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1. Introduction 

Many complex embedded systems (in areas such as aerospace and defence, for example) have a 

long service life, typically measured in decades.  During this life, planned product maintenance and 

upgrades will inevitably require software changes.  Changes to available hardware platforms are 

also very common over the lifetime of such systems: this too will force some degree of software 

change.  In addition, software for future versions of systems and new products will very rarely be 

created from scratch: instead, existing software will be adapted to match new requirements (such as 

a higher “Safety Integrity Level”). 

 

In this report, we introduce a small collection of patterns which is intended to support the migration 

of existing software designs to a “time triggered” architecture, in order to make the system 

behaviour more predictable and therefore support test and verification activities.  The overall goal is 

to support improvements in system reliability (and – where appropriate – reduce certification 

effort). 

 

In the next section, we explain (briefly) the meaning of the phrase “design pattern”.  We then 

summarise the features of the two software architectures (“event triggered” and “time triggered”) 

which lie at the heart of this pattern collection. 

 

2. Design patterns 

The concept of design patterns first emerged from the work of an architect, Christopher Alexander, 

during the 1960s and 1970s.  Alexander and his colleagues published three pioneering texts  

(Alexander, Silverstein et al., 1975; Alexander, Ishikawa et al., 1977; Alexander, 1979) between 

1975 and 1979 that laid the foundation of use of patterns in the field of architecture.   He defines a 

pattern as “a three part rule which expresses a relation between a certain context, a problem and a 

solution”.  The general nature of this concept makes design patterns a useful tool beyond the 

architecture.  In particular, Alexander‟s techniques have been adopted by the software-engineering 

community. 

 

Ward Cunningham and Kent Beck introduced the first software pattern language (Cunningham, 

1987) which consisted of 5 design patterns intended to be used by Smalltalk programmers who 

were designing graphical user interfaces.  The pattern collection by Gamma et al (Gamma, Helm et 

al., 1995) for object-oriented programming and has been very influential.  Examples of patterns for 

telecommunication includes the work of Hanmer (Hanmer and Stymfal, 2000; Hanmer, 2007) 

which focuses on fault-tolerant software systems, and the work of Linda Rising (Rising, 2001).  

There are examples of organisational patterns by Cain, Coplien and Harrison (Cain, Coplien et al., 

1996): these seek to document „best practice‟ for productive software development from successful 

organisations.  There have also been patterns produced which describe how to introduce new ideas 

into an organisation (Ramachandran, Fujiwara et al., 2006). 

 

In the field of embedded systems, most previous work with design patterns has focused on the 

process of system construction (see, for example (Pont, 2001)).  In this report, we present a small 

pattern collection which is intended to support the process of system migration.  Our particular 

concern  is to explore ways in which we may be able to help developers of embedded systems to 

improve system reliability by migrating between “event triggered” (ET) architectures and 
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equivalent “time triggered” (TT) architectures: characteristics of these different architectures are 

summarised in the next section. 

 

3. ET and TT architectures 

In the majority of embedded systems, some form of scheduler will be employed to decide when 

tasks should be executed.  These decisions may be made in an “event-triggered” fashion (i.e. in 

response to sporadic events) (Kopetz, 1991) or in a “time-triggered” fashion (i.e. in response to pre-

determined  lapses in time) (Kopetz, 1997).  When a task is due to execute, the scheduler can pre-

empt the currently executing task or wait for the executing task to relinquish control co-operatively.   

 

There are links between the algorithms used to schedule task execution and the choice between co-

operative and pre-emptive task execution: for example, in most (but not all) cases, event-triggered 

task scheduling is associated with task pre-emption, while many (but not all) time-triggered designs 

employ co-operative tasks.  In this paper, it will be assumed that the event-triggered designs involve 

task pre-emption. ET and TT architectures have been compared in previous studies (Kopetz, 1991; 

Albert and Bosch GmbH, 2004; Scarlett and Brennan, 2006; Scheler and Schroder-Preikschat, 

2006). 

 

Co-operative schedulers have a number of desirable features, particularly for use in safety-related 

systems(Buttazzo, 1997; Kopetz, 1997; Pont, 2001) .  Compared to a pre-emptive scheduler, co-

operative schedulers can be identified as being simpler, having lower overheads, being easier to test 

and having greater support from certification authorities (Bate, 1998; Liu, 2000).  Resource sharing 

in co-operative schedulers is also a straightforward process, requiring no special design 

considerations as is the case with pre-emptive systems (Cottet, Delacroix et al., 2002). The 

simplicity may suggest better predictability while simultaneously necessitating a careful design to 

realise the theoretical predictions in practice. 

 

One of the simplest implementations of a co-operative scheduler is a cyclic executive (Baker and 

Shaw, 1988; Locke, 1992; Burns and Wellings, 1994): this is one form of a broad class of time 

triggered, co-operative (TTC) architectures.  With appropriate implementations, TTC architectures 

are a good match for a wide range of applications, such as automotive applications  (Ayavoo, Pont 

et al., 2005; Ayavoo, 2006), wireless (ECG) monitoring systems (Phatrapornnant and Pont, 2006) , 

various control applications (Schlindwein, Smith et al., 1988), data acquisition systems, washing-

machine control and monitoring of liquid flow rates (Pont 2002). 

 

Figure 1 illustrates the operation of TTC scheduler running two tasks A and B with 1 ms tick 

interval.   

 

Figure 1: Illustrating the operation of a typical TTC scheduler 
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In applications where a TTC architecture is not found to be appropriate, a TT hybrid (TTH) design 

(Pont, 2001) may be an effective alternative (see Figure 2).  A TTH design consists of a set of co-

operative „C‟ tasks (all of the same priority) and a single short pre-empting „P‟ task (of higher 

priority than the C tasks).  In many systems the short P task can be used for periodic data 

acquisition, through an analogue-to-digital converter or similar device (Buttazzo C, 2003).  

 

 

Figure 2: Illustrating the operation of a typical TTH scheduler 

 

4. A small pattern collection 

Our goal in this report is to present a small pattern collection which is intended to assist developers 

in the migration of systems from ET to equivalent systems with a TTC or TTH architecture.  In 

doing this, our expectation is that – provided such a migration is appropriate, and carried out 

correctly – we should be able to improve system reliability. 

 

The pattern association map is shown in Figure 3.  The hierarchy of patterns is divided into abstract 

patterns and patterns (Kurian and Pont, 2005).   

 

The remaining part of this report will present most of these patterns.   

 

Please note that the patterns CO-OPERATIVE SCHEDULER, HYBRID SCHEDULER, LOOP TIMEOUT and 

WATCHDOG Timer are part of pattern collection described in (Pont, 2001) and are not included here. 

However, they can be downloaded (in the form of a complete book from this link http://www.tte-

systems.com/books/pttes 

 

 

 

 

 

  

http://www.tte-systems.com/books/pttes
http://www.tte-systems.com/books/pttes
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Figure 3: Pattern association map 
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TIME FOR TT? 
Abstract pattern 

Context 

 You already have at least a design or prototype for your system based on some form of Event-

triggered architecture. 

 You are in the process of creating or upgrading an embedded system, based on a single 

processor. 

 Reliable system operation is a key design requirement. 

Problem 

Should you use a TT architecture in your system? 

Solution 

Some systems are obvious candidates for TT architectures.  These systems involve periodic data 

sampling or data playback, or other periodic activities. 

 

Some simple examples: 

 Data acquisition and sensing systems (for example, environmental systems for temperature 

monitoring) usually involve making data samples on a periodic basis.  Some cases (high-

frequency systems) may involve making millions of samples per second: other cases (e.g. 

temperature monitoring at a weather station) may involve making one sample per hour. 

Whatever the rate, a TT architecture will usually be used in order to guarantee high-quality 

(“jitter free”) data sampling at a known signal-to-noise ratio. 

 Control systems (for example, primary flight control in a aircraft or helicopter, cruise control in 

a passenger car, temperature control in an industrial furnace, control of a hard disk in a 

computer).  Such systems all involve three core – periodic – activities: measuring some aspect 

of the system to be controlled (e.g. the furnace temperature), calculating changes required to the 

control system (e.g. calculating new gas burner settings) and applying the changes to the control 

system (e.g. updating the settings on the gas burner).  Use of a TT architecture will ensure high-

quality control without jitter in the input or output. 

 Data output systems (for example, music players, video playback, head-up displays) are 

required to generate output signals at precise times (for example, “CD quality” sound will be 

played back at 44,400 samples per second.  Any jitter in the playback will result in degradation 

of the music quality. 

It is important to appreciate that – in many of these cases - use of a TT solution allows the system to 

perform the above periodic activities and also perform other functions (such as reading switches, 

updating displays, receiving data over serial communication links, performing calculations, etc) 

without interfering in any way with the processing outlined in the above examples.  It is the 

ability to perform multiple tasks and still guarantee that critical tasks will always execute as 

required that makes a TT solution so attractive to developers of high-integrity, safety-related and 

safety-critical systems. 
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Clearly, not all systems fall into the “periodic sampling / playback” category.  In particular, if your 

system must respond only to events which may occur at “random” times, it may not be a good 

match for this architecture.   

 

For example, consider a simple radio transmitter which is used to open your garage doors a few 

times a week. We could use TT architecture to poll the switch on this system every 20 ms (just in 

case the switch has been pressed).  However, while such a solution would undoubtedly work, it 

would be likely to have a shorter battery life than a simple event-triggered design which operates in 

power down mode except when the switch on the unit was pressed.  As there are not likely to be 

safety concerns with this system and the number of tasks is probably very small, an ET 

solution will probably be more appropriate in this situation. 

 

In between these two extremes there are many systems which involve both periodic tasks and the 

handling of “random” events.  Such designs are typically characterised by the use of multiple 

interrupt service routines (ISRs).  In these situations it may not be practical (or necessary) to create 

a “pure TT” (single interrupt) solution.  However, it may well be practical to create a “more TT” 

solution which reduces the number of interrupts to a level at which it becomes possible to predict 

the system behaviour sufficiently accurately to meet the needs of the application. 

 

Related patterns 

To describe what architectural changes will be required in moving to a TT design, patterns EVENTS 

TO TIME and TT SCHEDULER provide further details. 

 

Overall strengths and weaknesses 

 Use of a TT architecture tends to result in a system with highly predictable patterns of 

behaviour. 

 

 Inappropriate system design using this approach can result in applications which have a 

comparatively slow response to external events and / or shorter battery life. 
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EVENTS TO TIME  
Abstract pattern 

Context 

 You and / or your development team have programming or design experience with “event-

triggered and / or pre-emptive” (ET/P) system architectures: that is, architectures which may 

involve use of conventional real-time operating system (RTOS) and / or multiple interrupt-

service routines (linked to different interrupt sources) and / or task pre-emption. 

 You are in the process of creating or upgrading an embedded system, based on a single 

processor. 

 You already have at least a design or prototype for your system based on some form of ET/P 

architecture. 

 Because predictable and highly-reliable system operation is a key design requirement, you have 

opted to employ a “time-triggered system architecture in your system,  if this proves practical. 

Problem 

How can you convert event triggered / pre-emptive designs and code (and mindsets) to allow 

effective use of a TT SCHEDULER as the basis of your embedded system? 

Background 

If we were forced to sum up the difference between “embedded” and “desktop” systems in a single 

word we‟d say “interrupts”.   

 

Event triggered behaviour in systems is usually achieved through the use of such interrupts.  The 

system is designed to handle interrupts associated with a range of sources (e.g. switch inputs, CAN 

interface, RS-232, analogue inputs, etc).  Each interrupt source will have an associated priority.  

Each interrupt source will also require the creation of a corresponding “interrupt service routine” 

(ISR): this can be viewed as a short task which is triggered “immediately” when the corresponding 

interrupt is generated.   

 

Creating such (ET/P) systems is – on the surface at least – straightforward.  However, challenges 

often begin to arise (in non-trivial designs) at the testing stage.  It is generally impossible to 

determine what state the system will be in when any interrupt occurs, which makes comprehensive 

testing almost impossible.   

 

A time-triggered system also requires an understanding of interrupts, but the operation is 

fundamentally different.  At the heart of a TT system is a scheduler which determines when the 

tasks in the system will be executed.  In such a system, there is only a single interrupt source 

(usually a periodic timer “tick”): is used to drive the scheduler.   
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Solution 

Here‟s what you need to do to migrate to a TT design: 

 You need to ensure that only a single – periodic – timer interrupt is enabled (all other interrupt 

sources will be converted to flags, which will be polled as required).   

 You have to determine an appropriate “tick interval” for your system (that is, you need to 

determine how frequently the timer interrupt need to take place).   

 You have to convert any ET (event-triggered) ISRs into periodic tasks and add these to the 

schedule.   

 You need to decide which TT architecture will best suite your application requirements. Pattern 

TT SCHEDULER provides comprehensive details.  To summarise: 

- Choose Co-operative architecture if your system requirements could be met without 

any pre-emption involved.  All the tasks in the system will be co-operative. For 

details see pattern CO-OPERATIVE SCHEDULER 

- Choose HYBRID SCHEDULER if limited pre-emption (only a single pre-emptive task) 

can fulfil the requirements of the system. All the other tasks in the system will be co-

operative.  Details about implementing such architecture are documented in pattern  

- Choose  PRE-EMPTIVE Scheduler for full pre-emption in the system 

 

Related patterns and alternative solutions 

The PTTES collection 

The PTTES collection (Pont, 2001) describes, in detail, a range of techniques which can be used to 

implement embedded systems with TTC architecture.  This book can now be downloaded (free of 

charge) from the following WWW site: 

http://www.tte-systems.com/books/pttes  

TT Schedulers 

The pattern TT SCHEDULER provides relevant background information and the situations in which it 

may be appropriate to use a TT scheduler in your application. 

 

Reliability and safety implications 

When compared to pre-emptive schedulers, co-operative schedulers have a number of desirable features, 

particularly for use in safety-related systems (Allworth, 1981; Ward, 1991; Nissanke, 1997; Bate, 2000) 

. 

 

For example, Nissanke (1997, p. 237) notes: “[Pre-emptive] schedules carry greater runtime 

overheads because of the need for context switching––storage and retrieval of partially computed 

results. [Co-operative] algorithms do not incur such overheads. Other advantages of [co-operative] 

algorithms include their better understandability, greater predictability, ease of testing and their 

inherent capability for guaranteeing exclusive access to any shared resource or data”.   

 

Allworth (1981, pp. 53–54) also notes: “Significant advantages are obtained when using this [co-

operative] technique.  Since the processes are not interruptable, poor synchronisation does not give 

http://www.tte-systems.com/books/pttes
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-4BWM353-1&_user=123215&_coverDate=05%2F31%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5651&_sort=d&_docanchor=&view=c&_acct=C000010181&_version=1&_urlVersion=0&_userid=123215&md5=f76db914fd7e9d695247a96856e7fe2e#bib3
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rise to the problem of shared data. Shared subroutines can be implemented without producing re-

entrant code or implementing lock and unlock mechanisms”. 

 

Although not the main focus of this pattern, the advantages of a TT approach also apply in 

distributed systems: see, for example,  (Scarlett and Brennan, 2006). 

  

Overall strengths and weaknesses 

 Use of TT architecture tends to result in a system with highly predictable patterns of behaviour. 

 Inappropriate system design using this approach can result in applications which have a 

comparatively slow response to external events. 

 

Examples 

To illustrate part of the translation process, consider a simple ET system (Listing 1) running two 

interrupts, as a result two tasks X and Y will execute.  These tasks are invoked by separate 

interrupts and implemented by associated ISRs.   

 

void X_ISR(void) interrupt IEIndex1 

   { 

   } 

 

void Y_ISR(void) interrupt IEIndex2 

   { 

   } 

 

void main(void) 

   { 

   X_init(); 

   Y_init(); 

   EA = 1 ; // Enable all interrupts 

 

   while(1) 

      { 

      PCON |= 0x01; 

      } 

   } 

Listing 1: Possible ET design 

There are various possibilities to convert ET designs to TT designs with any of the possible TT 

architectures listed in the solution. One possible design using TTC scheduler is illustrated in Listing 

2. 

 

void main(void) 

   { 

   SCH_Init(); // Set up the scheduler and tasks 

   X_Init(); 
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   Y_Init(); 

 

   // Add tasks to scheduler 

   SCH_Add_Task(X_Update(), 0, 100); 

   SCH_Add_Task(Y_Update(), 20, 200); 

 

   // Start the scheduler 

   SCH_Start(); 

    

   while(1) 

      { 

      SCH_Dispatch_Tasks(); 

      } 

   } 

Listing 2: Possible TT design 

P lease note that X and Y are two separate tasks created in separate .c  files with their init and 

update functions. 
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TT SCHEDULER 
Abstract pattern 

Context 

 You already have at least a design or prototype for your system based on some form of ET/P 

architecture. 

 You and / or your development team  are using pattern EVENTS TO TIME 

 You are in the process of creating or upgrading an embedded system, based on a single 

processor. 

 Because predictable and highly-reliable system operation is a key design requirement, you have 

opted to employ a “time triggered” system architecture in your system. 

 

Problem 

How will you decide which form of time-triggered scheduler should you use for your application? 

 

Background 

TT schedulers that we can use can take two forms:  Co-operative and Pre-emptive.  Both of these 

types of schedulers provide various options , some of these options are given below: 

1. Co-operative Schedulers 

a. Super loop 

b. TTC Dispatch 

 

2. Pre-emptive Schedulers 

a. Full Pre-emption 

i. TTRM Scheduler 

b. Limited Pre-emption 

i. TTH Scheduler 

In co-operative scheduling, tasks co-operate with each other and wait for their turn to execute until 

the currently running task finishes execution. 

  

In pre-emptive scheduling a task of higher priority which is ready to execute can pre-empt a 

currently running task of lower priority. 

 

Overview of TT Schedulers 

 

TTC-SL Scheduler 

The simplest way of implementing a TTC scheduler is by means of a “Super Loop” or 

“Endless loop” (e.g. Pont, 2001; Kurian and Pont, 2007).  A possible implementation of such a 

scheduler is illustrated in Listing 3. 
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int main(void) 

   { 

... 

   while(1) 

      { 

      TaskA(); 

      Delay_6ms(); 

      TaskB(); 

      Delay_6ms(); 

      TaskC(); 

      Delay_6ms(); 

   } 

   // Should never reach here 

   return 1; 

} 

Listing 3: Illustrating a TTC Super Loop Scheduler 

Applications based on a TTC-SL SCHEDULER have extremely small resource requirements. 

Systems based on such a pattern (if used appropriately) can be both reliable and safe, because the 

overall architecture is extremely simple and easy to understand, and no aspect of the underlying 

hardware is hidden from the original developer, or from the person who subsequently has to 

maintain the system. 

 

 

TTC Dispatch Scheduler 

The TTC scheduler implementation referred to here as a “TTC-Dispatch” scheduler provides a 

more flexible alternative see Listing 4. 

 

The type of TTC scheduler implementation discussed in this pattern is usually implemented using a 

hardware timer, which is set to generate interrupts on a periodic basis (with “tick intervals” of 

around 1 ms being typical).  In most cases, the tasks will be executed from a “dispatcher” 

(function), invoked after every scheduler tick.  The dispatcher examines each task in its list and 

executes (in priority order) any tasks which are due to run in this tick interval (see Figure 4). The 

scheduler then places the processor into an “idle” (power saving) mode, where it will remain until 

the next tick. 

 

 

Figure 4: Illustrating TTC design 

 

Provided that an appropriate implementation is used, a time-triggered, co-operative (TTC) 

architecture is a good match for a wide range of low-cost, resource-constrained applications. 

TTC architectures also demonstrate very low levels of task jitter  (Locke, 1992)  and can maintain 

their low-jitter characteristics even when techniques such as dynamic voltage scaling  (DVS) are 

employed to reduce system power consumption . 
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void main(void) 

   { 

   // Set up the scheduler 

   SCH_Init_T2(); 

 

   // Init tasks 

   TaskA_Init(); 

   TaskB_Init(); 

 

   // Add tasks (10 ms ticks) 

   // Parameters are filename, offset (ticks), period (ticks) 

   SCH_Add_Task(TaskA, 0, 3); 

   SCH_Add_Task(TaskB, 1, 3); 

   SCH_Add_Task(TaskC, 2, 3); 

 

   // Start the scheduler 

   SCH_Start(); 

 

   while(1) 

      { 

      SCH_Dispatch_Tasks(); 

      SCH_Go_To_Sleep(); 

      } 

   } 

Listing 4: TTC Implementation 

 

TTRM architectures 

Where a TTC architecture is not found to be suitable for use in a particular resource constrained 

embedded systems, fixed-priority scheduling has been proposed as the most attractive alternative 

(Audsley, Burns et al., 1991; Bate, 1998). 

 

“Time-triggered rate monotonic” (TTRM) is a well-known fixed-priority scheduling algorithm that 

was introduced by  (Liu and Layland, 1973) in 1973. Technically, TTRM is a pre-emptive 

scheduling algorithm which is based on a fixed priority assignment (Kopetz, 1997) .  In particular, 

the priorities are assigned to periodic tasks accord to their occurrence rate or, in other words, 

priorities are inversely proportional to their period, and they do not change through out of the 

operation (because their periods are constant). 

 

 

Figure 5: Illustrating TTRM architecture 
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To illustrate the use of TTRM scheduling, Figure 5 above shows how a set of periodic tasks can be 

scheduled by this algorithm. Task T1 is executed periodically at the fastest rate, every 10 ms, and is 

determined to be the highest priority in this scheduling policy, while task T2 and T3, which are run 

every 20 and 40 ms respectively, have lower priority levels according to their rates. A task 

scheduled by the TTRM algorithm can be pre-empted by a higher priority task.  As illustrated in 

Figure5, task T3 - which is running - is pre-empted by task T1 is at time 10: it carries on after the 

completion of task T1. 

 

 

TTH architectures 

Where a TTC architecture is not found to be suitable for a particular system, use of a TTRM design 

may not be necessary. For example, a single, time-triggered, pre-empting task can be added to a 

TTC architecture, to give what we have called a “time-triggered hybrid” (TTH) scheduler (Pont, 

2001; Maaita and Pont 2005) and others have called a “multi-rate executive with interrupts” 

(Kalinsky, 2001) 

 

Use of a TTH SCHEDULER allows the system designer to create a static schedule made up of (i) a 

collection of tasks which operate co-operatively and (ii) a single – short - pre-empting task (see 

Figure 6). In many of the systems employing a TTH architecture, the pre-empting task will be used 

for periodic data acquisition, typically through an analogue-to-digital converter or similar device. 

 

Such requirements are common in, for example, control systems  (Buttazzo, 2005) and applications 

which involve data sampling and Fast-Fourier transforms (FFTs) or similar techniques: 

 

 

Figure 6: Illustrating TTH design 

Solution 

Here are the guidelines about choosing appropriate TT architecture.  

 

When to use TTC 

Use TTC architecture where ever possible as first choice because of its simple and efficient design. 

Of course, this architecture is not always appropriate. The main problem is that long tasks will have 

an impact on the responsiveness of the system. This concern is succinctly summarised by Allworth:  

“[The] main drawback with this [co-operative] approach is that while the current process is running, 
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the system is not responsive to changes in the environment. Therefore, system processes must be 

extremely brief if the real-time response [of the] system is not to be impaired.”  (Allworth, 1981). 

 

We can express this concern slightly more formally by noting that if the system must execute 

one of more tasks of duration X and also respond within an interval T to external events 

(where T < X), a pure co-operative scheduler will not generally be suitable. In more simple words 

duration of a task (execution time) must be less than the tick interval of the system. 

 

In practice, it is sometimes assumed that a TTC architecture is inappropriate because some simple 

design options have been overlooked, see pattern BUFFERED OUTPUT 

 

When to use TTH 

For systems where TTC is not an appropriate choice, avoid jumping to fully pre-emptive 

architectures as they incur higher overheads because of context switching involved during task pre-

emption.  Check for TTH solution which provides a limited level of pre-emption.  For example, 

consider a wireless electrocardiogram (ECG) system.  An ECG is an electrical recording of the 

heart that is used for investigating heart disease. In a hospital environment, ECGs normally have 12 

leads (standard leads, augmented limb leads and precordial leads) and can plot 250 sample-points 

per second (at minimum). In the portable ECG system considered here, three standard leads (Lead I, 

Lead II, and Lead III) were recorded at 500 Hz. The electrical signal were sampled using a (12-bit) 

ADC and – after compression – the data were passed to a “Bluetooth” module for transmission to a 

notebook PC, for analysis by a clinician see  (Phatrapornnant and Pont, 2006). 

 

In one version of this system, we are required to perform the following tasks: 

 Sample the data continuously at a rate of 500 Hz. Sampling takes less than 0.1 ms. 

 When we have 10 samples (that is, every 20 ms), compress and transmit the data, a process 

which takes a total of 6.7 ms. 

 

In this case, we will assume that the compression task cannot be neatly decomposed into a sequence 

of shorter tasks, and we therefore cannot employ a pure TTC architecture. However, even if you 

cannot – cleanly - solve the long task / short response time problem, then you can maintain the core 

co-operative scheduler, and add only the limited degree of pre-emption that is required to meet the 

needs of your application. 

 

For example, in the case of our ECG system, we can use time-triggered hybrid architecture. 

 

In this case, we allow a single pre-empting task to operate: in our ECG system, this task will 

be used for data acquisition. This is a time-triggered task, and such tasks will generally be 

implemented as a function call from the timer ISR which is used to drive the core TTC scheduler.  

As we have discussed in detail elsewhere (Pont, 2001: Chapter 17) this architecture is extremely 

easy to implement, and can operate with very high reliability.  As such it is one of a number of 

architectures, based on a TTC scheduler, which are cooperatively based, but also provide a 

controlled degree of pre-emption.    
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When to use TTRM 

If both TTC and TTH architectures are not appropriate for your application and full pre-emption is a 

necessary, then TTRM architecture may match your requirements. 

 

Overall, it has been claimed that the main advantage of TTRM scheduling is flexibility during 

design or maintenance phases, and that such flexibility can reduce the total life cost of the system  

(Locke, 1992; Bate, 1998). The schedulability of the system can be determined based on the total 

CPU utilisation of the task set: as a result - when new functionalities are added to the system – it is 

only necessary to recalculate the new utilisation values.  In addition, unlike a TTC design, there is 

no need to break up long individual tasks in order to meet the length limitations of the minor cycle. 

The need to employ harmonic frequency relationships among periodic tasks is also avoided. Finally, 

the scheduling behaviour can be predicted and analysed using a task model proposed by Liu and 

Layland (1973). 

 

However, the scheduling overheads of TTRM schedulers tend to be larger than those of TTC 

schedulers because of the additional complexity associated with the context switches when saving 

and restoring task state (Locke, 1992). This is a concern in embedded systems with limited 

resources. 

 

Locking mechanisms 

If you use any architecture which involves pre-emption (TTH or TTRM), you need to consider 

ways of preventing more than one task from accessing critical resources at the same time. See 

pattern CRITICAL SECTION and related patterns for more details. 

 

Overall strengths and weaknesses 

 Use of a TT scheduler tends to result in a system with highly predictable patterns of 

behaviour. 

 

 Inappropriate system design using this approach can result in applications which have a 

comparatively slow response to external events. 
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CHOOSING TASK PARAMETERS 
Pattern 

Context 

 You are in the process of creating or upgrading an embedded system, based on a single 

processor. 

 Because predictable and highly-reliable system operation is a key design requirement, you have 

opted to employ a “time triggered” system architecture in your system, if this proves practical. 

 

Problem 

How can you choose your tasks parameters such as offset and task order to allow effective use of a 

TT Scheduler as the basis of your embedded system? 

 

Background 

Whether a TTC or TTH implementation is used, a number of key scheduler/task parameters must be 

determined (including the tick interval, task order, and initial delay or phase of each task).  

Inappropriate choices may mean that a given task set cannot be scheduled at all or inappropriate 

decisions may still lead to unnecessarily high levels of task jitter.    The following parameters are 

used to characterise each task  (Liu and Layland, 1973; Tindell, Burns et al., 1994; Buttazzo, 1997)  

 

1. Period (pi): is the time interval after which task Ti should be repeated, in other words it is the 

length of time between every two invocations. 

2. Offset (oi):  is the time, measured from the start of the system power on, after which the first 

period of task Ti starts. 

3. Start time (si): This is the time at which task starts its execution. 

4. Release time (ri): is the time, measured from the start of the task period, after which task Ti 

becomes ready to run.  

5. Finish time (fi): This is the time at which task completes its execution. 

6. Deadline (di): is the time before which task Ti should be completed. Deadline can be measured 

from the start of the system power on, in which case it is called absolute deadline. Alternatively 

it can be measured from the start of the task period, in which case it is called relative deadline 

7. Worst-case execution time (WCETi): This is the longest time taken by the processor to 

complete the execution of a task Ti.  

8. Best-case execution time (BCETi): This is the shortest time taken by the processor to finish 

task Ti.  

 

These parameters are shown in Figure 7. 
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Figure 7: Illustrating task parameters 

Another important parameter is the order of tasks in which they are added to the schedule.  

Inappropriate choice of these parameters may lead to high values of jitter, increased power 

consumption or a task set which cannot be scheduled at all. 

 

 

Solution 

Choosing the correct offset 

A task offset specifies when a task should start or more precisely it specifies the first tick at which 

the first instance of a task is ready to run. For a task set given with WCET, period and deadline start 

scheduling all the tasks with offset 0 if the sum of execution times of all the tasks is less than or 

equal to the length of tick interval.   

 

While assigning task offsets you can take care of the following situations. 

 

For example, the tasks in Table 1 can be scheduled if a tick interval of 3 ms is used and the tasks 

will meet their deadlines as well. 

 

Table 1: Task specifications for a system in which task offsets are appropriate (all the tasks will meet 

their deadlines) 

Task WCET(ms) Deadline (ms) Period (ms) Offset (ticks) 

A 0.5 3 3 0 

B 0.75 3 6 0 

C 1.5 3 6 0 

 

On the contrary, task set in Table 2 can be scheduled with a tick interval of 5ms  but Task C will 

missed its deadline as shown in Figure8. 

 

Table 2: Task specifications for a system in which task offsets are in appropriate (Task C will not be 

able to meet its deadline) 

Task WCET(ms) Deadline (ms) Period (ms) Offset (ticks) 

A 1 5 5 0 

B 1.5 5 10 0 

C 3 5 10 0 
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Figure 8: Task C missed deadline because of incorrect offset 

By changing the offset to 1, Task C will meet its deadline as shown in Figure 9. 

 

 

Figure 9: Task C will meet deadline after changing offset to 1 

Inappropriate assignment of task offsets can also increase the jitter value in task. For example 

consider the task set given in Table 3. With the given set of parameters Task C will run after Task A 

and Task B in some ticks and just after Task A in some other ticks (see Figure 10). This kind of 

situation poses a kind of unpredictability in system behaviour.  This can be adjusted by keeping the 

jitter constant in Task C in all ticks. Changing the offset of Task C can help to keep the jitter value 

constant in all the ticks see Table 4 and Figure 11. 

 

Table 3: Task offset that can cause varied jitter in Task C 

Task WCET(ms) Deadline (ms) Period (ms) Offset (ticks) 

A 1 5 5 0 

B 1.5 20 20 0 

C 1 10 10 0 
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Figure 10: Illustrating Tasks shown in Table 4 above: 

 

Table 4: Changing the offset of Task C to 1 can make the jitter constant for all task instances 

Task WCET(ms) Deadline (ms) Period (ms) Offset (ticks) 

A 1 5 5 0 

B 1.5 20 20 0 

C 1 10 10 1 

 

 

Figure 11: Changing of task offset can keep the jitter constant 

 

Choosing correct task order 

Task order can also affect jitter. It is important to consider the task order for jitter sensitive tasks. 

For example consider the schedule given in Table 5 and Figure 12. 
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Table 5: Example of incorrect order of task set which  can cause varied jitter in task C 

Task WCET(ms) Deadline (ms) Period (ms) Offset (ticks) 

A 2 10 10 0 

B 3 20 20 0 

C 4 30 30 0 

 

 

 

Figure 12: Task C showing variations in jitter because of incorrect task order 

Changing the task order can keep the jitter constant in Task C. The new order of tasks is shown in 

Table 6 and Figure 13. 

 

Table 6: Rearrangement of the task order to keep the jitter constant in task C 

Task WCET(ms) Deadline (ms) Period (ms) Offset (ticks) 

A 2 10 10 0 

C 4 30 30 0 

B 3 20 20 0 

 

 

 

Figure 13:  Rearrangement of task order will make task C run after task A every time 
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Reliability and safety implications 

Inappropriate selection of task parameters can make the system unreliable 

Overall strengths and weaknesses 

 Uses of appropriate task parameters will result in stable system with all the tasks meet their 

deadlines and reduced/constant values of jitter. 

 Inappropriate system design using this approach can result in applications which have a 

comparatively slow response to external events. 
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BUFFERED OUTPUT 
Pattern 

Context 

 You are applying the pattern EVENTS TO TIME (TTC) 

 You need to deal – cleanly – with a “long task” (that is, a task which may have an execution 

time greater than your chosen tick interval. 

 You need to send a significant amount of data between your processor / system and an external 

device: the data transfer process will take some time. 

Problem 

How can you structure the data-transfer tasks in your application in a manner which is compatible 

with TTC architecture? 

Background 

We illustrate the need for the present pattern with an example. 

 

Suppose we wish to transfer data to a PC at a standard 9600 baud.  Transmitting each byte of data, 

plus stop and start bits, involves the transmission of 10 bits of information (assuming a single stop 

bit is used).  As a result, each byte takes approximately 1 ms to transmit. 

 

Now, suppose we wish to send this information to the PC: 
 

Current core temperature is 36.678 degrees 

 

If we use a standard function (such as some form of printf()) the task sending these 42 characters 

will take more than 40 milliseconds to complete.  In a system supporting task pre-emption, we may 

be able to treat this as a low-priority task and let it run as required.  This approach is not without 

difficulties (for example, if a high-priority task requires access to the same communication interface 

while the low-priority task is running).  However, with appropriate system design we will be able to 

make this operate correctly under most circumstances. 

 

Now consider the equivalent TTC design.  We can‟t support task pre-emption and a long data-

transmission task (around 40 ms) is likely to cause significant problems.  More specifically, if this 

time is greater than the system tick interval (often 1 ms, rarely greater than 10 ms) then this is likely 

to present a problem as shown in Figure 14. The RS-232 task is a “long task” has duration greater 

than the system tick and so is missing the next tick intervals. 

 

 

 

Figure 14: A schematic representation of the problems caused by sending a long character string on an 

embedded system.  In this case, sending the massage takes 42 ms while the System tick interval is 10 

ms. 
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Perhaps the most obvious way of addressing this issue is to increase the baud rate; however, this is 

not always possible, and - even with very high baud rates - long messages or irregular bursts of data 

can still cause difficulties. 

 

More generally, the underlying problem here is that the data transfer operation has a duration which 

depends on the length of the string which we wish to submit.  As such, the worst-case execution 

time (WCET) of the data transfer task is highly variable (and, in a general case, may vary 

depending on conditions at run time).  In a TTC design, we need to know all WCET data for all 

tasks at design time.  We require a different system design. As  (Gergeleit and Nett, 2002)  have 

noted “ Nearly all known real-time scheduling approaches rely on the knowledge of WCETs for all 

tasks of the system.” The known WCET of tasks will be helpful for developers in designing the 

offline schedule and preventing task overrun. 

 

Solution 

Convert a long data-transfer task (which is called infrequently and may have a variable duration) 

into a periodic task (which is called comparatively frequently and which has a very short – and 

known – duration). 

 

A BUFFERED OUTPUT consists of three key components: 

 A buffer (usually just an array, implemented in software) 

 A function (or small set of functions) which can be used by the tasks in your system to write 

data to the array. 

 A periodic (scheduled) task which checks the buffer and sends a block of data to the receiving 

device (when there are data to send). 

 

Figure 15 provides an overview of this system architecture.  All data to be sent are first moved to a 

software buffer (a very fast operation).  The data is then shifted – one block at a time – to the 

relevant hardware buffer in the microcontroller (e.g. 1 byte at a time for a UART, 8 bytes at a time 

for CAN, etc): this software-to-hardware transfer is carried out every 1ms (for example), using a 

(short) periodic task. 

 

 

Figure 15: An overview of the BUFFERED OUTPUT architecture. 
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Hardware resource implications 

In most cases, the CPU requirements for BUFFERED OUTPUT are very limited, provided we take 

reasonable care at the design stage.  For example, if we are sending message over a CAN bus and 

we know that each message takes approximately 0.15 ms to transmit; we should schedule the data 

transmission task to check the buffer at an interval > 0.15 ms.  If we do this, the process of copying 

data from the software buffer to the (CAN) hardware will take very little time (usually a small 

fraction of a millisecond).   

 

For very small designs (e.g. 8-bit systems) the memory requirements for the software buffer can 

prove significant.  If you can‟t add external memory in these circumstances, you will need to use a 

small buffer and send data as frequently as possible (but see the comment above). 

 

In some cases, hardware support can help to reduce both memory requirements and processor load.  

For example, if using UART-based data transmission, UARTs often have 16-byte hardware buffers: 

if you have these available, it makes sense to employ them. 

 

Portability 

This technique is generic and highly portable.   

 

Reliability and Safety Issues 

 Special care must be taken while defining buffer length, the data transfer should not cause any 

buffer overflow 

 Applications that involve high amount of data transfer like video and DSP applications or data 

acquisition systems the use of buffer might not be a viable solution. 

Overall strengths and weaknesses 

 Use of buffered output  is an easy solution for faster data transfer from a task running in an 

embedded application  

 One has to be very careful while defining the buffer length, inappropriate buffer definitions 

may cause buffer overflow and data loss. 
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POLLED INPUT 
Pattern 

Context 

 You are applying the pattern EVENTS TO TIME 

 You need to make your system responsive to external inputs through interface like switches. 

 

Problem 

How do you build a time-triggered (TT) system which is equivalent of your event-triggered (ET) 

system such that it can respond to all (external/internal) input interfaces? 

 

Background 

Designing a TT system requires more planning efforts. In a  time-triggered co-operative (TTC) 

design the possible occurrence and the execution times of all the tasks needs to be known in 

advance.  The designer has to plan a task schedule which must execute all the tasks periodically at 

their allocated time intervals.  This effort makes the system more predictable. In contrast to this, in 

an event-triggered system the scheduler executes the tasks dynamically as the events arrive thus no 

guarantee that they meet any timeliness constraints.  This is the reason that ET designs are not 

recommended for safety critical applications.  The event triggered behaviour in systems is achieved 

through the use of interrupts.   To support these interrupts, Interrupt Service Routines (ISRs) are 

provided. Whenever an interrupt occurs it stops the currently running task and ISR executes to 

respond to the interrupt. This “context switching” is an overhead that sometimes raised serious 

complications in systems. 

The abstract pattern EVENTS TO TIME  provides more relevant background information. 

 

Solution 

A POLLED INPUT should meet the following specification: 

 

 It should include a periodic task which polls for the occurrence of the event. 

 The period of the above task should be set to some value less than or equal to minimum 

inter-arrival time1 of the event in question. 

 The interrupt associated with this event should not be enabled.  In fact only one interrupt 

associated with the timer responsible for generating system “ticks” should be enabled. 

                                                 
1 In ET systems the exact arrival time of events is not known so we assume a minimum distance between the arrivals of 

two consecutive events. 
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Hardware resource implications 

Different interfaces have different implications under various circumstances. Reading a switch input 

imposes minimal loads on CPU and memory resources whereas scanning the keypad interface 

imposes both a CPU and memory load.  

 

Reliability and safety issues 

One major concern here in migrating from event-triggered to time-triggered is to make systems 

more predictable. Characteristic for the time-triggered architecture is the treatment of (physical) real 

time as a first order quantity (Kopetz and Bauer 2002) this implies to the fact that time-triggered 

systems must be very carefully designed, the task activation rates must be fixed according to the 

system dynamics i.e. how frequent an input needs to be polled. 

 

Portability 

This technique is generic and highly portable.   

 

Overall strengths and weaknesses 

 A flexible technique, programmer can easily do changes in code for example if auto repeat is 

required  

 It is simple and cheap to implement. 

 Provides no protection against out of range inputs or electrostatic discharge (ESD) 

 More processor utilisation in polling for tasks  
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CRITICAL SECTION 
Abstract pattern 

Context 

 You are developing an embedded system using a computer system with CPU and / or memory 

resources which are – compared with typical desktop designs – rather limited. 

 Your system employs a single CPU. 

 Your system employs a TT SCHEDULER  

 Your system supports task pre-emption. 

 Predictable system behaviour is a key design requirement: in particular, predictable task timing 

is a concern. 

Problem 

How can you avoid conflicts over shared resources during the execution of critical sections? 

Background 

We provide some relevant background material in this section. 

Scheduling and TT architectures 

For general background information about scheduling (and scheduling of time-triggered systems in 

particular), please refer to the pattern TT SCHEDULER.   TT SCHEDULER provides background 

information on key concepts such as TTC, TTH and TTRM scheduling. 

Shared resources and critical sections 

Our focus in this pattern will be on TTH and TTRM (and related) designs in which task pre-

emption can occur.  Our particular concern will be with the issue of resources which may be 

accessed by more than one task at the same time.  Such “shared resources” may – for example - 

include areas of memory (for example, two tasks need to access the same global variable) or 

hardware (for example, two tasks need to access the same analogue-to-digital converter).  The code 

which accesses such shared resources is referred to as a “critical section”. 

 

Suppose that there are two tasks, TaskA and TaskB in a system, which are illustrated in Figure 16.  

There is one shared resource and N represents the normal section and C represents the critical 

section (that is, the section which involves access to a shared resource).  From t1 to t4, TaskA and  

TaskB are attempting to run “simultaneously”. 

 

Time

NA CA NA

NB CB NB

TaskA

TaskB

N C
Normal Code Critical Section

t1 t2 t3 t4  

Figure 16: Two Tasks with a shared resource 
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In a TTC system, a task cannot be pre-empted by another task and the two tasks shown in Figure 16 

are scheduled as shown in Figure 17.  As in this example, there are no conflicts caused by the 

shared resources in TTC systems. 

 

 

Time

NA CA NA NB CB NB

 

Figure 17: Two tasks scheduled using a TTC scheduler 

 

However, if the same tasks are scheduled in a pre-emptive system, there may be conflicts.  For 

example, suppose the priority of TaskB  is higher than that of TaskA.  TaskB will then pre-empt 

TaskA at time t1 while it is running the critical section (Figure 18).   

 

 

Time

NA CA NANB CB NB CA

t1 t5
 

Figure 18: Two tasks scheduled in a pre-emptive system 

Assume that the shared resource in the above example is some shared data (for example, numerical 

data stored in an array).  The two tasks write and read the data in the critical section.  TaskB pre-

empts TaskA at t1 while it is reading the data: we will assume that TaskA has read from half of the 

array at the time it is interrupted.  We will further assume that TaskB TaskB updates all of the data 

values in the array.  After TaskB finishes, TaskA then continues, reading the remaining values from 

the second half of the array: it then processes a combination of “new” and “old” data, possibly 

leading to erroneous results (e.g. see (Kalinsky, 2001)). 

 

In general, tasks must share data and / or hardware resources.  However, the system designer must 

ensure that each task has exclusive access to the shared resources to avoid conflicts, data corruption 

or “hanging tasks”  (Labrosse, 2000; Pont, 2001; Laplante, 2004).   

What is a resource lock? 

A lock is the most common way to protect shared resources.   

 

Before entering a critical section, a semaphore is checked.  If it is clear, the resource is available.  

The task then sets the semaphore and uses the resource.  When the task finishes with the resource, 

the semaphore is cleared.   

 

Resource locking in this way requires care but is comparatively straightforward to implement.  and 

affects only those tasks that need to take the same semaphore (Simon, 2001).   

 

The main drawback is that it causes priority inversion in a priority based system  (Sha, Rajkumar et 

al., 1990; Burns and Wellings, 1997; Renwick, 2004). 
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What is priority inversion? 

In a priority-based system, each task is assigned a priority.  In a TTC design, the scheduler will – 

when deciding which task to run next – always run the task with the highest priority (and this task 

will then run to completion).  In a pre-emptive system, a high-priority task may interrupt a lower-

priority task while it is executing.   

 

Priority inversion can occur in pre-emptive designs when resource locks are used.  For example, 

suppose that a low-priority task is using a resource.  The resource will be locked.  If a high-priority 

task is then scheduled to run (and use the resource) it will not be able to do so: in effect, the low-

priority task will be given greater priority than the high-priority task.   

 

For example, Figure 19 shows an intended operation sequence for two tasks, TaskH and TaskL, 

sharing a critical section C.  Figure 20 shows how the priority inversion takes place.  When TaskL 

owns C, and TaskH attempts to access it (at t3), TaskH is blocked and has to wait until time t4 before 

it can run.   

 

Please note that this is sometimes called “bounded priority inversion” (Burns, 2001; Renwick, 

2004) or “controlled priority inversion” (Locke, 2002).  In this case, the blocking time of TaskH will 

not exceed the duration of the critical section C of TaskL.   

 

N C C N

N C N

Priority

PTaskL

PTaskH

t1 t2 t3 t4 t5

N

C

Normal Code

Critical Section

 

Figure 19:  Operation Sequences of TaskH and TaskL 

 

N C C N

N C N

Priority

PTaskL

PTaskH

t1 t2 t3 t4 t5

N

C

Normal Code

Critical Section

t6 t7

B

B Blocked

 

Figure 20:  Bounded Priority Inversion 

 

We further suppose that TaskM (with “medium” priority) pre-empts TaskL when TaskH is blocked by 

TaskL, the owner of  the shared resource at this time.  TaskH then has to wait until TaskM 

relinquishes control of the processor and TaskL completes the critical section.  For example, see 

Figure 21: here, at t4, TaskM pre-empts TaskL.   
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N C C

N

N

Priority

PTaskL

PTaskM

t1 t2 t3 t4 t5

N CNormal Code Critical Section

t6 t7

B

B Blocked

PTaskH
RESET

 

Figure 21:  Unbounded Priority Inversion 

 

In these circumstances, the worst-case waiting time for TaskH is the sum of the worst-case 

execution times of TaskM and the critical section of TaskL.  This is called unbounded priority 

inversion (Renwick, 2004).  If TaskM runs for a long time (or “for ever”), TaskH is likely to may 

miss its deadline, with potentially serious consequences (shown as a system reset in Figure 21).   

 

Unbounded priority inversion can be particularly problematic.  For example, in 1997, the Mars 

Pathfinder mission nearly failed because of an undetected (unbounded) priority inversion  (Jones, 

1997). 

What is deadlock? 

As noted above, a locking mechanism may lead to priority inversion.  However, this is not the only 

problem which is introduced by the use of locking mechanisms. 

 

For example, suppose that TaskH   is waiting for a resource held by  TaskL, while TaskL is 

simultaneously waiting for a resource held by TaskH: neither task is able to proceed and – as a result 

- a deadlock is formed.   

 

As an example, Figure 22 shows two tasks TaskH  and TaskL which share two resources (via C1 and 

C2): in this case, it is assumed that C1 is nested within C2 in TaskL and that C2 is nested within C1 

in TaskH    

 

N C2 C2

Priority

PTaskL

PTaskH

t1

N

C2

Normal Code

Critical Section2

C2C1

N C1 C2 NC1
C1 Critical Section1

t2 t3 t4 t5

N

t6 t7  

Figure 22 Operation Sequences of TaskH and TaskL 

In Figure 23, at t1, TaskL  locks C2, at t2 TaskH pre-empts TaskL and starts to run, locks C1 at t3, then 

requires C2 at t4.  Due to the fact that TaskL has locked C2, TaskH is blocked and TaskL   resumes 

running at t4.  At t5, TaskL   requires C2 which is locked by TaskH, and both tasks are blocked.   
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N C2 C2

Priority

PTaskL

PTaskH

t1

NC2 Normal CodeCritical Section2

N C1

C1 Critical Section1

t2 t3 t4 t5 t6 t7

Require C2 locked by TaskL

C2 still locked

Require C1 locked by TaskH

Dead Lock
B

B Blocked

 

Figure 23:  Deadlock, Operation Sequences of Tasks without Priority Protocols 

What is chained blocking? 

Locking mechanisms can also cause a phenomenon known as chained blocking.   

 

This is best explained by means of an example.  Suppose that TaskH is waiting for a resource held 

by TaskM, while TaskM is waiting for a resource held by TaskL, and so on (Figure 24).  TaskH needs 

to sequentially access resources C3 and C2.  TaskM accesses C2 (with nested C1) and TaskL 

accesses C1.   

Critical Section3

C1 C1 C1N

Priority

PTaskL

PTaskM

t1

N

C2

Normal Code

Critical Section2

N C2 C1 N C1 Critical Section1

t2 t3 t4 t5

N

t6 t7

PTaskH

t8 t9 t10

N C3 C2 N

C2

C3

 

Figure 24  Operation Sequences of Three Tasks 

Figure 25 shows that TaskM   is blocked by TaskL at t4 when it requires access to C1 (which is 

locked by TaskL).  TaskH is blocked by TaskM at t7 when it requires access to C2 (which is locked 

by TaskM).  Therefore TaskH is blocked for the duration of two critical sections (it has to wait for 

TaskL to release C1, and then wait for TaskM to release C2).  As a result, a blocking chain is formed  

(Sha, Rajkumar et al., 1990).   

 

N C1 C1

Priority

PTaskL

PTaskM

t1

NC2 Normal CodeCritical Section2

C1

N C2 C2 N

C1 Critical Section1

t2 t3 t4 t5

N

t6 t7

PTaskH

t8 t9 t10 t11 t12

N C2 NB

B Blocked

C3

C1B

C3 Critical Section3

 

Figure 25  A blocking chain: Operation Sequences of Three Tasks without priority protocols 
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Solution 

This pattern is intended to help answer the question: “How can you avoid conflicts over shared 

resources during the execution of critical sections?” 

 

In general, the answer to this question is straightforward: you need to ensure that only one task 

attempts to access each shared resource at any time.  There are two common ways of achieving this 

in a TT system architecture: 

1. As noted in “Background”, you can avoid conflicts over shared resources in a time-triggered 

system if you use a TTC scheduler.  This solution avoids the need for any of the mechanisms 

outlined in “Related patterns and alternative solutions”.   

2. You can disable interrupts and / or using a locking mechanism (probably in conjunction with a 

protocol that will help you avoid priority inversions).  These solutions are outlined in “Related 

patterns and alternative solutions”. 

 

Of these solutions, the first is the simplest and generally the most effective.  No matter what you do 

in a pre-emptive design to protect your shared resources, they will still be shared and only one task 

can use them at a time.  As such, any form of protection mechanism provides only a partial 

solution to the problems caused by multi-tasking.   

 

Consider an example.  If the purpose of Task A is to read from an ADC, and Task B has locked the 

ADC when the Task A is invoked, then Task A cannot carry out its required activity.  Use of locks, 

or any other mechanism, will not solve this problem; however, they may prevent the system from 

crashing.   

 

Please note that there may – in some circumstances – be two further options for you to consider: 

1. Pre-runtime scheduling (e.g. Xu and Parnas, 1990).  Use of a “pre-run time schedule design2” 

may allow you to adapt your pre-emptive system schedule in order to ensure that – even with 

pre-emption – there are never conflicts over shared resources.  Such techniques are not trivial to 

implement and are beyond the scope of the present paper. 

2. Planned pre-emption.  Adi and Pont (2005) have described an approach called “planned pre-

emption” which avoids the need for locking mechanisms in TTH scheduler designs. 

 

Related patterns and alternative solutions 

This pattern is an abstract pattern, which provides background knowledge related to shared 

resources in embedded systems.   

 

The following patterns describe some solutions to avoid shared resources conflicts and priority 

inversion: 

DISABLE TIMER INTERRUPT 

Disable interrupt is the simplest and fastest approach considered in this paper.  However it may 

affect the response times of all other tasks in the system.   

                                                 
2  It can be argued that any form of static schedule (e.g. most TTC schedules) could be described as a “pre-runtime 

schedules”.  However, this phrase is usually used to refer to static designs involving pre-emption for which a 

detailed modelling process is carried out prior to program execution. 
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RESOURCE LOCK 

Lock is the most common way to protect shared resources because it affects only those tasks that 

need to take the same semaphore.  However, basic use of locking mechanisms can give rise to 

problems of priority inversion. 

PRIORITY INHERITANCE PROTOCOL  

The Priority Inheritance Protocol is intended to address problems with priority inversion. 

IMPROVED PRIORITY CEILING PROTOCOL 

The Improved Priority Ceiling Protocol is intended to address problems with priority inversion, 

deadlock and chained blocking. 

Reliability and safety implications 

If a TT system is to allow task pre-emption, appropriate use of the techniques discussed in this 

pattern can help to make the behaviour of the system more predictable. 

Overall strengths and weaknesses 

 Being aware of the need to safeguard critical sections can help to increase system reliability 

 Inappropriate use of locking mechanisms and related techniques may increase system 

complexity without increasing reliability 
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RESOURCE LOCK 
Pattern 

Context 

 You are developing an embedded system using a computer system with CPU and / or memory 

resources which are – compared with typical desktop designs – rather limited. 

 Your system employs a single CPU. 

 Your system employs a TT SCHEDULER  

 Your system supports task pre-emption. 

 Predictable system behaviour is a key design requirement: in particular, predictable task timing 

is a concern. 

Problem 

How can you implement a resource lock for your embedded system? 

Background 

We provide some relevant background material in this section. 

What is a shared resource? 

For background information about shared resources, please refer to the abstract pattern CRITICAL 

SECTION  

The role of interrupts in TT systems 

For background information about interrupts in TT systems, please see DISABLE TIMER INTERRUPTS  

Solution 

The pattern is intended to help you answer the question: “How can you implement a resource lock 

for your embedded system?” 

 

A lock appears, at first inspection, very easy to implement.  Before entering the critical section of 

code, we „lock‟ the associated resource; when we have finished with the resource we „unlock‟ it.  

While locked, no other process may enter the critical section.  

 

This is one way we might try to achieve this:  

1. Task A checks the „lock‟ for Port X it wishes to access. 

2. If the section is locked, Task A waits. 

3. When the port is unlocked, Task A sets the lock and then uses the port. 

4. When Task A has finished with the port, it leaves the critical section and unlocks the port. 

 

Implementing this algorithm in code also seems straightforward, as illustrated in Listing 5. 
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Listing 5: Attempting to implement a simple locking mechanism in a pre-emptive scheduler.   

However, the above code cannot be guaranteed to work correctly under all circumstances.   

 

Consider the part of the code labelled „A‟ in Listing 5.  If our system is fully pre-emptive, then our 

task can reach this point at the same time as the scheduler performs a context switch and allows 

(say) Task B access to the CPU.   

 

If Task B also requires access the Port X, we can then have a situation as follows: 

 Task A has check the lock for Port X and found that the port is not locked; Task A has, however, 

not yet changed the lock flag. 

 Task B is then „switched in‟.  Task B checks the lock flag and it is still clear.  Task B sets the 

lock flag and begins to use Port X. 

 Task A is „switched in‟ again.  As far as Task A is concerned, the port is not locked; this task 

therefore sets the flag, and starts to use the port, unaware that Task B is already doing so. 

 

As we can see, this simple lock code violates the principal of mutual exclusion: that is, it allows 

more than one task to access a critical code section.  The problem arises because it is possible for 

the context switch to occur after a task has checked the lock flag but before the task changes the 

lock flag.  In other words, the lock ‘check and set code’ (designed to control access to a critical 

section of code), is itself a critical section. 

 

This problem can be solved.  For example, because it takes little time to „check and set‟ the lock 

code, we can disable timer interrupt for this period (see DISABLE TIMER INTERRUPT - see this paper). 

Related patterns and alternative solutions 

In situations where you have more than two levels of task priority and you use a lock, you will 

generally need to use an appropriate locking protocol to avoid problems with priority inversion, 

#define UNLOCKED   0

#define LOCKED     1

bit Lock;  // Global lock flag

// ...

// Ready to enter critical section

// - Wait for lock to become clear

// (FOR SIMPLICITY, NO TIMEOUT CAPABILITY IS SHOWN)

while(Lock == LOCKED);

// Lock is clear

// Enter critical section

// Set the lock

Lock = LOCKED;

// CRITICAL CODE HERE //

// Ready to leave critical section

// Release the lock

Lock = UNLOCKED;

// ...

A
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deadlock and chained blocking.  CRITICAL SECTION  provides background information on these 

topics. 

 

The patterns PRIORITY INHERITANCE PROTOCOL and IMPROVED PRIORITY CEILING PROTOCOL  

describe solutions to some of the problems caused by use of resource locks in systems with more 

than 2 levels of task priority. 

Reliability and safety implications 

As discussed in CRITICAL SECTION (this paper), use of a resource lock can give rise to problems of 

priority inversion.  The patterns PRIORITY INHERITANCE PROTOCOL and IMPROVED PRIORITY 

CEILING PROTOCOL provide (partial) solutions to this problem. 

Overall strengths and weaknesses  

 Easy to implement 

 May give rise to “priority inversion” if not implemented with care. 
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DISABLE TIMER INTERRUPT 
Pattern 

Context 

 You are developing an embedded system using a computer system with CPU and / or memory 

resources which are – compared with typical desktop designs – rather limited. 

 Your system employs a single CPU. 

 Your system employs a TT SCHEDULER . 

 Your system supports task pre-emption. 

 Predictable system behaviour is a key design requirement: in particular, predictable task timing 

is a concern. 

Problem 

What is the simplest way of ensuring safe access to shared resources in your system? 

Background 

We provide some relevant background material in this section. 

What is a shared resource? 

For background information about shared resources, please refer to the abstract pattern CRITICAL 

SECTION . 

The role of interrupts in TT systems 

In general, an interrupt is a signal that is used to inform the processor that an event has occurred.  

Such an event may include a timer overflow, completion of an A/D conversion or arrival of data in 

a serial port.   

 

In TT systems, we only have a single interrupt source, linked to a timer overflow3.   

Solution 

This pattern is intended to describe the simplest way of avoiding conflicts over shared resources in a 

TT system which involves task pre-emption. 

 

As noted in Background, only a single interrupt is enabled in a time triggered system.  This 

interrupt will be used to drive the scheduler  (Pont, 2001).  If we disable this interrupt, the scheduler 

will be disabled.   

 

This gives us a simple mechanism to avoid conflicts over resources, as follows: 

 When a task accesses a shared resource, it disables the timer interrupt. 

 When the task has finished with the resource it re-enables the timer interrupt. 

 During the time that our task is using the shared resource, the scheduler is disabled.  This means 

that no context switch can occur, and no other task can attempt to gain access to the resource. 

                                                 
3  It is possible – using a Super Loop – to create very simple TTC designs which involve no interrupts (at all).  Such 

architectures are not suitable for use with pre-emptive task sets and are not considered in this set of patterns: see 

Kurian and Pont (2007) for further details. 
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Overall, this is a very simple (and fast) way of dealing with issues of shared resources in a TT 

design.  However, it may have an impact on all the tasks in the system.  Therefore, interrupts should 

be disabled as infrequently as possible (and for a very short period of time).   

 

Related patterns and alternative solutions 

The pattern CRITICAL SECTION provides general background material on mechanisms for dealing 

with shared resources in TT systems which involve task pre-emption. 

 

The following patterns describe some alternative ways of handling conflicts over shared resources: 

 RESOURCE LOCK 

 PRIORITY INHERITANCE PROTOCOL  

 IMPROVED PRIORITY CEILING PROTOCOL 

 

Reliability and safety implications 

Disabling the interrupt of a system affects the response times of the interrupt routine and of all other 

tasks in the system.  It is not safe if it keeps interrupts disabled for long time.  However, if the 

critical section is very short (e.g. we wish to access a single global variable), it is a fast and easy 

solution. 

 

Overall strengths and weaknesses  

 Easy to implement 

 Faster than other protection mechanisms, such as locks 

 Increases interrupt latency 

 May decrease system‟s ability to respond to external events 

 Need to carefully recognise the situation in which interrupts should be disabled  
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PRIORITY INHERITANCE PROTOCOL 
Pattern 

Context 

 You are developing an embedded system using a computer system with CPU and / or memory 

resources which are – compared with typical desktop designs – rather limited. 

 Your system employs a single CPU. 

 Your system employs a TT SCHEDULER . 

 Your system supports task pre-emption. 

 Predictable system behaviour is a key design requirement: in particular, predictable task timing 

is a concern. 

 

Problem 

How can you ensure that access to shared resources in your system is mutually exclusive and avoids 

priority inversion? 

 

Background 

For background information about shared resources, please refer to the abstract pattern CRITICAL 

SECTION. 

 

Solution 

The pattern is intended to help you answer the question: “How can you ensure that access to shared 

resources in your system is mutually exclusive and avoids priority inversion?” 

 

To avoid unbounded priority inversion, Sha et al (1990) introduced the priority inheritance protocol.   

 

In the priority inheritance protocol, a low priority task inherits the priority of a high priority task if 

the high priority task requires access to the shared resource owned by the low priority task.  The 

high priority task is blocked and the low priority task can continue executing its critical section until 

it releases the resource.  Then its priority returns to the original and the high priority task starts to 

run.   

 

This process is illustrated in Figure 26.  In this example, the priority of TaskL  is raised to the 

priority of TaskH once the higher-priority task tries to access the critical section (at t3).   

 

If an medium-priority TaskM  pre-empts  TaskL  while executing the critical section, due to the fact 

that the priority of TaskL has been raised to the priority of TaskH, TaskM has to wait until TaskH 

completes and TaskL finishes the critical section.  Therefore, the highest-priority task TaskH is not 

pre-empted by the medium-priority TaskM. 
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Figure 26: Priority Inheritance Protocol  

Related patterns and alternative solutions 

The pattern CRITICAL SECTION provides general background material on mechanisms for dealing 

with shared resources in TT systems which involve task pre-emption. 

 

The following patterns describe some alternative ways of handling conflicts over shared resources: 

 DISABLE TIMER INTERRUPT 

 RESOURCE LOCK 

 IMPROVED PRIORITY CEILING PROTOCOL 

 

Reliability and safety implications 

Use of priority inheritance protocol avoids priority inversion, increases the stability of a system.  

Most of commercial real time operating system support this feature, or as additional package, such 

as µC/OS-II, eCOS, FreeRTOS and RTLinux etc.   

 

Although priority inheritance protocol is generally found to be an effective and powerful technique 

to prevent priority inversion, it is not without its critics (e.g. see (Yodaiken, 2002)).   

 

Of particular concern is that this protocol cannot avoid deadlock and blocking chains when tasks 

have nested shared resources.  Therefore, to use PIP safely, an appropriate software architecture 

design is needed that avoids unnecessary coupling between tasks through shared resources (Locke, 

1992), and it is important to avoid nested resources in applications. 

 

Overall strengths and weaknesses  

 Prevents priority inversion 

 Has better average–case performance than the Priority Ceiling Protocol.  When a critical 

section is not contended, priorities do not change, there is no context switch and no additional 

overhead  

 Difficult to implement when compared with DISABLE TIMER INTERRUPT (see this paper). 

 Does not prevent deadlock and blocking chains  

 Wastes processor time if there are not immediate tasks ready to run during the time that a 

higher-priority task is blocked by a lower-priority task. 
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 Worst-case performance is lower than the worst-case performance for the Priority Ceiling 

Protocol since nested resource locks increase the wait time. 
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IMPROVED PRIORITY CEILING PROTOCOL 
Pattern 

Context 

 You are developing an embedded system using a computer system with CPU and / or memory 

resources which are – compared with typical desktop designs – rather limited. 

 Your system employs a single CPU. 

 Your system employs a TT SCHEDULER (see Pont et al., this conference). 

 Your system supports task pre-emption. 

 Your tasks may have nested shared resources.   

 Predictable system behaviour is a key design requirement: in particular, predictable task timing 

is a concern. 

 

Problem 

How can we ensure that the shared resources are mutually exclusive and that priority inversion, 

deadlock and blocking chains are avoided? 

 

Background 

For background information about shared resources, please refer to the abstract pattern CRITICAL 

SECTION. 

 

Solution 

The pattern is intended to help you answer the question: “How can we ensure that the shared 

resources are mutually exclusive and that priority inversion, deadlock and blocking chains are 

avoided?” 

 

Nested resource locks are the underlying cause of deadlock and blocking chains.  Therefore, the 

simplest solution is to avoid nested resource locks at the design stage (indeed, some operating 

systems do not allow use of nested locks).   

 

(Sha, Rajkumar et al., 1990) presented an alternative solution to the priority inheritance protocol: 

this was the priority ceiling protocol (PCP).  However, this original priority ceiling protocol is 

expensive to implement.  A simplified version of the original PCP is widely used (Locke, 2002).  In 

this pattern we refer to this as the “Improved Priority Ceiling Protocol” (IPCP)4.   

 

In IPCP, each task has an assigned static priority; each resource has also been assigned a priority 

which is the highest priority of tasks that need access it (i.e. its priority ceiling: (Burns and 

Wellings, 1997).  When a task acquires a shared resource, the task is raised to its ceiling priority.  

                                                 
4  IPCP is often referred to (incorrectly) as the priority ceiling protocol.  What we refer to as IPCP here is also 

known as the Priority Ceiling Emulation in Real-Time Java, Priority Protect Protocol in POSIX and as the 

Immediate Ceiling Priority Protocol (Burns and Wellings, 1997 ).   



ESRG 2012-07-01 (Version 1.0).  Page 45 

Therefore, the task will not be pre-empted by any other tasks attempting to access the same resource 

with the same priority.  When the task releases the resource, the task is returned to its original 

priority.   

 

The deadlock case shown in Figure 23 is illustrated in Figure 27 to explain how IPCP works.  TaskH  

and TaskL access both resources C1 and C2.  Thereby the ceiling priorities of C1 (Pc1) and C2 (Pc2) 

are the priority of TaskH (PTaskH).  TaskL runs first.  At t1, it needs to access C2, according to IPCP, it 

will be raised to the ceiling priority of C1, which equals to PTaskH.  At t2,   

TaskH is ready to run.  However, its priority is the same as the dynamic priority of TaskL.  It will not 

able to pre-empt TaskL until TaskL completes the critical sections and returns to the original priority.  

Therefore, the deadlock is prevented. 

 

N

C2 C2

Priority

PTaskL

PTaskH

t1 t2 t3 t4 t5 t6 t7

DPTaskL=

PTaskH

NC2 Normal CodeCritical Section2C1 Critical Section1B Blocked

C1

C1 C2 C1 N

N

t8 t9 t10 t11

B N

C2

 

Figure 27 Operation Sequences of Tasks with IPCP 

 

Related patterns and alternative solutions 

Related patterns 

The pattern CRITICAL SECTION provides general background material on mechanisms for dealing 

with shared resources in TT systems which involve task pre-emption. 

 

The following patterns describe some alternative ways of handling conflicts over shared resources: 

 DISABLE TIMER INTERRUPT 

 RESOURCE LOCK 

 PRIORITY INHERITANCE PROTOCOL 

Alternative solutions: IPCP vs. PCP 

It is helpful to understand the differences in behaviour obtained when using PCP and IPCP  

 

When using PCP, each task has an assigned static priority; each resource has also been assigned a 

priority (which is the highest priority of tasks that need access it, i.e. its priority ceiling).   

 

IPCP operates in a similar same way, but there are two differences.  The first difference is that each 

task‟s dynamic priority is the maximum of its own static priority and its inheritance priority due to 

it blocking higher-priority tasks.  The second difference is that a task can only lock a resource if its 

dynamic priority is higher than the ceiling priority of any currently-locked resource (Burns and 

Wellings, 1997).    
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Figure 28  Operational sequences of three tasks with two shared resources 
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Figure 29  Operational sequences of three tasks with PCP 

Figure 29 illustrates how PCP works in a specific example.  Three tasks are intend to run as shown 

in Figure 28.  At t2, TaskM pre-empts TaskL, at t3 TaskM is attempting to lock the resource C1.  

However, due to the fact that its dynamic priority PTaskM is not higher than the ceiling priority of C2 

(Pc2 = PTaskM ) - which is currently locked by TaskL - it  cannot lock C1, and is blocked by TaskL.  

TaskL  inherits TaskM priority due to it blocking TaskM and continues running at a higher priority.  

At t4 TaskH starts to run and at t5, it is attempting to lock C1: because its priority is higher than Pc2, 

it successfully locks C1 and runs to completion.  After TaskL releases C2 and returns to its original 

priority at t8, TaskM locks C1 and runs to completion. 

 

The behaviour obtained using IPCP in this case is illustrated in Figure 30.  From Figure 28 and 

Figure 29 it is seen that there are 6 context switches using PCP and 4 times context switches when 

using IPCP.  In addition, PCP needs to check blocking information for a task‟s dynamic priority: 

this makes PCP is more difficult to implement. 
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Figure 30  Operational sequences of three tasks with IPCP 

Alternative solutions: Combining tasks 

Finally, it is worth noting that the problems caused when several tasks use the same resource can – 

sometimes - be solved most simply by combining the different tasks into a single task (Renwick, 

2004). 

 

Reliability and safety implications 

IPCP is an attractive choice when there may be nested locks among tasks.  Preventing deadlock and 

blocking chains can increase the stability of a system.   

 

Compared with DISABLE TIMER INTERRUPT, IPCP is more difficult to implement (and test).  An 

appropriate software architecture design is needed that avoids unnecessary coupling between tasks 

through shared resources (Locke, 2002), and avoids nested resources (if possible).   

 

Overall strengths and weaknesses  

 Prevents priority inversion 

 Prevents deadlock and blocking chains 

 Has better worst-case performance than PIP.  The worst-case wait time for a high priority task 

waiting for a shared resource is limited to the longest critical section of any lower priority tasks 

that accesses the shared resource. 

 Difficult to implement 

 Requires static analysis of a system to find the priority ceiling of each critical section. 

 Average –case performance is worse than PIP.  IPCP changes a task‟s priority when it requires 

a resource, regardless of whether there is contention for the resource or not, resulting in higher 

overhead and many unnecessary context switches and blocking in unrelated tasks (Locke, 

2002)  
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BALANCED SYSTEM 
Abstract pattern 

Context 

 You are developing an embedded system.  

 You have decided to move to or are already working with TT architectures.  

 Predictable timing behaviour is the key requirement. 

 

Problem 

How can you ensure that your TT system has minimum possible jitter? 

 

Background 

To get a guaranteed predictable system, choice of appropriate architecture on  top of the application 

is extremely important.  In applications which are based on an ET architecture, tasks run 

sporadically in response to interrupts whereas in a TT system, tasks are periodic.  However, there is 

a single interrupt which generates “ticks” to control the task periods.   

 

To achieve certification standards it is advisable to avoid the use of arbitrary interrupts in running 

the tasks because of the increased difficulty in attaining sufficient test coverage.  One particular 

reason is, arbitrary interruptions lead to a vast increase in the potential paths within software when 

compared to code with no interruptions  (Bate, 1998).  

 

From the predictability point of view, this would make TT architecture an appropriate choice for a 

number of applications. 

 

Only choosing TT architecture does not fully guarantee the system predictability as there are a 

number of other factors which could make a TT system unpredictable.  The parameters of tasks 

which are running under a TT architecture such as release time, execution time, finish time and 

deadline are required to be known in advance.  The prior knowledge of these parameters plays an 

important role in guaranteeing the overall predictability of the system.  However, systems that run 

in practice generally show considerable variations in these parameters.  These variations are termed 

as jitter. 

 

Jitter in tasks 
To understand the concept of jitter more clearly, consider the different instances of a task (Task A) 

as shown in Figure 31.  For tasks in TT systems, release time can be considered as the point at 

which we would ideally expect a task to start its execution.  In actual practice this is delayed due to 

factors such as scheduler overhead and variable interrupt response times (Liu, 2000; Maaita and 

Pont 2005).  The actual start time of a task is always deviated from its (pre-determined) release time 

and we can say that tasks always suffer from release jitter - see unequal values of x1, x2 and x3 in 

Figure 31  
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Figure 31: Illustration of jitter in different calls of a periodic task 

 

In real-time systems one important parameter is the upper bound of the execution time for a task, 

known as worst case execution time (WCET).  Unfortunately, determining WCET of tasks is rarely 

straightforward  (Puschner, 2002b; Puschner, 2003).  This is because the program code of a task 

may contain conditional branches and / or loops and each may take different times to execute (Liu, 

2000).  The decision between one branch and the other during task execution is dependent on the 

input data.  This makes predicting a branch prior to execution a very difficult task .  All these 

factors lead to variable execution time of a task and this is known as execution jitter (see 

imbalanced values of y1, y2 and y3 in Figure 31).  The cascading effects of release and execution 

jitter will result in the deviation of task finish time, shown as z1, z2 and z3 in Figure 31.  

 

Ideally, a predictable system should be jitter free. Considering Figure 31 once again, we can say 

that in a zero jitter system: 

x1 = x2 = x3 

y1 = y2 = y3 

z1 = z2 = z3 

 

Some hardware features such as variations in the frequencies of oscillator and use of cache 

memories (Kirner and Puschner, 2003)  also contribute to jitter in tasks. 

 

For some applications, such as data, speech or music playback (for example) these variations may 

make no measurable difference to the system.  However, for applications in real-time control 

systems which involve sampling, computation and actuation, such delays in operations are very 

risky for the overall performance of the system.  The presence of jitter can have a degrading impact 

on the performance of real-time systems or can even lead to critical failure (Martin, 2005). 

 

Solution 

A BALANCED SYSTEM is one which has minimum values for all types of jitters.  One way we can 

address the challenges discussed in the previous section is to tackle them directly.  For example, 

rather than hoping that we can predict the WCET (for example, through static code analysis or 

measurement) we can set out from the start to ensure that our code is “balanced” and that the 

WCET and BCET (best case execution time) are always fixed (and equal).  Once we have balanced 

the code, it becomes comparatively easy to determine (during system testing and during system 

execution) whether the system tasks actually have a fixed execution time.   
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Related patterns  

In a task, balancing can be required at different levels.  For example, we may need to balance the 

whole task or just sections (for example, areas with loops and conditional code).  In some cases, the 

goal may be to fix the timing of an activity in the task relative to the start of the task (for example, 

we may wish to ensure that exactly 0.2 ms after the start of a task a sample is taken from a data 

source). 

 

 SANDWICH DELAY provides a simple solution to balance a task through exclusive use of a 

hardware timer.   

 SINGLE PATH DELAY is a programming approach to ensure that blocks of code involving 

loops or decision structures will have a single execution path. 

 TAKE A NAP is an alternative to achieving balanced code for power constrained systems. 

 PLANNED PRE-EMPTION provides a way of achieving balancing for pre-emptive systems. 

 

Reliability and safety implications 

Extra care is needed while selecting the tasks/sections of code to be balanced.  This is because 

balancing makes use of additional hardware and software.  Devoting resources unnecessarily to 

balance tasks which are not critical could lead to a fatality rather than a predictable system. 

 

Overall strengths and weaknesses 

 A BALANCED SYSTEM is more robust against the presence of various types of jitters in the 

system. 

 Results in a more predictable timing behaviour of the system. 

 Requires (non-exclusive) access to some hardware resources, for example, timers. 

 Balancing a system requires extra effort in writing code for balancing which in turn increases 

CPU utilisation. 
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SANDWICH DELAY 
Pattern 

Context 

 You are using the pattern BALANCED SYSTEM. 

 In your application you are running two activities, one after the other. 

Problem 

How can you ensure that the execution time of the tasks is always predictable so that the release 

time of the two activities is known and fixed? 

Background 

Suppose we have a system executing two functions periodically using a timer ISR, as outlined in 

Listing 6. 

 

//Interrupt service Routine (ISR) invoked by timer overflow every 10ms  

void Timer_ISR (void) 

{ 

      Do_X();   //WCET approx 4.0ms 

      Do_Y();   //WCET approx 4.0ms 

} 

Listing 6: System executing two functions using timer ISR 

According to Listing 1, function Do_X() will be executed every 10ms. Similarly, function 

Do_Y() will be executed every 10 ms,  after Do_X() completes.  For many resource-constrained 

applications (for example, control systems) this architecture may be appropriate.  However, in some 

cases, the risk of jitter in the start times of function Do_Y() may cause problems.  Such jitter will 

arise if there is any variation in the duration of function Do_X().  In Figure 32, the jitter is reflected 

in differences between the values of ty1 and ty2 (for example). 

  

 

Figure 32: The impact of variations in the duration of Do_X() on the release jitter of Do_Y() 

Solution 

A SANDWICH DELAY can be used to solve this type of problem.  More specifically, a SANDWICH 

DELAY provides a simple but highly effective means of ensuring that a particular piece of code 

always takes the same period of time to execute: this is done using two timer operations to 

“sandwich” the activity you need to perform.  Please refer to code segment in Listing 7. 
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      //ISR invoked by timer overflow every 10ms  

void Timer_ISR (void) 

   { 

         //Execute Do_X() in a „Sandwich Delay‟  - BEGIN 

         Set_Sandwich_Timer_overflow(5); //Set timer to overflow after 5 ms 

         Do_X();    //Execute Do_X()  WCET approx 4.0ms 

         Wait_Sandwich_Timer_Overflow(); //Wait for timer to overflow 

         //Execute Do_X() in a „Sandwich Delay‟  - END 

 

         Do_Y();    //WCET approx 4.0ms 

   } 

Listing 7: Pseudo code for SANDWICH DELAY 

The timer is set to overflow after 5 ms (a period slightly longer than the WCET of Do_X()).  We 

then start this timer before we run the function and - after the function is complete - we wait for the 

timer to reach 5 ms value.  In this way, we ensure that as long as Do_X() does not exceed a 

duration of 5 ms – Do_Y() runs with minimum jitter as shown in Figure 33. 

 

 

Figure 33: Reducing the impact of variations in the durations of Do_X() on the release 

jitter of Do_Y() through the use of SANDWICH DELAY 

 

Sandwich delays are also found to be useful for systems involving pre-emption, for example, TTH 

designs.  In such designs controlling the execution jitter of a pre-emptive task using a delay (slightly 

bigger than the WCET of the pre-emptive  task)  showed considerable reduction in the period jitter 

of the co-operative task - see Figure 34. 

 

 

Figure 34: Reducing the impact of variations in the durations of pre-emptive task on the release jitter 

of co-operative tasks through the use of SANDWICH DELAY in TTH designs 
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Reliability and safety implications 

Use of Sandwich Delay is generally straight forward, but there are three potential issues of which 

you should be aware. 

1. You need to know the duration WCET of the functions to be sandwiched.  If you 

underestimate this value, the timer will already have reached its overflow value when your 

function(s) complete, and the level of jitter will not be reduced (indeed the Sandwich Delay 

is likely to slightly increase the jitter in this case) 

2. You must check the code carefully, because the “wait” function may never terminate if the 

timer is incorrectly set up.  In these circumstances a monitoring technique may help to 

rescue the system. See patterns SYSTEM MONITORS, WATCHDOG, LOOP TIMEOUT and TASK 

GUARDIAN 

3. You will rarely manage to remove all jitter using such an approach, because the system 

cannot react instantly when the timer reaches its maximum value (at the machine-code level, 

the code used to poll the timer flag is more complex than it may appear, and the time taken 

to react to the flag change will vary slightly).  A useful rule of thumb is that jitter levels of 

around 1 microsecond will still be seen using a SANDWICH DELAY. 

 

Overall strengths and weaknesses 

 A simple way of ensuring that the WCET of a block of code is highly predictable. 

 Requires (non-exclusive) access to a timer. 

 Will only rarely provide a “jitter free” solution: variations in code duration of around 1 

microsecond are representative. 
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SINGLE PATH  
Pattern 

Context 

 You are using the pattern BALANCED SYSTEM. 

 You have decided to balance sections of code involving loops and decision structures 

implemented within the application tasks. 

 

Problem 

How would you ensure that the execution time of your application code sections involving loop and 

decision structures will remain fixed every time they run? 

 

Background 

Variable execution times of tasks can lead to unpredictable behaviour in systems.   To understand 

this more clearly, consider a system running tasks A, B and C as shown in Figure 35. 

 

 

Figure 35: Tasks scheduled to be run in a TT system 

If for any reason, task A takes a longer time to run than expected, task C will run before task B (if it 

has higher priority than task B)  and task B will not be able to finish within the system tick as 

shown in Figure 36. 

 

 

Figure 36: Illustration of overall change in system behaviour if the execution time of task A takes 

longer than expected 

The point to be noted here is, if task A varies in duration it will affect the overall system behaviour.  

Tasks involving loops and decision structures (e.g., „if-else‟, „switch‟, etc.) are more likely to have 

variable execution times.  If such tasks can be balanced, we can achieve more stable and predictable 

system behaviour. 

 

Solution 

SINGLE PATH  helps to achieve fixed execution time for tasks involving decision structures and loop 

statements.  The single-path programming approach was introduced by Peter Puschner (Puschner, 

2003) as part of his extensive research on WCET analysis.  According to single-path programming 

paradigm, programs that involve loops and decision structures (e.g., „if-else‟) will have a single 
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execution path.  This could be achieved at the expense of higher but fixed and predictable execution 

time as compared to traditional programming.   Single-path can be achieved by replacing input-data 

dependencies in the control flow by predicated code instead of branched code.  Thus, the 

instructions are associated with predicates and get executed if the predicate evaluates to true.  In 

other case (if instruction evaluates to false), the microprocessor replaces the instruction with a NOP 

(no-operation) instruction.  

 

Translation of Conditionals 

Consider a piece of code where the developer is using an if statement to check whether or not a 

particular condition is true, as shown in the left hand side code segment in Listing 3.  If the 

condition being evaluated (cond) is true, the value of the variable result is set to expr1 

otherwise the value of result is set to expr2.  As we cannot be sure which of the two 

expressions (expr1 or expr2) will be calculated, or in other words, which execution path the 

code will follow, it becomes difficult to predict the execution time of the section of the task with the 

conditional statement.  

 

Using SINGLE PATH DELAY, we assign temporary variables temp1 and temp2 for storing the 

results of expr1 and expr2 respectively.  The conditional move instruction “movt” copies the 

value of temp1 to the variable result if the test condition evaluates to true, otherwise processor 

performs a “no operation” (NOP) instruction.  On the other hand, if the test condition 

evaluates to false, “movf” will copy the value of temp2 to result otherwise NOP instruction 

will be executed.  In this way the translation basically generates a sequential code as shown in the 

right hand side code segment in Listing 8. 

 

 

 

 

 

 

 

 

 

 

 

 

Listing 8: Sequential code generated from a branching statement using if-conversion [adapted from 

Puschner, 2003] 

 

 

Translation of loops 

Consider a while loop as shown in Listing 9 which executes a set of statements based on two 

conditions being „true‟ – a pre-condition, cond-old and a condition, cond-new.  

 

--precondition: cond-old  

while cond-new do max expr times 

 

{ 

if(cond) 

{ 

  result = expr1; 

 } 

else 

{ 

  result = expr2; 

} 

temp1 = expr1; 

temp2 = expr2; 

 

test cond; 

 

movt result, temp1; 

movf result, temp2; 

 

 



ESRG 2012-07-01 (Version 1.0).  Page 56 

stmts 

} 

Listing 9: Original while loop [adapted from Puschner, 2003] 

To translate this loop to have a single path of execution, a boolean variable finished is 

introduced – this variable stores information as to whether the original loop has executed the 

current iteration or has already terminated.  The while loop shown in Listing 9 above can be 

translated as follows (Puschner, 2003) : 

1. First the loop is translated to a simple counting loop (e.g., a for loop) with the iteration 

count set to be equal to the maximum iteration count of the original loop (in this case, 

expr).   

2. The pre-condition, cond-old, is used to build a new branching statement inside the 

new loop.     

3. A new conditional statement that has been generated from the old loop condition 

(cond-new) is transformed into a conditional assignment (using the newly introduced 

boolean variable finished) with constant execution time.  As a result, the entire loop 

executes in constant time. 

This new conditional statement is placed around the body of the original loop and 

simulates the data dependent termination of the original loop in the newly generated 

counting loop. 

 

 
finished := false; 

for i := 1 to expr do 

begin 

 if not cond-new 

then finished := true; 

 

if cond-old and not finished 

then stmts 

  end 

Listing 10: while loop with a constant execution count [adapted from Puschner, 2003] 

Overall strengths and weaknesses 

 Helps to produce constant execution time for code sections involving loops and conditional 

statements. 

 Its use is limited to hardware which supports “conditional move” or similar instructions. 

 It is likely to increase the power consumption because the CPU will always execute the single-

path code for a fixed (maximum) period.  During this time, the processor will be in “full 

power” mode. 
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TAKE A NAP 
Pattern 

Context 

 You are using the pattern BALANCED SYSTEM. 

 You are using a system which is extremely power constrained. 

 

Problem 

How would you ensure the WCET of your application code sections involving loop and decision 

structures remains constant with negligible increase in power consumption?  

 

Background 

SANDWICH DELAY and SINGLE PATH DELAY provide ways to achieve fixed execution time.  In 

systems where power consumption is a concern, neither a SANDWICH DELAY nor a SINGLE PATH 

DELAY is an attractive solution, because – to achieve balanced code – we need to run the CPU at 

“full power” at all times.  For such systems we need to find out a way to achieve balanced code 

without any extra power consumption. 

 

Solution 

For systems which are extremely resource constrained (especially power) TAKE A NAP provides a 

way to achieve balanced code with reduced power consumption.   

 

Create balanced code by putting the control flow statement within a „Sandwich Delay‟ (see pattern 

SANDWICH DELAY).  This will ensure that the particular piece of code will always have a constant 

execution time.  For example consider the code segment given in Listing 11. 

           
 for (i = 0; i < x;  i++) 

 { 

   // body of the loop 

     } 

          

Listing 11: Simple For Loop 

The execution time of the loop is dependent on the value of the variable x.  Let MAX be equal to the 

maximum number of iterations the loop can execute.    Let Time(x) be equal to the time spent in 

executing x iterations.  The value of Time(x) may be measured using hardware timers.  

Therefore, the time spent in performing (MAX – x) iterations may be calculated using the value 

of Time(x) as follows: 

 

   Time (MAX – x) = (MAX – x) * Time(x)/x   (1) 

 

Once the for loop executes x number of times, the processor is put to sleep for a duration equal to 

Time (MAX – x).  A timer interrupt may be generated when the hardware timer count reaches 
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the value Time(MAX - x)and this can be used to awaken the processor.  Using this technique, 

code segment in Listing 6 is ensured to always – irrespective of the value of x – have a constant 

execution time equal to the value of Time(MAX) (i.e. the time spent in executing MAX number of 

iterations of the for loop).  Thus, in addition to enabling a „power – saving mode of the processor, 

the resulting „balanced‟ code with the SANDWICH DELAY incorporated, provides an additional layer 

of predictability to the real-time system. 

The balanced version of the code segment in Listing 11 may be written as shown in Listing 12. 

 

//start the timer 

Timer_Start(); 

 

for( i = 0; i < x; i++) 

{ 

   //body of the loop 

} 

//stop the timer 

Timer_Stop(); 

//Store timer count value after x iterations 

Time(x) = Timer_Count_Value; 

//Determine value of Time(MAX – x) 

Time(MAX – x) = (MAX-x) * Time(x)/x; 

//Reset the timer 

Timer_Reset(); 

//Set the timer interrupt to occur after duration Time(MAX–x) 

Set_Timer_Intterrupt(Time(MAX-x) + “safety margin”); 

//Put processor to sleep 

Processor_Sleep(); 

Listing 12: Balancing of sections with reduced power consumption 

It must be noted that the for loop in code segment above must run at least once for the value of 

Time(MAX - x) to be determined.  Furthermore, a small „safety margin‟ has been added to the 

calculated time to ensure that there is sufficient time for the processor to enter sleep mode even 

when the loop is executed for the maximum number of iterations. 

 

TAKE A NAP may also be applied to other control flow and conditional branching statements such as 

while, if-else and switch.  

 

Overall strengths and weaknesses 

 A simple technique for improving system reliability by providing an additional layer of 

predictability is described here. 

 Ensures fixed execution time for each task in the system along with reduced power 

consumption. 

 The maximum number of iterations of the control flow statement (i.e. the value of MAX) must 

be known in advance. 

 Requires exclusive access to a hardware timer. 
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PLANNED PRE-EMPTION 
Pattern 

Context 

 You are using the pattern BALANCED SYSTEM. 

 Your system is based on a time-triggered scheduler – specifically on TTH architecture. 

 

Problem 

How would you ensure the predictable scheduler behaviour in TTH designs? 

 

Background 

Some background material related to this pattern is already presented in the introduction of this 

report (see section TTH design). 

During normal operation of the systems using the TTH Scheduler architecture, function 

main() runs an endless while loop (see Listing 13) from which the function 

C_Dispatch() is called: this in turn launches the co-operative task(s) currently scheduled to 

execute.  Once these tasks are completed, C_Dispatch() calls Sleep(), placing the 

processor into a suitable “idle” mode. 

while(1) 

   { 

   C_Dispatch();  // Dispatch Co-op tasks 

   } 

 

void C_Dispatch(void) 

   { 

   // Go through the task array 

   // Execute Co-operative tasks as required 

   // The scheduler may enter idle mode at this point 

   Sleep(); 

   } 

 

void P_Dispatch_ISR(void) 

   { 

   P_Task(); 

   } 

Listing 13: TTH Scheduler 

A hybrid scheduler provides limited multi-tasking capabilities to the system.   Such systems could 

exhibit unpredictable behaviour because of two reasons (Maaita, 2008): 

Existence of unbalanced code branches in the timer ISR which leads to variable ISR execution 

times.   This in turn leads to unpredictable scheduler behaviour represented by the appearance of 

task starting jitter. 

1. The existence of CPU instructions with different execution times (i.e. in terms of CPU 

cycles required to execute the instruction).  This leads to variable timer interrupt response 

times as each of the periodic timer interrupts which take place throughout the life cycle of 

the application can occur while the CPU is in one of the two different states.  The CPU may 
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either be running in sleep (idle) mode shown in Figure 37, or while it is running an 

instruction and where the interrupt is only serviced once the currently executing instruction 

is finished shown in Figure 38. 

 

 

Figure 37: Timer Interrupt when CPU is in sleep mode 

 

Figure 38: Timer Interrupt during an instruction execution 

The possible occurrences of timer interrupts could lead to variable timer ISR response times which 

translates in to task release jitter.  In TTH design this release jitter has the largest impact on tasks 

which regularly execute after a timer tick has occurred and is, therefore, referred to as “tick jitter”. 

 

Solution 

By keeping the processor in the same state as all interrupts takes place would be likely to reduce the 

tick jitter   (Maaita and Pont 2005).  PLANNED PRE-EMPTION makes use of another hardware timer to 

put the processor to power saving mode before the scheduler timer interrupt occurs thus keeping the 

processor in the same state every time.    Power saving mode or sleep/idle mode is available in 

almost all embedded processor for example ARM7 and 8051 family of processors.   

 

We are naming the extra timer used for this purpose as “PP-timer” being use for PLANNED PRE-

EMPTION. To set the overflow value of the PP-timer it is important to know the WCET in advance 

so that the processor can have enough time to go to sleep mode before the scheduler timer interrupt 

occurs.  PLANNED PRE-EMPTION will reduce the tick jitter as the time required to leave the sleep 
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mode and pursue normal execution is a static value (Martin, 2005).  Figure 39 illustrates the 

implementation of PLANNED PRE-EMPTION. 

 

 

Figure 39: Operation of Planned pre-emption. All interrupts occur when the processor is in sleep mode 

 

while(1) 

{ 

C_Dispatch();  // Dispatch Co-op tasks 

} 

void C_Dispatch(void) 

{ 

//Go through the task array 

//Execute Co-operative tasks as required 

//The scheduler may enter idle mode at this point 

Sleep(); 

} 

void P_Dispatch_ISR(void) 

{ 

ITimer();  //Start idle timer 

P_Task();  //Dispatch pre-emptive task 

} 

void Idle_Timer_ISR(void) 

{ 

Sleep(); 

} 

Listing 14: TTH-PP Scheduler 

 

Reliability and safety implications 

Designers have to be careful while using the second timer.  The timer should overflow after most of 

the interval between “pre-emptive ticks” has elapsed.  A more efficient implementation in terms of 

the hardware utilised is to use a second match register on the original scheduler timer.  For example,  

ARM7TDMI supports multiple match registers per timer (UM10211, 2009) . 
 

Overall strengths and weaknesses 

 Produces a more predictable TTH system.  

 Provides a simple way of getting non variable timer interrupt response times which reduce the 

tick jitter. 
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 Makes use of exclusive hardware timer. 

 Slight increase in memory requirements because of increased code size than normal TTH 

scheduler.  
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SYSTEM MONITOR 
Abstract pattern 

Context 

 You are in the process of creating or upgrading an embedded system, based on a single 

processor. 

 Because predictable and highly-reliable system operation is a key design requirement, you have 

opted to employ a “time-triggered” system architecture in your system. 

 

Problem 

How will you make sure that your system will not „hang‟ and will keep on functioning despite 

unfavourable conditions? 

 

Background 

If your application is to be reliable, you need to be able to guarantee that the system should be 

capable of handling situations which could possibly hang the system.   Some of such possibilities 

are: 

 

 Incorrect initialisation of hardware peripherals or variables associated with hardware for 

example ADC or DAC 

 Hardware devices may be subjected to an excessive input voltage and may not work at all 

 Task overrun in the system i.e. if a task exceeds its estimated execution time it will disturb 

the entire schedule  

 

Solution 

In order to ensure the system reliability,  SYSTEM MONITORS can be  implemented to keep an eye on 

system functionality.  They act like guards to be responsible to make sure that system is working 

fine and can take appropriate actions if anything unexpected is detected with the system.    Such 

SYSTEM MONITORS can be implemented with use of hardware for example timers (see pattern 

WATCHDOG) or a separate software task can be design for this purpose (see pattern TASK 

GUARDIAN).  Also, there are some good programming practices which could help to avoid 

possibilities of hanging system see pattern (LOOP TIMEOUT). 

 

Related patterns and alternative solutions 

 WATCHDOG  

 LOOP TIMEOUT 

 TASK GUARDIANS 
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Overall strengths and weaknesses 

 System monitors provide a way of ensuring system reliability 

 Require use of additional hardware or  code to implement monitoring techniques. 

 Implementing such techniques requires care 
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TASK GUARDIAN 
Pattern 

Context 

 You are using the pattern SYSTEM MONITORS. 

 Your  application is based on simple TTC design 

 

Problem 

How would you ensure that any task overrun in the system should be detected and handled so that 

system can continue functioning properly? 

 

Background 

Despite many advantages, a pure TTC architecture has a failure mode which has the potential to 

greatly impair system performance: this failure mode relates to the possibility of task overruns (see 

Figure 40). 

 

 

Figure 40: Illustrating the impact of task overrun on TTC based system 

Figure 40(a) illustrates a TTCS design running two tasks, A and B. Task A runs every millisecond 

and Task B runs every 5ms. This system operates as required, since the duration of Task A never 

exceeds 0.4 ms. Figure 40(b) illustrates the problems that result when Task A overruns: in this case, 

we assume that the duration of Task A increases to approximately 5.5ms. The co-operative nature 

of the scheduling in this architecture means that this task overrun has very serious consequences. 

 

In practice, the situation may be even more extreme: in this example, if Task A never completes, 

then Task B will never run again. 

 

During normal operation of the TTC architecture described by (Pont, 2001), the first function to be 

run (after the startup code) is Main. Main calls Dispatch which in turn launches any tasks which are 

currently scheduled to execute. Once these tasks are completed, Dispatch calls Sleep, placing the 

processor into a suitable “idle” mode. A timer-based interrupt occurs every millisecond (in most 

implementations) which wakes the processor up from the idle state and invokes the ISR Update.  

Update identifies tasks which are due to be launched during the next execution of Dispatch. The 
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function calls return all the way back to Main, and Dispatch is called again. The cycle thereby 

continues (Figure 41). 

 

 
 

Figure 41: Function call tree for TTC architecture (normal operation) 

If a task overrun occurs, then - instead of Sleep being interrupted by the ISR - the overrunning task 

is interrupted (Figure 42). 

 

 

Figure 42: Function call tree for TTC architecture (task overrun) 

If Task keeps running then - in the standard TTCS scheduler - it will be periodically (very briefly) 

interrupted by Update.  However, it cannot be shut down. 

 

Solution 

The TASK GUARDIAN approach is proposed in (Hughes and Pont 2004)  implemented mainly in a 

revised version of Update - is required to shut down any task which is found to be executing when 

the Update ISR is invoked. 

 

This will be carried out as follows (see Figure 43): 

 

 The Update ISR will detect the task overrun. 

 Update will return control to End_Task (rather than to the problematic task). End_Task will 

be responsible for unwinding the stack, as required, to locate the return address to Dispatch. 

 Control will then be returned to Dispatch, and - as far as possible - normal program 

operation will continue. 

 

Figure 43: Task Guardian mechanism 

 

 

 



ESRG 2012-07-01 (Version 1.0).  Page 67 

Detection of task overrun 

In order for the update task function to know that an overrun has occurred and take appropriate 

action, a simple and reliable method is required to detect overruns. Modifying the code in Dispatch, 

where the tasks are launched, enables this to be achieved. 

 

Using a variable such as 'Taskover' the task ID can be stored before the task is executed (Listing 

15).  When the task complete, 'Taskover' is assigned a value of 255, a reserved ID to indicate 

successful task completion. 

 
Taskover = Index //Store task ID 

(*SCH_tasks_G[Index].pTask)(); //Run the task 

Taskover = 255; //Task completed 

Listing 15: Detection of task overrun in dispatch 

Returning from update 

If a task overrun has occurred then Update must alter its return address so that - instead of returning 

to the overrunning task - it returns to End_Task (see Figure 43). 

 

Please note that the End_Task function is required because Update is an FIQ (Fast Interrupt 

Request) ISR which - in the ARM architecture used here - has a separate stack and hence a different 

set of frames: unlike Update, End_Task runs in User mode and therefore has access to the stack and 

frames used by the overrunning task. It is the job of End_Task to back-trace and rewind the function 

calls until the return address to Dispatch is located. The end task function then returns control to 

Dispatch. Update must determine how the return address is stored and check if the address lies 

outside the critical code labels, indicating that the task has not returned before setting the 'taskover' 

variable. The original Update return address is stored so that End_Task can determine where the 

task overruns. The Update return address is then replaced with the start address of End_Task. 

 

Shutting down the task 

Having detected a task overrun in Update and changed the return address, control is transferred to 

End_Task which must shut down the overrunning task. 

 

End_Task determines whether the overrunning task was a leaf function or a function containing sub 

functions (with frames in the stack). The frame pointer (fp) register is compared with the saved fp 

register value in Dispatch: if these values are equal, this indicates that the overrunning task is a leaf 

function. If the values are different then the function calls are back traced (using the ATPCS 

standard) until the frame-stored fp register is equal to the fp register value saved in Dispatch. The 

current processor fp register is then made equal to the stored fp register. 

 

End_Task is then able to check if any registers contents were stored on the stack when the task was 

called. The store instruction is found by looking at the contents of the address referred to by the 

frame pointer (which identifies the first line of code in the function). By subtracting 12 from this 

address, locating it and comparing the contents with the instruction number for a block transfer 

function, a store instruction can be identified. 

 

The store block transfer instruction is then decoded to recover important settings (such as the names 

of registers which were stored on the stack and whether the stack is ascending or descending). The 

required bits of the store instruction are modified to convert it to a load instruction. The new 
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instruction is then pointed to by the address in r13, which is loaded into the program counter. The 

microprocessor then runs this instruction from RAM: this initiates the return sequence to Dispatch 

with the saved registers restored. Note that all the important registers are stored before and after the 

task is called to add an extra level of security from register corruption. 

 

If the overrunning task is a leaf function then the end task function simply returns where the r14 

(link) register, which contains the return address of the dispatch task function, is loaded into the PC 

(program counter) register. 

 

When a task is to be shutdown a flag is set in Update so that Dispatch will loop through the task 

array again: this avoids the possibility of a tick offset error. 

 

Overall strengths and weaknesses 

 Task guardians provides a way of detecting and handling task overrun in the system  

 Addition of task guardians adds to the complexity of the code. 

 Controlling the transfer of control from Update to End_Task  requires care. 
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