Precondition Enforcement Analysis for
Quality Assurance

Nadja Beeli

Submitted to the degree of
Master of Science ETH in Computer Science

Supervised by Prof. Dr. Bertrand Meyer and Dr. KarArnout
April - October 2004

Abstract

The crash of Ariane 5 dramatically showed the ingoare of correctness in software and that
the goal to produce reliable software has not getnbachieved. Therefore, this master thesis
targets the development of a static analysis, whitdures preconditions and thus enhances a
sound reuse of software.

As a result, we could determine many preconditionbe fulfilled, especially preconditions
of a certain class, which are used most often. bwgirms that static analysis is justified in a
development process of quality software.

Acknowledgements

| would like to deeply thank Dr. Karine Arnout fdwer support and explanations on the
subject of the thesis, and her prompt answershé&urtore | thank Prof. Dr. Bertrand Meyer,
who gave me the opportunity to accomplish my mastesis in the field of Design by

Contract, and for his introduction on the statialgsis of preconditions.

A special thank goes to Eric Bezault, who introdlicee to GOBO Eiffel, and swiftly
answered my questions.

Table of Contents

Chapter 1 - Concept Of CONFACESovuiiceeee e e e e 6
1.1, The Crash Of AriANe 5......ccoo oo 6
1.2. Design by Contract in Context of Ariane S.........cccoovviiiiiiiiiiiiiie e 6
1.3. Concept of SeEMantic CONLraCEScuueeieiiiiii e e 8

Chapter 2 - CONtraCt ASSUIANCEuuuiieeeeieieeeeie e e e eet e e e eeaat e e e et e e s aaaaeeaneeaeeenes 16
2.1, Checking MethOdSccciiiiiiiii e e 16
2.2. Development Process with Precondition Enfosz@mnalysiscccccceeennnn. 18

Chapter 3 - Static Contract VerifiCation...o eeeeriiiieeeiieeeeeiee e e ee e 20
3.1. Information Used for VerifiCationcceeeeeieeiiiiiiiinieiieciiiiiii e 21
3.2, General APPrOACKHcii it e e ettt 21

3.2.1. Comparison of Precondition...........ccocuiuiiieiiiiieee e eeee 24
3.2.2. Is the Precondition SatiSfied? e ceeeeriiiiiiieiciiii e 27
3.3, SPECIfIC APPIOACH. ... oottt e e 28

Chapter 4 - Design and Implementationccccceoeiiiiieiiiiiis e e eea 31
4.1, EIffel ANAIYZEToiiiiiiee e e 31
4.2. Precondition Enforcement ANAIYSISoccceeeiiiiiirieiieiiiie e 35
4.3. Graphical User Interface (GUI)coeeeeviriiniiieeeeeiiiii e e eeee e 38
I o (=] 151 0] PSP PPPPPPPRR 41

Chapter 5 - ProjJeCt PIANccoouiiii ettt e e e e e a e e eeees 42
5.1, ACNIBVEMENTS ...ttt et 42

5.1.1. STALIC ANBIYSIS ..ot ettt e e e ettt e e e e e e eeee 42
5.1.2. Graphical User Interface (GUI)coeeeeiiiiiiiiiiiiiiiii e 42
5.2, LIMEALIONS ...uitiiiiiiiiiiiit ettt e e ettt e e e e st ere e e e e e eeeeeaanns 42

Chapter 6 - Experimental RESUILSo 43

Chapter 7 - CONCIUSIONScoiiiiiiiiiii i ieeee ettt e e e e e e e e e e e eeees 44

Chapter 8 - USEr ManUAIoiiiiiiii et e 45

Introduction

In Eiffel, Design by Contract [1] plays a centralle in development of quality software.
Contracts are the fundamental ingredient for theaseic description of software interfaces,
explicitly regulating all the functionality, whicdi component offers to and consumes from the
environment. Thereby, all dependencies betweerwaodt components, be it procedures,
functions, objects etc., must be solely definedh®yinterfaces. In this respect, interfaces both
enforce obligations and offer guarantees to thdigi@eiting components. Whereas Eiffel
contracts hereby focus on the semantic specificatite syntactical contracts are manifested
in the signatures of routines (ordered parametérstypes and a return type for functions) as
well as the features (attributes and routines)asfses.

The purpose of Design by Contract is the establetiraf programming with clearly declared
dependencies. It is more than pure program docwatient enabling language-
institutionalized specification that can be vedfiey both man and machine. This inherently
helps improving program quality and sets the biasisafe reuse of software components.

The concrete representation of Eiffel contractis ierms of assertions, appearing in the role
of a routine preconditions, postconditions or clasariants. Contracts are usually checked at
runtime for testing and debugging reasons. Wheongract rule is violated and not handled
by the exception mechanism, the program immediabbrts with an exception. For release
versions, the contract monitoring turned off, sitloe program is assumed to be correct. Even
after exhaustive dynamic testing, we can neverdowinced that every possible case has been
tested and that the program is entirely correct.

A static analysis determines at compile time, whetihe contracts hold in any case of an
execution scenario. Furthermore, performance famadyc testing can be enhanced by
elimination of redundant runtime checks. Howevestatic analysis is conservative, i.e. the
analysis sometimes cannot determine that a condgiéulfilled, although the condition holds
de facto. Consequently, it occurs that contractsuadecidable to be fulfilled, although they
are always kept. While time can be saved for dyndssting, it has to be spent on the static
analysis. However, the reward of a successfulcstatalysis is unequally higher, because the
contract is then guaranteed to permanently holeréfbre, a hybrid approach is justified,
which makes as great use of a static analysis asilpe, and applies manual or dynamic
testing for the remaining undecidable cases.

In this thesis, we focus on a static analysis f@cpnditions since in reuse of libraries, it is
particularly important for a client to assure atmoe's proper use. Consequently, we aim to
determine for as many preconditions to be fulfillesl possible with a static analysis. This
could be achieved considering the fact that thé magority of precondition clauses consist of
primitive expressions. This way a core problem bjeot-orientation could be addressed,
being the conceptually dangling references, i.aed yaointers. A supplying routine often
ensures in the precondition that an object referemust not be void. As a result, the
developed static analyzer is particularly successfdetecting redundant nil checks.

Our analyzer also supports more general precondéipressions, but the results are not as
rich for different reasons. On the one hand, tleeenot that many appropriately complex
preconditions and on the other hand, there are sodhmplex expressions, which would
require an extensive analysis beyond the scop@ofthesis.

As a further contribution, we provide a graphicltebowing in two separate enumerations,
the calls that could not be determined to be fatlilas well as the fulfilled calls. With these
steps, one can ensure that software gets more arelrgiiable.

Chapter 1- Concept of Contracts

1.1. The Crash of Ariane 5

,On 4 June 1996, the maiden flight of Ariane 5 leler ended in a failure. Only about 40
seconds after initiation of the flight sequenceanataltitude of about 3700m, the launcher
veered off its flight path, broke up and explodedReport of the inquiry board [4])

The $500-million crash of the first Ariane 5 lauechdramatically illustrated what unsafe

code reuse can cause. The stirring error happenddei Inertial Reference System (SRI),
which measures the attitude of the launcher anchagements in space. A conversion from a
64-bit-floating-point number (the missions “horizah bias”) to a 16-bit signed integer

produced a runtime exception, because the numbgmatrepresentable with 16 bits. The
exception was not handled and the uncaught execeptias processed in the On-Board
computer like flight data, causing a failure andssmguently the crash of Ariane 5.

The SRI software actually worked well with Arianesb the question was what caused the
catastrophe with Ariane 5. The reason is the hijoeizontal velocity of Ariane 5, resulting
in an overflow. Furthermore, the alignment functiointhe SRI should already have been
turned off, because “this software module compuatesiningful results only before lift-off.
As soon as the launcher lifts off, this functionves no purpose”. This functionality was used
in early versions of Ariane, to enable quick rdialization in case of a hold in the count-
down, but has fallen into oblivion.

1.2. Design by Contract in Context of Ariane 5

With an extensive use of Design by Contract, suckreor would have been prevented. First,
the conversion error would not have happened, af phecondition and the limit for the
horizontal bias's bound would have been correcdy & outlined in Figure 1-1, where
Maxi mal _hori zont al _bi as is set, and the precondition for the conversioerafion is
horizontal_bias <= Maxi mal _hori zontal _bias. Second, the additional
feature, which was responsible, that the alignnienttion has not been turned off, would
have been properly documented as well and therefoteused for Ariane 5. This is also
sketched in Figure 1-1, where the limits of theizamtal velocity for the alignment function
are expressed with the preconditi@ <= actual_horizontal_velocity and
actual_horizontal_velocity < Maxi mal _hori zontal _vel ocity.

The program has still to be checked with Arianeduirements varying from Ariane 4, either
by dynamic or manual testing. It would be a grel’aatage to verify such preconditions by a
static analysis giving absolute guarantees.

feature -- Constants
Maxi mal _horizontal _bias: INTEGER is 32767 --=2"15-1
-- Limit of maximal horizontal bias

Maxi mal _horizontal _velocity: |INTEGER is 4122
-- Limit of maximal horizontal velocity for
-- alignment function

feature -- Conversion
convert _hori zontal _bi as (horizontal_bias: DOUBLE): | NTECER is

-- Convert “horizontal_bias' to INTEGER'.

require
bias_limited: horizontal_bias <= Maxi mal _hori zont al _bi as

do

Result :=horizontal_bias. truncated_to_integer
ensure
end
feature -- Miscellaneous
post pone_t urn_of f (actual_horizontal_velocity: | NTECER) is

-- Postpone turning off the alignment function f or
-- reinitialisation in case of a hold in the cou nt-down.
-- "actual_horizontal_velocity' needs to be with in the
-- required limit. Turn off this feature, if the limit
-- cannot be guaranteed.

require
positive_velocity: 0 <= actual_horizontal_veloci ty
maximal_horizontal_velocity:
actual_horizontal_velocity < Maximal_horizontal _velocity

do ...

ensure

end

Figure 1-1: Conversion and alignment functionkifiel, using Design by Contract.

The programmer, who implemented the additionalufieatwas not recommended to use
Design by Contract and therefore he could only duoant it separately from the code, where
especially rarely used routines and their requirgsean easily be forgotten.

Ken Garlington criticizes in [5] that contract vimij needs too much time for no immediate
reward, since a program can be correct withoutaigntracts. At a first glance, this might
seem to be true but on the one hand, if a progransmgsed to writing contracts and he is
conscious about the requirements his software daseet, the time spent is negligible. Even
if a programmer is not trained in writing contractsy declaratively expressing the
requirements of his software, he is more conscalmit the requirements and the benefits of
his code and therefore can avoid many errors. ©mwther hand, if someone has to reuse the
code he profits, if every effect of the progranpisperly described, so that he immediately
understands the purpose of components he wantsise.r

Of course, writing contracts is something everyds to get used to. Especially at the
beginning, it takes some discipline to write cocisagproperly but it is worth for testing and
for everyone, who has to look at the code again.

More comments on the Ariane 5 crash and Designdmr@ct can be read in [5].

1.3. Concept of Semantic Contracts

One of the fundamental pillars of structured pragrang is component-oriented design
paradigm. The complexity is hereby decomposed snwall program units, called the

components. As the most essential point, componamssolely accessible via interfaces,
which explicitly define all dependencies betweea tomponent and the environment. Each
interface constitutes a syntactic and a semantit that are equally important for totally

expressing all the inter-component interrelationsd adependencies. The purpose of
component-oriented philosophy is apparent:

» According to the principle adivide and conquethe complexity of a software system
is rigorously reduced by decomposition. The depeads are entirely concentrated
within the interfaces acting as contracts that havee fulfilled by both the providing
and the consuming components. The components cdly fencapsulate
implementation details as black boxes.

» Due to the explicitly formulated interfaces, a cament behind becomes
exchangeable as long as it completely agrees Wwghiriterface. This is the sound
foundation for safe software maintenance and flex@xtensions.

* As components form abstractions with clearly spedifunctionality, safe software
reusability is enabled.

In the object-oriented programming paradigm, weidantify two kinds of components: (1) a
routine, covering functions and procedures, as ag(2) objects, described by classes.

Classically, the syntactic interface of a routisespecified by the signature, comprising the
parameter types (also called the formal argumetd)the return type (in case of functions),
their passing semantics and ordering. Analogowsiypbject’'s syntactic interface consists of
the features an object offers, i.e. the applicablgines, provided attributes and generic type
parameters. The rules of a programming languagarerfat no program participant can

circumvent these syntactic contracts. (An approgricompiler is typically sufficient to
enforce these rules).

The other but not less essential part of an interfs the semantic contract. This is to
concretise both the meaning of the component andyittactic elements as well as all the
terms for correctly using the components. Whereesaaonable level of syntactic interface
description has probably been reached in progragpmriire possibilities for declaring the
semantics of an interface are clearly far from wisatrequired for accurate contractual
specifications. This is especially true for mosttbé popular main-stream programming
languages, such as C++, Java, and C#, to only rmafe®. An extremely modest kind of
interface semantics may be the comments and goadingaof components, features,
parameters, and attributes etc, provided they d@inerad to the interface. What is particularly
regrettable is that none of these semantic comditéawe enforced for the interaction and use of
the components. There is for instance, no helphleymachinery that these perfectly weak
semantics of comments and naming are effectuatigemgy with use-semantics on the client
side.

Although one may suggest that the precise semdeascription is truly more difficult than for

syntax, there are numerous promising approachesefmantic contract specification, among
some are realized in Eiffel. However, a methodolégy thorough semantic specification,

which is also verifiable by a computer in reasoeabime, has not yet been found.
Nevertheless, a certain level of semantic accuiacthe contractual agreement between
components can be achieved. First, we quickly vev®me archetypical constructs for
semantic specifications that are both equally wetlerstandable by man and computer.

Invariants

An invariant is a condition that permanently hotilging the entire computation of a defined
program scope. Thereby, the computation procesissgacted as a series of state transitions,
called atomic actions. Both before and after thecakon of an atomic action, the invariant is
fulfilled.

An action may appear in different granularity. Instandard imperative programming
language, it can be perceived as a statementpasia operation is the notion of operational
semantics. There may nonetheless be more comptariataction, such as a general
statement block, an entire routine.

A further concept traditionally mentioned togethéth invariants is the variant.

Variants

A variant is only defined with respect to a repeditexecution process and specifies a
maximum number of remaining iterations until thentmation of the repetition.

A classical execution repetition is a loop in imgdere programming. At the beginning of

each iteration step, the variant defines a positivaeric value. The value of a variant has to
monotonously decrease with each iteration steptlaadepetition must eventually terminate
at latest when the value has reached zero.

The combination of invariants and variants alreadgble a surprisingly powerful set for
verifying interesting programs. The invariant hereprimarily focuses on the state
consistency for the intended purpose of the prograhereas the variant is for guaranteeing
the termination of a program. The example in Figin2 illustrates a binary search, where
invariants and variants prove the correctness efallgorithm. From the invariant and loop

termination condition, it is immediately impliedaththe result is either ia. i t enm(l) or it
is not contained in the array at all.

bi nary_search (a: ARRAY[| NTEGER]; k: | NTEGER): BOOOLEAN is
-- Does 'k’ exist in sorted ‘a’ with * bi nary_search'?
-- Suppose the following sentinels
- a. i tem(1) = -Infinity
- a. item(a. count) = Infinity
local
I, r,m: | NTEGER
do
from
I:=1;r:=a. count
invariant
(a. i tem(l) <=K)) and (k<a. item(r))
variant
r—I
until r/=1+1 loop
m:=(1+r)/2
if a. item(m)<=k then
l=m
else

end

- (r =1+ 1) and invariant implies (a. item(l) <=k<a. i tem(l+1))
Result :=a. item(l)=k

end

Figure 1-2: Binary Search with a Loop

Further archetypes for semantic contracts are tiondithat do not necessarily hold all the
time but are exactly fulfilled at certain definetbgram places. This may be used for setting
program actions in a semantic context, such astélso calledHoare triples

Hoare Logic

A Hoare correctness formula {P} A {R} defines a gram action A and two conditions P and
R, such that R is fulfilled after each executiomefprovided that P holds at the beginning| of
the execution. P is called tpeeconditionand R thgpostconditiorof A.

What is in primary interest of this analysis, isttlthe pre- and postconditions are exactly
denoting a semantic contract part of an interfaweaf component, here being the program
action. The precondition secures the terms of eghtior the sound use of the functionality,

whereas the postconditions concretises the effectgult that is offered by the component.
Of course, the conditions must not reveal any imgletation details of the component.

The Hoare logic inherently manifests the notionr@thematical induction proof, where the
precondition represents an induction hypothesideumwhich fulfilment the postcondition can

10

be implied. Especially for recursive problems bat hmited to those, the induction is the
very natural and effective mechanism for corredrmesofs (c.f. Figure 1-3).

recursive_bi nary_search(a: ARRAY[| NTEGER]; k: | NTEGER;
I | NTEGER; T | NTEGER): BOOLEAN is
-- Does ‘K’ exist in sorted ‘a’ with ‘binary_sear ch'?
require
is_between_limits:
(I<r) and (a. item(l)<=k) and (k<a. item(r))
local
m: | NTEGER
do
if I=r+1 then
--a. item(l) <=k<a. i tem(r)
Result :=a. item(l)=k
else
m:=(0+n/l2
if a. item(m)<=k then
[:=m
else
r:=m
end
Result := recursive_binary_search(a,k,l,r)
end

end

Figure 1-3: Binary Search on an array programmeirasursive function

Invariants, variants as well as the pre- and poslitons can be verified and ensured with
several techniques, which we discuss in the suleseahapter.

A core question in the specification of semantindition is in what terms they are expressed.
There are roughly two categories of approaches.

» Special descriptive languagesSemantic conditions are described in a special
descriptive language. This enables the high-leeelatation of conditions, with mere
focus on the semantics in total liberation from thmperative computation of this
condition. It can be namely observed that the reeggssemantic contracts are actually
required due to the lacking expressiveness of atahgrogramming language for
expressing such constructs by means of the class@aantic elements. A good
candidate for such descriptive languages would dre eikkample, the support of
quantifiers. On the other hand, there are not nd@ajarative programming languages,
which are also reasonably efficient in verificatigAn example of a rather efficient
descriptive language is SQL, whereas Prolog engxit®nential time complexity). A
further benefit of special languages is that moghsticated semantic conditions may
be supported, such as limits on execution time, argrar power consumption etc.

» Conventional imperative languagdt is straightforward to formulate semantic
conditions in uniformity of the standard imperatp®gramming language. However,

11

more complex conditions are not definable as purel&n formulas, which do not
involve execution of other program parts. Therefduactions have to be enforcedly
used in the semantic condition, to enable sufficfexibility. In this case, it must be
however excluded that the execution of such funsticauses side effects on the
system. We will now discuss this issue in detail.

To simplify the use of contracts, Eiffel featuresegonditions, postconditions and class
invariants as institutionalized concepts of thegpaonming language. Beside the interface-
related contracts, loop invariants and variants @n@vided. For pragmatic reasons and
convenient usability, Eiffel chooses the approadhself-expressed semantic Boolean
formulas. In the following, we review the concr&teds of Eiffel semantic conditions.

Preconditions

With a precondition, a routine can specify a semaandition, which must be fulfilled for
all invocations of the corresponding routine. Aqmedition hence obliges the clients to keep
its part of the postulated contract, such that ringtine can fully rely on this fact. The
expression belongs to the interface of a routire flzas an equal importance as the routine’s
signature.

bank_wi t hdr aw (account: ACCOUNT; amount: | NTEGER) is
-- Withdraw ‘amount’ from ‘account’.
require
enough_mony: account. bal ance >= amount
end

Figure 1-4: Precondition in Eiffel

Postconditions

The postcondition describes a functionality, whichist eventually hold at the execution end
of a routine. A postcondition can be viewed as @trect element of the routine, guaranteeing
certain semantic properties for its clients. Irsthiay, it acts as the opposite concept of a
precondition, where the contract imposes an ohldigafor calling the routine itself. In
combination with preconditions, inductive reasonaigput function compositions is enabled
in a program. On the other hand, a postconditionatsao be hidden as an internal condition
of the routine and the enclosing object class mspy. For this special case only, the
postcondition can also refer to encapsulated featur

12

change_tires (car: CAR) is
-- Change the tires of all wheels of ‘car’.

do
ensure
tires_present:
car. | eft_front_wheel.has tire and
car. right_front_wheel .has_tire and
car. | eft_back_wheel . has_tire and

car. ri ght _back_wheel . has_tire

end

Figure 1-5: Postcondition in Eiffel

Class Invariants

Class invariants describe the state for an obyduich holds before and after each routine call
that comes from outside the object. (As a natuxeepgtion, the class invariant has not to be
true before invocation of the object creation noeti Therefore, the conceptual atomic action

is here regarded to be the complete execution oéxaernal called routine (including all

transitively called routines that belong to the sashject instance).

class TREE

feature
f or ce (key: | NTEGER; data: ANY) is ... end
-- Add "data’ with “key’ to tree
remove (key: | NTECER, data: ANY) is ... end
-- Remove “data’ with “key’ to tree
i tem(key: I NTEGER): ANY is ...end
-- Get element with “key’ from tree

feature { NONE}
i s_bal anced: BOCLEAN is ... end
-- Is tree balanced?
invariant
is_balanced:
i s_bal anced
end

Figure 1-6: Class invariant in Eiffel

13

Loop Invariants and Variants

Loop invariants and variants are not a true cotimcelement but are rather for structured
programming with execution loops. Hereby, the ekeouof a single loop iteration step is
considered as the atomic action. The invariannisigsertion (Boolean expression), variants
are integer expressions, which hold as long asahegreater than zero, describing the loop’s
execution condition (see Figure 1-2).

As semantic conditions are also expressed in thgukege of Eiffel, particularly in terms of
Boolean functions in contracts, special attentias to be paid to various issues. We therefore
postulate some fundamental rules for avoiding flawthe programming model.

Rule 1 (No side-effects in semantic conditions)

Under no circumstances, a condition of a semamtntract can invoke a function that causes
side-effects. Conceptually, a side effect is angrafion that can be detected from the rest of
the program, outside the function.

This rule is crucial for guaranteeing that the assemantic contracts does not even introduce
new error sources in programs. A semantic condisoof thoroughly descriptive nature and
must not influence the principal program executids.a consequence, it should not make any
difference whether a semantic condition is cheakedot. One should imagine the negative
consequences of a program that behaves compleifiéyedtly when its conditions are
checked with a different mechanism. (This is fostamce in the case of static verification
insteadgof dynamic checking, or in the case wheeck$ are turned off for efficiency
reasons).

A side effect is any write access on externallyblésdata, input/output operation as well as
detectable effects, such as the non-terminatioa pfogram or errors that occur during the
dynamic evaluation of semantic conditions. Howeitds, often not really recognized that in a
concurrent system, even read-accesses to extenisiye data may cause side-effects. An
activity may wrongly read a value which is in fact intermediate computation of a

concurrently running activity. (This is the reasahy transactional correctness relies on
semantic serializability).

With regard to concurrency, a further ultimatelypiwntant rule has to be introduced.

Rule 2 (No concurrency)

Both the precondition and the postcondition mustimi@r with concurrent activities. Neither
may the execution process of the enclosed prograatine have non-deterministic
dependencies involved with concurrency.

As preconditions have the meaning of wait condgiam the context of concurrency, static
analysis cannot be applied. Otherwise, each comditiat is non-deterministically influenced

by concurrency is conceptually unsound. (It maybecessfully checked at runtime but may
not be statically verified in any case).

A further rather technical problem comes up, if fhaction of a semantic condition also
comprises semantic conditions and so on, probadylting in infinite recursion. The best
way in the interest of clarity of the model is &ckeide this with the following rule.

! As Hoare already observed, turning the conditioffisn productive releases is really irresponsitidihat
would we think of a sailing enthusiast who weassltié-jacket when training on dry land but takesfi as soon
as he goes to sea?”

14

Rule 3 (No nested semantic conditions)

Each function, which is used within a semantic d¢omal, must not feature semantic
conditions for itself.

In ISE Eiffel, the chosen solution for dynamic aawet checking is that semantic conditions
are ignored if they belong to transitively involiedictions of other semantic contracts.

15

Chapter 2- Contract Assurance

2.1.

Checking Methods

The only existing checking mechanism in Eiffel la¢ moment is dynamic checking. That is
contracts are evaluated at runtime for test andigigihg purposes. We now give an overview
of this and other verification methods.

16

Dynamic checking: A program is executed and the assertions containethe
contracts are evaluated at runtime. If a contraeialated the execution process stops
and the found error can be corrected afterwardh&yprogrammer. Consequently, at
most one error can be detected for every prograuwtion. When the program runs
until the end without runtime failure, its correesis only holds for the special scenario
that has just been executed. In a future programwiere the context may be even
changed, it may however unexpectedly abort, bectiuseprogram has not been
verified for all possible execution paths. Thug,dgnamic checking, a program has to
be extensively tested, in order to get reasonabibility.

It is specified in the EiffeAcefiles how contracts are monitored at runtime, desiall
compilation options and the assembly informationaofprogram. The following
options are available within acefile:

(1) Treat the contracts as comments, such that theg havinfluence in program
execution.

(2) Dynamically evaluate all preconditions, with theagpriate computation costs.
(3) Check both all preconditions and all postconditions

(4) Dynamically ensure all class invariants in comhoratvith the checks of (3).
(5) Additionally to (4), loop invariants and variantg also dynamically ensured.

(6) Turn on all dynamic checks, i.e. all previously miemed conditions and also all
remaining assertions.

Furthermore, these options can be defined as {ayki¢or the whole program, (b) for
specific clusters (related classes in a directory{c) for single classes. Obviously, it
results in a flexible dynamic testing environmenhere the testing degree can be
customized, depending on the computing overheadsiowilling to invest and the
degree of confidence we want to get in the program.

Static checking: At compile time (or in a following development gjestatic analysis

is performed to verify if the fulfilment of contcts. Its great advantage is that it
verifies that a contract permanently holds for argcution path. Therefore, it makes
further (dynamic) testing redundant. As static &eg requires detailed program
analysis, it is mostly a trade-off between accuracgl analysis time. The more
complex the analysis is, the more time it takestbatricher the result is expected to
be. This is in terms of how many more contracts getected to be fulfiled. So if

reliability and correctness of a program is impatitat is recommended not to spare
considerable expense on static checking. Since staéc analysis is generally

conservative, for some contracts, it is undecidatiethe analysis whether they are
always kept. For these remaining cases, dynamickatngis still necessary.

Conservative PositiveThis approach uses a conservative approach tatdete
calls that always fulfill the preconditions of theallee routines. If this cannot
be fully guaranteed, a call is regarded as possilclyrrect and has to be tested
by another method.

Conservative NegativeThis method conservatively discovers calls that ca
never fulfill the precondition of their callees. Withis approach, not every
wrong call can be identified. The remaining calis tieated as possibly correct

and have to be checked by another mechanism.

 Manual Checking: The user decides by himself whether a call resdliisfies the
preconditions of its callees (noticing that withbayping polymorphism there can be
multiple call targets). However, a user may notehanough time to check the
conditions carefully or he meets wrong assumptialbsut a contract. (This is like
knowing every detail when signing a legal contiacdaily life). It is nonetheless an
option to make sure whether a contract is fulfillsdpposed that the requirements are
correctly and entirely taken into considerations (fr the crash of Ariane 5, the
launcher specification has been ignored for the.SRI

The table below (Figure 2-1) compares dynamic &dicsichecking. It shows that dynamic

checking can complement the static analysis. Tises;awhich the static analysis cannot
decide, need to be tested with a different met@mhsequently, a hybrid approach should be
chosen as realistic solution.

Dynamic Static Checking

Checking| Conservative Positive Conservative Negative
Always fulfilled - X -
Fulfilled specific X - -
Undecidable - X X
Not fulfilled specific X - -
Never fulfilled - - X

Figure 2-1: Comparison of different checking method
Explanation: The method has determined that ...
Always fulfilled: - the contract always holds.
Fulfilled specific: - the contract holds in a specific execution acen
Undecidable - it can not decide, whether the contract holdsab.
Not fulfilled specific: - the contract is not fulfilled in a specific exgion scenario — an
error was found.

Never fulfilled: - the contract will never hold — an error wasrfdu

X represents the scenario, where a method has copass.

2 Contrary to the mathematical sense, undecidabifians here that it depends on the strength ottt
analysis. Therefore it is possible, that a calllésermined as fulfilled by one analyzer and is widible for

another.

17

This thesis has pursued tlenservative positivestatic analysis. Since the contracts are
designed to satisfy them, they are expected to imldost cases. We hence expect to find
many fulfilled contracts in the empirical evaluatioro implement the conservative negative
approach, the expense would be at least as hifgr #8% conservative positive analysis. This
is because in our context, we have not necessarigquivalence relation. More concretely, a
conservative positive analysis finds out whetheakh A implies thefulfillment of a contract

C, whereas a conservative negative method detebtther A implies that C is surely
violated

The conservative negative approach is furthermotehat promising, as there are only few
such thoroughly false calls expected, compared whale program. The effort of a static
analysis is insofar not justified, as the analysistill conservative and would not find every
error. In contrast, @aonservative positivanalysis detects at least all not fulfilled corudis
and is therefore chosen for implementation in thesis, combined with dynamic testing of
the undecidable calls, yielding hence a kind offarid approach.

Throughout this thesis, we focus on the verificatad preconditions. Since, it is the most
important part of the contract for a client who tgato reuse a routine.

2.2. Development Process with Precondition Enforcement #alysis

We expect that static analysis once will be a r@gphlrt of the development process for
guality software. Figure 2-2 illustrates the addpf@ocess, where static verification is
conceived as an independent element of the testepliite the Precondition Enforcement
Analysis is separate from other phases. For evdrgsgy the development process is
considered to be iterative. Errors, which can ocdcuevery step, have to be iteratively
corrected by returning to a previous phase. Thewagwvisualize the main stream of the whole
development process.

18

CONCEPT PHASE

Figure 2-2: Development process of quality software

TEST PHASE

Requirement
Analysis
1 PRODUCTION
Program Implementati
Design > on
Compilation

A 4

Verification

1 USAGE
Dynamic Execution
Testing »

19

Chapter 3 - Static Contract Verification

This thesis pursues the positive conservative amprovith the ideal to find as many fulfilled
preconditions as possible. Conservatively, evetyisgudged to be fulfilled, considering
information about the caller and the callee rowing'e describe in the next sections, how it is
statically determined in our analyzer whether apnelition is fulfilled. Figure 3-1 shows an
example, where the analysis is successful in detp¢hat the preconditions are always
satisfied by the client.

b _attribute: BOOLEAN

caller_routine is
local
X, Kk, I: BOOLEAN
do
if x then
fool (x)
elseif not(k andl) then
foo2 (I, k)
end
end

fool (a: BOOLEAN) is
require
a or b _attribute

end
foo2 (u, v: BOOLEAN) is
require

not (u) or not (v)

end

Figure 3-1: Example to illustrate, what expressimn analysis can recognize to be fulfilled. Botegonditions
of fool and foo2 are fulfilled.

20

3.1. Information Used for Verification

To perform the analysis within reasonable time,lwdt the context of a considered call to
the following information:

(1) The caller routine (and the enclosing object), whrethe call is contained.
(2) The callees’ preconditions.

We are conscious, that the result is less rich téh an interprocedural or data flow
analysis. In return, the complexity of the analysisonsiderably lower.

3.2. General Approach

A client routine, which wants to make proper usa ehlled routine, has to make sure that he
fulfills the corresponding preconditions. Therefoitehas to somehow check this condition
before the target routine is eventually called,uraty with a control construct, if the
condition holds not for some other reason. As tlaeeedifferent possibilities to check such a
condition, the first task was to look for possibdede patterns which can ensure a
precondition.

(1) Conditional
Because the conditional is an often used conditiorsiruction, it has been studied very
carefully for the possibility of assuring precoiatis.

if condition then
call _a

else
call _b

end

Figure 3-2: Basic conditional construct, wheomdition is a boolean expression.

In the basic conditional construct as illustrated Higure 3-2, there are already two
possibilities, where a client can possibly assucalls precondition.

a) condition impliescall_a ’s precondition

b) notcondition impliescall_b ’s precondition

21

if cl then
call _a

elseif ¢2 then
call _b

elseif ¢3 then
call _c
else

call _d

end

Figure 3-3: General conditional construct, whetec2 and c3 are boolean expressions.
Figure 3-3 shows a general case of a conditionastcoct there are even more possibilities,
that a call’'s precondition is fulfilled.
a) cl impliescall_a ’s precondition (like before)
b) (notcl andc2) impliescall_b ’s precondition
c) (notcl and notc2 orc3) impliescall_c ’s precondition
d) (notcl and notc2 or notc3) impliescall_d ’s precondition
So for a call_i, after the i-tii orelseif clause the implication is:
(not g AND) and ¢implies call_i, for j=1..i-1, for all iin [1...n]
For the a call_i, after thase clause, it holds:

(not g AND) implies call_i, for j = 1..i, for all i in [1n], being theelse clause the i +1 th
clause.

The conditional construct gives many options fogpracondition to be fulfilled, increasing
with the complexity of the construct.

To make sure that a call's precondition is notifi¢ld again, before the call’'s execution, we

only make use of conditional construct, if a calthe first instruction in the then part, or in

the else part. Otherwise we would need a more siteranalysis, which includes control

flow analysis, and analysis of reachability of refeces which is too expensive and beyond
the scope of this thesis.

22

(2) Loop
The loop instruction offers not as many possileititibut still a precondition may be assured
this way.

from
until
exit_condition
loop
call _a
end
call _b

Figure 3-4: The loop instruction, where exit_coimfitis a Boolean expression.

As Figure 3-4 illustrates, there are two optionsere a precondition can be fulfilled.
a) notexit_condition impliescall_a ’s precondition
b) exit_condition impliescall_b ’s precondition

The multi-branch instructioninspect) has not been included, because it contains only a
special conditiong =vi), where e is an expression of tyiNrEGERor CHARACTERand
v; a constant of the corresponding type, and theeedppears rather seldom in code.

Neither thecheck instruction has been considered, since it is arréien and can be turned
on or off with assertion monitoring. So they do appear always in the code.

Implication
With the non-strict Boolean operatamd then andimplies a call’'s precondition can hold
as well (see Figure 3-5)

a) cl impliescall_a ’s precondition

b) c2 impliescall_b ’s precondition

cl implies «call_a

c2 andthen call _b

Figure 3-5: Keywords for implication

23

3.2.1. Comparison of Precondition

After we have identified how a client can possibheck that he complies with the required
precondition, we have to verify, whether the condit really imposes the callee’s
precondition. Therefore a recursive approach e lchosen, which makes use of common
logic rules and compares the precondition exprassibh the conditional expression in the

caller (the calling routine).

The simplest case is illustrated in Figure 3-6.eHee only have to compare one argument
with the condition expression. Since, we have tbigest for more complex expressions as
well, it is the most often used rule. All appliedglication rules or equivalence are listened in

Figure 3-7.

caller_routine is

local

X: BOOLEAN
do

if x then foo(x) end
end

foo (a: BOOLEAN) is
require
a

end

Figure 3-6: The simplest case, of a condition amrdqndition expression.

24

Implication Rules

Client condition

implies

Precondition

Rule name

Special expressions, constants and identifier:

Result Result

Current Current

constant constant

identifier identifier

Void Void

a True

Implication expressions:

aandb a b

a b aorb

Equivalence expressions:

a=b =g

al=b fl=g

a>b a>b

a<b a<b

a>=b a>=b

aandb aandb (for “and then” too

aorb aorb (for “or else” too)

aopb aopb forop={, + 1/, 1],
\\, A, xor, implies}

a=b b=a Commutativity for:
=, /=, and, and then,
or, or else, +, -, xor

a>b b<a Binary inversion for
>z, <=, <, >

+a +a Equal_ity for unary
operations: +, -, not

not (not a) a Unary inversion for:
not, -

a not (not a) !

25

not (a = b) al=b
al=b not (a=Db)
not (a /= b) a=b
a=b not (a /=b)

not (a and b)

notaornotb

De Morgan

notaornotb

not (a and b)

not (a or b) not a and not b “

a implies b (nota)orb “

(nota)orb a implies b “

(@) a Remove parantheses
a (@) !

Figure 3-7: Implication rules

The mathematic expressions have not been evalusedyse to reason about we would need
information of the values, which needs a more cemplnalysis. But many logic rules have
been implemented, with which we can reason abazht pveconditions, which are inherently
Boolean expressions. The non-strict operators thed” and “or elsé operators are treated
equally, because they hold in the same case assthiet operators hold if the other holds, it
just saves an instruction in the non-strict case.

Of course, this implication test can be extendad, ib needs further analysis about the
particular variable values which is easy in casearfstant value, or not to determine in case
of attributes.

Since the rules which are recursively checked, @etays smaller, the termination is
determined. (Divide and conquer)

26

Arguments

If the precondition contains arguments, its expogs$ias to be adapted, so that it can be
compared to the caller’'s conditional expressiom (Bgure 3-8). The modified precondition
in the example would beitem (i) /= Void; t.count> 7;boolean_attribute

call _a(a: Ab: | NTEGER)
require
a/=Void; b >7; bool ean_attri bute
end
call _a(t. itemf(,t. count)

Figure 3-8: Example for arguments

So a call's argument can turn out to be a callfit3dnis scenario is not analyzed any further,
because the call could falsify the conditional egsion, which has been checked before. It
would need an inter-procedural analysis to reabontsuch a case.

The arguments are also resolved in the recursivielyuments can of course, be only from
the callee’s class, or of its parent’s class otisnthe callee would not see it (visibility), the
same stands for Boolean functions. Every elemetiteoprecondition has to be visible for the
caller and the callee.

Precondition Splitting

To simplify the precondition, we choose to splierty if possible. Also there are several
possibilities to express the same preconditionifie Hike:

 AandB (A and B have to hold to fulfill the preabtion.)

« A;B (The semicolon stands for an “and” operator)
e A (Because they are written on different linesad B are connected by
B an “and” operator.)

At the end of the analysis, we check for every, aaiether all precondition parts are fulfilled,

which implies that the whole precondition is sa¢idf Of course, as Eiffel contains multiple

inheritance, we have to consider the inherited gmditions as well. They are logically

appended to other preconditions with “or else” e8ber one precondition or the inherited has
to hold (analogous for many preconditions).

3.2.2.1s the Precondition satisfied?

After we have found a way to know how a client clyeck the precondition, and how the
precondition can be compared with the client’s dtimwl expression, we have to make sure
that a precondition is not falsified again, beftive call. We have chosen the simple approach
that the call has to be just after the client's adhelike Figure 3-9 illustrates with
instruction_1

27

client_check
instruction_1
instruction_2

Figure 3-9: Instructions after a client’'s check.

A more complex analysis could check, for a cakmafhstruction_1, whether the expressions
used for the precondition are not changed, butwaisld need an inter procedural dataflow
analysis.

3.3. Specific Approach

Although the analysis described before is quitecessful, the reward was not as great as
expected, since it turned out that it does notgeize the vast majority of the preconditions
(see experimental results), which is that an objaaist not be void. This is important
especially in object oriented programming, sincenétkes heavy use of references, and we
often have to make sure that an object is instiatiaOften a supplier offers a routine, where
the argument (or an attribute) must not be void, la@ leaves it to the client, that he assures
this condition. In Eiffel this is declared in theepondition as well.

To illustrate the scenarios, where such preconditemn be determined to be fulfilled, we give
a general sample to which we are going to confénerspecial cases (Figure 1-1).

bar is foo(a: A) is
require ... require
do a /= Void
t /= Void
b= f X do
f oo (b)
end
ensure ...
end

Figure 3-10: Sample, to show examples where a /Id Wolds.

(1) In Eiffel, there are expanded types, which medre, instances of expanded types are
automatically initialized and cannot be void. Batgpes e.g. CHARACTER
BOOLEAN INTEGER REALandDOUBLE are also of expanded type. Now, if the
formal argumena is of expanded type, the preconditeof+ Void holds.

(2) Same thing for the attribute if it is of expanded type.

(3) If b is a manifest constant it naturally cannot be void

(4) If b is a call to a manifest constant.

(5) Same thing wheh is Current. The self reference cannot be void.

28

(6) The instruction just before the callfob , b is the result of another feature call, ebg.
=f(x) and the feature f has a post conditiesult /= Void andb is a local
variable or the result of a function. (f is an attribute, we cannot know anything
because in a call of the form (foo, b) , foo may be a routine that resdisto
Void.)

(7) b has been created just before the cafbof, whereb is either a local varable or the
result ofbar (see Figure 3-11).

bar

local
b: B

do
create b. nake
f oo (b)
Result . make
foo (Result)

end

Figure 3-11: Argument has been created beforedt®eicfoo.

(8) The argumenb of foo is another call with, either a creation call, d, cahere the
Return value is of expanded type or the call hasstcondition like Return /= Void
(compare Figure 3-12).

foo (create { SOVE_TYPE}. nake)
foo (cal | _expanded)
foo (call_pc)

cal | _expanded: BOOLEAN is
do

Result :=True
end

call _pc is
do

ensure
Result /=Void
end

Figure 3-12: lllustrates that a call as an arguroantassure, precondition /= Void.

29

(9) If the calling routinea_routine

(see Figure 3-13) has a formal argumenand a

preconditionb /= Void . This holds because, in Eiffel no assignment formal

argument is allowed.

a routine(: A is

require
b /= Void
do
cal l ed_routine (b)
end

called_routine(a: A) is

require
a /= Void

end

Figure 3-13: Example for formal argument with pregition

In the case the featufeo may be executed successfully, the client has teube or to make
sure that b is non void. In some cases we can dhéckondition statically.

As a routine, which has no precondition, meaningspecial requirements for a client, it

similar to a precondition, which is always trueidlis the case, also for native library calls (to
c-libraries), which are not equipped with librarigSonsequently, they are verified to be
fulfilled, which does not say anything about thalgsis, and even about the correctness of

the library call.

Of course, the analysis does not claim to be campénd there are other aspects which can
be considered, e. g. inter-procedurality. But theetneeded for the analyis would increase

too. And in spite of the limitation we can deteamy preconditions, which hold.

30

Chapter 4 - Design and Implementation

This chapter describes the design and implementatiothe Precondition Enforcement
Analysis. The whole process roughly consists offtlewing steps: From a chosen program
the source is parsed and needed information fosubsequent analysis is gathered. After the
analysis the result is presented in the GUI.

The order of events is described as follows in Faglt1:

Ace file
(Z)ﬁ
Eiffel Precondition | (3)
Analyser > Enforcement
Analysis
GUI 4

(1) From a chosen Ace filtehe program is parsed, and the Univers
generated. Now, &know every class the program uses. The E
Analyzer parses the source code and collects tloeniation for
every routine call.

(2) Every call is verified by the Precondition Enforcam Analysis.
(3) The result is presented in the GUI.

Figure 4-1: Order of events in the Preconditiondecément Analysis

4.1. Eiffel Analyzer

A program, which is expected to be syntacticallyrect, is parsed in the Eiffel Analyzer. It
bases on the tool GOBO Eiffel Lint [3] callgglint, which analyses Eiffel source code and
reports validity errors and useful warnings. Frdme program’s Ace file, the universe is
computed, which are the class files the prograndsi¢el FEATURE_CHECKER part of
gelint (see Figure 4-2) like other classes starting W&h .

The following graph gives an overview of the classesed for the whole Precondition
Enforcement Tool.

31

static_program_
analyze

FEATURE_CALL_
BUILDER

STATIC_
ANALYZER_
GUI

STATIC_
ANALYZEF

feature_calls

feature_call_table

caller_feature, callee_feature

FEATURE_
CALLEF

FEATURE_
CALLEE

A ——» B Anobject instance of type A references an instaridg

A =P B Type Ais a sub-type of B and A inherits B's logic

Figure 4-2: Diagram of the main classes of the dtrdition Enforcement Analyis.

Collection of Calls

After the files have been parsed and the abstratts trees (ASTs) have been built, the
features are checked, whether they are syntagticaltorrect by the
ET_FEATURE_CHECKERvhich uses the visitor pattern [7] to traverse ASTs. To get the
needed information about every feature calll we ehavcreated the
FEATURE_CALL_BUILDER, which inherits fromET_FEATURE_CHECKERFor every
processed cdll a report_call routine is executed. Theeport_call routine is defined in
ET_FEATURE_CHECKER The actual implementation ofreport_call is in class
FEATURE_CALL_BUILDERwhere the routine had to be redefined.

Figure 4-3 illustrates the visitor pattern, whishuised to traverse the ASTs. As an example,
we take a creation expression, which is processeéd i FEATURE_CHECKER

% As attribute are at the moment not equipped withtracts, they are not considered as calls aneftirerdo
appear not in the tabfeature_calls If this will be the case, they can be easilyuideld by commenting out the
corresponding code in the cld&SATURE_CALL_BUILDER the routineget_call_infos

32

1. Somewhere in cladssT_FEATURE_CHECKERactually incheck_expression_validign
expression has to be processed. As we do not kisoexact type (and we do not need it),
we process it and pass t@arrent instance.

2. As the expression is of typ&T CREATE_EXPRESSIONwvhich inherits from
ET_AST_NODEand implements the featupgocess like every node in the AST, which
inherits fromET_AST_NODEthe corresponding feature BT _FEATURE_CHECKER
executed and the current instance of the creafipression is passed with.

3. Again in ET_FEATURE_CHECKERhe featurgrocess_create_ expressiexecuted,
which processes the creation expression, by callinthe feature
check_create_expression_validitywherein the routinereport_creation_expressions
called, where finally iget_call_infoghe call is stored in the tabiieature_calls

-- 1. ET_FEATURE_CHECKER
an_expression. process (Current)

- 2. ET_CREATE_EXPRESS| ON

process (a_processor: ET_AST_PRCCESSOR) is
-- Process current node.
do
a_processor. process_creat e_expression (Current)
end

- 3. ET_FEATURE_CHECKER
process_creat e_expressi on (expression: ET_CREATE_EXPRESSI ON) is
-- Process “expression'.
do ...
check_create_expression_validity
(expression, current_context)

end

-4, FEATURE_CALL_BUI LDER
report_creati on_expression (creation_type: ET_NAMED TYPE;
a_procedure: ET_FEATURE; actuals: ET_ACTUAL_ARGUMENTS;
pos: ET_POSITIQN) is
-- Report that a creation expression has been pr ocessed.
do
get _cal | _i nf os (a_procedure, creation_type, actuals, pos)
end

Figure 4-3: Visitor pattern for traversing the ASTs

33

Of course the most important information about b isato know his caller and the callee
feature. Then, the specific properties for a callehto be identified, which turned out to be
the actual arguments, which are passed in a t#ieiie are some and the call’s position in the
code and to know, whether a call's preconditiofullled or not, which will be determined
later in the Precondition Enforcement Analysis.

For this purpose we created the clBEATURE_CALL, with the attributes:

» caller_featurels a reference of tlEEATURE_CALLERwhich stores mainly
information about instructions which appear in th#er.

o callee_feature It stores primarily information about the preciiwoh
expression.

» argumentsThe actual argument, which are passed from therda the callee,
if there are any.

» call_position The call's position in the source code

» preconditions_informationAs it is of type ARRAY[BOOLEAN, it can be
specified, whether a precondition has determindaktéulfilled.

» precursors_precondition_informatioris of type ARRAY2[BOOLEAN. As
one precursor's precondition may contain any numdfeexpressions, the
maximal number of expressions was chosen to begbend dimension of the
two dimensional array. To know the exact humbeexgression, we have to
look it up in thecallee_featurdable.

» Like preconditions_informatiorior every precursor, which has a precondition
(the precondition is inherited by or else logic)

» are_preconditions_fulfilledls every precondition fulfilled?
» considered_fulfilledDoes the user think the preconditions are felfi

As there are many calls, which have the same catléhe same callee, there are the tables
feature_callersandfeature_callegswhich store them only once. The elements of th&iskes
are of typecFEATURE_CALLERNAFEATURE_CALLEE

FEATURE_CALLER: This class contains specific information abou¢ ttaller feature,
which is: its featurecaller_feature with various information and its typealler_type and
moreover different instructions, which can be uteedssure a precondition.

FEATURE_CALLEE: Contains specific information about the calleie lits feature,
callee_featureand its typecallee typeand especially the preconditions and the precsrsor
preconditions in the attributggeconditionsandprecursors_preconditionsvhich are of type
DS _ARRAYED_LIST [PRECONDITION_INFORMATION and DS ARRAYED LIST
[DS_ARRAYED_LISTPRECONDITION_INFORMATIOJN respectively. They keep the
expression because the precondition may be chalngedtie split_expressiorroutine (see
below).

The following features IlFEATURE_CALL_BUILDERadd additional information to the
tablesfeature_callersandfeature_callees

About the caller:
report_assignment
report_instruction

34

report_if_instruction
report_loop_instruction
report_infix_expression

report_creation_instructionReports the creation instruction as a call, and a
specific instruction for the caller.

About the callee:

report_precondition_expressiofit splits the precondition, if necessary using
the featuresplit_expressiomnd adds precursors’ preconditions.

split_expressionAs preconditions form a part of the whole contracpreconditions often
consists of many conditions, which are connectethby'and” operator in case they all have
to hold. We think it is interesting to know, if gré part of the precondition can be determined
to hold. Since often, they are independent conatio

Therefore a precondition is split into two (or mpexpressions, so they can be verified
separately. To keep these expressions, the EBREXCONDITION_INFORMATIOMNas been
created, where this information is stored.

4.2. Precondition Enforcement Analysis

The Precondition Enforcement Analysis takes placthé clasSSTATIC_ANALYZERBut at
first the parsing process for the Ace file is ®drin this class, as well as the parsing of the
source code, where the needed information is gadher

The collected information is found in the attribute
» feature call_table
Which is of type:
DS_HASH_TABLEDS_ARRAYED_LIS[FEATURE_CALL, ET_FEATURE

This means that if we search a certain call, weshavknow its caller. Because with
this information we receive a list of tyd@S_ARRAYED_LISTFEATURE_CALL,
which contains the call and other calls, which hdneesame caller.

» feature caller_table

Which is of type:

DS _HASH_TABLEFEATURE_CALLERET FEATURE

Specific information about a caller is found byrebéng with the caller feature.
» feature callee table

Which is of type:

DS _HASH_TABLEFEATURE_CALLEEET FEATURE

These tables are actually the same as the talelatire calls feature_callers and
feature_calleesin FEATURE_CALL_BULDER Since the STATIC_ANALYZERpasses
references of these tables to BFlBATURE_CALL_BUILDER

35

Afterwards the analyzing process starts with thetine check contracts which gives
possibilities for further extensions especially oeming other contract parts like
postconditions or class invariants. At the monereck _contractsallscheck_preconditions
from where the several rules are checked, whicle kd@gcribed in chapter 3 in detail.

As every precondition is analyzed in every cakkréhare some attributes to implement that:
» current_call Represents the call, which is currently analyzed.

» current_precondition_informatiars of typePRECONDITION_INFORMATIOIl&nd
keeps information which precondition is exactly lgped besides the precondition
expression.

» call_before Is the call before theurrent_call it is used in the analysis.

For the routinemplies_preconditionwhere the condition from the client is checketiether

it implies the callee’s precondition for every dimgall, it is worth looking at it more closely
(see Figure 4-4). When the precondition p is comgbao the client's conditional expression
e, they can be equal or different, because argemest be included in the p. As these
expressions are recursively compared, the argunaet®nly checked at the leaves of the
expressions, which are e.g. of tyg& IDENTIFIEROof for constants. So, at the first call of
implies_preconditionthe argumenare_parameters_resolved is false, and it stays
false until the expression is at the leave nodesrethe arguments are resolved. If the actual
argument happens to be a call, it is no handledt@desult ofmplies_preconditions false.

36

-- Signature of
i mpl i es_prec

ondi ti on

(are_parameters_resolved: BOOLEAN; p: ET_EXPRESSI ON;
e: ET_EXPRESSI ON): BOCLEAN is
-- Does “e' imply (precondition) “p'?

--'p' is the precondition expression, “e' appears in the
-- caller feature. "are_parameters_resolved' states , Whether
-- the formal arguments used in “p’ have already be en

-- exchanged to the actual arguments.

require

p_not_void: p /= Void

e_not_void: e /= Void

do ...
if are_parameters_resolved then
-- Compare 'p'to ‘e’ ...
else
if arguments /= Void then
from i:=1 until i>arguments. count or is_parameter
formal ?= formal_argument (i). name
if formal /= Void and then
formal. name = ident_p. name then
is_parameter := True
Result :=
i npli es_precondition(True, actual_args (i), €)
end
=i+l
end
end
if not is_parameter then
Result := inplies_precondition(True,p,e)
-- Variable not parameter
end
end
end

loop

Figure 4-4: How the formal arguments are excharyetthe actual arguments. (Pseudocode)

37

In the routinecheck_preconditionsadditional routines can be added, which perfotireio
verification methods.

4.3. Graphical User Interface (GUI)

As within the project plan and the developmenthef project, the emphasis was rather set on
the program analyzer than on the GUI. So its imeletation is merely to describe the results
of the analyzer and no incremental use (espedailgompilation) has been implemented. As
the GUI makes only use of the EiffelVision2 libraityshould work for other platforms too,
but it has only been tested on Windows XP.

After the user has launched the Precondition Eefoent Analysis, he has to choose a
program by selecting File -> Open, which he waatartalyze.

This action is immediately followed by the staticalyzing process, where it is statically
determined whether a call’'s precondition is fudfil| for the program’s root classes.

After the analyzing process, the result is showthan GUI (see Figure 4-5). There are two
boxes, one for the tree with the fulfilled callsdaanother for the calls, which could not
determined to be fulfilled. If a call's preconditids partially fulfilled it is considered not
fulfilled by the static analysis. The calls aretsdraccording to the calling routine’s class, the
calling routine, the callee’s class and the appeararder in the class. Each leaf of a tree
represents a call, which is described by the callelass, the callee’s routine, the position in
the code and of course the caller’s class andneuni the parental graphical nodes.

Now, the user can analyze the not fulfilled cdlishe decides, that a call is still fulfilled, he
can select it and move it to the other tree by gingsthe <- button. Afterwards, the call is
shown on the other tree marked with a “!” aheadshow, that this is a user decision and the
user has changed the call's status determinedebgtétic analysis. If the user unchanged the
call's status, there is no “!I” appended to the.cAtitually, it should be only possible for a
user to move a call to the left tree, if he hasdbxtthat the call is fulfilled. But because the
user might change his mind, it is possible to mealés in both directions.

38

(2] Precondition Enforcement Analysis
File Help

Calls with fulfiled precondition:

Calls with poszibly nat fulfiled precondition:

- Class Tm
+ SET_LIP - SET_LIP
= CALCULATOR --help_action
+- make STD_FILES.putstring - line S8 column 4
-l-5E55i0N STD_FILES.putstring - line 61 column 4
CALCULATOR.start - line 33 column S +- CALCULATOR
CALCULATOR.ower - line 55 colurmn S STATE
CALCULATOR.action - line 57 calumn S HELP
CALCULATOR.next - ling 58 column S QUESTION
+- start <- EMPTY
+-Over FLUS
+- action # MINUS
+-next MULTIPLY
+- initialize DIVIDE
+ STATE
+ HELF
+- QUESTION
+ EMPTY
+-PLUS
+ MIMUS
+- MULTIPLY
+- DIVIDE

Figure 4-5: Main window of the GUI

The GUI part of this thesis consists mainly of thelmsses.
» SPA_GUI From this class the whole application is launghesgpecially the GUI.

e HOW_TO_DIALOGThis class is for a pop-up window, describingcsnctly the use
of the Precondition Enforcement Analysis. It appeghen pressing the Help Menu.

* MAIN_WINDOW This class contains the main part of the GUI mpgibn, containing
the composition of the main window, the menu bar Eta Ace file has been chosen,
it creates an instance @TATIC_ANALYZERwhich processed the precondition
enforcement analysis. Furthermore it shows, thiléa calls and the others in a tree
and is responsible for the movement of the singlks.c

In Figure 4-6 the code extract from cl&gaIN_WINDOWshows, how a call can be moved to
the fulfilled calls, which could not be determiniedbe fulfilled by the static analysis.

39

sel ected_cal | : FEATURE_CALL
make_ful fill ed: BOOLEAN

-~ In initialize the agent, nove_call _left is attached to the
move_call_left_button.
create move_call_left_button. make _w th_text_and_action
"< agent nove_call _left)

--Agent sel ect ed_i t emhas been attached to every call.

sel ected_item(a_call: FEATURE_CALL) is
-- Save selected item in ° sel ected_cal |’
do
sel ected_cal | :=a_call
end
fulfilled_calls_w ndow (left: BOCLEAN) is
-- To know, whether left or right tree is selecte d
do
make_fulfilled:= not left
end
nove_cal | _left is
-- Move “selected_call' from one list to the othe r and

-- change the call's status

do
if selected_call /=Void andthen rmake_fulfilled then
-- change flag in call
if not_fulfilled_calls_tree.selected_item /= Void then
-- User thinks call should be considered fulfil led
sel ected_call.set_considered fulfilled
fill_call_lists
sel ected_cal | :=Void
end
end
end

Figure 4-6: How a call is moved from one tree @ dither.

The trickiest part turned out to be, that a presipselected call cannot be moved to the other
tree, if a call from the other tree has been setedately, and the wrong move button is

40

pressed. This has been solved by the Boolean w@tnibake fulfilled which is true, if the
lately selected call is in the tree of the nonifiglfl calls. Furthermore every tree item, which
is a leaf (every call) is equipped with an agseglected_itemwhich saves the lately selected
call. The butten to move a call to the left is elied with the agennhove_call_left which
changes the state of the call withlected_calbet considered_fulfillednd then repaints the
graphical trees.

4.4. Extensions

It has to be mentioned that the application cay belexecuted for one program. For another
program another application has to be started. Thibecause the compiler cannot be
reinitialized as is, but it keeps singleton to adsn internal table, which can not be
reinitialized a second time.

A further extension is for not fulfilled calls tdv@w, if at least some part of the precondition
could have been determined to be fulfilled. As thi®rmation is already contained in the
table of calls, and the table of callees for thecpndition expression, it could be done
straightforwardly by extending the GUI.

Furthermore only the calls in the program’s roatstér are analyzed, because the other calls
(often within a library) are expected to be alreagdgured. This can be easily changed, if one
wants to verify every call of a program, by comniagptout the corresponding code in
get_call_infos in check contractan the classSTATIC_ANALYZERand infill_calls in
STATIC_ANALYZER_GUIn any case the whole program has to be processece the
callees can be anywhere in the universe. A possikiiension is, that a user can select the
cluster or classes, he wants to analyze in the GUI.

It would enhance runtime checking, if we had thesgility to turn off the statically
guaranteed preconditions for dynamic testing.

41

Chapter 5 - Project Plan

Eventually, we compare the goals determined inghagect plan with the result of this
project.

5.1. Achievements

5.1.1. Static Analysis

As we planned to start with a static analysis, Whidiompares a precondition with a client’'s

condition only by string comparison, the resultamalysis is quite striking, since it includes

logic rules and special verification for a precdioai, which assures that a reference is not
void.

5.1.2. Graphical User Interface (GUI)

In the project plan, we intended to create oneofistuspicious calls, for the calls, which could
not be determined to hold in the static analysis$ te list of false positive, for calls, which
the user considers to be fulfilled, although treistanalysis could not determine it. We think
now, it is better to provide a list (or a tree) fobe fulfilled calls and for the possibly fulfilled
calls, because it gives the user more flexibilityahalyse the result of the analysis. However,
the GUI rather gives a view of the analysis andotizer functionality, it can be changed
easily.

5.2. Limitations

Although, we planned to persist the calls, whicluldonot be verified to hold, but are
considered to be fulfilled by a user, in order tthace the incremental development and
software quality analysis, this version of the Bt&recondition Analyzer does not support
that functionality.

The intended result to insert check instructionbuy fixes turned out to be useless, because
check instructions are treated even weaker thatopditions. It now seems to us like double
checking something, which is not recommended. @mother hand the expense of bug fixes
seems not to be justified, as if an error can l@do it can be directly corrected in the source
code.

42

Chapter 6 - Experimental Results

From the calculator example (included in Eiffel @), we obtained the following statistics:

Statically fulfilled calls In the whole program the root cluster
if conditional 9

implication 18

loop 0

not void 344 10

“a /= void” expressions in 1455 14

preconditions

calls with preconditions 2318 14

calls 11654 148

classes 166 10

It shows clearly that the most successful pattertiifiding a fulfilled precondition is to check
whether the precondition is like a /= Void.

On the one hand it shows a big problem of objelented languages, that references may or
may not be void, because it appears so often. @mttmer hand it is quite difficult or some
times impossible to verify a complicate preconditexpression including attributes and calls
under the scope of this thesis, which did not idelunore complex analysis like e. g. flow
analysis.

Furthermore, if the whole program is analyzed, éhmre many calls without preconditions.
One reason is that also native libraries are callédch are not equipped with preconditions.

43

Chapter 7 - Conclusions

The goal of this thesis has been to develop acs#atalysis tool, which verifies whether
preconditions are guaranteed to hold. Especialiysimple preconditions the analysis should
be like a filter, which warns a project managerewlprecondition compliance is not obvious.
A GUI should comfortably present the result of @malysis.

Preconditions, which ensure that a reference is/oiok, are especially well addressed by the
static analysis. As such preconditions are usedt mften, the analysis can detect many
fulfilled preconditions. Furthermore, complex praddions which are implied in terms of
logic rules are supported as well. However, momamex preconditions, including attributes
or even function calls are very hard to verifytlsy require complex and extensive analysis
beyond the scope of this thesis. Therefore, a byapiproach is favoured, combining static
and dynamic checking.

The GUI supports systematic checking for possibifliilled calls, providing the user a clear
overview. The calls can be comfortably managed. & yet stood aside for incremental
use of the analysis, because the GOBO Eiffel Loul tdoes not support incremental
compilation. Instead, we have focussed on furtimgarovements of the static analysis.

Although there are many possible extensions forRrecondition Enforcement Analysis, it
has turned out, that static verification is a ubefiod important tool in the development
process of quality software.

44

Chapter 8 - User Manual

System Requirements

As the GUI makes only use of the EiffelVision 2réiby, the Static Precondition Analyzer is
supposed to run under different platforms, but heen tested on Windows XP only.

Installation
To install the Precondition Enforcement Analyzeg steps below have to be follows.
1. Download the filePreconditionEnforcementAnalysis.zip which contains:

» the source code in the “src” directory

* user manual in the “doc” directory

» GOBO Eiffel library in the “library” directory

» License.txt the licence for the software

* Readme.txt describes the installation for the PreconditioioEcement Analysis, and
further information

2. Unzip the file to a directory and set the enmnent variable
$PRECONDITION_ENFORCEMENT_ANALYSIS to the chosemnediory.

Use of Precondition Enforcement Analysis

When you launch the Precondition Enforcement Angjythe main window shows up (see
Figure 8-1).

45

[2] Precondition Enforcement Analysis
File Help

Callz with fulfilled precondition: Callz with pozzibly not fulfiled precondition:

.
>

Figure 8-1: Application window, after the PrecorahtEnforcement Analysis has been launched.

Now you either to click on the Help menu, which pagp a succinct description of the
Precondition Enforcement Analysis, you click thdeFi> Open menu and choose the
corresponding Ace file for the program you intendanhalyze or you click the File -> Exit

menu to end the application. Additionally, the aggtlon can be terminated by the X- button.

If you have successfully chosen the Ace file, threcBndition Enforcement Analysis is
immediately performed. Consequently two trees dif aae class-wise presented (see Figure
8-2). In the left tree the calls, which are detemxwi to be fulfilled by the analysis are shown.
On the right tree the calls, which could not beicily determined to be fulfilled.

46

(2] Precondition Enforcement Analysis

File Help
Calls with fulfiled precondition: Calls with poszibly nat fulfiled precondition:
- Class Tm
+-SET_LP - SET_LIP
= CALCULATOR --help_action
+- make STD_FILES.putstring - line S8 column 4
-l-5E55i0N STD_FILES.putstring - line 61 column 4
CALCULATOR, start - ling 53 column S + CALCULATOR
CALCULATOR.over - line 55 colurmn 5 STATE
CALCULATOR, action - line 57 column S HELP
CALCULATOR.next - ling 58 column S QUESTION
+-start < EMPTY
+- OveEr FPLLIS
¥ action # MINUS
+- et MULTIPLY
+- initialize CIVIDE
+-STATE
+-HELP
+- QUESTION
+-EMPTY
+-PLUS
+- MINUS
+ - MULTIPLY
+-DIVIDE

Figure 8-2: Result of the performed PreconditiofioEsement Analysis.

Now, you go through the trees, where every leafasgnts a call. If you think, that a call,
which appears on the right hand side, does futiilprecondition, you can move it to the other
tree by selecting it and pressing the correspondirt¢gpn. The first item in the tree “Class”
gives the root, where its children are all classelsich have been analyzed e.g. the class
SET_UR CALCULATORZetc. Below the clasSALCULATORare the analyzed features, e.g.
sessionAfter sessionwe have the itemCALCULATORStart— line 53 column 5”. This item
represents the call to the routine start from thesCALCULATOR

47

[l Precondition Enforcement Analysis

File Help
Calls with fulfilled precondition: Calls with poszibly nat fulfiled precondition:
- Class --Class
+ SET_UP +-SET_LIP
= CALCULATOR = CALCULATOR
4 make +- make
+- SE55I0N = start
- gtart MY is_egual - line 62 column 4
HELP.do_one_state - line 65 colurmn 4 +- OvEr
+- action i +-STATE
+- next 4 HELP
+- initialize > +- QUESTION
+-STATE EMPTY
+-HELF FLUS
+- QUESTION IMINUS
+- EMPTY MULTIPLY
+-PLUS DIYIDE
+- IINUS
+- WULTIPLY
+- DIVIDE

Figure 8-3: Select a call, to move it to the otinee.

Now, you may have decided that the calisofequalin Figure 8-4 is fulfilled, as the Analyzer
does not support Boolean functions. Therefore yantwo put the call to the other tree. Thus,
you select the call (see Figure 8-3) and press<tiicbutton. The result is illustrated in Figure
8-5.

-- Extract of class CALCULATOR
start is

-- Start session

do
hel p_state. do_one_state
current _state:= gst
ensure
current _state.is_equal (gst)
end

Figure 8-4: Extract of the calculator example

48

[i] Precondition Enforcement Analysis

File Help
Calls with fulfilled precondition: Calls with possibly not fulfiled precondition:
- Class w
+-SET_IUP +-SET_IUP
= CALCULATOR = CALCULATOR
+- make +- Over
+- SESSION STATE
- start HELF
HELP.do_one_state - line 65 colurmn 4 QUESTION
I AMY.is_equal - line 68 column 4 EMPTY
+- Oyer - FLUS
+- action MIMLIS
- et i MULTIPLY
+- initialize DIVIDE
+-STATE
+-HELP
+- QUESTION
+-EMPTY
+-PLUS
+- MINUS
+- MULTIPLY
+-DIVIDE

Figure 8-5: The selected call appears on therkedt, thnarked with a “!”.

Figure 8-3 and Figure 8-5 illustrate the move o&kito the other (left) tree.

You should use the Precondition Enforcement Anajysi carefully look at the calls which
have not been determined to be fulfilled and torowp the quality of your software assuring
the sound use of routines.

49

References

[1] Bertrand MeyerObject-Oriented Software Construction, 2nd editiBrentice Hall, 1997.

[2] Bertrand MeyerEiffel, the LanguagePrentice Hall Object-Oriented Series, 1992

[3] Eric Bezault: Gobo Eiffel ProjectRetrieved March 2004 from
http://www.gobosoft.com/eiffel/gobo/index.html

[4] J. L. Lions (Chairman of the boardyriane 5, Flight 501 Failure Paris, 19 July 1996
http://www.sunnyday.mit.edu/accidents/ArianeSacotdeport. html

[5] Jean-Marc Jézéquel and Bertrand Mefasign by Contract: The Lessons of Ariane
http://archive.eiffel.com/docs/manuals/technologwptcact/ariane/page.html

[6] Ken Garlington:Critique of “Put it in the contract: The lessons Afiane”, 7 August 1997,
Revised 16 March 1998ittp://home.flash.net/~kennieg/ariane. html

[7] Erich Gamma, Richard Helm, Ralph Johnson, JohnsMés: Design Patterns: Elements of
Reusable Object-Oriented Softwal®95, Addison Wesley Publishing Company

50

