

PPIICCAA uusseerr mmaannuuaall

This document presents and describes PICA, a library designed

specifically for the implementation of network protocols, which

aims at reducing the production cycle duration for MANET’s

communication protocols. Nevertheless, it can also be used to

write applications that need Operating system features like

thread, socket, timer, etc., avoiding having to port them to

different platforms.

It also explains how to install and use PICA on different

platforms: Windows 2000, Windows XP, Linux, Windows CE 3.0 and

5.0.

Index

PICA user manual 1

1. Introduction 3

2. Terminology 3

3. Overall architecture 5

4. Installation 7

4.1 - Windows 8

4.2 - WindowsCE 3.0 8

4.3 - Windows CE 5.0: 10

4.4 - Linux 10

5. PICA library’s internal structure 11

6. PICA’s primitives 12

6.1 - System management primitives 13

6.1.1 In order to write log file 13

6.1.2 Packet buffer management 14

6.1.3 Pipe management 16

6.2 - Process management primitives 17

6.2.1 Timer management: 17

6.2.2 Thread management 18

6.2.3 Mutex management 21

6.3 - The networking management primitives 22

6.3.1 In order to get information about available devices 22

6.3.2 Management forwarding information 23

6.3.3 24

6.3.4 Frame sending and receiving 24

6.3.5 Routing management 25

6.3.6 Socket management 26

6.4 - In order to manage PICA library 27

1. Introduction

The PICA library was created by Carlos Calafate [1] in order to

provide a multi-platform intuitive API for communication

protocols’ designers. The objective was to accelerate the

prototyping phase to provide users with a stable solution whose

source code can compile directly on distinct platforms.

However, PICA is very flexible, allowing users to choose whether

to use PICA’s or platform’s features.

The PICA architecture tries to be efficient in terms of code size

and speed, making the differences in performance when compared to

a customized solution minimal.

The PICA library was developed in ANSI C language, and is

available as dynamic-link library (.dll) file for Windows

operating systems, and as a shared-object (.so) file for Linux-

based operating systems.

PICA is released under the GNU, General Public Licence ¡Error! No

se encuentra el origen de la referencia..

This manual is divided in four chapters: in the first there is a

brief explication about PICA’s overall architecture; in the second

there are instructions to install PICA on each platform for which

it is available.

The third chapter explains PICA functionalities: if a function

uses a particular data structure or defines a new type it is

explained in function description.

At the end of this manual, there are a table summarizing all data

structures and a list of constants provided by PICA.

2. Terminology

Since the biggest difference between operating systems are between

Linux and Windows families, in this document the word “Windows” is

to be interpreted as the Windows’ operating system family. In case

it is necessary to be more precise, we will state the exact

version of Windows being used.

3. Overall architecture

The PICA library is an adaptation layer between the users and the

kernel space as shown in figure Figure 3-1 and offers specialized

functions that aid the programming activity when creating

networking solution.

Linux Windows

XP

Windows

CE 3.0

Windows

CE 5.0

PICA library

Application

Figure 3-1: PICA architecture

PICA library is based on Winpcap [2], the porting of the Packet

Capture Library (Libpcap) ¡Error! No se encuentra el origen de la

referencia., work by Van Jacobson, to the Windows operating

system.

Both Libpcap and its port Winpcap consist of drivers which extend

the operating system to provide low-level network access. They

also include a library that offers easy access the low-level

network layers.

Libpcap allows applications to capture and transmit network

packets, bypassing the protocol stack, and has additional useful

features, including kernel-level packet filtering, a network

statistics engine and support for remote packet capture.

Unfortunately, the port of Winpcap to the Windows CE 5.0 platform

is not yet available, but the lack of Winpcap’s port to WinCE 5.0

does not render PICA unusable, since applications can still

receive and transmit packets through sockets, but they are

mandatory processed by the operating system.

For example, OLSR version 1 and version 2 implementations use PICA

without resorting to the Libpcap/Winpcap libraries.

PICA, as shown in following figure, does not completely cover

underling layers. Depending on the needs of protocol being

designed, programmers can use PICA’s interface, the

Libpcap/Winpcap library, or kernel procedures.

Figura 3-2: PICA architecture

The use of Libpcap library does not compromise inter-platform

compatibility, since there is a version of Libpcap for almost all

operating systems.

By using kernel specific functions, though, the source code will

loose its compatibility between platforms, requiring porting and

extra effort on the developer’s side.

4. Installation

This paragraph explains how to create a new application based on

PICA, and which external libraries are essential.

PICA is provided with a sample test application showing the PICA

procedures used.

The following table resumes necessary PICA libraries and tools

used to implement the test application.

Win2000

- XP
WINCE 3.0 WINCE 5.0 Linux

Library Winpcap Packet32 - -

Tool

Microsof

t Visual

Studio

.Net

2003

ActiveSync

3.5

EmbeddedVis

ul c++ 3.0

ActiveSync

4.2

Visual

Studio .Net

2005

Tabella 4-1: used tools

Tests on PICA were done with tools’ versions shown in the table

above; the user can pick a different version, but results are not

guaranteed.

The provided PICA package contains these directories:

Linux

Windows

WinCe 3.0

WinCe 5.0

In each directory there is one named “pica” where the PICA library

is, and another one named “test” where there is an application for

testing PICA. This test consists in one simple print of what

happens inside every PICA procedure.

4.1 - Windows

The Windows version of PICA is the same for Windows XP and Windows

2000, and it was built with Microsoft Visual Studio .Net 2003.

The library is based on two system libraries: Iphlpapi ¡Error! No

se encuentra el origen de la referencia. and WindowsSocket2 [5]

libraries. The first assists network administration of the local

computer by enabling applications to retrieve and to modify

information about the network configuration on the local computer,

while the second allows to work with socket features.

This directory contains two sub-directories:

pica: there are PICA library files (pica.dll and pica.lib) and two

directories named “net” and “pica” containing PICA header files.

test: there is Visual studio.Net project test application.

HOW TO USE PICA

In order to install Winpcap download Winpcap executer file from

www.winpcap.org/install/default.htm and install it following instructions

on that web page.

In order to use pica in a project:

copy the following files and directories into your project’s

folder: pica.dll, pica.lib, “net” and “pica”;

Add to your project dependencies “pica.lib ”;

Insert “#include <PICA/pica.h>” in new code.

4.2 - WindowsCE 3.0

PICA’s WinCE 3.0 version was built with Embedded Visual studio C++

3.0 and it can operate with a WinCE3.0 PocketPC.

It downloads all output files and necessary libraries on PocketPc,

but it is necessary to make sure that all of them are downloaded

in the same directory (the default one is “\windows\Start”).

http://www.winpcap.org/install/default.htm

In order to use ip routing functionalities it is necessary to

change “HKEY_LOCAL_MACHINE\Comm\Tcpip\Parms\IpEnableRouter”

registry value from 0 to 1 and perform a soft reset. This change

can be done by an utility similar to Windows’s RegEdit, suitable

for PocketPc.

WindowsCE 3.0 directory contains two sub-directories:

pica: there are PICA library files (“pica.dll” and “pica.lib”) and

two directories named “MSInclude” and “pica” containing PICA

header files.

test: there is an Embedded Visual Studio project test application.

HOW USE PICA

It is important that your device is connected with your PC through

the ActiveSync program in order to allow downloading libraries and

applications to the device.

In order to use PICA in a project:

to install necessaries libraries download them from

http://www.winpcap.org/install/default.htmt. The download consists in a zip
file that contains a project developed with Microsoft Embedded

Visual Studio c++. This solution contains three projects named:

DDL

Driver

Sample Apply

While the first two projects consist of code to allow direct

interaction with the network interface, the third one is a small

application that illustrates the behaviour of the first two

libraries.

In order to obtain the Packet32 library you must build the DLL

project and download it on the PocketPc; since the Driver project

is also required, you must perform the same action on it. Notice

that their output files are packet32.dll for DLL and pktdrv.dll

for Driver.

http://www.winpcap.org/install/default.htmt

Since Winpcap developers do not guarantee its correct functioning,

it is advisable to execute SampleApply to verify if the driver is

suitable for using with the PocketPC.

when creating a new project enable the socket option. That way the

tool initializes the right libraries and the right code for socket

use in your project.

Copy the following files and directories, contained in the

“ARMDbg” directory of Packet32’s project, in the new project’s

folder: Packet32.dll, packet32.lib, PktDrv.dll, PktDrv.lib,

“MSInclude”

Add the content of PICA’s directory to the project’s folder.

Add as to the project’s dependencies: “PICA.lib”.

Insert “#include <PICA/pica.h>” in new code.

4.3 - Windows CE 5.0:

Since Libpcap porting on wince 5.0 is not available, PICA library

does not offer functionalities of sending and receiving packets

bypassing the protocol stack.

The instructions to install and use PICA are the same ones as for

the Wince 3.0 platform, but the tool used is Microsoft Visual

Studio 2005, since it allows to operate with Wince5.0 PocketPc,

and obviously it is not necessary to add references to the

Packet32 library.

4.4 - Linux

In Linux environments, it is necessary to execute all PICA-based

applications with root privileges.

This directory contains two sub-directories:

pica source code: includes all the files for PICA;

test: there is a simple project that shows how pica works.

HOW TO USE PICA

In this paragraph you can find a simple instruction to follow for

installing and then using pica.

Install PICA:

Run make;

Change to superuser with command:; “su -”

Run “make install”.

The library will be copied to “/usr/local/lib” and the headers to

“/usr/include/PICA/”. Change the makefile if you wish to use

different paths for the installation.

In order to develop applications make sure to insert “#include

<PICA/PICA.h>” in your code

In order to compile your application do: “gcc <your stuff> -lpica”

5. PICA library’s internal structure

This paragraph shows the internal structure of the PICA project

and PICA’s available features.

The PICA project consists of eleven files of code, and each of

them includes a header file.

Figura 5-1 shows the internal structure of Windows’ PICA project

and the relationships between header files. Linux’s PICA project

has the same internal structure, but without the reference to the

Winpcap library.

Figura 5-1: PICA internal architecture

In this figure, one blank rectangle is a single PICA header file,

while the yellow one is the libpcap or its porting header file.

Arrows are used as follow:

In this case File_2.h includes File_1.h with the directive

#include“File_1.h”.

6. PICA’s primitives

This paragraph shows and describes PICA’s primitives divided in

three logical groups:

process management primitives

memory management primitives

communication management

In each of them, PICA’s primitives are separated by their

function.

PICA provides a good error management; each function returns 0 if

an error is occurred or 1 otherwise; in the first case it is

possible to obtain a description and a code number for the last

error that occurred by calling the PICAgetLastError function (see

paragraph 6.4 - for more details).

Managed errors are almost same in Windows and Linux: some pica

functions depend only on system calls, hence the returned error

can differ both in message description and in the error number as

returned by a function.

Section 6.4 - presents primitives for PICA library management.

Moreover, it is important to notice that, in Windows, the special

features, like pipe, mutex and semaphore, used for inter-process

communication, are defined “inheritable” in order to allow threads

to communicate with main application.

6.1 - System management primitives

6.1.1 In order to write log file

In order to unify file descriptor PICA uses FDesc, that in windows

is defined as type HANDLE, while in Linux it is defined as type

int.

int PICAopenFile(FDesc * file, char * name, int read_write, int

flags)

Depending on read_write and flags parameters values, this function

opens or creates a file called name in read-only mode or read-and-

write mode.

The read_write parameter can take the following values:

READF: the file “name” is open in read mode; if it doesn’t exit,

the function creates a new one. With this value, the function

ignores the flag parameter value.

WRITEF: in this case the function’s behaviour depends on flag

value;it can be:

CREATE_CLEAN: Creates a new file in read_and_write mode. If the

file exists, the function overwrites the file and clears the

existing attributes.

APPEND: Open the file called name in read_and_write mode. If the

file does not exist the function creates a new one.

int PICAwriteToFile(FDesc file, void * data, unsigned int

datasize);

This function writes the first datasize bytes of information

pointed by data on the file identified by file.

int PICAreadFile(FDesc file, void * buf, int buffersize, int *

datasize);

This function read data of maximum length buffersize from file

identified as “file” and sets datasize as the real length of the

data read.

int PICAcloseFile(FDesc file);

This function closes the file identified by “file”.

6.1.2 Packet buffer management

Relatively to memory management, PICA’s architecture is based on

offering the possibility to easily handle a data structure holding

queues. The purpose was to provide auxiliary functions which could

be useful for implementation. The user can create as many queues

as desired, allowing differentiated packet handling. The

architecture chosen allows using multiple groups of queues, each

group having a number of queues chosen by the user.

This following figure shows new data structures definitions:

Figura 6-1: PICApacket structure definition for all platfaorms

Figura 6-2:PICAbuffer structure definition (left: for windows, right: for Linux)

The first represents the information unit to store in the buffer.

Each packet can have a different size.

PICAbuffer is a data structure that contains one or more queues;

each of them is a linked list of packets.

In order to guarantee data coherence to multi-threaded

applications, PICA’s buffer structure has a set of mutexes. Each

mutex is used to control the access to each queue so that, for

example, distinct threads can read and write to different queues

even though these queues belong to the same group.

The mutex set is obtained by using a dynamic array with a number

of elements equal to the “tot queues” field. This guarantees data

coherence to multi-threaded applications; hence, two or more

threads can access different queues in parallel, or to the same

queue avoiding the concurrent access problem.

It is relevant to point out that, in order not to generate

meaningful delays, these routines do not perform any kind of

buffer duplication, having the sole task of managing pointers to

data.

int PICAinitBuffer(PICAbuffer ** ibuf, int num_queues);

This function initializes a PICAbuffer structure with num_queues

queues and num_queues mutex.

int PICAaddToBuffer(PICAbuffer * buf, int queue_id, void * data,

int data_size);

This function creates a new packet with information pointed by

“data” and size of data_size. Afterwards, it puts each packet at

the end of queue number queue_id. It important to notice that the

queue number starts at 0.

int PICAgetFromBuffer(PICAbuffer * buf, int queue_id, int

num_packets, PICApacket ** packets, int * avail_packets);

This function gives the first num_packet of queue number queue_id

of buffer buf. Avail_packet contains the real number of packet

retrieved from the queue.

int PICAkillBuffer(PICAbuffer * buf);

This function frees the memory allocated for the PICAbuffer buf.

6.1.3 Pipe management

A pipe is a useful inter-process communication tool. Since pipes

are considered as a file under both Linux and Windows, it is

represented with a different type: in Linux with the integer type,

while in Windows with HANDLE type.

Moreover, in Windows, the programmer has to signal pipe writing to

the reading thread.

Therefore, PICA provides a pipe data structure and primitives to

manage it in order to cope with this difference.

Figura 6-3 shows the definitions of PICApipe in Linux and Windows:

Figura 6-3: PICApipe structure definition (left: for Windows, right: for Linux)

Despite Windows¡ pipe declaration uses an event, the communication

between the pipe writing thread and pipe reading thread is

transparent to the PICA user. (To learn about how to use PICA’s

pipe functionalities see the test application.)

On Windows and Linux, reads and writes to anonymous pipes are

always blocking. In other words, a read from an empty pipe will

block in the call until either one or more bytes arrive, or the

pipe is closed and an end-of-file is sent. Likewise, a write to a

full pipe will block the call until space becomes available to

store the data being written. Reads may return with less than the

number of bytes requested, otherwise known as a short-read.

int PICAmakePipe(PICApipe * in, PICApipe * out);

This function creates a pipe: the in parameter is used to put

data, while out one to get data on the same pipe.

int PICAsendToPipe(PICApipe out, void * data, int size, int *

written);

This function allows to write data pointed by data of size size on

pipe. The write value states how many bytes are actually written.

int PICAgetFromPipe(PICApipe in, void * buf, int bufsize, int *

datasize);

This function allows to read bufsize bytes from the pipe and put

them in buf. The datasize value states how many bytes are actually

read.

int PICAclosePipe(PICApipe pipe);

This function frees pipe space.

6.2 - Process management primitives

6.2.1 Timer management:

Windows and Linux represent time in different ways and from

different dates: Windows operating system uses intervals of 100-

nanosecond intervals since January 1, 1601, while Linux uses a

more complex data structure to represent the time expired since

January 1, 1970.

In order to unify time representation, PICA represents time values

by number milliseconds intervals since January 1, 1970 using

UNIT64 type.

UINT64 PICAgetCurrTime(void);

This function returns current time.

int PICAtimer(int action, UINT64 * time, void * function, void *

data);

This function’s behaviour depends on “action” . Its admitted

values are:

T_STARTUP: initializes timer; it is necessary to have done just

this action before taking the following actions.

T_SET: sets the “function” and its “data” in the timer’s queue in

such a way that all its precedent elements have a timeout value

lower that its own, while the next elements have a greater timeout

value. Afterwards, it updates the timer to the value of the most

recent event. It is important to point out that it is possible to

insert two or more elements with a same timer value, and that they

will be executed at almost the same time.

T_STOP: removes the timer for the function, therefore deleting the

element representing it from the timer queue. The element to

remove is identified by both time and function (or by one of

them).

T_KILL: terminates the thread created and resets the timer.

6.2.2 Thread management

The fork() call is of common use in Unix environments to manage

processes. Windows OS, though, do not offer this function. PICA

adopts a combination of the threads approximation with the

semaphore and mutex abstractions as an alternative to processes

without generating too much extra code. Although the Posix

standard doesn’t allow thread suspension and resuming, the PICA

library allows using such functions in the Linux operating system

by means of the SIGUSR1 and SIGUSR2 signals.

This solution tries to cope with the differences with respect to

the windows kernel where such functions exist. The recommended

practice is anyway to avoid such calls because they can produce

unpredictable results in critical sections of code. Also, the

Posix standard does not allow setting the maximum value of a

semaphore, which PICA makes available by introducing a little

overhead.

PICASuspendThread and PICAResumeThread are primarily designed for

use by debuggers. They are not intended to be used for thread

synchronization.

Calling PICASuspendThread on a thread that owns a synchronization

object, such as a mutex or critical section, can lead to a

deadlock if the calling thread tries to obtain a synchronization

object owned by a suspended thread. To avoid this situation, a

thread within an application that is not a debugger should signal

the other thread to suspend itself. The target thread must be

designed to watch for this signal and respond appropriately.

int PICAstartThread(THRID * thr, void * func, void * arg);

This function creates a thread identified by thr that executes la

function func with parameters arg.

int PICAsuspendThread(THRID thr);

This function suspends the thread identified by thr.

int PICAresumeThread(THRID thr);

This function resumes the thread identified by thr.

int PICAkillThread(THRID thr);

This function kills the thread identified by thr.

int PICAselect(int time, PICAdescList * dl, PICAselResult * res);

This function emulates the behaviour of Linux’s select function.

Linux’s select function is used to wait for events associated with

any kind of descriptor; descriptors are represented by integers

values. However, in Windows operating systems, descriptors are

generally represented by a specific data type called HANDLE, while

integers are only used for sockets. Windows’ select function is

only available for sockets, while for others events we have to use

a function of the WaitFor family. The PICA library obviates this

problem by emulating the Linux behaviour and using new data

structures (PICAdescList and PICAselResult).

These data structures are necessary in Windows because, as

referred above, it uses different data types to identify

descriptor resources. Therefore, these structures allow

identifying type descriptors through the type field .

Types admitted are: PICA_PIPE_TYPE, PICA_TIMEOUT_TYPE,

PICA_OTHER_TYPE. (see PICAselect function)

PICAdescList represents a list of all descriptors on which to wait

for an event.

PICAselResult corresponds to PICAselect result; it contains the

selected resource descriptor and its type, which is the type of

resource it refers to.

int PICAaddDesc(PICAdescList ** dl, int type, int mode, void *

desc);

Add a new file descriptor whose type is type and whose mode is

mode. It is associated with a event described by desc.

6.2.3 Mutex management

Windows and Linux/Unix systems manage Mutexes and semaphores in

different ways.

Besides having different types for mutex and semaphore

descriptors, Linux does not allow setting the maximum value of a

semaphore, which is a feature available in Windows. PICA provides

this functionality.

In order to cope with the differences PICA provides the following

functions to create, operate and destroy mutexes, semaphores and

new data structures.

int PICAcreateMutex(PICAmutex * mut);

int PICAcreateSemaphore(PICAsemaphore * p_sem, int initial_count,

int max_count);

int PICAmutexAction(int action, PICAmutex * mut);

int PICAsemaphoreAction(int action, PICAsemaphore * p_sem, int

count);

These functions’ behaviour depends on the value of the action

field:

MUTEX_ACQUIRE or SEMAPHORE_ACQUIRE try to acquire the mutex or

semaphore; if it has just been acquired or the semaphore value is

the minimum, the calling thread enters the wait state until the

object is signalled or the time-out interval elapses; (blocking

the call)

MUTEX_RELEASE or SEMAPHORE _RELEASE: release the mutex or

increment the semaphore value.

MUTEX_ACQ_NO_BLOCK or SEMAPHORE _ACQ_NO_BLOCK: to acquire the

mutex; if it has just been acquired, the function returns

immediately.

int PICAdestroyMutex(PICAmutex * mut);

int PICAdestroySemaphore(PICAsemaphore * p_sem);

6.3 - The networking management primitives

6.3.1 In order to get information about available devices

Each device is identified by a different string, depending on the

operating system. For Windows operating systems a device is

identified by a long and cryptic ASCII string, while in Linux is a

string similar to “eth?”, “wifi?”, “ppp?”, etc., where in place of

“?” there is a number.

Interesting information about a device are its MAC, net mask and

IP addresses.

In order to store this information PICA uses two data structures:

The DEVLIST structure represents a device set containing

num_devices devices and their identification name. PICA supports a

maximum of 128 network adapters on each

DevAttrs structure is used to store the IP and MAC address of a

device.

int PICAgetAvailableDevices(DEVLIST * devs);

This function allows to obtain the number and names of all

available devices in devs. (see paragraph “PICA data structures”

Appendix A)

int PICAgetDeviceAttrs(char * dev, DevAttrs * attrs);

This function sets in attr the MAC, net mask and IP addresses of

devices identified by dev. (see paragraph “PICA data structures”

pag 14)

6.3.2 Management forwarding information

These functions provide information about forwarding and allow to

change its state.

int PICAisForwarding(int * true_false);

This function gives information about the forwarding status: set

true_false true if computer forwards packets, false otherwise.

int PICAsetForwarding(int on_off);

This function sets forwarding on if on_off’s value is FWD_ON, off

if _off’s value is FWD_OFF; other values are not admitted.

int PICAdefaultTTL(int set_get, int * ttl);

This function sets or gets the TTL’s value depending on value of

set_get:

If its value is TTL_SET then this function sets the TTL with value

pointed by ttl.

If its value is TTL_GET then this function gets the system’s value

for the time-to-live.

It should be noticed that the TTL value affected is the global

system’s TTL. Lowering this value too much might cause loss of

connectivity to other networks (e.g. Internet). For a per-socket

definition of this value, the appropriate socket option available

in most systems should be used.

6.3.3 Frame sending and receiving

int PICAopenDevice(char * device, PICA_IO_DEVICE * iodev);

This function makes the device identified by name “device” ready

to get and put data in the network. After this call, in order to

send and receive a packet it is necessary refer to it through the

iodev value.

int PICAframe(int mode, PICA_IO_DEVICE iodev, void * packet, int

packetsize, int * read);

This function allows to send and receive packets on device

“iodev”.

If the “mode” value is:

PICA_SEND: the device sends data pointed by “packet” of size

packetsize. In this case parameter “read” is not used.

PICA_RECEIVE: the device receives data from device “iodev” of size

“packetsize”. “read” value states how many bytes are actually

read.

It is important to point out that data to be sent has to conform

to the packet format of a MAC frame.

Many network adapters use Ethernet II as packet format. It

includes many fields, but the user must create a data stream with

only these ones: Destination and source MAC addresses, Ethernet

type/length, and Payload, since the remaining ones are set by

network adapter.

int PICAcreatePacket(char *addr, unsigned char *data, int

datasize, unsigned char * packet, int * packetsize);

This function creates an Ethernet II packet with the destination

address indicated by addr, a string with dot-notation and sets the

packet data field with the data pointed by data.

This function requires data to be already in the hexadecimal

format; datasize is the length of the data parameter.

Parameter packet will point to the packet just created, and

packetsize is its size.

This function does not require the source address because the

network adapter sets it in each packet before sending.

int PICAcloseDevice(PICA_IO_DEVICE iodev);

Close the device identified by iodev.

6.3.4 Routing management

These functions allow the user to add and remove entries in the

forwarding table and reading such table. They are not frequented

used, but we found that they are sometimes useful in protocol

design to provide dynamic connectivity. For example in OLSRv1.

In order to transform IP addresses from dotnotation format to bit

string it is possible to use … in Windows and … in Linux

The data structures used in Windows and Linux are different.

Therefore PICA used the following:

Figura 6-4: RTLines structure and RTInfo structure definitions

RTLines represents an entry in routing table, specifying the

adapter to which related.

RTInfo represents routing table with entry_count entries number,

and lines is a pointer to a list of all entries.

int PICAaddRoute(UINT32 dest, UINT32 mask, UINT32 gateway,int

metric, char * device);

This function adds a route in device’s routing table with

destination dest, mask mask, gateway gateway and metric metric.

int PICAdelRoute(UINT32 dest, UINT32 mask, UINT32 gateway, char *

device);

This function deletes a route from device’s route table with

destination dest, mask mask, gateway gateway and metric metric.

int PICAgetRoutingTable(RTInfo * rti);

This function gives routing table information stored in the

routing table structure (RTInfo) pointed by rti.

6.3.5 Socket management

These functions allow the user to open and close a socket.

int PICAcreateSocket(PICAsocket * sd, int domain, int type, int

protocol, int block);

in order to understand the possible values of “domain”, “type” and

“protocol” parameters see documentation of Windows and Linux

socket function [5], while the parameter block can take values:

BLOCK: in order to create a blocking socket, meaning that the

application waits for the socket until it receives something.

NO_BLOCK: ehterwise.

int PICAcloseSocket(PICAsocket sd);

This function closes socket sd.

In order to get user information

int PICAisAdministrator(int * true_false);

This function sets variable true_false to IS_ADM if the process is

executing with administrator privileges, or sets it to IS_NOT_ADM

otherwise.

6.4 - In order to manage PICA library

int PICAstartup(int flags);

This function is essential to use PICA since it initialises PICA

library and all necessary data structures. Therefore, it has to be

the first PICA function called.

int PICAcleanup(void);

This function cleans-up the PICA library, and it must be executed

before the application exits. Lack of such call can generate an

error.

int PICAgetLastError(char * err, int * code);

This is a useful function that allows to debug applications based

on PICA: it puts in err a concise error description and in code

its error number code.

7. References

[1] Carlos Calafate www.grc.upv.es/calafate

[2] IEEE, Portable operating system interface (posix) – part 1:

System application programming interface (api) [c language]”

ISO/IEC 9945-1, 1996.

[3] www.winpcap.org

[4] V. Jacobson, C. Leres and S. McCanne, “The libpcap packet

capture library”, Lawrence Berkeley Laboratory, Berkely, Ca.

Available at http:// www.tcpdump.org.

[5] http://msdn2.microsoft.com/en-us/library/aa366071.aspx

[6] Martin Hall and Dave Treadwel et al., “Windows sockets 2

application programming interface,” August 1997, Available at

ftp://ftp.microsoft.com/.

http://www.grc.upv.es/calafate
http://www.tcpdump.org/

8. Index of figures

Figure 3-1: PICA architecture.................................... 5

Figura 3-2: PICA architecture.................................... 6

Figura 5-1: PICA internal architecture.......................... 11

Figura 6-1: PICApacket structure definition for all platfaorms.. 14

Figura 6-2:PICAbuffer structure definition (left: for windows,

right: for Linux)... 14

Figura 6-3: PICApipe structure definition (left: for Windows,

right: for Linux)... 16

Figura 6-4: RTLines structure and RTInfo structure definitions.. 26

9. Index of tables

Tabella 4-1: used tools.. 7

	1. Introduction
	2. Terminology
	3. Overall architecture
	4. Installation
	4.1 - Windows
	4.2 - WindowsCE 3.0
	4.3 - Windows CE 5.0:
	4.4 - Linux
	5. PICA library’s internal structure
	6. PICA’s primitives
	6.1 - System management primitives
	6.1.1 In order to write log file
	6.1.2 Packet buffer management
	6.1.3 Pipe management

	6.2 - Process management primitives
	6.2.1 Timer management:
	6.2.2 Thread management
	6.2.3 Mutex management

	6.3 - The networking management primitives
	6.3.1 In order to get information about available devices
	6.3.2 Management forwarding information
	6.3.3 Frame sending and receiving
	6.3.4 Routing management
	6.3.5 Socket management

	6.4 - In order to manage PICA library

	7. References
	8. Index of figures
	9. Index of tables

