
AX-V

PROGRAMMING MANUAL

Global Programmable Logic Controller

Release 2.1

Date 10-12-2001

Supported Models:

AX-V family drives

Configuration tool:

AXV Cockpit

Phase Motion Control s.r.l.
Lungobisagno Istria, 14D/27
16141 Genova – Italy
Tel. +39 (010) 8359001
Fax +39 (010) 8355355
e-mail: support@phase.it

- 2 -

1. INDEX

1. INDEX ...2

2. INTRODUCTION...4
GENERAL FEATURES .. 4

3. LANGUAGE ..4
SOURCE .. 4
BASIC ELEMENTS ... 5
DATA, VARIABLE AND CONSTANT TYPES ... 5
PROGRAMS ... 8
BASIC INSTRUCTIONS ... 8
FUNCTION.. 11
FUNCTION BLOCKS ... 12
STANDARD FUNCTIONS .. 15

SHL, SHR, ROL, ROR functions .. 16
SEL function ... 16
MUX function .. 16
MAX, MIN functions .. 16
LIMIT function ... 17

4. GPLC PROJECT...17
DESCRIPTION... 17
GPLC PROJECT COMPONENTS ... 17

Source modules .. 17
IMG Files ... 18
TASK .. 18

CREATING AND RUNNING A GPLC PROJECT.. 18

5. PROGRAM DESCRIPTION ..19
FEATURES... 19
EDITOR .. 20
COMPILER .. 20
COMMUNICATION INTERFACE .. 20
DATA MONITOR ... 21

6. PARAMETERS INTERFACE ..22
INTRODUCTION .. 22
PARAMETERS and VARIABLES DECLARATION.. 22

7. FIRMWARE DRIVE INTERFACE ...25
INPUT, OUTPUT AND DATA BLOCKS .. 25
FIRMWARE INTERFACE FILES... 26
DIGITAL I/O .. 26
ANALOG I/O .. 27
ENCODER SIGNALS READING ... 27
INCREMENTAL ENCODER AUTOMATING PHASING ROUTINE .. 30
ENCODER SIGNALS REPETITION ... 30

- 3 -

CURRENT LOOP .. 31
POSITION/VELOCITY LOOP... 32
DSP CONTROL BIT.. 34
BLOCK DIAGRAM .. 35

Symbols... 35
Overview... 36
Current loop .. 36
Velocity/position loop .. 37
Ramp generator .. 37

8. APPLICATION EXAMPLE...38
DESCRIPTION... 38
CREATING A PROJECT .. 38
INIT PROGRAM (file basicinit.plc) ... 40
SLOW PROGRAM (basicslow.plc) ... 41
FAST PROGRAM (basicfast.plc) ... 42
VARIABLE AND PARAMETERS (basicpar.plc) ... 43
AX-V COCKPIT PARAMETERS TABLE .. 43
COMPILE THE PROJECT.. 43

- 4 -

2. INTRODUCTION

GENERAL FEATURES
GPlc is an application program designed for Windows 95/NT Operating Systems which
can create PLC programs for AX-V family drivers.

The main program elements are:

- Integrated text editor for PLC program editing.
- PLC language source module compiler.
- Communication interface to download the PLC code generated by AXV driver

compiler.
- Watch window to view the variables used by PLC program.

More details are given in the following paragraphs.

3. LANGUAGE

SOURCE
All the instructions and structures foreseen in the GPlc language are in accordance with
the IEC1131-3 standard, the relative IL (instructions list) is integrated in the language.

So far, the included elements are:

- All data types use except for LINT, REAL, STRING and TIME.
- Variables and their data type definition.
- Variables single dimension arrays definition.
- Variables and relative attributes GLOBAL, CONST, RETAIN, AT declaration and

initialization structure.
- Programs and variables declaration within the programs themselves.
- IL instructions set.
- Standard functions set (except for string).

A brief description of the language elements implemented is reported here after. For a
detailed definition, please refer directly to the standard IEC 1131-3.

Conventions used in the present description:

 The language elements are printed in a regular courier font .
 The elements showing names and types assigned by the programmer are printed in

italic courier font.
 The optional elements of any structure are reported between italic square brackets.

- 5 -

BASIC ELEMENTS
 The source modules are edited using standard ASCII characters.
 The addition of comments between (* and *) is possible in any point of the source

modules.

DATA, VARIABLE AND CONSTANT TYPES
Data types

Defined data types :

Keyword Data type Bits Range

BOOL Boolean 1 0 ÷ 1

SINT Short integer 8 -128 ÷ 127

USINT Unsigned short integer 8 0 ÷ 255

INT Integer 16 -32768 ÷ 32767

UINT Unsigned integer 16 0 ÷ 65536

DINT Double integer 32 -231 ÷ 231-1

UDINT Unsigned long integer 32 0 ÷ 232

BYTE Bit string of 8 8 X

WORD Bit string of 16 16 X

DWORD Bit string of 32 32 X

REAL* Single precision floating point 32

* this type of variables cannot be used in the Fast Task

Declaring variables

The variables declaration is done using one of these structures:

VAR_GLOBAL [RETAIN][CONST] VAR [RETAIN][CONST]
. .
. .

variables list or variables list
. .
. .

END_VAR END_VAR

 Any variable used by all the defined programs inside the application is declared using
the VAR_GLOBAL .. END_VAR structure.

 Any variable used by a single defined program inside the application is declared
using the VAR.. END_VAR structure.

- 6 -

 The CONST attribute defines variables within a structure with constant and
unchangeable value.

 The RETAIN attribute defines variables keeping their value, also after the driver reset
or switch off.

Variables inside the structures can be declared with following statements:

VariableName : DataType [:= Startvalue];

VariableName : ARRAY OF[0..n] OF DataType;

VariableName AT Location : DataType [:= StartValue];

where:

- VariableName is an alpha-numeric string identifying the variable.
- Datatype is one of the types foreseen (see the relative table).
- StartValue is the variable value after the system reset.
- Location is a logical address defined inside the driver firmware (see the

following description).

- 7 -

Example:

PROGRAM test

VAR
QuoteX : DINT;
Enable : BOOL := FALSE;
Counters : ARRAY[0..10] OF UINT;
CurrentTask AT %MW4.32 : INT;

END_VAR
.
.
instructions
.
.

END_PROGRAM

This structure declares four local variables (within the program). After reset, the
variable Enable is set to FALSE, the variable Counters is an array of 11 variables type
unsigned int, the variable CurrentTask is the integer defined in the drive memory at
block 4, index 32.

Array

As mentioned before, the use of variables array is possible. Any element of the array can
be accessed using the array variable name followed by the index between square
brackets.
A variable name can also be used as index:

LD Quote[7]
ST Posit[idx]

Location

The key word AT, in the variables declaration, is used to define a variable as the value in
a specified address of the memory driver.
This variable type allows the access to any variable defined inside the driver firmware
(see paragraph 0 and 6).
The location is defined as follows:

%location dimens index.index ..

where location and dimens can have following values:

Location
I Input location
Q Output location
M Memory location

Dimension
X 1 bit dimension
B 8 bit dimension
W 16 bit dimension
D 32 bit dimension

The points (“.”) after the index specify the position in the indicated area.

- 8 -

Example:

%MW4.6 (* Memory word block 4 index 6 *)
%IX0.4 (* Input bit set 0 index 4 *)

Constant

Following types are foreseen:

Type Statements Example

Boolean TRUE, FALSE

Decimal decimal digit 534 -8000 ecc.

Hexadecimal prefix 16# followed by hexadecimal digit 16#7A22

Octal prefix 8# followed by octal digit 8#302

Binary Prefix 2# followed by 0, 1 digit 2#11001010

PROGRAMS
A PLC code executive unit is declared as a program using the structure
PROGRAM..END_PROGRAM.
According to the IEC standard, a PLC program: is identified by a name, can contain
more variables declarations structures and groups together a list of instructions that can
access the local and global variables.
Each program is linked to an executive task of the host machine.
The declaration structure is the following:

PROGRAM Programname
.
variables declaration
.
.
instructions list
.

END_PROGRAM

BASIC INSTRUCTIONS
The language used is IL (Instruction List).

 An instruction list is composed of an instructions sequence.

- 9 -

 Each instruction starts in a new text row and is composed by an operator that can be
optionally followed by operator modifiers and by one or more operands separated by
commas.

 Operands can be variables, constants or labels.
 A label can optionally precede each instruction.
 Comments can be included everywhere in the instruction list using (* for the

beginning and *) for the ending of a comment.

Example:

Beginning: (* Sequence beginning point *)

LD inp0 (* Active if input 0 *)
ANDN alarm (* and no alarm *)
ST start (* begin cycle *)

The IL language uses an accumulator register (or current result as defined by the IEC
standard) that stores the last executed operation result.
The accumulator is the first operand of each instruction, the other possible operands
follow the instruction.

Instruction example:

AND varX

Means:

accumulator = accumulator AND varX

The complete standard instructions set is the following:

Operator Modifier Operand Function

LD N all Stores operand into accumulator

ST N all Stores accumulator into operand

S BOOL Set TRUE the operand if accumulator is TRUE

R BOOL Set FALSE the operand if accumulator is TRUE

AND N, (all Boolean AND or bit by bit between accumulator and operand

& N, (all Boolean AND or bit by bit between accumulator and operand

OR N, (all Boolean OR or bit by bit between accumulator and operand

XOR N, (all Boolean XOR or bit by bit between accumulator and operand

ADD (All except BOOL Addition

- 10 -

SUB (All except BOOL Subtraction

MUL (All except BOOL Multiplication

DIV (All except BOOL Division

GT (All except BOOL Comparison >

GE (All except BOOL Comparison >=

EQ (All except BOOL Comparison =

NE (All except BOOL Comparison <>

LE (All except BOOL Comparison <=

LT (All except BOOL Comparison <

JMP C,N label Jump to label

) The delayed operation is executed

The foreseen modifiers are C, N and (, they mean:

 C the instruction will be executed only if the accumulator is boolean TRUE.
 N the operand (BOOL) is reversed before to be used in the operation.
 “(“ the operation execution has to be delayed until the operator “)”.

Examples:

The instruction

JMPC beginning

means that the jump to the label beginning is done only if the accumulator is TRUE,

JMPCN beginning

means that the jump to the label beginning is done only if the accumulator is FALSE.
The instruction :

ANDN alarm

is interpreted as:

accumulator = accumulator AND NOT alarm

- 11 -

The sequence:

AND(inp0
OR inp1
)

is interpreted as:

accumulator = accumulator AND (inp0 OR inp1)

FUNCTION
The construct FUNCTION..END_FUNCTION allow to declare a block of GPLC code
defined as Function.
A Function is charcterised by a name, a list of input parameters and by the type of
output data.

 It is possible to declare local variables inside a function. These variables are visible
only inside the the function itself.

 Local variables do not conserve their value with two consecutive function calls
 The structure of a Function is as follws:

FUNCTION nomeFunzione : TypeOfReturnValue

VAR_INPUT

Input variables declaration

END_VAR

VAR

Local variables declaration

END_VAR

Instruction list

END_FUNCTION

 The result of the function must be stored into a variable with the same name as the
Function itself

 It is possible to use the instruction RET inside a function (with associated modifiers C
and N) to execute a return on condition to the invoking program

 A Function cannot acces to global variables (included system variables)
 A Function is called from the main program placing the name of the function itself

in the list of instructions
 When a function is called the first parameter passed is the value of the accumulator;

additional parameters should follow the function name separated by colon.
 The output value of the function is placed in the accumulator
 A function can call another function

- 12 -

Example: Following function returns the square of a 16 bit (the return value is 32 bit)

FUNCTION Pow2 : DINT

VAR_INPUT

Val : DINT;

END_VAR

LD Val
LE 16#8000 (* Check if max value is exceeded *)
JMPC lExeMul

LD -1 (* Conventional value to indicate an error*)
ST Pow2
RET

lExeMul:

LD Val (* calculate square value *)
MUL Val
ST Pow2 (* store result into output varible *)

END_FUNCTION

Following example shows how to call the function Pow2 from the main code.

.

.
LD x
Pow2 (* Passaggio di X e invocazione funzione *)
EQ -1 (* Verifica risultato *)
JMPC lErr
.
.

Following example shows how to call a function (Func) with more than one input
variables from the main code.

LD x
Funz y, z (* Passing parameters di X, Y, e Z and call *)

(* function Funz *)
ST ris (* Storing of return value into variable RIS*)
.
.

FUNCTION BLOCKS
The construct FUNCTION_BLOCK..END_FUNCTION_BLOCK allow to declare a code block
defined as function block.
 A function block (according to IEC standard) is identified by a name and can use one

or more input and output variables
 Several local variables can be declared inside a function block.

- 13 -

 A function block can access global variables only if they are declared with a
dedicated construct VAR_EXTERNAL .. END_VAR inside the function block itself.

 The structure of a Function Block is as follows:

FUNCTION_BLOCK FunctionBlockName

VAR_INPUT
.
Input variables declaration
.

END_VAR

VAR_OUTPUT
.
Output variables declaration
.

END_VAR

VAR_EXTERNAL
.
Declaration of global variables used by the function
block
.

END_VAR

VAR
.
local variables declaration
.

END_VAR
.
Instruction list
.

END_FUNCTION_BLOCK

 To use function blocks, they must be declared inside the program where thhey are
invoked.

 Several instances of the same function block can be declared in the same program
(instances are distinguished by different names).

 Each instance must be defined in the variables declaration construct VAR..END_VAR
in the same way as variables:

InstanceName : FunctionBlockName;

 Local variables declared inside a function block conserve their value at two
consecutive calls of the same instance of the function block.

 Values of input and output variables are transferred to and from a function block
with load and store operation as follows:

InstanceName.VariableName

Example:

- 14 -

(* This function block detect the rising edge of the input *)
(* variable INP . *)

FUNCTION_BLOCK RisingEdge

VAR_INPUT
Inp : BOOL; (* Input variable *)

END_VAR

VAR_OUTPUT
Edge : BOOL; (* Output variable *)

END_VAR

VAR
Memory : BOOL := TRUE; (* memory of the input variable *)

END_VAR

LD Inp
ANDN Memory
ST Edge

LD Inp
ST Memory

END_FUNCTION_BLOCK

Example of program code using the RisingEdge functionblock

PROGRAM

VAR
Inp0 AT %IX0.0 : BOOL; (* Digital I/Os *)
Inp1 AT %IX0.1 : BOOL; (* of the drive *)
Out0 AT %QX0.0 : BOOL;
Out1 AT %QX0.1 : BOOL;

ReInp0 : RisingEdge; (* Two instances of the *)
ReInp1 : RisingEdge; (* same function block *)

END_VAR

LD inp0 (* Set of digital output 0 when *)
ST ReInp0.Inp (* a rising edge of inp0 is detected *)
CAL ReInp0
LD ReInp0.Edge
S out0

LD inp1 (* Set of digital output 1 when *)
ST ReInp1.Inp (* a rising edge of inp1 is detected *)
CAL ReInp1
LD ReInp1.Edge
S out1

END_PROGRAM

- 15 -

STANDARD FUNCTIONS
Besides a basic instructions set, GPlc provides a set of standard functions foreseen by the
IEC standards.
Standard functions list:

Name N° operand Operand type Returned type Function

ABS 0 X Accumulator type Absolute value

MOD 1 all except BOOL Accumulator type Reminder after division

NOT 0 X Accumulator type Reverse

SHL 1 all except BOOL Accumulator type Left binary shift (*)

SHR 1 all except BOOL Accumulator type Right binary shift (*)

ROL 1 all except BOOL Accumulator type Left binary rotation (*)

ROR 1 all except BOOL Accumulator type Right binary rotation (*)

SEL 2 all except BOOL Operand type Selector (*)

MUX n all except BOOL Operand type Multiplexer (*)

MAX n all except BOOL Operand type Largest value (*)

MIN n all except BOOL Operand type Smallest value (*)

LIMIT 2 all except BOOL Operand type Limit between largest and smallest value (*)

(*) see detailed description below .

The calling of a function is done specifying its name in the operand field, followed by
possible arguments separated by commas. The accumulator value is used as the first
function argument.
For example, the instruction:

ABS

is interpreted as:

accumulator = ABS accumulator

The instruction:

MAX var1, quoteX, quoteY, 45

is interpreted as:

accumulator = MAX(accumulator, quoteX, quoteY, 45)

- 16 -

SHL, SHR, ROL, ROR functions
They shift or rotate the accumulator bits to the right or to the left as much as indicated
in the operand field. The returned value is entered in the accumulator.
The instruction:

SHL var

shifts the accumulator bits to the left of var positions.

SEL function
SEL sets the accumulator to the same value as one of the two operand, depending on
the accumulator boolean value. If the accumulator is FALSE, the first operand is entered
in the accumulator; if the accumulator is TRUE, the second operand is entered in the
accumulator.
The instruction:

LD flag
SEL QuoteX, QuoteY

enters the QuoteX value in the accumulator if the variable flag is FALSE before the
instruction execution.

MUX function
MUX is similar to a SEL instruction with the possibility to select between one or more
operand values depending on the accumulator.
The accumulator numeric value is used as an index to choose from which operand the
value to be entered in the accumulator has to be taken.
The value 0 refers to the first operand. When the accumulator value is larger than the
number of operands, the last operand is entered.
Example:

LD destinat
MUX QuoteX, QuoteY, QuoteZ, -1

Supposing that the variable destinat is 3, the variable QuoteZ is entered in the
accumulator.

MAX, MIN functions
MAX and MIN enter into the accumulator, the largest or the smallest value between all
the operands and the accumulator before the operation.
Example:

LD -400
MIN PositA, PositB, PositC

The smallest value between –400 and PositA, PositB and PositC is entered in the
accumulator.

- 17 -

LIMIT function
LIMIT limits the present accumulator value between the smallest value given by the first
operand and the largest value given by the second operand. The result is entered in the
accumulator.
Example:

LD current
LIMIT 0, currMax

If the current is between 0 and currMax, the accumulator takes the current value. When
the current is smaller than 0, the accumulator takes 0. When the current is larger than
currMax, the accumulator takes the currMax value.

4. GPLC PROJECT

DESCRIPTION
A GPlc project contains all the elements (source modules, memory maps and tasks
definition) necessary to create a machine code file (file.COD) to be sent to an AXV
driver.
All the necessary information to develop a GPIc project are stored in files with .PPJ
extension.
The option “Open project” allows to select a .PPJ file to manage a project.

GPLC PROJECT COMPONENTS
A GPlc is composed of the following elements:

- one or more source modules PLC IEC1131-3;
- one .IMG file including the driver memory map where the created machine

code will be stored;
- the link between codified programs in the source modules and the AXV driver

executive tasks.

All the above elements are managed with the GPlc dialog-box which is accessible in the
option “Project – Settings” of the Menu Bar.

Source modules
The source modules are made of ASCII files with .PLC extension (not compulsory).
The text must be in accordance with the previous paragraphs and the IEC 1131-3
standard.
The source text can be edited using the integrated text editor or any other ASCII editor.

- 18 -

IMG Files
IMG files include the description and the values of the driver memory map where the
machine code will be stored.
An IMG file is linked one to one to a driver firmware version. This means that a single
IMG file exists for each firmware version and vice versa.
A 32 bit code, included in the IMG file and in the firmware, performs the link between
them.
The IMG ASCII file must not be modified with editors or similar applications.
Usually, the IMG files linked to the driver firmware versions are included in the PLC
project directory.
A missing IMG file can be downloaded from the driver.
The machine code originated by the PLC compiler includes the IMG file identifier code.
This way, the driver establishes whether the received code is compatible with its own
firmware, if not the PLC execution is disabled.

TASK
GPlc foresees the link between the drive executive tasks and the programs declared in
the source code with the structure PROGRAM .. END_PROGRAM.
This link is carried out with the GPIc dialog-box “Project – Settings”.
Presently, the AXV versions provide three tasks with the following settings:

Name Period
Init 8 ms
Slow 8 ms
Fast 250 µs

A PLC project does not require to define the programs to be linked to all tasks. It is
possible to develop projects working on a single task among those available.
The task Init is called after the driver reset and remains active until its associated
program activates the Slow and Fast tasks by means of firmware variables.
When the task Init is not linked to any program, the tasks Slow and Fast are
automatically activated after the driver reset.

CREATING AND RUNNING A GPLC PROJECT
A new GPlc project is created using the Menu Bar option “File – New project”, the
dialog-box asks for a project name and the work directory.
The project file .PPJ as well as all the files created by the program are stored in the work
directory. The source modules and the file .IMG can be stored in any other location.
To run an existent project, use the option “Open project”.

- 19 -

5. PROGRAM DESCRIPTION

FEATURES

The main GPlc elements are:

- Source module Editor.
- Compiler.
- Communication interface.
- Data monitor.

With the above order, the elements perform the different steps to create a PLC
application, the steps are:

 Editing the source code.
 Compiling the source code.
 Sending the originated code to the driver.
 Program debugging by displaying the run-time variables.

An output window is always available to display compiling errors and the GPIc executive
messages.

 “Compile“ button

Text editor

“Connect“ button

 “Code Download“ button

Message Window

Data monitor window

- 20 -

EDITOR
The integrated editor features are typical of Windows environment editors and provide
with:

- Text selection.
- Cut, copy and paste command.
- Find and replace.
- Drag and drop selected text.
- Move selected text.

The above commands are accessible from the “Edit” menu, which is activated when at
least one text file is open.
The command “File – Open” opens a PLC source file or any other text file.
Moreover , following features are available:

- Row and column number displaying in the status bar.
- Automatic positioning on compiling errors.

To position on the text block with compiling errors, double click the left mouse button
on the error line displayed in the “output window” (see paragraph 0).

COMPILER
The command “Project – Compile project” starts the compiler to process all the project
files one by one and then to originate the machine code using the information in the
IMG file.
During this process, the “Output window” displays each process phase and the list of
errors and warnings sent out by the compiler while processing.
If there are no errors, the compiler creates a machine code file .COD for the driver.
At the end of the compiling process, the compiler creates a report file (.LST) where all
the originated code informations (assembler instructions, variable allocation, memory
map etc.) are listed.

COMMUNICATION INTERFACE
The communication interface uses the Slink3 protocol and provides the following
features:

- Communication setup
- Download the file .COD into driver.
- Upload the file .IMG from driver.
- Get data for variable monitor.

To download the code into the driver, follow this procedure:

• When not connected, enable the communication interface using the option
“Communication – Connect” in the GPlc menu.

- 21 -

 If necessary, use the option “Communication – Settings” to set up the connection
parameters. The parameter settings for a serial connection are: 38400 baud, no
parity, 8 data bit, 1 stop bit.

 Use “Communication - Download code” to start the code download.

The download status is displayed in the “Output window”.
The connection status is displayed in the status bar.
When the driver firmware version is not compatible with the file IMG, the download is
disabled (see paragraph 0).
In this case, either select a different IMG file for the project or upload the data memory
map into the selected IMG file using the option “Communication – Upload IMG file”.

DATA MONITOR
The user can enter in the “Watch window”, the program variable names to be displayed
during the program execution.
While the connection is enabled, the current variables value is displayed and constantly
updated .
To use the data monitor, follow this procedure:

 Compile the current project.
 When not connected, enable the communication interface using the option

“Communication – Connect” in the GPlc menu.
 Download the code.
 Use the mouse to point the first free cell in the “Symbol” column of the “Watch

window”, click the mouse left button to enable the editing and enter the wished
variable name.

– or –

 Select a variable name in the editor and use the mouse to drag it to the “Watch
window”.

 When several variables have the same name, a dialog box will allow to select the
wished variable.

 If the name displayed in the “Watch window” doesn’t correspond to any variable in
the field “Value”, “object not found” will appear.

 The “Location” and the “Value” fields display the position where the project
variables are used and what value they have.

 When some errors occur, the “Value” field displays the string “…” with an
undefined value.

Please note that only the programs declared and used variables are the valid variables of
a project. The variables declared but not used are not originated by the compiler and
then have no related value.

- 22 -

6. PARAMETERS INTERFACE

INTRODUCTION
Inside a GPLC program it is possible to use variables which can be managed by an
external configuration or supervision programs (i.e. AXV Cockpit). These variables must
be located at defined memory addresses and linked to an index that allow them to be
integrated into the system database.
Some variables can keep their value permanently using a configuration command: this
particular type of variables are defined Parameters.

PARAMETERS and VARIABLES DECLARATION
It is possible to directly declare data Variables and Parameters using the structure AT.
AXV firmware provides the parameters to data blocks 10, 11, 12,13, 20, 21, 22 and 23.

Data Block Parameter type
Parameter
number

Parameter index
(IPA)

Save to FLASH

10 16-bit parameters 1000 1000 YES

11 32-bit parameters 528 3000 YES

12 Bit parameters 128 5000 YES

13 Float parameters 500 4000 YES

20 16-bit parameters 640 7000 NO

21 32-bit parameters 640 9000 NO

22 Bit parameters 128 11000 NO

23 Float parameters 128 10000 NO

For example, in order to define a DINT parameter with the name pMaxSpeed and IPA =
3030, declare:

pMaxSpeed AT %MW11.30;

But this is not the easiest way to do it. GPLC provides a dedicated window to declare
externally accessible Variables and Parameters and automatically generate the
corresponding AXV cockpit compatible file to manage them.

Figure below shows the parameters declaration window.

- 23 -

Each externally accessible parameter is identified inside the GPLC code with the name:

pParName

Each externally accessible variable is identified inside the GPLC code with the name:

vParName

For example parameter IDM will be used inside the program code as follows:

LD pIDM
ST Imax

To add a new parameter, open the parameters window, press the “Add new
parameter” button and select the parameter type (BOOL, INT etc.). The system will
assign the first free Index of the corresponding DataBlock for the new parameter. Each
parameter is characterized by the following fields :

<IPA> Parameter index. Automatically assigned by the system.
<MENU>* Indicates the AXV Cockpit display menu to which the parameter is

associated
<NAME> A mnemonic name used to identify the parameter
<PARTYPE>* Type of the parameter shown in the table (see example below)
<VAL>* Displayed value of the parameter
<MIN>* Minimum value accepted for the parameter
<MAX>* Maximum value accepted for the parameter

Add new parameter button Delete selected parameter button

- 24 -

<VARTYPE>* Type of the parameter sent to the drive
<SCALE>* Multiplying factor between displayed value and sent value
<OFFS>* Offset between displayed value and sent value
<UNIT>* Measure unit displayed in the field unit
<DESCR>* Parameter description displayed in the “Description” field
<NOTE>* This field is displayed as footnote of the parameter and can contain

additional information (e.g. value range)

Most of these fields (identified by *) are not related to the parameter itself but only to
its management from the configuration program AXV Cockpit and have no effect if the
parameter is managed by means of a different system (for example from an industrial
panel).

The same consideration is valid for additional functions such as ENUM, MENU and
EXPRESSION definition.

For additional information on these fields see the last part of AXV Cockpit user manual
where the composition of an AXV Cockpit .par file is described.

- 25 -

7. FIRMWARE DRIVE INTERFACE

INPUT, OUTPUT AND DATA BLOCKS
Using the structure AT (see paragraph 0) the PLC programs can access and refer to the
firmware variables.
The variables of AXV firmware versions supporting the PLC programming are accessible
defining INPUT, OUTPUT and DATA BLOCKS areas.
The table shows the prefix to be used in order to define the interface areas.

Area Location prefix

INPUT I

OUTPUT Q

DATA BLOCK M

For example, the declaration:

Inp4 AT %IX0.4 : BOOL;

defines the boolean variable Inp4 in input area, block 0 index 4 (5th AXV digital input).
The declaration:

Rg_SpRef AT %MW0.146 : DINT;

defines the double integer variable Rg_SpRef in data block 0, word index 146 in data
blocks area (speed reference on AXV drive).
The table below shows the areas and blocks available in the present AXV firmware
version:

Area Block Description Number of elements

INPUT 0 Digital inputs 16

OUTPUT 0 Digital outputs 16

INPUT 1 Analog inputs 3

OUTPUT 1 Analog outputs 4

DATA BLOCK 0 DSP variables 641

DATA BLOCK 1 Maximum current 1

DATA BLOCK 2 DSP control bits 16

- 26 -

DATA BLOCK 3 DSP error bits 16

DATA BLOCK 4 DSP control bits 16

DATA BLOCK 5 Task management bits 3

DATA BLOCK 10 16-bit parameters 248

DATA BLOCK 11 32-bit parameters 128

DATA BLOCK 12 Bit parameters 128

FIRMWARE INTERFACE FILES
In order to save the programmer from declaring all the firmware variables he is going to
use, some PLC source files, providing the full set of variables available in AXV firmware
versions and linked with IMG files, are supplied. One of these files must be included in
any GPIc project and its name is AxvvarsXX.plc where XX is the file release.

Very important: those files should never be mixed with one another or modified to avoid
variables misuse (wrong meaning for variables).

The firmware variables work on "images", they access the code directly only during the
program input and output phases, otherwise they access an automatically created local
copy. Those phases are scheduled before and after the relative program execution and
the "image" variable can change a lot of times during the program execution but only
the last value is available to the system.
On the contrary the variables and parameters declared by the user are directly
accessible.

The most useful variables provided by the Ax-V family motion controllers are the
following:

DIGITAL I/O
8 digital input and output on C1 and C2 terminal boards:

Name Type Description Values

inp0… inp7 BOOL Digital inputs > 20 V = True; < 10 V = False

out0…out7 BOOL Digital outputs True = Vcc-2 V; False = 0 V

- 27 -

ANALOG I/O
3 differential analog input ±10 V with a A/D 12 bits converter and an internal multiplier
*16, 4 analog outputs ±10 V with a D/A 10 bits converter:

Name Type Description Values

ainp0…ainp2 INT Analog inputs ±10 V = ±215

aout0…aout2 INT Analog outputs ±29 = ±10 V

ENCODER SIGNALS READING
The brushless servo motor control signals are used mainly for two functions:
speed/position loop feedback and three stator currents modulating in order to get a 90
electrical degree phase difference compared to the permanent magnet field.
At the beginning, before the index intervention, these two functions are carried out by
two separated sensors often integrated in the same device. In order to keep the stator
field in the desired position, it is necessary to derive the absolute position during the
electric switching on revolution: usually Sincos absolute sensors (one sinusoid per
revolution) or Hall effect sensors (6 positions resolution for an electric revolution) are
used. The speed/position feedback loop requires the higher possible resolution as it
defines the control loop performance. For this reason, a stepper (not absolute) track
waveform of thousands pulses per revolution is used. This waveform can be digital (
square pattern pulses) or analog (sine pattern pulses); in this last case, the drivers AX-V
apply an interpolation within a single pulse enhancing the resolution of 214 and
providing a very high precision performance for low speed axe blocked applications. By
means of a period meter, the digital signals are interpolated too, getting a resolution
increment of 214, but this interpolation is impossible when the axe is blocked, this is why
this solution should not be used when the common use is axe blocked. After the first
index intervention, as the index mechanical position is known, the field modulation too
is based on the sensor absolute signal with the best resolution.
An automatic phasing routine is foreseen as well, allowing the use of an encoder
without absolute tracks; when a type 4 or 7 (see later) encoder is selected this routine is
automatically activated upon the first system switch on and recognizes the electrical
position through a vibration (see paragraph Stepper Encoder Automatic Phasing).

- 28 -

The AX-V motion drivers can simultaneously read the following position sensor signals :

Stepper Analog/Digital suffix AD
Absolute Analog (SinCos) suffix AN
Hall sensors suffix HA
Stepper Digital suffix DI

To select the encoder type to be used, set the correct value for the following variables
(usually this operation is done only once when the program Init is activated) :

Name Type Description Values

Enc_Type INT Encoder type selection See note 1)

Enc_CyRev INT Pulse numbers per revolution for Stepper
encoder

Motor_Poles INT Motor magnetic pole number

Enc_Port BOOL Used port (only for encoder with stepper
digital waveform)

0 = Port S2; 1 = Port S1

1) Encoder types: 1 = SinCos 5 tracks (field on AN, position on AD)
2 = Digital 6 tracks (field on HA, position on DI)
3 = Analog 6 tracks (field on HA, position on AD)
4 = Only Digital stepper (field on DI, position on DI)
5 = SinCos 2 Absolute Tracks or Resolver (field on AN, position on AN)
6 = Only Hall sensors (field on HA, position on HA)
7 = Only Analog + index stepper (field on AD, position on AD)
8 = SinCos 5 tracks with Digital stepper part (field on AN, position on DI)

The input AD (connector S2, pin 1, 2, 14, 15) can read either an analog or a digital
stepper track. The selection is done automatically according to the encoder type and the
selected port.

By detecting the above variables, the system interprets the sensor signals and defines
the position locations.
The registers xx_ViPu represent the pulse number per revolution with stepper track
enhanced resolution (Enc_CyRev * 214).
The hardware counter reads the positions and after interpolation these are entered in
two registers xx_ViPo and xx_ViTu (xx = relative suffix). xx_ViPo is the position within the
current revolution and it is always a positive number between 0 and xx_ViPu.
Whereas xx_ViTu represents the number of revolutions carried out and is a 32 bit signed
number.
The speed values are calculated as a difference between two ticks (125 µs) and entered
in xx_PeSp registers.

- 29 -

Variables:

Name Type Description Values

Ad_ViPo UDINT Position on the revolution track AD 0 … Enc_CyRev * 214 per 1
revolution

Ad_ViTu DINT Revolutions number track AD ± 231

Ad_ViPu UDINT Pulse number per revolution with resolution
enhancement

Enc_CyRev * 214

Ad_PeSp DINT Speed AD with resolution enhancement

An_ViPo UINT Position on the revolution track AN 0 … 214 per 1 revolution

An_ViTu DINT Revolutions number track AN ± 231

An_PeSp INT Speed AN with resolution enhancement

Di_ViPo UDINT Position on the revolution track DI 0 … Enc_CyRev * 214 per 1
revolution

Di_ViTu DINT Revolutions number track DI ± 231

Di_ViPu UDINT Pulse number per revolution with resolution
enhancement

Enc_CyRev * 214

Di_PeSp DINT Speed DI with resolution enhancement

Ha_ViPo UINT Position on the revolution track HA 0 … 24575 per 1 revolution

Ha_ViTu DINT Revolutions number track HA ± 231

Ha_PeSp INT Speed HA with resolution enhancement

Variables useful to read and use the index signals:

Name Type Description Value

First_AdIndex BOOL First index indicator AD crossed after
the system switch on

1 = crossed; 0 = Not crossed

First_DiIndex BOOL First index indicator DI crossed after the
system switch on

1 = crossed; 0 = Not crossed

Ad_IndexOk BOOL The system rises this bit when an AD
index is crossed and it remains high for
one tick of task Slow (8 ms)

1 = crossed; 0 = Not crossed

Di_IndexOk BOOL The system rises this bit when an DI
index is crossed and it remains high for
one tick of task Slow (8 ms)

1 = crossed; 0 = Not crossed

Iad_ViPo DINT Position in the AD revolution where the
last index acquired is crossed

Enc_CyRev * 214 = 1 revolution

Iad_ViTu DINT Revolution AD where the last index
acquired is crossed

± 231

Idi_ViPo DINT Position in the DI revolution where the
last index acquired is crossed

Enc_CyRev * 214 = 1 revolution

- 30 -

INCREMENTAL ENCODER AUTOMATING PHASING ROUTINE
The system firmware integrates a routine able to use the encoder with the stepper track
only (encoder type 4 and 7). Due to a lack of absolute position sensors, when the system
is switched on, a rough detection of the electrical position (through vibration) until the
first index crossing is necessary.
This procedure is called “Automatic Phasing” and can be started setting to 1 the bit
StartFas. When the phasing is ended the bit FasatOk is risen. During this operation
(about 2 sec.) a sequence of current pulses of increasing amplitude comprised between
0 and Imax is impressed in motor phases. The maximum current value must be written
in variable Imax before starting this procedure.
This procedure is normally started from Init task and the Fast and Slow tasks are started
after the procedure end.

Example (in program Init):

LD 200
ST Imax (*set 2 Arms as phasing current*)
LD inp0 (*wait enabling in inp0*)
ST StartFas (*after first enabling, the phasing starts*)
LD FasatOk (*wait phasing end*)
ST stFastTsk (*start program Fast*)
ST stSlowTsk (*start program Slow*)

Name Type Description Values

StartFas BOOL Start automatic phasing procedure

fasatOk BOOL Phasing ended

ENCODER SIGNALS REPETITION
The encoder signal used for speed/position feedback loop can be repeated with the
desired ratio on connector S1. This connector can be setup either as input or output; to
enable signal repetition, set bit abrenc = 1.
The ratio is settled by means of two variables (multiplication and division coefficient).
The repetition frequency limit is 500 kHz, when this frequency is exceeded the drive puts
alarm on, as some counts could be lost. Modifying the variable Se_SpMax value enables
the threshold alarm decreasing in order to protect external reading device with limited
pass band.
The index can be repeated with a desired impulses step limited to 230. After enabling
index repetition, the programmer can set the position of the first repeated index with
reference to the first master index. Note: The next index will be repeated with the
frequency value SiStep independently from the master index.

- 31 -

Example:

LD inp1 (*read digital input 1*)
AND First_AdIndex (*verify that a master index is crossed*)
ST abrindex (*if 1 enable index repetition*)
LD CntNLt1 (*Last index position*)
ADD 1000 (*add 250 (1000/4) repeated pulse*)
ST SiFirstIndex (*set the first index position*)

The first index is repeated after 250 simulated encoder pulses following the master
index.

Name Type Descriprion Values

Abrenc BOOL Enable encoder repetition.
A jumper over pin 13 and 23 of S2 connector is necessary.

0 = disable
1 = enable

Se_MulFak UINT Multiplication coefficient for encoder repetition 1…216-1

Se_DivFak UINT Division coefficient for encoder repetition 1…216-1

Se_SpMax UDINT Speed limit for encoder repetition. f[Hz] * 2^11

Abrindex BOOL Enable index repetition (encoder repetition must be enabled) 0 = disable
1 = enable

SiStep DUINT Index repetition step Desired step of
repeated pulses
* 4

SiFirstIndex DUINT Position where the first index is to be repeated Value of encoder
count * 4

CntNlt1 DUINT Position where the last master index is crossed Value of encoder
count * 4

CURRENT LOOP
This loop is the speediest control feature , and has a sampling rate of 16 kHz. There are
two current loops executed simultaneously; indeed both direct and quadrature currents
components are calculated from the current phase read by the AD converters, and both
are controlled to get the desired operation. The quadrature current contributes to the
motor torque, while the direct current is usually set to zero (Ic_IsdRef = 0).
Set Spl_SpI = 0 to enable the current (or torque) control. In this case, the motor torque
will be proportional to the quadrature current entered in Cic_IsqRef register.
On the contrary, while working with the speed/location loop, the current loop becomes
part of it and its reference is the output of the PID regulator.

The Imax register allows the definition of a symmetrical limit on the reference current
which is intrinsically limited to the motor driver rated current.
The current measuring unit is independent from the driver size and is
1 Arms = 100
The current loop gains do not have to be entered or modified by the PLC program as
they are system parameters and they are managed with Ax-V Cockpit application
(system table).

- 32 -

Name Type Description Values

Spl_SpI BOOL Close the speed loop 0 = Current; 1 = Speed

Cic_IsqRef INT Current loop reference 100 = 1 Arms

Imax INT Current limit 100 = 1 Arms

POSITION/VELOCITY LOOP
The Ax-V motion control platform includes a velocity/position control loop that can be
closed using a Spl_SpI bit. If this bit is 0, the loop is open and the system works with a
current control (see current loop).
The position loop is managed by DSP with a sampling rate of 8 kHz.
As mentioned, selecting the encoder type defines the position sensor to be used as
feedback for the position loop and moreover registers (xx_ViPo, xx_ViTu, xx_PeSp) are
copied in Spl_ViPo, Spl_ViTu and Spl_PeSp registers.
Using the bit Rg_PosLoop enables to set the system as a velocity controller or as location
controller: in the first case, the reference must be entered in Rg_SpRef. The
measurement unit for this parameter (and for speed in general) are encoder
interpolated counts (*214) in a loop tick (125 µs). For example, to assign a motor a
reference of 1000 rpm with the encoder of 1024 imp./revolution, set:

Rg_SpRef = 1000/60*1024*214*125*10-6 = 34953

When executing a location control, the " patterns generator " processes the stop
position target settled in Rg_TurStop and Rg_PosStop and provides the ramp generator
with a target speed to reach the required location. When the required position is
reached, the bit Rg_PosOk is risen until a new positioning is requested. The motor
position error can be defined using the Spl_PosErr variable.

In both cases: the positive (clockwise) and negative (anti-clockwise) speed limits are
determined by the Rg_PosspLim and Rg_NegspLim registers and the speed ramp profiles
have the slope parameters stored in CwAcc, CcwAcc, CwDec and CcwDec. The relation
between those parameters and the real acceleration rad/s2 depends on the encoder
pulse number (see next table). Longer ramp pattern can be achieved changing the value
of the Rg_ExpRamp variable. This value must be different from 0 (until slower ramp are
not required, it is advisable to use the value 1).
It is possible to disable the ramp patterns setting to 1 the bit Rg_RampOff.

The velocity/position gains registers are reported in the following table:

Name Type Description Values

Spl_SpI BOOL Speed loop closing 0 = Current; 1 = Speed

Rg_PosLoop BOOL Position loop closing 0 = Speed 1 = Position
(only if Spl_SpI = 1)

- 33 -

Name Type Description Values

CwAcc UINT Clockwise acceleration 1 = (24543.7/Enc_CyRev *
Rg_ExpRamp) rad/s2

CcwAcc UINT Anti-clockwise acceleration 1 = (24543.7/Enc_CyRev *
Rg_ExpRamp) rad/s2

CwDec UINT Clockwise deceleration 1 = (24543.7/Enc_CyRev *
Rg_ExpRamp) rad/s2

CcwDcc UINT Anti-clockwise deceleration 1 = (24543.7/Enc_CyRev *
Rg_ExpRamp) rad/s2

Rg_ExpRamp UINT Ramp slow down coefficient

Rg_RampOff BOOL Ramp deactivation 0 = Enable; 1 = Disable

Spl_SpI BOOL Speed loop closing 0 = Current; 1 = Speed

Spl_IntFak UINT Position integral gain

Spl_PosFak UINT Position proportional gain

Spl_VelFak UINT Speed proportional gain

Spl_AccFak UINT Acceleration proportional gain

Rg_SpRef DINT Speed loop reference Imp. Encoder * 214 in 125 µs

Rg_PosspLim UDINT Clockwise speed limit Imp. Encoder * 214 in 125 µs

Rg_NegspLim UDINT Anti-clockwise speed limit Imp. Encoder * 214 in 125 µs

Rg_PosStop UDINT Stop position reference for positioning loop Imp. Encoder * 214

Rg_TurStop UDINT Stop revolutions reference for positioning
loop

Revolution number

Rg_PosOk BOOL Reached position bit 1 = Reached position

Spl_PosErr DINT Positioning error Imp. Encoder * 214

- 34 -

DSP CONTROL BIT
The GPLC application controls some bits that enable and disable the PWM modulation
which is usually connected to a digital input.
The bit stFastTsk activates the program Fast (4 kHz) and the bit stSlowTsk activates the
program Slow(125 Hz). The driver switch on automatically activates the program Init
(125 Hz) until the program Slow replacing it, is not enabled.

Name Type Description Values

EnableDrive BOOL Enabling drive 1 = Enable; 0 = Disable

stFastTsk BOOL Program Fast (125 µs) starting 1 = Start

stSlowTsk BOOL Program Slow (8 ms) starting (Init program is
activated until Slow is not activated)

1 = Start

- 35 -

BLOCK DIAGRAM

Symbols

System variable

GPLC user variable

Variable to be changed with Ax-V Cockpit
(system table)

Multiplier

Selector: in this position Var. Selection = 0
(The variable selection can also be a logical
expression)

Adder

Subassembly

varX

varY

varZ

Selection Var.

- 36 -

Overview

Rg_TurStop

Rg_PosStop

Rg_SpRef
Rg_Sp

Rg_Sp

Rg_PosLoop Rg_PosspLim

-Rg_NegspLim

Ic_IsqRef

Spl_SpI

Cic_IsqRef

Pattern
Generator

Ramp
Generator

Speed/Position
Loop

Current Loop
PWM

Modulator
MOTOR

Current loop

Ic_VsqRef

Sys_Ic_I_Fak

Ic_IFak

Ic_PFak

Ic_DFak

Ic_VsdReq

Ic_IsqRef

Ct_Isq Ct_Isd

Ic_IsdRef

Rho

Iv_Test

Iu_Test

Ct_Vsu

Ct_Vsv

S

s
1

S

s
1

Sys_Ic_P_Fak

Sys_Ic_D_Fak

Park Transf.

Inverse
Park

Transf.

PWM
Modulator MOTOR

- 37 -

Velocity/position loop

S
Spl_PeSp

Rg_LinOut
Spl_TurRef
Spl_PosRef

Spl_ViTu
Spl_ViPo

PosErr Spl_PosErr

PosErr>Spl_PerLim

Spl_PosCor

0

Spl_AccFak

Spl_VelFak

Spl_PosFak

Spl_IFak

Spl_PosInt

Imax

-Imax

Spl_Out

Filtro

Ic_IsqRef

s
1

Sys_Pos_Err_Max - PosErr

Ramp generator

Rg_LinOut

--Rg_cont=0
Rg_LinOut<Rg_Sp

Rg_LinOut<0

Rg_LinOut>0

CwAcc

CcwDec

CcwAcc

CwDec

Rg_Cont := Rg_ExpRamp

Rg_Sp

Rg_LinOut

Rg_RampOff

Rg_LinOut

- 38 -

8. APPLICATION EXAMPLE

DESCRIPTION
In order to help the user to create the first application GPlc and become familiar with
this manual, a simple application is explained.
The application to be developed in speed control takes the reference, alternatively from
the analog input 0 or from a parameter depending on the digital input 1 value. The
enabling command is carried out by the digital input 0.
Moreover, the possibility to change the ramp slope parameters and the loop gain
through an Ax-V Cockpit table are foreseen.
The first step is to create the source files: one for each executive tasks and one with the
common variable definition.

CREATING A PROJECT
Create a folder for the project . Run GPLC and create three new files (File->New) and
save them in the newly created folder with the following names:

basicinit.plc
basicslow.plc
basicfast.plc

Copy to the project folder also the AxvVarsXX.plc and file from any of the existing
projects in the Phase Motion Control\Apps folder.
Select “File – New Project” and choose the destination directory and the project (basic)
name.

Select Project-> Settings
In the “Source Files” the dialog box add one by one the files you created and the
axvvarsXX.plc file:

In the Image file dialog box set the name for the AXV memory image file: axv.img
In the parameters dialog box select the name for the AXV Cockpit file the system will
create with your application parameters (basic.par) and the internal file the system will
create to declare the parameters variables (basicpar.plc).

- 39 -

Finally in the Task dialog box insert the names you will use for the programs
corresponding to the three tasks (see task paragraph of this manual)

Press OK to complete the project creation.

The files window will be filled with the files you added to the project.

Now the project is created and ready to be compiled.
It is possible to open the files and complete the editing without creating the project
again.

If the message “Invalid Memory Image File” appears while compiling, it means that
either the file axv.img in the directory or the filename chosen in the project settings is
missing. To download it from the driver : connect to the driver selecting the option
“Communication – Connect” (the driver must be connected and the 24 V signaling
lamp switched on), then select “ Communication – Upload Image File”. If any error
occurs, check the connection: the interface 232-485 (the 2 dip switches must be set ON)
and the communication settings (“Communication – Settings” – see paragraph
Communication Interface).

When the project is compiled without errors, it can be sent to the driver using the
button “Code Download”.

- 40 -

INIT PROGRAM (file basicinit.plc)
The variables necessary for the system operation are initialized in this file.
Open the basicinit.plc file and insert the following code lines

(**************************************)
(*** INIT TASK POSITION CONTROL ***)
(**************************************)

PROGRAM init

(* encoder set up *)

LD pEncType
ST EncType

LD pCyRev
ST EncCyRev

LD pNPoles
ST MotorPoles

LD pEncSup
LIMIT 0, 110
ST Tmod2

(* Current limit *)

LD pCurr
ST Imax

(* Speed loop *)

LD TRUE
ST Spl_SpI

LD FALSE
ST Rg_PosLoop

(* Operative task beginning *)

LD TRUE
ST stFastTsk
ST stSlowTsk

END_PROGRAM

Take the encoder type from
pEncType parameter

Take the pulses number per
revolution from pCyRev

Take the motor poles number from
Npoles

Take the pencoder supply voltage
from pEncSup

Take the current limit from pCurr

Speed loop set up…

… and no location

After variables set up, begin the
executive tasks.

- 41 -

SLOW PROGRAM (basicslow.plc)
This program sets the variables that can be dynamically changed by Ax-V Cockpit.
 Open the basicslow.plc file and insert the following code

PROGRAM slow

VAR

InpAbil : BOOL;
OutAbil : BOOL;

END_VAR

(* Manage inputs *)

LD inp0
ST inpAbil

(* Ramps *)

LD pCwAcc
ST CwAcc
LD pCcwAcc
ST CcwAcc

LD pCwDec
ST CwDec
LD pCcwDec
ST CcwDec

LD 1
ST Rg_ExpRamp

(* Gains *)

LD pKInt
ST Spl_IntFak
LD pKPos
ST Spl_PosFak
LD pKSpd
ST Spl_VelFak
LD pKAcc
ST Spl_AccFak

(* Speed limits *)

LD 209000
ST Rg_PosspLim
ST Rg_NegspLim

(* Enable drive *)

LD inpAbil
ST EnableDrive
ST outAbil

Define two local variables

Verify the user enabling command
on digital input 0

Read ramps slopes from parameters

Read loop gains from parameters

Set clockwise and anti-clockwise
speed limits.

Driver enabling

- 42 -

(* Manage outputs*)

LD outAbil
ST out0

END_PROGRAM

If enabled, turn on the digital
output 0

FAST PROGRAM (basicfast.plc)
This program is used to read the high frequency speed reference from the analogue
input 0.
Open the basicsfast.plc file and insert the following code

PROGRAM fast

VAR

RifAna : BOOL;
Temp32 : DINT;

END_VAR

(* Manage inputs *)

LD inp1
ST RifAna

LD RifAna
JMPCN rifparam
LD ainp0
ST temp32
MUL 16
DIV 5
ST Rg_SpRef
JMP refok

rifparam:
LD pSpRef
ST Rg_SpRef

refok:

END_PROGRAM

Local variable definition

Verify the reference selection from
analog input or parameter

If no reference jump to rifparam

Read input ainp0
ainp0 extention to 32 bit for
compatibility with Rg_SpRef
Scale span adjustment to have
about 3000 rpm at 10 V reference.
Write speed reference
End reference

Read parameter SpRef
Write reference

- 43 -

VARIABLE AND PARAMETERS (basicpar.plc)

Declare the parameters as shown in figure below:

Define the expressions for parameters CwAcc, CcwAcc, CwDec, CcwDec as shown in
below:

AX-V COCKPIT PARAMETERS TABLE
As mentioned in the example, a lot of variables are parameters to be configured using
Ax-V Cockpit. The corresponding AXV Cockpit parameters table is created automatically
when the project is compiled and will have the name selected in the Project properties.

COMPILE THE PROJECT
Switch on the 24 aux. supply voltage to the drive and connect the serial cable from the
PC. In the Communication menu select Connect and then Upload Img file. If the

- 44 -

connection is good GPLC will load the memory map file from the drive and you will see
in the output window the message:

Loading memory image from target .. completed.
File axv.img updated.

If the following error message appears:

Loading memory image from target .. failed.

verify the communication settings (see communication paragraph of this manual).

Once the memory image file is updated you can compile the project selecting
Project->Compile Project

If GPLC can compile the project without errors you can download the application to the
drive selecting
Communication-> Download Code.

At the end of download operation the drive will be automatically reaset and begin to
execute the new program.

