applications to process their events
 DoEvents
 Loop Until rbxRobotAction_Wait

 'realizes a pause so the camera has time to update the coordinates
 Dim pausetime, Start

 'Make a pause to be sure Framework has time enough to update coordinates
 pausetime = 0.2
 Start = Timer
 Do While Timer < Start + pausetime
 'Allow other applications to process their events
 DoEvents
 Loop

 'Tell Matlab to make a new calculation
 NextCalculation = 1
 XLApp.Cells(18, 7) = NextCalculation

 Else
 'Allow other applications to process their events
 DoEvents
 End If

 End If

End If

End Sub

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

25

Appendix 3

Introduction to TCP/IP

TCP and IP were developed by a Department of Defense (DOD) research project to
connect a number different networks designed by different vendors into a network of
networks (the "Internet"). It was initially successful because it delivered a few basic
services that everyone needs (file transfer, electronic mail, remote logon) across a very
large number of client and server systems. Several computers in a small department can
use TCP/IP (along with other protocols) on a single LAN. The IP component provides
routing from the department to the enterprise network, then to regional networks, and
finally to the global Internet. On the battlefield a communications network will sustain
damage, so the DOD designed TCP/IP to be robust and automatically recover from any
node or phone line failure. This design allows the construction of very large networks
with less central management. However, because of the automatic recovery, network
problems can go undiagnosed and uncorrected for long periods of time.

As with all other communications protocol, TCP/IP is composed of layers:

• IP - is responsible for moving packet of data from node to node. IP forwards each packet based on
a four byte destination address (the IP number). The Internet authorities assign ranges of numbers
to different organizations. The organizations assign groups of their numbers to departments. IP
operates on gateway machines that move data from department to organization to region and then
around the world.

• TCP - is responsible for verifying the correct delivery of data from client to server. Data can be
lost in the intermediate network. TCP adds support to detect errors or lost data and to trigger
retransmission until the data is correctly and completely received.

• Sockets - is a name given to the package of subroutines that provide access to TCP/IP on most
systems.

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

26

Appendix 4

Excel Platform

This Excel spreadsheet has been created to realize the link between Matlab and Visual
Basic. Its existence is due to the ease of use when it is linked with both of these sofwares.

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

27

Appendix 5

QUASI-NEWTON METHOD

Here is the quasi-Newton algorithm. Its explanation is well described in Jenelle
Piepmeier thesis. Please refer to it for further indications.

With : - (.)k denotes Kth iteration

- Â forgetting factor
- ¬ a joint angle
- f the residual error in the sensor space
- Jk the Jacobian at iteration k

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

28

Appendix 6

MATLAB M-FILES

Following are some interesting M-Files linked to our main Simulink application.

%%
%
% AdeptFKProc.m
% This function uses the foward kinematics of the adept robot
% to determine the position of the end-effector in XYZ
coordinates
% from the joint angles of the robot. Z coordinates will be
ignored.
% INPUT: joint angles of adept
% OUTPUT: xy coordinates of end-effector
%
%%

function out=main(inJ) % inJ - joint values of adept
% declare global variables used
global J3
global J4 % constant value given for joint 4
of adept
global J5 % constant value given for joint 5
of adept

inJ=[inJ;J3;J4;J5]; % expand joint vector to include last
three joint values

T1=DHP(0.0,0.0,0,inJ(1)); % these transormations from the internet
T2=DHP(0.0,93.28,0,inJ(2)); % (adept web site) but with all z
T3=DHP(0.0,95.71,-inJ(3),0); % components taken out (i.e. in
T1, T6)
T4=Rz(-inJ(4)); %
T5=Ry(-inJ(5)); %
T6=Translate([0;0;0]); % To offset to flat mounting plate
T=T1*T2*T3*T4*T5*T6; % determine total
transformation matrix

T=T(1:2,4);

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

29

out=T;

%*** Now update the camera transformation *************************************

global Tcam
T_Total = T1*T2*T3;
Tcam = inv(T_Total);

%***
% Translation function

function T=Translate(V)
T=eye(4,4)+[zeros(4,3) [V;0]];

%***
% These functions are rotation matrices about the Y and Z axes respectively
% They are used above in finding the Adept transformation matrices.

function T=Rx(inTheta)
inTheta=inTheta*pi/180;
T=[1, 0, 0, 0,
 0, cos(inTheta), -sin(inTheta), 0,
 0, sin(inTheta), cos(inTheta), 0,
 0, 0, 0, 1];

function T=Ry(inTheta)
inTheta=inTheta*pi/180;
T=[cos(inTheta), 0, sin(inTheta), 0
 0, 1, 0, 0
 -sin(inTheta), 0, cos(inTheta), 0
 0, 0, 0, 1];

function T=Rz(inTheta)
inTheta=inTheta*pi/180;
T=[cos(inTheta), -sin(inTheta), 0, 0,
 sin(inTheta), cos(inTheta), 0, 0,
 0, 0, 1, 0,
 0, 0, 0, 1];

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

30

%%
%
% AnglesOutput.m
% This function sends new joint angles onto the Excel Spreadsheet
%
%%

function [A,B]= (sys)

 A=sys(1,1)
 B=sys(2,1)

 % initiate a conversation with Excel from spreadsheet
"Global_Spreadsheet.xls"
 channel = ddeinit ('excel', 'Global_Spreadsheet.xls');

 % Set ranges of cells in Excel for poking.
 range1 = 'r20c2';
 range2 = 'r20c3';

 % enter the datas we want to export
 a = [A];
 b = [B];

 % send a matrix to Excel
 rc = ddepoke(channel, range1,a);
 rc = ddepoke(channel, range2,b);

 % terminate the communication with Excel
 rc = ddeterm (channel);

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

31

%%
%
% CameraPlotsPoints.m
% This function takes the data in the DataOut file (a file of the
% feature points for all time increments) and plots the target
feature
% position and the end effector position together.
%
% INPUT: data file DataOut
% OUTPUT: plot shown by double clicking the 'Cameras' button in
simulink
%
%%

function main

% call global variables to be used
global CamDataOut % file of virtual target and end effector feature
positions

% First check to see if there is any data in the file (there will be no data
% if the simulation has not been run) and give an error message for no data.
if isempty(CamDataOut)
 msgbox('Currently no data available.','Error');
 return;
end

[n,m] = size(CamDataOut);
target_x_data = [];
target_y_data = [];
robot_x_data = [];
robot_y_data = [];

for i = 10:30:n
 target_x_data = [target_x_data;CamDataOut(i,1)];
 target_y_data = [target_y_data;CamDataOut(i,2)];
 robot_x_data = [robot_x_data;CamDataOut(i,3)];
 robot_y_data = [robot_y_data;CamDataOut(i,4)];
end

[p,q] = size(target_x_data);

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

32

% If there is data, then the plots can be created:
% Create a plot window
figure('Units','normalized','Position',[.1 .1 .8 .8]);
% Plot Data
hold on
plot(target_x_data(1:p),target_y_data(1:p),'+',robot_x_data(1:p),robot_y_data(1:p
),'o');
title('Target and Robot Positioning in Tracking','fontweight','bold','fontsize',14);
xlabel('X','fontweight','bold','fontsize',14)
ylabel('Y','fontweight','bold','fontsize',14)
legend('target position','robot position')
axis([-10 10 -10 10])
% Ensure true size
daspect([1 1 1]);

%%
%
% SimInit.m
% This program initializes neccessary global variables and files
%
% This function is also called inside cameramodel.m to reinitialize
% without having to run this file everytime.
%
%%

global DataOut % XY feature coordinate data
used for plotting
DataOut=[];
global rmserror % XY feature coordinate data
used for plotting
rmserror=[];

% Frame Timing
global FT_TOTAL % Total time of a complete update cycle
global FT_PROCESSING % Time Required for image processing
and controls
global FT_COMMUNICATION % Time required for commands to get to
the adept

FT_PROCESSING=11/1000;

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

33

FT_COMMUNICATION=1/1000;
FT_TOTAL=25/1000;

% Adept Robot
global AR_JOINTCOUNT % number of joints in the robot
global AR_JOINTSTART % initial joint positions
global JointsK % joint values at time increment k
global JointsK1 % joint values at time increment k-1
global MaxJointRates % maximum joint velocity
global dJoints % desired joint changes
global dfdt % calculated velocity of target
global fk % error values at time increment k
global fk1 % error values at time increment k-1
dJoints = [0;0];
dfdt=[0;0];
fk = [0;0];

% Joints 3, 4 and 5 are hardwired for now only a 3 DOF problem
% IMPORTANT if you change these reinitialize manually
global J3
global J4
global J5
J3=0;
J4=0;
J5=0;

% RLS Controller
global lambda % 'memory' or forgetting factor for Jacobian update
lambda = 1;

AR_JOINTCOUNT=2;

% Joint Initialization
% IMPORTANT: If you change this value you must double click
% on initialize because this file is normally called by CameraModel
% which is after MATLAB initilizes the blocks
%AR_JOINTSTART=[-100;100];
AR_JOINTSTART=[0;0];

%MaxJointRates=[7 7]';
%MaxJointRates=[70 70]';
MaxJointRates=[500 500]';

global JK % the Jacobian at time increment k
global PK % the P matrix at time increment K used in finding
new Jacobian

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

34

JK = eye(AR_JOINTCOUNT);
PK = eye(AR_JOINTCOUNT); % initialization of P
matrix

% Initialize Joints
JointsK=AR_JOINTSTART; % set joints to initial values
JointsK1=JointsK; % give the k-1 time increment joint values also

% Initialize MaxJoint values
global MaxJoint
MaxJoint = 0;

% Initialize target path counter used in some target paths
global path_counter
path_counter = 0;

%%
%
% RobotInput.m
% This function retrieves robot coordinates from the Excel
%Spreadsheet
%
%%

function P= (W)

 X=W+1;

 % initiate a conversation with Excel from spreadsheet
"Global_Spreadsheet.xls"
 channel = ddeinit ('excel', 'Global_Spreadsheet.xls');

 % Set cells in Excel for poking
 C10 = 'r10c3';
 D10 = 'r10c4';

 % request the values from the excel spreadsheet
 RobotX = ddereq (channel,C10);
 RobotY = ddereq (channel,D10);
 P=[
 RobotX
 RobotY
];
 % terminate the communication with Excel
 rc = ddeterm (channel);

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

35

%%
%
% TargetPath.m
% This function produces a time dependant path for the target position
% in the XYZ robot coordinates.
%
% INPUT: clock time
% OUTPUT: target position, as vector P
%
%%

function P=TargetPath(inTime) % inTime - time from clock

%Pick the Path to be followed by the target:
% Path 1: A circle of specified radius
% Path 2: Linearly back and forth in the x-direction, slowing at the ends
% Path 3: Linearly back and forth, no slowing
% Path 4: A square, slowing at the corners
% Path 5: A square, no slowing at the corners
% Path 6: A Sun Shape
% Path 7: Curly Shape
path = 1;
global path_counter

% the target will travel in a circle w.r.t. the x and y axes, in the z=0 plane
if path == 1
 spc = 50;
 r=inTime*(2*pi/spc); % control speed of target around path (spc - sec. per
cycle)

 P = [
 -40*cos(r) - 305
 40*sin(r) + 450
];
end

% target travels back and forth in a line in the x direction, slowing at ends

if path == 2
 spc = 40;
 r=inTime*(2*pi/spc);

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

36

 P = [
 -100*cos(r)
 0
];
end

% target travels back and forth in x-direction, no slowing at ends
if path == 3
 spc = 10;
 n = 0;
 timer = inTime - 2*n*spc;
 if timer<spc
 X_position = (timer)*(175/spc); % 175 - length of line
 else
 X_position = 175 - (timer-spc)*(175/spc);
 if timer>spc
 n = n + 1;
 end
 end
 P = [
 X_position - 87.5 % subtract 87.5 center the line
 0
];
end

% target travels in square, slowing at corners

if path == 4
 spc = 10;
 timer = inTime - spc*(path_counter)*4;
 if timer<spc
 r=timer*(pi/spc);
 X_position = -87.5*cos(r);
 Y_position = -87.5;
 elseif timer<2*spc
 r=timer*(pi/spc);
 X_position = 87.5;
 Y_position = 87.5*cos(r);
 elseif timer<3*spc
 r=timer*(pi/spc);
 X_position = 87.5*cos(r);
 Y_position = 87.5;
 else
 r=timer*(pi/spc);
 X_position = -87.5;
 Y_position = -87.5*cos(r);

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

37

 if round(1000*timer) == 4000*spc
 path_counter = path_counter+1;
 end
 end
 P = [
 X_position;
 Y_position;
];
end

% target travels in square with no slowing at corners
if path == 5
 spc = 10;
 timer = inTime - spc*(path_counter)*4;
 if timer<spc
 t = inTime - spc*(path_counter)*4;
 X_position = t*(175/spc);
 Y_position = 0;
 elseif timer<2*spc
 t = inTime - spc*((path_counter)*4 + 1);
 X_position = 175;
 Y_position = t*(175/spc);
 elseif timer<3*spc
 t = inTime - spc*((path_counter)*4 + 2);
 X_position = 175 - t*(175/spc);
 Y_position = 175;
 else
 t = inTime - spc*((path_counter)*4 + 3);
 X_position = 0;
 Y_position = 175 - t*(175/spc);
 if round(1000*t) == 1000*spc
 path_counter = path_counter+1;
 end
 end
 P = [
 X_position - 87.5;
 Y_position - 87.5;
];
end

% Fireball
if path == 6
 spc1 = 40;
 spc2 = spc1/6;
 r1 = inTime*(2*pi/spc1);
 r2 = inTime*(2*pi/spc2);

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

38

 P = [
 (-100 - 20*cos(r2))*cos(r1+cos(r2)/5)
 (100 + 20*cos(r2))*sin(r1+cos(r2)/5)
];
end

% Curly
if path == 7
 spc1 = 25;
 spc2 = spc1/8;
 r1 = inTime*(2*pi/spc1);
 r2 = inTime*(2*pi/spc2);
 P = [
 (-100 - 20*cos(r2))*cos(r1-sin(r2)/4)
 (100 + 20*cos(r2))*sin(r1-sin(r2)/4)
];
end

Adept=AdeptFKProc([0;-120]); % place target in adept workspace
P=P+Adept;
%P = Adept; % use to determine circle center location

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

39

Appendix 7

USER MANUAL

To use our application, you will have to follow these steps :

1. First, check all your PC Software. On your machine should be installed :
Framework 2.1, Visual Basic 6.0 and Matlab 6.0 and Rascal (Robix appl.)

2. Plug the camera correctly according to its manual on your PC ethernet

card.

3. Check your configuration. Your ethernet card must have the following IP
address : 192.168.0.240 , Submask 255.255.255.0

4. Check your progam paths. Within « Robot Control.vbp », you may change

paths to fit your settings parameters. One is in the Form_Load() sub and
the other in the Start_Click() sub.
If changes are necessary, modify the paths according to your system,
save the project and make Visual Servoing.exe by choosing this option in
the File menu.

You are now ready to use our application on your PC.

5. Now, launch Framework 2.1 by clicking on the appropriate icon.

6. Choose Ethernet, click on « Camera (192.168.0.243) » and click Connect

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

40

7. Now, select the « Robot Control » product on the Framework menu and click
Start. Minimize the window.

8. Launch « Visual Servoing.exe » by clicking on the icon :

9. Click « Initialization ». For test purpose, you may want to click « Test the Robot »
and verify the robot moved its both joints. Once the test is done, don�t forget to
click « Restart the Robot ».

10. When you are ready to launch the application, click on the Start button.

11. Launch Matlab by clicking its icon . Open the Simulink file called

Algorithm.

12. Click Initialize and then Start. The application is now running.

You may stop the application anytime by clicking on Stop or by closing windows.

Olivier Marchal �Nicolas Ponsart
Real-Time Visual Servoing Appendices

41

This report has been written with MS Word 2000
Achieved and printed on June the 15th 2001

