
I. BACKGROUND OF THE BRAILLE SYSTEM

The Purpose of the System

The Palm Braille system was originally designed by Scott Stoffel for people, who like

himself, are blind, deaf and have sensitivity and motor disabilities. Sensitivity disabled

people do not have a good sense of touch so they cannot tell what an object is by feeling

it. Motor disabled people cannot signal with their hands at a normal pace. People who

are blind and deaf, and also have these two disabilities cannot use the regular Braille

system since they are written very small and there is little space between each translation.

Scott took care of this problem by designing a box using electromagnetic solenoids that

stick up in the form of Braille representations.

The Original Palm Braille System

Figure 1 - The Original Braille System

 1

The Original system (shown in figure 1) consists of a large Braille character cell and two

software programs. The cell is made up of a rectangular box with six solenoids that stick

out of small circular holes on the box's surface, forming the Braille representations of the

keys that are struck on the keyboard. Each solenoid consists of a coil wrapped around a

metal rod. With flow of current, the coil produces an electromagnetic field around the

rod, drawing it up or down as needed. The data source of the cell is a parallel port

connected into the back of a computer.

The Palm Braille Keyboard Translator and the Palm Braille reader make up the software

package. The translator translates a message typed on a standard keyboard to its Braille

representation. The reader reads text files and translates them into Braille one character at

a time so that the user can read it.

The problems with this system are: i. the dangerous amount of current the solenoids

 produce.

 ii. the amount of hardware in the system which

 causes the system to be too large to be easily

 moved around.

 2

The Previous Improvements

Figure 2 – Last year’s modifications.

Last year, team EE-6 improved Scott Stoffel's system by replacing the solenoids with

servos to reduce current, and by creating a wireless model to make the system more

mobile. The

system(shown in

figure 2) consists of a

keyboard, a

transmission device,

and a palm Braille

box. The keyboard

uses a transmitter,

which consists of a device called the PAK VI, to send information through radio

frequency technology to a receiver contained in the box. The palm Braille box contains

the servos, a chip called the Basic Stamp, a receiver and a device called the Mini SSC II.

The Basic Stamp II: The Basic stamp II is a chip that is only able to run a computer

program written in PBASIC (a simpler version of BASIC). This program takes the

characters of the keyboard and translates it to their Braille representations. It is then

inputted to the serial input port of the Mini SSC II.

Transmitter/Receiver: To make the system wireless, a transmitter was connected to the

keyboard, and the receiver to the basic stamp in the Braille box. Information from the

 3

keyboard is sent through the transmitter to the receiver, which passes the data to basic

stamp.

The Mini SSC II and Servos: Since we used these devices in our system, we will discuss

them in detail when we discuss our system.

 4

II. Design Objective

This year, we decided to integerate the previous two systems, taking advanatge of the

versatility of Scott’s system and the mobility of the wireless system. We proposed to do

this by replacing the desktop computer used in Scott’s system with a PDA. The PDA has

all the features of the desktop computer that are necessary for the system, and due to the

PDA’s small size, it has the mobility of the wireless system.

For the Braille box, we decided to use a similar design as the wireless system. We chose

to use a mini SSC II and servos, however, the microprocessor from the PDA eliminated

the need for the basic stamp. The system was not intended to be wireless, so it required a

serial port connection from the PDA to the Braille box. This system (as shown in figure

3) would enable the user to send data from the PDA to the Braille box. This data would

be read by the mini SSC, which would in turn activate the servos to move the pins to

form the desired Braille character.

The PDA had to be programmed to transmit data to the mini SSC. We chose to use Y-

Basic, a software designed by HotPaw Basic Inc, to program the PDA. There are many

different kinds of PDAs we could have used, including Blackberry, Ipaq, WinCe and

Palm, but we chose to use Palm for the following reasons:

 5

i. Palm is more universal than other PDAs.

“Palm currently has 78% market share of the world market for PDA’s. Does this

mean that Microsoft Windows CE owns a 22% market share in the US? NO –

Psion, Symbia, and Apple all share that remaining 22% along with Microsoft.”

“Many current handset manufacturers, including Nokia and Qualcom, license the

PALM OS”. (Epinions.com – epinions.com)1

ii. Palm is cheaper than WinCe, its closest competitor.

As of October 2000, the most expensive versions of Palm – the Palm VII and

Palm VIIx, which were already wirelessly enabled cost $399 and $499

respectively. The WinCe equivalent of those models at that time cost $549 -

$599, plus an additional $200 for a modem for a device that enables the WinCe to

be wireless.

iii. Palm has more attainable Software Development Kits (SDK’s).

While searching for programming options for the PDAs, we were able to come up

with many different tools that were applicable only to the Palm platform. These

sources include the Palm OS SDK, the RoboPilot software by Taygeta, the

Simplicity by Data Represenations, CodeWarrior lite for the Palm by Metrowerks

and PRC-Tools for linux among many others.

After deciding on the Palm as our PDA, we chose the m500 version out of the various

models available because:

• Its price is reasonable considering all its other attractive features.

 6

• It is a recent model, so it will not be outdated easily.

• Its battery is rechargeable and it comes with a charger.

• Its memory is expandable.

• It is compact in size.

• It has an on-screen keyboard.

Figure 3 – The PDA
Tactical Braille System

 7

III. Design Process

The development of our system involved the interfacing of various hardware

components. Two Braille boxes had to be built – one as a prototype and the other for our

main system. Each Braille box contains the mini SSC II, which is connected to the PDA

using an RS-232 serial cable. This makes it possible for data to be transmitted from the

PDA to the mini SSC II. In general, the system consists of three main parts – the Braille

box, the serial cable and the PDA. These, in turn, consist of several components, which

are described below.

The Braille Box

Construction

The Braille box consists of 6 servos, 4 pieces of aluminum L-brackets (shown in figure

4), a mini SSC, 6 cotter pins, and a voltage regulator circuit. In constructing this box, we

first ordered all the parts mentioned above and some screws, and then began putting them

together.
Figure 4: L- Brackets

First we cut the L-brackets for each box. We made

two of them 5 inches long, and the other two 6

inches long. The bottom of each servo was to be

 8

placed on the longer brackets, and the top on the shorter brackets. We then drilled 3 pairs

of holes in each bracket, i/8 of an inch in diameter. The pairs are 7/8 of an inch apart, and

the holes in each pair are 7/16 of an inch apart. We also drilled two bigger holes (about

twice the size of the others) ¼ of an inch away from the ends of the bracket.

We then proceeded to mount the servos. The

top and bottom of each servo had two holes,

which were the same distance apart as the

holes in each pair on the brackets. Aligned

the servo holes with the smaller bracket holes

– 3 servos on each pair of brackets – and

screwed the servos in. when all servos

were mounted, we connected the four

brackets together through the bigger holes, using 3-inch machine screws. This way, each

three servos faced the other three with 2.5 inches between them, as seen in figure 5.

Figure 5: Completed servo mounting

After mounting the servos on the brackets, we connected the mini SSC to the servos by

placing the servo connectors on the mini SSC on the servo header, with the back wire

facing the servos number. We then had to build a 5-volt voltage regulator, which would

enable us supply 5-volts to the servos and 9volts to the mini SSC, using one 9-volt

battery. The design of this circuit is explained in detail later on in this report.

 9

The Servos

The servos consist of three wires, which

function as power, ground and input signal

from the Mini SSC II. The Mini SSC II sends a

pulse width of 1ms or 2ms to the servos, which

causes them to rotate to a rise or fall position

respectively. We attached pins to the servos and

the angular motion of the servos will cause the pins to go up and down in the box. The

pins would thus represent the Braille alphabet. These servos draw 95mA of current each

to operate

Figure 6: One Servo

The mini SSC

 Figure 7 : The mini SSC

 10

Mini SSC II stands for mini Serial Servo Controller version 2. This device receives data

in a 3-byte format. The first byte is used for synchronization and has to be 255 base 10.

The second byte tells the device which servo to rotate, and the third bytes tells the

position the servos should move to. To send instructions to the Mini SSC, we have a

simple format consisting of a sync byte (always ASCII 255), the servo number (0-254),

and relative position (0-254, where 127 is centered). The SSC sends the appropriate three

bytes (unsigned chars in C parlance) and send the specified servo control pulses that

make it move to the commanded position. Servos are held in the last commanded position

until instructed otherwise. For example if someone wants to send the Braille

representation of ‘A’, to the Braille box, the SSC would receive a 255, 1, 254 base 10.

The Mini SSC takes serial data 8 bits at a time, and outputs 8 servo control signals. The

mini SSC has 2 power supply ends seen in figure 7 above. One of them is a 9-volt battery

stacker, to power the SSC and the other is to be connected to the 5-volt servo power

supply. We used a 9Volt battery and four AA (1.5V) batteries to power the mini SSC and

servos respectively.

 11

The RS-232 Serial Port

Figure 8 : Showing the
connection pins of the RS-232
Serial Port
(Roger’s Gadgets and gizmos –
bpesolutions.com)2

The RS-232 (Registered Standard 232) is a set of protocols created for serial port

connections (normally used to transfer data from computers to receiving devices). We

used the RS-232 port to transfer information from the Palm to the Mini SSC II. Figure

13b shows the pin configurations of the serial port. The connection of the RS-232 to other

components of the system will be discussed later in this report.

 12

The PDA

Figure 9: Some of the features of
the PDA

Features

Palm has various useful features, as shown in figure 9 above, but the ones explained

below are those that are useful to the system.

Microprocessor: the PDA had a microprocessor which is just like that of any computer,

but slightly smaller it capacity. This feature enables us to program the PDA directly,

without using the basic stamp or any other data processor. This is advantageous because

it reduces the contents and complexity of the Braille box.

HotSync: Palm version m500 has a “hotSync” feature that enables the user to directly

transmit data from the desktop to the PDA and vice versa easily. This is a very useful

feature because the palm had to be programmed to communicate with the mini SSC, and

it was much easier to do this program on a desktop computer, and then transfer it to the

 13

palm without any complications. Also, users of the system could do all their work on

desktop computers and transfer them to the PDA using this feature.

Keyboard: Palm has a graffiti area, a built-in map (as shown in figure 10 below), and a

stylus that enable users create and transmit data. Users

could learn the representations of each character using the

character map (these representations look almost like the

characters themselves, making them easy to learn) and just

write the messages on the screen using the stylus. Palm

also has an onscreen keyboard that does not require the use

of a graffiti map. We were able to program the palm to

translate the standard keyboard characters to their ASCII

equivalents.

Figure 10: showing the graffiti area of the PDA

Power supply: Palm m500 comes with a rechargeable battery and a cradle charger (as

shown in figure 11 below). This is convenient and economical because it completely

eliminates the need for batteries for the PDA.

Figure 11: the
cradle charger

 14

The expansion card:

The palm has a slot that allows the user

insert an expansion card (as shown in

figure12) which functions like a floppy

disk in a computer. This feature makes

the system more versatile in

functionality.

Figure 12: showing the expansion card slot

The overall hardware connection

So far, we have discussed each hardware component and it’s constituents. In order to

complete the system, we had to put all these components together. We connected the mini

SSC to the RS-232 serial port, and the serial port to the palm.

Mini SSC to RS –232 connections

The Mini SSC II input is a modular RJ-11 (phone plug) connection we used an RS-232

Female DB-9 (9 pin) connector . We connected the one side of the phone plug to the

mini SSC using the connector, and then cut off the connector on the other side. The RJ-11

 15

plug consists of 4 wires – red, black green and yellow. The red and black wires were not

used in our connections. We soldered the yellow wire to pin 5, which is the ground pin of

the DB-9 connector, and the green wire to pin 2, which is the data reception pin. Figure 8

above shows the RJ-11 and DB-9 connections, and figure 13b shows the pin

configurations of the DB-9.

Figure 13a: DB-9
connector

Figure 13b: pin configurations
of a DB-9 connector

Mini SSC to Servo connections

s

There are 8 servo ports on the mini SSC board and

ur system consists of 6 servos. We plugged each

ervo into one SSC port, and left two ports unused, as

own in figure 15.

o

s

h

16

Figure 14: mini SSC to ser
connections
(Roger’s Gadgets and gizmos –
bpesolutions.com)2

vo

PDA to mini SSC connection using the RS-232 serial port

Figure 15: PDA to mini SSC connection

We had to purchase a Palm m500 compatible cable, in order to connect the mini SSC to

the PDA because the cradle is too bulky to manage. The one end of the cable is a DB-9

male connector and the other is a Palm m500 connector (as seen in figure 15 above). We

connected the male connector to the DB-9 Female connector that was connected to the

mini SSC, and plugged in the m500 connector to the serial port of the PDA.

Figure 16 below shows the all the components of the systems, not packaged.

 17

Figure 16: Complete components of the system

With the hardware components all connected, we were able to move on to our program

code.

 18

The Software

Software Used

We used a Palm platform compatible software called HotPaw Basic, which was

developed and maintained by HotPaw Inc. We chose HotPaw Basic for the following

reasons:

• Ability to develop on the palm pilot itself

• Reasonably Priced – cost $20

• Less complexity - no need for language interpretation

The software used a program called YBASIC, derived from the BASIC program.

The Program Outline:

The outline of the program was as follows:

• Create form elements

• Check to see if filename

• Check to see if number

• Check to see if capital letter

• Get servo numbers for current letter

• Send data to the SSC

 19

How the program works:

Figure 17: The PDA screen during the

communication process

When the program receives input (from a file

or directly from the user), it checks the ascii

code to find out if the input is a number or character and it’s case (lower or upper case) if

it’s a character, draws the braille representation of the letter on the palm screen (as seen

in figure 17 above), and sends the braille representation of the input to the mini SSC . If

the input is an upper case letter or a number, the program first draws the upper case or

number sign on the screen and sends it to the mini SSC before doing the same for the

letter or number representation. The progran then waits one second to get the next letter

or end the loop if there’s no more input coming in. Figure 18 below shows the braille

represenations of all numbers and characters, and below that is an illustration of how the

program works. The full program can be found in appendix A of this report.

To Move the letter 'A' the program executes:

if((char < 91) and (char > 64))

 send$ = chr$(wake) + chr$(1) + chr$(poslo)

 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)

 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)

 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)

 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)

 20

 send$ = send$ + chr$(wake) + chr$(6) + chr$(pos)

draw circle 25,95,5

 draw circle 25,110,5

 draw circle 25,125,5

 draw circle 45,95,5

 draw circle 45,110,5

 draw circle 45,125,5,7

 open "com1:",9600 as #5

 print #5,send$;

 sound 1,1,1

 close #5

 fn wait(1)

 char = char + 32

endif

which checks if it is a capital letter, redraws the screen and sends the capital letter sign to

the mini ssc.

then it executes:

if(char = 97)

 send$ = chr$(wake) + chr$(1) + chr$(pos)

 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)

 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)

 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)

 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)

 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)

 draw circle 25,95,5,7

 draw circle 25,110,5

 draw circle 25,125,5

 draw circle 45,95,5

 draw circle 45,110,5

 draw circle 45,125,5

endif

 21

which moves the servos that represent 'a'

fn wait (1)

next i

wend

end

this program segment waits 1 second, gets the next letter and ends the loop.

Figure 18: Braille

Alphabet

 22

The different versions of the program

Below we have illustrated the general steps we took in creating software to control the

Braille system.

version date change

0.0.1 02.16.2003 algorithm for lowercase alphabet

0.0.2 02.18.2003 added algorithm for capital letters, numbers, and
 punctuation

0.0.3 02.20.2003 fixed bug with open/close quote
 prints current letter to screen instead of pop-up menu

0.1 02.22.2003 fixed letters s – z

0.1.1 03.22.2003 created algorithm to read strings from the command line

0.2 03.24.2003 created picture representation of which servos are high/
 low
 made command line bigger to approx. 25 chars
 fixed close quote problem - tested 03.24.2003

0.3 03.30.2003 reads text from a file stored in memopad
 blanks out input line after sending a line of text to the braille
 box
 changed pos and poslo variables for larger range of motion.

0.3.1 04.10.2003 added splash screen and about box

1.0 04.16.2003 launches and exits to the palm menu
 registered creator id 'ee-6'

 23

IV. POWER SPECIFICATIONS

The 9-volt battery supplies 2.8 amps for 1 hour. The mini SSC requires 10mA to operate.
We used this information to calculate the amount of time the SSC could run for using the
9v battery.

(2.8 amps / .010 amps) * 1 hour = 280 hours of operation before battery is drained

The 4AA batteries supply 2.8 amps for 1 hour at 6-volts. Each of the six servos can use
up to a maximum of 95mA to operate. We used this information to calculate the amount
of time the servos could run for using the 6-volt battery supply.

(2.8 amps / (6 * .095 amps) * 1 hour = 4.9 hours of operation before are drained.

Theoretically, if the system draws max current constantly, the system would run for 280

hours before the 9-volt battery need to be replaced and 4.9 hours before the 4AA batteries

need to be replaced.

 24

V. HEALTH AND SAFETY CONSIDERATIONS

This project will require health and safety considerations since it is geared towards

disabled people who are not necessarily engineers, and a significant amount of current

flows inside the Palm Braille box with which the user will be in constant physical

contact. The following precautions are mandatory when using the system:

1. The Palm Braille box may not be used near water.

 25

VI. ETHICAL CONSIDERATIONS

Electrical Engineers have various ethical considerations to worry about when working

projects, especially one, like ours, which is mainly geared towards the handicapped. We

have to be careful to make sure the device is purposeful and not at all harmful. We are

basically going to follow the ethical codes of the IEEE, which we have enclosed in

Appendix B.

 26

VII. BUDGET

Item Qty Price Total Price

Mini SSC II 2 $49 $98

Futaba Servos 12 $19 $228

Palm PDA(m500) 1 $200 $200

Plastic Casing 2 $8 $16

36” Aluminum
Brackets

2 $2 $4

Cotter Pins(8 packs) 2 $0.40 $0.80

Palm Hotsync serial
cable

1 $20 $20

Screws(pack 10) 10 $0.86 $8.60

Hot Paw Basic
Program

1 $20 $20

Serial Ports 2 $2 $4

Batteries (9V, 4 AA) $6 $6

Total Price $605.40

Sources:

• Temple University College of Engineering Senior Design Fund

• Tacticom Corporation

 27

VIII. TIMELINE

We began research on this project in early August to get an idea of what needed to be

done. We continued to research all the way through until the project was completed in

April. Based on our research we ordered the necessary parts and shortly thereafter began

to build the Braille boxes. Completing the hardware took one month longer than we

anticipated due to finding a suitable power supply solution for the project. The software,

testing and final report were completed on schedule.

 28

IX. SUMMARY

In conclusion to this report, here are the basic changes we have made to the previously

designed systems, and our systems advantages over others:

Changes Advantages

• Replacement of the Keyboard with the

stylus and graffiti area and the built in

keyboard of the PDA

• Eliminates the keyboard – makes the

system much more portable

• Replacement of the Basic Stamp with

the microprocessor of the PDA

• Eliminates the Basic stamp, makes the

Braille box lighter and simpler.

• Enables users to add more programs to

the system than just the character

translation code.

The Palm Braille system is a very essential device for people who have vision, sensitivity

and motor sensory disabilities. Remodeling it into the PDA Palm Braille System has

made it more desirable and attainable because, as demonstrated above, the system will be

much smaller and lighter, and, therefore, easier to carry about. Also the system is now

more versatile and therefore functional to the user. PDAs are very “present day”, so, apart

form it’s functionality, our system also gives a feeling of modern technology to its users.

 29

X. REFERENCES

1. Epinions.com – epinions.com

2. Roger’s Gadgets and gizmos – bpesolutions.com

 30

XI. BIBLIOGRAPHY

Kaitell, Chris and others. Wireless Palm Braille System, Temple University,
Philadelphia, Pennsylvania May, 2002.

Myers, Brad A., Kin Pou Lie., and Bo-Chieh Yang. Two Handed Input Using a PDA and
a Mouse. CHI Letters. April 6, 2000. 41-48.

Reshko, G. Palm Pilot Robot Kit. November 5, 2001.
<http://www-2.cs.cmu.edu/~reshko/PILOT/>

Acroname Easier Robotics. 2002. Acroname Incorporated.
<http://www.acroname.com/robotics/>

Roberts Gadgets and Gizmos (projects) Palm PDA and Mini SSC II
<http://www.bpesolutions.com/gadgets.ws/gproject2.html#anchor153922>

Scott Edwards Electronics, Inc. Mini SSC II Serial Servo Controller User’s Manual 1999.

Parallax Inc. Basic Stamp Program Manual (version 1.9). 1998.

Palm, Inc. Palm m500 Handheld Series User’s Manual. 2000.

Daniel, J.; Greenfield, S.; Schmalzel, J. “Serial Analysis with a Palm Organizer”. IEEE
Instrumentation and Measurement Technology Conference. May 4, 2000. 311-312.

Seyer, Martin D. RS-232 Made Easy:Connecting computers Printers, Terminals, and
Modems.(2nd Edition) Englewood Cliffs, NJ: Prentice-Hall, 1991.

 31

http://www-2.cs.cmu.edu/~reshko/PILOT/
http://www.acroname.com/robotics/
http://www.bpesolutions.com/gadgets.ws/gproject2.html

XII. APENDIX A – THE PROGRAM CODE

#tactical-v0.0.3.bas
draw -1
draw "Tactical Braille System v.1",15,23,1
form btn 75,95,50,20, "Send Data",1
form fld 80,55,40,12, "",1
draw "Letter ",5,57

#fixed bug with open/close quote
#02.20.2003

wake = 255
pos = 254
poslo = -128
quotecount = 0

while
x = asc(input$(1))
char = asc(s$(0))
print at 5, 75
print "Letter = " chr$(char)

if((char < 58) and (char > 47))
print "char < 58) and (char > 47"
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(pos)
goto sent
 fn wait(1)
 char = char + 48
 if char = 96 then print "char = 96 "
endif

if((char < 91) and (char > 64))
print "char < 91) and (char > 64"
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(pos)
 fn wait(1)
 char = char + 32
endif

if(char = 97)
print "char = 97 "

 32

 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 98)
print "char = 98 "
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 99)
print "char = 99 "
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 100)
print "char =100"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 101)
print "char =101"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 102)
print "char =102"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

 33

if(char = 103)
print "char =103"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 104)
print "char =104"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 105)
print "char =105"
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 106)
print "char =106"
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 107)
print "char =107"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 108)
print "char =108"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)

 34

 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 109)
print "char =109"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 110)
print "char =110"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 111)
print "char =111"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 112)
print "char =112"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 113)
print "char =113"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 114)
print "char =114"

 35

 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 115)
print "char =115"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 116)
print "char =116"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 117)
print "char =117"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 118)
print "char =118"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 119)
 "char =119"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

 36

if(char = 120)
print "char =120"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 121)
print "char =121"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 122)
print "char =122"
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 46)
print "char =46 "
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(pos)
endif

if(char = 44)
print "char =44 "
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 63)
print "char =63 "
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)

 37

 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(pos)
endif

if(char = 59)
print "char =59 "
 send$ = chr$(wake) + chr$(1) + chr$(posilo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 33)
print "char =33 "
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 34)
print "char =34 "
 if((quotecount mod 2) = 0)
print "quotecount mod 2) = 0"
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(pos)
 else
print "else quotecount mod 2) = 1"
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(pos)
 endif
 quotecount = quotecount + 1
endif

if((char = 32) or (char = 45))
print "char =32 of 45"
 send$ = chr$(wake) + chr$(1) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(poslo)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(poslo)
endif

if(char = 43)

 38

print "char =43 "
 send$ = chr$(wake) + chr$(1) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(2) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(3) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(4) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(5) + chr$(pos)
 send$ = send$ + chr$(wake) + chr$(6) + chr$(pos)
endif

open "com1:",9600 as #5
print "send = " send$
print #5,send$;
#sound 1800,100,64
#sound 1500,30,64
close #5
wend
end

0 //not used
1 4
2 5
3 6
7 //not used

 39

XIII. APENDIX B – IEEE CODE OF ETHICS

We, the members of the IEEE, in recognition of the importance of our technologies in

affecting the quality of life throughout the world, and in accepting a personal obligation

to our profession, its members and communities we serve, do hereby commit ourselves to

the highest ethical and professional conduct and agree:

1. To accept responsibility in making engineering decisions consistent with the

 safety, health and welfare of the public, and to disclose promptly factors that

 might endanger the public or the environment;

2. To avoid real or perceived conflicts of interest whenever possible, and to

 disclose them to affected parties when they do exist;

3. To be honest and realistic in stating claims or estimates based on available data;

 4. To reject bribery in all its forms;

 5. To improve the understanding of technology, it appropriate application, and

 potential consequences;

6. To maintain and improve our technical competence and to undertake

 technological task for others only if qualified by training or experience, or

 after full disclosure of pertinent limitations;

7. To seek, accept, and offer honest criticism of technical work, to acknowledge

 and correct errors, and to credit properly the contributions of other;

8. To treat fairly all persons regardless of such factors as race, religion, gender,

 disability, age, or national origin;

9. To avoid injuring others, their property, reputation, or employment by false or

 40

 malicious action;

10.To assist colleagues and co-workers in their professional development and to

 support them in following this code of ethics.

 41

	I. BACKGROUND OF THE BRAILLE SYSTEM
	The Purpose of the System
	The Original Palm Braille System

	The problems with this system are:i. the dangerous amount of current the solenoids
	
	
	
	The Previous Improvements

	II. Design Objective
	The development of our system involved the interf
	
	
	
	The Braille Box
	The Braille box consists of 6 servos, 4 pieces of aluminum L-brackets (shown in figure 4), a mini SSC, 6 cotter pins, and a voltage regulator circuit. In constructing this box, we first ordered all the parts mentioned above and some screws, and then be
	First we cut the L-brackets for each box. We made two of them 5 inches long, and the other two 6 inches long. The bottom of each servo was to be placed on the longer brackets, and the top on the shorter brackets. We then drilled 3 pairs of holes in each
	We then proceeded to mount the servos. The top an
	
	
	
	The RS-232 Serial Port

	The PDA
	
	
	
	PDA to mini SSC connection using the RS-232 serial port
	Price

	Total Price $605.40
	
	
	IX. SUMMARY

