WASABI SYSTEMS, INC.

Wasabi® Software Development
Tools User’'s Guide for Intel
XScale® Microarchitecture

Version 1.0
March 2004

wasabi

Copyright © 2004 Wasabi Systems, Inc. All rights reserved.

No part of this document may be reproduced, modified, or distributed in any form or by
any means without the prior express written consent of Wasabi Systems, Inc.

Wasabi® and the Wasahi logo are registered trademarks of Wasabi Systems, Inc. All
other brand and product names are trademarks of their respective owners.

Part Number: WUG001.V1.00

How to Contact Wasabi

Wasabi Systems, Inc.
500 E. Main Street, Suite 1520
Norfolk, VA 23510 USA

EMAIL: i nf o@wasabi syst ens. com
PHONE: +1 (757) 248-9601

FAX: +1 (509) 461-7283

URL: htt p: // ww. wasabi syst ens. cont

Font Conventions

This manual uses the following highlighting conventions:

Boldface indicates graphical user interface (GUI) controls such as the names of
fields, buttons, or menus.

Italics indicates cross references, book titles, and emphasized words.

Monospace indicates code, commands, file names, directory paths, and user
entered text in program samples.

Monospace Italics indicates avariable in acommand that you should replace
with avalue of the appropriate type.

Blue monaospace indicates compl ete Internet addresses (URLS):
http://ww. wasabi syst ens. com

The following format indicates code displayed on screen. Prompts and program
output are displayed in monospace bol d, code that you are to enter isin
monospace font.

C.\> processor-elf-run hello
hell o worl d!

3+4 =17

C\>

Wasabi Software Development Tools User’s Guide

http://www.zembu.com
http://www.zembu.com

Contents

110 L1 o 1 o o I 1
TOOIKIT FEALUIES ...ttt ettt s ae e s te s te st e s eeseesnaesneesanens 2
00 o V= =T o PR 2
SUPPOITEA TAIGELSveeve ettt ettt s 2

ST 0] 0101 (=0 I (01 £ 2
OBJECE FIlE FOMMELcve it 2
Tool Naming CONVENLIONS..........oieieeeesesesieetesee e eee et ereeeesee e saen e seeseeeseeseeseens 3
CaSE SENSIIVITY .eeveicieicec e et es e e e e e e e e sre e sae e sre e saeesaeesreesreenres 4
Installation and REDUITAINGc.veiiiiiieiri e e e 5
REA HAL LINUX 9o 6
INSLAIHBEION ...ttt re e s e et b e b e saaesbee st ae b aeraesanesns 6
Rebuilding From Source COEcceveiveriieiicrtiestee e sr e 7
WINAOWS XP ..ottt ettt sttt e b et e e be e be e be e be e beenneenbeesbenas 9
INSLAIHBEION ..ottt ettt eb e e sbaesbee st be b ae s eesanenes 9
Rebuilding From SoUrce COEccvriireeiiesiesie ettt e 10

LI L] = | USSR 13
Create SOUMCE COUE.c.veeieeieeteeeee ettt sttt e re e st eaeesaeesaeesaeesaeesaeesbe e e 15
Compile, ASSEMbBIE @N LiNKcoiieiiiieieeseee st e 16
RUN the EXECULADIEocee ettt s e s 17
Run on the Stand-alone SIMUIELONccooriieniesereeree e 17
Debugging With GDBcocuciiiee ettt et sre e 18
Debugging EXAMPIES........occvieeeieeeee et e 19
Assembler Listing from Source Code.........covviiiiiicieiiie e 23
REFEIENCE ...ttt b e ae e bbb e e abeeaae e ras 25
(000] 1171 11 1= ST TSPS PP 26
Command LinNg OPLiONS.......c.ueiviiririiriereriistesie sttt 26
Preprocessor SYMDOIS.........ciiiiiiiie et e e e e e e e e enne s seas 33
ATIDULES ...t b e b e e abeeare e eras 33

Wasabi Software Development Tools User’s Guide

ARM Pragimas........cooeiiieiieiiesiees et 35

VBCLON TYPES... ettt n et enes 35
VECtOr INtMNSIC FUNCHIONScovveiicieicecee sttt e 36
ABI SUMIMEIY ...ttt e be bbb st ae e saeesnbe s 38
Data Type Sizes and AlIGNMENES.......cccoecieieeiienicseeeeee e e e s 38
SUBIOULINE CallS......eiiveeeiiicie ettt sttt se e saesre e s aene s 39
SEACK FFAIME ... e e s et e e ne et sneeneens 40
C Language Calling CONVENLIONS.........ccccoieiiiieeiesiece et re e sre e sraene s 42
FUNCLION REIUMM VEIUEBS ..ottt et s 43
ASSEMDIEN ...t ettt nne e 44
Command LinNg OPLiONS.......coerireririerie sttt 44
R 41 U T PSR RPTPR 46
Local SYMBDOI NAMES.......cocciiiiee ettt s re e s eras 46
SPECIEl CRArBCTENS. ...ttt et 47
REGISLEr NBMES........eciiciecie ettt sttt se e st e reeae e e sreens 48
FlOBLING-POINT. ...ttt e sr e 49

(O 000 [49
ARM MaChing DIreCLIVES.......ccceie ittt sre s 49
ASSEMDBIEr ErFOr MESSAJESccueviieereesee e stiesteesteesreesteesseeseeesseeseesseenseeseesesnsessees 50
[T 0120 SO 51
Command LinNg OPLiONS.......c.ueoviiieireireiesiesiesie et ss e snesne e 51
Interworking Between ARM and Thumb Code..........ccccovvveeneenencenececeeee e, 51
OBJAUMP. ...ttt e b ettt ne e et e e e e 52
Command Ling SWITCHoiie i e 52
= o0 oo = O TS TRR 54
Command LinNg OPLiONS.......coeitireririirie ettt e e 55
SIMUIBLO ...t et ettt e e e e eneeeeseeene e seenteseeeaeeneeseeneennas 56
Command LiNE OPLIONS.......cccceiieiierieriieesieesieeseesteestesseessteesteeneeeesseesneesnessnessenenns 56
BibliOGrapNy ... e 57

Wasabi Software Development Tools User’s Guide

1 wasabi

Introduction

The Wasabi Software Development Tools are a complete solution for C and C++
development for Intel XScale® Microarchitecture. The toolsinclude the compiler,
interactive debugger and utilities libraries.

The Wasabi Software Development Tools User’s Guide consists of the following
sections:

Introduction
An introduction to the features of the Wasabi Software Development Tools

Installation
Installation instructions for the software

Tutoria

Instructions for compiling, linking, and debugging a sample program
Reference

Intel X Scale® Microarchitecture features of the main Tools
Bibliography

Wasabi Software Development Tools User’s Guide

Introduction

Toolkit Features

This section describes features of the Wasabi Software Development Tools specific to
the Intel X Scale® Microarchitecture.

Processor Version
Processors based upon Intel X Scale® Microarchitecture.

Supported Targets

Wasabi Instruction Set Simulator.

Both big-endian and little-endian mode may be selected. The default islittle-endian. The
target boards are only supported in little-endian mode.

Supported Hosts

CPU Operating System Vendor
x86 Red Hat Linux 9 Red Hat Inc.
x86 Windows XP Microsoft

Object File Format
The tools support the ELF object file format. Refer to Chapter 4, System V Application
Binary Interface (Prentice Hall, 1990). Usel d, or obj copy to produce S-records.
For information on using | d, see Using LD, the GNU linker at:
http://ww. gnu. or g/ manual / manual . ht ni

For information on obj copy, see GNU Binary Utilities at:
htt p: //wwv. gnu. or g/ manual / manual . ht m

2 = Wasabi Software Development Tools User’s Guide

Tool Naming Conventions

Tool Naming Conventions

Wasabi cross-development tools normally have names that reflect the target processor
and the object file format output by the tools (for example, ELF). This makesit possible
to install more than one set of toolsin the same binary directory, including both native
and cross-devel opment tools.

The complete tool name is athree-part hyphenated string. The first part indicates the
processor family (xscal e). The second part indicates the file format output by the tool
(el f). Thethird part is the generic tool name (gcc).

For example, the GCC ELF compiler for the Intel XScale® Microarchitectureis.
xscal e-el f-gcc

The Intel XScale® Microarchitecture package includes the following supported tools:

Tool Description Tool Name ELF
GCC compiler xscal e-el f-gcc
C++ compiler xscal e-el f-g++
GAS assembler xscal e-el f - as
GNU LD linker xscal e-el f-1d
Stand-alone simulator xscal e-el f-run
Binary Utilities xscal e-el f-ar

xscal e-el f-nm
xscal e- el f - obj copy
xscal e- el f-obj dunp
xscale-elf-ranlib
xscal e-el f-readel f
xscal e-el f-si ze
xscal e-el f-strings
xscal e-el f-strip
GDB debugger xscal e-el f-gdb
xscal e- el f-insi ght

Wasabi Software Development Tools User’s Guide 3

Introduction

Case Sensitivity

The following strings are case sensitive under Linux and Windows XP:
command line options
assembler labels
linker script commands
section names
file names within makefiles
file names are case sensitive under Linux
The following strings are not case sensitive under Linux or Windows XP:
GDB commands
assembler instructions and register names

Case sensitivity for Windows XP is dependent on system configuration. By default, file
names under Windows XP are not case sensitive.

4 = Wasabi Software Development Tools User’s Guide

2 wasabi

Installation and Rebuilding

This section describes how to correctly install the Wasabi® Software Development
Tools, and to rebuild the binaries from source code, on systems running the Red Hat
Linux 9 operating system, and on systems running the Windows X P operating system.

Wasabi Software Development Tools User’s Guide 5

Installation and Rebuilding

Red Hat Linux 9

This section describes how to install the Wasabi Developer Tools on a system running
Red Hat Linux 9, and how to rebuild the tools from source code.

Installation

The name of the file containing the compl ete set of binary toolsis called:
t ool nane-t ool s- YYYYMVDD- | i nux. tar. gz

where the variablet ool nane is replaced with tool name found on the CD, and YyYYmvDD
isreplaced with the release date found on the CD. The file may beinstalled in the default
location (/ usr/ 1 ocal /) using root privileges or in any other convenient directory.

Follow these instructions to correctly install the Wasabi Developer Tools on a system
running Red Hat Linux 9:

1. Login asthe user who ownstheinstall directory (/i nstal |l -dir/).

2. Usethis command to make the install directory current.
cd /install-dir/

3. Usethis command to unpack the files:
tar xvzf /path/where/received/tool name-tool s- YYYYMVDD- | i nux. tar. gz

4. To access the compiler make sure that the ingtall directory is on your path. For
example, for Borne Shell users:

PATH=/ i nst al | - di r/ bi n: ${ PATH}
export PATH
or for C Shell (*csh) users:
setenv PATH /install-dir/bin:${PATH}/

In addition, if you did not install in/ usr/1 ocal /, you must set an environment
variable. For Borne Shell users:

GCC_EXEC PREFI X=/install-dir/lib/gcc-1ib/
export GCC_EXEC PREFI X
or for C Shell (*csh) users:
setenv GCC_EXEC PREFI X /install-dir/lib/gcc-1ib/
NOTE In the code example above, the trailing forward slash character (/) isrequired.

6 = Wasabi Software Development Tools User’s Guide

Red Hat Linux 9

Rebuilding From Source Code

Thefile containing your sources should expand to a directory hierarchy with src/ at the

top.

1

Choose a directory to contain the src/ structure and your build directories. For
example:

cd ~; nkdir xscale-tools; cd xscal e-tools
Next, unpack your sources. For example:
tar xvzf /path/where/received/tool nane-tool s- YYYYMDD-src.tar. gz

where the variablet ool nane is replaced with tool name found on the CD, and
YYYYMVDD is replaced with the rel ease date found on the CD.

Next, create abuild directory:
nkdir build; cd build
Configure the sources:
..Isrcl/configure --target=xscal e-elf --prefix=/usr/local

The- - prefi x option should give the directory you want the tools to be installed
in. /usr/1ocal istheusual location, but you can specify any location for which
you have write access. Thetools will not be installed there until the final nake
command.

Build the tools:;
make al |
Install thetools:

make i nstall

NOTE Thisisthe command that requires write accessto your pref i x directory.

7.

To use the tools they must be placed on your path. For example, for Borne Shell
users:

PATH=/ usr/ 1 ocal / bi n: ${ PATH}
or for C Shell (*csh) users:
set env PATH /usr/ 1 ocal / bi n: ${ PATH}/

Wasabi Software Development Tools User’s Guide 7

Installation and Rebuilding

8. A smpletest isto compilethe canonical “hello world” program and then runit on
the smulator. Create afilef oo. ¢ with the following text:

int main()

{
printf ("Hello world\n");
return O;

}

9. Then execute these commands:
xscal e-el f-gcc foo.c -0 foo
xscal e-el f-run foo

If the toolchain is properly installed, you should see “Hello world” on your
console.

8 = Wasabi Software Development Tools User’s Guide

Windows XP

Windows XP

This section describes how to install the Wasabi Developer Tools on a system running
Windows X P, and how to rebuild the tools from source code.

Installation

The Wasabi Developer Tools for Windows XP work under Cygwin 1.5.7. Cygwinisa
Linux-like environment for Windows. Cygwin consistsof aDLL (cygwi n1.dl 1) thatis
aLinux emulation layer, and a collection of toolsthat provide a Linux look and feel.

In addition to the standard installation of Cygwin, you heed to install the GNU
Internationalization runtime library (i bi nt1).

If you do not have Cygwin 1.5.7, and the GNU Internationalization runtime library on
your system, point your web browser at:
http://cygw n.com

and click on the“Install Cygwin now” icon at the top right of the web page to invoke
the set up. exe installation program. Follow the onlineinstallation instructions to install
the standard Cygwin 1.5.7 installation, and then to install 1i bi nt 1 .

The name of the file containing the complete set of binary tools for Windows systemsis
caled:
t ool name-t ool s- YYYYMVDD- cygwi n. zi p

wherethe variablet ool nane is replaced with tool name found on the CD, and YYYYMVDD
is replaced with the release date found on the CD.

IMPORTANT These tools have been built against Cygwin DLL version 1.5.7. Please make
sure your system has this version of Cygwin installed.

Follow these instructions to correctly install the Wasabi Developer Tools:

1. Thezp file should be unpacked using a utility such as WinZip. The tools are
normally unpacked in C: \ WASABI .

2. After unpacking the tools, open a Windows Command Prompt dialog box. Y ou
will need to modify the following three environment variables:

set GCC_EXEC _PREFI X=C: \ WASABI \usr\l ocal \lib\gcc-1ib\
set PATH=%ATHY% C:. \ WASABI \ usr\ | ocal \ bi n\
set PATH=%ATHY% C:\ cygwi n\ bi n\

NOTE If you wish to unpack the toolsin a directory other than C: \ WASABI , you will
need to make the appropriate substitutions in the above commands. If you
installed Cygwin in a directory other than the default, modify the final

Wasabi Software Development Tools User’s Guide 9

Installation and Rebuilding

command.
Y ou can now use the tools from within the Windows Command Prompt box.

3. A simpletest to verify correct installation isto compile this canonical “hello
world” program and then run it on the simulator

a. Createthetextfile, foo. c:
int main()
{
printf ("Hello world\n");
return O;
}
b. Compile the program:
xscal e-el f-gcc foo.c -0 foo.x
C. Runthe executablef oo. x on the simulator:
xscal e-el f-run foo. x

If the toolchain is properly installed, you should see “Hello world” on your
console as aresult of executing this program on the simulator.

Rebuilding From Source Code

When rebuilding the toolchain in a Cygwin environment, the build system requires a
shell such as bash. Before you begin, open abash window. The Cygwin installation
program can place a“ Cygwin” icon on your desktop that opens abash window.

Thefile containing your sources should expand to adirectory hierarchy with src/ at the

top.
1. Choose adirectory to contain the src/ structure and your build directories. For
example:
cd ~; nkdir xscale-tools; cd xscale-tools

2. Next, unpack your sources. For example:
tar xvzf /path/where/received/tool name-tool s- YYYYMVDD-src.tar. gz

where the variablet ool nane is replaced with tool name found on the CD, and
YYYYMVDD is replaced with the release date found on the CD.

3. Next, create abuild directory:
nkdir build; cd build

10 = Wasabi Software Development Tools User’s Guide

Windows XP

4. Configure the sources:
..Isrc/configure --target=xscale-elf --prefix=/cygdrivel/c/wasabi

The- - pref i x option should give the directory you want the tools to be installed
in. /cygdrive/ c/wasabi isthe default location, but you can specify any location
for which you have write access. The tools will not be installed there until the
final make command.

5. Build thetools:
make al |
6. Ingal thetools:
make install
NOTE Thisisthe command that requires write accessto your pr ef i x directory.

7. If you no longer wish to work in the bash environment, type exi t . The rest of
these steps can be completed in a Windows command prompt window and the
syntax of the following commands reflect that.

8. To usethetoolsthey must be placed on your path. For example:
set PATH=%ATHY% c: \ wasabi

9. A basictest isto compile the canonical “hello world” program and then run it on
the smulator. Using atext editor, create afile called f oo. ¢ containing the
following text:

int main()

{
printf ("Hello world\n");
return O;

}

10. Then execute these commands:
xscal e-el f-gcc foo.c -0 foo.exe
xscal e-el f-run foo. exe

If the toolchain is properly installed, you should see “Hello world” on your
console as aresult of executing this program on the simulator.

Wasabi Software Development Tools User’s Guide 11

Installation and Rebuilding

12 = Wasabi Software Development Tools User’s Guide

3 wasabi

Tutorial

In thistutorial, we will:
Create source code for asample “Hello World” program.
Compile, assemble, and link the source code
Run the executable on the stand-alone simulator
Step through a sample debugging session using the GDB built-in simulator
Create an assembler listing from source code
For more detail on any of theindividual utilities, refer to the open-source utility manuals.

Wasabi Software Development Tools User’s Guide 13

Tutorial

The following chart outlines the sequence of stepsin the tutorial.

Create source code

I _______ 1

Compile, assemble Create assembler
and link the source listing from source
code code

|
Run the executable Debug with GDB
on the stand-alone on the built-in
simulator simulator

NOTE The assembler listing from source code is optional in the tutorial sequence.

14 = Wasabi Software Development Tools User’s Guide

Create Source Code

Create Source Code

Create the following sample source code and save it as hel | o. c. This program will be
used throughout the tutorial, and also can be used to verify correct installation.
#i ncl ude <stdio. h>

int a, c;

voi d foo(int b)
{

c =a+b;
printf("% + % = %l\n", a, b, c);
}

int main()

{
int b;

a 3;
b 4;
printf("Hello, world!'\n");
foo(b);

return O;

Wasabi Software Development Tools User’s Guide 15

Tutorial

Compile, Assemble and Link

To compile, assemble, and link this example to run on the GDB built-in ingtruction set
simulator, type:
xscal e-el f-gcc -g hello.c -0 hello

The - g option generates debugging information and the - o option specifies the name of
the executabl e to be produced. Other useful optionsinclude - ofor standard optimization,
and - @ for extensive optimization. When no optimization option is specified GCC will
not optimize. It is not necessary to specify the endian-ness of the program; little-endian
isthe defaullt.

For alist of available generic compiler options, refer to “GCC Command Options’ at:
htt p: //wwv. gnu. or g/ manual / manual . ht m

IMPORTANT Itisimportant to remember throughout the tutorial that the Wasabi Devel oper
Toolkit is case sensitive on all operating systems. Therefore, enter all
commands and options exactly asindicated in this document.

Programs can a so be compiled to run on specific hardware platforms. To compile a
program for a specific board, a specifications-file for that board must be included at
compilation. Each specifications file contains board-specific compiler settings. For
example, the - specs=i q80310. specs compiler option selectsthei q80310. specs file.
Some boards require a combination of a specifications file and other compiler settings.

Hereisalist of Intel boards, and their required compiler settings

Board Compiler Settings

80310 - specs=i q80310. specs

80321 - specs=r edboot . specs

IWMMXT - specs=r edboot . specs - ncpu=i wnmxt
IXDP425 - specs=r edboot . specs - nbi g-endi an
GRG - specs=r edboot . specs - nbi g-endi an

16 = Wasabi Software Development Tools User’s Guide

Run the Executable

Run the Executable

Throughout these examples, on-screen sample sessions are shown with a green
background. Code input is shown in plain monofont. Code output is shown in bold
monofont. The following examples were made using GDB (GNU Debugger) in
command-line mode on the Windows operating system. The system command prompt is
shownascC: \ >.

Run on the Stand-alone Simulator

To run this program on the stand-alone simulator, enter:
xscal e-el f-run hello

The simulator executes the program, and returns the system prompt when the program
exits.

C.\> xscale-elf-run hello

hel | o worl d!

3+4=7

C\>

Wasabi Software Development Tools User’s Guide 17

Tutorial

Debugging with GDB

The debugger can be accessed by graphic user interface (GUI), or in command-line
mode.

To start Insight, the GUI debugger, enter the command:
xscal e-el f-insight hello.exe

To start GDB in command-line mode, and run the sample program enter the command:
xscal e-el f - gdb hell 0. exe
After theinitial copyright and configuration information GDB returns its own prompt:
(gdb) .
C.\> xscal e-el f-gdb hello
GNU gdb 2003- 08- 25- cvs
Copyri ght 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
wel come to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details. This
GDB was configured as "--host=i 386-pc-cygwi n --target=xscale-elf"...

(gdb)
In our examples, we have selected the command-line interface to GDB. Command-line

operation is useful when you wish to capture program output for making transcripts like
these, or to display and capture code when reporting a bug in GDB.

To exit GDB, enter the qui t command at the (gdb) prompt.

(gdb) quit
C\>

18 = Wasabi Software Development Tools User’s Guide

Debugging with GDB

Debugging Examples

The following example debugging session was run on the GDB built-in ingtruction set
simulator. First we will step through and explain the sequence of commandsin the
sample debugging sessions, then we will show the actual transcripts of the session.

In each of the following steps, type the indicated command at the command prompt and
press the Enter key.

1. Start GDB:
xscal e-el f-gdb hell o. exe
2. Specify thetarget the program will run on with thet ar get command.
To specify theinstruction set simulator, use:
target sim
3. Loadthe program into memory:
| oad
4. Set abreakpoint at main:
break nain
5. Start the executable.

To run the executable on the instruction set simulator, use:
run

The program starts running and then stops at the breakpoint.
6. Display the value of the variable“a”
print a
7. Execute the next line in the program:
step
8. Display the current value of the variable “a”
print a
9. Display the source code of the program being debugged:
l'ist
10. Display the source code of the “f 0o” function:
list foo
11. Set abreakpoint at line seven:
break 7

Y ou can set a breakpoint at any line by entering br eak | i nenunber , where
I'i nenunber isthe specific line number in the source code.

Wasabi Software Development Tools User’s Guide 19

Tutorial

12.

13.

14.

15.

16.

17.

Resume normal execution of the program up to the next breakpoint:
conti nue

Step to the next line and execute it:
step

Display the value of the variable “c:”
print c

Continue to the next source line in the current (innermost) stack frame.

next
Thisissimilar tothest ep command, but function calls that appear within the line
of code are executed without stopping. Execution stops when control reaches a
different line of code at the original stack level that was executing when you gave
the next command.

See how the program got to the current line:

backtrace
A backtrace is a summary of how your program got to its current position. The
backt r ace command shows one line per frame, for many frames, starting with the
currently executing frame (frame zero), followed by its caller (frame one), and on
up the stack.

Exit the program and quit the debugger:
qui t

20

Wasabi Software Development Tools User’s Guide

Debugging with GDB

Debug with the Built-in Instruction Set Simulator

GDB can be used to debug executables with the built-in Instruction Set Simulator, which
does not require access to any hardware. In the following sample debugging session, we
usethetarget si m command to specify the Instruction Set Simulator as the target.

C.\> xscal e-elf-gdb hello

GNU gdb 2003- 08- 25-cvs

Copyright 2003 Free Software Foundation, |nc.

GDB is free software, covered by the GNU General Public License, and you are

wel cone to change it and/or distribute copies of it under certain conditions

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details. This

GDB was configured as "--host=i 386-pc-cygwi n --target=xscale-elf"...

(gdb) target sim

Connected to the simulator.

(gdb) | oad

Loadi ng section .init, size Oxlc vma 0x8000
Loadi ng section .text, size 0x926c vma 0x801c
Loadi ng section .fini, size 0x18 vma 0x11288
Loadi ng section .rodata, size 0x354 vma 0x112a0
Loadi ng section .data, size 0x8cO vma 0x11710
Loadi ng section .eh_frame, size 0x4 vma 0x11fdO
Loadi ng section .ctors, size 0x8 vma 0Ox11fd4
Loadi ng section .dtors, size 0x8 vma Ox11fdc
Loadi ng section .jcr, size 0x4 vma Ox11lfe4
Start address 0x8120

Transfer rate: 325216 bits in <1 sec

(gdb) break main
Breakpoint 1 at 0x82a0: file hello.c, line 15

(gdb) run

Starting program C:\hello
Breakpoint 1, main () at hello.c: 15
15 a = 3;

(gdb) print a
$1 =0

(gdb) step
16 b = 4

(gdb) print a
$2 =3

(gdb) 1ist

Wasabi Software Development Tools User’s Guide 21

Tutorial

11 int main()

12 {

13 int b;

14

15 a = 3;

16 b = 4;

17 printf("Hello, world!'\n");
18 foo(b);

19 return O;

20 }

(gdb) list foo

1 #i ncl ude <stdio. h>
2

3 int a, c;

4

5 voi d foo(int b)

6 {

7 c =a + b;

8 printf("% + % = %\n", a, b, c);
9 }

10

(gdb) break 7
Br eakpoint 2 at 0x824c: file hello.c, line 7.

(gdb) continue

Cont i nui ng.

Hel l o, worl d!

Breakpoint 2, foo (b=4) at hello.c:7
7 c =a+b;

(gdb) step
8 printf("% + % = %\n", a, b, c);

(gdb) print c
$3 =7

(gdb) next

3+4=7

9 }

(gdb) backtrace

#0 foo (b=4) at hello.c:9

#1 0x000082c4 in main () at hello.c:18

(gdb) quit
The programis running. Quit anyway (and kill it)? (y or n) y
C\>

22 = Wasabi Software Development Tools User’s Guide

Assembler Listing from Source Code

Assembler Listing from Source Code

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

The following command produces an assembler listing:
xscal e-elf-gcc -g -2 -Wa,-al -c hello.c

The compiler debugging option - g gives the assembler the necessary debugging
information. The - &2 option produces optimized code output. The - wa option tells the
compiler to pass the text immediately following the comma as a command line to the
assembler. The assembler option - al requests an assembler listing. The - ¢ option tells
GCC to compile or assembl e the source files, but not to link. Here is a partial excerpt of
the on-screen outpuit.

.align 2
.gl obal main
.type mai n, % unction
mai n:
. LFB5:
.loc 1 12 0
@args = 0, pretend = 0, frame =0
@frame_needed = 1, uses_anonynous_args = 0
003c ODCOAOE1 nmov ip, sp
. LCFI 1:
0040 00D82DE9 stnfd sp!, {fp, ip, Ir, pc}
. LCFI 2:
0044 04B04CE2 sub fp, ip, #4
. LCFI 3:
.loc 1 15 0
0048 1CCO9FE5 | dr ip, .L5
004c 0330A0E3 nov r3, #3
.loc 1 17 0
. LBB2:
0050 18009FE5 | dr ro, .L5+4
.loc 1150
0054 00308CE5 str r3, [ip, #0]
.loc 1 17 0
0058 FEFFFFEB bl puts
.loc 118 0
005c 0400A0E3 nov ro, #4
0060 FEFFFFEB bl f oo
.loc 120 0
. LBE2
0064 0000AOE3 nov ro, #0
0068 00A81BE9 ldnea fp, {fp, sp, pc}
. L6:
.align 2
. L5:
006¢c 00000000 .word a

Wasabi Software Development Tools User’s Guide 23

Tutorial

24 = Wasabi Software Development Tools User’s Guide

4 wasabi

Reference

This section describes the ABI and attributes of the main GNU tools specific to
Intel XScale® Microarchitecture.

Compiler

ABI Summary
Assembler
Linker
Debugger
Simulator

Wasabi Software Development Tools User’s Guide 25

Reference

Compiler

This section describes features of the GNU Compiler specific to Intel X Scale®
Microarchitecture.

Command Line Options

For alist of available generic compiler options, refer to “ GCC Command Options’ at:

http://ww. gnu. or g/ manual / manual . ht n

In addition, the following command line options for Intel XScale® Microarchitecture
are supported:

-mabort-on-noreturn

Generate acall to thefunction abort at the end of anor et ur n function. It will be
executed if the function triesto return.

-malign-literal -pool s32
-mo-align-literal-pool s32

The-nmalign-literal - pool s32 switch (disabled by default) causes the compiler
to align literal poolsto a 32-byte boundary (the cache line size on processors
based upon Intel X Scale® Microarchitecture).

-mal i gnment -tr aps

Generate code that will not trap if the MMU has alignment traps enabled. On
ARM architectures prior to ARMv4, there were no instructions to access
half-word objects stored in memory. However, when reading from memory a
feature of the ARM architecture allows aword load to be used, even if the address
isunaligned, and the processor core will rotate the data as it is being loaded. This
option tellsthe compiler that such misaligned accesses will causeaMMU trap and
that it should instead synthesize the access as a series of byte accesses. The
compiler can still use word accesses to load half-word dataif it knows that the
address is aligned to aword boundary.

This option isignored when compiling for ARM architecture 4 or later, since
these processors have instructions to directly access half-word objects in memory.

-mo-al i gnnent -traps

Generate code that assumes that the MM U will not trap unaligned accesses. This
produces better code when the target instruction set does not have half-word
memory operations (i.e., implementations prior to ARMv4).

Note that you cannot use this option to access unaligned word objects, since the
processor will only fetch one 32-bit aligned object from memory.

The default setting for most targetsis - mo- al i gnnent - t r aps, since this
produces better code when there are no half-word memory instructions available.

26 = Wasabi Software Development Tools User’s Guide

Compiler

- mapcs
Thisisasynonym for - mapcs- f r ane.

- mapcs-franme

Generate a stack frame that is compliant with the ARM Procedure Call Standard
for al functions, even if thisis not strictly necessary for correct execution of the
code. Specifying - f oni t - f r ame- poi nt er with this option will cause the stack
frames not to be generated for leaf functions. The default is - rmo- apcs- f r ane.

- mapcs- 26

Generate code for a processor running with a 26-bit program counter, and
conforming to the function calling standards for the APCS 26-bit option. This
option replaces the - n2 and - n8 options of previous releases of the compiler.

- mapcs- 32

Generate code for a processor running with a 32-bit program counter, and
conforming to the function calling standards for the APCS 32-hit option. This
option replaces the - n6 option of previous releases of the compiler.

- mar ch=NAME

This specifies the name of the target ARM architecture. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code.
This option can be used in conjunction with or instead of the - ncpu= option.
Permissible names are:

arnv2 ar nv2a arnv3 armv3m arnv4
ar mvat arnv5 ar nv5t armvbte i wmxt
- mat pcs

Generate code that conforms to the ATPCS (ARM Thumb Procedure Call
Standard). This ABI standard is dightly different from the APCS standard and is
incompatible in the way that small structures are returned from afunction. For the
APCS astructure like this:

struct { char a; char b; }
would be returned in memory, whereas for the ATPCS it isreturned in aregister.
- mbi g- endi an
Generate code for a processor running in big-endian mode; the default isto
compile code for alittle-endian processor.
-ncal | ee- super-interworki ng
Gives all externally visible functions in the file being compiled an ARM
instruction set header which switchesto Thumb mode before executing the rest of
the function. This allows these functions to be called from non-interworking code.

Wasabi Software Development Tools User’s Guide 27

Reference

-ntal | er-super-int erworki ng
Allows calls viafunction pointers (including virtual functions) to execute
correctly regardless of whether the target code has been compiled for
interworking or not. Thereis asmall overhead in the cost of executing afunction
pointer if this option is enabled.

- mcpu=NAME
This specifies the name of the target ARM processor. GCC uses this hame to
determine what kind of instructions it can emit when generating assembly code.
Permissible names are:

ar n2 ar n250 arnB ar nb

ar n60 ar m600 arntl10 arn620

ar nv arnvm ar nivd arnvdm

ar m7di ar mz7dmi arnm70 ar mv00

ar m700i arm/10 arn710c arni7100

ar n7500 ar n7v500f e arnivt dm arn8

arn810 arnb ar nbe arnB20

ar n920t ar nB40t ar not dm ar mLot dmi

ar mL020t strongarm st rongar ni10 st rongar nil100
xscal e core3 i wmmxt

IMPORTANT If you want the compiler to use the Intel® WirelessMM X ™ instructions, you
must use the - nepu=i wmxt command-line switch. If - rcpu=i wimxt is not
specified, codeis generated for processors based upon Intel X Scale®
Microarchitecture without the Intel® Wireless MM X™ technology.

- nf p=NUVBER

- nf pe=NUMBER
This specifies the version of the floating point emulation available on the target.
Permissible values are 2 and 3. - nf p= isasynonym for - nf pe=, for compatibility
with older versions of GCC.

- nf unc- pad- nop

- mo- f unc- pad- nop
Some processors based upon Intel XScale® Microarchitecture have a
performance problem which can cause afunction return instruction to take longer
to execute than it should. This problem can be worked around by inserting no-op
instructions in the function epilogue. This switch (disabled by default) tells the
compiler to do this.

- mhar d- f | oat
Generate output containing floating point instructions. Thisis the default.

28 = Wasabi Software Development Tools User’s Guide

Compiler

-mdmstm
-mo-ldmstm

The ARM architecture has load-multiple (LDM) and store-multiple (STM)
instructions, which are used in various places by the compiler. On processors
based upon Intel X Scale® Microarchitecture, the LDM and STM instructions
have a high issue latency, and thus are often slower than individual load and store
instructions. The - mo- | dm st mswitch disables the use of LDM and STM
instructions. The default is- m dm st m

-mittle-endian

Generate code for aprocessor running in little-endian mode. Thisisthe default for
all standard configurations.

-mong-calls
-mo- 1| ong-calls

Tellsthe compiler to perform function calls by first loading the address of the
function into aregister and then performing a subroutine call on thisregister.

This switch is needed if the target function will lie outside of the 64 megabyte
addressing range of the offset based version of subroutine call instruction.

Evenif this switch is enabled, not all function callswill be turned into long calls.
The heuristic is that static functions, functions which have the short - cal |
attribute, functions that are inside the scope of a#pragma no_l ong_cal | s
directive and functions whose definitions have already been compiled within the
current compilation unit, will not be turned into long calls. The exception to this
rule isthat weak function definitions, functions with thel ong- cal | attribute or
the secti on attribute, and functions that are within the scope of a

#pragma | ong_cal | s directive, will always be turned into long calls.

Thisfeatureis not enabled by default. Specifying - mo- | ong- cal | s will restore
the default behavior, aswill placing the function calls within the scope of a
#pragma | ong_cal | s_of f directive. Note these switches have no effect on how
the compiler generates code to handle function calls via function pointers.
-mrerge-literal -pools

-mo-nerge-literal -pools

The-mmerge-literal - pool s switch (disabled by default) causes the compiler to
merge literal pools across function boundary if possible. This allows for smaller
pools due to re-used values and fewer alignment paddings.

-mop-fun-dl | i nport

Disable support for thedl I'i nport attribute.

- npi c-regi st er =REG

Specify the register to be used for PIC addressing. The default is R10 unless
stack-checking is enabled, when R9 is used.

Wasabi Software Development Tools User’s Guide 29

Reference

- mpoke-functi on- nane
Write the name of each function into the text section, directly preceding the
function prologue. The generated codeis similar to this:
to
.ascii "armpoke_function_name", 0
.align
tl
.word Oxff000000 + (t1 - tO)
arm poke_f uncti on_nane

nov ip, sp
stnfd sp!, {fp, ip, Ir, pc}
sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at
fp + 0. If thetrace function then looks at location pc - 12 and thetop 8 bits are
set, then we know that there is a function name embedded immediately preceding
thislocation and haslength ((pc[-3]) & 0Oxff000000).
- msched- prol og
- mo- sched- pr ol og
Prevent the reordering of instructions in the function prolog, or the merging of
those instruction with the instructions in the function’s body. This means that all
functions will start with arecognizable set of instructions (or in fact one of a
choice from a small set of different function prologues), and this information can
be used to locate the start if functions inside an executable piece of code. The
default is - msched- prol og.
-mshort-| oad- byt es
-mo- short -1 oad- byt es
These are deprecated aliases for - mal i gnnent -t r aps and
-mo- al i gnnent - t r aps respectively.
-nmshort -1 oad- wor ds
-mo- short - | oad- wor ds
These are deprecated aliases for - rmo- al i gnnent -t r aps and
-mal i gnment - t r aps respectively.
- msi ngl e- pi c- base
Treat the register used for PIC addressing as read-only, rather than loading it in the
prologue for each function. The run-time system isresponsible for initializing this
register with an appropriate value before execution begins.
-msoft-fl oat
Generate output containing library calls for floating point.
WARNING Therequisite libraries are not available for all ARM targets. Normally the
facilities of the machine' s usual C compiler are used, but this cannot be done
directly in cross-compilation. Y ou must make your own arrangements to

30 = Wasabi Software Development Tools User’s Guide

Compiler

provide suitable library functions for cross-compilation. - msof t - f | oat
changes the calling convention in the output file; therefore, it is only useful if
you compile _all_ of aprogram with this option. In particular, you need to
compilel i bgcc. a, the library that comes with GCC, with - msof t - f | oat in
order for thisto work.

-mstrict-prototypes

-mo-strict-prototypes
The-mstrict-prot ot ypes switch (enabled by default) causes the compiler to
implement functions and function calls with parameter sizes according to their
types, wherever possible. With - mo- st ri ct - pr ot ot ypes the compiler will
ensure all call parameters have at least integer size. Also, function prologues will
convert parameters back to the sizes of their declared types. This may be
necessary for compatibility with older object code.

-mstruct ure-si ze- boundary=N
The size of all structures and unionswill be rounded up to amultiple of the
number of bits set by this option. Permissible values are 8 and 32.

The default value varies for different toolchains. For example, a COFF targeted
toolchain has a default value of 8. Specifying the larger number can produce
faster, more efficient code, but can also increase the size of the program. The two
values are potentially incompatible. Code compiled with one value cannot
necessarily expect to work with code or libraries compiled with the other value, if
they exchange information using structures or unions.

-t hunb
Generate code for the 16-bit Thumb instruction set. The default isto use the 32-bit
ARM instruction set.

- m hunb- i nt er wor k

- mo- t hunb- i nt er wor k
Generate code which supports calling between the ARM and Thumb instruction
sets. Without this option the two instruction sets cannot be reliably used inside
one program. The default is - rmo- t humb- i nt er wor k, since dightly larger codeis
generated when - nt hurb- i nt er wor k is specified.

-ntpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Standard
for all non-leaf functions. (A leaf function is one that does not call any other
functions.) The default is - rmo-t pcs- f r ane.

-mpcs-| eaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Standard
for all leaf functions. (A leaf function is one that does not call any other
functions.) The default is - mo- apcs- | eaf - fr ane.

Wasabi Software Development Tools User’s Guide = 31

Reference

-m une=CPU- TYPE

This option is very similar to the - ncpu= option, except that instead of specifying
the actual target processor type, and hence restricting which instructions can be
used, it specifiesthat GCC should tune the performance of the code asif the target
were of the type specified in this option, but still choosing the instructions that it
will generate based on the cpu specified by a - ncpu= option. For some ARM
implementations better performance can be obtained by using this option. For a
list of permissible values for CPU- TYPE, see the - ncpu= option.

-mwrds-little-endian

This option only applies when generating code for big-endian processors.
Generate code for alittle-endian word order but a big-endian byte order. That is, a
byte order of the form 32107654.

NOTE This option should only be used if you need compatibility with code for

big-endian ARM processors generated by versions of the compiler prior to
2.8.

-nxscal e- schedul e-nul t

Processors based upon Intel XScale® Microarchitecture have a non-pipelined
multiplier unit with avariable result latency that requires accurate modelling to
avoid pipeline stalls. Using this option with some source code leads to good
performance improvements, however in others, it causes the instruction
scheduling pass to generate | ess suboptimal code.

Thisoption may be used in conjunction with - f no- schedul e- i nsns to disablethe
first instruction scheduling pass and improve the quality of generated code.

32 = Wasabi Software Development Tools User’s Guide

Compiler

Preprocessor Symbols

Following are some relevant preprocessor symbols supported by the compiler for the
Intel X Scale® Microarchitecture. The complete list can be found by invoking the

compiler as:

xscal e-el f-gcc -dD -E -P -xc /dev/null

Y ou may add other options that you would normally use between - xc and / dev/ nul | .

Symbol Condition

arm Is always defined.

__APCS 32__ If - mapcs- 26 has NOT been specified.

__APCS 26 If - mapcs- 26 has been specified.

__SOFTFP__ If - mhar d-f1l oat has NOT been specified.

__ ARWEL__ If - mbi g-endi anand - mvords-little-endian
have been specified.

__ARMEB If - mbi g- endi an has been specified.

__ARMEL__ If - mbi g- endi an has NOT been specified.

—_ARM ARCH 5TE__ Is defined by default.

__ARM XSCALE _ Is defined by default.

O TWMWKT If - mcpu=i wimxt has been specified.

Attributes

There are a few function attributes which are specific to the ARM target. For more
information, see “Declaring Attributes of Functions” in “ Extensions to the C Language

Family’ at:

http://ww. gnu. or g/ manual / manual . ht m

I ong_cal | /short _cal |

These attributes specify how aparticular functionis called on ARM. Both
attributes override the - m ong- cal | s and #pragma | ong_cal | s settings. The

| ong_cal | attribute causes the compiler to aways call the function by first
loading its address into aregister and then using the contents of that register. The
short _cal | attribute always places the offset to the function from the call site
into the BL instruction directly.

For example:

void fn (void)

_attribute__ ((long_call));

Wasabi Software Development Tools User’s Guide = 33

Reference

i nterrupt
This attribute indicates that the specified function is an interrupt handler. The
compiler will generate appropriate function entry and exit sequences. You can
specify the kind of interrupt to be handled by adding an optional parameter to the
interrupt attribute. The permissible values for this parameter are: IRQ, FIQ, SWI,
ABORT, UNDEF.
For example:
void fn (void) __attribute__ ((interrupt ("IRQ)));
naked
This attribute indicates that the specified function does not need
prologue/epilogue sequences generated by the compiler. The programmer must
provide these sequences as required.
For example:
void fn (void) __attribute__ ((naked));

34 = Wasabi Software Development Tools User’s Guide

Compiler

ARM Pragmas

The ARM target defines pragmas for controlling the default addition of | ong_cal | and
short _cal | attributesto functions. For more information on these attributes, see
“Attributes’ on page 33.
GCC supports these ARM pragmas.
long_calls
Set all subsequent functions to have the | ong_cal | attribute.
no_l ong_calls
Set all subsequent functionsto have the short _cal | attribute.
I ong_cal I s_of f
Do not affect thel ong_cal | or short _cal | attributes of subsequent functions.

Vector Types

GCC includes limited support for vectors. Vectors are short fixed length arrays, which
map onto the data types that correspond to Intel® Wireless MM X™ Technology.
Vectors are declared using the compiler’ s attribute mechanism. GCC supports three
vector types. two 32-bit values, four 16-hit values, and eight 8-bit values.
Two 32-bit values:
typedef long long int_vector __attribute__ ((node(V2Sl)));
Four 16-bit values:
typedef long long short_vector __attribute__ ((node(V4H)));
Eight 8-bit values:
typedef long |ong char_vector __attribute__ ((node(V8Q)));
These vector types can be regarded as if they were arrays of the same length and size.
However, they can also be operated upon by the instructions of the Intel® Wireless
MMX™ Technology by using the intrinsic functions feature of the compiler.

Wasabi Software Development Tools User’s Guide = 35

Reference

Vector Intrinsic Functions

Vector types can be passed to special built-in functions, which GCC will replace with
invocations of the corresponding instructions from Intel® WirelessMMX ™

Technology. For example, to add two word sized vectors using the WADDW
instruction, the following code would be used:

result_vector

To perform a similar operation using the WADDHSS instruction to sum half word-sized

__builtin_armwaddw (first_vector,

vectors using signed saturation the invocation would be:

resul t _vector

__builtin_armwaddhss (first_vector,

Thefollowing is acompletelist of al of these intrinsic vector functions:

—_buiTtin_armgetwcx

__buiTtin_armsetwex

__builtin_armtextrnsb

__builtin_armtextrnsh

__builtin_armtextrnmsw

__builTtin_armtextrnmub

__buiTtin_armtextrnuh

__buiTtin_armtextrnmw

__builTtin_armtinsrb

__builTtin_armtinsrh

__builtin_armtinsrw

__builtin_armtma

__buiTtin_armtniabb

__builtin_armtm abt

__builTtin_armtniaph

__builtin_armtmathb

__builtin_armtmatt

__buiTtin_armtnovnskb

__builtin_armtnrmovnskb

__builtin_armtnovnskh

__builTtin_armtnmvnskh

__buiTtin_armgetwcx

__builTtin_arm setwcx

__builtin_armtextrnsb

__buiTtin_armtnovnskw

__buiTtin_armtnmovnskw

__buiTtin_armwacch

~__builtin_armwacchb

__builtin_armwacch

__builTtin_armwacch

__buiTtin_armwaccw

__buiTtin_armwaccw

__buiTtin_armwaddb

__buiTtin_armwaddbss

__buiTtin_arm waddbus

__buiTtin_armwaddh

__buiTtin_armwaddhss

__buiTtin_armwaddhus

__builTtin_armwaddw

—__buiTtin_armwaddwss

__buiTtin_arm waddwus

__buiTtin_armwalign

__builtin_armwand

__builTtin_arm wandn

__builtin_armwavg2b

__buiTtin_armwavg2br

__builTtin_armwavg2h

__buiTtin_armwavg2hr

__buiTtin_armwenpegb

__buiTtin_armwcnpegh

__builTtin_armwcnpeqw

__builtin_armwenpgt sb

__builtin_arm wcnpgt sh

__builtin_armwcnpgt sw

—__buiTtin_armwcnpgt ub

__buiTtin_armwcnpgt uh

__buiTtin_armwcnpgt uw

__builTtin_armwmacs

__builTtin_armwracsz

__builTtin_armwracu

__builTtin_armwracuz

__buiTtin_arm wradds

__buiTtin_armwnaddu

__buiTtin_armwnaxsb

__buiTtin_armwnaxsh

—_bui ['ti n_arm wWmaxsw

—__builtin_arm wraxub

__buiTtin_arm wraxuh

__buiTtin_arm wraxuw

__builTtin_armwn nsb

__buiTtin_armwm nsh

__builTtin_armwni nsw

__buiTtin_armwm nub

__buiTtin_armwm nuh

__buiTtin_armwm nuw

—_builtin_armwrul sh

__builTtin_arm wrul uh

__buiTtin_arm wrul ul

__buiTtin_armwor

__buiTtin_arm wpackhss

__buiTtin_armwpackhus

__buiTtin_armwpackwss

__builTtin_armword

__builtin_armwordi

__builTtin_armworh

__buiTtin_armw orhi

__builTtin_armworw

__buiTtin_armw orw

__buiTtin_armwsadb

__builtin_armwsadbz

__builtin_armwsadh

__builTtin_arm wsadhz

__builTtin_armwshufh

__builtin_armwslTd

__builTtin_armwslTd

__builTtin_armwslTh

__builTtin_armwsITh

__builTtin_armwslTw

__builTtin_armwslTw

36

Wasabi Software Development Tools User’s Guide

second_vector);

second_vector);

Compiler

__builtin_armwsrad __builtin_armwsradi __builTtin_armwsrah
__buiTtin_armwsrahi __buiTtin_armwsraw __buiTtin_armwsraw
__builTtin_armwsrld __buiTtin_armwsrldi __builtin_armwsrTh
__builTtin_armwsrlhi __builTtin_armwsriw __buiTtin_armwsriw
—_buiTtin_armwsubb __buiTtin_armwsubbss __buiTtin_armwsubbus
__builtin_armwsubh __builtin_arm wsubhss __buiTtin_arm wsubhus
__buiTtin_armwsubw __buiTtin_armwsubwss __buiTtin_arm wsubwus
—__buiTtin_armwinpckehsb | __builtin_armwinpckehsb | __builTtin_arm winpckehsh
__builtin_armwnpckehsh |__builtin_armwnpckehsw |[__builtin_arm winpckehsw
—_buiTtin_armwinpckehub |__builTtin_armwunpckehub |__buiTtin_arm winpckehuh
—_buiTtin_armwinpckehuh | _builTtin_armwinpckehuw | __buiTtin_arm wunpckehuw
__buiTtin_armwnpckel sb [__builtin_armwunpckelsb [__builtin_armwiunpckel sh
__buiTtin_armwunpckel sh [__buiTtin_armwunpckel sw |[__builtin_arm wunpckel sw
__builtin_armwnpckelub |__builtin_armwunpckelub [__builtin_armwnpckel uh
__buiTtin_armwunpckeluh [__builTtin_armwunpckeluw [__builtin_arm wunpckel uw
__buiTtin_armwinpcki hb __buiTtin_armwinpckihh |__builtin_armwunpcki hw
__builtin_armwnpckilb __builtin_armwunpckilh [__builtin_armwnpckilw
__buiTtin_armwxor __buiTtin_armwzero

Wasabi Software Development Tools User’s Guide = 37

Reference

ABI Summary

Thetoolsfor Intel X Scale® Microarchitecture adhere by default to the APCS (ARM
Procedure Call Standard). The following ABI summary is consistent with this standard.

Data Type Sizes and Alignments
The following table shows the size and alignment for all data types:

Type Size (bytes) Alignment (bytes)
char 1 byte 1 byte

short 2 bytes 2 bytes

i nt 4 bytes 4 bytes

unsi gned 4 bytes 4 bytes

I ong 4 bytes 4 bytes

l ong | ong 8 bytes 8 bytes

f1 oat 4 bytes 4 bytes

doubl e 8 bytes 8 bytes

poi nt er 4 bytes 4 bytes

Alignment within aggregates (structures and unions) is as above, with padding
added if needed.

Aggregates have alignment equal to that of their most aligned member.
Aggregates have sizeswhich are amultiple of their alignment.

38 = Wasabi Software Development Tools User’s Guide

ABI Summary

Subroutine Calls

The following describes the calling conventions for subroutine calls. The first table
outlines the registers used for passing parameters. The second table outlines other
register usage.

Parameter registers:

General-purpose ‘r 0-r3

Register usage:

Volatile ro-r3, ri2
Non-volatile r4-r10
Frame pointer rii

Stack pointer ri3

Return address ri4

Program counter ris

Structures that are less than or equal to 32 bitsin length are passed as values.
Structures that are greater than 32 bits in length are passed as pointers.

Wasabi Software Development Tools User’s Guide = 39

Reference

Stack Frame

This section describes the stack frame for the Intel XScale® Microarchitecture:
The stack grows downwards from high addresses to low addresses.
A leaf function does not need to allocate a stack frameif one is not needed.
A frame pointer need not be allocated.
The stack pointer shall always be aligned to 4-byte boundaries.
At apublic interface the stack pointer shall always be aligned to 8-byte

boundaries.

The stack pointer always points to the lowest addressed word currently stored on

the stack.

Stack frames for functions that take a fixed number of arguments look like this:

FP _ Before call: After call:
High Local variables, register Local variables, register
memory save area, etc. save area, etc.
Reserved space f(.)r Arguments on stack
largest argument list
SP FP
Register save area
Local variables
Alloca allocations
Reserved space for
Low largest argument list
memory SP,

40 = Wasabi Software Development Tools User’s Guide

ABI Summary

Stack frames for functions that take a variable number of arguments look like this:

FP

Before call:

After call:

High
memory

SP

Low
memory

Local variables, register
save area, etc.

Local variables, register
save area, etc.

Reserved space for
largest argument list

Arguments on stack

Save area for anonymous
parms passed in registers
(the size of this area may
be zero)

Register save area

FP_,

Local variables

Alloca allocations

SP

Reserved space for
largest argument list

Wasabi Software Development Tools User’s Guide

41

Reference

C Language Calling Conventions

Argument Representation

A floating-point val ue occupies one or two words as appropriate to its type.
Floating-point values are encoded in |EEE 754 format, with the most significant word of
adouble having the lowest address.

NOTE When targeting little-endian ARMs, the words that make up a double will be
stored in big-endian order, while the bytes inside each word will be stored in
little-endian order.

The C compiler widens arguments of type float to type double to support inter-working
between ANSI C and classic C.

Char, short, pointer and other integral values occupy one word in an argument list.
Character and short values are widened by the C compiler during argument marshalling.

A structure always occupies an integral number of words (unlessthisis overridden by
the - mst r uct ur e- si ze- boundry command line option).

Argument List Collation
Argument values are collated in the order written in the source program

The first four words of the argument values are loaded into r 0 through r 3, and the
remainder are pushed on to the stack in reverse order (so that arguments later in the
argument list have higher addresses than those earlier in the argument list). Asa
consequence, a FP value can be passed in integer registers, or even split between an
integer register and the stack.

42 = Wasabi Software Development Tools User’s Guide

ABI Summary

Function Return Values

The following sections describe how different data types are returned.

Floats and Integer-like Values

If ATPCS compliancy is enabled (via- mat pcs) then any type that islessthan 32 bitsin
sizeis zero- or sign-extended to 32 bits and returned in register r 0. Any type that is 32
bitsin sizeisreturned in register r 0. Larger values are returned in memory. The only
exception being doubles and long long integers which are handled as described below.

If ATPCS compliancy is not enabled (thisis the default) then the following rules are

obeyed:
« Floats and integer-like values are returned in register r 0.

A typeisinteger-likeif itssizeislessthan or equal to oneword and if thetypeisa

structure, union or array, then all of its addressable sub-fields must have an offset
of zero.

For example

struct {int a:8, b:8, ¢:8, d:8;}
isinteger-like, asis

union {int i; char*p;}
but

struct {char A, char B; char c; char D;}

isnot, because it is possible to take the address of fields B, C or D, and their
offsets from the start of the structure are not zero.

Doubles and long long Integers

Doublesand | ong | ong integers are returned in registersro andr 1. For doublesr 0
always contains the most significant word of the double. For long long valuesro only
contains the most significant word if the target is big-endian.

Other Values

All other values are returned by placing them into a suitably sized area of memory
provided for this purpose by the function’s caller. A pointer to this area of memory is
passed to the function as a hidden first argument, generated at compile time
LargeType t;
t = func(arg);
isimplemented as:
LargeType t;
(void) func(&,arg);

Wasabi Software Development Tools User’s Guide = 43

Reference

Assembler

This section describes the features of the GNU Assembler for Intel XScale®
Microarchitecture. For amore complete description of the GNU assembler, see “Using
as’ at:

http://ww. gnu. or g/ manual / manual . ht m

Command Line Options

The following are assembler options for Intel XScale® Microarchitecture:
- ncpu=pr ocessor [+ext ensi on. . .]
This option specifies the target processor. The assembler will issue an error
message if an attempt is made to assemble an instruction which will not execute
on the target processor. Permissible processor names are:

ar n2 ar m250 arnB ar nb

ar n60 ar n600 arnel0 ar 620

ar nv/ arm/m ar nvd armZdm

ar n/di ar nivdm arn/70 ar my00

ar m/700i arnv10 arm/10c arm/100

ar m7500 ar m’500f e armZt dm arnB

arnB810 arnp ar nbe ar nB20

ar nb20t ar nB40t ar ot dm ar mLOot dm

ar mL020t strongarm strongarm10 strongar m100
xscal e core3 I wmxt

The special name “al I ” may be used to alow the assembler to accept instructions
valid for any ARM processor.

In addition to the basic instruction set, the assembler can be told to accept various
extension mnemonics that extend the processor using the co-processor instruction
space. For example, - ncpu=ar n920+maver i ck isequivalent to specifying
- ncpu=ep9312. The following extensions are currently supported: +maveri ck and
+xscal e.

- mar ch=ar chi t ect ur e[+ext ensi on. . .]
This option specifies the target architecture. The assembler will issue an error
message if an attempt is made to assemble an instruction which will not execute
on the target architecture. The following architecture names are recognized:
arnmvl, arnv2, arnmv2a, arnv2s, arnv3, armv3m ar nv4, ar mv4dxm ar nv4t ,
arnv4txn1arnv5,arnv5t,arnv5txn1arnv5te,arnv5texp)andxscale.

NOTE If both - ncpu and - mar ch are specified, the assembler will use the setting for

- ncpu.

The architecture option can be extended with the same instruction set extension

44 » Wasabi Software Development Tools User’s Guide

Assembler

options as the - ncpu option.

- nf pu=f| oat i ng- poi nt - f or mat
This option specifies the floating point format to assemble for. The assembler will
issue an error message if an attempt is made to assemble an instruction which will
not execute on the target floating point unit. The following format options are
recognized: sof t f pa, f pe, f pe2, f pe3, f pa, f pal0, f pall, ar n¥500f e, sof t vf p,
sof t vf p+vf p, vf p, vf p10, vf p10-r 0, vf p9, vf pxd, ar mL020t and ar mL020e.

In addition to determining which instructions are assembled, this option also
affects the way in which the . doubl e assembler directive behaves when
assembling little-endian code.

The default is dependent on the processor selected. For Architecture 5 or later, the
default isto assembler for VFP ingructions; for earlier architectures the default is
to assemble for FPA ingtructions.

- m hunb
This option specifies that the assembler should start assembling Thumb
instructions; that is, it should behave as though the file startswith a. code 16
directive.

- m hunb- i nt er wor k
This option specifies that the output generated by the assembler should be marked
as supporting interworking.

-mapcs [26| 32]
This option specifies that the output generated by the assembler should be marked
as supporting the indicated version of the Arm Procedure. Calling Standard.

- mat pcs
This option specifies that the output generated by the assembler should be marked
as supporting the Arm/Thumb Procedure Calling Standard. If enabled this option
will cause the assembler to create an empty debugging section in the object file
called .arm.atpcs. Debuggers can use this to determine the ABI being used by.

- mapcs-fl oat
Thisindicates the the floating point variant of the APCS should be used. In this
variant floating point arguments are passed in FP registers rather than integer
registers.

-mapcs-reentrant
This indicates that the reentrant variant of the APCS should be used. This variant
supports position independent code.

-EB
This option specifies that the output generated by the assembler should be marked
as being encoded for a big-endian processor.

Wasabi Software Development Tools User’s Guide = 45

Reference

-EL
This option specifies that the output generated by the assembler should be marked
as being encoded for alittle-endian processor.

-k
This option specifies that the output of the assembler should be marked as
position-independent code (PIC).

- noabi
This indicates that the code should be assembled using the old ARM ELF
conventions, based on a beta release rel ease of the ARM-ELF specifications,
rather than the default conventions which are based on the final release of the
ARM-ELF specifications.

Syntax

For a complete description of Assembler syntax, see“ Intel XScale® Microarchitecture
Programmer s Reference Manual” at:
http://ww. intel.confdesign/intel xscal e/ 273436. ht m

Local Symbol Names

Local symbols help compilers and programmers use names temporarily. They create
symbols which are guaranteed to be unique over the entire scope of the input source
code, and which can be referred to by a simple notation. To define alocal symbol, write
alabel of the form N: (where N represents any positive integer). To refer to the most
recent previous definition of that symbol write Nb, using the same number as when you
defined the label. To refer to the next definition of alocal label, write Nf-- The b stands
for “backwards’ and the f stands for “forwards.”

There is no restriction on how you can use these label's, and you can reuse them too. So
that it is possible to repeatedly define the same local label (using the same number N),
although you can only refer to the most recently defined local l1abel of that number (for a
backwards reference) or the next definition of a specific local 1abel for a forward
reference. It isalso worth noting that the first 10 local labels (0:...9:) areimplemented in
adlightly more efficient manner than the others.

Hereis an example:

1: branch 1f
2: branch 1b
1: branch 2f
2: branch 1b

Which is the equivalent of:
| abel _1: branch | abel 3
| abel _2: branch | abel 1

46 = Wasabi Software Development Tools User’s Guide

Assembler

| abel _3: branch | abel _4
| abel _4: branch | abel _3

Local symbol names are only a notational device. They areimmediately transformed
into more conventional symbol names before the assembler uses them. The symbol
names stored in the symbol table, appearing in error messages and optionally emitted to
the object file. The names are constructed using these parts:
L
All local labels begin with L. Normally both the assembler (as) and the linker
(1 d) forget symbolsthat start with L. These labels are used for symbols you are
never intended to see. If you use the - L option then the assembler retains these
symbolsin the object file. If you also instruct the linker to retain these symboals,
you may use them in debugging.
nunber
Thisisthe number that was used in the local label definition. Therefore, if the
label iswritten 55: then the number is 55.
CB
This unusual character isincluded so you do not accidentally invent a symboal of
the same name. The character has an ASCII value of \002 (control-B).
ordi nal nunber
Thisisaserial number to keep the labelsdistinct. Thefirst definition of O: getsthe
number 1. The 15th definition of 0: gets the number 15, and so on. Likewise the
first definition of 1: getsthe number 1 and its 15th defintion gets 15 as well. For
example, thefirst 1: isnamed L1C- B1, the 44th 3: isnamed L3C- B44.

Special Characters

Assembler comments start with the at symbol (@ and extend to the end of the line.
Multiple assembler statements can appear on the same line providing that they are
separated by the semicolon (;) symbol.

Wasabi Software Development Tools User’s Guide = 47

Reference

Register Names

These are the register names supported for the Intel X Scale® Microarchitecture, in the
format:

{regi ster_nane, register_nunber}

General registers

{r0, 0} {r1, 1} {r2, 2} {r3, 3}
{r4, 4} {r5, 5} {r6, 6} {r7, 7}
{r8, 8} {ro, 9} {r10, 10} {ri11, 11}
{ri12, 12} {r13, 13}, {r14, 14}, {r15, 15}
Accumulators

{acc0, 0}

APCS names for the general registers

{al, 0} {a2, 1} {a3, 2} {a4, 3},
{v1, 4} {v2, 5} {v3, 6} {v4, 7},
{v5, 8} {v6, 9} {sb, 9} {v7, 10},
{sl, 10} {fp, 11} {ip, 12} {sp, 13},
{Ir, 14} {pc, 15}

Floating point registers

{fO0, 16} {f1, 17} {f2, 18} {f3, 19}
{f4, 20} {f5, 21} {f6, 22} {f7, 23}
{cO, 32} {c1, 33} {c2, 34} {c3, 35}
{c4, 36} {c5, 37} {c6, 38} {c7, 39}
{c8, 40} {c9, 41} {c10, 42} {cl11, 43}
{c12, 44} {c13, 45} {c14, 46} {c15, 47}
{cro, 32} {cr1, 33} {cr2, 34} {cr3, 35}
{cr4, 36} {cr5, 37} {cr6, 38} {cr7, 39}
{cr8, 40} {cr9, 41} {cr10, 42} {cri11, 43}
{cr12, 44} {cr13, 45} {cri14, 46} {cr15, 47}

48 = Wasabi Software Development Tools User’s Guide

Assembler

Floating-point

Both the assembler and the compiler support hardware floating-point.

Opcodes

For detailed information on the machine instruction set for Intel X Scale®
Microarchitecture, see “Intel XScale® Microarchitecture Programmers Reference
Manual” at:

http://ww. intel.confdesign/intel xscal e/ 273436. htm

The GNU Assembler (GAS) implements all the opcodes, including both the standard
ARM opcodes and Intel’ s extensions.

ARM Machine Directives

The assembler supports the following ARM machine directives:

.align expression [, expression]
Thisisthegeneric . al i gn directive. For the ARM however if thefirst argument is
zero (i.e., no alignment is needed) the assembler will behave asif the argument
had been 2 (i.e., pad to the next four-byte boundary). Thisis for compatability
with ARM’s own assembler.

name .req regi ster_nane
This creates an diasfor r egi st er _nane caled nane. For example:

foo .req r0

. code [16] 32]
This directive selects the instruction set being generated. The value 16 selects
Thumb, and the value 32 selects ARM.

. thumb
This performs the same action as. code 16.

.arm
This performs the same action as. code 32.

.force_thunb
This directive forces the selection of Thumb instructions, even if the target
processor does not support those instructions.

.thunb_func
This directive specifies that the following symbol is the name of a Thumb
encoded function. Thisinformation is necessary in order to allow the assembler
and linker to generate correct code for interworking between Arm and Thumb
instructions and should be used even if interworking is not going to be performed.
The presence of this directive aso implies. t hunb.

Wasabi Software Development Tools User’s Guide = 49

Reference

. thunb_set
This performsthe equivalent of a. set directivein that it creates a symbol which
isan diasfor another symbol (possibly not yet defined). This directive also has
the added property in that it marks the aliased symbol as being athumb function
entry point, in the same way that the . t hunb_f unc directive does.

.ltorg
This directive causes the current contents of the literal pool to be dumped into the
current section (which is assumed to bethe . t ext section) at the current location
(aligned to aword boundary).

. pool
Thisisasynonym for . 1torg.

Assembler Error Messages
Error: Unrecogni zed opcode
Thisinstruction is misspelled or there is a syntax error somewhere.

War ni ng: operand out of range
An immediate value was specified that istoo large for the instruction

50 = Wasabi Software Development Tools User’s Guide

Linker

Linker

This section describes features of the GNU Linker for Intel XScale® Microarchitecture.
For a more complete description of the GNU Linker, see“Using Id” at:
http://ww. gnu. or g/ manual / manual . ht m

Command Line Options

There are no specific linker options for Intel X Scale® Microarchitecture.

Interworking Between ARM and Thumb Code

For the ARM, thelinker (1 d) will generate code stubs to alow functions calls between
ARM and Thumb code. These stubs only work with code that has been compiled and
assembled with the - nt hunb- i nt er wor k command line option. If it is necessary to link
with old ARM object files or libraries, which have not been compiled with the
- nt hunb- i nt er wor k option then the - - support - ol d- code command line switch should
be given to the linker. Thiswill make it generate larger stub functions which will work
with non-interworking aware ARM code.

NOTE Thelinker does not support generating stubs for function calls to

non-interworking aware Thumb code.

The- -t hunb- ent ry switch is a duplicate of the generic - - ent ry switch, in that it sets
the program’ s starting address. However, it also sets the bottom bit of the address, so that
it can be branched to using a BX instruction, and the program will start executing in
Thumb mode straight away.

Wasabi Software Development Tools User’s Guide 51

Reference

Objdump

This section describes specific features of the GNU binary utility obj dunp for
Intel XScale® Microarchitecture.

Command Line Switch

A command line switch has been added to obj dunp. The switchis

--target - dat a (long version) or - M(short version). The switch takes an argument that
can be any arbitrary piece of text. Thistext is passed on to the code specific to the target
object file being dumped and can be used to fine tune the dumping for that target.

In the case of Intel XScale® Microarchitecture, the target specific code will look to see
if one of the following namesis provided. If they are there, then the corresponding

register name set will be used when displaying a disassembly:

Name Register Name Set
raw rorlr2r3r4r5r6r7r8r9r10 rl11 r12 r13 rl14 r15
std rorlr2r3r4r5r6r7r8r9r10rllrl2sp Ir pc
apcs al a2 a3 a4 vl v2 v3 v4 v5 v6 sl fp ip sp Ir pc
at pcs al a2 a3 a4 vl v2 v3 v4 v5 v6 v7 v8 |IP SP LR PC
special -atpcs |al a2 a3 a4 vl v2 v3 WRv5 SBSL FP IP SP LR PC
Thestd setisthe default register name set.
For example this assembler source code
add r1, r2, r3
when disassembled with the apcs register set specified
obj dunp -d --target-data=apcs
will produce
00000000 <.text>:
0: e0821003 add a2, a3, a4

Whereas, if the same assembler object file is disassembled without specifying a register
set

obj dunp -d
this output will be produced

00000000 <.text>:
0: e0821003 add rl, r2, r3

Wasabi Software Development Tools User’s Guide

Objdump

Abbreviations

-M
Can be used instead of - - t ar get - dat a=.
For example:
obj dunp -d -Mstandard_nanes add. o
Will aso produce:
0: e0821003 add rl, r2, r3
-S
Can be used instead of st andar d_nanes.
For example:
obj dunp -d -Ms add.o
Will aso produce:
0: e0821003 add ri, r2, r3
-a

Can be used instead of apcs_nanes.
For example:
obj dunp -d -Ma add.o
Will aso produce:
0: €0821003 add a2, a3, a4

Only st andar d_nanes, apcs_nanes, -s and-a arerecognized. Any other text will
produce an error message.

For example:
obj dunp -d - Ml eah add.o
Will produce:
Unrecogni sed target _data: bleah
0: e0821003 add a2, a3, a4

Wasabi Software Development Tools User’s Guide 53

Reference

Debugger

This section describes features of the GNU Debugger for Intel X Scale®
Microarchitecture. For amore complete description of the GNU Debugger, see the
“GDB User Manual” at:

http://ww. gnu. or g/ manual / manual . ht n
The debugger can be accessed in two modes, command line, or in GUI mode.

To get the GDB command line, run:
xscal e-el f-gdb

To get the graphical version, run:
xscal e-el f-insi ght

There are two ways for GDB to communicate with atarget based upon Intel X Scale®
Microarchitecture. Each target requires that the program be compiled with atarget
specific linker script.

1. Simulator:

GDB' shuilt-in instruction set simulation of the processor alows the debugging of
programs compiled for the Intel X Scale® Microarchitecture without requiring any
access to actual hardware. To debug on the simulator, no specificationsfileis
required at compile time. To activate the smulator modein GDB typet ar get

si m Then use the | oad command to load the code.

2. Remotetarget board:

To debug on an actua evaluation board, a board-specific specifications-file must
be included at compilation. For example, the - specs=i q80310. specs compiler
option selectsthei q80310. specs file.

Hereisalist of Intel® boards, and their required compiler settings

Board Compiler Settings

80310 - specs=i q80310. specs

80321 - specs=r edboot . specs

IWMMXT - specs=r edboot . specs - ncpu=i wnmnxt
IXDP425 - specs=redboot . specs -nbi g-endi an
GRG - specs=r edboot . specs -nbi g-endi an

To connect to the target board in GDB, using the command
target renote devi ce_nane

wheredevi ce_nanme Will be aserial device such as/ dev/ ttya (Linux) or con2
(Windows). Then load the code onto the target board by typing | oad. After being

54 = Wasabi Software Development Tools User’s Guide

Debugger

downloaded, the program can be executed.

NOTE When using the remote target, GDB does not accept the r un command.
However, since downloading the program has the side effect of setting the PC
to the start address, you can start your program by typing cont i nue, or
junmp *start. Thejunp *start command can be used to rerun the program
when it has continued as well as starting the program from the beginning.

Command Line Options

There are no specific debugger command-line options for Intel XScale®
Microarchitecture.

Wasabi Software Development Tools User’s Guide 55

Reference

Simulator

The simulator can simulate any ARM processor, including processors based upon

Intel XScale® Microarchitecture. The simulator can simulate any ARM instruction,
including the instructions specific to Intel XScale® Microarchitecture. It is not acycle
accurate smulator, nor isit aboard level simulator.

The simulator supports co-processors CP4, CP5, CP13, CP14, and CP15. The simulator
also supportsthe ARM MMU registers.

The simulator has limited pass through capability to the host operating system. For
example, it is ableto simulate basic file operations (including writing to st dout) and
memory allocation. The simulator is theoretically capable of simulating any address
space, providing that memory is available on the host operating system.

Command Line Options

There are no specific smulator command line options for Intel X Scale®
Microarchitecture.

56 = Wasabi Software Development Tools User’s Guide

A wasabi

Bibliography

I ntel XScale® Microarchitecture Programmers Reference Manual
http://wwuv intel.confdesign/intel xscal e/ 273436. ht m

Using and Porting GNU CC

by Richard M. Stallman (July 1999, GNU Press, ISBN 1-882114-38-8)
Debugging with GDB:The GNU Source-Level Debugger

by Richard M. Stallman, Roland Pesch, Stan Shebs, et a.

(January 2002, GNU Press, ISBN 1-882114-88-4)

SrongARMTDMI Data Sheet
(ARMDDI0029E, Advanced RISC Machines Ltd. (ARM), August, 1995)

System V Application Binary Interface
(Prentice Hall, 1990)

Advanced RI SC Machine Architecture Reference Manual
(Prentice Hall, 1996, ISBN 0-13-736299-4)

Wasabi Software Development Tools User’s Guide

Bibliography

58 = Wasabi Software Development Tools User’s Guide

	Introduction
	Toolkit Features
	Processor Version
	Supported Targets
	Supported Hosts
	Object File Format

	Tool Naming Conventions
	Case Sensitivity

	Installation and Rebuilding
	Red Hat Linux 9
	Installation
	Rebuilding From Source Code

	Windows XP
	Installation
	Rebuilding From Source Code

	Tutorial
	Create Source Code
	Compile, Assemble and Link
	Run the Executable
	Run on the Stand-alone Simulator

	Debugging with GDB
	Debugging Examples
	Debug with the Built-in Instruction Set Simulator

	Assembler Listing from Source Code

	Reference
	Compiler
	Command Line Options
	Preprocessor Symbols
	Attributes
	ARM Pragmas
	Vector Types
	Vector Intrinsic Functions

	ABI Summary
	Data Type Sizes and Alignments
	Subroutine Calls
	Stack Frame
	C Language Calling Conventions
	Argument Representation
	Argument List Collation

	Function Return Values
	Floats and Integer-like Values
	Doubles and long long Integers
	Other Values

	Assembler
	Command Line Options
	Syntax
	Local Symbol Names
	Special Characters
	Register Names
	Floating-point
	Opcodes
	ARM Machine Directives
	Assembler Error Messages

	Linker
	Command Line Options
	Interworking Between ARM and Thumb Code

	Objdump
	Command Line Switch
	Abbreviations

	Debugger
	Command Line Options

	Simulator
	Command Line Options

	Bibliography

