
e.com
33
00

22
11

.0
4

www.telemecaniqu

Concept 2.6
Block Library IEC
Part: CONT_CTL
01/2007

2

Table of Contents
Safety Information .17

About the Book . 19

Part I General information about the block library
CONT_CTL . 21
Overview . 21

Chapter 1 Parameterizing functions and function blocks 23
Parameterizing functions and function blocks . 24

Chapter 2 General information on the CONT_CTL block library 27
Introduction . 27
Groups in the CONT_CTL block library. 28
Operating mode. 33
Scanning . 35
Error management . 36
Convention . 37

Part II EFB Descriptions (A to PH) . 39
Overview . 39

Chapter 3 ALIM: Velocity limiter: 2nd order . 41
Overview . 41
Brief description. 42
Presentation . 43
Detailed description. 44
Runtime error . 45
3

Chapter 4 AUTOTUNE: Automatic regulator setting 47
Overview . 47
Brief description . 48
Representation. 49
Principle of the autotuning . 52
Identification principle . 54
Parametering . 55
Controller coupling . 58
Operating modes . 59
Diagnosis . 60
Status of the autotuning . 61
Causes of a faulty start . 62
Causes of autotuning termination . 63
Generating a test after stopping the autotuning. 65
Runtime error . 70

Chapter 5 COMP_DB: Comparison . 71
Overview . 71
Brief description . 72
Representation. 72
Detailed description . 73
Runtime error . 74

Chapter 6 COMP_PID: Complex PID controller . 75
Overview . 75
Brief description . 76
Representation. 77
Complex PID controller structure diagram . 80
Parametering of the COMP_PID controller . 81
Antiwindup for COMP_PID . 84
Controller type selection for COMP_PID . 85
Bumpless operating mode switchover . 86
Selecting the operating mode of the COMP_PID . 89
Detailed formulas . 92
Runtime error . 94

Chapter 7 DEADTIME: Deadtime device . 95
Overview . 95
Brief description . 96
Representation. 97
Operating mode . 98
Example for behavior of the function block . 99
Runtime error . 99
4

Chapter 8 DELAY: Deadtime device .101
Overview . 101
Brief description. 102
Representation . 103
Operating mode. 104
Example of the behavior of the function block. 105

Chapter 9 DERIV: Differentiator with smoothing 107
Overview . 107
Brief description. 108
Representation . 109
Formulas . 110
Detailed description. 111
Example for the function block . 112
Runtime error . 112

Chapter 10 DTIME: Delay. 113
Overview . 113
Brief description. 114
Representation . 115
Parametering. 116
Initialization and operating mode. 118
Example for measuring a rate of flow . 119
Runtime error . 120

Chapter 11 FGEN: Function generator. 121
Overview . 121
Brief description. 122
Representation . 123
Parametering. 124
Function selection . 125
Function definition . 126
Diagrams of the individual functions . 129
Special cases . 133
Timing diagrams . 134

Chapter 12 INTEG: Integrator with limit .137
Overview . 137
Brief description. 138
Representation . 139
Detailed description. 140
Runtime error . 141
5

Chapter 13 INTEGRATOR: Integrator with limit . 143
Overview . 143
Brief description . 144
Display . 145
Detailed description . 146
Runtime error . 147

Chapter 14 INTEGRATOR1: Integrator with limit 149
Overview . 149
Brief description . 150
Display . 151
Detailed description . 152
Runtime error . 153

Chapter 15 K_SQRT: Square root . 155
Overview . 155
Brief description . 156
Presentation. 156
Runtime error . 157

Chapter 16 LAG: Time lag device: 1st order . 159
Overview . 159
Brief description . 160
Presentation. 161
Detailed description . 162

Chapter 17 LAG1: Time lag device: 1st order . 165
Overview . 165
Brief description . 166
Presentation. 167
Detailed description . 168

Chapter 18 LAG2: Time lag device: 2nd order . 169
Overview . 169
Brief description . 170
Presentation. 171
Detailed description . 172
Timing diagrams . 173

Chapter 19 LAG_FILTER: Time lag device: 1st order 175
Overview . 175
Brief description . 176
Representation. 177
Detailed description . 178
6

Chapter 20 LDLG: PD device with smoothing .179
Overview . 179
Brief description. 180
Representation . 181
Detailed description. 182
Examples of function block LDLG . 183

Chapter 21 LEAD: Differentiator with smoothing185
Overview . 185
Brief description. 186
Representation . 187
Detailed description. 188

Chapter 22 LEAD_LAG: PD device with smoothing 189
Overview . 189
Brief description. 190
Representation . 191
Detail description. 192
Examples of function blocks LEAD_LAG . 193
Runtime error . 195

Chapter 23 LEAD_LAG1: PD device with smoothing197
Overview . 197
Brief description. 198
Display. 199
Detailed description. 200
Examples of function blocks LEAD_LAG1 . 201

Chapter 24 LIMV: Velocity limiter: 1st order .203
Overview . 203
Brief description. 204
Display. 205
Detailed description. 206
Runtime error . 207

Chapter 25 MFLOW: mass flow block .209
Overview . 209
Brief description. 210
Representation . 211
Detailed description. 212
Runtime error . 213
7

Chapter 26 MS: Manual control of an output . 215
Overview . 215
Brief description . 216
Representation. 217
Detailed description . 219
Example . 222
Runtime error . 223

Chapter 27 MULDIV_W: Multiplication/Division . 225
Overview . 225
Brief description . 226
Representation. 226
Runtime error . 227

Chapter 28 PCON2: Two point controller . 229
Overview . 229
Brief description . 230
Presentation. 231
Detailed description . 232
Runtime error . 234

Chapter 29 PCON3: Three point controller . 235
Overview . 235
Brief description . 236
Presentation. 237
Detail description . 239
Runtime error . 241

Chapter 30 PD_or_PI: Structure changeover PD/PI controller 243
Overview . 243
Brief description . 244
Presentation. 245
PD_or_PI function block structure diagram . 247
Detailed description . 248
Detailed formulas . 251
Runtime error . 253

Chapter 31 PDM: Pulse duration modulation . 255
Overview . 255
Brief description . 256
Representation. 257
Detailed description . 258
Runtime error . 262
8

Part III EFB Descriptions (PI to Z) . 263
Overview . 263

Chapter 32 PI: PI controller .265
Overview . 265
Brief description. 266
Representation . 267
Formulae . 269
Parametering. 270
Operating modes. 272
PI controller example. 273
Runtime error . 274

Chapter 33 PI1: PI controller .275
Overview . 275
Brief description. 276
Presentation . 277
Formulae . 278
Parametering. 279
Operating modes. 280
PI1 controller example. 281
Runtime error . 282

Chapter 34 PI_B: Simple PI controller .283
Overview . 283
Brief description. 284
Representation . 285
Formulae . 287
Parametering. 288
Detailed equations. 292
Runtime error . 294

Chapter 35 PID: PID controller .295
Overview . 295
Brief description. 296
Presentation . 297
PID function block structure diagram . 299
Parametering of the PID controller . 300
Operating mode. 302
Detailed formulas . 305
Runtime error . 307
9

Chapter 36 PID1: PID controller . 309
Overview . 309
Brief description . 310
Display . 311
PID1 function block structure . 313
Parametering the PID1 controller. 314
Operating modes . 316
Detailed formulae. 318
Runtime error . 319

Chapter 37 PID_P: PID controller with parallel structure 321
Overview . 321
Brief description . 322
Representation. 324
Parametering of the PID_P controller . 326
Operating modes . 328
Detailed formulas . 329
Runtime error . 330

Chapter 38 PID_PF: PID controller with parallel structure 331
Overview . 331
Brief description . 332
Representation. 333
Parametering of the PID_PF controller . 335
Operating modes . 337
Detailed formulas . 338
Runtime error . 330

Chapter 39 PIDFF: Complete PID controller . 341
Overview . 341
Brief description . 342
Representation. 343
Formulae . 345
Structure diagram of the PIDFF controller . 347
Parametering . 348
Operating modes . 352
Detailed equations . 353
Detailed equations: Incremental algorithm PID controller 356
Detailed equations: Incremental algorithms in integral mode 358
Example for the PIDFF block . 360
Runtime error . 365
10

Chapter 40 PIDP1: PID controller with parallel structure367
Overview . 367
Brief description. 368
Representation . 369
Parametering of the PIDP1 controller . 371
Operating modes. 373
Detailed formulas . 374
Runtime error . 376

Chapter 41 PIP: PIP cascade controller .377
Overview . 377
Brief description. 378
Display. 379
Structure diagram of the PIP function block . 381
Parametering of the PIP-cascade controller . 382
Operating mode. 384
Detailed formulas . 386
Runtime error . 387

Chapter 42 PPI: PPI cascade controller .389
Overview . 389
Brief description. 390
Display. 391
Structure diagram of the PPI function block . 393
Parametering of the PPI-cascade controller . 394
Operating mode. 396
Detailed formulas . 397
Runtime error . 398

Chapter 43 PWM: Pulse width modulation .399
Overview . 399
Brief description. 400
Display. 401
Formulas . 402
Detailed description. 402
Example for the PWM block . 405

Chapter 44 PWM1: Pulse width modulation .409
Overview . 409
Brief description. 410
Presentation . 411
Formulas . 412
Detailed description. 413
Example of the PWM1 block . 415
11

Chapter 45 QDTIME: Deadtime device . 417
Overview . 417
Brief description . 418
Representation. 419
Detailed description . 420

Chapter 46 QPWM: Pulse width modulation (simple) 423
Overview . 423
Brief description . 424
Representation. 425
Formulae . 426
Detailed description . 427
Example for the QPWM block . 429

Chapter 47 RAMP: Ramp generator. 431
Overview . 431
Brief description . 432
Representation. 432
Detailed description . 433
Runtime error . 435

Chapter 48 RATIO: Ratio controller . 437
Overview . 437
Brief description . 438
Representation. 439
Detailed description . 440
Runtime error . 442

Chapter 49 SCALING: Scaling . 443
Overview . 443
Brief description . 444
Representation. 444
Parametering . 445
Runtime error . 446

Chapter 50 SCON3: Three step controller. 447
Overview . 447
Brief description . 448
Representation. 449
Detailed description . 450
Runtime error . 452
12

Chapter 51 SERVO: Control for electric servo motors 453
Overview . 453
Brief description. 454
Representation . 455
Parametering. 456
SERVO function block algorithms . 458
Operating mode. 459
Examples of function block SERVO . 459
Runtime error . 466

Chapter 52 SMOOTH_RATE: Differentiator with smoothing467
Overview . 467
Brief description. 468
Representation . 468
Function block SMOOTH_RATE formulas . 469
Detailed description. 470

Chapter 53 SP_SEL: Setpoint switch .471
Overview . 471
Brief description. 472
Representation . 473
Detailed description. 475
Runtime error . 478

Chapter 54 SPLRG: Controlling 2 actuators .479
Overview . 479
Brief description. 480
Representation . 481
Detailed description. 482
Runtime error . 484

Chapter 55 STEP2: Two point controller .485
Overview . 485
Brief description. 486
Representation . 487
Detailed description. 488
Runtime error . 489

Chapter 56 STEP3: Three point controller .491
Overview . 491
Brief description. 492
Representation . 493
Detailed description. 494
Runtime error . 496
13

Chapter 57 SUM_W: Summer . 497
Overview . 497
Brief description . 498
Representation. 498
Runtime error . 498

Chapter 58 THREEPOINT_CON1: Three point controller 499
Overview . 499
Brief description . 500
Representation. 500
Detailed description . 502
Runtime error . 505

Chapter 59 THREE_STEP_CON1: Three step controller 507
Overview . 507
Brief description . 508
Representation. 509
Detailed description . 510
Runtime error . 512

Chapter 60 TOTALIZER: Integrator . 513
Overview . 513
Brief Description. 514
Representation. 515
Formulas . 516
Detailed description . 517
Runtime error . 521

Chapter 61 TWOPOINT_CON1: Two point controller 523
Overview . 523
Brief description . 524
Representation. 525
Detailed description . 526
Runtime error . 528

Chapter 62 VEL_LIM: Velocity limiter . 529
Overview . 529
Brief description . 530
Representation. 531
Detailed description . 532
Runtime error . 533
14

Chapter 63 VLIM: Velocity limiter: 1st order .535
Overview . 535
Brief description. 536
Representation . 537
Detailed description. 538
Rum-time error . 539

Glossary . 541

Index . 565
15

16

§

Safety Information
Important Information

NOTICE Read these instructions carefully, and look at the equipment to become familiar with
the device before trying to install, operate, or maintain it. The following special
messages may appear throughout this documentation or on the equipment to warn
of potential hazards or to call attention to information that clarifies or simplifies a
procedure.

The addition of this symbol to a Danger or Warning safety label indicates
that an electrical hazard exists, which will result in personal injury if the
instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal
injury hazards. Obey all safety messages that follow this symbol to avoid
possible injury or death.

DANGER indicates an imminently hazardous situation, which, if not avoided, will
result in death or serious injury.

DANGER

WARNING indicates a potentially hazardous situation, which, if not avoided, can result
in death, serious injury, or equipment damage.

WARNING

CAUTION indicates a potentially hazardous situation, which, if not avoided, can result
in injury or equipment damage.

CAUTION
33002211 17

Safety Information
PLEASE NOTE Electrical equipment should be installed, operated, serviced, and maintained only by
qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

© 2007 Schneider Electric. All Rights Reserved.
18 33002211

About the Book
At a Glance

Document Scope This documentation will assist you when configuring functions and Function blocks.

Validity Note This document applies to Concept 2.6 under Microsoft Windows 98, Microsoft
Windows 2000, Microsoft Windows XP and Microsoft Windows NT 4.x.

Related
Documents

You can download these technical publications and other technical information from
our website at www.telemecanique.com

User Comments We welcome your comments about this document. You can reach us by e-mail at
techpub@schneider-electric.com

Note: Additional up-to-date tips can be found in the README data file in Concept.

Title of Documentation Reference Number

Concept Installation Instructions 840 USE 502 00

Concept User Manual 840 USE 503 00

Concept-EFB User Manual 840 USE 505 00

Concept LL984 Block Library 840 USE 506 00
33002211 19

About the Book
20 33002211

33002211
I

General information about the
block library CONT_CTL
Overview

At a glance This section contains general information about the block library CONT_CTL.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

1 Parameterizing functions and function blocks 23

2 General information on the CONT_CTL block library 27
21

General information
22 33002211

33002211
1

Parameterizing functions and
function blocks
23

Parameterization
Parameterizing functions and function blocks

General Each FFB consists of an operation, the operands needed for the operation and an
instance name or function counter.

Operation The operation determines which function is to be executed with the FFB, e.g. shift
register, conversion operations.

Operand The operand specifies what the operation is to be executed with. With FFBs, this
consists of formal and actual parameters.

FFB
(e.g. ON-delay)

Item name/
Function counter
(e.g. FBI_2_22 (18))

Operation
(e.g. TON)

Operand

Actual parameter
Variable, element of a

multi-element
variable, literal, direct

address
(e.g. ENABLE, EXP.1,
TIME, ERROR, OUT,

%4:0001)

Formal
parameter

(e.g.
IN,PT,Q,ET)

TON

ENABLE

EXP.1

TIME

EN

IN

PT

ENO

Q

ET

ERROR

OUT

%4:00001

FBI_2_22 (18)
24 33002211

Parameterization
Formal/actual
parameters

The formal parameter holds the place for an operand. During parameterization, an
actual parameter is assigned to the formal parameter.

The actual parameter can be a variable, a multi-element variable, an element of a
multi-element variable, a literal or a direct address.

Conditional/
unconditional
calls

"Unconditional" or "conditional" calls are possible with each FFB. The condition is
realized by pre-linking the input EN.
� Displayed EN

conditional calls (the FFB is only processed if EN = 1)
� EN not displayed

unconditional calls (FFB is always processed)

Calling functions
and function
blocks in IL and
ST

Information on calling functions and function blocks in IL (Instruction List) and ST
(Structured Text) can be found in the relevant chapters of the user manual.

Note: If the EN input is not parameterized, it must be disabled. Any input pin that
is not parameterized is automatically assigned a "0" value. Therefore, the FFB
should never be processed.

Note: For disabled function blocks (EN = 0) with an internal time function (e.g.
DELAY), time seems to keep running, since it is calculated with the help of a
system clock and is therefore independent of the program cycle and the release of
the block.
33002211 25

Parameterization
26 33002211

33002211
2

General information on the
CONT_CTL block library
Introduction

At a glance This section contains general information on the CONT_CTL block library.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Groups in the CONT_CTL block library 28

Operating mode 33

Scanning 35

Error management 36

Convention 37
27

Introduction
Groups in the CONT_CTL block library

Overview of the
groups

The "Continuous Control"(CONT-CTL) library consists of 7 groups with Elementary
function blocks (EFBs):

"CLC" group This group contains the following EFBs:

Groups Contents

CLC Contains closed loop control function blocks such as filters,
controllers, integrators and Deadtime devices

CLC_PRO Contains a further selection of closed loop control function
blocks

Conditioning EFBs for processing the measurement or another discrete
variable

Controller Controller EFBs and automatic closed control loop blocks

Mathematics EFBs for mathematical control functions

Output Processing EFBs for controlling the various actuator types

Setpoint Management EFBs for generating and selecting the setpoint

Block Meaning

DELAY Deadtime device

INTEGRATOR1 Integrator with limit
(Operating modes, Manual, Halt, Automatic)

LAG1 Time lag device: 1st order

LEAD_LAG1 PD device with smoothing

LIMV Velocity limiter: 1st order

PI1 PI controller

PID1 PID controller

PIDP1 PID controller with parallel structure

SMOOTH_RATE Differentiator with smoothing

THREEPOINT_CON1 Three point controller

THREE_STEP_CON1 Three-step step-action controller

TWOPOINT_CON1 Two-step controller
28 33002211

Introduction
"CLC_PRO"
group

This group contains the following EFBs:

Block Meaning

ALIM Velocity limiter: 2nd order

COMP_PID Complex PID controller

DEADTIME Deadtime device

DERIV Differentiator with smoothing

FGEN Function generator

INTEG Integrator with limit

LAG Time lag device: 1st order

LAG2 Time lag device: 2nd order

LEAD_LAG PD device with smoothing

PCON2 Two-step controller

PCON3 Three point controller

PD_or_PI Algorithm-adaptive PD/PI controller

PDM Pulse duration modulation

PI PI controller

PID PID controller

PID_P PID controller with parallel structure

PIP PIP cascade controller

PPI PPI cascade controller

PWM Pulse width modulation

QPWM Pulse width modulation (simple)

SCON3 Three-step step-action controller

VLIM Velocity limiter: 1st order
33002211 29

Introduction
"Conditioning"
group

This group contains the EFBs for processing procedures which come before the
controllers in general, such as the processing of the measurements of the controlled
variables, the disturbance variables or other discrete variables.

This group also contains delay and summation functions beyond filters and other
classic functions.

This group contains the following EFBs:

"Controller"
group

The contents of this group a block for autotuning (AUTOTUNE). This block is
standardized with the PI_B and PIDFF controller blocks. Self-tuning controller
applications can be programmed with this.

This group contains the following EFBs:

Block Meaning

DTIME Delay function, for increased precision or for dynamic (online)
modification of the delay value

INTEGRATOR Integrator with limit
(Tracking and automatic operating modes)

LAG_FILTER Time lag device: 1st order

LDLG PD device with smoothing (phase advance/delay)

LEAD Differentiator with smoothing

MFLOW Controller for mass flow, e.g. for processing the differential
pressure measurement of a throttle device

QDTIME Deadtime device, delay function for quick parametering (Q =
Quick)

SCALING Scaling of all discrete variables

TOTALIZER An integrator for integrating a flow and thereby calculating a flow
volume.
Very small values can be taken into account with this EFB, even
if the total volume is large. It has a partial amount and a total
amount counter.

VEL_LIM Limiting the input or intermediate variable velocity

Block Meaning

AUTOTUNE Autotuning

PI_B Simple PI controller

PIDFF Complete PID controller

STEP2 Two-step controller

STEP3 Three point controller
30 33002211

Introduction
"Mathematics"
group

Arithmetic functions are often used in connection with dead zones and weightings in
the regulation zone.

This group covers directly applicable arithmetic functions on the basis of this
principle.
� Multiplication / division with weighting: MULDIV_W
� Summation with weighting: SUM_W
� Comparison with dead zone and hysteresis: COMP_DB
� Square root with division and weighting K_SQRT

This group contains the following EFBs:

"Output
processing"
group

It is often not possible to use the controller output directly to control the actuator.

If for example, as in the case of many processes, electric server motors are in use,
a SERVO function block must be switched to the controller.

If two actuators are affecting the same variable, the SPLRG function block should
be used. This function block functions both as a three step controller (when the
actuators have an opposing effect) and in the "Split range" operating mode (when
the actuators have an equal effect).

The PWM1 block enables pulse width modulation, for example of a setting variable
of a pre-enabled continuous controller (PI, PID).

Although all the controller blocks can work in manual operating mode, it is often
necessary to used the MS function block for this purpose.

This block enables extended control of manual operation mode
� The variable to be controlled is not the control output directly
� The output is not controlled via a servo loop
� The servo loop has a long sampling interval (1s and over)

This group contains the following EFBs:

Block Meaning

COMP_DB Comparison

K_SQRT Square root

MULDIV_W Multiplication / division

SUM_W Summer

Block Meaning

MS Manual control of an output

PWM1 Pulse width modulation

SERVO Control for electric server motors

SPLRG Controlling two actuators
33002211 31

Introduction
Setpoint
Management
group

The classic ‘Select Setpoint’ function is integrated into the SP_SEL function rather
than the control elements. This modular structure enables greater flexibility and
improved user comfort without losing extended functions.

This includes the following:
� Tracking the process value if the servo loop is set to manual mode
� Bumpless switchover internal/external
� Bumpless extern/intern changeover (with setpoint tracking)

Two other function blocks make it possible to generate the setpoint to be switched
to the controller: the RATIO function block, which is used to control a variable
depending on a different variable (relationship control) and the RAMP block, which
makes it possible to generate a setpoint in ramp form.

This group contains the following EFBs:

Block Meaning

RAMP Ramp generator

RATIO Ratio controller

SP_SEL Setpoint switch
32 33002211

Introduction
Operating mode

Operating mode Several function blocks have integrated operating mode control available.

A choice can be made between the following operating mode:
� Tracking
� Manual/Automatic

The Order of priorities of the operating mode is explained further.

Tracking This operating mode makes it possible to set a function block to the ‘Sub Controller’
operating mode. Two inputs make it possible to control this operating mode: a binary
input TR_S (TRacking Switch), and a signal input TR_I (TRacking Input). If a
function block is in tracking mode (TR_S = 1), its main output (e.g. OUT with a
PIDFF controller) is assigned the input value TR_I and the internal variables of the
different algorithms are updated. In this way a bumpless changeover is guaranteed
when the function block is switched to manual or automatic mode.

The OUT output of the FFB is controlled with the TR_I input in tracking mode.

Tracking operating mode

This operating mode can be used in various situations:
� Initializing during the start phase,
� Tracking operating mode with a redundant PLC, to guarantee a bumpless start

for the Standby device,
� Controlling the operating mode using a program, for example to avoid direct

control of the manipulated variable, when an automatic controller setting is in
progress, etc.

A limit can be assigned to the function block’s output if it is in tracking operating
mode: this should be decided separately for the individual function blocks.

Function

TR_S

TR_I

OUT
33002211 33

Introduction
Manual/
Automatic

If a function block is in automatic mode, its algorithm calculates the value to be
assigned to the output. Manual mode can be used to bar the adjustment of the main
output (OUT) of a function block, to permit control via a user dialog, for example. The
MAN_AUTO input permits control of this operating mode (0 : Manual, 1: Automatic).

Manual/Automatic mode

The function block reads this output, however, and thus permits a bumpless
changeover between the Manual <-> Automatic modes. A limit can be assigned to
the function block’s output if it is in manual or automatic mode: this should be
decided individually for each function block.

Order of
priorities of the
operating mode

If a function block has both operating mode available, the tracking operating mode
has priority over the manual/automatic mode:

The connections between the function and the operating mode of the function block
are not displayed to ensure a better overview. The same applies to the effectively
assigned setpoint.

Function

MAN_AUTO

OUT

Auto

Manual

Function

TR_S

TR_I

OUT

MAN_AUTO
34 33002211

Introduction
Scanning

Scanning The control algorithms are based on scan values where the time interval between
two consecutive cycles should be taken into account. The function blocks calculate
the value of this interval automatically, which means they can be placed anywhere
in the Concept section without any need to take the time management into account.

The following control functions can be done with a fixed time interval :
� Run time optimization of the PLC program by dividing the control operations into

several cycles,
� improved control quality, where scanning the servoloop too frequently is

prevented
� Minimizing the demands on the tuning device

For example, the SAMPLETM function block can be used, which should be attached
to the input EN of the function block to be scanned.

If the scan interval of the servoloop exceeds 1 second, the function block MS:
Manual control of an output, p. 215 should be switched to the function blocks PIDFF:
Complete PID controller, p. 341 and PI_B: Simple PI controller, p. 283 so that the
servoloops can be controlled manually independently of the scan interval.
33002211 35

Introduction
Error management

Principle Most of the function blocks of the groups "Conditioning", "Controller", "Output
Processing" and "Setpoint Management" have a STATUS output word available.
The error recording and notification procedures used by these function blocks are
described in this chapter.

Each bit of the STATUS parameter can be used for notifying an error, an alarm or
some information. The meaning of the first 8 bits of the STATUS word is the same
for all modules. The meaning of the subsequent bits (bits 8 to 15) is different for each
function block.

Status word The following table shows the meaning of the bits common to all the function blocks
in the first byte of the STATUS word. Further information can be found in the
description of each function block.

Bit Meaning Type

Bit 0 = 1 Error in a calculation with floating point values (e.g.
calculation of the square root of a negative number)

Error

Bit 1 = 1 An unauthorized value being recorded on a floating point
input can be caused by the following:
� the value is not a floating point value
� the value is infinite (e.g. the result of a calculation

previously enabled to the function block)

Error

Bit 2 = 1 Division by zero with calculation in floating point values Error

Bit 3 = 1 Capacity overflow with calculation in floating point values Error

Bit 4 = 1 An input parameter is outside the zone. The value internally
used by the function block is capped.

Warning or
information
(Note 1)

Bit 5 = 1
(Note 2)

The main output of the function block has reached the lower
threshold

Information

Bit 6 = 1
(Note 2)

The main output of the function block has reached the
upper threshold

Information

Bit 7 = 1 The lower and upper threshold of the input parameter zone
are identical

Error
36 33002211

Introduction
Note 1 (input
parameter)

Note 2
(thresholds)

Convention

Specifying the
convention

If a Boolean parameter is used to differentiate between 2 operating mode or 2 states
of a function block, its name often has the following form: mode1_mode2 (Example:
MANU_AUTO, SP_RSP). It is usually specified that the mode1 corresponding value
is 0 and the mode2 corresponding value is 1. If for example the MANU_AUTO
parameter of a function block is 0, the function block is in manual mode. It is in
automatic mode when MANU_AUTO is equal to 1.

Note: If the value originates from a parameter zone with derived data types
(typically the PARA parameter), a warning is given because of the capping and bit
4 is set to 1. If the value originates from a simple type of inputs, no warning is given,
but bit 4 of the STATUS word is set to 1.

Note: If the upper and lower threshold parameters of an output have been invented
(e.g.. out_min >= out_max), the function block switches the output to the lowest
value (i.e. to out_max).
33002211 37

Introduction
38 33002211

33002211
II

EFB Descriptions (A to PH)
Overview

Introduction The EFB descriptions are arranged in alphabetical order.

Note: The number of inputs of some EFBs can be increased (up to a maximum of
32) by vertically resizing the FFB symbol. For information on which EFBs have this
capability, please see the descriptions of the individual EFBs.
39

EFB Descriptions (A to PH)
What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

3 ALIM: Velocity limiter: 2nd order 41

4 AUTOTUNE: Automatic regulator setting 47

5 COMP_DB: Comparison 71

6 COMP_PID: Complex PID controller 75

7 DEADTIME: Deadtime device 95

8 DELAY: Deadtime device 101

9 DERIV: Differentiator with smoothing 107

10 DTIME: Delay 113

11 FGEN: Function generator 121

12 INTEG: Integrator with limit 137

13 INTEGRATOR: Integrator with limit 143

14 INTEGRATOR1: Integrator with limit 149

15 K_SQRT: Square root 155

16 LAG: Time lag device: 1st order 159

17 LAG1: Time lag device: 1st order 165

18 LAG2: Time lag device: 2nd order 169

19 LAG_FILTER: Time lag device: 1st order 175

20 LDLG: PD device with smoothing 179

21 LEAD: Differentiator with smoothing 185

22 LEAD_LAG: PD device with smoothing 189

23 LEAD_LAG1: PD device with smoothing 197

24 LIMV: Velocity limiter: 1st order 203

25 MFLOW: mass flow block 209

26 MS: Manual control of an output 215

27 MULDIV_W: Multiplication/Division 225

28 PCON2: Two point controller 229

29 PCON3: Three point controller 235

30 PD_or_PI: Structure changeover PD/PI controller 243

31 PDM: Pulse duration modulation 255
40 33002211

33002211
3

ALIM: Velocity limiter: 2nd order
Overview

At a glance This chapter describes the ALIM block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 42

Presentation 43

Detailed description 44

Runtime error 45
41

ALIM: Velocity limiter: 2nd order
Brief description

Function
description

The Function block produces velocity limiter: 2nd order.

The function block individually contains the following properties:
� Operating mode, Manual, Halt, Automatic
� Output limiting

EN and ENO can be projected as additional parameters.
42 33002211

ALIM: Velocity limiter: 2nd order
Presentation

Symbol Block display:

Parameter
description ALIM

Block parameter description:

Parameter
description
Mode_MH

Data structure description:

Parameter
description
Para_ALIM

Data structure description:

ALIM

REALY

XREAL

MODEMode_MH
PARAPara_ALIM

YMANREAL

Parameter Data type Meaning

X REAL Input

MODE Mode_MH Operating mode

PARA Para_ALIM Parameter

YMAN REAL Manual value for output Y

Y REAL Output

Element Data type Meaning

man BOOL "1" = Operating mode Hand

halt BOOL "1" = Halt mode

Element Data type Meaning

max_v REAL Maximum upper speed (maximum x’)
Unit: 1/[s]

max_a REAL Maximum speed increase (maximum x’)

Unit: 1 s
2⁄
33002211 43

ALIM: Velocity limiter: 2nd order
Detailed description

Parametering The parametering of the function block appears through determination of the
maximum upper speed max_v as well as the maximum speed increase max_a. The
maximum upper speed specifies to which value the output Y can change within one
second. The maximum speed increase specifies the maximum value the output Y
can change speed at.

The value of Y follows the value of X, but is limited by the maximum permitted speed
and speed increase.

Operating mode There are three operating mode selectable through the man and halt parameter
inputs:

Operating mode man halt Meaning

Automatic 0 0 A new value for Y will be constantly calculated
and issued.

Manual mode 1 0 or 1 The manual value YMAN will be transmitted
fixed to the output Y.

Halt 0 1 The output Y will be held at the last calculated
value. The output will no longer be changed, but
can be overwritten by the user.
44 33002211

ALIM: Velocity limiter: 2nd order
Example In the diagram the dynamic behavior of the function block is displayed as well as the
reaction during HALY operating mode.

The jump at input X causes the function block to react with an accelerated increase
of output Y. Output Y is accelerated with an acceleration increase determined by
parameter max_a. Should the slew rate reach the max_v value, acceleration stops,
but output Y continues to follow input X with the maximum slew rate max_v (see the
straight section in the middle of the figure).

If the value of output Y is close enough to input signal value, the output is reversed
to brake at a negative speed increase of –max_a, so that the output does not come
to an abrupt stop, but slowly approximates the terminal point.

Runtime error

Error message There is an Error message, if
� an invalid floating point number lies at input YMAN or X,
� max_a or max_v is ≤ 0.

1
0

1 s

max_v

Y

X

halt0
33002211 45

ALIM: Velocity limiter: 2nd order
46 33002211

33002211
4

AUTOTUNE: Automatic regulator
setting
Overview

At a glance This chapter describes the AUTOTUNE block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 48

Representation 49

Principle of the autotuning 52

Identification principle 54

Parametering 55

Controller coupling 58

Operating modes 59

Diagnosis 60

Status of the autotuning 61

Causes of a faulty start 62

Causes of autotuning termination 63

Generating a test after stopping the autotuning 65

Runtime error 70
47

AUTOTUNE: Automatic regulator setting
Brief description

Function
description

This Function block enables the autotuning of the PID controller (PIDFF: Complete
PID controller, p. 341, PI_B: Simple PI controller, p. 283).

Autotuning stabilizes the control when starting the system and, in so doing, saves
time.

EN and ENO can be configured as additional parameters.

Algorithm The algorithm is based upon heuristic controls, as with the Ziegler Nichols method.
Initially, an analysis corresponding to approximately 2.5 times the reaction time of
the open loop is performed. Through this, the process can be identified as a process
of the first order with delay.

Building on this model, a control parameter set based on heuristic controls and
historical data is created.

The parameter range is determined by the "perf." criteria. In this individual case, this
factor gives the highest rank to the reaction time to disturbances or stability.

The algorithm is applied to the following process types :
� Processes with only one input / output
� Processes with natural stability or integral components
� Asymmetric processes within the limits authorized by the algorithm of the PID

controller
� Processes controlled via pulse width modulation output (PWM).

Important
characteristics

The block has the following characteristics
� Pre-estimation of the control for the types PIDFF and/or PI_B
� Diagnostic function
� Parametering of the control dynamic
� Recovery of previous control settings
48 33002211

AUTOTUNE: Automatic regulator setting
Representation

Symbol Block representation

* Parameters of the autotuned controller (Para_PIDFF, Para_PI_B,…etc.)

AUTOTUNE

REALPV_O

REALSP_O

*PARA_C

REALTRI

BOOLTRS

Info_AUTOTUNEINFO

WORDSTATUS

PVREAL
SPREAL
RCPYREAL
STARTBOOL
PREVBOOL
PARAPara_AUTOTUNE
TR_IREAL
TR_SBOOL
33002211 49

AUTOTUNE: Automatic regulator setting
AUTOTUNE
parameter
description

Block parameter description

Parameter
description
Para_
AUTOTUNE

Data structure description

Parameter Data type Meaning

PV REAL Process value

SP REAL Setpoint

RCPY REAL Copy of the actual manipulated variable

START BOOL "0 → 1" : Starting the autotuning

PREV BOOL Reverting to the previous controller settings

PARA Para_AUTOTUNE Parameter

TR_I REAL Start input

TR_S BOOL Start command

PV_O REAL Copy of the process value PV

SP_O REAL Copy of the SP input

PARA_C Parameters of the
autotunable controller
(Para_PIDFF or.
Para_PI_B)

Control parameters

TRI REAL Copy of the TR_I input

TRS BOOL Copy of the TR_S input

INFO Info_AUTOTUNE Information

STATUS WORD Status word

Element Data type Meaning

step_ampl REAL Value of the output actuating pulse (expressed in
output scale values out_inf, out_sup)

tmax TIME Duration of the actuating pulse in autom. Tuning

perf REAL Performance index between 0 and 1

plant_type WORD Reserved word
50 33002211

AUTOTUNE: Automatic regulator setting
Info_AUTOTUNE
parameter
description

Data structure description

Element Data type Meaning

diag UDINT Double word used for diagnosis

p1_prev REAL Previous value of parameter 1

p2_prev REAL Previous value of parameter 2

p3_prev REAL Previous value of parameter 3

p4_prev REAL Previous value of parameter 4

p5_prev REAL Previous value of parameter 5

p6_prev REAL Previous value of parameter 6
33002211 51

AUTOTUNE: Automatic regulator setting
Principle of the autotuning

Two kinds of
autotuning

Two kinds of autotuning are possible autotuning at a warm and cold system start

The first phase of autotuning applies for both kinds of tuning: this involves a sound
and stability test of the control process lasting 0.5 * tmax with constant outputs.
Subsequent phases depend on the kind of tuning.

Autotuning at a
cold start

Autotuning at a cold start is referred to when the deviation between the process and
setpoint values exceeds 40% and the process value is less than 30%. In this case
the TRI output of the function block is admitted with two actuator pulses of the same
kind. Each actuator pulse has duration tmax. When autotuning ends, there is a
smooth return to the previous operating mode for the servo loop:

Autotuning at a cold start

1 Automatic or manual mode
2 Autotune mode
3 Automatic or manual mode

SP

TRI

START

PV
tmax tmax

tmax/2

1 2 3
52 33002211

AUTOTUNE: Automatic regulator setting
Autotuning at a
warm start

If the conditions for autotuning at a cold start are not fulfilled, tuning at a warm start
takes place: the output is admitted with an actuator pulse, followed by an actuator
pulse in the opposite direction. Each stage has duration tmax. When autotuning
ends, there is a smooth return to the previous operating mode for the servo loop:

Autotuning at a warm start

1 Automatic or manual mode
2 Autotune mode
3 Automatic or manual mode

TRI
START

PV

SP

tmax/2 tmax tmax

1 2 3
33002211 53

AUTOTUNE: Automatic regulator setting
Identification principle

Identification
process

The identification process consists of 3 stages:
� a sound and stability analysis of the control process
� an initial analysis of the reaction to an actuator pulse, which is shown as the first

identification model: a filter is created on the basis of this first estimate; this is
used during the last phase

� a second analysis of the reaction to a second actuator pulse gives more precise
information because of the data filter

Finally, a complete process model is created. If the results of the two previous
phases are two far apart, the estimate is abandoned and autotuning fails.

Control principle After both phases a parameter set is created for the controller being tuned. The
resulting control parameters are based on the gain and on the ratio between reaction
time and process delay.

The algorithm must be able to withstand the modification of the gain and the time
constants in ratio 2 without losing stability. The asymmetrical processes are
supported if they fulfil these conditions. If not, an error is displayed during diagnosis
diag.
54 33002211

AUTOTUNE: Automatic regulator setting
Parametering

Parametering
actuating pulse

During autotuning, the output TRI is turned up two actuating pulses. An actuating
impulse is identified by two parameters: its time duration (tmax) and its amplitude
(step_ampl.).

The following value ranges are valid for these parameters: tmax greater than 4
seconds and step_ampl greater than 1 % of the output scale (out_inf, out_sup). The
function also monitors even if the TRI output exceeds the threshold for the output
scale.

The check occurs when autotune is started.

The following table contains parameter values for some of the typical control
methods:

Performance
index: perf

The controller can be modulated for each value in the performance index. The perf.
performance index varies between 0 and 1, which enables the perf. parameter to
stabilize close to 0 or to achieve a more dynamic control (and therefore optimize the
reaction time of disturbance variables), if the perf. is set close to 1.

Diagram tmax (s) step_ampl (%)

Vol. flow or pressure from liquids 5-30 10-20

Gas pressure 60-300 10-20

Level 120-600 20

Steam temperature or pressure 600-3600 30-50

Module 600-3600 30-50
33002211 55

AUTOTUNE: Automatic regulator setting
Starting the
autotune: START

If this bit is set to 1, the function is activated. At the end of the setting process, this
bit must be manually set to 0. If it has just been set automatically, setting the bit to
0 allows the function to be stopped. The PARA_C then retain the last active value.
In the example below, the START bit is automatically reset by the program at the
end of the setting process.

Example for starting the autotuning

AUTOTUNE

PV_O

SP_O

Fc3542_para_pidffPARA_C

TRI

Fc3542_trsTRS

Fc3542_info_autotuneINFO

STATUS

PVFc3542_pv

SPFc3542_sp

RCPYFc3542_out

START

PREVFc3542_atprev_w

PARAFc3542_para_autotune

TR_IFc3542_tr_input

TR_SFc3542_trk

F_TRIG

QCLK

MOVE

ENO

Fc3542_atstart_w

EN

0

Fc3542_trs
56 33002211

AUTOTUNE: Automatic regulator setting
Reverting to the
previous setting:
PREV

A modification of this bit value enables the exchange of current and previous
parameters assuming that no controlling has occurred up to the given time (two
consecutive modifications of this bit give the original configuration).

The following Info_AUTOTUNE structural parameters are valid for PIDFF type
controllers:

The following Info_AUTOTUNE structural parameters are valid for the controllers of
the PI_B type.

Diagnosis during
autotuning: diag

The diagnosis data for the autotune is saved in a double word. The value of this word
is retained until autotune is restarted. Additional details on this double word can be
found in the Diagnosis section.

Element of the data
structure

Meaning

p1_prev KP

p2_prev TI

p3_prev TD

Element of the data
structure

Meaning

p1_prev KP

p2_prev TI
33002211 57

AUTOTUNE: Automatic regulator setting
Controller coupling

Application
example with a
PIDFF controller
type EFB

The following diagram is an application example of an AUTOTUNE EFB with a
PIDFF controller type EFB :

The AUTOTUNE EFB exchanges with the controller parameter: Access to the
controller parameters is via the link between the output PARA_C of the AUTOTUNE
function block and the input PARA of the controller. The PARA_C output is of the
ANY type and enables the connection of the AUTOTUNE EFB to various controller
types (PIDFF or PI_B).

The AUTOTUNE EFB and the controller also share the following interlinkable
variables: PV, SP, TR_I and TR_S. These variables display AUTOTUNE inputs,
which lead to the corresponding outputs, in order to switch to controller inputs

If the autotune is active, the TRS output transfers to 1 and the manipulated variable
is attached at the TRI output. The purpose of these outputs is to connect to the
inputs TR_I and TR_S of the function blocks following AUTOTUNE. In this way,
these can be set to the tracking operation mode (PIDFF, PI_B, MS,…).

Example for
connection:
Servoloops with
a simple PID
controller

This section is concerned with the automatic setting of a single controller (most
frequent case). The controller can be of PI_B or PIDFF type.

The AUTOTUNE EFB requires the scaling parameters of the controller (PARA_C
structure parameters) pv_inf, pv_sup, out_inf, out_sup as well as the controller’s
structure type, which is specified via the mix_par bit. The EFB creates the
parameters of the PID controller (KP, TI, TD) from this. The direction of action of the
controller (rev_dir) is checked when testing the autotune and is compared to the sign
for the gain of the model. When incompatibility occurs, an error is shown for the
"diag." Parameters.

PIDFF

TC2_OUTOUT

OUTD

MA_O

INFO

STATUS

PV

SP

FF

RCPY

MAN_AUTOTC2_MAN_AUTO

PARA

TR_I
TR_S

AUTOTUNE

PV_O

SP_O

TC2_PARAPARA_C

TRI
TRS

INFO

STATUS

PVTT2_PV

SPTT2_SP
RCPYTC2_OUT
STARTTC2_START

PREVTC2_PREV

PARATC2_AT_PARA

TR_ITC2_TRI
TR_STC2_TRS
58 33002211

AUTOTUNE: Automatic regulator setting
Example for
connection:
Servoloops with
simple PID
controller and
MS function
block

If the servoloop contains a MS-EFB, the structure can appear as follows:

When starting the autotune, the AUTOTUNE EFB sets the MS function block to
tracking mode and hence controls the output of the servoloop directly. Using
AUTOTUNE and PIDFF blocks’ RCPY inputs enables a bumpless restart of the
servoloop.

Operating modes

Operating modes The various operating modes of the autotuning and their priorities in descending
order of validity are shown in the following table:

On completion of the autotuning, the TRS output is set to 0, so as the servoloop is
set back to its previous operating mode (manual or automatic). If the autotuning fails,
the TRI variable will be set back to its value from before the autotuning was started
and the servoloop will be set back to its previous operating mode.

AUTOTUNE

PV_O

SP_O

TC18_PARAPARA_C

TRI

TRS

INFO

STATUS

PVTT18_PV

SPTT18_SP

RCPYTC18_OUT

STARTTC18_START
PREVTC18_PREV
PARATC_PARA

TR_I

TR_S

PIDFF

OUT

OUTD

MA_O

INFO

STATUS

PV

SP

FF

RCPYTC18_OUT
MAN_AUTO1
PARA

TR_I

TR_S

MS

OUTD

MA_O

STATUS

IN

FORC

MA_FORC

MAN_AUTO

PARA

TR_I

TR_S

TC18_OUTOUT

Operating mode TR_S START

Tracking 1 1 or 0

Autotuning 0 1
33002211 59

AUTOTUNE: Automatic regulator setting
Diagnosis

Overview of the
diagnosis

There are a number of reasons that can lead to the autotuning not starting, being
cancelled or failing. In such a case, depending on the cause of failure, it can be
possible to supply a parameter set. Every bit of the diagnostic word diag. allows for
a type of error to be created.

This word contains the current operating mode of the autotuning.

The following cases are explained:
� Status of the autotuning, p. 61
� Causes of a faulty start, p. 62
� Causes of autotuning termination, p. 63
� Generating a test after stopping the autotuning, p. 65

Diagnostic word The meaning of the data structure Info_AUTOTUNE element diag can be found in
this table.

Bit Meaning

Bit 0 = 1 Autotuning is running

Bit 1 = 1 Autotuning aborted

Bit 2 = 1 Parameter error

Bit 3 = 1 Alteration of parameters, which have just been set automatically

Bit 4 = 1 Stop as a consequence of system error

Bit 5 = 1 Process value saturated

Bit 6 = 1 Alteration too small

Bit 7 = 1 Sampling interval invalid

Bit 8 = 1 Incomprehensible reaction

Bit 9 = 1 Non-stabilized measuring at the start

Bit 10 = 1 Length of actuating pulse (tmax) too short

Bit 1 1= 1 Too much noise/interference

Bit 12 = 1 Length of actuating pulse (tmax) too long

Bit 13 = 1 Process with significant exceeding of the thresholds

Bit 14 = 1 Process without minimum phase

Bit 15 = 1 Asymmetric process

Bit 16 = 1 Process with integral component
60 33002211

AUTOTUNE: Automatic regulator setting
Status of the autotuning

Overview The following bits of the diagnostic word (the diag element) show the status of the
autotuning.

Bit 0 of the
element diag

This Bit indicates that the automatic regulator setting is running. On quitting the
automatic regulator setting or terminating using the START-Bit, this is set to zero.

Bit 1 of the
element diag

This Bit indicates that the user stopped the last control by means of the START-Bit
or by setting the operating mode to Tracking.

Bit Meaning

0 1 = automatic regulator setting is running

1 1 = automatic regulator setting is stopped
33002211 61

AUTOTUNE: Automatic regulator setting
Causes of a faulty start

Overview The following bits of the diagnostic word (see element diag) indicate a faulty start:

Bit 2 of the
element diag

The following causes can lead to a faulty start :
� Length of actuating pulse too short (tmax < 4 s),
� Amplitude too weak (step_ampl < 1% of output range),
� Cannot perform this protocol: If the output + n x the amplitude of the actuating

pulse (where n = 1 for adjustment during a warm start and n = 2 for adjustment
during a cold start) is outside the output range (out_inf, out_sup), then the test
protocol cannot be used. Step_ampl must be set to a value that is compatible
with the current work point.

Bit 7 of the
element diag

If the sampling interval is too large in relation to the length of the actuating pulse (>
tmax / 25), then the response test is too imprecise and the automatic regulator
setting will be blocked. This typically occurs during very rapid regular processes
(where tmax is larger than the rise time of the process, a matter of a few seconds).
In this case tmax can be increased, because the algorithm reacts only slightly to this
parameter (in the ratio of 1 to 3), or alternatively, the sampling interval can be set to
correspond.

Bit Meaning

2 1 = Parameter error

7 1 = incorrect sampling interval
62 33002211

AUTOTUNE: Automatic regulator setting
Causes of autotuning termination

Overview The following bits of the diagnostic word (see element diag) show the reason for
terminating the autotuning:

Bit 3 of the
element diag

If the parameters tmax or step_ampl are modified during the tuning, the operation
will be cancelled.

Bit 4 of the
element diag

The autotuning will be cancelled if the PLC experiences a system error that prevents
the completion of the chain. For example, the function will automatically stop should
a voltage return occur.

Bit 5 of the
element diag

If the measurement exceeds the range (pv_inf, pv_sup), then the autotuning will be
cancelled, and the regulator set to the previous operating mode. Estimating the
future measurements enables the autotuning to stop before the range is exceeded
(if a first model has been identified).

Bit Meaning

3 1 = Modification of parameters during tuning

4 1 = Terminated due to system error

5 1 = Process value saturated

6 1 = Ascent too small

8 1 = Illogical reaction
33002211 63

AUTOTUNE: Automatic regulator setting
Bit 6 of the
element diag

This picture shows the behavior when the ascent is too small:

The amplitude of the actuating pulse is too small too influence the process. In this
case, the value of step_ampl can be increased.

Bit 8 of the
element diag

This picture shows the behavior during an illogical reaction.

The reaction of the control process is incomprehensible (gain factors with various
signs). This can be due to a larger disturbance, coupling with other servoloops or
some other reason.

PV

PV < 2 %

PV
64 33002211

AUTOTUNE: Automatic regulator setting
Generating a test after stopping the autotuning

Overview The following bits of the diagnostic word (see element diag) show the status of the
autotuning:

Bit 9 of the
element diag

This image illustrates behavior when measurements are not initially stabilized:

The automatic regulator setting was implemented, although the measurement was
not stable. If the measured change is large relative to the reaction of the actuating
pulse, then the test results will be distorted.

Bit Meaning

9 1 = Initial non-stabilized measurement

10 1 = Length of actuating pulse (tmax) too short

11 1 = Too much noise/interference

12 1 = Length of actuating pulse (tmax) too long

13 1 = Measured value has been significantly exceeded

14 1 = Process without minimum phase

15 1 = Asymmetrical Process

16 1 = Integrating Process

PV
33002211 65

AUTOTUNE: Automatic regulator setting
Bit 10 of the
element diag

This image illustrates behavior when the actuating pulse is too short:

1 Actuating pulse test
2 Process reaction

The reaction will not be stabilized before returning to the original manipulated
variable. The calculated parameters are therefore false.

Bit 11 of the
element diag

This image illustrates the behavior when noise/interference is too high:

The reaction of the process to the actuating pulse is insufficient relative to the level
of noise/interference. The measurement should be filtered or step_ampl should be
increased.

PV

t

1 2

PV
66 33002211

AUTOTUNE: Automatic regulator setting
Bit 12 of the
element diag

This image illustrates behavior when the actuating pulse is too long:

tmax specifies the frequency with which the measurement is taken, i.e. the value
that is used to calculate the coefficients. tmax must be between 1 and 5 times the
rise time of the repeated task.

Bit 13 of the
element diag

This bit is used when the reaction to an actuating pulse significantly exceeds
(overshoots) the measured value (i.e. by more than 10%). The process does not
conform to the models used by the algorithms.

Bit 14 of the
element diag

This bit is used when the reaction to an actuating pulse leads to inversion of the
reaction at the initial stage (i.e. undershoots by more than 10%). The process does
not conform to the models used by the algorithms.

PV
33002211 67

AUTOTUNE: Automatic regulator setting
Bit 15 of the
element diag

This image illustrates the behavior when the process is asymmetrical.

The reaction of the process is asymmetrical.

The last parameter set must be a compromise between the reactions at ascent and
descent. Both cases concern average performance.

If the desired criterium is the length of the reaction on ascent, then the first
parameter set must be taken into consideration. During the return phase (to the
original manipulated variable) the automatic regulator setting is turned off. If the
desired criteria is the length of descent, then a negative amplitude must be used.

PV
68 33002211

AUTOTUNE: Automatic regulator setting
Bit 16 of the
element diag

This image illustrates the behavior during an integration process.

The process includes an integral component or tmax is too small and the process
asymmetrical. The calculated coefficients must correlate to the process with the
integral coefficient If this is not the case, the automatic regulator setting should be
restarted, after tmax has been increased.

PV
33002211 69

AUTOTUNE: Automatic regulator setting
Runtime error

Status word The status word bits have the following meaning:

Error message This error is displayed when a non-floating point has been recorded at an input,
when a problem occurs during a calculation with floating points or when the
thresholds pv_inf and pv_sup of the controller are identical. In this case, all the
outputs of the function block remain unchanged.

Warning A warning is issued, if the parameter perf is outside the [0,1] range. In this case, the
block can use either the value 0 or 1 for the purpose of calculations.

Bit Meaning

Bit 0 = 1 Error in a floating point value calculation

Bit 1 = 1 Invalid value recorded at one of the floating point inputs

Bit 2 = 1 Division by zero calculation when calculating in floating point values

Bit 3 = 1 Capacity overflow during calculation in floating point values

Bit 4 = 1 The parameter perf is outside the [0,1] range: in calculating the function
block uses the value 0 or 1.

Bit 7 = 1 The thresholds (pv_inf and pv_sup) of the controller to be set are identical

Bit 8 = 1 The PARA_C output is not connected to the parameters of an autotunable
controller

Bit 9 = 1 Autotuning failed

Bit 10 = 1 The last autotune was successful
70 33002211

33002211
5

COMP_DB: Comparison
Overview

At a glance This chapter describes the COMP_DB block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 72

Representation 72

Detailed description 73

Runtime error 74
71

COMP_DB: Comparison
Brief description

Function
description

The COMP_DB function block enables two numerical values, IN1 and IN2 to be
compared.

Depending on whether IN1 is greater, equal to or smaller than IN2, the appropriate
output GREATER, EQUAL or LESS is set to 1 by the function block.

The function block takes any dead zone or hysteresis into account.

EN and ENO can be configured as additional parameters.

Representation

Symbol Block representation

Parameter
description

Block parameter description

COMP_DB

BOOLGREATER

BOOLEQUAL

BOOLLESS

IN1REAL
IN2REAL
DBANDREAL

HYSTREAL

Parameter Data type Meaning

IN1 REAL Input No. 1

IN2 REAL Input No. 2

DBAND REAL Dead zone

HYST REAL Hysteresis

GREATER BOOL Greater-than marker

EQUAL BOOL Equals marker

LESS BOOL Less-than marker
72 33002211

COMP_DB: Comparison
Detailed description

Dead zone The D_BAND parameter enables a dead zone to be specified, within which deviation
between IN1 and IN2 will be regarded as zero. If the deviation IN1 - IN2 remains
within this zone, the EQUAL output is set to 1.

Dead zone specification

Hysteresis The HYST parameter enables a hysteresis effect to be generated, if the deviation
between IN1 and IN2 decreases: starting from a situation where either the
GREATER or LESS output has the value 1, the EQUAL output will only take the
value 1 when the deviation IN1 – IN2 is less than DBAND – HYST.

Generating a hysteresis effect

GREATER

1

0

IN1-IN21

LESS

-DBAND

DBAND

EQUAL

1

0

IN1-IN2-DBAND DBAND

GREATER

1

0

IN1-IN21

LESS

DBAND

HYST

-DBAND

EQUAL

1

0

IN1-IN2-DBAND DBAND

HYST
33002211 73

COMP_DB: Comparison
DBAND = 0 and
HYST = 0

In this case, the block behaves like a classic comparison function:
� If IN1 is always greater than IN2, then GREATER = 1
� When IN1 is equal to IN2, then EQUAL = 1
� If IN1 is less than IN2, then LESS = 1

Classic comparison function (DBAND = 0 and HYST = 0

Runtime error

Error message This error appears if a non floating point value is recorded at an input or if there is a
problem with a floating point calculation. In this case the outputs GREATER, EQUAL
and LESS remain unchanged.

Warning A warning message appears if:
� The DBAND parameter is negative: the function block then uses the value

DBAND=0 for calculation.
� The HYST parameter is outside the [0, DBAND] range: the function block then

uses the closest correct value, i.e. if HYST is less than 0 and DBAND, or when
HYST is larger than DBAND.

GREATER

1

0
IN1-IN2

-1
LESS

EQUAL

1

0
IN1-IN2
74 33002211

33002211
6

COMP_PID: Complex PID
controller
Overview

At a glance This chapter describes the COMP_PID block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 76

Representation 77

Complex PID controller structure diagram 80

Parametering of the COMP_PID controller 81

Antiwindup for COMP_PID 84

Controller type selection for COMP_PID 85

Bumpless operating mode switchover 86

Selecting the operating mode of the COMP_PID 89

Detailed formulas 92

Runtime error 94
75

COMP_PID: Complex PID controller
Brief description

Function
description

The Function block represents a complex PID controller that in its design specifically
includes cascade treatment. The control structure is displayed in theStructure
diagram, p. 80.

EN and ENO can be configured as additional parameters.

Properties The function block has the following properties:
� real PID controller with independent gain, ti, td setting
� Manual, halt, automatic, cascade, reset, manual value operating modes tracking
� Velocity limit for manual operation
� Adjustable manual manipulated value tracking
� Velocity limit for reference variable
� bumpless changeover between manual and automatic
� Manipulated variable limiting
� bumpless, individually connectable P, I and D components
� bumpless gain modification
� Choice of antiwindup reset and antiwindup halt
� Displacement of antiwindup limits compared to control limits
� Antiwindup measure with an active I component only
� definable delay of the D-component
� D component connectable to controlled variable PV or system deviation EER
� Dead zone with gain reduction
� external operating point (in P, PD and D operation)
� Choice of bump/bumpless manual/automatic switchover

Transfer function The transfer function is:

Explanation of the variables:

Variable Meaning

YD D component (only if en_d = 1)

YI I component (only if en_i = 1)

YP P component (only if en_p = 1)

G s() gain 1
1

ti s×
------------ td s×

1 td_lag s×+
----------------------------------+ +� �

� �×=

YD
YI
YP
76 33002211

COMP_PID: Complex PID controller
Representation

Symbol Block representation:

Parameter
description
COMP_PID

Block parameter description

COM_PID

REALY

REALERR

Stat_COMP_PIDSTATUS

REALSP_CAS_N

REALYMAN_N

REALOFF_N

SPREAL

PVREAL
SP_CASREAL
MODEMode_COMP_PID
PARAPara_COMP_PID

YMANREAL
YRESETREAL
FEED_FWDREAL
OFFREAL

Parameter Data type Meaning

SP REAL Reference variable

PV REAL Controlled variable

SP_CAS REAL Cascade reference variable

MODE Mode_COMP_PID Operating mode

PARA Para_COMP_PID Parameter

YMAN REAL Manually manipulated value

YRESET REAL Manipulated variable reset value

FEED_FWD REAL Disturbance input

OFF REAL Offset for P/PD operation

Y REAL Manipulated variable

ERR REAL System deviation

STATUS Stat_COMP_PID Output status

SP_CAS_N REAL Cascade reference variable

YMAN_N REAL Manually manipulated value

OFF_N REAL Offset for P/PD operation
33002211 77

COMP_PID: Complex PID controller
Parameter
description
Mode_COMP_
PID

Data structure description

Parameter
description
Para_COMP_PID

Data structure description

Element Data type Meaning

r BOOL "1": Reset mode

man BOOL "1": Manual mode

halt BOOL "1": Halt mode

cascade BOOL "1": Cascade mode

en_p BOOL "1": P component in

en_i BOOL "1": I component in

en_d BOOL "1": D component

d_on_pv BOOL "1": D component on controlled variable
"0": D component on system deviation

halt_aw BOOL "1": Antiwindup Halt
"0": Antiwindup reset

bump BOOL "0": Bumpless operating mode switchover

ymanc BOOL "1": YMAN tracking

Element Data type Meaning

gain REAL Proportional action coefficient (gain)

ti TIME Reset time

td TIME Rate time

td_lag TIME D component delay time

db REAL Dead zone

gain_red REAL Gain reduction in dead zone (db)

rate_sp REAL Setpoint velocity (SP) [1/s]

rate_man REAL Manually manipulated velocity value (YMAN) [1/s]

ymax REAL Upper threshold for Y

ymin REAL Lower threshold for Y

delt_aw REAL Limit expansion for antiwindup
78 33002211

COMP_PID: Complex PID controller
Parameter
description
Stat_COMP_PID

Data structure description

Element Data type Meaning

st_r BOOL "1": COMP_PID is in reset mode

st_man BOOL "1": COMP_PID is in manual mode

st_halt BOOL "1": COMP_PID is in halt mode

st_auto BOOL "1": COMP_PID is in automatic mode

st_cascade BOOL "1": COMP_PID is in cascade mode

st_max BOOL "1": Y ≥ Para_COMP_PID.ymax

st_min BOOL "1": Y ≤ Para_COMP_PID.ymin
33002211 79

COMP_PID: Complex PID controller
Complex PID controller structure diagram

Structure
diagram

The following is the structure diagram of the COMP_PID controller:

rate_sp

SP

0

1

SP_CAS

cascade

sp_intern

+

db

-db

-

1

0

gain

c)

1

0

gain

d)

PV

b)

P

a)

rate_man

YMAN
e)

en_p

ymax

ymin

AWMAX

Y

b)

a)
ERR

1

0

c)
0

1

0

1

d)

e)

OFF 1

0

en_i

d_on_pv

1

0

en_d

ti I

td, td_lag D

+
+

+

+

YP

YD
+

+

FEED_FWD

0

1

halt_aw

AWMIN

st_max

st_min

Operating
mode
control

YRESET

+

+

YP

YI

Antiwindup reset
80 33002211

COMP_PID: Complex PID controller
Parametering of the COMP_PID controller

Parametering The COMP_PID control structure is displayed in theStructure diagram, p. 80.

The parametering of the function block is initially performed by the pure PID
parameters, i.e. the proportional action coefficient gain, the reset time ti and the rate
time td.

The D component is delayed by the time td_lag. The td/td_lag ratio is termed the
differential gain, and is generally selected between 3 and 10. The D component can
either be based upon the system deviation ERR (d_on_pv = "0") or the controlled
variable PV (d_on_pv = "1"). Should the D component be determined by the
controlled variable PV, then the D component will not be able to cause jumps when
reference variable fluctuations (changes in input SP) take place. Generally, the D
component only affects disturbances and process variances.

Control direction
reversal

A reversed behavior of the controller can be achieved by reversing the sign of gain.
Given a positive disturbance value, a positive/negative gain brings about a rise/fall
of the manipulated variable. A negative value at gain causes the manipulated
variable to drop when there is a positive deviation.

Note: The EFB has 3 I/O parameters (SP_CAS, OFF, YMAN) that are updated by
the cascade mode function itself. To use the block in cascade mode, you have to
establish the connection between these inputs and the appropriate outputs
(SP_CAS_N, OFF_N, YMAN_N) through variables.
33002211 81

COMP_PID: Complex PID controller
Forming the
system deviation

In cascade mode, the ERR system deviation is formed by SP_CAS and PV:
� sp_intern = SP_CAS
� ERR = sp_intern - PV

The system deviation in automatic mode is formed by sp_intern and PV, whereby
sp_intern is set to the value of parameter SP via a velocity limiter. The internal
reference variable sp_intern is driven in ramp-type fashion toward the SP parameter
value using the velocity specified in parameter rate_sp (unit 1/s).

The amount will be evaluated by parameter rate_sp. The function of the velocity
limiter for SP is disabled if rate_sp = 0. SP is transferred directly to sp_intern.

System deviation is determined by the condition of parameter cascade when in
reset, manual and halt modes.

If cascade = 1, sp_intern is set to the PV parameter value and ERR goes to 0.

If cascade = 0 and the setting is bumpless operation (bump = 0), sp_intern is set to
the SP parameter value. Otherwise (bump = 1), sp_intern is also set to the PV
parameter value.

Gain reduction
for small system
deviation values

Parameter db determines the size of a dead zone in which the proportional action
coefficient gain is not effective, but rather a proportional action coefficient reduced
by the parameter gain_red. The parameter db has an effect on the system deviation
ERR = SP - PV in the form shown in the illustration Representation of the dead zone,
p. 83. Unnecessary actuator loads caused by small controlled variable disturbances
or measurement noise can be reduced by the dead zone.

Enter the db parameter as positive.

Enter values between 0 and 1 for gain_red.

Tracking of
manual value
YMAN

When manual tracking mode is enabled (ymanc = 1), the input YMAN is tracked to
the manipulated variable value Y when in automatic and cascade modes, this
means: YMAN = Y. If manual tracking mode is disabled (ymanc = 0), the YMAN
value remains unchanged.
82 33002211

COMP_PID: Complex PID controller
Representation
of the dead zone

Dead zone:

1 Gradient 1
2 Gradient gain_red

Manipulated
variable limiting

The limits ymax and ymin retain the manipulated variable within the prescribed
range. Hence, ymin ≤ Y ≤ ymax. .

The elements qmax and qmin signal that the manipulated variable has reached a
limit, and thus been capped:
� st_max = 1 if Y ≥ ymax
� st_min = 1 if Y ≤ ymin

For limiting the manipulated variable, the upper limit ymax should be greater than
the lower limit ymin.

db
ERR

Y

db

YN

ERR+

-

PV

sp_intern

1 2
33002211 83

COMP_PID: Complex PID controller
Antiwindup for COMP_PID

Definition The antiwindup measure ensures that the I component does not grow too much
causing the controller to lock if it has been limited at a control limit too long.
Antiwindup measures are only performed for an active I component of the controller.

Limits for the antiwindup measure are by default the manipulated variables of the
controller (delt_aw = 0). The parameter delt_aw can be used to either increase
(delt_aw > 0) or decrease (delt_aw < 0) the limits with regard to the control limits
(ymax, ymin).

Therefore, the limits used for the antiwindup measure are:
� AWMAX = ymax + delt_aw
� AWMIN = ymin - delt_aw.

Through displacement of the antiwindup limits in relation to the control limits (in
particular with very noisy signals), the manipulated variable Y can be stopped from
repeatedly 'jumping away' from the control limit (D component effect to
disturbances) and subsequently returning to the limiting position (I component effect
with system deviation ERR ≠ 0). If the control limits are to be simultaneously
effective for the antiwindup measure, select the parameter delt_aw = 0.

By utilizing negative delt_aw values, antiwindup limits can be kept smaller than
control limits (useful for antiwindup halt).

Antiwindup reset
(halt_aw = 0)

Antiwindup measures disregard D component values to avoid being falsely triggered
by D component peaks. The antiwindup-reset measure corrects the I component
such that: AWMIN ≤ YP + FEED_FWD + YI ≤ AWMAX.

Antiwindup halt
(halt_aw = 1)

The antiwindup measure only considers the I component. When antiwindup halt and
I component are enabled, the antiwindup halt measure corrects the I component
such that: AWMIN ≤ YP + FEED_FWD + YI ≤ AWMAX.

The parameters rate_sp and rate_man represent velocity limiters for the manual
values SP and YMAN (see also function block VLIM). A 0 value disables the
functionality of the corresponding velocity limiter (rate_sp = 0 or rate_man = 0,
respectively). The SP and YMAN values are then utilized without delay.
84 33002211

COMP_PID: Complex PID controller
Controller type selection for COMP_PID

Controller types There are four different control types, which are selected via the parameters en_p,
en_i and en_d.

The I-component can also be disabled with ti = 0.

The D contribution can also be disabled with td = 0.

OFF parameter
influence

If the I contribution is enabled (en_i = 1), the manipulated variable Y is determined
from the summation of the contributions YP, YI, YD, and FEED_FWD. Offset is not
included in the calculation when the I contribution is enabled.

However, if the I component is disabled (EN_I = 0), the manipulated variable Y is
formed from the summation of the components YP, YD, FEED_FWD, and the offset
OFF.

Controller type en_p en_i en_d

P controller 1 0 0

PI controller 1 1 0

PD controller 1 0 1

PID controller 1 1 1

I controller 0 1 0

Note: The OFF parameter is only designed for P, D, or PD controllers.
33002211 85

COMP_PID: Complex PID controller
Bumpless operating mode switchover

Method of
switching over

Bumpless on/off switching of the various components (P, I, D) is implemented.

Bumpless
switching with
enabled I
component

If the P component is connected/disconnected, the internal I component will be
corrected by the P component. This way, the connection/disconnection of the P
contribution is bumpless even if the system deviation is not 0.

If the D component is disconnected, the internal I component takes over the
remaining D component. If the D component is connected, it is set to 0.

Bumpless
switching for
disconnected D
component

Bumpless switching for a disconnected D component is only implemented if
parameter bump = 0. In this case, the OFF parameter is used to achieve the
bumpless switchover.

If the P component is connected/disconnected, the value in the OFF parameter is
corrected by the P component. This way, the connection/disconnection of the P
component is bumpless even if the system deviation is not 0.

If the D component is disconnected, the remaining D component is added to the
OFF parameter value. If the D component is connected, it is set to 0 (OFF remains
unchanged).

Bumpless I
component
switching

Bumpless I component disconnection is only performed if parameter bump = 0. In
this case, the OFF parameter as well as the internal I component (YI) are used to
make the bumpless switchover possible.

Bumpless
switchover from
a PI(D) to a P(D)
controller

The principle consideration for bumpless switching from a PI(D) to P(D) controller is
based on the assumption that the PI(D) controller has reached a static condition. In
this case, the process is in an idle state. The I component has a specific value in this
case. To allow a bumpless switch to P(D) operation now, the I contribution of the
PI(D) controller would have to serve as the PD controller operating point (offset),
thus allowing the switch to take place without equalization processes (new transient
condition) taking place. Based on the above consideration, bumpless I component
disconnection is implemented in such a way that the OFF parameter retrieves its
value.

Value of the manipulated variable Y depending on en_i:

If… Then…

en_i = 1 Y = YP + YI + YD + FEED_FWD

en_i = 0 Y = YP + OFF + YD + FEED_FWD
86 33002211

COMP_PID: Complex PID controller
Starting up the I
component

I component enabling is based on an analog consideration. The internal I
component is set to the OFF parameter value. This allows the I component to be
connected without giving rise to equalization processes.

Example of a
bumpless
switchover of the
D component

In order to achieve the bumpless P(D) controller switchover as well as OFF
parameter modification by the user program, the following example can serve as a
starting point.

In this example, the OFF parameter is set to the new_off variable value via a velocity
limiter VLIM in ramp form using the velocity provided in pvlim.rate.

Note: If the OFF parameter is calculated by a previous function block (EFB or DFB
output, e.g. MOVE), the corrections for bumpless switching become ineffective (at
the latest, when this function block is edited).

VLIM

offY

STATUS

Xnew_off

MODEmvlim
PARApvlim

YMANoff

COMP_PID

yY

errERR

skpidSTATUS

sp_casSP_CAS_N

ymanYMAN_N

offOFF_N

SPsp
PVpv

SP_CASsp_cas

MODEmkpid
PARApkpid

YMANyman

YRESETyreset
FEED_FWD0.0

OFF

FBI_1_2(4)

FBI_1_4(3)

OR_BOOL

mkpid.en_i

change_off

.1.6(2)

mvlim.man
33002211 87

COMP_PID: Complex PID controller
Note on the
example

In this example, it is important to note the use of the OFF variable at the YMAN input
of the VLIM as well as at the Y output of the VLIM, and the link of the output from
VLIM to the OFF input of COMP_PID. The link between the Y output from VLIM and
the OFF input from COMP_PID causes the VLIM function block to be processed
prior to the COMP_PID function block (this is a prerequisite for proper operation). As
long as the manual mode (mvlim.man = 1) is enabled in the VLIM, the manual value
of the VLIM function block is transferred to the COMP_PID OFF parameter. The
COMP_PID function block is now able to modify the content of the variable for
bumpless handling. In the next cycle, this modified value is now available at the
YMAN input of the VLIM function block. At an appropriate time, the manual mode in
the VLIM function block can be disabled, and the function block drives up the value
of the OFF variable from its current value to that of new_off. In the example above,
manual mode enabling is controlled in the function block OR_BOOL. As long as
COMP_PID has enabled the I component (mkpid.en_i = 1), the VLIM function block
remains in manual mode.

In the above example, the OR_BOOL function block requires a second condition in
order to change off to new_off: The variable change_off must be 1.

Bumpless
alteration of gain

Modification of the proportional action coefficient gain is bumpless. As in the
connection/disconnection of operating modes, this requires an internal correction to
be carried out.

If the I component is enabled (en_i = 1 and ti > 0), the internal I component will be
corrected by the expected P component jump which is caused by the gain
modification.

If the I component is disconnected, the value in the OFF parameter will be corrected
by the expected P component jump, provided the parameter bump = 0. If bump = 1,
OFF is not modified and a P(D) controller gain variation leads to equalization
processes.

Note: If mkpid.en_i = 1, the OFF parameter from COMP_ID will not be included in
the calculation of the COMP_PID output.
88 33002211

COMP_PID: Complex PID controller
Selecting the operating mode of the COMP_PID

Operating modes There are five operating modes selectable through reset, man, halt, and cascade.

Automatic and
cascade modes

In automatic mode, the manipulated variable Y is determined through the discrete
PID closed-loop control algorithm subject to controlled variable X and reference
variable SP.

In cascade mode, the manipulated variable Y is determined through the discrete PID
closed-loop control algorithm subject to controlled variable X and reference variable
SP_CAS.

The distinction between these two operating modes, automatic and cascade, is only
external in their different use of the reference variable SP. SP_CAS refers to
cascade, SP to all other operating modes (with velocity limit). The SP_CAS variable
is an input in cascade mode only, in all other modes it is an output. In SP_CAS, the
X variable is returned to the master controller when in the modes reset, manual, halt
or automatic as well as during startup, permitting bumpless switching from, for
instance, fixed setpoint control to cascade control.

In both operating modes, the manipulated variable Y is limited by ymax and ymin.
The control limits for the antiwindup measure can be extended using the parameter
delt_aw.

Operating
mode

r man halt cascade

Reset 1 1 or 0 1 or 0 1 or 0

Manual 0 1 1 or 0 1 or 0

Halt 0 0 1 1 or 0

Cascade 0 0 0 1

Automatic 0 0 0 0
33002211 89

COMP_PID: Complex PID controller
Manual mode In manual mode, the manual manipulated value YMAN is transferred to the
manipulated variable Y with a velocity limiter. The manipulated variable Y is set to
the YMAN parameter value in ramp form using the velocity (unit 1/s) rate set in the
parameter rate_man.

The amount is evaluated by the parameter rate_man. +If rate_man = 0, the velocity
limiter function for YMAN is disconnected. YMAN is transferred directly to the
manipulated variable. The manipulated variable is limited by ymax and ymin.

Internal variables will be manipulated in such a manner that the controller
changeover from manual to automatic (with I component enabled) can be bumpless.
The antiwindup measure is designed just like in automatic mode.

In this operating mode the D component is automatically set to 0.

Reset mode In Reset mode, the reset value YRESET is transferred directly to the manipulated
variable Y. The manipulated variable is limited by ymax and ymin. Internal variables
will be manipulated in such a manner that the controller changeover from manual to
automatic (with I component enabled) can be bumpless. The antiwindup measure is
performed just like in automatic mode.

Halt mode In halt mode, the control output remains as is, i.e. the function block does not change
the manipulated variable Y. Internal variables will be manipulated in such a manner
that the controller can be driven smoothly from it's current position. Manipulated
variable limits and antiwindup measures are as those in automatic mode. Halt mode
is also useful in allowing an external operator device to adjust control output Y,
whereby the controller's internal components are given the chance to continuously
react to the external influence.

In this operating mode the D component is automatically set to 0.

Non-bumpless
operation
(bump = 0)

The definition of non-bumpless operation is when the controller exhibits a jump
during operating mode switchover (e.g. manual to automatic) due to the P
component in the manipulated variable Y. Depending on the controller's area of
utilization, it might be useful for the controller to make a jump-type correction of the
manipulated variable when switching over, for instance from manual to automatic,
provided the system deviation is not equal to 0.

The jump height corresponds to the P component of the controller and is:

YP = ERR x gain
90 33002211

COMP_PID: Complex PID controller
Bumpless
operation
(bump = 1)

The definition of bumpless operation is, the controller does not produce a
discontinuity in the manipulated variable Y during an operating mode switchover.
That is, it should continue at exactly the same location where it was positioned last.
In this operating mode, the internal I component is corrected by the P contribution.
If no I component is enabled, bumpless operation is achieved by tracing the
operating point OFF such that the controller can continue during operating mode
change without a bump in spite of system deviation being not equal to 0.
33002211 91

COMP_PID: Complex PID controller
Detailed formulas

Explanation of
formula
variables

Meaning of the variables in the following formulas:

Manipulated
variable

The manipulated variable consists of various terms which are dependent on the
operating mode:

After summation of the components manipulated variable limiting takes place, so
that:

Overview of the
calculation of the
control
components

The following is an overview on the different calculations of the control components
in relation to the elements en_-, en_I and en_d:
� P component YP for manual, halt, automatic and cascade modes
� I component YI for automatic mode
� I component YI for manual and halt modes
� D component YD for automatic and cascade mode
� D component YD for manual and halt modes

Variable Meaning

Time differential between the current cycle and the previous cycle

The current internally formed System deviation

System deviation value from the current sampling step

System deviation value from the previous sampling step

FEED_FWD Disturbance (only in P, D or PD controllers)

OFF Offset

Value of controlled variable from the current sampling step

Value of controlled variable from the previous sampling step

Y current output (halt mode) or YMAN (manual mode)

YD D component (only if en_d = 1)

YI I component (only if en_i = 1)

YP P component (only if en_p = 1)

dt

ERR

ERR new()

ERR old()

PV new()

PV old()

Y YP YI YD OFF FEED_FWD+ + + +=

ymin Y ymax≤ ≤
92 33002211

COMP_PID: Complex PID controller
P component YP
for all operating
mode

YP for manual, halt, automatic and cascade modes is determined as follows:

For en_p = 1 the following applies:

For en_p = 0 the following applies:

I component YI
for automatic
mode

YI for automatic mode is determined as follows:

For en_i = 1 the following applies:

For en_i = 0 the following applies:

The I component is formed according to the trapezoid rule.

I component YI
for manual and
halt modes

YI for manual, halt and automatic modes is determined as follows:

For en_i = 1 the following applies:

For en_i = 0 the following applies:

D component YD
for automatic
and cascade
mode

 YD for automatic mode and cascade is determined as follows:

For en_d = 1 and d_on_pv = 0 the following applies:

For en_d = 1 and d_on_pv = 1 the following applies:

For en_d = 0 the following applies:

D component YD
for manual and
halt modes

YD for manual, halt and automatic modes is determined as follows:

YP gain ERR×=

YP 0=

YI new() YI old() gain
dt
ti

ERR new() ERR old()+

2
--××+=

YI 0=

YI Y YP FEED_FWD–()–=

YI 0=

YD new()
YD old() td_lag td gain ERR new() ERR old()–()××+×

dt dt_lag+
---=

YD new()
YD old() td_lag td gain PV old() PV new()–()××+×

dt dt_lag+
--=

YD 0=

YD 0=
33002211 93

COMP_PID: Complex PID controller
Runtime error

Error message An Error message appears, if
� an unauthorized floating point number is placed at the input PV
� gain_red > 1 or gain_red < 0 is
� db < 0 is
� or ymax < is ymin
94 33002211

33002211
7

DEADTIME: Deadtime device
Overview

At a glance This chapter describes the DEADTIME block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 96

Representation 97

Operating mode 98

Example for behavior of the function block 99

Runtime error 99
95

DEADTIME: Deadtime device
Brief description

Function
description

With this function block an input signal is delayed by a time, the so-called deadtime.

The function block delays the signal X by the deadtime T_DELAY before it appears
again at Y.

The function block utilizes a 128 element delay buffer to hold a sequence of X
values, i.e. during the T_DELAY time 128 discrete X values are detained. The buffer
is used in such a way that it corresponds with the operating mode.

The value of Output Y remains unchanged after cold and warm system starts. The
internal values are set to the value of X.

After a change of deadtime T_DELAY or a cold or warm system start, the output
READY goes to "0". This means: that the buffer is empty and not ready.

The function block has the following operating mode:
� Manual
� Halt
� Automatic.

EN and ENO can be projected as additional parameters.

Formula The transfer function is:

Note: The delay time continues to run even if the block is disabled via the EN
parameter, because the block calculates its time differences according to the
system clock.

G s() e
s– T_DELAY×

=

96 33002211

DEADTIME: Deadtime device
Representation

Symbol Representation of the block

DEADTIME
parameter
description

Block parameter description

Parameter
description
Mode_MH

Data structure description

DEADTIME

XREAL
MODEMode_MH
T_DELAYTIME
YMANREAL

REALY

BOOLREADY

Parameter Data type Meaning

X REAL Input value

MODE Mode_MH Operating mode

T_DELAY TIME Deadtime

YMAN REAL Manual manipulated value

Y REAL Output

READY BOOL "1" = internal buffer is full
"0" = internal buffer is not full (e.g. after warm/cold
start or modification of deadtime)

Element Data type Meaning

man BOOL "1" = Manual mode

halt BOOL "1" =Halt mode
33002211 97

DEADTIME: Deadtime device
Operating mode

Selecting the
operating modes

There are three operating modes, which are available via the man and halt
parameter inputs:

Automatic
operating mode

In the automatic mode, the function block operates according to the following rules:

Example of
automatic mode

In the example the following values are accepted:

Cycle time = 100 ms

T_DELAY = 10 s

tin = T_DELAY / 128 = 78 ms

As the reading time tin is shorter than the cycle time, each X value is transferred to
the buffer. On the fourth execution of the function block (after 400 ms) the X value
is saved twice rather than once (as 3 x 78 = 312 and 4 x 78 = 390).

Manual mode In manual mode the manual value YMAN is consistently transferred to the control
output Y. The internal buffer is charged with the manual value YMAN. The buffer is
marked as charged (READY =1).

Halt mode The output Y is held at the last calculated value in Halt mode. The output will no
longer be changed, but can be overwritten by the user. The internal buffer still
continues to operate as in automatic mode.

Operating mode man halt

Automatic 0 0

Manual 1 0 or 1

Halt 0 1

If… Then…

Scan time >
the current X value is transferred to the buffer, and the oldest
X value in the buffer is placed on the output Y. If the scan time
is more than T_DELAY / 128, resolution is less than 128
causing a systematic error, i.e. some X-values are double-
stored (see the following Example).

Scan time <
not all X values can be stored in the buffer. In this case the X
value is not saved in some cycles. After completion of
T_DELAY, output Y may correspondingly remain unchanged
in two (or more) consecutive cycles.

T_Delay
128

T_Delay
128

98 33002211

DEADTIME: Deadtime device
Example for behavior of the function block

Example The following diagram shows an example for behavior of the function block. Input X
follows a ramp function from one value to a new value. Delayed by the deadtime T
delay, X values appear at Y.

DEADTIME function block diagram

Runtime error

Error message An Error message, appears when an invalid floating point number lies at input
YMAN or X.

T_DELAY

Y X
33002211 99

DEADTIME: Deadtime device
100 33002211

33002211
8

DELAY: Deadtime device
Overview

At a glance This chapter describes the DELAY block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 102

Representation 103

Operating mode 104

Example of the behavior of the function block 105
101

DELAY: Deadtime device
Brief description

Function
description

With this function block the input signal is delayed by a deadtime.

The function block delays the signal X by the deadtime T_DELAY before it appears
again at Y.

The function block incorporates a delay buffer for 128 elements (X-values), meaning
that during the time span T_DELAY 128 X-values can be stored. The buffer is used
in accordance with the various operating mode.

The value of Output Y remains unchanged after cold and warm system starts. The
internal values are set to the value of X.

After a change of deadtime T_DELAY or a cold or warm system start, the output
READY goes to "0". This means: that the buffer is not ready because it is empty.

The function block has the following operating mode: Manual, halt and automatic
mode.

EN and ENO can be projected as additional parameters.

Note: The delay time continues to run even if the block is disabled via the EN
parameter, because the block calculates its time differences according to the
system clock.
102 33002211

DELAY: Deadtime device
Representation

Symbol Representation of the block

Parameter
description

Block parameter description

DELAY

MANBOOL
HALTBOOL

XREAL

T_DELAYTIME
YMANREAL

REALY

BOOLREADY

Parameter Data type Meaning

MAN BOOL "1" = Manual mode

HALT BOOL "1" =Halt operating mode

X REAL Input value

T_DELAY TIME Deadtime

YMAN REAL Manual manipulated value

Y REAL Output

READY BOOL "1" = internal buffer is full
"0" = internal buffer is not full (e.g. after warm/cold
start or modification of deadtime)
33002211 103

DELAY: Deadtime device
Operating mode

Selecting the
operating modes

There are three operating modes, which are selected via the inputs MAN and HALT.

Automatic
operating mode

In the automatic mode, the function block operates according to the following rules:

Example of
automatic mode

In the example the following values are accepted:

Cycle time = 100 ms

T_DELAY = 10 s

tin = T_DELAY / 128 = 78 ms

As the reading time tin is shorter than the cycle time, each X value is transferred to
the buffer. On the fourth execution of the function block (after 400 ms) the X value
is saved twice rather than once (as 3 x 78 = 312 and 4 x 78 = 390).

Manual mode In manual mode the manual value YMAN is consistently transferred to the control
output Y. The internal buffer is charged with the manual value YMAN. The buffer is
marked as charged (READY =1).

Halt mode The output Y is held at the last calculated value in Halt mode. The output will no
longer be changed, but can be overwritten by the user. The internal buffer still
continues to operate as in automatic mode.

Operating mode MAN HALT

Automatic 0 0

Manual 1 0 or 1

Halt 0 1

If Then

Scan time >
the current X value is transferred to the buffer, and the oldest
X value in the buffer is placed on the output Y. If a cycle time
is greater than T_DELAY / a resolution of less than 128 will
result, causing a systematic error leading to double storage
of some X values. (see the following Example).

Scan time <
not all X values can be stored in the buffer. In this case the X
value is not saved in some cycles, and Y remains unchanged
in these cycles.

T_Delay
128

T_Delay
128

104 33002211

DELAY: Deadtime device
Example of the behavior of the function block

Example The following diagram shows an example of the behavior of the function block. Input
X follows a ramp function from one value to a new value. Delayed by the Deadtime
T delay, X values appear at Y.

Diagram of the DELAY function block

T_DELAY

Y X
33002211 105

DELAY: Deadtime device
106 33002211

33002211
9

DERIV: Differentiator with
smoothing
Overview

At a glance This chapter describes the DERIV block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 108

Representation 109

Formulas 110

Detailed description 111

Example for the function block 112

Runtime error 112
107

DERIV: Differentiator with smoothing
Brief description

Function
description

The function block is a differential element with a delayed output Y respecting the
delay time constant lag.

The function block contains the following operating mode: Manual, halt and
automatic mode.

EN and ENO can be projected as additional parameters.
108 33002211

DERIV: Differentiator with smoothing
Representation

Symbol Representation of the block

Parameter
description
DERIV

Block parameter description

Parameter
description
Mode_MH

Data structure description

Parameter
description
Para_DERIV

Data structure description

DERIV

XREAL
MODEMode_MH
PARAPara_DERIV
YMANREAL

REALY

Parameter Data type Meaning

X REAL Input variable

MODE Mode_MH Operating Modes

PARA Para_DERIV Parameter

YMAN REAL Manual manipulated value

Y REAL Output derivative unit with smoothing

Element Data type Meaning

man BOOL "1" = Manual mode

halt BOOL "1" =Halt operating mode

Element Data type Meaning

gain REAL Gain of the differentiation

lag TIME Delayed time constants
33002211 109

DERIV: Differentiator with smoothing
Formulas

Transmission
function

The transfer function for Y is:

Calculation
formula for Y

The calculation formula for Y is:

Special case:
lag = 0

This amounts to pure differentiation without a 1st order time limiter.

In this situation the transfer function is:

The formula of calculation is:

Meaning of the
sizes

The meaning of the formula sizes is asfollows:

G s() gain
s lag×

1 s lag×+
--------------------------×=

Y
lag

dt lag+
------------------- Y old() gain X new() X old()–()×+()×=

G s() gain s×=

Y gain
X new() X old()–

dt
-------------------------------------×=

size Meaning

the input X value for the current cycle

the input X value from the previous cycle

the output Y value from the previous cycle

is the time differential between the current cycle and the previous cycle

X new()

X old()

Y old()

dt
110 33002211

DERIV: Differentiator with smoothing
Detailed description

Parametering The parameter assignments of the function block are effected by the determination
of gain, the differentiator and the time constant lag, by which the output Y is delayed.

For very short sampling times and an input X unit step (input X jumps from 0 to 1.0),
the output Y jumps to the value gain (in theory _ in reality somewhat smaller, due to
the sampling time not being infinitely small), and then returns to 0 with the delay time
constant lag.

Operating mode There are three operating modes selectable via the man and halt parameter inputs:

Operating mode man halt Meaning

Automatic 0 0 The function block operates as described in
"Parametering".

Manual 1 0 or 1 The input YMAN will be transferred directly to
the output Y.

Halt 0 1 The output Y will be held at the last calculated
value. The output remains at this value, but can
still be overwritten by the user.
33002211 111

DERIV: Differentiator with smoothing
Example for the function block

DERIV example The following example shows the step response of the DERIV function block.

Jump response with gain = 1 and lag = 10 s

Runtime error

Error message An Error message, appears when an invalid floating point number lies at input
YMAN or X.

0
1

0

0

YMAN

halt

man

Y

X

112 33002211

33002211
10

DTIME: Delay
Overview

At a glance This chapter describes the DTIME block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 114

Representation 115

Parametering 116

Initialization and operating mode 118

Example for measuring a rate of flow 119

Runtime error 120
113

DTIME: Delay
Brief description

Function
description

The function blockDTIME generates a delay when numerical input variables are
transferred. The numerical output variable OUT generates the same behavior as the
numerical input variable when the delay T_DELAY, which can vary, is included.

Behavior of the DTIME function block:

EN and ENO can be projected as additional parameters.

Formula This function block implements the following transfer function :

T_DELAY

IN

t

OUT

G p() e
p.T_DELAY–

=

114 33002211

DTIME: Delay
Representation

Symbol Representation of the block

Parameter
description

Block parameter description

*) It is essential for this to be linked to a variable (see"Parametering, p. 116").

DTIME

INREAL
T_DELAYTIME

TR_IREAL
TR_SBOOL

REALOUT

ANYBUFFER

WORDSTATUS

Parameter Data type Meaning

IN REAL Digital value to be delayed

T_DELAY TIME Desired delay

TR_I REAL Initialization input

TR_S BOOL Initialization command

OUT REAL Delayed output

BUFFER ANY*) Memory for the purpose of storing delayed values.

STATUS WORD Status word
33002211 115

DTIME: Delay
Parametering

Saving the input
values (BUFFER
output)

The BUFFER output must be linked to a variable (generally of the Buffer_DTIME)
type. The values to be delayed are contained in these variables. Each time the
function block is executed a new value is saved for the IN input.

The size of the variable linked to the BUFFER output determines the number of
values which can be saved and therefore also the allowable maximum delay value.

The following applies here

Data type of the
buffer output

The BUFFER output is of the ANY type. This means any variable type can be
assigned to it. It is generally an advantage to use a variable of the Buffer_DTIME
type at first. This also involves a table containing up to 100 real values. With this
variable type it is possible to attain a delay which corresponds to 100 times the
sampling interval of the DTIME function block.

Procedure for
large delay times

To attain delay values which are equivalent to over 100 times the sampling interval
of the function block, a larger variable must be assigned to the BUFFER parameter:

Formula size Meaning

n Number of real values which the BUFFER can contain.

T_PERIOD Sampling interval of the function block

Note: As soon as a variable has been linked to the BUFFER output, it can only be
replaced by a variable of the same type. To replace it with a greater variable, which
would enable a higher delay value to be reached for example, the function block
must be deleted and a new one put in place.

T_DELAYmaximum n T_Period×=

Step Action

1 Define a new derived data type, e.g. a table with 200 floating point values

2 Declare a variable of this type and link it to the BUFFER parameter of the DTIME
function block.

3 In this case the maximum delay corresponds to 200 times the sampling interval
of the function block
116 33002211

DTIME: Delay
Dynamic
modification of
the T_DELAY
delay

It is possible to raise or lower the T_DELAY delay time while the program is running.
As long as the re-adjusted delay time is compatible with the size of the BUFFER
output, the new delay is effective immediately.

Presentation of the dynamic modification of the T_DELAY delay

If the T_DELAY value is too great in relation to the BUFFER size, it is no longer
possible to save enough input values to attain the delay desired. In this case the
delay remains at the longest time possible (bit 8 of the status word then goes to 1
over).

To prevent this problem it is advisable to define the dimensions of the variable
assigned to the BUFFER parameter so that a possible increase in the T_DELAY can
be provided for.

When T_DELAY = 0, the OUT output always corresponds to the IN input.

t

Start value of
T_DELAY

Increasing the
T_DELAY

Shortening the
T_DELAY

New value for
T_DELAY

New value for
T_DELAY

OUT

IN
33002211 117

DTIME: Delay
Initialization and operating mode

Initialization and
operating mode

The first time the function block is executed (when loading the program or during
online calls), all the values contained in the buffer are initialized with the value of
TR_I. The OUT output retains this value for the duration of the T_DELAY. If the TR_I
input is not attached, the value 0 serves to initialize the BUFFER output and the OUT
output retains the value 0 during the T_DELAY.

In the tracking operating mode (TR_S = 1), the input TR_I is transferred to the OUT
output and the BUFFER output is also initialized with the value of TR_I. After
returning to normal operating mode, the output retains this value for the duration of
T_DELAY, as was the case with the first cycle.
118 33002211

DTIME: Delay
Example for measuring a rate of flow

Measuring a rate
of flow

The DTIME function block can be used for example to model a process delay,
whose uses include a design to measure flow rates or the number of revolutions of
propulsion systems.

In the following example two products, A and B, are poured into a container one after
the other and mixed. First, the container is placed under the dosing device for
product A, to give the amount P1. Then it is moved on a conveyor belt to the dosing
device for product B to give the amount P2. The time interval between the two
dosing devices is 20 s.

Measuring flow rates

The product amount P2 is regulated, but the weight in the container is P1+P2. P1
should be removed. The amount P2 corresponds to the amount measured minus the
amount P1 dosed 20 s beforehand.

Measuring the servo loop at P2 corresponds to the following illustration:

A B

P1 + P2P1

20 s

DTIME

OUT

BUFFBUFFER

STATUS

INPV_A
T_DELAYT_DELAY

TR_I

TR_S

FBI_9_1(1)

SUM_W

PV_BOUTIN1

IN2PV_AB

IN3

PARASUM_PARA

FBI_9_2(2)

PV_A_DELAY
33002211 119

DTIME: Delay
Values of the data structure elements of the SUM_PARA variables:

Runtime error

Status word In the status word the following messages are displayed:

Error message This error appears if a non floating point value is inputted or if there is a problem with
a floating point calculation. In this case the outputs OUT and BUFFER remain
unchanged.

Alert There will be an alert if a T_DELAY exceeds the maximum possible value. In this
case the function block uses the maximum value. If an outgoing value is required,
which is above the default value, only the BUFFER output needs to be linked to a
larger variable.

Element of SUM_PARA value

SUM_PARA.K1 1

SUM_PARA.K2 1

Bit Meaning

Bit 0 = 1 Error in a calculation with floating point values

Bit 1 = 1 Invalid value recorded at one of the floating point value inputs

Bit 2 = 1 Division by zero with calculation in floating point values

Bit 3 = 1 Capacity overflow with calculation in floating point values

Bit 8 = 1 T_DELAY exceeds the maximum value that can be represented on the
BUFFER output.
120 33002211

33002211
11

FGEN: Function generator
Overview

At a glance This chapter describes the FGEN block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 122

Representation 123

Parametering 124

Function selection 125

Function definition 126

Diagrams of the individual functions 129

Special cases 133

Timing diagrams 134
121

FGEN: Function generator
Brief description

Function
description

TheFunction block FGEN represents a function generator. It generates a signal form
at output Y which is defined in the data structure Para_FGEN. The function block
can be cascaded, i.e. if several of these EFBs are used, various signal forms can be
created and laid over one another.

The following 8 different signal forms can be generated:
� Jump function
� Ramp function
� Delta function
� Saw-tooth function
� Square wave function
� Trapezoid function
� Sine function
� Random Number

As additional parameters, EN and ENO can be projected.
122 33002211

FGEN: Function generator
Representation

Symbol Block representation

Parameter
description
FGEN

Block parameter description

Parameter
description
Para_FGEN

Data structure description

FGEN

RBOOL
STARTBOOL
PARAPara_FGEN
YOFFREAL

REALY

BOOLACTIVE

INTN

Parameter Data type Meaning

R BOOL "1": Reset

START BOOL 1": Start function generator

PARA Para_FGEN Parameter

YOFF REAL Output Y offset

Y REAL Function generator output

ACTIVE BOOL ACTIVE = 1: Function generator is active

N INT Number of intervals since start

Element Data type Meaning

func_no INT Generator function choice (1-8)

amplitude REAL Function amplitude

halfperiod TIME Half cycle duration

t_off TIME Idle time constant

t_rise TIME Rise time constant

t_acc TIME Smoothing time

unipolar BOOL "1 "= Signal unipolar
"0 "= Signal bipolar
33002211 123

FGEN: Function generator
Parametering

Reset Parameter R stands for RESET. If this parameter is set (R = 1), all running functions
will be immediately terminated and output Y goes to the value of parameter YOFF
(offset). Simultaneously the cycle counter N is also reset to 0 and ACTIVE returns
to "0".

Starting the
function
generator

The parameter START (START = 1) starts the function defined with the data
structure. Output N is incremented with the beginning of each new cycle. If the
parameter START returns to "0", the active cycle of the selected function runs to
completion. As long as a function runs, the output ACTIVE is 1. If the period ends
the output ACTIVE is reset to 0.

Offset Waveforms produced by the function generator have an amplitude with the value of
parameter "amplitude", i.e. values range from "amplitude" to -"amplitude" for bipolar
operation (unipolar = "0") resp. from 0 to "amplitude" in unipolar operation (unipolar
= "1"). Waveform values can be shifted away from the zero reference point through
the parameter YOFF.

Rise time t_rise Rise time t_rise is used only by the functions "ramp" and "trapezoid". In the "saw-
tooth" function rise time is determined by halfperiod - t_off. Rise time is 0.5 *
(halfperiod - t_off) for the "delta" function.

Note: Should the output of another function generator be applied to parameter
YOFF, the waveforms produced by both function generators are overlaid.
124 33002211

FGEN: Function generator
Function selection

Selection There are a total of 8 functions which can be produced by the function generator.
Function selection is made through func_no. At a function change the last selected
running function still proceeds to completion.

The following function numbers are allowed:

func_no Function

1 Jump

2 Ramp

3 Saw-tooth

4 Delta

5 Square

6 Trapezoid

7 Sine

8 Random Number
33002211 125

FGEN: Function generator
Function definition

Definition The function is defined completely in the data structure Para_FGEN. First of all the
waveform must be determined (refer to Function selection, p. 125).

Trapezoid (Delta, Saw-tooth, Square) unipolar/bipolar is selected as the basic type
for the definition.

Function amplitude is determined in the parameter amplitude. It should be noted that
this declaration applies to unipolar operation. Amplitude in bipolar operation is
doubled and consists of amplitude and -amplitude.

The parameter halfperiod defines the half cycle duration.

Parameter t_off defines an idle time. A half cycle of the function is then output within
the time halfperiod - t_off.

For the trapezoid function definition the rise time t_rise is also required. This is the
time in which the signal should accelerate from 0 to amplitude. This time is also
taken for the descent from amplitude back to 0.

t_acc

t_rise

halfperiod

t_rise t_off

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

Y

t

t_acc
126 33002211

FGEN: Function generator
"Smoothing" a
function

If a function in ramp form is to rise or decline, the transitions are first of all always
made in a sharp crease. The gradient is not constant in this case. "Smoothing" is
used to achieve a soft rise and descent, i.e. the ramp turns into an S-curve.

"Smoothing" a function

This is then divided into three sections. Section I "accelerates" directly from 0.
Section II is traversed with the velocity attained at the end of section I. In section III,
the acceleration from section I is used to brake, and thus approach the terminal point
softly. The size of the section is user-definable. They are defined by specifying t_acc
and t_rise.

The acceleration involved is calculated by the following formulas:

with

and

amplitude

t_acc t_acc

t_rise

S3

S2

S1

I II III v = 0
v' = -a

v = v0

v' = 0

v = 0
v' = +a

Y

t

amplitude S1 S2 S3+ +=

S3 S1
a
2
--- t_acc

2×= =

S2 a t_acc t_rise 2 t_acc×–()××=
33002211 127

FGEN: Function generator
It then follows that:

Individual
Parameter Usage

Parameter use within the various functions.

Function diagrams can be found in the section Diagrams of the individual functions,
p. 129.

Unipolar
operation

The unipolar parameter defines whether the selected function should be output as
a unipolar or bipolar function. Particular attention should be paid to the fact that in
unipolar operation a cycle is still characterized by 2 "unipolar" half waves.

Altering function
parameters

During a currently executing cycle, all function parameters may be altered. However,
any alterations made will not take effect until the cycle has completed. Should, for
example, the idle time t_off be altered during the running cycle, it does not apply until
the start of the next cycle.

Altering a
function

If the parameter func_no is changed during a currently executing cycle, it will also
not take effect until the cycle has completed with the previously selected function.
The new function is then started. This resets the cycle counter N, which indicates
the period number, to 0.

Note: Smoothing is used only by the functions "Ramp", "Saw-Tooth", "Delta" and
"trapezoid". "Jump", "Square" and "Sine" are not "smoothable" functions.

a
amplitude

t_acc t_rise t_acc
2

–×
--=

Function amplitude halfperiod t_off t_rise t_acc uni-
polar

Jump X

Ramp X X X

Saw-tooth X X X halfperiod - t_acc X X

Delta X X X (halfperiod - t_acc)/2 X X

Square X X X X

Trapezoid X X X X X X

Sine X X X X

Random
number

X X
128 33002211

FGEN: Function generator
Diagrams of the individual functions

Jump function Representation of the Jump function

Ramp function Representation of the Ramp function

Y

t

START = 1 START = 0

Y

t

t_rise

START = 1

t_acc
33002211 129

FGEN: Function generator
Saw-tooth
function

Representation of the Saw-tooth function

Delta function Representation of the Delta function

Y

t

halfperiod

t_offt_acc

Y

t

halfperiod

t_offt_acc
130 33002211

FGEN: Function generator
Square wave
function

Representation of the Square wave function

Trapezoid
function

Representation of the Trapezoid function

Y

t

halfperiod

t_off

Y

t

halfperiod

t_rise t_rise t_off

t_acc
33002211 131

FGEN: Function generator
Sine function Representation of the Sine function

Y

t

halfperiod

t_off
132 33002211

FGEN: Function generator
Special cases

Jump function On the "Jump" function the output goes to

the value Y = OFF if START = 0

and

the value Y = OFF + amplitude if START = 1

set

The time specifications (t_off, t_rise, t_acc) do not play a role in this function.

Output N is incremented for every new 0 →1 transition of input START.

There is no bipolar mode for this function, i.e. the unipolar parameter value is
disregarded.

Ramp function In the "Ramp" function output Y ramps upward from value YOFF to YOFF +
amplitude. While START is unchanged at 1, output Y remains at the value YOFF +
amplitude. Output Y jumps back to value YOFF should START be taken back to 0.

Run up is determined by the times t_rise and t_acc. The time needed for run up from
Y = YOFF to Y = YOFF + amplitude is specified by t_rise. "Smoothing" can be
influenced by t_acc.

Output N is incremented for every new 0 →1 transition of input START.

There is no bipolar mode for this function, i.e. the unipolar parameter value is
disregarded.

Random number In the "Random number" function output Y is set to a number resulting "by chance"
between

YOFF ≤ Y ≤ YOFF + amplitude, in unipolar operation

and

YOFF - amplitude ≤ Y ≤ YOFF + amplitude, when the operation is bipolar

.

The time specifications (t_off, t_rise, t_acc) do not play a role in this function.

Output N is incremented for every new 0 →1 transition of input START.
33002211 133

FGEN: Function generator
Timing diagrams

Bipolar
operation

The following parameter specifications represent the various functions in bipolar
operation:

Bipolar operation

Parameter Specification

amplitude 1

halfperiod 10

t_off 2

t_rise 2

t_acc 0

unipolar 0

0

am
pl

itu
de

Y

-a
m

pl
itu

de

Saw-tooth Delta Square Trapezoid Sine Random
no.
134 33002211

FGEN: Function generator
Unipolar
operation

The following parameter specifications represent the various functions in unipolar
operation:

Unipolar operation

Parameter Specification

amplitude 1

halfperiod 10

t_off 2

t_rise 2

t_acc 0

unipolar 1

0

YS

Y

Saw-tooth Delta Square Trapezoid Sine Random
no.
33002211 135

FGEN: Function generator
Trapezoid
function

The following parameter specification represents the trapezoid function:

Trapezoid function

Parameter Specification

amplitude 1

halfperiod 10

t_off 1

t_rise 4

t_acc 1.5

0

am
pl

itu
de

0
1

Y

START

-a
m

pi
ltu

de

0
12

0
1

unipolar

N

136 33002211

33002211
12

INTEG: Integrator with limit
Overview

At a glance This chapter describes the INTEG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 138

Representation 139

Detailed description 140

Runtime error 141
137

INTEG: Integrator with limit
Brief description

Function
description

The Function block replicates a limited integrator.

The function block has the following properties:
� Operating modes, Manual, Stop, Automatic
� Manipulated variable limiting in automatic mode

As additional parameters, EN and ENO can be projected.

Formula The transfer function is:

The formula of calculation is:

Meaning of the sizes

Size Meaning

Value of input X from the previous cycle

Value of output Y from the previous cycle

dt Time difference between current and previous cycle

G s()
gain

s
-----------=

Y Y old()= gain dt
X new() X old()+

2
--------------------------------------××+

X old()

Y old()
138 33002211

INTEG: Integrator with limit
Representation

Symbol Block representation

Description of
the INTEG
parameter

Block parameter description

Parameter
description
Mode_MH

Data structure description

Parameter
description
Para_INTEG

Data structure description

Parameter
description
Stat_MAXMIN

Data structure description

INTEG

XREAL
MODEMode_MH

PARAPara_INTEG
YMANREAL

REALY

Stat_MAXMINSTATUS

Parameter Data type Meaning

X REAL Input variable

MODE Mode_MH Operating modes

PARA Para_INTEG Parameter

YMAN REAL Manually manipulated value

Y REAL Output

STATUS Stat_MAXMIN Output status

Element Data type Meaning

man BOOL "1" = Manual operating mode

halt BOOL "1" =Halt operating mode

Element Data type Meaning

gain REAL Integral gain (units/second)

ymax REAL Upper limit

ymin REAL Lower limit

Element Data type Meaning

qmin BOOL "1" = Y has reached lower limit

qmax BOOL "1" = Y has reached upper limit
33002211 139

INTEG: Integrator with limit
Detailed description

Parametering The parameter assignments of the function block are satisfied by the determination
of gain, the integral gain and the limiting values ymax und ymin for output Y.

The values ymax and ymin limit the upper and lower values of the output. So that
means ymin ≤ Y ≤ ymax

If the threshold value is reached or the output signal is limited this will be indicated
by qmax and qmin.
� qmax = 1 if Y ≥ ymax
� qmin = 1 when Y ≤ ymin

Operating mode There are three operating mode selectable through the man and halt parameter
inputs:

Operating mode man halt Meaning

Automatic 0 0 The function block operates as described in
"Parametering".

Manual mode 1 0 or 1 The manual value YMAN will be transmitted
fixed to the output Y. The control output is,
however, limited by ymax and ymin.

Halt 0 1 The output Y will be held at the last calculated
value. The output will no longer be changed, but
can, however, be overwritten by the user.
140 33002211

INTEG: Integrator with limit
Example The input signal is integrated via the time. The output follows jumps of the input X
value in a ramp function of like polarity. Limiting of output Y within ymax and ymin
with the appropriate signals at qmax and qmin can also be clearly seen.

Representation of the integrator jump response

Runtime error

Error message There is an Error message, if
� an unauthorized floating point number is placed at the input YMAN or X,
� ymax < is ymin

ymin = 0

ymax

0

0

1

1

1
0

Y

X

qmin
qmax

halt
33002211 141

INTEG: Integrator with limit
142 33002211

33002211
13

INTEGRATOR: Integrator with
limit
Overview

At a glance This chapter describes the INTEGRATOR block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 144

Display 145

Detailed description 146

Runtime error 147
143

INTEGRATOR: Integrator with limit
Brief description

Function
description

The Function block replicates a limited integrator.

The function block has the following properties:
� Tracking and automatic modes
� Manipulated variable limiting in automatic mode

EN and ENO can be configured as additional parameters.

Formulas The transfer function is:

The formula for the output OUT is:

Meaning of variables

Variable Meaning

current value of input IN

Value of the input IN from the previous cycle

Value of the output OUT from the previous cycle

dt Time difference between the current cycle and the previous cycle

G s()
GAIN

s
----------------=

OUT OUT old)() GAIN dt
IN new() IN old()+

2
--××+=

IN new()

IN old()

OUT old()
144 33002211

INTEGRATOR: Integrator with limit
Display

Symbol Block display

Parameter
description

Block parameter description

INTEGRATOR

INREAL
GAINREAL
OUT_MINREAL
OUT_MAXREAL

TR_IREAL
TR_SBOOL

REALOUT

BOOLQMIN

BOOLQMAX

Parameter Data type Meaning

IN REAL Input variable

GAIN REAL Integral gain

OUT_MIN REAL Lower output limit

OUT_MAX REAL Upper output limit

TR_I REAL Initialization input

TR_S BOOL Initialization type
"1" = Tracking mode
"0" = Automatic mode

OUT REAL Output

QMIN BOOL "1" = Output OUT has reached lower limit

QMAX BOOL "1" = Output OUT has reached upper limit
33002211 145

INTEGRATOR: Integrator with limit
Detailed description

Parametering Parameter assignment for the function block is accomplished by specifying the
integration gain GAIN and the limiting values OUT_MAX and OUT_MIN for the
output OUT.

The limits OUT_MAX and OUT_MIN retain the output within the prescribed range.
So that means OUT_MIN ≤ OUT ≤ OUT_MAX.

The markers QMAX and QMIN are signalling that the limits or a limitation of the
output signal have/has been reached.
� QMAX = 1 if OUT ≥ OUT_MAX
� QMIN = 1 if OUT ≤ OUT_MIN

Operating mode There are two operating mode selectable through the TR_S parameter input.

Operating mode TR_S Meaning

Automatic 0 The Function block operates as described in
"Parametering".

Tracking 1 The tracking value TR_I is transferred permanently to the
output OUT. The control output is, however, limited by
OUT_MAX and OUT_MIN.
146 33002211

INTEGRATOR: Integrator with limit
Example The input signal is integrated using the time. In the event of a transition at the input
IN, the output will rise (if the IN values are positive) or fall off (if the IN values are
negative) along a ramp function. OUT will always be between OUTMAX and
OUT_MIN; if OUT is equal to OUT_MAX or OUT_MIN, it will be so indicated in
QMAX or QMIN.

It displays the integrator jump response:.

Runtime error

Error message If OUT_MAX < OUT_MIN an Error message is generated.

OUT_MIN =0

OUT_MAX

0
1

1
0

OUT

IN

QMIN
QMAX
33002211 147

INTEGRATOR: Integrator with limit
148 33002211

33002211
14

INTEGRATOR1: Integrator with
limit
Overview

At a glance This chapter describes the INTEGRATOR1 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 150

Display 151

Detailed description 152

Runtime error 153
149

INTEGRATOR1: Integrator with limit
Brief description

Function
description

The Function block replicates a limited integrator.

The function block has the following properties:
� Manual, halt and automatic modes
� Manipulated variable limiting in automatic mode

EN and ENO can be configured as additional parameters.

Formulas The transfer function is:

The formula for the output Y is:

Meaning of variables

Variable Meaning

Value of the input X from the previous cycle

Value of the output Y from the previous cycle

dt Time difference between current and previous cycle

G s()
GAIN

s
----------------=

Y Y old)() GAIN dt
X new() X old()+

2
--------------------------------------××+=

X old()

Y old()
150 33002211

INTEGRATOR1: Integrator with limit
Display

Symbol Block display

Parameter
description

Block parameter description

INTEGRATOR1

MANBOOL
HALTBOOL
XREAL
GAINREAL

YMANREAL
YMINREAL
YMAXREAL

REALY

BOOLQMAX

BOOLQMIN

Parameter Data type Meaning

MAN BOOL "1" = Hand mode

HALT BOOL "1" = Halt mode

X REAL Input variable

GAIN REAL Integral gain

YMAX REAL Upper output limit

YMIN REAL Lower output limit

YMAN REAL Manual manipulated value

Y REAL Output

QMAX BOOL "1" = Output Y has reached upper limit

QMIN BOOL "1" = Output Y has reached lower limit
33002211 151

INTEGRATOR1: Integrator with limit
Detailed description

Parametering The parametering of the function block is accomplished by specifying the integral
gain GAIN and the limiting values YMAX and YMIN for the output Y.

The limits YMAX and YMIN retain the output within the prescribed range. Hence,
YMIN ≤ Y ≤ YMAX.

The outputs QMAX and QMIN signal that the output has reached a limit, and thus
been capped.
� QMAX = 1 if Y ≥ YMAX
� QMIN = 1 if Y ≤ YMIN

Operating mode There are three operating mode selectable through the inputs MAN and HALT:

Operating
mode

MAN HALT Meaning

Automatic 0 0 The function block operates as described in
"Parametering".

Manual 1 0 or 1 The manual value YMAN will be transferred directly to
the output Y. The control output is, however, limited
by YMAX and YMIN.

Halt 0 1 The output Y will be set at the last calculated value.
152 33002211

INTEGRATOR1: Integrator with limit
Example The input signal is integrated via the time. The output follows jumps of the input X
value in a ramp function of like polarity. Limiting of output Y within YMAX and YMIN
with the appropriate signals at QMAX and QMIN can also be clearly seen.

Representation of the integrator jump response:.

Runtime error

Error message If YMAN < YMIN an Error message is generated.

YMIN = 0

YMAX

0

0

1

1

1
0

Y

X

QMIN
QMAX

HALT
33002211 153

INTEGRATOR1: Integrator with limit
154 33002211

33002211
15

K_SQRT: Square root
Overview

At a glance This chapter describes the K_SQRT block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 156

Presentation 156

Runtime error 157
155

K_SQRT: Square root
Brief description

Function
description

This Function block calculates the weighted square root of a numerical value. A
division can be defined under which the function block issues the value zero.

Taking the square root typically serves to linearize a flow measurement using a
throttle device.

EN and ENO can be configured as additional parameters.

Formula The function block performs the following calculation:

Presentation

Symbol Block display

Parameter
description

Block parameter description

Calculation Condition

or

OUT K IN= IN CUTOFF≥

OUT 0= IN 0< IN CUTOFF<

K_SQRT

INREAL
KREAL

CUTOFFREAL

REALOUT

Parameter Data type Meaning

IN REAL Numerical value to process

K REAL Weighting coefficient

CUTOFF REAL Division

OUT REAL Result of the calculation
156 33002211

K_SQRT: Square root
Runtime error

Error message An error is displayed if a non floating point value is recorded at input or if there is a
problem with floating point calculation. In this case the output OUT remains
unchanged.

Warning A warning is given if the CUTOFF input is negative. The function block then uses the
value 0 for calculation.
33002211 157

K_SQRT: Square root
158 33002211

33002211
16

LAG: Time lag device: 1st order
Overview

At a glance This chapter describes the LAG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 160

Presentation 161

Detailed description 162
159

LAG: Time lag device: 1st order
Brief description

Function
description

The Function block represents a first order delay (low pass)

The function block contains the following operating mode:
� Manual
� Halt
� Automatic

EN and ENO can be projected as additional parameters.

Equation The transmission function says:

The calculation equation says:

Meaning of the sizes

Size Meaning

Value of output X from the previous cycle

Value of the output Y from the previous cycle

dt Time difference between current and previous cycle

G s() gain
gain

1 s lag×+
--------------------------×=

Y Y old()=
dt

lag dt+
------------------- gain

X old() X new()+

2
-------------------------------------- Y old()–×

� �
� �×+

X old()

Y old()
160 33002211

LAG: Time lag device: 1st order
Presentation

Symbol Block display

Parameter
description LAG

Block parameter description

Parameter
description
Mode_MH

Data structure description

Parameter
description
Para_LAG

Data structure description

LAG

XREAL
MODEMode_MH
PARAPara_LAG
YMANREAL

REALY

Parameter Data type Meaning

X REAL Input value

MODE Mode_MH Operating mode

PARA Para_LAG Parameter

YMAN REAL Manual manipulation

Y REAL Output

Element Data type Meaning

man BOOL "1" = Operating mode Hand

halt BOOL "1" = Halt mode

Element Data type Meaning

gain REAL Gain factor

lag TIME Delayed time constants
33002211 161

LAG: Time lag device: 1st order
Detailed description

Parametering The parametering of the Function block is achieved through specification of the
boost factor gain as well as the parametering of the delayed time constants lag.

The unit jump at input X (jump at input X of 0 to 1.0) succeeds the output Y with
delay. Along an e-function

it will approximate the value .

Operating mode There are three operating modes selectable through the man and halt parameter
inputs:

exp t– lag⁄()

gain X×

Operating mode man halt Meaning

Automatic 0 0 The function block operates as described in
"Parametering".

Manual mode 1 0 or 1 The manual value YMAN will be transmitted
fixed to the output Y.

Halt 0 1 The output Y will be set at the last calculated
value. The output will no longer be changed, but
can be overwritten by the user.
162 33002211

LAG: Time lag device: 1st order
Example The diagram shows an example of the jump response of the function block. Input X
jumps to a new value that output Y approaches exponentially.

Function block LAG jump response with gain = 1

1

0

X

Y

halt
0

33002211 163

LAG: Time lag device: 1st order
164 33002211

33002211
17

LAG1: Time lag device: 1st order
Overview

At a glance This chapter describes the LAG1 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 166

Presentation 167

Detailed description 168
165

LAG1: Time lag device: 1st order
Brief description

Function
description

The Function block represents a first order delay.

The function block contains the following operating mode:
� Manual mode
� Halt
� Automatic

EN and ENO can be projected as additional parameters.

Equation The transmission function says:

The calculation equation says:

Meaning of the sizes

Size Meaning

Value of output X from the previous cycle

Value of the output Y from the previous cycle

dt Time difference between current and previous cycle

G s() gain
1

1 s lag×+
--------------------------×=

Y Y old()=
dt

LAG dt+
------------------------ gain

X old() X new()+

2
-------------------------------------- Y old()–×

� �
� �×+

X old()

Y old()
166 33002211

LAG1: Time lag device: 1st order
Presentation

Symbol Block display

Parameter
description

Block parameter description

LAG1

MANBOOL
HALTBOOL
XREAL
GAINREAL

LAGTIME
YMANREAL

REALY

Parameter Data type Meaning

MAN BOOL "1" = Operating mode Hand

HALT BOOL "1" = Halt mode

X REAL Input value

GAIN REAL Gain factor

LAG TIME Delayed time constants

YMAN REAL Manual manipulation

Y REAL Output
33002211 167

LAG1: Time lag device: 1st order
Detailed description

Parametering The parametering of the Function block is achieved through specification of the
boost factor GAIN as well as the parametering of the delayed time constants LAG.

The unit jump at input X (jump at input X of 0 to 1.0) succeeds the output Y delay.
Along an e-function

it will approximate the value .

Operating mode There are three operating mode, which are selected via the elements MAN and
HALT:

Example The diagram shows an example of the jump response of the PLAG device: Input X
jumps to a new value that output Y approaches exponentially.

Function block LAG1 jump response with GAIN = 1

exp t– LAG()⁄()

GAIN X×

Operating mode MAN HALT Meaning

Automatic 0 0 The function block operates as described in
"Parametering".

Manual mode 1 0 or 1 The manual value YMAN will be transmitted
fixed to the output Y.

Halt 0 1 The output Y will be held at the last calculated
value.

1

0

X

Y

HALT
0

168 33002211

33002211
18

LAG2: Time lag device: 2nd order
Overview

At a glance This chapter describes the LAG2 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 170

Presentation 171

Detailed description 172

Timing diagrams 173
169

LAG2: Time lag device: 2nd order
Brief description

Function
description

The Function block LAG2 represents a second order with delay.

The function block contains the following operating mode:
� Manual mode
� Halt
� Automatic

EN and ENO can be projected as additional parameters.

Equation The transmission function says:

The calculation equation is as follows:

where

and

Meaning of the sizes

Size Meaning

Value of the output Y from the previous cycle

Value of the output Y from the cycle preceding the previous

dt Time difference between current and previous call

G s() gain
1

1 s 2
dmp
freq
----------- s

freq

� �
� �

2
+××+

--×=

Y new() A B×=

A
gain X× freq dt×()2

Y old()+×

1 2+ dmp× freq× dt freq dt×()2
+×

--=

B
2 dmp× freq× dt× 2×() Y old2()–

1 2 dmp× freq× dt freq dt×()2
+×+

--=

Y old()

Y old2()
170 33002211

LAG2: Time lag device: 2nd order
Presentation

Symbol Block display

parameter
description
LAG2

Block parameter description

Parameter
description
Mode_MH

Data structure description

Parameter
description
Para_LAG2

Data structure description

LAG2

XREAL

MODEMode_MH
PARAPara_LAG2
YMANREAL

REALY

Parameter Data type Meaning

X REAL Input value

MODE Mode_MH Operating mode

PARA Para_LAG2 Parameter

YMAN REAL Manual manipulated value for output

Y REAL Output

Element Data type Meaning

man BOOL "1" = Operating mode Hand

halt BOOL "1" = Halt mode

Element Data type Meaning

gain REAL Gain factor

dmp REAL Dampening

freq REAL Natural frequency
33002211 171

LAG2: Time lag device: 2nd order
Detailed description

Parametering The parameter assignments of the function block are satisfied by the determination
of gain, the gain and the values for dampening dmp, and natural frequency freq.

Dampening dmp and natural frequency freq must have positive values.

Output Y follows input X jumps in a dampened oscillation. The period of
undampened oscillation is T = 1/freq. For dampening values dmp < 1 reference is
made to a dampened oscillation. For dampening values ≥ 1 reference is made to
non-resonant behavior (i.e. without oscillation); in this case the output follows the
input in the same way as with 2 LAG function blocks, which are switched in series.

Operating mode There are three operating mode selectable through the man and halt parameter
inputs:

Operating mode man halt Meaning

Automatic 0 0 The function block operates as described in
"Parametering".

Manual mode 1 0 or 1 The manual value YMAN will be transmitted
fixed to the output Y.

Halt 0 1 The output Y will be held at the last calculated
value. The output will no longer be changed, but
can be overwritten by the user.
172 33002211

LAG2: Time lag device: 2nd order
Timing diagrams

Overview The following diagrams show examples of the LAG2 device’s jump response with
varying parameters.

Dampening
dmp = 1

For a dampening of dmp = 1 the output Y follows input X with a non-resonant action.

1

0

X

Y

halt
0

33002211 173

LAG2: Time lag device: 2nd order
Dampening dmp
= 0.5

For a dampening of dmp = 0.5 the output Y follows input X in a dampened periodic
manner.

Dampening dmp
= 0.2

For a dampening of dmp = 0.2 it is clear that the jump response is considerably less
dampened.

1

0

X

Y

halt

0

1

0

X

Y

halt

0

174 33002211

33002211
19

LAG_FILTER: Time lag device:
1st order
Overview

At a glance This chapter describes the LAG_Filter block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 176

Representation 177

Detailed description 178
175

LAG_FILTER: Time lag device: 1st order
Brief description

Function
description

The Function block represents a first order delay.

The function block contains the following operating mode:
� Tracking
� Automatic

EN and ENO can be projected as additional parameters.

Equation The transmission function says:

The calculation equation says:

Meaning of the sizes

Size Meaning

Value of the input IN from the previous cycle

Value of the output OUT from the previous cycle

dt Time difference between current and previous cycle

G s() GAIN
1

1 s LAG×+
-------------------------------×=

OUT OUT old()=
dt

LAG dt+
------------------------ GAIN

IN old() IN new()+

2
-- OUT old()–×� �

� �×+

IN old()

OUT old()
176 33002211

LAG_FILTER: Time lag device: 1st order
Representation

Symbol Representation of the block

Parameter
description

Block parameter description

LAG_FILTER

INREAL
GAINREAL
LAGTIME
TR_IREAL

TR_SBOOL

REALOUT

Parameter Data type Meaning

IN REAL Input value

GAIN REAL Gain factor

LAG TIME Delayed time constants

TR_I REAL Initialization input

TR_S BOOL Initialization type
"1" = Operating mode Tracking
"0" = Halt mode

OUT REAL Output
33002211 177

LAG_FILTER: Time lag device: 1st order
Detailed description

Parametering The parametering of the Function block is achieved through specification of the
boost factor GAIN as well as the parametering of the delayed time constants LAG.

The unit step at the input IN (jump at the input IN from 0 to 1.0) is followed by the
output OUT with a lag time. Along an e-function

it will approximate the value .

Operating mode There are two operating mode, which can be selected via the input TR_S:

Example The diagram shows an example of the jump response of the LAG_FILTER function
block. The input IN jumps to a new value and the output OUT follows the input IN
along an e-function.

Jump response of the function block LAG_FILTER when GAIN = 1

exp t– LAG⁄()

GAIN X×

Operating mode TR_S Meaning

Automatic 0 The function block operates as described in "Parametering".

Tracking 1 The tracking value TR_I is transmitted permanently to the
output OUT.

0

IN

OUT
178 33002211

33002211
20

LDLG: PD device with smoothing
Overview

At a glance This chapter describes the LDLG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 180

Representation 181

Detailed description 182

Examples of function block LDLG 183
179

LDLG: PD device with smoothing
Brief description

Function
description

The Function block serves as a PD outline with subsequent smoothing.

The function block has the following properties:
� Definable delay of the D-component
� Tracking and automatic modes

EN and ENO can be projected as additional parameters.

Formula The transfer function is:

The formula of calculation is:

Meaning of the sizes

size Meaning

Value of the input IN from the previous cycle

Value of the output OUT from the previous cycle

dt is the time differential between the current cycle and the previous cycle

G s() GAIN
1 s LEAD×+
1 s LAG×+

-----------------------------------×=

OUT
LAG OUT old() GAIN LEAD dt+() IN LEAD IN old()×–×()×+×

LAG dt+
---=

IN old()

OUT old()
180 33002211

LDLG: PD device with smoothing
Representation

Symbol Representation of the block

Parameter
description

Block parameter description

LDLG

INREAL

GAINREAL
LEADTIME
LAGTIME
TR_IREAL
TR_SBOOL

REALOUT

Parameter Data type Meaning

IN REAL Input

GAIN REAL Gain factor

LEAD TIME Dirivative time constant

LAG TIME Delayed time constants

TR_I REAL Initialization input

TR_S BOOL Initialization type
"1" = Operating mode Tracking
"0" = Halt mode

OUT REAL Output
33002211 181

LDLG: PD device with smoothing
Detailed description

Parametering The parametering of the Function block appears through specification of the boost
factors GAIN as well as the parametering of the Derivative time constants LEAD and
the delayed time constants LAG.

For very small sample times and the unit jump to input IN (jump at line-in IN from 0

to 1.0) output OUT will jump to the value (theoretical value -
actual slightly smaller, due to the not infinitely small sample times), using the time
constant LAG to approximate the value closer.

Operating mode There are two operating mode, which can be selected via the input TR_S:

GAIN LEAD LAG⁄×

GAIN 1.0×

Operating mode TR_S Meaning

Automatic 0 The function block operates as described in "Parametering".

Tracking 1 The tracking value TR_I is transmitted permanently to the
output OUT.
182 33002211

LDLG: PD device with smoothing
Examples of function block LDLG

Example-
overview

The following examples are presented in the following diagrams:
� LEAD = LAG
� LEAD/LAG = 0,5, GAIN = 1
� LEAD/LAG = 2, GAIN = 1

LEAD = LAG The function block behaves like a pure multiplication block with the multiplier GAIN.

Function block LDLG with LEAD = LAG

LEAD/LAG = 0,5,
GAIN = 1

In this case the output OUT will jump to half the accumulated value in order to then
transition to the upper range value (GAIN * IN) with the lag time constant LAG.

Function block LDLG with LEAD/LAG = 0,5 and GAIN = 1

1

0

GAIN

0

OUT

IN

IN

OUT

0

33002211 183

LDLG: PD device with smoothing
LEAD/LAG = 2,
GAIN = 1

In this case the output OUT will jump to twice the accumulated value in order to then
transition to the end value (GAIN * IN) with the lag time constant LAG.

Function block LDLG with LEAD/LAG = 2 and GAIN = 1

OUT

IN

0

184 33002211

33002211
21

LEAD: Differentiator with
smoothing
Overview

At a glance This chapter describes the LEAD block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 186

Representation 187

Detailed description 188
185

DERIV: Differentiator with smoothing
Brief description

Function
description

The function block is a differentiator element with an output OUT delayed by the lag
time constant LAG.

The function block contains the following operating modes:
� Tracking
� Automatic

EN and ENO can be projected as additional parameters.

Formula The transfer function for OUT is:

The formula of calculation is:

Meaning of the sizes

size Meaning

Value of the input IN from the current cycle

Value of the input IN from the previous cycle

Value of the output OUT from the previous cycle

dt is the time differential between the current cycle and the previous cycle

G s() GAIN
s

1 s LAG×+
-------------------------------×=

OUT
LAG

dt LAG+
------------------------ OUT old() GAIN IN new() IN old()–()×+()×=

IN new()

IN old()

OUT old()
186 33002211

DERIV: Differentiator with smoothing
Representation

Symbol Block representation

Parameter
description

Block parameter description

LEAD

INREAL

GAINREAL
LAGTIME
TR_IREAL
TR_SBOOL

REALOUT

Parameter Data type Meaning

IN REAL Input value

GAIN REAL Gain of the differentiation

LAG TIME Delay time constants

TR_I REAL Initialization input

TR_S BOOL Initialization type
"1" = Tracking mode
"0" = Automatic mode

OUT REAL Output derivative unit with smoothing
33002211 187

DERIV: Differentiator with smoothing
Detailed description

Parametering Parameter assignment for this function block is accomplished by selecting the GAIN
of the derivative unit and the lag time constant LAG by which the output OUT will be
delayed.

For very short scan times, after a unit step at the input IN (jump at input IN from 0 to
1.0), the output OUT will jump to the value of GAIN (theoretical value - in reality
somewhat smaller due to the fact that the scan time is not infinitely short), to then
return to 0 with the time constant LAG.

Operating mode There are two operating mode selectable using the input TR_S:

Example Representation of the LEAD function block jump response with GAIN = 1 and LAG
= 10s:

Operating mode TR_S Meaning

Automatic 0 The function block operates as described in "Parametering".

Tracking 1 The tracking value TR_I is transferred directly to the output
OUT.

0

1

0

TR_I

TR_S

OUT

IN
188 33002211

33002211
22

LEAD_LAG: PD device with
smoothing
Overview

At a glance This chapter describes the LEAD_LAG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 190

Representation 191

Detail description 192

Examples of function blocks LEAD_LAG 193

Runtime error 195
189

LEAD_LAG: PD device with smoothing
Brief description

Function
description

The Function block implements a PD element with following low-pass filter.

The function block has the following properties:
� Definable delay of the D-component
� Manual, halt and automatic modes

EN and ENO can be configured as additional parameters.

Formula The transfer function is:

The calculation formula is:

Meaning of the variables

Variable Meaning

Value of input X from the previous cycle

Value of output Y from the previous cycle

dt Time difference between current and previous cycle

G s() gain
1 s lead×+
1 s lag×+
-----------------------------×=

Y
lag Y old() gain lead dt+() X lead X old()×–×()×+×

lag dt+
--=

X old()

Y old()
190 33002211

LEAD_LAG: PD device with smoothing
Representation

Symbol Block representation

Parameter
description
LEAD_LAG

Block parameter description

Parameter
description
Mode_MH

Data structure description

Parameter
description
Para_LEAD_LAG

Data structure description

LEAD_LAG

XREAL
MODEMode_MH
PARAPara_LEAD_LAG
YMANREAL

REALY

Parameter Data type Meaning

X REAL Input

MODE Mode_MH Operating mode

PARA Para_LEAD_LAG Parameter

YMAN REAL Manual value manipulated value

Y REAL Output

Element Data type Meaning

man BOOL "1" = Manual mode

halt BOOL "1" =Halt mode

Element Data type Meaning

gain REAL Gain factor

lead TIME Derivative time constant

lag TIME Delay time constants
33002211 191

LEAD_LAG: PD device with smoothing
Detail description

Parametering The parametering of the Function block is achieved through specification of the
boost factor gain as well as the parametering of the Derivative time constant lead
and the delayed time constants lag.

For very small sample times and the unit jump at input X (jump at input X from 0 to
1.0) output Y will jump to the value (theoretical value - actual slightly
smaller, due to the not infinitely small sample times), using the time constant lag to

approximate the value

Operating mode There are three operating mode, which are selected via the elements man and halt:

gain lead lag⁄×

gain 1.0×

Operating mode man halt Meaning

Automatic 0 0 The Function block will be handled, as
described in "Parametering".

Hand 1 0 or 1 The hand value YMAN will be transmitted
permanently to the output Y.

Halt 0 1 The output Y will be set at the last calculated
value. The output will no longer be changed, but
can be overwritten by the user.
192 33002211

LEAD_LAG: PD device with smoothing
Examples of function blocks LEAD_LAG

Example-
overview

The following examples are presented in the following diagrams:
� lead = lag
� lead=lag * 0.5, gain = 1
� lead/lag = 2, gain = 1

lead = lag The function blocks behave like a pure multiplication block with the multiplier gain.

Function blockLEAD_LAG with lead = lag

1

0

gain

0

0
1

Y

X

halt
33002211 193

LEAD_LAG: PD device with smoothing
lead=lag * 0.5,
gain = 1

The output Y jumps in this case to half the end value in order to run into the end
value with the delayed time constant lag (gain * X)

Function block LEAD_LAG with lead/lag = 0.5 and gain = 1

lead/lag = 2,
gain = 1

The output Y jumps in this case to double the end value in order to run into the end
value with the delayed time constant lag (gain * X)

Function block LEAD_LAG with lead/lag = 2 and gain = 1

1
0

X

Y

halt

0

1
0

Y

X

halt

0

194 33002211

LEAD_LAG: PD device with smoothing
Runtime error

Error message An Error message, appears when an invalid floating point number lies at input
YMAN or X.
33002211 195

LEAD_LAG: PD device with smoothing
196 33002211

33002211
23

LEAD_LAG1: PD device with
smoothing
Overview

At a glance This chapter describes the LEAD_LAG1 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 198

Display 199

Detailed description 200

Examples of function blocks LEAD_LAG1 201
197

LEAD_LAG1: PD device with smoothing
Brief description

Function
description

The Function block serves as a PD outline with subsequent smoothing.

The function block contains the following properties:
� Definable delay of the D-component
� Operating mode, hand, halt, automatic

EN and ENO can be projected as additional parameters.

equation The transmission function says:

The calculation equation says:

Meaning of the sizes

Size Meaning

Value of output Y from the previous cycle

Value of the input X from the previous cycle

dt Time difference between current and previous cycle

G s() GAIN
1 s LEAD×+
1 s LAG×+

-----------------------------------×=

Y
LAG Y old() GAIN LEAD dt+() X LEAD X old()×–×()×+×

LAG dt+
--=

X old()

Y old()
198 33002211

LEAD_LAG1: PD device with smoothing
Display

Symbol Block display

Parameter
description

Block parameter description

LEAD_LAG1

MANBOOL
HALTBOOL
XREAL
GAINREAL

LEADTIME
LAGTIME
YMANREAL

REALY

Parameter Data type Meaning

MAN BOOL "1" = Operating mode Hand

HALT BOOL "1" = Halt mode

X REAL Input

GAIN REAL Gain factor

LEAD TIME Derivative time constants

LAG TIME Delayed time constants

YMAN REAL Manual value-rank value

Y REAL Output
33002211 199

LEAD_LAG1: PD device with smoothing
Detailed description

Parametering The parametering of the Function block appears through specification of the boost
factors GAIN as well as the parametering of the Derivative time constants LEAD and
the delayed time constants LAG.

For very small sample times and the unit jump to input X (jump at line-in X from 0 to

1.0) output Y will jump to the value (theoretical value - actual
slightly smaller due to the, not infinitely small sample times), using the time constant
LAG to approximate the value closer.

Operating mode There are three operating mode, which are selected via the elements MAN and
HALT:

GAIN LEAD LAG⁄×

GAIN 1.0×

Operating mode MAN HALT Meaning

Automatic 0 0 The Function block will be handled as
"Parametering" describes.

Hand 1 0 or 1 The hand value YMAN will be transmitted fixed
to the output Y.

Halt 0 1 The output Y will be held at the last calculated
value.
200 33002211

LEAD_LAG1: PD device with smoothing
Examples of function blocks LEAD_LAG1

Example-
overview

The following examples are presented in the following diagrams:
� LEAD = LAG
� LEAD=LAG * 0.5, GAIN = 1
� LEAD/LAG = 2, GAIN = 1

LEAD = LAG The function block behaves like a pure multiplication block with the multiplier GAIN.

Function blockLEAD_LAG1 with LEAD = LAG

1

0

GAIN

0

0
1

Y

X

HALT
33002211 201

LEAD_LAG1: PD device with smoothing
LEAD=LAG * 0.5,
GAIN = 1

The output Y jumps in this case to half the end value in order to run into the end
value with the delayed time constant lag (GAIN * X)

Function block LEAD_LAG1 with LEAD/LAG = 0.5 and GAIN = 1

LEAD/LAG = 2,
GAIN = 1

The output Y jumps in this case to double the end value in order to run into the end
value with the delayed time constant LAG (GAIN * X).

Function block LEAD_LAG1 with LEAD/LAG = 2 and GAIN = 1

1
0

X

Y

HALT

0

1
0

Y

X

HALT

0

202 33002211

33002211
24

LIMV: Velocity limiter: 1st order
Overview

At a glance This chapter describes the LIMV block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 204

Display 205

Detailed description 206

Runtime error 207
203

LIMV: Velocity limiter: 1st order
Brief description

Function
description

The Function block realizes a velocity limiter 1. Order with limiting of the manipulated
variable.

The gradient of the input size X is limited to a specified value RATE. Further the
output Y will be limited through YMAX and YMIN. This allows the function block to
adjust signals to the technologically limited pace and limits from controlling
elements.

EN and ENO can be projected as additional parameters.

Properties The function block contains the following properties:
� Operating mode, Hand, Halt, Automatic
� Manipulated variable limiting in automatic action
204 33002211

LIMV: Velocity limiter: 1st order
Display

Symbol Block display

Parameter
description

Block parameter description

LIMV

MANBOOL
HALTBOOL
XREAL
RATEREAL

YMAXREAL
YMINREAL
YMANREAL

REALY

BOOLQMAX

BOOLQMIN

Parameter Data type Meaning

MAN BOOL "1" = Operating mode Hand

HALT BOOL "1" = Halt mode

X REAL Input

RATE REAL Maximum upper limit (maximum x’)

YMAX REAL Upper limit

YMIN REAL Lower limit

YMAN REAL Manual manipulated value

Y REAL Output

QMAX BOOL "1" = Output Y has reached upper limit

QMIN BOOL "1" = Output Y has reached lower limit
33002211 205

LIMV: Velocity limiter: 1st order
Detailed description

Parametering The parametering of the function block appears through specification of the
maximum upper speed RATE as well as the limits YMAX and YMIN for output Y. The
maximum upper speed specifies to which value the output can change within one
second.

The amount will be resolved from the parameter RATE. Ist RATE = 0, then Y = X.

The limits YMAX and YMIN limit the upper output as well as the lower output. So that
means YMIN ≤ Y ≤ YMAX.

Reaching the bound value, i.e. a limit of the output signals will be shown at both the
outputs, QMAX and QMIN:
� QMAX = 1 if Y ≥ YMAX
� QMIN = 1 if Y ≤ YMIN

Operating mode There are three operating mode, which are selected via the elements MAN and
HALT:

Operating mode MAN HALT Meaning

Automatic 0 0 The current value for Y will be constantly
calculated and spent.

Hand 1 0 or 1 The manual value YMAN will be transmitted
fixed to the output Y. The control output is,
however, limited through YMAX and YMIN.

Halt 0 1 The output Y will be held at the last calculated
value.
206 33002211

LIMV: Velocity limiter: 1st order
Example The function block follows the jump to input X with maximum change in speed.
Output Y remains at a standstill in Halt mode, in order to subsequently move on from
the rank at which it has stopped. It is also clear to see the limits of output Y through
YMAX and YMIN with the relevant messages QMAX and QMIN.

Dynamic behavior of LIMV

Runtime error

Error message With YMAN < YMIN an Error message appears

1

0

0

0

1

1

YMIN

YMAX
X

Y

HALT

QMAX

QMIN
33002211 207

LIMV: Velocity limiter: 1st order
208 33002211

33002211
25

MFLOW: mass flow block
Overview

At a glance This chapter describes the MFLOW block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 210

Representation 211

Detailed description 212

Runtime error 213
209

MFLOW: mass flow block
Brief description

Function
description

The Function block MFLOW calculates the mass flow of a gas in a throttle device
due to the differential pressure and the temperature and pressure conditions of the
gas.

The measure of the differential pressure can be replaced by the speed of the
medium or with another measure with pressure and temperature compensation.

EN and ENO can be projected as additional parameters.

Equation The full equation (i.e. with en_sqrt = 1, en_pres = 1 and en_temp =1) says as
follows:

Meaning of the sizes

Size Meaning

SV Gas pressure in absolute units

TA Absolute gas temperature in Kelvin

OUT k IN PA×
TA

---------------------×=
210 33002211

MFLOW: mass flow block
Representation

Symbol Block representation

Parameter
description
MFLOW

Block parameter description

Parameter
description
Para_MFLOW

Data structure description

MFLOW

INREAL
PRESREAL
TEMPREAL
PARAPara_MFLOW

REALOUT

WORDSTATUS

Parameter Data type Meaning

IN REAL Input

PRES REAL Absolute or relative gas pressure

TEMP REAL Gas temperature printed out in °C or °F

PARA Para_MFLOW Parameter

OUT REAL Value of the mass flow, with temperature and
pressure correction

STATUS WORD Status word

Element Data type Meaning

k REAL Calculating constants (see Calculation of the
constant k, p. 212)

en_pres BOOL "1": Activate the pressure correction

pr_pa BOOL "1": PRES is an absolute pressure
"0": PRES is a relative pressure

pu REAL Value, which in the used pressure unit 1 displays
atmosphere

en_temp BOOL "1": Activate the temperature correction

tc_tf BOOL "1": TEMP will be printed out in Degree Fahrenheit
"0": TEMP will be printed out in Degree Celsius

en_sqrt BOOL "1": Calculation with Square Root
33002211 211

MFLOW: mass flow block
Detailed description

Calculation of
the constant k

The constant k can be calculated because of a work point reference, with which the
mass flow (MF_REF), the differential pressure (IN_REF), the absolute pressure
(P_REF) and the absolute temperature (T_REF) are recognized.

When the input IN is a Differential pressure the equation says as follows:

When the input IN is no Differential pressure the equation says as follows:

Specification of
the calculation

With the calculation, a simple multiplication is entered: . In order to
achieve pressure or temperature compensation, the parameters en_pres or
en_temp must be set to 1. The square route is also only active when en_sqrt = 1.

When one of the parameters en_sqrt, en_pres, en_temp remains at 0, the
calculation of the constant k must be adjusted to correspond (Delete the square
route, replace from P_REF or T_REF through 1)

Temperature unit The temperature TEMP can be printed out in Degree Celsius or Degree Fahrenheit,
depending on the value of the parameter tc_tf :

Pressure unit The pressure PRES can be printed out in any unit, as absolute or relative pressure,
according to the value of the parameter pr_pa.

k MF_REF T_REF
P_REF IN_REF×
---×=

k MF_REF=

OUT k IN×=

tc_tf Temperature unit from TEMP

0 Degree Celsius

Calculation of the absolute temperature TA:

1 Degree Fahrenheit
Calculation of the absolute temperature TA:

TA °K() TEMP 273+=

TA °K()
5
9
--- TEMP 32–() 273+×=

pr_pa Pressure unit from PRES

0 Relative pressure
Parameter pu in the used unit 1 atmosphere, must conform
Calculation of absolute pressure: PA = PRES + pu

1 Absolute pressure: PA = PRES
212 33002211

MFLOW: mass flow block
Runtime error

Status word The bits of the status words have the following meaning:

Error message In the following cases an Error will be recorded:
� At one of the floating point inputs an invalid value will be recorded
� Division by zero with calculation in floating point values
� Capacity overflow with calculation in floating point values

The output OUT will not be altered.

Warning A warning is given if the parameter pu is negative, in this case with the calculation
the block can use the value 0 in place of the defective value pu.

Bit Meaning

Bit 0 = 1 Error in a calculation in floating point values

Bit 1 = 1 Recording of an invalid value of a floating point value input

Bit 2 = 1 Division by zero with calculation in floating point values

Bit 3 = 1 Capacity overflow with calculation in floating point values

Bit 4 = 1 One of the following sizes is negative: IN, pu, PA, TA. For calculation, the
function block uses the value 0.
33002211 213

MFLOW: mass flow block
214 33002211

33002211
26

MS: Manual control of an output
Overview

At a glance This chapter describes the MS block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 216

Representation 217

Detailed description 219

Example 222

Runtime error 223
215

MS: Manual control of an output
Brief description

Function
description

This Function block serves as the control of a numerical output, which can be
switched off via the function block PWM1 (see PWM1: Pulse width modulation,
p. 409) controlled analog output, server motor or controlling element. The control
can appear via server dialog or direct via the SPS-Software.

In general a control-function block serves as the control of a digital output. The MS-
block should then be used, if the control output should be uncoupled from the control
of the analog output.

EN and ENO can be projected as additional parameters.

Application
possibilities

The function block will mainly be used with the following applications:
� For the control of an analog output, which is not controlled via a servo loop (open

loop).
� Servo loops, with which the control output and the user controlled output have

inserted a processing operation.
� With scanning of the output controlled controller, if the scanning period exceeds

1 to 2 seconds.
� With control of a server motor: the function block MS is in this case the controller

block in order to insert the server motor.
216 33002211

MS: Manual control of an output
Representation

Symbol Block representation

Parameter
description MS

Block parameter description

MS

INREAL
FORCBOOL
MA_FORCBOOL
MAN_AUTOBOOL

PARAPara_MS
TR_IREAL
TR_SBOOL

REALOUT

REALOUTD

BOOLMA_O

WORDSTATUS

Parameter Data type Meaning

IN REAL Manipulated variable used in automatic mode

FORC BOOL "1": The mode manual/automatic will be entered via
MA_FORC
"0": The mode manual/automatic will be entered via
MAN_AUTO

MA_FORC BOOL Mode manual/automatic (if FORC = 1)
"1": Automatic operating mode
"0": Manual mode

MAN_AUTO BOOL Mode manual/automatic (if FORC = 0)
"1": Automatic operating mode
"0": Manual mode

PARA Para_MS Parameter

TR_I REAL Initialization input

TR_S BOOL Initialization command

OUT REAL Absolute output

OUTD REAL Incremental output: Difference between the present
output and the output of the previous execution

MA_O BOOL Current mode of the function block (0: Manual, 1:
Automatic)

STATUS WORD Status word
33002211 217

MS: Manual control of an output
Parameter
description
Para_MS

Data structure description

Element Data type Meaning

out_min REAL lower limit value of the output

out_max REAL upper limit value of the output

inc_rate REAL Increasing ramp at the changeover manual/
automatic (units per second)

dec_rate REAL Decreasing ramp at the changeover manual/
automatic (units per second)

outbias REAL Value of the bias

use_bias BOOL "1": Enable the bias

bumpless BOOL "1": Settings of the bias with changeover manual/
automatic (bumpless)
218 33002211

MS: Manual control of an output
Detailed description

Structure
diagram

In the following diagram the structure of the function block is displayed:

Setting of the
mode selection

The mode selection can be set depending on input FORC either via the SPS
program or via a server dialog (surveillance device):

The output MA_O always indicates the current operating mode of the function block.

Characteristics
of the output
OUT

The following characteristics apply to the output OUT:
� Automatic mode: The output OUT is a copy of the input IN.

In this operating mode, the output OUT can be assigned an OUTBIAS value (set
_bias to 1). OUT calculates as follows: OUT = IN + outbias.

� Manual mode: The function block does not set the output, the server can directly
change the value that is the connected variable at the output OUT.

� The output OUT is principally limited to an area between out_min and out_max.
When the value calculated by the function block (or entered by the server in
manual mode) exceeds one of these limit values, the value of OUT will be cut (to
out_min or out_max). The incremental output OUTD on the other hand, never
takes this cut into consideration.

outbias

IN
Bumpless

Changeover
Manual/Automatic

use_bias

Auto

Manual

use_bias

out_max

out_min

Calculation of the
Gradients

OUTD

inc_rate
dec_rate

OUT

bumpless

Input FORC Set the operating mode

0 Setting through the input MAN_AUTO (via operating device):
MAN_AUTO= 1: Automatic mode
MAN_AUTO= 0: Manual mode
In this case the input MA_FORC is ineffective.

1 Setting through the input MA_FORC (via SPS-program):
MA_FORC = 1: Automatic mode
MA_FORC = 0: Manual mode
In this case the input MAN_AUTO is ineffective.
33002211 219

MS: Manual control of an output
Switch between
manual and
automatic

The switch manual/automatic at output appears bumpless, as the value of IN is not
suddenly led to the output.

The output OUT gets closer to input IN ramps with positive (inc_rate) or negative
increase (dec_rate):
� inc_rate applies when IN is larger than OUT at the time of the changeover
� dec_rate applies when IN is smaller than OUT at the time of the changeover

bumpless changeover

The bumpless changeover can be annulled with the increasing ramp, when inc_rate
is set to 0. Just as with dec_rate = 0 the changeover is with decreasing ramp with
bumps. In both cases the input IN will travel immediately to output OUT when
changed over to automatic mode.

When the parameter outbias (use_bias = 1) is used, a bumpless changeover
manual/automatic can be achieved without change of the output, when the
parameter is set to 1. In this case the parameter outbias will be recalculated by the
block to compensate the difference between the input IN and the output OUT.

OUT - IN

OUT

IN

Automatic operating modeManual mode

Switch between manual and automatic

Gradient = inc_rate
220 33002211

MS: Manual control of an output
Bumpless changeover with the parameter Outbias

The bumpless changeover manual/automatic is advisable when the input of the
function block is not connected to any controller or to a controller output without
integral component.

outbias

OUT

IN

Automatic operating modeManual mode

Switch between manual and automatic

Outbias is re-calculated: outbias = OUT - IN
33002211 221

MS: Manual control of an output
Example

Example In this example the output of the control block and the output controlled by the server
will insert a processing operation (through the DFB FCT).

In order to guarantee a bumpless changeover between the modes manual/
automatic, the reversed processing operation (R_FCT) will be assigned to the output
of the MS function block and the result led back to the control input RCPY, which
remained in automatic mode (MAN_AUTO = 1).

Display of the function plans

MS

TC18_OUTOUT

OUTD

TC18_MA_OMA_O

STATUS

IN

FORCTC18_FORC_MS

MA_FORCTC18_MA_FORC

MAN_AUTOTC18_MAN_AUTO

PARATC18_PARA_MS

TR_I

TR_S

R_FCT

OUTINTC18_OUT

PIDFF

ENO

OUT

OUTD

MA_O

INFO

STATUS

EN

PVTC18_PV

SPTC18_SP

FF

RCPY

MAN_AUTO1

PARATC18_PARA

TR_I

TR_S

TC_18 (3)

SAMPLETM

QINTERVALTC18_ST
DELSCANS

FBI_10_3 (2)

MS_TC18 (5)

FBI_10_2 (1)

FCT

OUTIN

FBI_10_1 (4)
222 33002211

MS: Manual control of an output
Runtime error

Status word The bits of the status words have the following meaning:

Note

Error message An error appears if a non floating point value is inputted or if there is a problem with
a floating point calculation. In this case the outputs OUT, OUTD and MA_O remain
unchanged.

Warning In the following cases a warning is given:
� The parameter inc_rate is negative: in this case the function block uses the value

0 in place of the faulty value from inc_rate.
� The parameter dec_rate is negative: in this case the function block uses the value

0 in place of the faulty value from dec_rate.
� The parameter outbias lies outside the area [(out_min –out_max), (out_max –

out_min)]. In this case for calculating the value the function block uses (out_min
– out_max) and/or (out_max – out_min).

Bit Meaning

Bit 0 = 1 Error in a calculation in floating point values

Bit 1 = 1 Invalid value recorded at one of the floating point value inputs

Bit 2 = 1 Division by zero with calculation in floating point values

Bit 3 = 1 Capacity overflow with calculation in floating point values

Bit 4 = 1 The following error will be shown:
� One of the following sizes is negative: inc_rate, dec_rate.

For calculation, the function block uses the value 0.
� The parameter Outbias lies out of the area

.

In this case the function block uses a cut value:

and/or. .

Bit 5 = 1 The output OUT has reached the lower limit value out_min (see Note)

Bit 6 = 1 The output OUT has reached the upper limit value out_max (see Note)

out_min out_max–() out_max out_min–(),[]

out_min out_max–()

out_max out_min–()

Note: In manual mode these bits stay at 1 for only one program cycle. When the
user enters a value for OUT which exceeds one of the limit values, the function
block sets the Bit 5 or 6 to 1 and cuts them from the user entered value. With the
following execution of the function block the value of OUT no longer lies outside the
area and the Bits 5 and 6 are set to 0 again.
33002211 223

MS: Manual control of an output
224 33002211

33002211
27

MULDIV_W: Multiplication/
Division
Overview

At a glance This chapter describes the MULDIV_W block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 226

Representation 226

Runtime error 227
225

MULDIV_W: Multiplication/Division
Brief description

Function
description

The Function block MULDIV_W carries out a weighted multiplication/division from 3
numerical input variables.

EN and ENO can be projected as an additional parameter.

Equation The equation says:

Representation

Symbol Block representation

Parameter
description
MULDIV_W

Block parameter description

Parameter
description
PARA_
MULDIV_W

Data structure description

OUT
k IN1 c1+() IN2 c2+()××

IN3 c3+
--= c4+

MULDIV_W

IN1REAL

IN2REAL
IN3REAL
PARAPara_MULDIV_W

REALOUT

Parameter Data type Meaning

IN1 to IN3 REAL Numerical variables to be processed

PARA Para_MULDIV_W Parameter

OUT REAL Result of the calculation

Element Data type Meaning

k, c1 to c4 REAL Calculation coefficients
226 33002211

MULDIV_W: Multiplication/Division
Runtime error

Error message This error will be signaled if a non floating point value is inputted or if there is a
problem with a floating point calculation. In general, the output OUT keeps its
previous value, apart from with a division by 0, where the value corresponds to INF
depending on which sign the counter uses.
33002211 227

MULDIV_W: Multiplication/Division
228 33002211

33002211
28

PCON2: Two point controller
Overview

At a glance This chapter describes the PCON2 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 230

Presentation 231

Detailed description 232

Runtime error 234
229

PCON2: Two point controller
Brief description

Function
description

The Function block forms a two-point controller, which maintains PID-similar
behavior through two dynamic feedback paths.

EN and ENO can be projected as additional parameters.

Properties The function block contains the following properties:
� Operating mode, Manual, Halt, Automatic
� two internal feedback paths (delay 1. order)
230 33002211

PCON2: Two point controller
Presentation

Symbol Block display:

Parameter
description
PCON2

Block parameter description

Parameter
description
Mode_MH

Data structure description

Parameter
description
Para_PCON2

Data structure description

PCON2

SPREAL
PVREAL
MODEMode_MH
PARAPara_PCON2

YMANBOOL

BOOLY

REALERR_EFF

Parameter Data type Meaning

SP REAL Setpoint input

PV REAL Process value input

MODE Mode_MH Operating mode

PARA Para_PCON2 Parameter

YMAN BOOL "1" = Manual value for ERR_EFF

Y BOOL "1" = Output manipulated variable

ERR_EFF REAL Effective switch value

Element Data type Meaning

man BOOL "1" = Manual mode

halt BOOL "1" = Halt mode

Element Data type Meaning

gain REAL Reset boost

lag_neg TIME Time constants of the quick reset

lag_pos TIME Time constants of the slow reset

hys REAL Hysteresis from two point switch

xf_man REAL Reset value of the reset in % (0 – 100)
33002211 231

PCON2: Two point controller
Detailed description

Structure of the
controller

Structure of the two-point controller:

Principle of the
two-point
controller

The actual two-point controller will have 2 dynamic feedback paths (PT1-element)
added. Through appropriate selection of the time constants of the reset-element, the
two-point controller maintains dynamic behavior that corresponds to the behavior of
a PID controller.

G s() gain
1 lag_neg s×+
--------------------------------------=

G s() gain
1 lag_pos s×+
-------------------------------------=

ERR_EFF
+

-

+

-

SP

PV

Y

+

-

Y

xf

xf1

xf2

ERR_EFF

0

1

Y

hys

ERR_EFF
+

-

Xf

+

-

SP

PV

Y

232 33002211

PCON2: Two point controller
Reset The revert- parameter set, made up of the revert boost gain and the revert time
constant lag_neg and lag_pos, allows universal usage of the two point controller.

The following table provides more exact information about it:

Select revert-boost gain is greater than zero!

Enter xf_man (meaning 0% to 100%) values between 0 and 100!

Hysteresis The parameter hys indicates the connector hysteresis, i.e. the value that the
effective switch value ERR_EFF outgoing from control point hys/2 must be reduced
by, before the output Y is reset to"0". The dependence of the output Y depending of
the effective switch value ERR_EFF and the Parameter hys, becomes clear in the
picture Principle of the two-point controller, p. 232 The value of the hys parameter is
typically set to 1% of the maximum control area [max. (SP – PV].

Operating mode There are three operating mode, which are selected via the elements man and halt:

Revert lag_neg lag_pos

2-Point-Behavior (without revert) = 0 = 0

negative revert > 0 = 0

negative + positive revert > 0 > lag_neg

Warning, regeneration (neg. feedback with lag_pos) = 0 > 0

Warning, regeneration (pos. Feedback disabled) > lag_pos > 0

Operating mode man halt Meaning

Automatic 0 0 The Function block will be handled as described
above.

Manual 1 1 or 0 The output Y are set to the value YMAN. xfl and
xf2 are calculated using the following formula:
xf1 = xf_man * gain /100
xf2 = xf_man * gain /100

Halt 0 1 The output Y will be held at the last value.
xf1 and xf2 are set to gain * Y.
33002211 233

PCON2: Two point controller
Runtime error

Warning In the following cases a Warning will be given:

Causes Behavior of the controller

lag_neg = 0 and lag_pos > 0 The controller works as if it had only a negative
feedback lag_pos.

lag_pos < lag_neg > 0 The controller works as if it had only a negative
feedback with the time constant lag_neg.

xf_man < 0 or xf_man > 100 The controller works without internal feedback paths.
234 33002211

33002211
29

PCON3: Three point controller
Overview

At a glance This chapter describes the PCON3 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 236

Presentation 237

Detail description 239

Runtime error 241
235

PCON3: Three point controller
Brief description

Function
description

The Function block forms a three-point controller, which maintains PID-similar
behavior through two dynamic feedback paths.

EN and ENO can be projected as additional parameters.

Properties The function block PCON3 contains the following properties:
� Operating mode, Manual, Halt, Automatic
� two internal feedback paths (delay of the 1st order)
236 33002211

PCON3: Three point controller
Presentation

Symbol Block display:

Parameter
description
PCON3

Block parameter description

Parameter
description
Mode_MH

Data structure description

PCON3

SPREAL
PVREAL
MODEMode_MH
PARAPara_PCON3

YMAN_POSBOOL
YMAN_NEGBOOL

BOOLY_POS

BOOLY_NEG

REALERR_EFF

Parameter Data type Meaning

SP REAL Setpoint input

PV REAL Process value input

MODE Mode_MH Operating mode

PARA Para_PCON3 Parameter

YMAN_POS BOOL Manual manipulation for Y_POS

YMAN_NEG BOOL Manual manipulation for Y_NEG

Y_POS BOOL "1" = positive manipulated variable at output
ERR_EFF

Y_NEG BOOL "1" = negative manipulated variable at output
ERR_EFF

ERR_EFF REAL Effective switch value

Element Data type Meaning

man BOOL "1" = Manual mode

halt BOOL "1" = Halt mode
33002211 237

PCON3: Three point controller
Parameter
description
Para_PCON3

Data structure description

Element Data type Meaning

gain REAL Reset-boost (reset-parameter-sequence)

lag_neg TIME Time constant of the quick reset (reset-parameter-
sequence)

lag_pos TIME Time constant of the slow reset (reset-parameter-
sequence)

hys REAL Hysteresis from three point switch

db REAL Insensitivity zone

xf_man REAL Reset value of the reset in % (0 – 100)
238 33002211

PCON3: Three point controller
Detail description

Structure of the
controller

Structure of the three-point controller:

The following applies:

If… Then…

Y = 1 Y_POS = 1
Y_NEG = 0

Y = 0 Y_POS = 0
Y_NEG = 0

Y = -1 Y_POS = 0
Y_NEG = 1

G s() gain
1 lag_neg s×+
--------------------------------------=

G s() gain
1 lag_pos s×+
-------------------------------------=

ERR_EFF
+

-

+

-

SP

PV

Y

+

-

Y

xf

xf1

xf2

Y_POS

Y_NEG
33002211 239

PCON3: Three point controller
Principle of the
three-point
controller

The actual three-point controller will have 2 dynamic feedback paths (PT1-
elements) added. Through appropriate selection of the time constants of the reset-
element, the three-point controller maintains dynamic behavior that corresponds to
the behavior of a PID controller.

Feedback The function block has a parameter sequence for the internal feedback paths,
comprised of the reset-boost gain and the reset time constant lag_neg and lag_pos.

The following table provides more exact information about it:

The parameter gain must be > 0

The amount will be resolved from the Hysterisis hys and the no-sensitivity zone db!

For xf_man (meaning -100 to 100%) values between -100 and 100 are to be
entered!

No-sensitivity
zone

The parameter db fixes the connection point for the outputs Y_POS and Y_NEG. If
the effective switch value ERR_EFF is positive and is greater than db, then the
output Y_POS will switch from "0" to "1". If the effective switch value ERR_EFF is
negative and is smaller than db, then the output Y_NEG will switch from "0" to "1".
The value of the db parameter is typically set to 1% of the maximum control area
(max. SP – PV).

DB
ERR_EFF

0

1

-1

HYS
Y_POS

DB

HYS
Y_NEG

ERR_EFF
+

-

xf1
xf2

+

-

SP

PV

Y_POS

Y_NEG

Feedback lag_neg lag_pos

3-Point-Behavior (without revert) = 0 = 0

negative revert > 0 = 0

negative + positive revert > 0 > lag_neg

Warning, regeneration (neg. feedback with lag_pos) = 0 > 0

Warning, regeneration (pos. Feedback disabled) > lag_pos > 0
240 33002211

PCON3: Three point controller
Hysteresis The parameter hys indicates the connector-hysteresis, i.e. the value which the
effective switch value ERR_EFF outgoing from control point db must be reduced by,
before the output Y_POS (Y_NEG) is reset to "0". The connection between Y_POS
and Y_NEG depending on effective switch value ERR_EFF and the parameters db
and hys Is illustrated in the image Principle of the three-point controller, p. 240. The
value of the hys parameter is typically set to 0.5% of the maximum control area
(max. SP – PV).

Operating mode There are three operating modes, which are selected via the elements man and halt:

Runtime error

Error message With hys > 2 * db, an Error Message appears.

Warning In the following cases a Warning will be given:

Operating mode man halt Meaning

Automatic 0 0 The Function block will be handled as described
above.

Manual 1 0 or 1 The outputs Y_POS and Y_NEG are set to the
values YMAN_POS and YMAN_NEG. In this
case, the built in priority-logic – Y_NEG is
dominant over Y_POS, which prohibits both
outputs from being set simultaneously.
xf1 and xf2 are calculated using the following
formula:
xf1 = xf_man * gain /100
xf2 = xf_man * gain /100

Halt 0 1 In Halt mode, both outputs Y_POS and Y_NEG
will be held at the last value.
xf1 and xf2 are set to gain * Y.

Causes Behavior of the controller

lag_neg = 0 and lag_pos > 0 The controller works as if it had only a negative
feedback with the constant lag_pos.

lag_pos < lag_neg > 0 The controller works as if it had only a negative
feedback with the time constant lag_neg.

xf_man < 0 or xf_man > 100 The controller works without internal feedback paths.
33002211 241

PCON3: Three point controller
242 33002211

33002211
30

PD_or_PI: Structure changeover
PD/PI controller
Overview

At a glance This chapter describes the PD_or_PI block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 244

Presentation 245

PD_or_PI function block structure diagram 247

Detailed description 248

Detailed formulas 251

Runtime error 253
243

PD_or_PI: Structure changeover PD/PI controller
Brief description

Function
description

The Function block PD_or_PI can work equally well as either PD-Controller or
PI-Controller. Depending on the system deviation (SP – PV) and a specified switch
value, trig_err will automatically perform a structural changeover from PD- to
PI-Controller and vice-versa from PI- to PD-Controller.

This EFB is particularly suitable for starting control purposes. When the process is
runup the controller reacts as a P(D) controller, whereby the controlled variable is to
reach the adjusted reference variable value as fast as possible. Shortly before the
given setpoint value is reached, the control algorithm is switched over and an I
component makes sure that the remaining control deviation fades out.

EN and ENO can be projected as additional parameters.

Properties The function block contains the following properties:
� PI controller with independent gain, ti-adjust
� PI controller with independent gain, td-adjust
� Limited manipulated variable in automatic mode
� Antiwindup reset in PI operation
� definable delay of the D-component
� Operating mode, Manual, Halt, Automatic
� smooth switch between manual and automatic
� Automatic bumpless changeover from PDPI operation

The PI controller
transfer function

The PI controller transfer function is:

The PD controller
transfer function

The PD controller transfer function is:

G s() gain_i 1
1

ti s×
------------+

� �
� �×=

G s() gain_d 1
td s×

1 td_lag+ s×
----------------------------------+� �

� �×=
244 33002211

PD_or_PI: Structure changeover PD/PI controller
Presentation

Symbol Block display:

Parameter
description
PD_or_PI

Block parameter description

Parameter
description
Mode_MH

Data structure description

PD_or_PI

SPREAL
PVREAL
MODEMode_MH
PARAPara_PD_or_PI

YMANREAL
FEED_FWDREAL

REALY

REALERR

Stat_MAXMINSTATUS

Parameter Data type Meaning

SP REAL Setpoint input (reference variable)

PV REAL Process variable (controlled variable)

MODE Mode_MH Operating mode

PARA Para_PD_or_PI Parameter

YMAN REAL Manual manipulated variable

FEED_FWD REAL Disturbance variable

Y REAL Manipulated variable

ERR REAL System deviation

STATUS Stat_MAXMIN Output status

Element Data type Meaning

man BOOL "1": Manual mode

halt BOOL "1": Halt operating mode
33002211 245

PD_or_PI: Structure changeover PD/PI controller
Parameter
description
Para_PD_or_PI

Data structure description

Parameter
description
Stat_MAXMIN

Data structure description

Element Data type Meaning

trig_err REAL Changeover switching value for PDPI controller

gain_d REAL PD controller proportional action coefficient (gain)

td TIME PD controller rate time

td_lag TIME Delay of the PD controller rate time

gain_i REAL PI controller proportional action coefficient (gain)

ti TIME PI controller reset time

ymax REAL Upper limit

ymin REAL Lower limit

Element Data type Meaning

qmax BOOL "1" = Y reached upper limit

qmin BOOL "1" = Y reached lower limit
246 33002211

PD_or_PI: Structure changeover PD/PI controller
PD_or_PI function block structure diagram

Structure
diagram

There follows now the structure diagram of the PD_or_PI block:

1

0

SP

+

-

gain_i

gain_d

a)

ymax

ymin

Y

+

+ Operating
mode

control

YMAN

FEED_FWD

qmax

qmin

Antiwindup reset

ERR

PV

td, td_lag +

+

ti

+
+

PD controller

PI controller

c)

d)

trig_err-trig_err

1

0

c)

d)

b)

a)

b)
33002211 247

PD_or_PI: Structure changeover PD/PI controller
Detailed description

Determination of
switching value

The parameterization of the function block begins with the determination of
switching value trig_err. This parameter fixes the automatic changeover point of the
function block from PDPI operation.

When the absolute value of system deviation ERR = SP - PV is smaller than the
switching value trig_err, the controller switches automatically from PD operation into
PI operation.

When the absolute value of system deviation is larger than the switching value
trig_err, the controller switches automatically form PI operation into PD operation.

It then follows that:
� PD controller: ERR > trig_err
� PI controller: ERR ≤ trig_err

Each controller type is linked to a parameter set, which must be projected as well.
The control algorithm changeover is practically a switch from one parameter set to
the other. The changeover is bumpless.

PD controller PD controller parameterization is accomplished by projection of the proportional
action coefficient gain_d and rate time td.

For PD controller operation the D component is delayed by the time constant value
td_lag. The td/td_lag ratio is termed the differential gain, and is generally selected
between 3 and 10. The D component directly determined by the system deviation
ERR, such that for reference variable fluctuations (variations at input SP) a jump
attributed to the D component is produced.

The D component can be disabled by setting td = 0.

PI controller PI controller parameterization is accomplished by projection of the proportional
action coefficient gain_i and reset time ti.

In general during run-up with the PD algorithm, the proportional action coefficient is
set considerably higher, than in the practically stationary operation in PI algorithm
thereafter. This circumstance is conceded to by the designation of two independent
proportional action coefficients.

The I component can be disabled by setting ti = 0.
248 33002211

PD_or_PI: Structure changeover PD/PI controller
Limiting of
manipulated
variable

The limits ymax and ymin retain the manipulated variable within the prescribed
range.

It therefore holds that: ymin ≤ Y ≤ ymax

The outputs qmax and qmin signal that the manipulated variable has reached a limit,
and thus been capped:
� QMAX = 1 if Y ≥ YMAX
� QMIN = 1 if Y ≤ YMIN

Upper limit ymax, limiting the manipulated variable, is to be set higher than lower
limit ymin.

Antiwindup
Reset

Should limiting of the manipulated variable take place while the PI control algorithm
is active, the antiwindup reset should ensure that the I component "cannot go
berserk". Antiwindup measures are taken only for I component values other than 0.
Antiwindup limits are identical to those for the manipulated variable.

The antiwindup-reset measures correct the I component such that:
� YI ≥ ymin - gain_i * (SP - PV) - FEED_FWD
� YI ≤ ymax - gain_i * (SP - PV) - FEED_FWD
33002211 249

PD_or_PI: Structure changeover PD/PI controller
Operating mode There are three operating modes selectable via the man and halt parameter inputs:

Operating mode man halt Meaning

Automatic 0 0 The manipulated variable output Y is
determined through the discrete PI or PD
closed-loop control algorithms, based on the
controlled variable PV and reference variable
SP. The manipulated variable is limited by ymax
and ymin. The controller output limits also serve
as limits for the antiwindup reset.

Manual 1 0 or 1 The manual manipulated value YMAN is
passed on directly to the manipulated variable
Y. The manipulated variable is limited by ymax
and ymin. Internal variables will be so
manipulated, that the controller changeover
from manual to automatic can be bumpless.

Halt 0 1 The manipulated variable remains unchanged,
the block does not influence the manipulated
variable Y. Internal variables will be
manipulated in such a manner that the
controller can be driven smoothly from it's
current position. Manipulated variable limits and
antiwindup measures are as those in automatic
mode Halt operating mode is also useful for
allowing an external operator device to adjust
the manipulated variable Y; the internal
components in the controller are then tracked
correctly.
250 33002211

PD_or_PI: Structure changeover PD/PI controller
Detailed formulas

Explanation of
the formula sizes

Significance of the size in the following formulas:

System deviation The system deviation will be determined as follows:

Manipulated
variable

The manipulated variable consists of different partial sizes which are dependent on
the operating mode.

After the summation of the components a manipulated variable limiting takes place
at the output of the sub controller, which means:

Size Meaning

Present sample time

System deviation

System deviation value from the previous sampling step

FEED_FWD Disturbance variable

Y Current output (halt operating mode) or YMAN (manual mode)

YD D component

Value of the D-component from the previous sampling step

YI I component

Value of the I component from the previous sampling step

YP P component

dt

ERR

ERR old()

YD old()

YI old()

ERR SP PV–=

Y YP YI YD FEED_FWD+ + +=

ymin Y ymax≤ ≤
33002211 251

PD_or_PI: Structure changeover PD/PI controller
Overview to
calculate the
control
components

Following this an overview on the different calculations of the control components in
relation to the elements trig_err can be found:

PI controller: YP
and YD for all
operating mode

YP and YD for manual, halt, automatic and cascade modes are located as follows:

PI controller: I
component for
automatic mode

YI for automatic mode is determined as follows (ti > 0):

The I-component is formed according to the trapezoid rule.

PI controller: I
component YI for
manual and halt
modes

YI for manual and halt are located as follows

PD controller: YP
and YI for all
modes

YP and YI for manual, halt, and automatic modes are determined as follows

PD controller: D
component for
automatic mode

YD for automatic mode is determined as follows:

PD controller: D
component for
manual and halt
operating mode

YD for manual, halt and automatic modes are determined as follows:

Controller type Controller components

PI-Controller (ERR ≤ trig_err) YP and YD for manual, halt and automatic modes
YI for automatic operating mode
YI for manual and halt operating mode

PD-Controller (ERR > trig_err) YP and YI for manual, halt and automatic modes
YD for automatic mode
YD for manual and halt operating mode

YP gain_i ERR×=

YD 0=

YI YI old() gain_i
dt
ti

ERR ERR old()+

2
---××+=

YI Y YP FEED_FWD–()–=

YP gain_d ERR×=

YI 0=

YD
YD old() td_lag td gain_d ERR ERR old()–()××+×

dt dt_lag+
---=

YD 0=
252 33002211

PD_or_PI: Structure changeover PD/PI controller
Runtime error

Error message There is an Error message, if
� an unauthorized floating point number is placed at the input PV
� or ymax < is ymin
33002211 253

PD_or_PI: Structure changeover PD/PI controller
254 33002211

33002211
31

PDM: Pulse duration modulation
Overview

At a glance This chapter describes the PDM block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 256

Representation 257

Detailed description 258

Runtime error 262
255

PDM: Pulse duration modulation
Brief description

Using the block Actuators are driven not only by analog quantities, but also through binary actuating
signals. The conversion of analog values into binary output signals is achieved for
example, through pulse width modulation (PWM) or pulse duration modulation
(PDM).

The actuator adjusted average energy (actuator energy) should be in accord with
the modulation block's analog input value (X).

Function
description

The Function block PDM is used to convert analog values into digital output signals.

In the function block PD a "1" signal of fixed persistence is output within a variable
cycle time proportional to the analog value X. The adjusted average energy
corresponds to the quotient of the fixed duty cycle t_on and the variable cycle period.

In order that the adjusted average energy also corresponds to the analog input
variable X, the following must apply:

EN and ENO can be configured as additional parameters.

General
information
about the
actuator drive

In general, the binary actuator drive is performed by two Boolean signals Y_POS
and Y_NEG. On a motor the output Y_POS corresponds to the signal "clockwise
rotation" and the output Y_NEG the signal "counter-clockwise rotation". For an oven
the outputs Y_POS and Y_NEG could be interpreted as corresponding to "heating"
and "cooling".

Should the actuating drive in question be a motor, it is possible that to avoid
overtravel for non-self-locking gearboxes, a brake pulse must be output after the
engage signal.

In order to protect the power electronics, there must be a pause time t_pause after
switching on t_on and before the brake pulse t_brake so as to avoid short circuits.

Formula For correct operation the following rules should be observed:

and

Tperiod
1
X
----∼

t_on 2 t_pause t_brake+×+
pos_
neg_
------------ t_min×≥

pos_
neg_
------------ t_min× pos_

neg_
------------ t_max×<
256 33002211

PDM: Pulse duration modulation
Representation

Symbol Block representation

Parameter
description PDM

Block parameter description

Parameter
description
Para_PDM

Data structure description

PDM

XREAL
RBOOL
PARAPara_PDM

BOOLY_POS

BOOLY_NEG

Parameter Data type Meaning

X REAL Input variable

R BOOL Reset mode

PARA Para_PDM Parameter

Y_POS BOOL Positive X value output

Y_NEG BOOL Negative X value output

Element Data type Meaning

t_on TIME Pulse duration (in s)

t_pause TIME Pause time (in s)

t_brake TIME Braking time (in s)

pos_up_x REAL Upper limit for positive X

pos_t_min TIME Minimum cycle time for Y_POS (where x = pos_up_x)
(in s)

pos_lo_x REAL Lower limit for positive X

pos_t_max TIME Maximum cycle time for Y_POS (where x = pos_lo_x)
(in s)

neg_up_x REAL Upper limit for negative X

neg_t_min TIME Minimum cycle time for Y_NEG (where x = -neg_up_x)
(in s)

neg_lo_x REAL Lower limit for negative X

neg_t_max TIME Maximum cycle time for Y_NEG (where x = -neg_lo_x)
(in s)
33002211 257

PDM: Pulse duration modulation
Detailed description

Block mode of
operation

The pulse duration t_on determines the time span in which the output Y_POS resp.
Y_NEG has "1" signal. For a positive input signal X the output Y_POS is set, on
negative the output Y_NEG is set. Only one output can carry "1" signal. It is
advisable to perform a freely definable pause time of t_pause = 10 or 20 ms between
the actuating and brake pulses to protect the power electronics (hopefully
preventing simultaneous firing of the antiparallel connected thyristors).

A possible brake pulse of duration time t_brake follows the output pulse duration
after a pause time t_pause. Within the pause time both outputs carry "0" signal.
During the braking time the output opposite that carrying the previous pulse goes to
"1" signal. A pause time of t_pause = 20 ms (t_pause =0.02) corresponds to an
interruption of the firing angle control for two half waves. That should guarantee a
sufficiently large safety margin for the prevention of short-circuits resp. triggering of
the suppressor circuitry as a consequence of antiparallel thyristors firing.

Thereafter follows a period in which both outputs carry "0" signal (wait timeout).
258 33002211

PDM: Pulse duration modulation
Period This wait timeout, together with the pulse, pause and brake times, all makeup a

period , which depending on lo_x and t_min, is calculated according to the
following formulas:

The following holds for all three cases:

tperiod

Requireme
nts

Equation Explanation of formula variables

lo_x <> 0

lo_x = 0
t_min > 0

lo_x = 0
t_min = 0

Assuming lo_x up_x t_min t_max

pos_lo_x pos_up_x pos_t_min pos_t_max

neg_lo_x neg_up_x neg_t_min neg_t_max

Note: From the parameters up_x (-pos/-neg) and lo_x (-pos/-neg) only the
(absolute) value is evaluated.

tperiod

tperiod t0
K
X
----+= K t_max t_min–() up_x lo_x×

up_x lo_x–
-------------------------------×=

t0 t_max
K

lo_x
------------–=

tperiod
K

X X0–
------------------= X0

t_max lo_x t_min up_x×–×
t_max t_min–

--=

K t_min up_x X0–()×=

tperiod t_max 1
X

up_x
-------------–

� �
� �×=

X pos_lo_x≥

X neg_lo_x–≥
33002211 259

PDM: Pulse duration modulation
Cycle time The parameter t_min _ for every output there is a separate value _ gives the
minimum period, i.e. the time span, which passes from the beginning of one
actuating pulse until the start of the next. This time span appears when input X goes
beyond value up_x _ this time there is a separate value for each sign.

The parameter t_max places an upper limit on the maximum period. Should the
input cross below the value pos_lo_x or neg_lo_x, the actuating pulse output is
terminated until the until the input exceeds the value pos_lo_x or neg_lo_x again.
The values pos_lo_x and neg_lo_x define what is in principle a dead zone, in which
the function block outputs are not activated.

The parameters (pos_t_min, pos_up_x) and (pos_t_max, pos_lo_x) apply for
positive X input signals, whereby output Y_POS is set. In the same way the
parameters (neg_t_min, neg_up_x) and (neg_t_max, neg_lo_x) are valid for
negative X input signals. Output Y_NEG is set.

Time ratios
display

An overview of the ratios between times is shown in the following diagram:

Time-span
dependency

The time-span dependency from the input variable X, in which the output Y_POS
(Y_NEG) carries 1-Signal, is displayed in the picture "Output dependency on X,
p. 261" and the picture "Output dependency on X (Special case), p. 261".

Y_POS

Y_NEG

t

1

0

-1

t_on

t_min

t_max

t-pause

t_brake

t_period variable cycle time
260 33002211

PDM: Pulse duration modulation
Output
dependency on X

In the following picture the dependency of the output on X is shown:

Output
dependency on X
(Special case)

In the following picture the special case t_min = 0, lo_x = 0 is shown:

Y_POS

Y_NEG

pos_t _max

pos_t_min

pos_up_x
neg_up_x

neg_t_min

neg_t_max

t_period (Y_POS) = f(x)

X
neg_lo_x

pos_lo_x

t_period (Y_NEG) = f(x)

Y_POS

Y_NEG

pos_t_max

pos_up_x

neg_up_x

neg_t_max

t_period (Y_POS) = f(x)

X

t_period (Y_NEG) = f(x)
33002211 261

PDM: Pulse duration modulation
Operating mode In reset mode R = "1", outputs Y_POS and Y_NEG are set to "0" signal. The internal
time meters are also standardized, so that the function block begins the transfer to
R=0 with the output of a new 1 signal on the associated output.

Boundary
conditions

If the PDM function block is operated together with a PID controller, then the
maximum period t_max should be so selected, that it corresponds to the PID
controller's scan time. It is then guaranteed that every new actuating signal from the
PID controller within the period time can be fully processed.

The PDM scan time should be in proportion with period vs. pulse time, Though this,
the smallest possible actuating pulse is be determined.

The following ratio is recommended:

t_max/scan time (PDM) ≥ 10

Runtime error

Error message An Error message appears, if
� |up_x| ≤ |lo_x|
� t_max ≤ t_min
262 33002211

33002211
III

EFB Descriptions (PI to Z)
Overview

Introduction The EFB descriptions are arranged in alphabetical order.

Note: The number of inputs of some EFBs can be increased by vertically resizing
the FFB symbol up to a maximum of 32. For information on which EFBs have this
capability, please see the descriptions of the individual EFBs.
263

EFB Descriptions (PI to Z)
What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

32 PI: PI controller 265

33 PI1: PI controller 275

34 PI_B: Simple PI controller 283

35 PID: PID controller 295

36 PID1: PID controller 309

37 PID_P: PID controller with parallel structure 321

38 PID_PF: PID controller with parallel structure 331

39 PIDFF: Complete PID controller 341

40 PIDP1: PID controller with parallel structure 367

41 PIP: PIP cascade controller 377

42 PPI: PPI cascade controller 389

43 PWM: Pulse width modulation 399

44 PWM1: Pulse width modulation 409

45 QDTIME: Deadtime device 417

46 QPWM: Pulse width modulation (simple) 423

47 RAMP: Ramp generator 431

48 RATIO: Ratio controller 437

49 SCALING: Scaling 443

50 SCON3: Three step controller 447

51 SERVO: Control for electric servo motors 453

52 SMOOTH_RATE: Differentiator with smoothing 467

53 SP_SEL: Setpoint switch 471

54 SPLRG: Controlling 2 actuators 479

55 STEP2: Two point controller 485

56 STEP3: Three point controller 491

57 SUM_W: Summer 497

58 THREEPOINT_CON1: Three point controller 499

59 THREE_STEP_CON1: Three step controller 507

60 TOTALIZER: Integrator 513

61 TWOPOINT_CON1: Two point controller 523

62 VEL_LIM: Velocity limiter 529

63 VLIM: Velocity limiter: 1st order 535
264 33002211

33002211
32

PI: PI controller
Overview

At a glance This chapter describes the PI block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 266

Representation 267

Formulae 269

Parametering 270

Operating modes 272

PI controller example 273

Runtime error 274
265

PI: PI controller
Brief description

Function
description

The Function block represents a simple PI controller.

A system deviation ERR is formed by the difference between the reference variable
SP and the controlled variable PV. This deviation causes the manipulated variable
Y to change.

EN and ENO can be configured as additional parameters.

Properties The function block has the following properties:
� Manual, Halt, Automatic modes
� bumpless manual/automatic mode changeover
� Manipulated variable limiting
� Antiwindup reset (only for an active I component)
266 33002211

PI: PI controller
Representation

Symbol Block representation:

Parameter
description PI

Block parameter description

Parameter
description
Mode_MH

Data structure description

PI

SPREAL
PVREAL

MODEMode_MH

PARAPara_PI

YMANREAL

REALY

REALERR

Stat-MAXMINSTATUS

Parameter Data type Meaning

SP REAL Setpoint input / reference variable

PV REAL Process variable / controlled variable

MODE Mode_MH Operating mode

PARA Para_PI Parameter

YMAN REAL Manual value

Y REAL Manipulated variable

ERR REAL System deviation

STATUS Stat_MAXMIN Y output status

Element Data type Meaning

Man BOOL "1": Manual mode

Halt BOOL "1": Halt mode
33002211 267

PI: PI controller
Parameter
description
Para_PI

Data structure description

Parameter
description
Stat_MAXMIN

Data structure description

Element Data type Meaning

gain REAL Proportional action coefficient (gain)

ti TIME Reset time

ymax REAL Upper limit

ymin REAL Lower limit

Element Data type Meaning

qmax BOOL "1" = Y has reached upper limit

qmin BOOL "1" = Y has reached lower limit
268 33002211

PI: PI controller
Formulae

Transfer function The transfer function is:

Calculation
formulae

The calculation formulae are:

Output signal Y The output signal Y is then:

The I component is formed according to the trapezoid rule.

Explanation of
formula
variables

The meaning of the formula variables is given in the following table:

G s() gain 1
1

ti s×
------------+

� �
� �×=

YP gain ERR×=

YI new() YI old() gain+
dt
ti
-----×

ERR new() ERR old()+

2
--×=

Y YP= YI+

Variable Meaning

Current scan time

System deviation (SP - PV)

System deviation value from the previous sampling step

YI I component

YP P component

dt

ERR

ERR old()
33002211 269

PI: PI controller
Parametering

Structure
diagram

The following is the structure diagram of the PI controller:

Parametering The structure of the PI controller is represented in the Structure diagram, p. 270
above. The parametering of the function block takes place first of all for the
elemental PI parameters: the proportional action coefficient gain and reset time ti.

The I component can be disabled by setting ti = 0.

The values ymax and ymin limit the upper and lower values of the output. Hence,
ymin ≤ Y ≤ ymax.

The outputs qmax and qmin signal that the output has reached a limit, and thus been
capped.
� qmax = 1 if Y ≥ ymax
� qmin = 1 when Y ≤ ymin

Manipulated
variable limiting

After summation of the components a variable limiting takes place, so that: ymin ≤
Y ≤ ymax

ymax

ymin

SP

+

-

gain

a)

P

Y

ti I

+
YP

qmax

qmin

Operating
mode
control

YMAN

YI

+
b)

a)

Antiwindup reset

PV

b)

ERR

ERR
270 33002211

PI: PI controller
Antiwindup
Reset

Should limiting of the manipulated variable take place, the antiwindup reset should
ensure that the integral component "cannot go berserk". Antiwindup measures are
only taken if the controller I component is not switched off. Antiwindup limits are
identical to those for the manipulated variable. The antiwindup reset measures
correct the I component such that: ymin - YP ≤ YI ≤ ymax - YP
33002211 271

PI: PI controller
Operating modes

Selecting the
operating modes

There are three operating modes, which are selected via the elements Man and
Halt.

Automatic mode In automatic mode the control output Y is determined through the closed-loop
control based on the controlled variable PV and reference variable SP. The
manipulated variable is limited by ymax and ymin. The manipulated variable limits
also serve as limits for the Antiwindup reset.

The changeover from automatic to manual is normally not bumpless, since output Y
can take on any value between ymax and ymin, and yet goes directly to YMAN at
the changeover.

If the changeover from automatic to manual is to be bumpless in spite of these
problems, there are two exemplary possibilities shown for a PID controller (see
Switching from automatic to manual, p. 302).

Manual mode In manual mode the manually manipulated value YMAN is passed on directly to the
control output Y. But the manipulated variable is still limited by ymax and ymin.
Internal variables will be manipulated in such a manner that the controller
changeover from manual to automatic (with I component enabled) can be bumpless.
The manipulated variable limits also serve as limits for the Antiwindup reset

Halt operating
mode

In halt mode the control output remains unchanged; the function block does not
influence the control output Y, i.e. Y = Y(old). Internal variables will be manipulated
in such a manner that the component sum corresponds with the manipulated
variable, thus allowing the controller to be driven smoothly from its current position.
The manipulated variable limits also serve as limits for the Antiwindup reset. Halt
mode is also useful in allowing an external operator device to adjust control output
Y, whereby the controller's internal components are given the chance to
continuously react to the external influence.

Operating mode Man Halt

Automatic 0 0

Manual 1 1 or 0

Halt 0 1
272 33002211

PI: PI controller
PI controller example

Example The jump response of the PI controller is shown in the following Diagram (see PI
controller jump response, p. 273) as an example.

In the first part of the figure the function block response to manual operating mode
can be seen: The.output Y jumps to the YMAN value.

The second part of the diagram shows the reaction of the function block in automatic
mode (MAN = 0 and HALT= 0) both with a positive ERR system deviation and with
a negative ERR system deviation. For constant positive system deviation, Y ramps
upward until the upper output limit is reached.

Y is then limited to the value ymax. Limiting at ymax being signaled in qmax. The
system deviation then jumps to a negative value whose absolute value is greater
than the previous positive value.

The input jumps to the value ; through the P
component, then there is a ramp decrease in Y. The absolute value of the gradient
is greater than under the previous positive system deviation. This can be attributed
to the now greater absolute value of the system deviation.

PI controller
jump response

Presentation of the jump response of the PI controller

gain ERR new() ERR old()–()×

ymax

0

0

0

0

1

1

1

ERR

Y

man

halt

qmax

yman
33002211 273

PI: PI controller
Runtime error

Error message There is an Error message, if
� an unauthorized floating point number is placed at input YMAN or X,
� is ymax < ymin.
274 33002211

33002211
33

PI1: PI controller
Overview

At a glance This chapter describes the PI1 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 276

Presentation 277

Formulae 278

Parametering 279

Operating modes 280

PI1 controller example 281

Runtime error 282
275

PI1: PI controller
Brief description

Function
description

The Function block represents a simple PI controller.

A system deviation ERR is formed between the setpoint SP and the process value
PV. This deviation brings about a change of the manipulated variable Y.

As additional parameters, EN and ENO can be projected.

Properties The function block has the following properties:
� Manual, Halt, Automatic operating modes
� bumpless changeover between manual and automatic
� Manipulated variable limiting
� Antiwindup reset
� Antiwindup measures taken only for an active I component
276 33002211

PI1: PI controller
Presentation

Symbol Representation of the Block:

Parameter
description

Block parameter description

PI1

MANBOOL

HALTBOOL

SPREAL
PVREAL

GAINREAL

TITIME
YMAXREAL

YMINREAL
YMANREAL

REALY

REALERR

BOOLQMAX

BOOLQMIN

Parameter Data type Meaning

MAN BOOL "1": Manual mode

HALT BOOL "1": Halt mode

SP REAL Setpoint input

PV REAL Input variable

GAIN REAL Proportional action coefficient (gain)

TI TIME Reset time

YMAX REAL Upper limit

YMIN REAL Lower limit

YMAN REAL Manual value

Y REAL Manipulated variable

ERR REAL Output system deviation

QMAX BOOL "1" = Output Y has reached upper limit

QMIN BOOL "1" = Output Y has reached lower limit
33002211 277

PI1: PI controller
Formulae

Transfer function The transfer function is:

The I component can be disabled by setting TI = zero.

Calculation
formulae

The calculation formulae are:

Output signal Y The output signal Y is then:

The I component is formed according to the trapezoid rule.

Explanation of
formula sizes

The meaning of the formula sizes is given in the following table:

G s() GAIN 1
1

TI s×
--------------+� �

� �×=

YP GAIN ERR×=

YI new() YI old() GAIN+
dt
TI
------×

ERR new() ERR old()+

2
--×=

Y YP= YI+

Size Meaning

Current scan time

System deviation (SP - PV)

System deviation value from the previous sampling step

YI I component

YP P component

dt

ERR

ERR old()
278 33002211

PI1: PI controller
Parametering

Structure
diagram

The following is the structure diagram of the PI1 controller:

Parametering The structure of the PI1 controller is represented in the Structure diagram, p. 279
above. The parametering of the function block takes place first of all for the
elemental PI parameters: the proportional action coefficient GAIN and the reset time
TI.

The limits YMAX and YMIN retain the output within the prescribed range. Hence,
YMIN ≤ Y ≤ YMAX.

The outputs QMAX and QMIN signal that the output has reached a limit, and thus
been capped.
� QMAX = 1 if Y ≥ YMAX
� QMIN = 1 if Y ≤ YMIN

Manipulated
variable limiting

After the summation of the components a manipulated variable limiting takes place
at the output of the sub controller, which means: YMIN ≤ Y ≤ YMAX

ymax

ymin

SP

+

-

gain

a)

P

Y

ti I

+
YP

qmax

qmin

Operating
mode
control

YMAN

YI

+
b)

a)

Anti-Windup reset

PV

b)

ERR

ERR
33002211 279

PI1: PI controller
Antiwindup reset Should limiting of the manipulated variable take place, the antiwindup reset should
ensure that the integral component "cannot go berserk". Antiwindup measures are
taken only for an active I component. Antiwindup limits are identical to those for
manipulated variable limiting. The antiwindup reset measures correct the I
component such that: YMIN - YP ≤ YI ≤ YMAX - YP

Operating modes

Selecting the
operating modes

There are three operating modes, which are selected via the inputs MAN and HALT.

Automatic mode In automatic mode the control output Y is determined through the closed-loop
control based on the controlled variable PV and reference variable SP. The control
output is limited with YMAX and YMIN. The manipulated variable limits also serve
as limits for the Antiwindup reset.

The changeover from automatic to manual is normally not bumpless, since output Y
can take on any value between YMAX and YMIN, and Y goes directly to YMAN at
the changeover.

If the changeover from automatic to manual is to be bumpless nevertheless, there
are two possibilities, which are explained as an example for a PID1 Controller (see
Switching from automatic to manual, p. 316).

Manual mode In manual mode the manually manipulated value YMAN is passed on directly to the
control output Y. The control output is however limited with YMAX and YMIN.
Internal variables will be manipulated in such a manner that the controller
changeover from manual to automatic (with I component enabled) can be bumpless.
The manipulated variable limits also serve as limits for the Antiwindup reset

Halt mode In halt mode the control output remains unchanged; the function block does not
influence the control output Y, i.e. Y = Y(old). Internal variables will be manipulated
in such a manner that the component sum corresponds with the manipulated
variable, thus allowing the controller to be driven smoothly from its current position.
The manipulated variable limits also serve as limits for the Antiwindup reset.

Operating mode MAN HALT

Automatic 0 0

Manual 1 1 or 0

Halt 0 1
280 33002211

PI1: PI controller
PI1 controller example

Example The jump response of the PI1 controller is shown in the following Diagram (see The
jump response of the PI1 controller, p. 281) as an example.

In the first part of the figure the function block response to manual operating mode
can be seen: The.output Y jumps to the YMAN value.

The second part of the diagram shows the reaction of the function block in automatic
mode (MAN = 0 and HALT= 0) both with a positive ERR system deviation and with
a negative ERR system deviation. For constant positive system deviation, Y ramps
upward until the upper output limit is reached.

The output is subsequently limited to the YMAX value. The limit is signaled in the
QMAX output. The system deviation then jumps to a negative value whose absolute
value is greater than the previous positive value.

Under influence of the P component, the output jumps by the value gain

); thereafter Y ramps downward. The absolute value
of the gradient is greater than under the previous positive system deviation. This can
be attributed to the now greater absolute value of the system deviation.

The jump
response of the
PI1 controller

Presentation of the jump response of the PI1 controller

GAIN ERR new() ERR old()–()×

YMAX

0

0

0

0

1

1

1

ERR

Y

MAN

HALT

QMAX

YMAN
33002211 281

PI1: PI controller
Runtime error

Error message For YMAX < YMIN an Error message appears.
282 33002211

33002211
34

PI_B: Simple PI controller
Overview

At a glance This chapter describes the PI_B block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 284

Representation 285

Formulae 287

Parametering 288

Detailed equations 292

Runtime error 294
283

PI_B: Simple PI controller
Brief description

Function
description

The Function block PI_B depicts a PI-algorithm with a mixed structure (series/
parallel). Its functions derive from function block PIDFF (see PIDFF: Complete PID
controller, p. 341). These functions enable the function block to perform most
classical control applications, without compromising user friendliness or using too
many system resources. However, for difficult control tasks requiring extended
control functions, the PIDFF block should be used.

As additional parameters, EN and ENO can be projected.

Functions The most important functions of function block PI_B are as follows:
� Calculation of the proportional and integral component in incremental form
� Process value, setpoint value, and default value in physical units
� direct or inverse action
� Possibility of upgrading a block-external I component (RCPY input)
� Dead zone on deviation
� Incremental value and absolute value default
� Upper and lower limit value of the default signal
� Default offset
� Selecting the operating mode manual/automatic
� Tracking mode
� Upper and lower limit of the setpoint value

Extended
functions

As is the case with PIDFF these functions can be extended by using various
additional function blocks:
� Automatic control setting via the block AUTOTUNE
� Internal or external setpoint value selection via the block SP_SEL
� Control over manual operation of the scanned control cycles (see Scanning,

p. 35) using the function block MS
284 33002211

PI_B: Simple PI controller
Representation

Symbol Representation of the Block:

Parameter
description PI_B

Block parameter description

PI_B

PVREAL

SPREAL
RCPYREAL

MAN_AUTOBOOL
PARAPara_PI_B

TR_IREAL
TR_SBOOL

REALOUT

REALOUTD

DATAMA_O

REALDEV
WORDSTATUS

Parameter Data type Meaning

PV REAL Process value

SP REAL Setpoint

RCPY REAL Copy of the effective actuator position

MAN_AUTO BOOL Control operating mode:
"1" : Automatic mode
"0" : Manual mode

PARA Para_PI_B Parameter

TR_I REAL Initiating input

TR_S BOOL Initiating command

OUT REAL Actuator output

OUTD REAL Differential output Difference between the output
of the current and previous execution

MA_O BOOL Current operating mode of the function block:
"1" : Automatic mode
"0" : other operation mode (i.e. manual or tracking
mode)

DEV REAL Deviation value (PV – SP)

STATUS WORD Status word
33002211 285

PI_B: Simple PI controller
Parameter
description
Para_PI_B

Data structure description

Element Data type Meaning

id UINT Reserved for autotuning

pv_inf REAL Lower limit of the process value range

pv_sup REAL Upper limit of the process value range

out_inf REAL Lower limit of the output value range

out_sup REAL Upper limit of the output value range

rev_dir BOOL "1" : direct action of the PID controller
"0" : inverse action of the PID controller

en_rcpy BOOL "1" : the RCPY input is used

kp REAL Proportional action coefficient (gain)

ti TIME Reset time

dband REAL Dead zone on deviation

outbias REAL Manual adjustment of static deviation
286 33002211

PI_B: Simple PI controller
Formulae

Transfer function The transfer function is:

Calculation
formulae

The formulae actually used vary, depending on whether the function block uses the
incremental or the absolute algorithm.

In a simplified form the function block can use one of the following formulae:

Explanation of
formula sizes

The meaning of the formula sizes is given in the following table:

OUT kp 1
1

ti p×
------------+� �

� �× IN×=

Algorithm ti Forms

Absolute 0

Incremental >0

OUT TermP outbias+=

OUTD OUT new() OUT old()–=

OUTD TermP TermI+=

OUT OUT old() OUTD new()+=

Size Meaning

(new) Value which is calculated on current execution of the function block

(old) Value which is calculated on previous execution of the function block

OUT Absolute value output

OUTD Incremental value output

TermI Value of the integral component (depending on algorithm)

TermP Value of the proportional component (depending on algorithm)
33002211 287

PI_B: Simple PI controller
Parametering

Structure display
of PI_B controller

Structure display of PI_B controller

Absolute
algorithm

The absolute algorithm is used if no I component is available (when ti =0) In this case
the output OUT is calculated first, and the output modification will then be deducted
from this.

-

+

DEV

dband

pv_sup
SP

pv_inf

PV

Proportional
action

Integral
action

kp

ti, K

+
+

a)

a)
Reverse
Direct

rev_dir

+

+

outbias

Limiter

out_inf

out_sup

Tracking

Man
Auto

TR_S

MAN_AUTO

OUT
TR_I
288 33002211

PI_B: Simple PI controller
Incremental
algorithms

Incremental algorithms are used when an I component is available (i.e. when ti > 0).
The particularities of this algorithm are that the output alteration OUTD is calculated
first and then an absolute value output via the following formulae is determined:

For this algorithm, a SERVO function block can be switched to the controller,
enabling a static control.

In addition to this the incremental algorithm offers the projection of a block-external
integral component for control applications, where the actually upgraded conduct
diverts from the conduct calculated by the controller (during open control cycle). In
this case it is advantageous to use this for the calculation of the real value. If this is
available, the RCPY input must be upgraded and the parameter en_rcpy must be
switched to 1. For calculation, therefore, the equation

to

This is particularly useful for cascades or cascade-like controls.

Note: The output OUT is not limited for upgrading an external integral component
(en_rcpy=1).

OUT new() OUT old() OUTD+=

OUT new() OUT old() OUTD+=

OUT new() RCPY OUTD+=
33002211 289

PI_B: Simple PI controller
Dead zone on
deviation
(dband)

Once the work point has been reached, the dead zone is used to limit slight
alignments regarding the value of the control element. as long as the deviation lies
below dband (in absolute values), the calculation of the function block is based on
the value zero.

Display of dead zone on deviation (dband)

Further
properties

The block contains the following properties:
� The use of the parameter outbias allows for a precise setting of the work point

when no integral componenet is available (ti=0).
� The output OUT is limited to the area between out_inf and out_sup for all

operation modes. If a value calculated by the function block (or a written value
entered by the user in manual mode) exceeds these limits, the value is cut. The
incremental output OUTD, however, never takes this cut into consideration. This
enables the PI_B to control a SERVO function block without having to revert the
position of the control element (continuous control).

� The choice between direct/inverse action (parameter rev_dir) allows for the
adjustment of the control direction of the link control element/measuring process.

� Limiting the setpoint between pv_inf and pv_sup.
� The function block can operate in a purely integral mode (with kp=0).

DEV

Modified
Variance

dband
290 33002211

PI_B: Simple PI controller
Operating modes Function block PI_B has three operating modes: Automatic, Manual and Tracking.
The tracking mode is given preference over the other operating modes.

The operating modes are selected via the inputs MAN_AUTO and TR_S:

Switching
operating modes

The switch manual → automatic or tracking → automatic is carried out as follows:
� The changeover is smooth for the incremental algorithm (ti > 0).
� The changeover is bumpy for the absolute algorithm (ti=0).

Operating mode TR_S MAN_AUTO Meaning

Automatic 0 1 The OUT and OUTD outputs
correspond to the result of the
calculations made by the function block.

Manual 0 0 The output OUT is not set by the
function block so that the user can
change the value directly.

Tracking 1 0 or 1 The input TR_1 is transferred to the
output OUT.
33002211 291

PI_B: Simple PI controller
Detailed equations

Convention The following equations use different variables and functions. The variables
corresponding with block parameters are not rewritten at this point.

The most important inter-variables and the applied functions will however be
described in the following table:

Absolute
algorithm

The following equations apply for proportional controllers (ti = 0),

Inter-variables / function Meaning

dt Time interval since last function block execution

(new) Value which is calculated on current function block execution

(old) Value which was calculated on previous function block
execution

TermI Value of the integral component (depending on algorithm)

TermP Value of the proportional component (depending on
algorithm)

sense Control sense with the following effect directions:
� +1

This is a direct action (rev_dir = 1) i.e. a positive deviation
(PV - SP) generates a higher output value

� -1
This is a inverse action (rev_dir = 0) i.e. a positive
deviation (PV - SP) generates a lower output value

Function ∆

Function ‘Limit’ Limit function of block output

∆ x t()() x t() x t 1–()–=

OUT TermP outbias+=
OUTD OUT new() OUT old()–=

OUT limiter OUT()=

TermP sense kp DEV××=
292 33002211

PI_B: Simple PI controller
Incremental
algorithm

The following equations apply for controllers of type PI > 0);

If en_rcpy = 0, then

If en_rcpy = 1, then

Value of the proportional component TermP

Value of the integral component TermI, if kp > 0:

Value of the integral component TermI if kp = 0 (pure integral mode):

OUTD TermP TermI+=

OUT limiter OUT()=

OUT OUT old()= OUTD new()+

OUT RCPY OUTD new()+=

TermP sense kp× ∆ DEV()[]×=

TermI sense kp× dt
ti
-----× DEV×=

TermI sense
out_sup out_inf–
pv_sup pv_inf–

--× dt
ti
-----× DEV×=
33002211 293

PI_B: Simple PI controller
Runtime error

Status word The following messages are displayed in the status word:

Note on output
OUT

Error message An error is displayed when a non-floating point is caught at an input, when a problem
occurs during a calculation with floating points or when the limit values pv_inf and
pv_sup are identical. The outputs OUT, OUTD, MA_O and DEV remain unchanged.

Warning In the following cases a warning is given:
� One of the kp or dband parameters is negative. the function block uses the value

0 instead of the incorrect parameter value.
� The parameter outbias is not in the range [(out_inf - out_sup), (out_sup - out_inf)].

For calculation, the function block uses the value (out_inf - out_sup) i.e. (out_sup
- out_inf).

Bit Meaning

Bit 0 = 1 Error in a calculation with floating point values

Bit 1 = 1 Invalid value recorded at one of the floating point value inputs

Bit 2 = 1 Division by zero for a calculation with floating point values

Bit 3 = 1 Capacity overflow for a calculation with floating point values

Bit 4 = 1 The following behavior is displayed:
� The SP input lies outside the area [pv_inf, pv_sup] : for calculation, the

function block uses value pv_inf or pv_sup.
� The kp or dband parameter is negative. the function block uses the value

0 outside the incorrect parameter value.
� The parameter outbias lies outside the area [(out_inf - out_sup), (out_sup

- out_inf)]. For calculation, the function block uses the value (out_inf -
out_sup) i.e. (out_sup - out_inf).

Bit 5 = 1 The output OUT has reached the lower limit value out_min (see Note)

Bit 6 = 1 The output OUT has reached the upper limit value out_max (see Note)

Bit 7 = 1 The limit values pv_inf and pv_sup are identical.

Note: In manual mode these bits stay at 1 for only one program cycle. When the
user enters a value for OUT that exceeds one of these limit values, the function
block sets Bit 5 or 6 to 1and cuts the value entered by the user. During the next
execution of the function block, the value of OUT no longer lies outside the area
and bits 5 and 6 are set again at zero.
294 33002211

33002211
35

PID: PID controller
Overview

At a glance This chapter describes the PID block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 296

Presentation 297

PID function block structure diagram 299

Parametering of the PID controller 300

Operating mode 302

Detailed formulas 305

Runtime error 307
295

PID: PID controller
Brief description

Function
description

The Function block produces a PID controller.

Due to the reference variable SP and the controlled variable PV, a system deviation,
ERR, is formed. This ERR system deviation modifies manipulated variable Y.

The parameters EN and ENO can be additionally projected.

Properties The Function Block has the following properties:
� real PID controller with independent gain, ti, td setting
� Manual, Halt, Automatic operating modes
� bumpless changeover between manual and automatic
� Manipulated variable limitation in automatic mode
� Separately enabled P, I and D component
� Anti-Windup reset
� Anti-Windup measures taken only for an active I component
� definable delay of the D-component
� D component can be switched to controlled variable PV or system deviation ERR

Transfer function The transfer function is:

Explanation of the sizes:

Variable Meaning

YD D component (only when en_d = 1)

YI I component (only when en_i = 1)

YP P component (only when en_p = 1)

G s() gain 1
1

ti s×
------------ td s×

1 td_lag s×+
----------------------------------+ +� �

� �×=

YD
YI
YP
296 33002211

PID: PID controller
Presentation

Symbol Block display:

Parameter
description PID

Block parameter description

Parameter
description
Mode_PID

Data structure description

PID

SPREAL

PVREAL
MODEMode_PID

PARAPara_PID
FEED_FWDREAL

YMANREAL

REALY

REALERR

Stat_MAXMINSTATUS

Parameter Data type Meaning

SP REAL Reference variable

PV REAL Controlled variable

MODE Mode_PID Operating mode

PARA Para_PID Parameter

FEED_FWD REAL Disturbance variable

YMAN REAL Manual manipulation

ERR REAL System deviation

Y REAL Manipulated variable

STATUS Stat_MAXMIN Status of output Y

Element Data type Meaning

man BOOL "1": Manual mode

halt BOOL "1": Halt operating mode

en_p BOOL "1": P-component in

en_i BOOL "1": I-component in

en_d BOOL "1": D-component in

d_on_pv BOOL "1": D component in relation to the controlled
variable
"0": D component in relation to the system deviation
33002211 297

PID: PID controller
Parameter
description
Para_PID

Data structure description

Parameter
description
Stat_MAXMIN

Data structure description

Element Data type Meaning

gain REAL Proportional action coefficient (gain)

ti TIME Reset time

td TIME Retaining time

td_lag TIME Delay of the D-component

ymax REAL Upper limit

ymin REAL Lower limit

Element Data type Meaning

qmax BOOL "1" = Y reached upper limit

qmin BOOL "1" = Y reached lower limit
298 33002211

PID: PID controller
PID function block structure diagram

Structure
diagram

There follows a structure diagram of the PID block:

1

0

gain

b)

1

0

Kgain

c)

a)
P

en_p

ERR

SP

+

-

PV

ERR

ymax

ymin

Y

a)

1

0

b)
0

1

0

1

c)

en_i

d_on_pv

1

0

en_d

ti I

td, td_lag D

+

+ Operating
mode
control

YMAN

+
YP

+
YD

YI
+

FEED_FWD

qmax

qmin

Antiwindup reset
33002211 299

PID: PID controller
Parametering of the PID controller

Parametering The PID control structure is displayed in Structure diagram, p. 299.

The parametering of the function block is first performed by the pure PID parameter,
i.e. the proportional action coefficient gain, the reset time ti and the restraining time
td.

The D component is delayed by the time td_lag. The relation between td/td_lag is
called differential time amplification and is generally selected between 3 and 10. The
D component can either be formed based on the system deviation ERR (d_on_pv =
0) or based on the controlled variable PV (don_pv = 1). If the D component is
determined based on the controlled variable PV, then no jump occurs during
reference variable changes (changes in the SP input) due to the D component. In
principle the D component only influences disturbances and process changes.

Reversing the
control sense

A reversed behavior of the controller can be achieved by reversing the sign of gain.
A positive value on gain causes the increase of the output value, for a positive error
variable. A positive value on gain causes the increase of the output value, for a
positive error variable.

Limiting of
manipulated
variable

The limits ymas and ymin limit the upper output as well as the lower output. So that
means ymin ≤ Y ≤ ymax.

The outputs qmax and qmin signal that the limit value has been reached, i.e. that the
output signal is limited.
� qmax = 1 when Y ≥ ymax
� qmin = 1 when Y ≤ ymin

The upper limit ymax for limiting the manipulated variable must be set higher than
the lower limit ymin, otherwise the function block reports an error and does not
function.

Antiwindup-
Reset

If manipulated variable limiting takes place, the antiwindup reset should make sure
that the integral component cannot exceed all limits. The antiwindup measure is only
implemented if the I component of the controller is not disabled. The limits for
antiwindup are the same here as they are for the manipulated variable limiting. The
D component is not taken into consideration for antiwindup measures, so that peaks,
caused by the D component, are not capped by the antiwindup-measure.

The antiwindup reset measure corrects the I component in the form, which means:

ymin YP– FEED_FWD YI ymax YP– FEED_FWD–≤ ≤–
300 33002211

PID: PID controller
Selecting the
control types

There are four different control types, which are selected via the elements en_p,
en_i and en_d:

The I-component can also be switched off with ti = 0..

Control type en_p en_i en_d

P controller 1 0 0

PI controller 1 1 0

PD controller 1 0 1

PID controller 1 1 1

I controller 0 1 0
33002211 301

PID: PID controller
Operating mode

Selecting the
operating mode

There are three operating mode, which are selected via the elements man and halt:

Automatic mode In automatic mode, the manipulated variable Y is determined by discretized PID
algorithm, in relation to the controlled variable PV and the reference variable SP.
The manipulated variable is limited by ymax and ymin. The control limits are also
limits for the Antiwindup reset.

Manual mode In manual mode the manual manipulated value YMAN is passed on directly to the
manipulated variable Y. The manipulated variable is however limited through ymax
and ymin. The internal sizes are tracked in such a way that the controller (on
connecting to the I component) can be switched bumplessly from manual to
automatic. The control limits are also limits for the Antiwindup reset.

In this operating mode the D component is automatically set to 0.

Halt operating
mode

The control output remains as it is found, the function block does not change the
manipulated variable Y (controller remains), i.e. Y = Y(old). The internal sizes are
tracked in such a way that the controller (on connecting to the I component)
bumplessly proceeds from its current position. The control limits are also limits for
the Antiwindup reset. The halt operating mode is also useful for setting the control
output Y via an external operator device, whereby the internal components are
tracked correctly in the controller.

In this operating mode the D component is automatically set to 0.

Switching from
automatic to
manual

The changeover from automatic to manual is normally not bumpless, since output Y
can take on any value between ymax and ymin, and yet goes directly to YMAN at
the changeover.

There are two possibilities if, nevertheless, a bumpless changeover from automatic
to manual is required:
� Switching with the help of the MOVE function
� Switching with the help of the function block increase limit VLIM

Operating mode man halt

Automatic 0 0

Manual 1 0 or 1

Halt 0 1
302 33002211

PID: PID controller
Switching via
MOVE

Using Function MOVE set the value of YMAN to the value of Y:

The MOVE function is only performed when the PID controller is in automatic mode
(mode. man = 0). If only one changeover from automatic to manual takes place it is
bumpless, as the value of YMAN is equal to the value of Y in this cycle. In the manual
mode the value of YMAN can slowly be changed.

Note: This type of display was selected purely to facilitate comprehension. The
links represented by a dotted line can not be programmed as Links (link objects),
as they forme unauthorized (in Concept) loops. During programming the links must
be implemented through changes.

PID

MODE

YMAN

Y

MOVE

EN

Mode

manual value

Mode.man
33002211 303

PID: PID controller
Switching via
VLIM

Should you not wish to manipulate YMAN, perhaps because it happens to be a
constant, then, the previous solution can be implemented using a slew rate limiter
(Function block VLIM):

In automatic mode (MPID.man = 0) the slew rate limiter is in manual mode (MOVE
function). That way the PID controller manual value (YMAN from PID) can be set to
the Y value via the slew rate limiter manual value (YMAN from VLIM). If only one
changeover from automatic to manual takes place, it is bumpless, as the value of
YMAN(of the PID) is equal to the value of Y (of the PID) in this cycle. The PID
controller YMAN value, starting at your adjustment value (Para.rate), are compared
with the actual manual value (on VLIM) beginning with the next cycle.

Note: This type of display was selected purely to facilitate comprehension. The
links represented by a dotted line can not be programmed as Links (link objects),
as they forme unauthorized (in Concept) loops. In programming, the links must be
established using variables.

VLIM

MODE

X

PARA

Y

PID

MODE

YMAN

Y

MVLIM
manual value

Para

MOVE

MPID.man MVLIM.man

MPID

YMAN
304 33002211

PID: PID controller
Detailed formulas

Explanation of
the formula sizes

Significance of the size in the following formulas:

Manipulated
variable

The manipulated variable consists of different partial sizes which are dependent on
the operating mode.

After the summation of the components a manipulated variable limiting takes place
at the output of the sub controller, which means:

Overview to
calculate the
control
components

The following section provides an overview on the different calculations of the
control components in relation to the elements en_-, en_I and en_d can be found
� P component YP for manual, Halt and automatic mode
� I component YI for automatic mode
� I component YI for manual and Halt operating mode
� D component YD for automatic mode
� I component YD for manual and Halt operating mode

Size Meaning

Time differential between the current cycle and the previous cycle

System deviation (SP - PV)

System deviation value from the current sampling step

System deviation value from the previous sampling step

FEED_FWD Disturbance variable

System deviation value from the current sampling step

System deviation value from the prveious sampling step

Y current output (Halt operating mode) or YMAN (manual mode)

YD D component

YI I component

YP P component

dt

ERR

ERR new()

ERR old()

PV new()

PV old()

Y YP YI YD FEED_FWD+ + +=

ymin Y ymax≤ ≤
33002211 305

PID: PID controller
P component YP
for all operating
mode

YP for manual, Halt and automatic are located as follows

For en_p = 1 the following applies

For en_p = 0 the following applies

I component YI
for automatic
mode

YI for automatic mode is located as follows:

For en_i = 1 the following applies

For en_i = 0 the following applies

The I-component is formed according to the trapezoid rule.

I component YI
for manual and
Halt operating
mode

YI for manual, Halt and automatic are located as follows

For en_i = 1 the following applies

For en_i = 0 the following applies

D component YD
for automatic
mode

 YD for automatic mode is located as follows:

For en_d = 1 and d_on_pv = 0 the following applies:

For en_d = 1 and d_on_pv = 1 the following applies:

For en_d = 0 the following applies

D component YD
for manual and
Halt operating
mode

YD for manual, Halt and automatic modes are located as follows

YD = 0

YP gain ERR×=

YP 0=

YI new() YI old() gain
dt
ti

ERR new() ERR old()+

2
--××+=

YI 0=

YI Y YP FEED_FWD–()–=

YI 0=

YD new()
YD old() td_lag td gain ERR new() ERR old()–()××+×

dt dt_lag+
---=

YD new()
YD old() td_lag td gain PV old() PV new()–()××+×

dt dt_lag+
--=

YD 0=
306 33002211

PID: PID controller
Runtime error

Error message There is an Error message, if
� an invalid floating point number appears at input YMAN or PV,
� or ymax < is ymin
33002211 307

PID: PID controller
308 33002211

33002211
36

PID1: PID controller
Overview

At a glance This chapter describes the PID1 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 310

Display 311

PID1 function block structure 313

Parametering the PID1 controller 314

Operating modes 316

Detailed formulae 318

Runtime error 319
309

PID1: PID controller
Brief description

Function
description

The Function block produces a PID controller.

Due to the reference variable SP and the controlled variable PV, a control difference
ERR is formed. This ERR system deviation modifies the Y manipulated variable.

EN and ENO can be projected as additional parameters.

Properties The function block contains the following properties:
� real PID controller with independent GAIN, TI, TD setting
� Operating mode, Manual, Halt, Automatic
� smooth changeover between manual and automatic
� Limited manipulated variable in automatic mode
� Separately enabled P, I and D component
� Antiwindup Reset
� Antiwindup measure with an active I component only
� definable delay of the D-component
� D component connectable to controlled variable PV or system deviation EER

Transmission
function

The transmission function says:

Explaining the sizes:

Size Meaning

YD D component (only for EN_D = 1)

YI I component (only for EN_I = 1)

YP P component (only for EN_P = 1)

G s() GAIN 1
1

TI s×
-------------- TD s×

1 TD_LAG s×+
--+ +

� �
� �×=

YD
YI
YP
310 33002211

PID1: PID controller
Display

Symbol Block display:

PID1

REALY

REALERR

DATADATA

BOOLQMAX

BOOLQMIN

MANBOOL

HALTBOOL
SPREAL

PVREAL

BIASREAL
EN_PBOOL

EN_IBOOL

EN_DBOOL

D_ON_XBOOL
GAINREAL
TITIME

TDTIME
TD_LAGTIME
YMAXREAL
YMINREAL

YMANREAL
33002211 311

PID1: PID controller
Parameter
description

Block parameter description

Parameter Data type Meaning

MAN BOOL "1": Manual mode

HALT BOOL "1": HALT mode

SP REAL Setpoint input

PV REAL Process variable

BIAS REAL Disturbance input

EN_P BOOL "1": P component in

EN_I BOOL "1": I component in

EN_D BOOL "1": D component in

D_ON_X BOOL "1": D component on controlled variable
"0": D component on system deviation

GAIN REAL Proportional action coefficient (gain)

TI TIME Reset time

TD TIME Retaining time

TD_LAG TIME Time lag, D component

YMAX REAL Upper limit

YMIN REAL Lower limit

YMAN REAL Manual manipulation

ERR REAL Output system deviation

Y REAL Manipulated variable

QMAX BOOL 1 = Output Y has reached upper limit

QMIN BOOL 1 = Output Y has reached lower limit
312 33002211

PID1: PID controller
PID1 function block structure

Structure display The following is the structure display of the PIDP1 module:

YMAX

YMIN

1

0

GAIN

b)

1

0

-GAIN

c)

a)
P

EN_P

Y

a)

1

0

b)
0

1

0

1

c)

EN_I

D_ON_X

1

0

EN_D

TI I

TD, TD_LAG D

+

+ Operating
mode
control

YMAN

+
YP

+
YD

YI
+

BIAS

QMAX

QMIN

Antiwindup reset

ERR

SP

+

-

PV

ERR
33002211 313

PID1: PID controller
Parametering the PID1 controller

Parametering The PID1 controller structure is displayed in Structure display, p. 313.

The parametering of the function block is first carried out by the pure PID parameter,
i.e. the proportional action coefficient GAIN, the reset time TI and the restraining
time TD.

The D component is delayed by the lag time TD_LAG. The ratio between TD/
TD_LAG is called differential gain VD. The D component can either be formed by
the system deviation ERR (D_ON_X = 0) or the controlled variable PV (D_ON_X =
1). Should the D component be determined by the controlled variable PV, then the
D component will not be able to cause jumps when reference variable fluctuations
(changes in input SP) take place. Generally, the D component only affects
disturbances and process modifications.

Control direction
reversal

A reversed behavior of the controller can be achieved by reversing the sign on
GAIN. A positive value on GAIN causes the increase of the output value, for a
positive disturbance value. A negative value on gain causes the decrease of the
output value, for a positive disturbance value.

Manipulated
variable limiting

The limits YMAX and YMIN retain the output within the prescribed range. Hence,
YMIN ≤ Y ≤ YMAX.

The outputs QMAX and QMIN signal that the output has reached a limit, and thus
been capped.
� QMAX = 1 if Y ≥ YMAX
� QMIN = 1 if Y ≤ YMIN

The upper limit YMAX, limiting the manipulated variable, is to be set higher than the
lower limit YMIN.

Antiwindup reset Should limiting of the manipulated variable take place, the antiwindup reset should
ensure that the integral component cannot exceed all limits. Antiwindup measures
are only taken if the controller I component is not switched off. Antiwindup limits are
identical to those for manipulated variable limiting. The antiwindup measure
disregards the D component, to avoid the capping of the D component peaks
through the antiwindup measure.

The antiwindup measures correct the I component in such a way that:

YMIN YP– BIAS YI YMAX YP– BIAS–≤ ≤–
314 33002211

PID1: PID controller
Selecting the
controller types

There are various controller types, which can be selected via the EN_P, EN_I and
EN_D parameters.

The I component can also be disabled with TI = 0.

Controller type EN_P EN_I EN_D

P controller 1 0 0

PI controller 1 1 0

PD controller 1 0 1

PID controller 1 1 1

I controller 0 1 0
33002211 315

PID1: PID controller
Operating modes

Selecting the
operating modes

There are three operating modes, which can be selected via the MAN and HALT
parameters:

Automatic mode In automatic mode the manipulated variable Y is determined through the discrete
PID algorithm depending on the controlled variable PV and the reference variable
SP. The manipulated variable is limited by ymax and ymin. The control limits are
also limits for the Antiwindup reset.

Manual mode In manual mode the manual manipulated value YMAN is passed on directly to the
control output Y. The control output is, however, limited by YMAX and YMIN. Internal
variables will be manipulated in such a manner that the controller changeover from
manual to automatic (with I component enabled) can be bumpless. The control limits
are also limits for the Antiwindup reset.

In this operating mode the D component is automatically set to 0.

Halt mode In halt mode the control output remains unchanged; the function block does not
modify the controller output Y (controller remains), i.e. Y = Y(old). Internal variables
will be manipulated in such a manner that the component sum corresponds to the
control output, thus allowing the controller to be driven smoothly from its current
position (when the I component is enabled). The control limits are also limits for the
Antiwindup reset.

In this operating mode the D component is automatically set to 0.

Switching from
automatic to
manual

The changeover from automatic to manual is normally not bumpless, since output Y
can take on any value between ymax and ymin, and yet goes directly to YMAN at
the changeover.

If the changeover from automatic to manual is to be bumpless despite these
problems, there are two possibilities:
� Switching with the help of the MOVE function
� Switching with the help of the velocity limiter function block LIMV

Operating mode MAN HALT

Automatic 0 0

Manual 1 0 or 1

Halt 0 1
316 33002211

PID1: PID controller
Switching via
MOVE

With the help of Function MOVE set the value of YMAN to the value of Y:

The MOVE function is only executed when the PID controller is in automatic or halt
mode (MAN = 0). Any subsequent changeover from automatic to manual is
bumpless, as the values of YMAN and Y are identical within the same cycle. Now
the YMAN value can be slowly changed in manual mode.

Switching with
LIMV

Should you not wish to modify YMAN, e.g. because it is a constant, then the
previous solution must be replace by a velocity limiter (Function block LIMV (see
LIMV: Velocity limiter: 1st order, p. 203)):

The MOVE function is only executed when the PID controller is in automatic or halt
mode (MAN = 0). If a changeover from automatic to manual is carried out, it is
bumpless, as the values of YMAN (PID1) and Y (PID1) are identical within this cycle.
The YMAN value (of PID1) together with your adjustment value (RATE), are
compared with the actual manual value (on LIMV) beginning with the next cycle.

Note: This type of display as selected purely to facilitate comprehension. The links
represented by a dotted line can not be programmed as Links (link objects), as they
form unauthorized (in Concept) loops. In programming, the links must be
established using variables.

PID1

MAN

YMAN

Y

MOVE

EN

Manual mode

Manual value

Note: This type of display was selected purely to facilitate comprehension. The
links represented by a dotted line cannot be programmed as Links (link objects),
as they form unauthorized (in Concept) loops. In programming, the links must be
established using variables.

LIMV

HALT

X

RATE

Y

PID1

MAN

YMAN

Y

MOVE

EN

Manual mode

Manual value

Adjustment
33002211 317

PID1: PID controller
Detailed formulae

Explanation of
formula
variables

Significance of variables in the following formulas:

Manipulated
variable

The manipulated variable consists of various terms, which are dependent on the
operating modes:

After summation of the components variable limiting takes place, so that:

Overview to
calculate the
control
components

Following this an overview on the different calculations of the control components in
relation to the inputs EN_P, EN_I and EN_D can be found
� P component YP for manual, halt and automatic modes
� I component YI for automatic mode
� I component YI for manual and halt modes
� D component YD for automatic mode
� D component YD for manual and halt modes

Variable Meaning

Time differential between the current cycle and the previous cycle

System deviation (SP - PV)

System deviation value from the current sampling step

System deviation value from the previous sampling step

BIAS Disturbance variable

Value of controlled variable from the current sampling step

Value of controlled variable from the previous sampling step

Y current output (Stop mode) or YMAN (manual mode)

YD D component

YI I component

YP P component

dt

ERR

ERR new()

ERR old()

PV new()

PV old()

Y YP YI YD BIAS+ + +=

YMIN Y YMAX≤ ≤
318 33002211

PID1: PID controller
P component YP
for all operating
modes

YP for manual, halt and automatic modes are located as follows

For EN_P = 1 the following applies

For EN_P = 0 the following applies

I component YI
for automatic
mode

YI for automatic mode is determined as follows:

For EN_I = 1 the following applies

For EN_I = 0 the following applies

The I-component is formed according to the trapezoid rule.

I component YI
for manual and
halt modes

YI for manual, halt and automatic modes are determined as follows

For EN_I = 1 the following applies

For EN_I = 0 the following applies

D component YD
for automatic
mode

 YD for automatic mode and cascade is determined as follows:

For EN_D = 1 and D_ON_X = 0 the following applies:

For EN_D = 1 and D_ON_X = 1 the following applies:

For EN_D = 0 the following applies

D component YD
for manual and
halt modes

YD for manual, halt and automatic modes are determined as follows:

YD = 0

Runtime error

Error message For YMAX < YMIN an Error message appears.

YP GAIN ERR×=

YP 0=

YI new() YI old() GAIN
dt
TI

ERR new() ERR old()+

2
--××+=

YI 0=

YI Y YP BIAS–()–=

YI 0=

YD new()
YD old() TD_LAG TD GAIN ERR new() ERR old()–()××+×

dt TD_LAG+
--=

YD new()
YD old() TD_LAG TD GAIN PV old() PV new()–()××+×

dt TD_LAG+
---=

YD 0=
33002211 319

PID1: PID controller
320 33002211

33002211
37

PID_P: PID controller with parallel
structure
Overview

At a glance This chapter describes the PID_P block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 322

Representation 324

Parametering of the PID_P controller 326

Operating modes 328

Detailed formulas 329

Runtime error 330
321

PID_P: PID controller with parallel structure
Brief description

Function
description

The Function block replicates a PID controller in parallel structure.

A system deviation ERR is formed by the difference between the reference variable
SP and the controlled variable PV. This deviation brings about a change of the
manipulated variable Y.

EN and ENO can be projected as additional parameters.

Properties The function block has the following properties:
� PID controller in pure parallel structure
� Independent gains for P-. I and D component
� Each component P, I and D can be individually enabled
� Limiting control limits in automatic mode
� Antiwindup measure with an active I component only
� Antiwindup reset
� Manual, halt and automatic modes
� bumpless manual/automatic mode changeover
� D component can be based on input variable PV or system deviation ERR
� D component with variable delay
322 33002211

PID_P: PID controller with parallel structure
Transfer function The transfer function is:

Explanation of the variables:

Variable Meaning

YD D component

YI I component

YP P component

G s() kp
ki
s
----- kd s×

s
1

td_lag
----------------+

-------------------------++=

YD
YI
YP
33002211 323

PID_P: PID controller with parallel structure
Representation

Symbol Block representation:

Parameter
description
PID_P

Block parameter description

Parameter
description
Mode_PID_P

Data structure description

PID_P

SPREAL
PVREAL

MODEMode_PID_P
PARAPara_PID_P

YMANREAL
FEED_FWDREAL

REALY

REALERR

Stat_MAXMINSTATUS

Parameter Data type Meaning

SP REAL Reference variable

PV REAL Controlled variable

MODE Mode_PID_P Operating modes

PARA Para_PID_P Parameter

YMAN REAL Manually manipulated value

FEED_FWD REAL Disturbance input

Y REAL Manipulated variable

ERR REAL System deviation

STATUS Stat_MAXMIN Y output status

Element Data type Meaning

Man BOOL "1": Manual mode

Halt BOOL "1": Halt mode

d_on_pv BOOL "1": D component in relation to the controlled
variable,
"0": D component in relation to the system deviation

reverse BOOL "1": Output reversed
324 33002211

PID_P: PID controller with parallel structure
Parameter
description
Para_PID_P

Data structure description

Parameter
description
Stat_MAXMIN

Data structure description

Element Data type Meaning

kp REAL Proportional action coefficient (gain = P component)

ki REAL Integral action coefficient (gain = I component) [1/s]

kd REAL Rate of differentiation (gain = D component) [s]

td_lag TIME D component delay time (unit = s)

ymax REAL Upper limit

ymin REAL Lower limit

Element Data type Meaning

qmax BOOL "1" = Y has reached upper limit

qmin BOOL "1" = Y has reached lower limit
33002211 325

PID_P: PID controller with parallel structure
Parametering of the PID_P controller

Structure
diagram

There follows a structure diagram of the PID_P block:

Parametering The PID_P control structure is displayed in theStructure diagram, p. 326.

The parameterization of the PID_P controller takes place first of all for the pure PID
parameters, that is to say, the proportional action coefficient kp, the integral action
coefficient ki and rate of differentiation kd.

The P, I and D components can be disabled individually by setting the corresponding
input (kp, ki oder kd) to 0.

The D component is delayed by the delay time td_lag. The D component can either
be based upon the system deviation ERR (d_on_pv = "0") or the controlled variable
PV (d_on_pv = "1"). Should the D component be determined by the controlled
variable PV, then the D component will not be able to cause jumps when reference
variable fluctuations (changes in input SP) take place. In principle, the D component
only affects disturbances and process variances.

ymax

ymin

kp P

Y

0

1

d_on_pv

ki I

kd, td_lag D

+

+ Operating
mode
control

YMAN

+
YP

+
YD

YI
+

FEED_FWD

qmax

qmin

Antiwindup reset

ERR

SP

+

-

PV

ERR
326 33002211

PID_P: PID controller with parallel structure
Control direction
reversal

Reversed behavior by the controller can be obtained by setting the reverse input.
reverse = 0 has the effect that the output value increases with a positive disturbance.
reverse = 1 has the effect that the output value decreases with a positive
disturbance.

Manipulated
variable limiting

The limits ymax and ymin retain the output within the prescribed range. Hence ymin
≤ Y ≤ ymax.

The outputs qmax and qmin signal that the limit value has been reached, i.e. that the
output signal is limited.
� qmax = 1 if Y ≥ ymax
� qmin = 1 when Y ≤ ymin

Upper limit ymax, limiting the manipulated variable, is to be selected greater than
lower limit ymin, otherwise the function block reports an error and refuses to
function.

Antiwindup reset Should limiting of the manipulated variable take place, the antiwindup reset should
ensure that the I component "cannot go berserk". Antiwindup measures are taken
only for an active I component. Antiwindup limits are identical to those for
manipulated variable limiting. The antiwindup measures disregard D component
values, to avoid being falsely triggered by D component peaks.

The antiwindup measures correct the I component in such a way that:

Selecting the
controller types

Several controller variants can be selected over the parameters kp, ki and kd:

ymin YP– FEED_FWD YI ymax YP– FEED_FWD–≤ ≤–

Controller type kp ki kd

P controller > 0 = 0 = 0

PI controller > 0 > 0 = 0

PD controller > 0 = 0 > 0

PID controller > 0 > 0 > 0

I controller = 0 > 0 = 0
33002211 327

PID_P: PID controller with parallel structure
Operating modes

Selecting the
operating modes

There are three operating modes, which are selected via the elements Man and
Halt:

Automatic mode In automatic mode, the manipulated variable Y is determined through the discrete
PID closed-loop control algorithm subject to controlled variable PV and reference
variable SP. The manipulated variable is limited by ymax and ymin. The control
limits are also limits for the Antiwindup reset.

The changeover from automatic to manual is normally not bumpless, since output Y
can take on any value between ymax and ymin, and yet goes directly to YMAN at
the changeover.

If the changeover from automatic to manual is to be bumpless in spite of this, there
are two exemplary possibilities shown for a PID controller (see Switching from
automatic to manual, p. 302).

Manual mode In manual mode the manually manipulated value YMAN is passed on directly to the
manipulated variable Y. But the manipulated variable is still limited by ymax and
ymin. Internal variables will be manipulated in such a manner that the controller
changeover from manual to automatic (with I component enabled) can be bumpless.
The control limits are also limits for the Antiwindup reset.

In this operating mode the D component is automatically set to 0.

Halt mode In halt mode the control output remains unchanged; the function block does not
influence the manipulated variable Y, i.e. Y = Y(old). Internal variables will be
manipulated in such a manner that the controller (with I component enabled) can be
driven smoothly from its current position. The control limits are also limits for the
Antiwindup reset. Halt mode is also useful in allowing an external operator device to
adjust control output Y, and the controller's internal components are given the
chance to continuously react to the external influence.

In this operating mode the D component is automatically set to 0.

Operating mode Man Halt

Automatic 0 0

Manual 1 0 or 1

Halt 0 1
328 33002211

PID_P: PID controller with parallel structure
Detailed formulas

Explanation of
formula
variables

Meaning of the variables in the formulas:

Manipulated
variable

The manipulated variable is composed of various terms:

After the summation of the components a manipulated variable limiting takes place
at the output of the sub controller, which means:

System deviation The system deviation is determined as follows:

ERR = SP - PV, if reverse = 0

ERR = PV - SP, if reverse = 1

Overview to
calculate the
control
components

Following this an overview on the different calculations of the control components in
relation to the gains kp, ki and kd can be found:
� P component YP for manual, halt and automatic modes
� I component YI for automatic mode
� I component YI for manual and halt modes
� D component YD for automatic mode
� D component YD for manual and halt modes

Variable Meaning

Time differential between the current cycle and the previous cycle

System deviation (SP - PV)

System deviation value from the current sampling step

System deviation value from the previous sampling step

FEED_FWD Disturbance variable

Value of controlled variable from the current sampling step

Value of controlled variable from the previous sampling step

Y current output (halt mode) or YMAN (manual mode)

YD D component

YI I component

YP P component

dt

ERR

ERR new()

ERR old()

PV new()

PV old()

Y YP YI YD FEED_FWD+ + +=

ymin Y ymax≤ ≤
33002211 329

PID_P: PID controller with parallel structure
P component YP
for all operating
modes

YP for manual, halt and automatic modes are located as follows

I component YI
for automatic
mode

YI for automatic mode is determined as follows:

For ki > 0 applies:

For ki = 0 the following applies

The I-component is formed according to the trapezoid rule.

I component YI
for manual and
halt modes

YI for manual, halt and automatic modes is determined as follows

For ki > 0 applies:

For ki = 0 the following applies

D component YD
for automatic
mode

 YD for automatic mode and cascade is determined as follows:

For kd > 0 and d_on_pv = 0 applies:

For kd > 0 and d_on_pv = 1 applies:

For kd = 0 the following applies

D component YD
for manual and
halt modes

YD for manual, halt and automatic modes are determined as follows:

Runtime error

Error message There is an Error message, if:
� an invalid floating point number appears at input YMAN, or if
� is ymax < ymin.

YP kp ERR×=

YI new() YI old() ki dt
ERR new() ERR old()+

2
--××+=

YI 0=

YI Y YP FEED_FWD–()–=

YI 0=

YD new()
td_lag

dt td_lag+
---------------------------- YD old() kd ERR new() ERR old()–()×+()×=

YD new()
td_lag

dt td_lag+
---------------------------- YD old() kd PV old() PV new()–()×+()×=

YD 0=

YD 0=
330 33002211

33002211
38

PID_PF: PID controller with
parallel structure
Overview

At a glance This chapter describes the PID_PF block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 332

Representation 333

Parametering of the PID_PF controller 335

Operating modes 337

Detailed formulas 338

Runtime error 330
331

PID_PF: PID controller with parallel structure
Brief description

Function
description

The Function block replicates a PID controller in parallel structure.

A system deviation ERR is formed by the difference between the reference variable
SP and the controlled variable PV. This deviation brings about a change of the
manipulated variable Y.

EN and ENO can be projected as additional parameters.

Properties The function block has the following properties:
� PID controller in pure parallel structure
� Independent gains for P-. I and D component
� Each component P, I and D can be individually enabled
� Limiting control limits in automatic mode
� Antiwindup measure with an active I component only
� Antiwindup reset
� Manual, halt and automatic modes
� bumpless manual/automatic mode changeover
� D component can be based on input variable PV or system deviation ERR
� D component with variable delay

Transfer function The transfer function is:

Explanation of the variables:

Variable Meaning

YD D component

YI I component

YP P component

G s() kp
ki
s
----- kd s×

s
1

td_lag
----------------+

-------------------------++=

YD
YI
YP
332 33002211

PID_PF: PID controller with parallel structure
Representation

Symbol Block representation:

Parameter
description
PID_PF

Block parameter description

Parameter
description
Mode_PID_P

Data structure description

PID_PF

SPREAL

PVREAL
MODEMode_PID_P

PARAPara_PID_P
YMANREAL

FEED_FWDREAL

REALY

REALERR

Stat_MAXMINSTATUS

Parameter Data type Meaning

SP REAL Reference variable

PV REAL Controlled variable

MODE Mode_PID_P Operating modes

PARA Para_PID_P Parameter

YMAN REAL Manually manipulated value

FEED_FWD REAL Disturbance input

Y REAL Manipulated variable

ERR REAL System deviation

STATUS Stat_MAXMIN Y output status

Element Data type Meaning

Man BOOL "1": Manual mode

Halt BOOL "1": Halt mode

d_on_pv BOOL "1": D component in relation to the controlled
variable,
"0": D component in relation to the system deviation

reverse BOOL "1": Output reversed
33002211 333

PID_PF: PID controller with parallel structure
Parameter
description
Para_PID_P

Data structure description

Parameter
description
Stat_MAXMIN

Data structure description

Element Data type Meaning

kp REAL Proportional action coefficient (gain = P component)

ki REAL Integral action coefficient (gain = I component) [1/s]

kd REAL Rate of differentiation (gain = D component) [s]

td_lag TIME D component delay time

ymax REAL Upper limit

ymin REAL Lower limit

Element Data type Meaning

qmax BOOL "1" = Y has reached upper limit

qmin BOOL "1" = Y has reached lower limit
334 33002211

PID_PF: PID controller with parallel structure
Parametering of the PID_PF controller

Structure
diagram

There follows a structure diagram of the PID_PF block:

Parametering The PID_PF control structure is displayed in theStructure diagram, p. 335.

The parameterization of the PID_PF controller takes place first of all for the pure PID
parameters, that is to say, the proportional action coefficient kp, the integral action
coefficient ki and rate of differentiation kd.

The P, I and D components can be disabled individually by setting the corresponding
input (kp, ki oder kd) to 0.

The D component is delayed by the delay time td_lag. The D component can either
be based upon the system deviation ERR (d_on_pv = "0") or the controlled variable
PV (d_on_pv = "1"). Should the D component be determined by the controlled
variable PV, then the D component will not be able to cause jumps when reference
variable fluctuations (changes in input SP) take place. In principle, the D component
only affects disturbances and process variances.

ymax

ymin

kp P

Y

0

1

d_on_pv

ki I

kd, td_lag D

+

+ Operating
mode
control

YMAN

+
YP

+
YD

YI
+

FEED_FWD

qmax

qmin

Antiwindup reset

ERR

SP

+

-

PV

ERR
33002211 335

PID_PF: PID controller with parallel structure
Control direction
reversal

Reversed behavior by the controller can be obtained by setting the reverse input.
reverse = 0 has the effect that the output value increases with a positive disturbance.
reverse = 1 has the effect that the output value decreases with a positive
disturbance.

Manipulated
variable limiting

The limits ymax and ymin retain the output within the prescribed range. Hence ymin
≤ Y ≤ ymax.

The outputs qmax and qmin signal that the limit value has been reached, i.e. that the
output signal is limited.
� qmax = 1 if Y ≥ ymax
� qmin = 1 when Y ≤ ymin

Upper limit ymax, limiting the manipulated variable, is to be selected greater than
lower limit ymin, otherwise the function block reports an error and refuses to
function.

Antiwindup reset Should limiting of the manipulated variable take place, the antiwindup reset should
ensure that the I component "cannot go berserk". Antiwindup measures are taken
only for an active I component. Antiwindup limits are identical to those for
manipulated variable limiting. The antiwindup measures disregard D component
values, to avoid being falsely triggered by D component peaks.

The antiwindup measures correct the I component in such a way that:

Selecting the
controller types

Several controller variants can be selected over the parameters kp, ki and kd:

ymin YP– FEED_FWD YI ymax YP– FEED_FWD–≤ ≤–

Controller type kp ki kd

P controller > 0 = 0 = 0

PI controller > 0 > 0 = 0

PD controller > 0 = 0 > 0

PID controller > 0 > 0 > 0

I controller = 0 > 0 = 0
336 33002211

PID_PF: PID controller with parallel structure
Operating modes

Selecting the
operating modes

There are three operating modes, which are selected via the elements Man and
Halt:

Automatic mode In automatic mode, the manipulated variable Y is determined through the discrete
PID closed-loop control algorithm subject to controlled variable PV and reference
variable SP. The manipulated variable is limited by ymax and ymin. The control
limits are also limits for the Antiwindup reset.

The changeover from automatic to manual is normally not bumpless, since output Y
can take on any value between ymax and ymin, and yet goes directly to YMAN at
the changeover.

If the changeover from automatic to manual is to be bumpless in spite of this, there
are two exemplary possibilities shown for a PID controller (see Switching from
automatic to manual, p. 302).

Manual mode In manual mode the manually manipulated value YMAN is passed on directly to the
manipulated variable Y. But the manipulated variable is still limited by ymax and
ymin. Internal variables will be manipulated in such a manner that the controller
changeover from manual to automatic (with I component enabled) can be bumpless.
The control limits are also limits for the Antiwindup reset.

In this operating mode the D component is automatically set to 0.

Halt mode In halt mode the control output remains unchanged; the function block does not
influence the manipulated variable Y, i.e. Y = Y(old). Internal variables will be
manipulated in such a manner that the controller (with I component enabled) can be
driven smoothly from its current position. The control limits are also limits for the
Antiwindup reset. Halt mode is also useful in allowing an external operator device to
adjust control output Y, and the controller's internal components are given the
chance to continuously react to the external influence.

In this operating mode the D component is automatically set to 0.

Operating mode Man Halt

Automatic 0 0

Manual 1 0 or 1

Halt 0 1
33002211 337

PID_PF: PID controller with parallel structure
Detailed formulas

Explanation of
formula
variables

Meaning of the variables in the formulas:

Manipulated
variable

The manipulated variable is composed of various terms:

After the summation of the components a manipulated variable limiting takes place
at the output of the sub controller, which means:

System deviation The system deviation is determined as follows:

ERR = SP - PV, if reverse = 0

ERR = PV - SP, if reverse = 1

Overview to
calculate the
control
components

Following this an overview on the different calculations of the control components in
relation to the gains kp, ki and kd can be found:
� P component YP for manual, halt and automatic modes
� I component YI for automatic mode
� I component YI for manual and halt modes
� D component YD for automatic mode
� D component YD for manual and halt modes

Variable Meaning

Time differential between the current cycle and the previous cycle

System deviation (SP - PV)

System deviation value from the current sampling step

System deviation value from the previous sampling step

FEED_FWD Disturbance variable

Value of controlled variable from the current sampling step

Value of controlled variable from the previous sampling step

Y current output (halt mode) or YMAN (manual mode)

YD D component

YI I component

YP P component

dt

ERR

ERR new()

ERR old()

PV new()

PV old()

Y YP YI YD FEED_FWD+ + +=

ymin Y ymax≤ ≤
338 33002211

PID_PF: PID controller with parallel structure
P component YP
for all operating
modes

YP for manual, halt and automatic modes are located as follows

I component YI
for automatic
mode

YI for automatic mode is determined as follows:

For ki > 0 applies:

For ki = 0 the following applies

The I-component is formed according to the trapezoid rule.

I component YI
for manual and
halt modes

YI for manual, halt and automatic modes is determined as follows

For ki > 0 applies:

For ki = 0 the following applies

D component YD
for automatic
mode

 YD for automatic mode and cascade is determined as follows:

For kd > 0 and d_on_pv = 0 applies:

For kd > 0 and d_on_pv = 1 applies:

For kd = 0 the following applies

D component YD
for manual and
halt modes

YD for manual, halt and automatic modes are determined as follows:

Runtime error

Error message There is an Error message, if:
� an invalid floating point number appears at input YMAN, or if
� is ymax < ymin.

YP kp ERR×=

YI new() YI old() ki dt
ERR new() ERR old()+

2
--××+=

YI 0=

YI Y YP FEED_FWD–()–=

YI 0=

YD new()
td_lag

dt td_lag+
---------------------------- YD old() kd ERR new() ERR old()–()×+()×=

YD new()
td_lag

dt td_lag+
---------------------------- YD old() kd PV old() PV new()–()×+()×=

YD 0=

YD 0=
33002211 339

PID_PF: PID controller with parallel structure
340 33002211

33002211
39

PIDFF: Complete PID controller
Overview

At a glance This chapter describes the PIDFF block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 342

Representation 343

Formulae 345

Structure diagram of the PIDFF controller 347

Parametering 348

Operating modes 352

Detailed equations 353

Detailed equations: Incremental algorithm PID controller 356

Detailed equations: Incremental algorithms in integral mode 358

Example for the PIDFF block 360

Runtime error 365
341

PIDFF: Complete PID controller
Brief description

Function
description

The PIDFF Function block is based on a PID algorithm with parallel or mixed
structure (series / parallel).

EN and ENO can be configured as additional parameters.

Functions It displays numerous functions:
� Calculating the proportional, integral and differential component in its incremental

form
� 2 antiwindup measures
� Process value, setpoint and output in physical units
� Direct or inverse action
� Differential component to process value or deviation
� Parametering the transfer gain of the differential component
� Weight of the setpoint in the proportional component (reducing the overrun)
� Possibility of upgrading a block external integral component (RCPY input)
� Feed forward component for disturbance compensation (FF input)
� Dead zone on deviation
� Incremental value and absolute value output
� Upper and lower limit on the output signal (according to operating mode)
� Gradient limitation of the output signal
� Output offset
� Selecting manual/automatic mode
� Tracking mode
� Upper and lower setpoint limit

Complementary
functions

Other function blocks complement these functions when used in conjunction with
the PIDFF block:
� Autotuning via the AUTOTUNE-Function block
� Selecting an internal or external setpoint via the function block SP_SEL
� Controlling manual operation of the sampled control loops (see Scanning, p. 35)

using the function block MS
342 33002211

PIDFF: Complete PID controller
Representation

Symbol Block representation:

PIDFF Parameter
Description

Block parameter description

PIDFF

PVREAL

SPREAL
FFREAL

RCPYREAL

MAN_AUTOBOOL

PARAPara_PIDFF
TR_IREAL

TR_SBOOL

REALOUT

REALOUTD

BOOLMA_O

Info_PIDFFINFO

WORDSTATUS

Parameter Data type Meaning

PV REAL Process value

SP REAL Setpoint

FF REAL Feed forward input

RCPY REAL Copy of the current manipulated variable

MAN_AUTO BOOL Controller operating mode:
"1": Automatic mode
"0": Manual mode

PARA Para_PIDFF Parameter

TR_I REAL Initialization input

TR_S BOOL Initialization command

OUT REAL Absolute value output

OUTD REAL Incremental value output: Difference between the
output of the current and previous cycle

MA_O BOOL Current operating mode of the function block:
"1": Automatic operating mode
"0": other operating mode (i.e. manual or tracking
mode)

INFO Info_PIDFF Information

STATUS WORD Status word
33002211 343

PIDFF: Complete PID controller
Parameter
description
Para_PIDFF

Data structure description

Element Data type Meaning

id UINT Reserved for autotuning

pv_inf REAL Lower limit of the process value range

pv_sup REAL Upper limit of the process value range

out_inf REAL Lower limit of the output value range

out_sup REAL Upper limit of the output value range

rev_dir BOOL "0": direct action of the PID controller
"1": inverse action of the PID controller

mix_par BOOL "1": PID controller with parallel structure
"0": PID controller with mixed structure

aw_type BOOL "1": Anti-windup halt is filtered

en_rcpy BOOL "1": the RCPY input is used

kp REAL Proportional contribution (gain)

ti TIME Integral time

td TIME Derivative time

kd REAL Differential gain

pv_dev BOOL Type of differential contribution:
"1": Differential contribution in relation to system
deviation
"0": Differential contribution in relation to regulating
variable (process value)

bump BOOL "1": Transition to automatic mode with bump
"0": Bumpless transition to automatic mode

dband REAL Dead zone on deviation

gain_kp REAL Reducing the proportional contribution within the
dead zone dband

ovs_att REAL Reducing the overrun

outbias REAL Manual compensation for the static deviation

out_min REAL Lower limit of the output

out_max REAL Upper limit of the output

outrate REAL Limit for output modification in units per second (≥ 0)

ff_inf REAL Lower limit of the FF range

ff_sup REAL High limit of the FF range

otff_inf REAL Low limit of the out_ff range

otff_sup REAL High limit of the out_ff range
344 33002211

PIDFF: Complete PID controller
Parameter
description
Info_PIDFF

Data structure description

Formulae

Transfer function Depending on whether the mixed or parallel structure is being used, the transfer
function is as follows:

Calculation
formulae

The formulae actually used vary, depending on whether the function block uses the
incremental or absolute form of the algorithm.

In a simplified form the function block can use one of the following formulae:

Element Data type Meaning

dev REAL Deviation value (PV – SP)

out_ff REAL Value of the feed forward contribution

Structure Formulae

Mixed

Parallel

with α = scaling
factor

OUT kp 1
1

ti p×
------------ td p×

1
td
kd

� �
� � p×+

------------------------------++ IN××=

OUT kp α 1
ti p×
------------× α td p×

1
td
kd

� �
� � p×+

------------------------------×+ + IN×=

OUT
out_sup out_inf–
pv_sup pv_inf–

---=

Algorithm ti Formulae

Absolute 0

Incremental >0

OUT TermP TermD TermFF outbias+ + +=

OUTD OUT new() OUT old()–=

OUTD TermP TermI TermD TermFF+ + +=

OUT OUT old() OUTD new()+=
33002211 345

PIDFF: Complete PID controller
Explanation of
formula
variables

The meaning of the formula sizes is given in the following table:

Variable Meaning

(new) Value which is calculated on current function block execution

(old) Value which was calculated on previous function block execution

OUT Absolute value output

OUTD Incremental value output

TermD Value of the differential component

TermFF Value of the feed forward component (disturbance compensation)

TermI Value of the integral component

TermP Value of the proportional component
346 33002211

PIDFF: Complete PID controller
Structure diagram of the PIDFF controller

Structure
diagram

Structure diagram of the PIDFF controller

-Overshoot
attenuation

+
ovs_att

-

+

dev

dband
gain_kp

Feed Forward
action

ff_inf otff_inf

ff_sup otff_sup

DEV_WGH

pv_sup
SP

FF

pv_inf

PV

Proportional
action

Integral
action

kp

ti, K

+

+

+

Derivative
action

td, kd, K

a)

b)

pv_dev

a)

b)
Reverse
Direct

rev_dir

+

out_ff

+

+

outbias

Variation
limiter Limiter

outrate out_min

out_max

Limiter

out_inf

out_sup

Tracking

Manu
Auto

TR_S

MAN_AUTO

OUT

+

TR_I
33002211 347

PIDFF: Complete PID controller
Parametering

Mixed/parallel
structure
(mix_par)

Structure selection takes place via the mix_par parameter :

Absolute
algorithms
(ti = 0)

Absolute algorithms are used when no integral component is set up (ti = 0). In this
case the output OUT is calculated first, and then the output alteration is deducted.

If… Then …

mix_par = 0 there is a mixed structure, i.e. the proportional component is set up in the
connection to the integral and differential component. The gain K set up for
the components (see Structure diagram, p. 347) corresponds to kp.

mix_par = 1 the structure is parallel, i.e. the proportional coefficient is set up parallel to
the integral and differential coefficient. In this case, the gain kp does not
related to the integral and differential component. In this case, gain K
corresponds to the relationship between the output zone and the range.
348 33002211

PIDFF: Complete PID controller
Incremental
algorithms
(ti > 0)

Incremental algorithms are used when an integral component is present (i.e. when
ti > 0). The special feature of this algorithm is that the output alteration OUTD is
calculated first and then an absolute value output is determined according to the
following formula:

This algorithm form makes it possible to switch a SERVO-function block to the
controller and thus to attain static control.

The incremental form also offers the following possibilities:

Possibility Explanation

External block integral
component
(mit en_rcpy = 1)

If the real component deviates from the value calculated by the
controller (with an open servoloop), the real value should be
used as the basis for the calculation. If this value is available, it
should be assigned to the RCPY input and the parameter
en_rcpy must be switched to 1. In calculations done by the
function block, the equation
OUT(new) = OUT (old) + OUTD
to
OUT(new) = RCPY + OUTD
This is particularly beneficial for cascades or cascade-like
controls.
Note: In this case the OUT output is not limited.

Expanded antiwindup
measure

The incremental form of the PID controller offers as standard
an antiwindup measure taken into account in the algorithm.
This type is the basis when aw_type = 0. In this case the output
can be saturated and suddenly leave its threshold, even if the
sign of the deviation does not change (e.g. if it is affected by a
brief disturbance during measuring). It is possible to use a
second antiwindup measure (aw_type = 1) which prevents the
output from exceeding its threshold as long as the deviation
does not alter the sign.

OUT new() OUT old() OUTD+=
33002211 349

PIDFF: Complete PID controller
Weight of the
setpoint in the
proportional
component
(reducing the
overrun)

If an integral component is present (ti > 0), the ovs_att parameter makes the weight
of the proportional component possible the calculation of the proportional
component is based on the weighted deviation ().

This could have an influence in the case of an overrun, as can occur with setpoint
modifications. The aim is to retain a control-intensive proportional component and
therefore a dynamic response to disturbances without an overrun occurring during
control.

The parameter ovs_att can fluctuate continually between:

Dead zone on
deviation
(dband)

When the work point is reached the dead zone can limit smaller values to the
actuator’s value. as long as the deviation lies below dband, the calculation of the
function block is based on the value zero.

The extended parameter gain_kp can be used to modify the deviation inside the
dead zone. This is better than deleting it. The modified deviation (multiplied by
gain_kp) is used to calculate the proportional and integral components.

Representation of the alteration of the deviation

Value Meaning

0 to the proportional component (classic case) assigned to the deviation (system
deviation)

1 for the proportional component (with sensitive processes or processes with an
integral effect) assigned to the measurement (controlled variable),.

PV 1 ovs_att–() SP×–

DEV

Modified
Deviation

dband

gain_kp > 1

Gradient = gain_kp

DEV

Modified
Deviation

dband

0 <= gain_kp < 1

Gradient = gain_kp
350 33002211

PIDFF: Complete PID controller
Transfer gain
with the
differential
component

The PIDFF function block contains a filter of the first order for the differential
component. The filter gain kd can be parametered so that processes where the
differential component must be very strongly filtered can be processed as well as
processes where the filtering of the differential component can be removed because
the signal is "pure" enough.

Feed forward
component for
disturbance
compensation
(FF input)

With classic PID control, the controller reacts to output modifications of the control
process (closed servoloop). In the case of a disturbance, the controller only reacts
if the process value deviates from the setpoint value. The feed-forward-function
means that a measurable disturbance can be compensated for as soon as it arises.
This function, conceived as an open servoloop, removes the effects of the
disturbance. in this case the term disturbance size update (Feed Forward) is used.

The component of the feed forward input is updated directly/inversely to the
manipulated variable of the controller after the control direction has been included.

The calculation proceeds according to the following formula:

A specific user example of this function is given in the section "Application example
of the feed forward function , p. 360".

Further
properties

The block contains the following properties:
� The outbias parameter makes precision at the work point possible if the process

contains no integral component (ti = 0).
� In automatic mode, the OUT output is limited to the range between out_min and

out_max, and to the range between out_inf and out_sup in manual and tracking
mode. If a value calculated by the function block (or a written value entered by
the user in manual mode) exceeds one of these limits, the value is capped. The
incremental output OUT_D, however, never takes this capping into
consideration. This enables the PIDFF function block to control a SERVO
function block without having to revert the position of the acuator (continuous
control).

� The output speed increase is limited by the parameter outrate.
� The possibility of selecting between direct/inverse action (parameter rev_dir)

allows for the adjustment of the control direction of the link actuator/ process.
� The differential component can affect both the process value (pv_dev = 0), and

the deviation (pv_dev = 1).
� pv_inf and pv_sup correspond to the upper and lower threshold of the setpoint

value.
� The function block can also have an effect in pure integral mode (with kp = 0).

Note: If ff_sup = ff_inf, the calculation of the feed_forward component is ignored.

out_ff
FF ff_inf–() otff_sup otff_inf–()×

ff_sup ff_inf–()
-- otff_inf+=
33002211 351

PIDFF: Complete PID controller
Operating modes

Selecting the
operating modes

There are 3 operating modes for the PIDFF function block: Automatic, Manual and
Tracking. As the following table shows, the tracking mode takes priority over the
other operating modes.

The operating modes are selected via the MAN_AUTO and TR_S inputs:

Switching from
Manual ->
Automatic or
Tracking ->
Automatic

The type of changeover depends on bump:

Operating mode TR_S MAN_AUTO Meaning

Automatic 0 1 The OUT and OUTD outputs correspond to
the result of the calculations made by the
function block. The thresholds for the OUT
output are out_min and out_max.

Manual 0 0 The output OUT is not set via the function
block. Its value can be directly modified by
the user. OUT remains limited however;
this operating mode involves the thresholds
out_inf and out_sup (instead of out_min
and out_max in automatic mode).

Tracking 1 0 or 1 The input TR_1 is transferred to the output
OUT. As in manual mode, OUT is between
the thresholds out_inf and out_sup.

If… Then …

bump = 0 the changeover is bumpless.
Note: If ti = 0 the outbias parameter is re-calculated. The OUT values can thus
re-start bumpless beginning with the last value of the previous operating mode.

bump = 1 the changeover may have a bump.
352 33002211

PIDFF: Complete PID controller
Detailed equations

Overview The detailed equations are shown for the following situations are shown in this
section:
� Convention for the most important Interim variables and Functions used in the

equations
� Absolute algorithm, p. 355
� Incremental algorithm PID controller, p. 356

� Normal incremental algorithms (aw_type = 0)
� With bumpless antiwindup measure (aw_type = 1)

� Incremental algorithms in integral mode, p. 358
� Normal incremental algorithms (aw_type = 0)
� With bumpless antiwindup measure (aw_type = 1)

Convention Various variables and functions are used in the following equations. The variables
corresponding to the parameters of the function block are not re-described.

The most important Interim variables and the Functions used are described in the
following tables.
33002211 353

PIDFF: Complete PID controller
Explanation of
the interim
variables

An explanation of the most important interim variables can be found here.

Explanation of
the functions

An explanation of the most important functions can be found here.

Interim variable Meaning

DEV_WGH DEV_WGH = PV - (1 - ovs_att) * SP

dt Time elapsed since the last function block execution.

K Gain of the integral and differential components.
The gain varies according to the structure of the function block
(mixed or parallel) and depends on whether the proportional
component is assigned or not.
� If mix_par = 0 (mixed structure) and kp <> 0, K = kp applies
� If mix_par = 1 (parallel structure) or kp – 0, the following applies:)

K = scaling factor =

(new) Value which is calculated on current execution of the function block

(old) Value which is calculated on previous execution of the function block

OUTc Before limitation of calculated output value

sense Control setting

TermAW Value of the bumpless antiwindup measure

TermD Value of the differential component

TermFF Value of the feed forward component (disturbance compensation)

TermI Value of the integral component

TermP Value of the proportional component

VAR To calculate the variable used by the differential component.
Its value depends on the pv_dev parameter :
� If pv_dev = 0, VAR = PV
� If pv_dev = 1, VAR = dev

α out_sup out_inf–
pv_sup pv_inf–

---=

Function Meaning

Control setting The control setting has the following directions of action:
� +1

This is a direct action (rev_dir = 0,) i.e. a positive deviation (PV -
SP) generates an increase in the output value

� -1
This is an inverse action (rev_dir = 1,) i.e. a positive deviation (PV
- SP) generates decrease in the output value.

Function ∆

‘Limit’ Limiting function for the function block output

∆ x t()() x t() x t 1–()–=
354 33002211

PIDFF: Complete PID controller
Absolute
algorithm

The following equations apply for PD controllers (ti = 0),

Value of the proportional component TermP

Value of the differential component TermD

Value of the feed forward component TermFF

OUT TermP TermD TermFF outbias+ + +=
OUTD OUTP new() OUTP old()–=

OUT limiter OUT()=

TermP sense kp× dev×=

TermD sense
td TermD old() K td× kd× VAR new() VAR old()–()×+×

kd dt× td+
--×=

TermFF
FF ff_inf–() otff_sup otff_inf–()×

ff_sup ff_inf–
-- otff_inf+=
33002211 355

PIDFF: Complete PID controller
Detailed equations: Incremental algorithm PID controller

Incremental
algorithm PID
controller

For the PID controller (ti > 0), the equations are divided into the following categories,
depending on the aw_type element.

PID controller
aw_type = 0

The following equations apply to normal incremental algorithms of PID controllers;

If en_rcpy = 0, then

If en_rcpy = 1, then

Value of the proportional component TermP:

Value of the integral component TermI:

Value of the differential component TermD

Value of the feed forward component TermFF

Element Meaning

aw_type = 0 Normal incremental algorithms

aw_type = 1 With bumpless antiwindup measures

OUTD TermP TermI TermD TermFF+ + +=

OUT limiter OUT()=

OUT OUT old()= OUTD new()+

OUT RCPY OUTD new()+=

TermP sense kp× ∆ DEV_WGH()[]×=

TermI sense kp× dt
ti
-----× dev×=

TermD ∆ sense
td TermD old()× K+ td× kd× VAR new() VAR old()–()×

kd dt× td+
--×=

TermFF ∆ FF ff_inf–() otff_sup otff_inf–()×
ff_sup ff_inf–()

-- otff_inf+=
356 33002211

PIDFF: Complete PID controller
PID controller
aw_type = 1

The following equations apply to incremental algorithms of PID controllers with
bumpless antiwindup measures;

Value of the proportional component TermP:

Value of the integral component TermI:

Value of the differential component TermD

Value of the feed forward component TermFF

Value of the bumpless antiwindup measure TermAW

If en_rcpy = 0, then

If en_rcpy = 1, then

OUTD TermP TermI TermD TermFF TermAW+ + + +=

OUT limiter OUTc()=

OUTc OUTc old() OUTD new()+=

TermP sense kp× ∆ DEV_WGH()[]×=

TermI sense kp× dt
ti
-----× dev×=

TermD ∆ sense
td TermD old()× K+ td× kd× VAR new() VAR old()–()×

kd dt× td+
--×=

TermFF ∆ FF ff_inf–() otff_sup otff_inf–()×
ff_sup ff_inf–()

-- otff_inf+=

TermAW
dt
ti
----- OUT old() OUTc old()–[]=

TermAW
dt
ti
----- RCPY OUTc old()–[]=
33002211 357

PIDFF: Complete PID controller
Detailed equations: Incremental algorithms in integral mode

Incremental
algorithms in
integral mode

The controller can be set to a purely integral mode (with kp=0).

Here too, the equations are divided into the following categories, depending on the
aw_type element:

Integral mode:
aw_type = 0

The following equations apply to normal incremental algorithms of controllers in
integral mode;

If en_rcpy = 0, then

If en_rcpy = 1, then

Value of the integral component TermI:

Value of the feed forward component TermFF

Element Meaning

aw_type = 0 Normal incremental algorithms

aw_type = 1 With bumpless antiwindup measures

OUTD TermI TermFF+=

OUT limiter OUT()=

OUT OUT old()= OUTD new()+

OUT RCPY OUTD new()+=

TermI sense α× dt
ti
-----× dev×=

TermFF ∆ FF ff_inf–() otff_sup otff_inf–()×
ff_sup ff_inf–()

-- otff_inf+=
358 33002211

PIDFF: Complete PID controller
Integral mode:
aw_type = 1

The following equations apply to incremental algorithms of integral controllers with
bumpless antiwindup measures;

Value of the integral component TermI:

Value of the feed forward component TermFF

Value of the bumpless antiwindup measure TermAW

If en_rcpy = 0, then

If en_rcpy = 1, then

OUTD TermI TermFF TermAW+ +=

OUT limiter OUTc()=

OUTc OUTc old() OUTD new()+=

TermI sense α× dt
ti
-----× dev×=

TermFF ∆ FF ff_inf–() otff_sup otff_inf–()×
ff_sup ff_inf–()

-- otff_inf+=

TermAW
dt
ti
----- OUT old() OUTc old()–[]=

TermAW
dt
ti
----- RCPY OUTc old()–[]=
33002211 359

PIDFF: Complete PID controller
Example for the PIDFF block

Example-
overview

This chapter contains the following examples:
� Application example of the feed forward function , p. 360
� Classic control examples programmed via the PIDFF function block:

� Example of the cascaded arrangement of two controllers, p. 362
� Example of cascade-like control, p. 364

Application
example of the
feed forward
function

With a heat exchanger, the temperature PV2 should be regulated at the output of
the secondary circulation. A PID controller controls the inflow valve for warm air
depending on PV2 and the setpoint SP. The cold water temperature is regarded as
a measurable disturbance variable in this control process.

The feed forward function means a reaction can occur as soon as the cold water
temperature changes without waiting for PV2 to decrease.

Presentation of the servo loop:

The following hypotheses are accepted:
� The condenser output temperature (cold water temperature) varies between 5 C

and 25 C, with a mean value of 15 C.
� A DT temperature change has a full effect on the output temperature of the heat

exchanger.
� To compensate for a temperature increase (or decrease) by 5 C at the output of

the heat exchanger, the steam control valve must be closed (or opened) by 10 %.

Transfer
function

PID

SP

-

TT2
PV+

+

+
FF

TT1

Q c
Steam

Disturbance

PV2

Condenser
360 33002211

PIDFF: Complete PID controller
The feed forward input parameters should be adjusted so that the cold water
temperature has the following effect on the steam control valve:

Adjustments to be pre-set

Temperature range Effects

15 C no effect

10% per 5 °C between
5 and 25 °C

Element Value

ff_sup 25 °C

ff_inf 5 °C

otff_sup 10 %

otff_inf - 10 %

Output %

+ 20

+ 10

0

- 10

- 20

5 10 15 20 525
Cold water
temperature
(oC)
33002211 361

PIDFF: Complete PID controller
Example of the
cascaded
arrangement of
two controllers

A representation of the function map, part 1, follows:

LSP_MEM

SLAVE_SP

STATUS

RSP

SP_RSPMASTER_MA

PARA

PV

MA_I

FBI_12_3 (3)

SP

SP_SEL

INTERVALMASTER_ST

DELSCANS

FBI_12_5 (1)

Q

SAMPLETM

OUT

MA_O

INFO

STATUS

EN

PVMASTER_PV
SP

FF

RCPYSLAVE_SP
MAN_AUTO1
PARA

TR_I

MASTER (2)

ENO

PIDFF

MASTER_SP OUTD

MASTER_PARA
SLAVE_PV

TR_SSLAVE_MAO

1

362 33002211

PIDFF: Complete PID controller
A representation of the function map, part 2, follows:

1

OUTD

OUT

MA_O

IN

FORC

SLAVE_MAN_AUTO

MA_FORC

MAN_AUTO

PARA

FBI_12_2 (6)

OUT

MS

INTERVALSLAVE_ST

DELSCANS

FBI_12_4 (4)

Q

SAMPLETM

OUT

MA_O

INFO

STATUS

EN

PVSLAVE_PV

SP

FF

RCPYOUT
MAN_AUTO1
PARA

TR_I

SLAVE (5)

ENO

PIDFF

OUTD

SLAVE_PARA

TR_S

SLAVE_OUT

SLAVE_PARA_MS

SLAVE_MAO
TR_I

TR_S
STATUS
33002211 363

PIDFF: Complete PID controller
Example of
cascade-like
control

A representation of the function map follows:

OUTD

TC2_OV

MA_O

INFO

STATUS

PVTC2_PV
SPTC2_SP

FF

RCPYTC2_OUT
MAN_AUTO1

PARATC2_PARA

TR_I

TR_S

FBI_13_1 (1)

OUTD

TC3_OUT

MA_O

INFO

STATUS

PVTC3_PV

SPTC3_SP
FF

RCPYTC2_OUT

MAN_AUTO1
PARATC3_PARA
TR_I

TR_S

FBI_13_2 (2)

OUT

PIDFF

OUT

PIDFF

1

2

MS

OUT

MA_O

STATUS

IN

FORCTC2_FORC_MS
MA_FORCTC2_MA_FORC
MAN_AUTOTC2_MA_C
PARATC2_PARA_MS

TR_I

TR_S

FBI_13_3 (4)

TC2_OUT

OUTD

TC2_MA_O

SELECTOR

OUTOUT

SELECTSELECTIN2

FBI_13_5 (3)

IN11

2

364 33002211

PIDFF: Complete PID controller
Runtime error

Status word The following messages are displayed in the status word:

Note on output
OUT

Bit Meaning

Bit 0 = 1 Error in a calculation in floating point values

Bit 1 = 1 Recording of an unauthorized value on a floating point value input

Bit 2 = 1 Division by zero with calculation in floating point values

Bit 3 = 1 Capacity overflow with a calculation in floating point values

Bit 4 = 1 The following behavior is displayed:
� The SP input lies outside the area [pv_inf, pv_sup] : for calculation, the

function block uses value pv_inf or pv_sup.
� One of the kp, dband, gain _kp parameters outrate is negative. the

function block uses the value 0 outside the incorrect parameter value.
� kd < 1 (mit td <> 0) : the function block uses the value 1 instead of the

faulty value of kd.
� The parameter ovs_att is outside the [0, 1] range: for calculation, the

function block uses the value 0 or 1.
� One of the parameters out_min or out-max is outside the range [out_inf,

out_sup]. For calculation, the function block uses the value out_inf or out
sup.

� One of the outbias, otff_inf or otff_sup parameters is outside the range
[(out_min – out_max), (out_max – out_min)]. For calculation, the function
block uses the value (out_min- out_max) i.e. (out_max - out_min).

Bit 5 = 1 The output OUT has reached the lower threshold out_min (see Note)

Bit 6 = 1 The output OUT has reached the upper threshold out_max (see Note)

Bit 7 = 1 The thresholds pv_inf and pv_sup are identical.

Note: In manual mode these bits stay at 1 for only one program cycle. When the
user enters a value for OUT which exceeds one of the thresholds, the function
block sets the Bit 5 or 6 to 1 and cuts them from the user entered value. During the
next execution of the function block, the value of OUT no longer lies outside the
range and bits 5 and 6 are set to zero again.
33002211 365

PIDFF: Complete PID controller
Error message An error is displayed when a non-floating point has been recorded at an input, when
a problem occurs during a calculation with floating points or when the thresholds
pv_inf and pv_sup of the controller are identical. In this case the outputs OUT,
OUTD, MA_O and INFO remain unchanged.

Warning In the following cases a warning is given:
� One of the kp, dband, gain _kp parameters outrate is negative. The function block

then uses the value 0 instead of the incorrect parameter value.
� kd < 1 (mit td <> 0) : the function block uses the value 1 instead of the faulty value

of kd.
� The parameter ovs_att is outside the [0, 1] range: for calculation, the function

block uses the value 0 or 1.
� The parameters out_min or out_max is outside the range [out_inf, out_sup]. For

calculations, the function block uses the value out_inf or out_sup.
� One of the outbias, otff_inf or otff_sup parameters is outside the range [(out_min

– out_max), (out_max – out_min)]. For calculation, the function block uses the
value (out_min- out_max) i.e. (out_max - out_min).
366 33002211

33002211
40

PIDP1: PID controller with parallel
structure
Overview

At a glance This chapter describes the PIDP1 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 368

Representation 369

Parametering of the PIDP1 controller 371

Operating modes 373

Detailed formulas 374

Runtime error 376
367

PID_P1: PID controller with parallel structure
Brief description

Function
description

The Function block replicates a PID controller in parallel structure.

A system deviation ERR is formed by the difference between the setpoint SP and
the controlled variable PV. This deviation brings about a modification to the
manipulated variable Y.

EN and ENO can be configured as additional parameters.

Properties The function block has the following properties:
� PID controller in pure parallel structure
� Each component P, I and D can be individually enabled
� Limiting control limits in automatic mode
� Antiwindup measure with an active I component only
� Antiwindup reset
� Operating modes, Manual, Halt, Automatic
� bumpless changeover between manual and automatic
� D component can be based on input variable PV or system deviation ERR
� D component with variable delay

Transfer function The transfer function is:

Explanation of the sizes:

Variable Meaning

YD D component

YI I component

YP P component

G s() KP
KI
s

------ KD s×

s
1

TD_LAG
-------------------------+

----------------------------------++=

YD
YI
YP
368 33002211

PID_P1: PID controller with parallel structure
Representation

Symbol Block representation:

PIDP1

REALY

REALERR

BOOLQMAX

BOOLQMIN

MANBOOL

HALTBOOL
SPREAL

PVREAL

BIASREAL
D_ON_XBOOL

REVERSBOOL

KPREAL

KIREAL
KDREAL
TD_LAGTIME

YMAXREAL
YMINREAL
YMANREAL
33002211 369

PID_P1: PID controller with parallel structure
Parameter
description

Block parameter description

Parameter Data type Meaning

MAN BOOL "1": Manual mode

HALT BOOL "1": Halt mode

SP REAL Setpoint input

PV REAL Input variable

BIAS REAL Disturbance input

D_ON_X BOOL "1": D component in relation to the controlled
variable,
"0": D component in relation to the system
deviation

REVERSE BOOL "1": Output reversed

KP REAL Proportional action coefficient (gain)

KI REAL Integral action coefficient]

KD REAL Rate of differentiation]

TD_LAG TIME D component delay time

YMAX REAL Upper limit

YMIN REAL Lower limit

YMAN REAL Manually manipulated value

Y REAL Manipulated variable

ERR REAL System deviation

QMAX BOOL "1" = Y has reached upper limit

QMIN BOOL "1" = Y has reached lower limit
370 33002211

PID_P1: PID controller with parallel structure
Parametering of the PIDP1 controller

Structure
diagram

The following is the structure diagram of the PIDP1 block:

Parametering The PIDP1 controller structure is displayed in theStructure diagram, p. 371.

The parametering of the PIDP1 controller initially occurs through the pure PID
parameters, i.e. the proportional action coefficient KP, the integral action coefficient
KI and the rate of differentiation KD.

The P, I and D components can be individually disabled while the corresponding
input (KP, KI or KD) is set to 0.

The D component is delayed by the delay time TD_LAG. The D component can
either be formed by the system deviation ERR (D_ON_X = "0") or the controlled
variable PV (D_ON_X = "1"). Should the D component be determined by the
controlled variable PV, then the D component does not cause jumps when reference
variable fluctuations (changes in input SP) occur. In principle, the D component only
affects disturbances and process variances.

YMAX

YMIN

KP P

Y

0

1

D_ON_X

KI I

KD, TD_LAG D

+

+ Operating
mode
control

YMAN

+
YP

+
YD

YI
+

BIAS

QMAX

QMIN

Antiwindup reset

ERR

SP

+

-

PV

ERR
33002211 371

PID_P1: PID controller with parallel structure
Control direction
reversal

The opposite behavior of the controller can be attained by setting input REVERSE
to 1. REVERSE = 0 results in an increased output value when there is a positive
disturbance. REVERSE = 1 results in an decreased output value when there is a
positive disturbance.

Manipulated
variable limiting

The limits YMAX and YMIN retain the output within the prescribed range. Hence,
YMIN ≤ Y ≤ YMAX.

The outputs QMAX and QMIN signal that the output has reached a limit, and thus
been capped.
� QMAX = 1 if Y ≥ YMAX
� QMIN = 1 if Y ≤ YMIN

The upper limit YMAX, limiting the manipulated variable, is to be set higher than the
lower limit YMIN.

Antiwindup reset If manipulated variable limiting takes place, the antiwindup reset should ensure that
the I component "cannot go berserk". Antiwindup measures are taken only for an
active I component. Antiwindup limits are identical to those for manipulated variable
limiting. The antiwindup measures disregard D component values, to avoid being
falsely triggered by D component peaks.

The antiwindup measures correct the I component in such a way that:

Selecting the
controller types

Several controller variants can be selected via the parameters KP, KI and KD.

YMIN YP– BIAS YI YMAX YP– BIAS–≤ ≤–

Controller type KP KI KD

P controller > 0 = 0 = 0

PI controller > 0 > 0 = 0

PD controller > 0 = 0 > 0

PID controller > 0 > 0 > 0

I controller = 0 > 0 = 0
372 33002211

PID_P1: PID controller with parallel structure
Operating modes

Selecting the
operating modes

There are three operating modes which are selected via the parameters MAN and
HALT:

Automatic mode In automatic mode the control output Y is determined through the discrete PID
closed-loop control algorithm, based on the controlled variable PV and reference
variable SP. The control output is limited with YMAX and YMIN. The control limits
are also limits for the Antiwindup reset.

The changeover from automatic to manual is normally not bumpless, since output Y
can take on any value between YMAX and YMIN, and Y goes directly to YMAN at
the changeover.

If the changeover from automatic to manual is to be bumpless in spite of this, there
are two exemplary possibilities shown for a PID1 Controller (see Switching from
automatic to manual, p. 316).

Manual mode In manual mode the manually manipulated value YMAN is passed on directly to the
control output Y. The control output is, however, limited by YMAX and YMIN. Internal
variables will be manipulated in such a manner that the controller changeover from
manual to automatic (with I component enabled) can be bumpless. The control limits
are also limits for the Antiwindup reset.

In this operating mode the D component is automatically set to 0.

Halt mode In halt mode the control output remains unchanged; the function block does not
influence the manipulated variable Y, i.e. Y = Y(old). Internal variables will be
manipulated in such a manner that the component sum corresponds to the control
output, thus allowing the controller to be driven smoothly from its current position
(when the I component is enabled). The control limits are also limits for the
Antiwindup reset.

In this operating mode the D component is automatically set to 0.

Operating mode MAN HALT

Automatic 0 0

Manual 1 0 or 1

Halt 0 1
33002211 373

PID_P1: PID controller with parallel structure
Detailed formulas

Explanation of
formula
variables

Meaning of the variables in the formulae:

Manipulated
variable

The manipulated variable is composed of various terms:

After the summation of the components a manipulated variable limiting takes place
at the output of the sub controller, which means:

System deviation The system deviation is determined as follows:

Variable Meaning

Time differential between the present cycle and the previous cycle

System deviation (SP - PV)

System deviation value from the current sampling step

System deviation value from the previous sampling step

BIAS Disturbance

Value of controlled variable from the current sampling step

Value of controlled variable from the previous sampling step

Y current output (halt mode) or YMAN (manual mode)

YD D component

YI I-component

YP P-component

dt

ERR

ERR new()

ERR old()

PV new()

PV old()

Y YP YI YD BIAS+ + +=

YMIN Y YMAX≤ ≤

If Then

REVERS = 0 ERR = SP - PV

REVERS = 1 ERR = PV - SP
374 33002211

PID_P1: PID controller with parallel structure
Overview to
calculate the
control
components

Following this an overview on the different calculations of the control components in
relation to the gains KP, KI and KD can be found:
� P component YP for manual, halt and automatic modes
� I component YI for automatic mode
� I component YI for manual and halt modes
� D component YD for automatic mode
� D component YD for manual and halt modes

P component YP
for all operating
modes

YP for manual, halt and automatic modes are determined as follows

I component YI
for automatic
mode

YI for automatic mode is determined as follows:

For KI > 0 applies:

For KI = 0 the following applies

The I-component is formed according to the trapazoid rule.

I component YI
for manual and
halt modes

YI for manual, halt and automatic modes is determined as follows:

For KI > 0 applies:

For KI = 0 the following applies

D component YD
for automatic
mode

 YD for automatic mode and cascade is determined as follows:

For KD > 0 and D_ON_X = 0 the following applies:

For KD > 0 and D_ON_X = 1 the following applies:

For KD = 0 the following applies

D component YD
for manual and
halt modes

YD for manual, halt and automatic modes is determined as follows:

YP KP ERR×=

YI new() YI old() KI dt
ERR new() ERR old()+

2
--××+=

YI 0=

YI Y YP BIAS–()–=

YI 0=

YD new()
TD_LAG

dt TD_LAG+
----------------------------------- YD old() KD ERR new() ERR old()–()×+()×=

YD new()
TD_LAG

dt TD_LAG+
----------------------------------- YD old() KD PV old() PV new()–()×+()×=

YD 0=

YD 0=
33002211 375

PID_P1: PID controller with parallel structure
Runtime error

Error message For YMAX < YMIN an Error message appears.
376 33002211

33002211
41

PIP: PIP cascade controller
Overview

At a glance This chapter describes the PIP block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 378

Display 379

Structure diagram of the PIP function block 381

Parametering of the PIP-cascade controller 382

Operating mode 384

Detailed formulas 386

Runtime error 387
377

PIP: PIP cascade controller
Brief description

Function
description

The function block displays a cascade-controller, consisting of a PI-master controller
and a P-sub controller.

The system deviation is formed between the SP reference variable and the PV
controlled variable.

The master controller generates a sub controller setpoint value SP2 through this
system deviation. Due to the difference between SP2 and PV2 the sub controller
generates the manipulated variable Y.

The parameters EN and ENO can be additionally projected.

Properties The function block contains the following properties:
� PI as master controller and P as sub controller
� Manipulated variable limiting
� Antiwindup-Reset for the PI controller
� Operating mode, fixed setpoint control, manual, halt, automatic

Transfer function The transmission function for the controller says:

Proportional
action
coeffiecient

The proportional action coefficient of the master controller is determined as follows:

Controller Transfer function

Master controller (PI-
controller)

Sub controller (P controller)

G s() gain1 1
1

ti s×
------------+

� �
� �×=

G s() gain2=

YP gain1 ERR×=
378 33002211

PIP: PIP cascade controller
Display

Symbol Block display

PIP parameter
description

Block parameter description

PIP

SPREAL

PVREAL
PV2REAL

MODEMode_PIP
PARAPara_PIP
YMANREAL

SP_FIXREAL

OFFREAL

REALY

REALERR

REALSP2

Stat_MAXMINSTATUS

Parameter Data type Meaning

SP REAL Reference variable

PV REAL Controlled variable for the master controller

PV2 REAL Controlled variable for the sub controller (auxiliary
control variable)

MODE Mode_PIP Operating mode

PARA Para_PIP Parameter

YMAN REAL Manual value (of output Y)

SP_FIX REAL Fixed value (reference variable as manual value
for the sub controller)

OFF REAL Offset at the output of the P-controller

Y REAL Manipulated variable

ERR REAL System deviation

SP2 REAL Sub controller setpoint value

STATUS Stat_MAXMIN Status of output Y
33002211 379

PIP: PIP cascade controller
Parameter
description
Mode_PIP

Data structure description

Parameter
description
Para_PIP

Data structure description

Parameter
description
Stat_MAXMIN

Data structure description

Element Data type Meaning

man BOOL "1": Manual mode

halt BOOL "1": Halt mode

fix BOOL "1": Fixed setpoint control

Element Data type Meaning

gain1 REAL Proportional action coefficient (gain) for PI controller

ti TIME PI controller reset time

gain2 REAL Proportional action coefficient (gain) for P controller

ymax REAL Upper limit

ymin REAL Lower limit

Element Data type Meaning

qmax BOOL "1" = Y reached upper limit

qmin BOOL "1" = Y reached lower limit
380 33002211

PIP: PIP cascade controller
Structure diagram of the PIP function block

Structure
diagram

There follows now the structure diagram of the PIP block:

ymax

ymin

SP
+

-

P controller

a)

PV

Y

a)

b)

1

0

man

q_max

q_min

PI controller

gain1, ti

process

ERR

+

+
PV2

1

0

fix

SP2

gain2

SP_FIX

+
+

OFF

b)

Y_MAN
33002211 381

PIP: PIP cascade controller
Parametering of the PIP-cascade controller

Modular mimic
display

Modular mimic display of the PIP-cascade controller

Parametering The structure of the PIP controller is demonstrated in the Modular mimic display,
p. 382 .

The parametering of the function block takes place firstly through the pure PI –
parameter, that is to say the proportional correction value (gainl) and the reset time
(ti).

The I-component can be disabled by setting the ti to zero.

Subsequently the parametering of the P controller takes place through the
proportional correction value gain2.

Manipulated
variable limiting

Manipulated variable limiting takes place at the output of the sub controller, which
means:

ymin ≤ Y ≤ ymax

SP
PI

PV

Y1 SP2
P

PV2

Y S1

S2

process
382 33002211

PIP: PIP cascade controller
Antiwindup-
Reset (PI
controller)

If manipulated variable limiting takes place, the antiwindup reset should make sure
that the integral component of the master controller "is not able to exceed all limits".
The antiwindup measure can only be used if the I-component of the controller is not
disabled.

The antiwindup limits for the PI master controller are adjusted dynamically to the
present system deviation of the sub controller and the ymax and ymin limits.

If manipulated variable limiting takes place, the integral component will be limited as
follows:
� on reaching the upper limit:

� on reaching the lower limit:

YI
ymax OFF–

gain2
-------------------------------- PV+

� �
� � YP–=

YI
ymin OFF–

gain2
------------------------------- PV+

� �
� � YP–=
33002211 383

PIP: PIP cascade controller
Operating mode

Choice of
operating mode

There are four operating mode, which are selected via the elements man, halt and
fix:

Automatic mode In the automatic mode, the control output Y is determined through the PI closed-loop
control, based on the controlled variables PV, PV2 and the reference variables SP,
SP2. The control output is limited through ymax and ymin.

The changeover from automatic to manual is normally not bumpless, since output Y
can take on any value between ymax and ymin, and yet goes directly to YMAN at
the changeover.

If the changeover from automatic to manual is to be bumpless despite these
problems, there are two exemplary possibilities shown for a PID controller (see
Switching from automatic to manual, p. 302).

Manual mode The P controller works in manual mode. The PI controller I component is
manipulated to permit bumpless switching.

In the manual mode the manual manipulated value YMAN is passed on directly to
the control output Y. The control output is, however, limited through ymax and ymin.
the integral component of the master controller is tracked in such a way that the
controller (on connecting to the I-component) can be switched bumplessly from
manual to automatic.

Halt mode In halt mode the control output remains unchanged; the function block does not
influence the control output Y. Halt mode is also useful in allowing an external
operator device to adjust control output Y the internal components are so
manipulated that the controller can be driven smoothly from it’s current position. The
control output is, however, limited through ymax and ymin.

Operating mode man halt fix

Automatic 0 0 0

Hand 1 0 or 1 0

Halt 0 1 0

Fixed setpoint control 0 0 1
384 33002211

PIP: PIP cascade controller
Fixed setpoint
control

In fixed setpoint control mode the P controller works in automatic mode and the PI-
controller works in halt mode.

The fixed setpoint SP_FIX is passed on directly to the control output of the PI
controller Y1 (=SP2). The control output of the PIP controller Y is limited through
ymax and ymin. The integral component of the master controller is tracked in such
a way that the controller (on connecting to the I-component) can be switched
smoothly from fixed setpoint control to automatic.
33002211 385

PIP: PIP cascade controller
Detailed formulas

Explanation of
the formula sizes

Significance of the size in the following formulas:

Overview to
calculate the
control
components

There now follows an overview of the varying calculations on control components
and outputs for the various modes:
� YI, Y, SP2 in the automatic mode
� YI, Y, SP2 in the manual mode
� YI, Y, SP2 in the manual mode
� YI, Y, SP2 in the fixed setpoint control mode

Automatic mode The output signal Y of the cascade controller is:

The input signal SP2 of the sub controller is:

The integral component Y1 of the master controller for the automatic mode is
determined as follows:

The I-component is formed according to the trapazoid rule.

Size Meaning

Time differential between the present cycle and the previous cycle

System deviation (SP - PV)

System deviation value from the current sampling step

System deviation value from the current sampling step

OFF Offset at the output of the P-controller

Y Manipulated variable

Y1 Y of the master controller

YI I-component

YP P-component

dt

ERR

ERR new()

ERR old()

Y SP2 PV2–() gain2× OFF+=

SP2 YP YI+=

YI new() YI old() gain1
dt
ti
-----×

ERR new() ERR old()+

2
--×+=
386 33002211

PIP: PIP cascade controller
Manual mode The output signal Y of the cascade controller is:

The input signal SP2 of the sub controller is:

The integral component Y1 of the master controller for the manual mode is
determined as follows:

Halt mode The output signal Y of the cascade controller is:

The input signal SP2 of the sub controller is:

The integral component Y1 of the master controller for the halt mode is determined
as follows:

Fixed setpoint
control

The output signal Y of the cascade controller is:

The input signal SP2 of the sub controller is:

The integral component Y1 of the master controller for the fixed setpoint control
mode is determined as follows:

Runtime error

Error message An error message, appears if
� an invalid floating point number lies at input PV, PV2, YMAN or SP_FIX.
� is ymax < ymin.

Y YMAN=

SP2
Y OFF–

gain2
---------------------- PV2+=

YI SP2 SP PV–() gain1×–=

Y Y old()=

SP2
Y OFF–

gain2
---------------------- PV2+=

YI SP2 SP PV–() gain1×–=

Y SP2 PV2–() gain2× OFF+=

SP2 SP_FIX=

YI SP2 SP PV–() gain1×–=
33002211 387

PIP: PIP cascade controller
388 33002211

33002211
42

PPI: PPI cascade controller
Overview

At a glance This chapter describes the PPI block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 390

Display 391

Structure diagram of the PPI function block 393

Parametering of the PPI-cascade controller 394

Operating mode 396

Detailed formulas 397

Runtime error 398
389

PPI: PPI cascade controller
Brief description

Function
description

The function block displays a cascade-controller, consisting of a P-master controller
and a PI-sub controller.

The system deviation is formed between the SP reference variable and the PV
controlled variable.

The master controller generates a sub controller setpoint value SP2 through this
system deviation. Due to the difference between SP2 and PV2 the sub controller
generates the manipulated variable Y.

The parameters EN and ENO can be additionally projected.

Properties The function block contains the following properties:
� P as master controller and PI as sub controller
� Manipulated variable limiting
� Antiwindup-Reset for the PI controller
� Operating mode, fixed setpoint control, manual, halt, automatic

Transfer function The transmission function for the controller says:

Proportional
action
coeffiecient

The proportional action coefficient is determined as follows:

Controller Transfer function

Master controller (P-controller)

Sub controller (PI controller)

G s() gain1=

G s() gain2 1
1

ti s×
------------+

� �
� �×=

YP gain2 SP2 PV2–()×=
390 33002211

PPI: PPI cascade controller
Display

Symbol Block display

PIP parameter
description

Block parameter description

PPI

SPREAL

PVREAL
PV2REAL

MODEMode_PIP
PARAPara_PIP

YMANREAL
SP_FIXREAL

OFFREAL

REALY

REALERR

REALSP2

Stat_MAXMINSTATUS

Parameter Data type Meaning

SP REAL Reference variable for the master controller

PV REAL Controlled variable for the master controller

PV2 REAL Controlled variable for the sub controller (auxiliary
control variable)

MODE Mode_PPI Operating mode

PARA Para_PPI Parameter

YMAN REAL Manual value (of output Y)

SP_FIX REAL Fixed value (reference variable as manual value
for the sub controller)

OFF REAL Offset at the output of the P-controller

Y REAL Manipulated variable

ERR REAL System deviation

SP2 REAL Sub controller setpoint value

STATUS Stat_MAXMIN Status of output Y
33002211 391

PPI: PPI cascade controller
Parameter
description
Mode_PPI

Data structure description

Parameter
description
Para_PPI

Data structure description

Parameter
description
Stat_MAXMIN

Data structure description

Element Data type Meaning

man BOOL "1": Manual mode

halt BOOL "1": Halt mode

fix BOOL "1": Fixed setpoint control

Element Data type Meaning

gain1 REAL Proportional action coefficient (gain) for P controller

ti TIME PI controller reset time

gain2 REAL Proportional action coefficient (gain) for PI controller

ymax REAL Upper limit

ymin REAL Lower limit

Element Data type Meaning

qmax BOOL "1" = Y reached upper limit

qmin BOOL "1" = Y reached lower limit
392 33002211

PPI: PPI cascade controller
Structure diagram of the PPI function block

Structure
diagram

There follows now the structure diagram of the PPI block:

b)

ymax

ymin

SP
+

-

P controller

a)

PV

Y

a)

b)

1

0

man

qmax

qmin

PI controller

gain2, ti

process

ERR

+

-
PV2

1

0

fix

SP2

gain1

SP_FIX

+
+

OFF

Y_MAN
33002211 393

PPI: PPI cascade controller
Parametering of the PPI-cascade controller

Modular mimic
display

Modular mimic display of the PPI-cascade controller

Parametering The structure of the PPI controller is demonstrated in the Modular mimic display,
p. 394.

The parametering of the function block takes place firstly through the proportional
correction value (gain1) and the offset for the output of the p-controller.

Subsequently the parametering of the PI controller takes place through the
proportional correction value (gain2) and the reset time (ti).

The I-component can be disabled by setting the ti to zero.

The limits YMAX and YMIN limit the upper output as well as the lower output.

The outputs qmax and qmin signal that the output has reached a limit, and thus been
capped.
� QMAX = 1 if Y ≥ YMAX
� QMIN = 1 if Y ≤ YMIN

Manipulated
variable limiting

After the summation of the components a manipulated variable limiting takes place
at the output of the sub controller, which means: ymin ≤ Y ≤ ymax

SP
P

PV

Y1 SP2
PI

PV2

Y S1

S2

Process
394 33002211

PPI: PPI cascade controller
Antiwindup-
Reset (PI
controller)

If manipulated variable limiting takes place, the antiwindup reset should make sure
that the integral component of the master controller "is not able to exceed all limits".
The antiwindup measure can only be used if the I-component of the sub-controller
is not disabled.

The antiwindup reset takes place if:

Y ≥ ymax or Y ≤ ymin

In this case, it is:

YI = Y - YP
33002211 395

PPI: PPI cascade controller
Operating mode

Choice of
operating mode

There are four operating mode, which are selected via the elements man, halt and
fix:

Automatic mode In the automatic mode, the control output Y is determined through the PI closed-loop
control, based on the controlled variables PV, PV2 and the reference variables SP,
SP2. The control output is limited through ymax and ymin.

The changeover from automatic to manual is normally not bumpless, since output Y
can take on any value between ymax and ymin, and yet goes directly to YMAN at
the changeover.

If the changeover from automatic to manual is to be bumpless despite these
problems, there are two exemplary possibilities shown for a PID controller (see
Switching from automatic to manual, p. 302).

Manual mode In the manual mode the manual manipulated value YMAN is passed on directly to
the control output Y. The control output is, however, limited through ymax and ymin.
The integral sizes of the master controller are tracked in such a way that the
controller (on connecting to the I-component) can be switched bumplessly from
manual to automatic.

Halt mode In halt mode the control output remains unchanged; the function block does not
influence the control output Y. Halt mode is also useful in allowing an external
operator device to adjust control output Y the internal components are so
manipulated that the controller can be driven smoothly from it’s current position. The
control output is, however, limited through ymax and ymin.

Fixed setpoint
control

In this operating mode the fixed setpoint SP_FIX is passed on directly to the setpoint
input of the PI controller (SP2). The PI controller works in the automatic mode.

Operating mode man halt fix

Automatic 0 0 0

Hand 1 0 or 1 0

Halt 0 1 0

Fixed setpoint control 0 0 1
396 33002211

PPI: PPI cascade controller
Detailed formulas

Explanation of
the formula sizes

Significance of the size in the following formulas:

Master controller
output

The output of the master controller is determined as follows:

Overview to
calculate the
control
components

There now follows an overview of the varying calculations on control components
and outputs based on the various modes:
� YI and Y in the automatic mode
� YI, Y, SP2 in the manual mode
� YI, Y and SP2 in the halt mode
� YI, YP, Y and SP2 in the fixed setpoint control mode

Automatic mode The output signal Y of the cascade controller is:

The integral component Y1 of the sub controller for the automatic mode is
determined as follows:

The I-component is formed according to the trapazoid rule.

Size Meaning

present sample time

System deviation (SP - PV)

System deviation (SP2-PV2)

System deviation value from the current sampling step

OFF Offset at the output of the P-controller

Y Manipulated variable

YI I-component

YP P-component

dt

ERR

err2 new()

err2 old()

Y1 SP2 gain1 ERR× OFF+= =

Y YP YI+=

YI new() YI old() gain2
dt
ti
-----×

err2 new() err2 old()+

2
---×+=
33002211 397

PPI: PPI cascade controller
Manual mode The output signal Y of the cascade controller is:

The input signal SP2 of the sub controller is:

The integral component Y1 of the sub controller for the manual mode is determined
as follows:

Halt mode The output signal Y of the cascade controller is:

The input signal SP2 of the sub controller is:

The integral component Y1 of the sub controller for the halt mode is determined as
follows:

Fixed setpoint
control

The output signal Y of the cascade controller is:

The input signal SP2 of the sub controller is:

The integral component Y1 of the sub controller for the fixed setpoint control mode
is determined as follows:

The proportional action coefficient YP is determined as follows:

Runtime error

Error message There is a Error message, if
� an invalid floating point number lies at input PV, PV2, YMAN or SP_FIX.
� is ymax < ymin.

Y YMAN=

SP2 gain1 SP PV–()× OFF+=

YI Y SP2 PV2–() gain2×–=

Y Y old()=

SP2 gain1 SP PV–()× OFF+=

YI Y SP2 PV2–() gain2×–=

Y YP YI+=

SP2 SP_FIX=

YI new() YI old() gain2
dt
ti
-----×

err2 new() err2 old()+

2
---×+=

YP gain2 SP2 PV2–()×=
398 33002211

33002211
43

PWM: Pulse width modulation
Overview

At a glance This chapter describes the PWM block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 400

Display 401

Formulas 402

Detailed description 402

Example for the PWM block 405
399

PWM: Pulse width modulation
Brief description

Block usage Actuators are driven not only by analog quantities, but also through binary actuating
signals. The conversion of analog values into binary output signals is achieved for
example, through pulse width modulation (PWM) or pulse duration modulation
(PDM).

In this context, the preset mean energy level of the actuator is to correspond to the
analog input value (X) of the block.

Function
description

The function block PWM serves to convert analog values into digital output signals
for Concept.

In pulse width modulation (PWM), a 1-signal is emitted, at a constant clock rate, for
a duration that is a function of the analog value. The adjusted average energy
corresponds to the quotient of the fixed duty cycle T_on and the variable cycle
period.

In order that the adjusted average energy also corresponds to the analog input
variable X, the following must apply:

EN and ENO can be projected as additional parameters.

General
information
about the
actuator drive

In general, the binary actuator drive is performed by two binary signals Y_POS and
Y_NEG.

On a motor the output Y_POS corresponds to the signal "clockwise rotation" and the
output Y_NEG the signal "counter-clockwise rotation". For an oven the outputs
Y_POS and Y_NEG could be interpreted as corresponding to "heating" and
"cooling".

Should the actuating drive in question be a motor, it is possible that to avoid
overtravel for non-self-locking gearboxes, a brake pulse must be output after the
engage signal. In order to protect the power electronics, there must be a pause time
after switching on T_on and before the brake impulse t_brake so as to avoid short
circuits.

T_on X∼
400 33002211

PWM: Pulse width modulation
Display

Symbol Block display

PWM parameter
description

Block parameter description

Parameter
description
Para_PWM

Data structure description

PWM

XREAL

RBOOL
PARAPara_PWM

BOOLY_POS

BOOLY_NEG

Parameter Data type Meaning

X REAL Input variable

R BOOL Reset mode ("1" = Reset)

PARA Para_PWM Parameter

Y_POS BOOL Positive X value output

Y_NEG BOOL Negative X value output

Element Data type Meaning

t_period TIME Length of period

t_pause TIME Pause time

t_brake TIME Braking time

t_min TIME Minimum actuating pulse time (in sec)

t_max TIME Maximum actuating pulse time (in sec)

up_pos REAL Upper limiting value for positive X values

up_neg REAL Upper limiting value for negative X values
33002211 401

PWM: Pulse width modulation
Formulas

The pulse length
for Y_POS and
Y_NEG

The pulse length T_on for output Y_pos amd Y_neg is determined by the following
equations:

Parametering
rules

For correct operation the following rules should be observed:
�

� From the parameters up_pos and up_neg only the value is evaluated.

Detailed description

Block mode of
operation

The period determines the time, in which the actuating pulses ("1" signal on output
Y_POS resp. Y_NEG) are regularly output, i.e. in a constant time-slot pattern.

The parameter t_min specifies the minimum pulse length, i.e. the shortest time span
for which the output Y_POS and/or Y_NEG should carry "1" signal. If the length of
impulse calculated according to the equation in the section "Formulas, p. 402" is
shorter than t_min, then there will be no impulse throughout the whole period.

The parameter t_max specifies the minimum pulse length, i.e. the shortest time span
in which the output Y_POS resp. Y_NEG should carry "1" signal. Pulse output length
is then limited to t_max, should the pulse duration calculated by the above stated
formula be greater. It is advisable to perform a freely definable pause time of
t_pause = 10 or 20 ms between the actuating and brake pulses to protect the power
electronics (hopefully preventing simultaneous firing of the antiparallel connected
thyristors).

Parameter t_pause specifies the time interval that should be waited after the "1"
signal on output Y_POS (Y_NEG), before the opposite output Y_NEG (Y_POS)
goes to "1" signal for time span t_brake. The action in question here is a brake
pulse, which should take place after the pause time. A pause time of t_pause = 20
ms (t_pause =0.02) corresponds to an interruption of the firing angle control for two
half waves.

That should guarantee a sufficiently large safety margin for the prevention of short-
circuits resp. triggering of the suppressor circuitry as a consequence of antiparallel
thyristors firing.

Output Formula Condition

Y_POS

Y_NEG

T_on t_period
X

up_pos
-------------------×=

0 X up_pos≤ ≤

T_on t_period
X

up_neg
------------------×=

up_neg X– 0≤ ≤

2 t_pause× t_brake t_max+ +() t_period≤
402 33002211

PWM: Pulse width modulation
Time ratios
display

An overview of the ratios between times is shown in the following diagram:

1 Variable turn-on time

The parameter up_pos mark those positive values of input variable X, for which
output Y_POS would continuously carry "1", assuming:

t_pause = t_brake = 0

and

t_max = t_period.

The parameter up_neg mark those positive values of input variable X, for which
output Y_NEG would continuously carry "1", assuming:

t_pause = t_brake = 0

and

t_max = t_period.

Y_POS

Y_NEG

t

1

0

-1

t_min

t_max

t_pause

t_brake

t_period

T_on 1)
33002211 403

PWM: Pulse width modulation
Time-span
dependency

The dependency of the time duration in which the output Y_POS (Y_NEG) carries a
1-signal, on the input variable X is illustrated in the following diagram (again the
figure has put t_pause = t_brake = 0)

Operating mode In reset mode R = "1", outputs Y_POS and Y_NEG are set to "0" signal. The internal
time meters are also standardized, so that the function block begins the transfer to
R=0 with the output of a new 1 signal on the associated output.

Boundary
conditions

If the PWM block is operated together with a PID controller, then the period t_period
should be so selected, that it corresponds to the PID controller’s scan time. It is then
guaranteed that every new actuating signal from the PID controller within the period
time can be fully processed.

The PDM scan time should be in proportion with the period vs. pulse time. Though
this the smallest possible actuating pulse will be specified.

The following ratio is recommended:

t_period/scan time (PWM) ≥ 10

Y_POS

Y_NEG

t_max

t_min

up_pos
up_neg

t_min

t_max

T_on (Y_NEG) = f(x)

X

T_on (Y_POS) = f(x)
404 33002211

PWM: Pulse width modulation
Example for the PWM block

Overview In the examples, the signal sequences on the outputs Y_POS and Y_NEG are
shown for various X input signal values. The examples differ with respect to their
selected parameter assignments.

The following examples on the PMW function block are to be found in this section
� Step Response 1
� Step Response 2
33002211 405

PWM: Pulse width modulation
Step Response 1 The following parameter specifications apply to the step response 1 display:

Step Response 1 timing diagram

X analog signal

It is easily seen that the time span in which output Y_POS carries "1" signal is
directly proportional to input signal X. In addition, it can be seen that a short Y_NEG-
signal follows every Y_POS signal, and vice versa. This can be attributed to the non-
"0" t_brake parameter. Y_NEG output time span is directly proportional to negative
X input signal values. A short Y_POS pulse as brake pulse also follows the Y_NEG
pulse here as well.

Parameter Settings

t_period 4 s

t_min 0,2 s

t_max 3,8 s

t_pause 0.1 s

t_brake 0.2 s

up_pos 10

up_neg 10

1
0
1
0

1

-5

-10

5

10

X

Y_NEG

Y_POS

Actuating pulse
sequence
406 33002211

PWM: Pulse width modulation
Step Response 2 The following parameter specifications apply to the step response 2 display:

Step Response 2 timing diagram

X analog signal

The difference to the example "step response 1" is, that here the pause and brake
pulses are dropped, as here the appropriate parameters were configured to "0". It is
noticeable that pulses are no longer output for very small X input signals. This is
directly attributable to the effect of time t_min. Moreover a continuous pulse is output
for large X input signals (X = up_pos or up_neg). This is related to having selected
t_max = t_period.

Parameter Settings

t_period 4 s

t_min 0.5 s

t_max 4 s

t_pause 0 s

t_brake 0 s

up_pos 10

up_neg 10

1
0
1
0

1

-5

-10

5

10

X

Y_NEG

Y_POS

Actuating pulse
sequence
33002211 407

PWM: Pulse width modulation
408 33002211

33002211
44

PWM1: Pulse width modulation
Overview

At a glance This chapter describes the PWM1 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 410

Presentation 411

Formulas 412

Detailed description 413

Example of the PWM1 block 415
409

PWM1: Pulse width modulation
Brief description

Use of block Actuators are driven not only by analog quantities, but also through binary actuating
signals.

The actuator adjusted average energy (actuator energy) should be in accord with
the modulation block's analog input value (IN).

Function
description

The function block PWM1 serves to convert analog values into digital output signals
for Concept.

In the pulse width modulation (PWM1) a "1" signal of variable persistence
proportional to the analog value X is output within a fixed cycle period. The adjusted
average energy corresponds to the quotient of the duty cycle T_on and the cycle
time t_period.

In order that the adjusted average energy also corresponds to the analog input
variable IN, the following must apply:

EN and ENO can be projected as additional parameters.

General
information
about the
actuator drive

In general, the binary actuator drive is carried out by two binary signals OUT_POS
and OUT_NEG. On a motor the output OUT_POS corresponds to the signal
"clockwise rotation" and the output OUT_NEG the signal "counter-clockwise
rotation". For an oven the outputs OUT_POS and OUT_NEG could be interpreted
as corresponding to "heating" and "cooling".

T_on IN∼
410 33002211

PWM1: Pulse width modulation
Presentation

Symbol Block display

PWM1 parameter
description

Block parameter description

Parameter
description
Para_PWM1

Data structure description

PWM1

INREAL

RSTBOOL
PARAPara_PWM1

BOOLOUT_NEG

BOOLOUT_POS

Parameter Data type Meaning

IN REAL Input variable

RST BOOL Reset mode ("1" = Reset)

PARA Para_PWM1 Parameter

OUT_NEG BOOL Negative IN-value output

OUT_POS BOOL Positive IN value output

Element Data type Meaning

t_period TIME Length of period

t_min TIME Minimum actuating pulse time

in_max REAL Upper limiting value for positive/negative IN values
33002211 411

PWM1: Pulse width modulation
Formulas

The pulse length
for OUT_POS
and OUT_NEG

The pulse length T_on for output OUT_pos and OUT_neg is determined by the
following formulas:

Parametering
rules

For correct operation the following rules should be observed:

t_min ≤ t_period

Output Equation Condition

OUT_POS

OUT_NEG

T_on t_period
IN

in_max
------------------×=

0 IN in_max≤ ≤

T_on t_period
IN

in_max
------------------×=

0 IN– in_max≤ ≤
412 33002211

PWM1: Pulse width modulation
Detailed description

Block mode of
operation

The period duration determines the time during which the actuating pulses (1-
signals at the output OUT_POS or OUT_NEG) are output at regular intervals, i.e.
within a constant time-slot pattern.

 The parameter t_min specifies the minimum pulse length, i.e. the shortest time span
for which the output Y_POS and/or Y_NEG should carry "1" signal. If the length of
impulse calculated according to the equation in the section "Formulas, p. 412" is
shorter than t_min, then there will be no impulse throughout the whole period.

Time ratios
display

An overview of the ratios between times is shown in the following diagram:

1 Variable turn-on time

The parameter in_max marks those positive values of input variable IN, for which
output OUT_POS would continuously carry "1".

OUT_POS

OUT_NEG

t

1

0

-1

t_min

t_period

T_on 1)
33002211 413

PWM1: Pulse width modulation
Time-span
dependency

The dependency of the time duration in which the output OUT_POS (OUT_NEG)
carries a 1-Signal, on the input variable IN is illustrated in the following diagram:

Operating mode In reset mode RST = 1, outputs OUT_POS and OUT_NEG are set to "0" signal. The
internal time meters are normalized as well so that the function block begins its
transition to RST=0 with the output of a new 1-signal on the associated output.

Boundary
conditions

If the PWM1 block is operated together with a PID controller, then the period
t_period should be so selected, that it corresponds to the PID controller’s scan time.
It is then guaranteed that every new actuating signal from the PID controller within
the period time can be fully processed.

The PWM1 scan time should be in proportion with the period vs. pulse time. Though
this, the smallest possible actuating pulse is be determined.

The following ratio is recommended:

t_period/scan time (PWM1) ≥ 10

OUT_POS

OUT_NEG

t_period

t_min

in_max
-in_max

t_min

t_period

T_on (OUT_NEG)=f(in)

IN

T_on (OUT_POS)=f(in)
414 33002211

PWM1: Pulse width modulation
Example of the PWM1 block

Step response In the examples, the signal sequences on the outputs OUT_POS and OUT_NEG
are shown for various IN input signal values.

The following parameter specifications apply to the step response display:

Step response timing diagram

IN analog signal

It is noticeable that pulses are no longer output for very small IN input signals. This
is directly attributable to the effect of time t_min. A continuous pulse is output for
large IN (IN=in_max) signals.

Parameter Settings

t_period 4 s

t_min 0,5 s

in_max 10

1
0
1
0

1

-5

-10

5

10

IN

OUT_NEG

OUT_POS

Actuating pulse
sequence
33002211 415

PWM1: Pulse width modulation
416 33002211

33002211
45

QDTIME: Deadtime device
Overview

At a glance This chapter describes the QDTIME block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 418

Representation 419

Detailed description 420
417

QDTIME: Deadtime device
Brief description

Function
description

With this function block the input signal is delayed by deadtime.

The function block delays the signal IN by the deadtime T_DELAY, before it is
transmitted to OUT again.

The function block has a delay-puffer for 128 elements (IN-VALUES), i.e. 128 IN-
Values can be saved during the T_DELAY time. The puffer is used in such a way
that it corresponds with the operating mode.

Whether the system is started cold or warm, the value of OUT remains unchanged.
The internal values are set to the value of IN.

After the system has been started cold or warm or a change has been made to the
deadtime T_DELAY, the READY will be "0". This means: that the Puffer is empty
and not ready.

The function block has both a tracking and automatic mode.

EN and ENO can be projected as additional parameters.
418 33002211

QDTIME: Deadtime device
Representation

Symbol Block representation

Parameter
Description

Block parameter description

QDTIME

INREAL

T_DEALYTIME

TR_IREAL
TR_SBOOL

REALOUT

BOOLREADY

Parameter Data type Meaning

IN REAL Input value

T_DELAY TIME Deadtime

TR_I REAL Initialization input

TR_S BOOL Initialization type
"1" = Operating mode Tracking
"0" = Automatic operating mode

OUT REAL Output

READY BOOL "1" = internal buffer is full
"0" = internal buffer is not full (e.g. after warm/cold
start or alteration to dead-time)
33002211 419

QDTIME: Deadtime device
Detailed description

Selecting the
operating modes

There are two operating modes, which can be selected via the input TR_S:

Automatic mode In the automatic operating mode, the function block works according to the following
rules:

Example of cycle
time > 128

The following values are accepted:

Cycle time = 100 ms

T_DELAY = 10 s

tin = T_DELAY / 128 = 78 ms

As tin (reading time) is shorter than the cycle time, every IN value is accepted in the
buffer. On the fourth performance of the function block (after 400 ms) the IN value
will be saved twice rather than once (because 3 x 78 = 312 and 4 x 78 = 390).

Tracking mode In the tracking mode, the tracking value TR_I is transmitted permanently to the
output OUT. The internal buffer is filled with the tracking value TR_1. The buffer is
marked as full (READY =1).

Operating mode TR_S

Automatic 0

Tracking 1

If… Then…

Cycle time > T_DELAY/128 If the current IN-value is transferred to the
buffer, the oldest IN-value will be displayed
on the output OUT. In this case the solution
is smaller than 128 and there is a systematic
error, i.e. some IN values are saved twice
(see also example).

Cycle time < T_DELAY/128 not all IN values can be contained in the
buffer. In this case the IN value is not saved
in some cycles and OUT remains unchanged
in this cycle.
420 33002211

QDTIME: Deadtime device
Example of the
behavior of the
QDTIME

The diagram shows an example of the behavior of the function block. The input IN
changes, in the form of a ramp, from one value to a new value and the output OUT
follows the input IN, delayed by the deadtime T_DELAY.

Diagram of the QDTIME function block

T_DELAY

OUT IN
33002211 421

QDTIME: Deadtime device
422 33002211

33002211
46

QPWM: Pulse width modulation
(simple)
Overview

At a glance This chapter describes the QPWM block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 424

Representation 425

Formulae 426

Detailed description 427

Example for the QPWM block 429
423

QPWM: Pulse width modulation (simple)
Brief description

Use of block Actuators are driven not only by analog quantities, but also through binary actuating
signals. The conversion of analog values into binary output signals is achieved for
example, through pulse width modulation (QPWM) or pulse duration modulation
(PDM).

The actuator adjusted average energy (actuator energy) should be in accord with
the modulation block's analog input value (X).

Function
description

The function block QPWM serves to convert analog values into digital output
signals.

In the pulse width modulation (QPWM) a "1" signal of variable persistence
proportional to the analog value X is output within a fixed cycle period. The adjusted
average energy corresponds to the quotient of the duty cycle T_on and the cycle
time t_period.

In order that the adjusted average energy also corresponds to the analog input
variable X, the following must apply:

As additional parameters, EN and ENO can be projected.

General
information
about the
actuator drive

In general, the binary actuator drive is carried out by two binary signals Y_POS and
Y_NEG.

On a motor the output Y_POS corresponds to the signal "clockwise rotation" and the
output Y_NEG the signal "counter-clockwise rotation". For an oven the outputs
Y_POS and Y_NEG could be interpreted as corresponding to "heating" and
"cooling".

T_on X∼
424 33002211

QPWM: Pulse width modulation (simple)
Representation

Symbol Block representation

QPWM
parameter
description

Block parameter description

Parameter
description
Para_QPWM

Data structure description

QPWM

XREAL
RBOOL

PARAPara_QPWM

BOOLY_POS

BOOLY_NEG

Parameter Data type Meaning

X REAL Input variable

R BOOL Reset mode ("1" = Reset)

PARA Para_QPWM Parameter

Y_POS BOOL Positive X value output

Y_NEG BOOL Negative X value output

Element Data type Meaning

t_period TIME Period

t_min TIME Minimum actuating pulse time

x_max REAL Upper threshold for positive/negative X values
33002211 425

QPWM: Pulse width modulation (simple)
Formulae

The pulse length
for Y_POS and
Y_NEG

The pulse length T_on for output Y_pos amd Y_neg is determined by the following
equations:

Parametering
rules

For correct operation the following rules should be observed:

t_min ≤ t_period

Output Formula Condition

Y_POS

Y_NEG

T_on t_period
X

x_max
----------------×=

0 X x_max≤ ≤

T_on t_period
X

x_max
----------------×=

0 X– x_max≤ ≤
426 33002211

QPWM: Pulse width modulation (simple)
Detailed description

Block mode of
operation

The period determines the time, in which the actuating pulses ("1" signal on output
Y_POS resp. Y_NEG) are regularly output, i.e. in a constant time-slot pattern.

The parameter t_min specifies the minimum pulse length, i.e. the shortest time span
for which the output Y_POS and/or Y_NEG should carry "1" signal. If the length of
impulse calculated according to the equation in the section "Formulae, p. 426" is
shorter than t_min, then there will be no impulse throughout the whole period.

Time ratios
display

An overview of the ratios between times is shown in the following diagram:

1 Variable turn-on time

The parameters x_max mark the point of input variable X, with which the output
Y_POS would continuously carry "1" signal, when the input variable X is positive.

Y_POS

Y_NEG

t

1

0

-1

t_min

t_period

T_on 1)
33002211 427

QPWM: Pulse width modulation (simple)
Time-span
dependency

The dependency of the time duration in which the output Y_POS (Y_NEG) carries a
1 signal; the input variable X is illustrated in the following diagram :

Operating mode In reset mode R = "1", outputs Y_POS and Y_NEG are set to "0" signal. The internal
time meters are also standardized, so that the function block begins the transfer to
R=0 with the output of a new 1 signal on the associated output.

Boundary
conditions

If the QPWM block is operated together with a PID controller, then the period
t_period should be selected, so that it corresponds to the PID controller's scan time.
It is then guaranteed that every new actuating signal from the PID controller within
the period time can be fully processed.

The QPWM scan time should be in proportion with period vs. pulse time, Though
this, the smallest possible actuating pulse is be determined.

The following ratio is recommended:

t_period/scan time (QPWM) ≥ 10

Y_POS

Y_NEG

t_period

t_min

x_max
-x_max

t_min

t_period

T_on (Y_NEG) = f(x)

X

T_on (Y_POS) = f(x)
428 33002211

QPWM: Pulse width modulation (simple)
Example for the QPWM block

Jump response In the example, the signal sequences on the outputs Y_POS and Y_NEG are shown
for various X input signal values.

The following parameter specifications apply to the jump response display:

Step response timing diagram

X Analog signal

It is noticeable that pulses are no longer output for very small X input signals. This
is directly attributable to the effect of time t_min. A continuous pulse is output for
large X (X=x_max) signals.

Parameter Specifications

t_period 4 s

t_min 0.5 s

x_max 10

1
0
1
0

1

-5

-10

5

10

X

Y_NEG

Y_POS

Actuating pulse
sequence
33002211 429

QPWM: Pulse width modulation (simple)
430 33002211

33002211
47

RAMP: Ramp generator
Overview

At a glance This chapter describes the RAMP block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 432

Representation 432

Detailed description 433

Runtime error 435
431

RAMP: Ramp generator
Brief description

Function
description

The Function block RAMP makes it possible to move in ramp-type fashion from an
initial setpoint value to a particular target value. The gradients of positive and
negative ramps can vary.

A signal (DONE output) indicates the user, whether a target value has already been
reached or if the ramp had been implemented.

EN and ENO can be configured as additional parameters.

Representation

Symbol Block representation

RAMP parameter
description

Block parameter description

Parameter
description
Para_RAMP

Data structure description

RAMP

RSPREAL

PARAPara_RAMP
TR_IREAL
TR_SBOOL

REALSP

BOOLDONE

WORDSTATUS

Parameter Data type Meaning

RSP REAL Target value of the ramp

PARA Para_RAMP Parameter

TR_I REAL Initial value of the ramp

TR_S BOOL Initialization command of the ramp

SP REAL Output

DONE BOOL "1": the target value has been reached
"0": the ramp function has been executed

STATUS WORD Status word

Element Data type Meaning

inc_rate REAL Positive gradient in units per second (≥0)

dec_rate REAL Negative gradient in units per second (≥0)
432 33002211

RAMP: Ramp generator
Detailed description

Parametering If the value given on input (RSP) exceeds the current value of the SP_output, the
function block increases the value of the output with the velocity inc_rate by as much
as is necessary for the SP value to reach the RSP value. If the inc_rate is zero, the
ramp function will not be executed and the SP is identical to the RSP.

If the given value on input falls below the current value of SP, the function block
lowers the value of SP with the velocity dec_rate. If the dec_rate is zero, the ramp
function will not be executed and SP is exactly the same as RSP.

If the value of RSP changes whilst the ramp is being generated, the function block
immediately attempts to reach this new target value. The ramp function, which is
running simultaneously, either continues or changes its direction.

Operating modes The tracking operation (TR_S = 1) allows for an initial value to be assigned to the
SP output. They are as follows:

DONE display The DONE output goes above 1, if a ramp function has just been completed. It will
be reset to zero, when a new ramp begins or when the function block is switched to
tracking mode.

Step Action

1 TR_I set to the desired initial value.

2 When TR_S is set to 1, the TR_I input will continue to be executed at SP.
Note: In the tracking mode (TR_S = 1) the DONE-output remains permanently
at zero.

3 If TR_S is set to zero, the function block resumes normal operation: The SP
constantly approaches the RSP, where the value describes a ramp.
33002211 433

RAMP: Ramp generator
Timing diagram RAMP block timing diagram

1 Initialization: SP = TR_I
2 Increasing ramp = inc_rate
3 Decreasing ramp = dec_rate

RSP

0

SP

DONE

TR_S

0

0

2 31
434 33002211

RAMP: Ramp generator
Runtime error

Status word The following messages are displayed in the status word:

Error message An error is signaled if a non floating value is inputted or if there is a problem with a
floating point calculation. In this case the outputs SP and DONE remain unmodified.

Warning A warning appears in the following cases:
� The parameter inc_rate is negative: the function block uses the value 0 instead

of the faulty value of inc_rate.
� The parameter dec_rate is negative: the function block uses the value 0 instead

of the faulty value of dec_rate.

Bit Meaning

Bit 0 = 1 Error in a calculation using floating point values

Bit 1= 1 Recording of an invalid value on one of the floating point value inputs

Bit 2= 1 Division by zero during a calculation with floating point values

Bit 3 = 1 Capacity overflow during a calculation using floating point values

Bit 4 = 1 One of the following variables is negative: inc_rate, dec_rate.
For calculation, the function block uses the value 0.
33002211 435

RAMP: Ramp generator
436 33002211

33002211
48

RATIO: Ratio controller
Overview

At a glance This chapter describes the RATIO block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 438

Representation 439

Detailed description 440

Runtime error 442
437

RATIO: Ratio controller
Brief description

Function
description

TheFunction block RATIO executes ratio control when it is attached to a controller.

The aim of ratio control is to establish a ratio of one process variable PV (controlled
variable) to another PV_TRACK (reference variable). The role of the RATIO function
block is to calculate the Control setpoint corresponding to the control variable.

EN and ENO can be configured as additional parameters.

Properties The function block has the following properties:
� The ratio can be controlled remotely (RK) or locally (K).
� Upper and lower threshold for K or RK
� Upper and lower threshold for the calculated setpoint SP
� Calculation of the real ratio: KACT = (PV - bias) / PV_TRACK

Formula Calculation of the control setpoint

SP K PV_TRACK× bias+=
438 33002211

RATIO: Ratio controller
Representation

Symbol Block representation

RATIO parameter
description

Block parameter description

Parameter
description
Para_RATIO

Data structure description

RATIO

PVREAL

PV_TRACKREAL

RKREAL

K_RKBOOL
KREAL

PARAPara_RATIO

REALKACT

REALSP

WORDSTATUS

Parameter Data type Meaning

PV REAL Process value regulated by the control loop (only
used to calculate KACT)

PV_TRACK REAL Reference variable of the control loop

RK REAL Remote relationship coefficient

K_RK BOOL Coefficient type for ratio used
"1": remote ratio RK
"0": local ratio K

K REAL Coefficient for local ratio

PARA Para_RATIO Parameter

KACT REAL Coefficient for real ratio

SP REAL Calculated output

STATUS WORD Status word

Element Data type Meaning

k_min REAL Lower threshold with K or RK ratio

k_max REAL Upper threshold with K or RK ratio

sp_min REAL Lower threshold of the calculated output SP

sp_max REAL Upper threshold of the calculated output SP

bias REAL Offset coefficient
33002211 439

RATIO: Ratio controller
Detailed description

Structure
diagram

Structure diagram of the RATIO function block

k_max

k_min
RK

K_RK

K

X

PV_TRACK

bias
+

+

sp_max

sp_min

SP
440 33002211

RATIO: Ratio controller
Application The RATIO function block is upstream of a ratio controller. Its function is to calculate
the remote setpoint SP of one of the controllers upgraded subsequently. The ratio
controller must consist of the function blocks RATIO, SP_SEL and a controller.

Generally, this type of controller is used to regulate a flow in relation to another
measured flow; it observes a specific ratio K between the two flow amounts.

Representation of the ratio controller

RATIO

KACT

STATUS

PV

PV_TRACKPV_FC15

RKREMOTE_K

K_RKREMOTE_LOCAL

KLOCAL_K

PARA

SP_FC14 (1)

SP

PV_FC14

PARA_SP_FC14

PIDFF

OUT_FC14OUTPV

SP

FF

RCPY

MAN_AUTOMAN_AUTO_FC14

PARA

FC14 (2)

OUTD

PV_FC14

PARA_FC14

MA_O

STATUS

INFO

TR_I

TR_S

OUTP

PV
33002211 441

RATIO: Ratio controller
Runtime error

Status word The following messages are displayed in the status word:

Error message The error appears if a non floating value is inputted or if there is a problem with a
floating point calculation. The outputs KACT and SP remain unmodified.

Bit Meaning

Bit 0 = 1 Error in a calculation using floating point values

Bit 1= 1 Recording of an invalid value on one of the floating point value inputs

Bit 2= 1 Division by zero during a calculation with floating point values

Bit 3 = 1 Capacity overflow during a calculation using floating point values

Bit 4 = 1 The input K (or RK) is outside the range [k_min, k_max]: For calculation the
function block uses the value k_min or k_max.

Bit 5 = 1 The output SP has reached the lower threshold sp_min. SP is limited to
sp_min

Bit 6 = 1 The output SP has reached the upper threshold sp_max. SP is limited to
sp_max
442 33002211

33002211
49

SCALING: Scaling
Overview

At a glance This chapter describes the SCALING block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 444

Representation 444

Parametering 445

Runtime error 446
443

SCALING: Scaling
Brief description

Function
description

This function block can be used to change the size of a numerical variable.

As additional parameters, EN and ENO can be projected.

Formula The function block carries out the following calculation:

Representation

Symbol Block representation

Parameter
description
SCALING

Block parameter description

Parameter
description
Para_SCALING

Data structure description

OUT IN in_min–() out_max out_min–()
in_max in_min–()

--× out_min+=

SCALING

INREAL
PARAPara-SCALING

REALOUT

WORDSTATUS

Parameter Data type Meaning

IN REAL Numerical variable to be scaled

PARA Para_SCALING Parameter

OUT REAL Scaled output value

STATUS WORD Status word

Element Data type Meaning

in_min REAL Lower limit of the input scale

in_max REAL Upper limit of the input scale

out_min REAL Lower limit of the output scale

out_max REAL Upper limit of the output scale

clip BOOL "1": the value of the OUT output is limited by
out_min and out_max.
444 33002211

SCALING: Scaling
Parametering

Without output
limiting (clip = 0)

If the clip parameter is set to 0, then the scaling is independent of the value of the
IN input.

With output
limiting (clip = 1)

If the clip parameter is set to 1, then the scaling takes place within the range [in_min
, in_max]. Outside this range, the output will be limited by the values out_min und
out_max.

Modifying the
rise direction

It is possible to alter the rise direction of the numerical input variables, by setting
out_max to a lower value than out_min.

OUT

0

out_min

out_max

in_min in_maxIN IN

OUT

0

out_min

out_max

in_min in_maxIN IN

OUT

out_max

out_min

IN
0

in_min in_maxIN
33002211 445

SCALING: Scaling
Runtime error

Status word The following messages are displayed in the status word:

Error message An error appears in the following cases:
� A non-floating value is on an input.
� A problem occurs during a calculation with floating point values.
� If in_min = in_max

In these cases, the OUT output remains unchanged.

Bit Meaning

Bit 0 = 1 Error in a calculation with floating point values

Bit 1= 1 Invalid value recorded at one of the floating point value inputs

Bit 2= 1 Division by zero during a calculation with floating point values

Bit 3 = 1 Capacity overflow for a calculation with floating point values

Bit 4 = 1 The clip parameter is set to 1 and the input IN is outside this range [in_min,
in_max]: for calculation the function block requires the values in_min and
in_max.

Bit 7 = 1 The parameter in_min is equal to in_max
446 33002211

33002211
50

SCON3: Three step controller
Overview

At a glance This chapter describes the SCON3 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 448

Representation 449

Detailed description 450

Runtime error 452
447

SCON3: Three step controller
Brief description

Function
description

The function block replicates a three-point step-action controller, and exhibits a
PD-like behavior due to a dynamic feedback path.

As additional parameters, EN and ENO can be projected.

Properties The function block SCON3 contains the following properties:
� Reset and automatic operating modes
� One internal feedback path (1st Degree Delay)
448 33002211

SCON3: Three step controller
Representation

Symbol Block representation

Parameter
description
SCON3

Block parameter description

Parameter
description
Para_SCON3

Data structure description

SCON3

SPREAL

PVREAL

PARAPara_SCON3

RBOOL

BOOLY_POS

BOOLY_NEG

REALERR_EFF

Parameter Data type Meaning

SP REAL Setpoint input

PV REAL Process value input

PARA Para_SCON3 Parameter

R BOOL Reset mode ("1" = Reset)

ERR_EFF REAL Effective switching value

Y_POS BOOL "1" = positive manipulated variable at output
ERR_EFF

Y_NEG BOOL "1" = negative manipulated variable at output
ERR_EFF

Element Data type Meaning

gain REAL Proportional action coefficient (gain)

ti TIME Reset time

t_proc TIME Nominal floating time of the controlled valve

hys REAL Three-point switch hysteresis

db REAL Dead zone
33002211 449

SCON3: Three step controller
Detailed description

Structure of the
controller

Structure of the three-point controller:

Y_POS and Y_NEG output dependency on size Y:

Size K meaning

If… Then…

Y = 1 Y_POS = 1
Y_NEG = 0

Y = 0 Y_POS = 0
Y_NEG = 0

Y = -1 Y_POS = 0
Y_NEG = 1

G s() K
1 ti s×+
---------------------=

ERR_EFF
+

-

+

-

SP

PV

Y

Xr

Y_POS

Y_NEG

K
ti

t_proc gain×
----------------------------------=
450 33002211

SCON3: Three step controller
Principle of the
three-point
controller

The actual three-point controller will have a dynamic reset (PT1-element) added. By
appropriately choosing the time constants (ti and t_proc) of these feedback
elements, the three-point controller exhibits a dynamic behavior corresponding to
that of a PID controller.

The parameter gain must be greater than zero.

Dead zone Parameter db determines the turn-on point for the outputs Y_POS and Y_NEG.
Output Y_POS/Y_NEG goes from "0" to "1" when the absolute value of positive/
negative effective error ERR_EFF becomes greater than db. If the effective switch
value ERR_EFF is negative and is smaller than -DB, then the output Y_NEG will
switch from "0" to "1". The parameter db is typically set to 1% of the maximum
control range [max. (SP - PV)].

Hysteresis The parameter hys specifies the hysteresis "bandwidth" extending below db,
beneath which the absolute value of positive/negative effective error ERR_EFF
must pass, to trigger output Y_POS/Y_NEG being reset back to "0". The connection
between Y_POS and Y_NEG depending on the effective switch value ERR_EFF
and the parameters DB and HYS Is illustrated in the image Principle of the three-
point controller, p. 451. The parameter hys is typically set to 0.5% of the maximum
control range [max. (SP - PV)].

db
ERR_EFF

0

1

-1

hys

Y_POS

db

hys
Y_NEG

ERR_EFF
+

-

Xr

+

-

SP

PV

Y_POS

Y_NEG

Note: The amount is evaluated from the dead zone DB

Note: The amount is evaluated from the hysteresis HYS
33002211 451

SCON3: Three step controller
Behavior with
faulty time
constants

Should the time constant ti = 0 or the proportional action coefficient gain ≤ 0
(configuration error), the block will still continue to operate. The functions feedback
path is disabled however, so that the block operates as a conventional three-point
switch.

If the time constant t_proc = 0 (configuration error), the block will still continue to
operate. In this case T_PROC is set to a predetermined value of T_PROC = 60s
(60 000 msec).

Operating modes There are two operating modes selectable through the R parameter input:

Runtime error

Error message With hys > 2 * db, an Error Messageappears.

Warning In the following cases there will be a Warning:
� GAIN ≤ 0 : the controller operates without feedback response.
� TI = 0 the controller operates without feedback response.
� T_PROC = 0 the controller operates with a predetermined value of

T_PROC = 60s.

Operating mode R Meaning

Automatic 0 The Function block will be handled as described previously.

Reset 1 The internal value of the feedback element is set to SP – PV.
The outputs Y_POS and Y_NEG are both set to "0".
452 33002211

33002211
51

SERVO: Control for electric servo
motors
Overview

At a glance This chapter describes the SERVO block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 454

Representation 455

Parametering 456

SERVO function block algorithms 458

Operating mode 459

Examples of function block SERVO 459

Runtime error 466
453

SERVO: Control for electric server motors
Brief description

Function
description

This function block enables PID control of electric servo motors with or without
positional feedback. The function block can be switched to be the controller (PIDFF,
PI_B) so that the digital outputs become the two logical outputs RAISE and LOWER.

If the function block uses positional feedback, then positioning controlling of the
actuator will be performed. If positional feedback is not being used, the controller
and the servo function block operate a continuous static control together.

As additional parameters, EN and ENO can be projected.
454 33002211

SERVO: Control for electric server motors
Representation

Symbol Block representation

Parameter
description
SERVO

Block parameter description

SERVO

SENBOOL

INREAL
INPDREAL

MA_IBOOL

RCPYREAL

RSTBOOL
R_STOPBOOL

L_STOPBOOL

PARAPara_SERVO

BOOLRAISE

BOOLLOWER

WORDSTATUS

Parameter Data type Meaning

SEN BOOL "1" : Including a new value at the INPD or IN inputs
"0" : no inclusion of the new values of INPD or IN

IN REAL Control output OUT (0 to 100%)

INPD REAL Output alteration OUTD of the controller (-100% to
100%)

MA_I BOOL Control operating mode (Output MA_O)
"1" : Automatic mode
"0" : Manual or tracking mode

RCPY REAL Positional feedback (0 to 100%)

RST BOOL "1" : Reinitialization of the function block (resetting
outputs and the internal function block status)

R_STOP BOOL End position RAISE reached

L_STOP BOOL End position LOWER reached

PARA Para_SERVO Parameter

RAISE BOOL Logical output in the direction RAISE

LOWER BOOL Logical output in the direction LOWER

STATUS WORD Status word
33002211 455

SERVO: Control for electric server motors
Parameter
description
Para_SERVO

Data structure description

Parametering

Parametering
overview

The following function block modes are explained in sequence:
� With positional feedback (en_rcpy = 1), p. 456
� Without positional feedback (en_rcpy = 0), p. 456
� Actuator opening time (t_motor), p. 457
� Minimum impulse length (t_mini), p. 457
� Sweep / parameter SEN, p. 457
� Recording the end position, p. 457

With positional
feedback
(en_rcpy = 1)

If the positional feedback RCPY (en_rcpy = 1) is used, the input IN must be attached
to the absolute value output OUT of a controller (control range 0 to 100%). For each
new value for output OUT generated by the controller the SERVO function block
generates a discrete output RAISE or LOWER whose length is proportional to the
variance IN - RCPY. To guarantee that the function block operates correctly, the
input MA_I must be attached to the controller’s MA_O output.

The RCPY input value can correspond to an opening percentage (with rcpy_rev =
0) or a closing percentage (rcpy_rev set to 1).

Without
positional
feedback
(en_rcpy = 0)

If no positional feedback is assigned (en_rcpy = 0) the INPD input should be
attached to a controller’s output alteration OUTD (control range -100 to 100%). For
each new OUTD value generated by the controller, the function block SERVO
generates a discrete output RAISE or LOWER whose length is proportional to the
output length of the controller INPD. In this case it is essential that the input MA_I is
attached to the same controller’s MA_O output because the algorithm varies slightly
for each operating mode (see section "SERVO function block algorithms, p. 458").

Element Data type Meaning

en_rcpy BOOL "1" : Function with positional feedback (including
RCPY)

rcpy_rev BOOL "1" : Inversion of RCPY
"0" : no inversion of RCPY

t_motor TIME Actuator opening time

t_mini TIME Minimum impulse length
456 33002211

SERVO: Control for electric server motors
Actuator
opening time
(t_motor)

The parameter t_motor enables the function block to be set to the various
servomotors.

The RAISE or LOWER pulse duration to be switched must be proportional to the
actuator opening time with full control range.

Minimum
impulse length
(t_mini)

Use the t_mini parameter to avoid generation of pulses which are too short and can
damage the actuator. If the RAISE or LOWER pulse length is calculated to be below
t_mini the function block does not generate a pulse. Every pulse which has already
commenced lasts at least t_mini.

Sweep /
parameter SEN

In automatic mode the resolution of the control performed using the SERVO function
block is expressed by the ratio (servoloop sampling period / SERVO function block
execution period).

This means the controller must be sampled before the SERVO function block (using
a SAMPLETM function block). The SERVO function block must, however, be
executed every cycle. In the opposite case (if the control block is executed at the
same time as the SERVO block) an inexact two point control, which the actuator
makes great use of, is performed.

The SEN input of the SERVO function block indicates whether or not the PID control
block was executed while the cycle was running.

The SEN input allows determination of whether or not the controller generated a new
output so that the same output is not considered several times.

If the controller samples using the function block SAMPLETM, as is the usual case,
it suffices to attach the SERVO block’s SEN input to the SAMPLETM output (see
section "Examples of function block SERVO, p. 459").

Recording the
end position

If an end position is gathered (R_STOP = 1 or L_STOP = 1), the corresponding
output (RAISE or LOWER) is forced to 0.

SEN = Meaning

1 Including a new value

0 no inclusion of a new value
33002211 457

SERVO: Control for electric server motors
SERVO function block algorithms

Algorithm
without
positional
feedback

In this case the SERVO function block assigned to the controller allows astatic
control. The algorithm uses the output alteration OUTD rather than the controller’s
absolute value output OUT The output RAISE (or LOWER, depending on the
modification sign) is set to 1 for a certain time. This time is proportional to the valve
opening time (t_motor) and the modification value OUTD.

The formula enters an initial theoretical value for the length of the pulse (T_IMP) to
be sent to the output:

The following still applies for T_IMP (the length of the pulse sent to the output):

Algorithm with
positional
feedback

The algorithm is very similar to the previous case.

In place of the PID controller output modification the SERVO function block uses the
variance between the PID controller absolute value output and the positional
feedback (IN - RCPY).

Positioning controlling, in which the PID controller output corresponds to the nominal
value and the positional feedback RCPY to the process value, is performed by the
function block.

In contrast to the algorithm without positional feedback, in manual mode the function
block stores the time periods, which were calculated previously, but are not yet
locked onto the RAISE and LOWER outputs.

If… Then…

T_IMP < t_mini the block does not generate a pulse, but stores the value for the next
calculation. This allows correct processing of control applications in
which the controller’s output modifications are weak but continuous.
To ensure that pulses which are too short are not generated, the
pulses to be sent to the output are limited to a minimum length t_mini.

the PID controller is in
manual mode,

T_IMP is calculated continuously at every cycle. The calculation
takes into consideration the time periods with a limit of t_motor which
have previously been calculated, but not yet assigned. In this way
any PID controller output modification can be considered even if the
pulse lasts several cycles.

the PID controller is in
automatic mode,

the function block SERVO always recalculates the parameter T_IMP
if the controller updates its output, i.e. whenever SEN is set to 1. In
this operating mode the previously calculated time periods are no
longer considered.

T_IMP OUTD %().t_motor=
458 33002211

SERVO: Control for electric server motors
Operating mode

Operating mode
adjustment

The input MA_I allows the SERVO function block to adjust to the controller’s
operating mode. To do this it must be attached to the output MA_O of the controller
or the corresponding MS function block.

Automatic mode The function block SERVO only rereads the control output if this has been updated
(i.e. whenever SEN is set to 1).

Manual mode The user can modify the control output here at any time. In order that a new value
can be included as soon as possible, the function block reads the control output at
every cycle.

In this operating mode the user can manually modify variables connected to the
OUT output of a controller or a MS block. If no positional feedback is used this
variable can adopt the end position (100% or 0%) even if the actuator has not
reached either of its end positions. It is still possible to modify the output modification
OUTD manually by setting the output OUT of the function block MS to more than
100% (or to less than 0%). The value inputted for OUT is used for the calculation of
OUTD before it is limited again.

Examples of function block SERVO

Example
overview

In this section the use of the function block SERVO is shown in the following
examples:
� Automatic mode with positional feedback, p. 459
� Example of operating mode automatic without positional feedback in manual

mode, p. 463

Automatic mode
with positional
feedback

The example shows the behavior of the function block in automatic mode with
positional feedback. If the SEN input is set to 1 (every 4 s in the example), the
function block SERVO always takes a new variance value IN-RCPY into account.

The following parameter specifications hold:

Parameter Specification

t_motor 25 s

t_mini 1s

sampling period 4 s
33002211 459

SERVO: Control for electric server motors
Timing diagram
(automatic with
positional
feedback)

Timing diagram for automatic mode with positional feedback

SEN

IN-RCPY

20%

10%

-2%

RAISE

LOWER

4321

-2%

Scanning period = 4s
460 33002211

SERVO: Control for electric server motors
Explanation of
the timings

Explanation of the marked positions:

Position No. Explanation

1 The variance IN-RCPY is 20%: a pulse of length 5 s (=20% of 25 s) was
generated at the RAISE output.

2 The variance is still only 10%, a pulse of 2.5s (= 10% of 25 s) was generated
at the RAISE output; the second left over from the previous pulse is not taken
into account.

3 The variance is now –2% which corresponds to a pulse of 0.5 s at LOWER.
Since t_mini corresponds to 1s, no pulse is generated (the duration time of
0.5 s is, however, stored).

4 The variance is still -2%, but the corresponding pulse (0.5 s) is added to the
previously stored pulse to make 1 s. The length corresponds to t_mini, so the
pulse is locked onto the LOWER output.
33002211 461

SERVO: Control for electric server motors
Programming
example
(automatic with
positional
feedback)

Representation of the function plan, part 1

PIDFF

ENO

OUT

OUTD

MA_O

INFO

STATUS

EN

PVTT2

SPTC2_SP

FF

RCPYOUT_RCPY

MAN_AUTO1

PARATC2_PARA

TR_I

TR_S

SAMPLETM

QINTERVALTC2_ST

DELSCANS

FBI_4_1 (1)

TC2_PID_SERVO_RCPY (2)

MS

OUT

OUTD

MA_O

STATUS

IN

FORC

MA_FORC

MAN_AUTO

PARA

TR_I

TC2_MODE

TR_S

TC2_PARA_MS

TC2_MS_RCPY (3)

TC2_PARA.en_rcpy=1

1

2

3

462 33002211

SERVO: Control for electric server motors
Representation the function plan, part 2

OUT_RCPY Process value of the valve positional feedback-{}-

Example of
operating mode
automatic
without
positional
feedback in
manual mode

The example shows the behavior of the function block in automatic operating mode
without positional feedback in manual mode. In this case the INPD value for each
execution of the function block SERVO is taken into account, irrespective of the
value of the SEN input.

The following parameter specifications hold:

SERVO

RAISE

LOWER

STATUS

SEN

IN

INPD

MA_I

RCPYOUT_RCPY

RST

R_STOP

L_STOP

PARA

FBI_4_4 (4)

SERVO_PARA

OUT_RAISE

OUT_LOWER

SERVO_PARA.en_rcpy=1

1

2

3

Parameter Specification

t_motor 25 s

t_mini 1s
33002211 463

SERVO: Control for electric server motors
Timing diagram
(automatic
without
positional
feedback)

Automatic mode without positional feedback in manual mode

Explanation of
the timings

Explanation of the marked positions:

0

0

2% 2%

20% 22%

-24%

INPD

1s

RAISE

0

LOWER

1 2 3 4 5

5s

1s

Position No. Explanation

1 The modification of the PID control output is +20%, in this case the pulse
affects the RAISE output and lasts 5 s (= 20% of 25 s).

2 The modification of the PID controller is +2% which corresponds to a pulse
duration of 0.5 s. The pulse is less than t_mini (=1 s.) so it does not influence
the outputs.

3 At the second modification of +2 % the function adds this modification to the
previous one (which corresponds to a variance which was below the
minimum value), which corresponds to a positive total modification of +4 %,
i.e. a pulse of 1 s at the RAISE output.

4 For a modification of -24 % the pulse at the LOWER output is 6 s

5 Before the end of the following second a further modification of + 22 % leads
to a total system modification of 2 %< modification of t_mini (4 %). The
function ends with the minimum pulse of 1 s.
464 33002211

SERVO: Control for electric server motors
Programming
example
(automatic
without
positional
feedback)

Representation of the function plan, part 1

PIDFF

ENO

OUT

OUTD

MA_O

INFO

STATUS

EN

PVTT2

SPTC2_SP

FF

RCPYOUT_RCPY

MAN_AUTO1

PARATC2_PARA

TR_I

TR_S

SAMPLETM

QINTERVALTC2_ST

DELSCANS

FBI_3_4 (1)

TC2_PID_SERVO (2)

MS

TC2_OUTOUT

OUTD

MA_O

STATUS

IN

FORC

MA_FORC

MAN_AUTO

PARA

TR_I

TC2_MODE

TR_S

TC2_PARA_MS

TC2_MS (3)

TC2_PARA.en_rcpy=1

TT2_DEF

0

1

2

3

33002211 465

SERVO: Control for electric server motors
Representation of the function plan, part 2

TT2_DEFF Error output of the process value TT2: If TT2 is faulty, the servoloop is forced into
manual mode.

Runtime error

Status word The following messages are displayed in the status word:

Error message An error appears if a non floating point value is inputted or if there is a problem with
a floating point calculation. In this case the outputs RAISE and LOWER are set to
zero.-

SERVO

RAISE

LOWER

STATUS

SEN

IN

INPD

MA_I

RCPYOUT_RCPY

RST

R_STOP

L_STOP

PARA

FBI_3_1 (4)

SERVO_PARA

OUT_RAISE

OUT_LOWER

SERVO_PARA.en_rcpy=1

1

2

3

Bit Meaning

Bit 0 = 1 Error in a floating point value calculation

Bit 1= 1 Recording of an invalid value on one of the floating point value inputs

Bit 2= 1 Division by zero during a floating point value calculation

Bit 3 = 1 Capacity overflow during floating point value calculation

Bit 4 = 1 IN or RCPY do not lie in the range [0, 100] or INPD lies outside the range [-
100, 100].
To calculate the function block uses a value that is limited by the next closest
correct value, i.e. 0, 100 or –100, depending on the value.
466 33002211

33002211
52

SMOOTH_RATE: Differentiator
with smoothing
Overview

At a glance This chapter describes the SMOOTH_RATE block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 468

Representation 468

Function block SMOOTH_RATE formulas 469

Detailed description 470
467

SMOOTH_RATE: Differentiator with smoothing
Brief description

Function
description

This Function block implements a differential element with an output Y respecting
the delay time constant LAG.

The function block has the following operating mode:
� Manual
� Halt
� Automatic

EN and ENO can be configured as additional parameters.

Representation

Symbol Block representation

Parameter
description

Block parameter description

SMOOTH_RATE

MANBOOL

HALTBOOL
XREAL
GAINREAL
LAGTIME
YMANREAL

REALY

Parameter Data type Meaning

MAN BOOL "1" = Manual mode

HALT BOOL "1" =Halt mode

X REAL Input variable

GAIN REAL Gain of the differentiation

LAG TIME Delay time constants

YMAN REAL Manually manipulated value

Y REAL Output derivative unit with smoothing
468 33002211

SMOOTH_RATE: Differentiator with smoothing
Function block SMOOTH_RATE formulas

Transfer function The transfer function for Y is:

Output Y The output Y is determined as follows:

Explanation of
formula
variables

Meaning of the variables in the above formulas:

G s() GAIN
1

1 s LAG×+
-------------------------------×=

Y
dt

dt LAG+
------------------------ Y old() GAIN+ X new() X old()–()×()×=

Variable Meaning

dt Time difference between current and previous cycle

Value of input X for the current cycle

Value of input X for the previous cycle

Value of output Y for the previous cycle

X new()

X old()

Y old()
33002211 469

SMOOTH_RATE: Differentiator with smoothing
Detailed description

Parametering Parameter assignment for this function block is accomplished by selecting the GAIN
of the derivative unit and the lag time constant LAG by which the output Y will be
delayed.

For very short scan times and the unit jump at the input X (jump at input X from 0 to
1.0), the output Y will jump to the value GAIN (theoretical value - in reality somewhat
smaller due to the fact that the scan time is not infinitely short), in order to then return
with the time constant LAG to the value 0.

Operating mode The function block SMOOTH_RATE has 3 operating mode: Automatic, manual and
halt.

The operating mode are selected via the inputs MAN and HALT:

Example In the following illustration the jump response of the function block SMOTH_RATE
with GAIN = 1 and LAG = 10 is shown:

Operating mode MAN HALT Meaning

Automatic 0 0 The function block operates as described in
"Parametering".

Manual 1 0 or 1 The input YMAN will be transferred directly to
the output Y.

Halt 0 1 The output Y will be held at the last calculated
value.

0

1

0

0

YMAN

HALT

MAN

Y

X

470 33002211

33002211
53

SP_SEL: Setpoint switch
Overview

At a glance This chapter describes the SP_SEL block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 472

Representation 473

Detailed description 475

Runtime error 478
471

SP_SEL: Setpoint switch
Brief description

Function
description

This Function blockallows the selection of setpoint value types used in the
servoloop.

EN and ENO can be configured as additional parameters.

Properties The function block SP_SEL has the following properties:
� The switchover between the setpoint values can be bumpless
� Operation with adjusting setpoint values if the controller is in manual mode
� Upper and lower limit of the setpoint value used

Setpoint value type Explanation

Remote setpoint
(SP_RSP = 1)

The setpoint comes from a block external calculation using the input
RSP (Remote setpoint). The input value RSP leads to the SP output.

Local setpoint
(SP_RSP = 0)

The setpoint must be modified directly by the user (Local setpoint).
In this operating mode the output SP is not entered using the
function block, the variable attached to the SP is modified by the
user.
472 33002211

SP_SEL: Setpoint switch
Representation

Symbol Block representation

SP_SEL
parameter
description

Block parameter description

SP_SEL

RSPREAL
SP_RSPBOOL

PARAPara_SP_SEL
PVREAL

MA_IBOOL

REALSP

REALLSP_MEM

WORDSTATUS

Parameter Data type Meaning

RSP REAL Remote setpoint

SP_RSP BOOL Setpoint type used by the controller:
"1" : Remote setpoint
"0" : Local setpoint

PARA Para_SP_SEL Parameter

PV REAL Variables to be controlled

MA_I BOOL Operating mode of the linked controller
"1" : Automatic mode
"0" : Manual mode

SP REAL Setpoint used by the controller

LSP_MEM REAL Local setpoint MEMory

STATUS WORD Status word
33002211 473

SP_SEL: Setpoint switch
Parameter
description
Para_SP_SEL

Data structure description

Element Data type Meaning

sp_min REAL Lower threshold for setpoint used

sp_max REAL Upper threshold for setpoint used

bump BOOL During remote/local changeover:
"1" : the SP output is forced with the value of
LSP_MEM
"0" : bumpless changeover

track BOOL "1" : the values of SP and PV are brought into line in
manual mode (local setpoint only)

rate REAL SP increase during local/remote changeover in
units per second (≥0)
474 33002211

SP_SEL: Setpoint switch
Detailed description

Switching the
setpoint

The setpoint can be switched in two directions

SP_RSP of 0 → 1 The changeover from local setpoint to remote setpoint is bumpless: the value of the
SP output is increasingly adjusted to correspond to the remote setpoint RSP, and it
describes the ramp rate.

If rate = 0, there is no ramp and the SP is identical to the RSP.

SP_RSP of 1 → 0 The changeover from remote setpoint to local setpoint depends on the bump
element in two ways:

Tracked setpoint
(track = 1)

At local setpoint value (SP_RSP=0), and with the linked controller in manual mode,
the PV input can be continuously copied to the setpoint SP value being used. This
enables a bumpless changeover from manual to automatic mode (it is also possible
for the controller to control the bumpless behavior itself).

In this operating mode, the inputs PV and MA_I of the function block SP_SEL must
be attached. The same values as the PV input of the controller and its MA_O output
must be accepted. If track = 0, these inputs do not need to be attached.

Limits In each operating mode (remote or local) the setpoint value SP used is limited to the
range between sp_min and sp_max.

If… Then …

SP_RSP of 0 → 1 the local setpoint is switched to a remote setpoint

SP_RSP of 1 → 0 the remote setpoint is switched to a local setpoint

If… Then …

bump = 0 the changeover is bumpless: The function block stops copying the RSP input to
the SP output. The local setpoint value SP then corresponds to the last remote
setpoint value RSP that was present before the changeover. The user can then
modify this. In this case it is not necessary to attach the LSP_MEM output.

bump = 1 the value of the LSP_MEM output is moved to the SP output during changeover
(bumps can occur here). The value given for LSP_MEM corresponds to the last
setpoint value SP before the function block transfers to remote mode. To restart
the local mode with a different setpoint, it is sufficient to modify LSP_MEM as
long as the block remains in remote mode (for further details see "Function of the
output LSP_MEM, p. 476").
33002211 475

SP_SEL: Setpoint switch
Function of the
output LSP_MEM

This output enables the user to control the setpoint value SP during a remote – local
changeover:

Type of setpoint Output behavior

Local setpoint The value of SP is continuously moved to LSP_MEM.

Changeover to remote
setpoints

The value of LSP_MEM is no longer modified by the function block
and therefore retains the value of the last local setpoint used.

Reverting to the local
setpoint

There are three possibilities for this:
1. bump = 0:

The last remote setpoint value is used as a basis; in this case
LSP_MEM does not need to be attached).

2. bump = 1:
The last local value saved is used as a basis; during changeover
the block copies the value of LSP_MEM onto SP.

3. The function block can start local mode using any value selected
by the user.
If the value of the variable attached to LSP_MEM before transfer
to the local setpoint (with bump = 1) is modified, it is moved to SP
during the changeover.
476 33002211

SP_SEL: Setpoint switch
Example of
programming

An example of how to program the SP_SEL function block follows.

TC2_SP is entered by the operator in "local setpoint" operating mode.

SP_SEL

SP

STATUS

RSP

SP_RSPTC2_LOC_REM

PARATC2_SP_PARA
PVTT2

MA_ITC2_MAO

TC2_SP_SEL (1)

LSP_MEM

TC2_REM_SP

PIDFF

TC2_oVOUTPV

SP

FF

RCPY

MAN_AUTOTC2_MAN_AUTO
PARA

TC2_PID_SPSEL (2)

OUTD

TT2

TC2_PARA
MA_O

STATUS

INFO

TR_I

TR_S

TC2_LSP_MEM

TC2_SP

TC2_MAO
33002211 477

SP_SEL: Setpoint switch
Runtime error

Status word The following messages are displayed in the status word:

Error message An runtime error appears if a non floating point value is inputted or if there is a
problem with a floating point calculation. The outputs SP and LSP_MEM remain
unmodified.

Warning A warning is giving if rate is negative; the block then uses the value 0 for calculation.

Bit Meaning

Bit 0 = 1 Error in a floating point value calculation

Bit 1= 1 Invalid value recorded at one of the floating point inputs

Bit 2= 1 Division by zero during a floating point value calculation

Bit 3 = 1 Capacity overflow during a floating point value calculation

Bit 4 = 1 rate is negative : For calculation, the function block uses the value 0

Bit 5 = 1 The output SP has reached the lower threshold sp_min. SP is forced to
sp_min

Bit 6 = 1 The output SP has reached the upper threshold sp_max. SP is forced to
sp_max
478 33002211

33002211
54

SPLRG: Controlling 2 actuators
Overview

At a glance This chapter describes the SPLRG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 480

Representation 481

Detailed description 482

Runtime error 484
479

SPLRG: Controlling 2 actuators
Brief description

Function
description

This Function block should be used when two actuators are in use to enable
coverage of the whole area (when two operating points are far apart: one below and
one above).

The controller is also suitable for three-point step-action controls, i.e. for cases
where the two actuators work in opposition (one heats, the other cools).

EN and ENO can be configured as additional parameters.

Properties The function block SPLRG has the following properties:
� The possibility of controlling a dead zone or a transition zone where the

properties of both actuators are in line
� The IN input is expressed as a percentage (0-100%) and the outputs OUT1 and

OUT2 are expressed in physical units.
480 33002211

SPLRG: Controlling 2 actuators
Representation

Symbol Representation of the block

SPLRG
parameter
description

Block parameter description

Parameter
description
Para_SPLRG

Data structure description

SPLRG

INREAL
PARAPara_SPLRG

REALOUT1

REALOUT2

WORDSTATUS

Parameter Data type Meaning

IN REAL Value to be resolved (0 to 100%)

PARA Para_SPLRG Parameter

OUT1 REAL Manipulated variable for actuator 1

OUT2 REAL Manipulated variable for actuator 2

STATUS WORD Status word

Element Data type Meaning

out1_th1 REAL Input value IN, for which the following applies:
OUT1 = out1_inf

out1_th2 REAL Input value IN, for which the following applies:
OUT1 = out1_sup

out1_inf REAL Lower threshold of the output OUT1

out1_sup REAL Upper threshold of the output OUT1

out2_th1 REAL Input value IN, for which the following applies:
OUT2 = out2_inf

out2_th2 REAL Input value IN, for which the following applies:
OUT2 = out2_sup

out2_inf REAL Lower threshold for output OUT2

out2_sup REAL Upper threshold for output OUT2
33002211 481

SPLRG: Controlling 2 actuators
Detailed description

Parametering Parametering the function block consists of defining the properties of each actuator,
i.e. in the kind of gradient modification of both control outputs in relation to the input
IN.

The following points should be defined for the output OUT1:

The modification of the value of OUT1 is linear for both threshold values. Apart from
the two threshold values, no further output modification can occur; it is limited to
out1_inf or out1_sup.

Depending on the adjustment of the two threshold values, the control properties are
designated by a positive increase (for out1_th1 < out1_th2) or a negative one (with
out1_th2 < out1_th1).

The following diagrams show the properties of the two actuators with Split range and
Three-point step-action control.

Three step step-
control

The following shows the properties of the two actuators in three-point step-control

Element Meaning

out1_inf Lower zone threshold

out1_sup Upper zone threshold

out1_th1 Threshold value, i.e the input value IN, for which the following applies:
Output OUT1 = out1_inf

out1_th2 Threshold value, i.e the input value IN, for which the following applies:
Output OUT1 = out1_sup

0 % out1_th2 out1_th1 out2_th1 out2_th2 100 %

out1_sup
out2_sup

out2_inf

out1_inf
IN

OUT

OUT1

OUT2
482 33002211

SPLRG: Controlling 2 actuators
Split range
control

The following shows the properties of the two actuators in split range control

Operating modes The SPLRG function block is not assigned to any specific operating mode. However
both function block outputs may be controlled manually because an MS function
block is locked on to each output. During programming the user should ensure a
bumpless return to automatic mode.

Note: The outputs of this controller cannot be used to control a SERVO function
block without positional feedback.

0 % out1_th1 out1_th2 out2_th1 out2_th2 100 %

out1_sup
out2_sup

out2_inf

out1_inf
IN

OUT

OUT1

OUT2
33002211 483

SPLRG: Controlling 2 actuators
Runtime error

Status word The following messages are displayed in the status word:

Error message A runtime error appears in the following cases:
� A non-floating value is on an input
� A problem occurs during a floating point value calculation.
� Both the thresholds of the same output are identical: out1_th1 = out1_th2 or

out2_th1 = out2_th2.

The outputs OUT1 and OUT2 are never modified.

Warning A warning is given if one of the parameters out1_th1, out1_th2, out2_th1, out2_th2
is not in the [0 - 100] range. In this case the function block uses the value 0 or 100
for calculating.

Bit Meaning

Bit 0 = 1 Error in a floating point value calculation

Bit 1= 1 Invalid value recorded at one of the floating point value inputs

Bit 2= 1 Division by zero during a floating point value calculation

Bit 3 = 1 Capacity overflow during floating point value calculation

Bit 4 = 1 IN or one of the parameters out1_th1, out1_th2, out2_th1, out2_th2 is not in
the [0 - 100] range: for calculation, the function block uses the value 0 or 100.

Bit 5 = 1 The output OUT1 has reached the lower threshold out1. OUT1 is forced to
out1_inf.

Bit 6 = 1 The output OUT1 has reached the upper threshold out1_sup. OUT1 is
forced to out1_sup.

Bit 7 = 1 Both the threshold values of an output are identical: out1_th1 = out1_th2,
out2_th1 = out2_th2.

Bit 8 = 1 The output OUT2 has reached the lower threshold out2_inf. OUT2 is forced
to out2_inf.

Bit 9 = 1 The output OUT2 has reached the upper threshold out2_sup. OUT2 is
forced to out2_sup.
484 33002211

33002211
55

STEP2: Two point controller
Overview

At a glance This chapter describes the STEP2 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 486

Representation 487

Detailed description 488

Runtime error 489
485

STEP2: Two point controller
Brief description

Function
description

This Function block is suitable for simple two point controls.

Control of the actuator proceeds according to the direction of the process/setpoint
value deviation in relation to the upper and lower threshold.

EN and ENO can be configured as additional parameters.

Properties The control block has the following properties:
� Upper and lower limiting of the setpoint value between pv_inf and pv_sup.
� The control input values (process value, setpoint and associated parameters) are

expressed in physical units.
486 33002211

STEP2: Two point controller
Representation

Symbol Block representation

STEP2
parameter
description

Block parameter description

Parameter
description
Para_STEP2

Data structure description

STEP2

PVREAL
SPREAL

MAN_AUTOBOOL
PARAPara_STEP2

BOOLOUT

REALDEV

BOOLMA_O

WORDSTATUS

Parameter Data type Meaning

PV REAL Process value

SP REAL Setpoint

MAN_AUTO BOOL Controller operating mode:
"1" : Automatic mode
"0" : Halt mode

PARA Para_STEP2 Parameter

OUT BOOL Logical output

DEV REAL Deviation (PV-SP)

MA_O BOOL Current operating mode of the function block
(0: Halt, 1: Automatic)

STATUS WORD Status word

Element Data type Meaning

dev_ll REAL Lower deviation threshold (≤ 0)

dev_hl REAL Upper deviation threshold (≤ 0)

pv_inf REAL Lower limit of the process value range

pv_sup REAL Upper limit of the process value range
33002211 487

STEP2: Two point controller
Detailed description

Structure
diagram

The following is a structure diagram of the STEP2 block:

Behavior of the
output

Behavior of the output OUT

If the deviation (DEV = PV – SP) is less than the lower threshold dev_ll, the
configured output OUT is set to 1. If however the deviation increases again, the
output OUT is only set to zero if it exceeds dev_hl.

pv_sup

pv_inf

SP _

+

PV

dev_ll dev_hl

OUT
OUT

dev_hl

dev_ll

Note: To ensure that the block functions without errors, the output OUT should not
be inverted.

OUT

DEV

dev_hl

dev_ll
488 33002211

STEP2: Two point controller
Operating modes The STEP2 function block has 2 operating modes available according to the value
of the MAN_AUTO parameter :

Runtime error

Status word The following messages are displayed in the status word:

Error message An runtime error appears if a non floating point value is inputted or if there is a
problem with a floating point calculation. The output OUT is then set to 0; the outputs
DEV and MA remain unmodified.

Warning A warning is given if dev_ll > 0 or. dev_hl < is 0. In this case the function block uses
the value 0.

Operating mode MAN_AUTO Meaning

Automatic 1 The output OUT is self-calculated by the controller
block.

Halt 0 The output OUT will be held at the last calculated value.

Bit Meaning

Bit 0 = 1 Error in a floating point value calculation

Bit 1= 1 Invalid value recorded at one of the floating point value inputs

Bit 2= 1 Division by zero during a floating point value calculation

Bit 3 = 1 Capacity overflow during floating point value calculation

Bit 4 = 1 The following behavior is displayed:
� The SP lies outside the zone [pv_inf, pv_sup]: SP is limited to pv_inf or

pv_sup
� dev_ll > 0 bzw. dev_hl < 0: the block uses the value 0
33002211 489

STEP2: Two point controller
490 33002211

33002211
56

STEP3: Three point controller
Overview

At a glance This chapter describes the STEP3 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 492

Representation 493

Detailed description 494

Runtime error 496
491

STEP3: Three point controller
Brief description

Function
description

This Function block is suitable for simple three-point step-action controls.

Control of the actuator proceeds according to the direction of the process/setpoint
value deviation in relation to the upper and lower threshold value. The control of the
threshold value describes a parameterable hysteresis.

This controller can also be used for temperature regulation. A traditional controller
(such as a PI_B controller), which a function block such as the PWM1 should be
switched to is preferable for complex regulation.

EN and ENO can be configured as additional parameters.

Properties The control block has the following properties:
� Limiting the setpoint value between pv_inf and pv_sup
� The control input values (process value, setpoint, and corresponding

parameters) are expressed in physical units.
492 33002211

STEP3: Three point controller
Representation

Symbol Block representation

STEP3
parameter
description

Block parameter description

Parameter
description
Para_STEP3

Data structure description

STEP3

PVREAL
SPREAL
MAN_AUTOBOOL

PARAPara_STEP3

BOOLOUT_NEG

BOOLOUT_POS

REALDEV

BOOLMA_O

WORDSTATUS

Parameter Data type Meaning

PV REAL Process value

SP REAL Setpoint

MAN_AUTO BOOL Controller operating mode:
"1" : Automatic mode
"0" : HALT mode

PARA Para_STEP3 Parameter

OUT_NEG BOOL Logical output: is set to 1 for negative deviations

OUT_POS BOOL Logical output: is set to 1 for positive deviations

DEV REAL Deviation (PV-SP)

MA_O BOOL Current operating mode of the function block
(0: HALT, 1: Automatic)

STATUS WORD Status word

Element Data type Meaning

dev_ll REAL Lower deviation threshold (≤ 0)

dev_hl REAL Upper deviation threshold (≤ 0)

hys REAL Hysteresis

pv_inf REAL Lower limit of the process value range

pv_sup REAL Upper limit of the process value range
33002211 493

STEP3: Three point controller
Detailed description

Structure
diagram

The following is a structure diagram of the STEP3 block:

0

1

-1

pv_sup

pv_inf

OUT_POS

OUT_NEG

OUT_NEG

OUT_POS

hyst

hyst

dev_lll

dev_hl

PV

SP

+

-

dev_hl

dev_ll
494 33002211

STEP3: Three point controller
Behavior of the
outputs

Behavior of the OUT_POS and OUT_NEG outputs:

td Duration

If the deviation (DEV = PV – SP) exceeds dev_hl, the configured output OUT_POS
is set to 1. If the deviation is less, OUT_POS is then only set to zero if the deviation
is less than dev_hl – hyst.

If the deviation is less than dev_ll, the configured output OUT_NEG is set to 1. If the
deviation increases again, OUT_NEG is only set to zero if the deviation exceeds
dev_ll + hyst.

Note: To ensure that the block functions without errors, the outputs OUT_NEG and
OUT_POS should not be invented.

OUT_POS

OUT_NEG

dev_hl

DEV

hyst

td

dev_ll

hyst
33002211 495

STEP3: Three point controller
Operating modes The STEP3 function block has 2 operating modes available according to the value
of the MAN_AUTO parameter :

Runtime error

Status word The following messages are displayed in the status word:

Error message An run time error appears if a non floating point value is inputted or if there is a
problem with a floating point calculation. In this case the outputs OUT_NEG and
OUT_POS are set to 0; the DEV and MA_O outputs remain unmodified.

Warning In the following cases a warning is given:
� dev_ll > 0 bzw. dev_hl < 0: the block uses the value 0.
� hyst is outside the [0, minimum (dev_hl, -dev_ll)] zone: the block uses a limited

value.

Operating mode MAN_AUTO Meaning

Automatic 1 The block calculates the outputs OUT_NEG and
OUT_POS itself.

HALT 0 The outputs OUT_NEG and OUT_POS will be held at
the last calculated value.

Bit Meaning

Bit 0 = 1 Error in a calculation with floating point values

Bit 1= 1 Recording of an invalid value on one of the floating point value inputs

Bit 2= 1 Division by zero for a calculation with floating point values

Bit 3 = 1 Capacity overflow during calculation in floating point values

Bit 4 = 1 The following behavior is displayed:
� The SP lies outside the zone [pv_inf, pv_sup]: In this case SP is limited

to pv_inf or pv_sup.
� dev_ll > 0 or. dev_hl < 0: the block uses the value 0
� hyst is outside the [0, minimum (dev_hl, -dev_ll)] zone: the block uses a

value limited to zero or to minimum (dev_hl, -dev_ll)
496 33002211

33002211
57

SUM_W: Summer
Overview

At a glance This chapter describes the SUM_W block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 498

Representation 498

Runtime error 498
497

SUM_W: Summer
Brief description

Function
description

The Function block performs the weighted summation of 3 numerical input variables
according to the underlying formula.

EN and ENO can be configured as additional parameters.

Formula The block SUM_W operates as follows:

Representation

Symbol Block representation

SUM_W
parameter
description

Block parameter description

Parameter
description
Para_SUM_W

Data structure description

Runtime error

Error message An runtime error appears if a non floating point value is inputted or if there is a
problem with a floating point calculation. The output OUT will not be altered.

OUT k1 IN1× k2+ IN2× k3+ IN3× c1+=

SUM_W

IN1REAL
IN2REAL
IN3REAL

PARAPara_SUM_W

REALOUT

Parameter Data type Meaning

IN1 to IN3 REAL Numerical variables to be processed

PARA Para_SUM_W Parameter

OUT REAL Result of the calculation

Element Data type Meaning

k1 to k3, c1 REAL Calculation coefficients
498 33002211

33002211
58

THREEPOINT_CON1: Three point
controller
Overview

At a glance This chapter describes the THREEPOINT_CON1 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 500

Representation 500

Detailed description 502

Runtime error 505
499

THREEPOINT_CON1: Three point controller
Brief description

Function
description

The Function block forms a three-point controller, which maintains PID-similar
behavior through two dynamic feedback paths.

EN and ENO can be configured as additional parameters.

Properties The function block THREEPOINT_CON1 contains the following properties:
� Manual, halt and automatic modes
� two internal feedback paths (1st Degree Delay)

Representation

Symbol Block representation

THREEPOINT_CON1

BOOLY_POS

BOOLY_NEG

REALERR_EFF

MANBOOL

HALTBOOL
SPREAL
PVREAL
GAINREAL
LAG_NEGTIME
LAG_POSTIME
HYSREAL
DBREAL
XF_MANREAL
YMAN_POSBOOL

YMAN_NEGBOOL
500 33002211

THREEPOINT_CON1: Three point controller
Parameter
description

Block parameter description

Parameter Data type Meaning

MAN BOOL "1" = Manual mode

HALT BOOL "1" =Halt mode

SP REAL Setpoint input

PV REAL Process value input

GAIN REAL Feedback gain (Feedback Parameter Set)

LAG_NEG TIME Rapid feedback path time constant (Feedback
Parameter Set)

LAG_POS TIME Slow feedback path time constant (Feedback
Parameter Set)

HYS REAL Three-point switch hysteresis

DB REAL Dead zone

XF_MAN REAL Feedback path reset value in % (-100 to 100)

YMAN_POS BOOL Manually manipulated value for Y_POS

YMAN_NEG BOOL Manually manipulated value for Y_NEG

Y_POS BOOL "1" = positive manipulated variable at output
ERR_EFF

Y_NEG BOOL "1" = negative manipulated variable at output
ERR_EFF

ERR_EFF REAL Effective switching value
33002211 501

THREEPOINT_CON1: Three point controller
Detailed description

Structure of the
controller

Structure of the three-point controller:

Dependency of outputs Y_POS and Y_NEG on variable Y:

If… Then…

Y = 1 Y_POS = 1
Y_NEG = 0

Y = 0 Y_POS = 0
Y_NEG = 0

Y = -1 Y_POS = 0
Y_NEG = 1

G s() GAIN
1 LAG_NEG s×+
--=

G s() GAIN
1 LAG_POS s×+
---=

ERR_EFF
+

-

+

-

SP

PV

Y

+

-

Y

xf

xf1

xf2

Y_POS

Y_NEG
502 33002211

THREEPOINT_CON1: Three point controller
Principle of the
three-point
controller

The actual three-point controller will have two dynamic feedback paths (PT1
elements) added. By appropriately selecting the time constant of these feedback
elements, the three-point controller exhibits a dynamic behavior corresponding to
that of a PID controller.

Principle of the three-point controller

The parameter GAIN must > be 0

Internal feedback
paths

The function block has a parameter set for the internal feedback paths consisting of
the feedback gain GAIN and the feedback time constants LAG_NEG and
LAG_POS.

The following table provides detailed information:

Note: Entries for XF_MAN (percentages from -100% to 100%) must be in the
range -100 to 100 inclusive!

DB
ERR_EFF

0

1

-1

HYS

Y_POS

DB

HYS

Y_NEG

ERR_EFF
+

-

xf1
xf2

+

-

SP

PV

Y_POS

Y_NEG

Feedback LAG_NEG LAG_POS

3-point behavior (without feedback path) = 0 = 0

negative feedback > 0 = 0

negative + positive feedback > 0 > LAG_NEG

Warning, regeneration! (neg. feedback with LAG_POS) = 0 > 0

Warning, regeneration! (only neg. feedback with lag_neg) > LAG_POS > 0
33002211 503

THREEPOINT_CON1: Three point controller
Dead zone Parameter DB determines the turn-on point for the outputs Y_POS and Y_NEG.
Output Y_POS goes from "0" to "1" when the absolute value of positive effective
error ERR_EFF becomes greater than DB. Output Y_NEG goes from "0" to "1" when
the absolute value of negative effective error ERR_EFF becomes smaller than DB.
The parameter DB is typically set to 1% of the maximum control range [max. (SP -
PV)].

Hysteresis The parameter HYS specifies the hysteresis "bandwidth" extending below DB,
beneath which the absolute value of positive/negative effective error ERR_EFF
must pass, to trigger output Y_POS/Y_NEG being reset back to "0". The connection
between Y_POS and Y_NEG depending on effective switch-value ERR_EFF and
the parameters DB and HYS will be made clear in the illustration "Principle of the
three-point controller, p. 503". The value of the parameter HYS is typically set to
0.5% of the maximum control range [max. (SP - PV)].

Operating modes There are three operating modes selectable through the inputs MAN and HALT:

Note: The amount is evaluated from the dead zone DB

Note: The amount is evaluated from the hysteresis HYS

Operating mode MAN HALT Meaning

Automatic 0 0 The Function block will be handled as
described previously.

Manual 1 0 or 1 The outputs Y_POS and Y_NEG are set to the
values YMAN_POS and YMAN_NEG. A
priority logic (Y_NEG is dominant over Y_POS)
prevents both outputs being simultaneously
set.
xf1 and xf2 are calculated according to the
following formula:

Halt 0 1 The outputs Y_POS and Y_NEG are held at
their last respective values. xf1 and xf2 are set
to GAIN * Y.

xf1 XF_MAN
GAIN

100
----------------×=

xf2 XF_MAN
GAIN

100
----------------×=
504 33002211

THREEPOINT_CON1: Three point controller
Runtime error

Warning In the following cases there will be a Warning:

If… Then…

LAG_NEG = 0 and LAG_POS > 0 the controller works as if it only had a negative
feedback path with the time constant LAG_POS.

LAG_POS < LAG_NEG > 0 the controller works as if it only had a negative
feedback path with the time constant LAG_NEG.

XF_MAN < -100 or XF_MAN > 100 the controller operates without internal feedback
paths.
33002211 505

THREEPOINT_CON1: Three point controller
506 33002211

33002211
59

THREE_STEP_CON1: Three step
controller
Overview

At a glance This chapter describes the THREE_STEP_CON1 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 508

Representation 509

Detailed description 510

Runtime error 512
507

THREE_STEP_CON1: Three step controller
Brief description

Function
description

The function block replicates a three-point step-action controller, and exhibits a
PD-like behavior due to a dynamic feedback path.

EN and ENO can be configured as additional parameters.

Properties The function block THREE_STEP_CON1 has the following properties:
� Reset and automatic operating modes
� One internal feedback path (1st degree delay)
508 33002211

THREE_STEP_CON1: Three step controller
Representation

Symbol Block representation

Parameter
description

Block parameter description

THREE_STEP_CON1

RBOOL

SPREAL
PVREAL

GAINREAL

TITIME
T_PROTIME

HYSREAL

DBREAL

BOOLY_POS

BOOLY_NEG

REALERR_EFF

Parameter Data type Meaning

R BOOL "1" = Reset mode

SP REAL Setpoint input

PV REAL Process value input

GAIN REAL Proportional action coefficient (gain)

TI TIME Reset time

T_PROC TIME Nominal floating time of the controlled valve

HYS REAL Three-point switch hysteresis

DB REAL Dead zone

ERR_EFF REAL Effective error

Y_POS BOOL "1" = positive manipulated variable at output
ERR_EFF

Y_NEG BOOL "1" = negative manipulated variable at output
ERR_EFF
33002211 509

THREE_STEP_CON1: Three step controller
Detailed description

Structure of the
controller

Structure of the three-point controller:

Dependency of outputs Y_POS and Y_NEG on variable Y:

Meaning of variable K:

If… Then…

Y = 1 Y_POS = 1
Y_NEG = 0

Y = 0 Y_POS = 0
Y_NEG = 0

Y = -1 Y_POS = 0
Y_NEG = 1

G s() K
1 TI s×+
------------------------=

ERR_EFF
+

-

+

-

SP

PV

Y

Xr

Y_POS

Y_NEG

K
TI

T_PROC GAIN×
---=
510 33002211

THREE_STEP_CON1: Three step controller
Principle of the
three-point
controller

The actual three-point controller will have a dynamic feedback path (PT1-element)
added. By appropriately choosing the time constants TI and T_PROC of these
feedback elements, the three-point controller exhibits a dynamic behavior
corresponding to that of a PID controller.

Principle of the three-point controller

The parameter GAIN must > be 0

Dead zone Parameter DB determines the turn-on point for the outputs Y_POS and Y_NEG.
Output Y_POS goes from "0" to "1" when the absolute value of positive effective
error ERR_EFF = SP - PV - XR becomes greater than DB. Output Y_NEG goes from
"0" to "1" when the absolute value of negative effective error ERR_EFF becomes
smaller than DB. The parameter DB is typically set to 1% of the maximum control
range [max. (SP - PV)].

Hysteresis The parameter HYS specifies the hysteresis "bandwidth" extending below DB,
beneath which the absolute value of positive/negative effective error ERR_EFF
must pass, to trigger output Y_POS/Y_NEG being reset back to "0". The connection
between Y_POS and Y_NEG depending on the effective switch value ERR_EFF
and the parameters DB and HYS will be made clear in the illustration "Principle of
the three-point controller, p. 511". The value of the parameter HYS is typically set to
0.5 % of the maximum control range [max. (SP - PV)].

DB
ERR_EFF

0

1

-1

HYS

Y_POS

DB

HYS

Y_NEG

ERR_EFF
+

-

Xr

+

-

SP

PV

Y_POS

Y_NEG

Note: The amount is evaluated from the dead zone DB

Note: The amount is evaluated from the hysteresis HYS
33002211 511

THREE_STEP_CON1: Three step controller
Behavior with
faulty time
constants

Should the time constant TI = 0 or the gain GAIN ≤(configuration error), the block
will still continue to operate. The function of the feedback path is disabled however,
so that the block operates as a conventional three-point switch.

If the time constant T_PROC = 0 (configuration error), the block will still continue to
operate. In this case T_PROC is set to a predetermined value of T_PROC = 60s
(60 000 msec).

Operating modes There are two operating modes selectable through the R parameter input:

Runtime error

Error message If HYS > 2 * DB, an Error Messageappears.

Warning In the following cases there will be a Warning:

Operating mode R Meaning

Automatic 0 The Function block will be handled as described previously.

Reset 1 The internal value of the feedback element is set to SP – PV.
The outputs Y_POS and Y_NEG are both set to "0".

If… Then…

GAIN ≤ 0 the controller operates without feedback response.

TI = 0 the controller operates without feedback response.

T_PROC = 0 the controller operates with a predetermined value of T_PROC = 60s.
512 33002211

33002211
60

TOTALIZER: Integrator
Overview

At a Glance This chapter describes the TOTALIZER block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 514

Representation 515

Formulas 516

Detailed description 517

Runtime error 521
513

TOTALIZER: Integrator
Brief Description

Function
Description

This function block integrates the value of the IN-input (typically a flow volume) over
time, until a controllable limit has been reached (typically a volume).

Additional parameters EN and ENO can be defined.

Properties The function block has the following properties.
� The integration can be stopped for a time and reinitialized.
� Device which can also take very small values into account
� Cut-off point where the IN values are no longer taken into account.
� Use in the "reversing of the integral summation" operating mode: the output OUT

is reduced from the limit value to null (inc_dec = 1)

Note: When using the EN enable input the following must be taken into account:
If the block has not been called for a long time because the EN enable input is set
to FALSE, the totalizer block runtime is extended until the next call. If the watchdog
timeout is exceeded this can lead to a PLC stop.
To remedy this, the enable input should not be used or set permanently to TRUE,
so that the block is processed during every cycle.
514 33002211

TOTALIZER: Integrator
Representation

Symbol Block representation

Parameter
description
TOTALIZER

Block parameter description

Parameter
description
mode_
TOTALIZER

Data structure description

Parameter
description
Para_
TOTALIZER

Data structure description

TOTALIZER

INREAL

MODEMode_TOTALIZER

PARAPara_TOTALIZER
TR_IREAL

TR_SBOOL

REALOUT

Info_TOTALIZERINFO

WORDSTATUS

Parameter Data type Meaning

IN REAL To integrated numerical sizes (only when > 0)

MODE Mode_TOTALIZER Operating modes

PARA Para_TOTALIZER Parameter

TR_I REAL Initiating input from outc

TR_S BOOL Initiating command

OUT REAL Result of the integration of IN (limited to thld)

INFO Info_TOTALIZER additional information generated by function block

STATUS WORD Status word

Element Data type Meaning

hold BOOL "1": Stopping the integration

rst BOOL "1": Resetting the function block

Element Data type Meaning

thld REAL Integral threshold of IN

cutoff REAL Division (≥0)

inc_dec BOOL "1" : Reverse of integration
"0" : Normal mode
33002211 515

TOTALIZER: Integrator
Parameter
description
Info_TOTALIZER

Data structure description

Formulas

Calculation of
the output OUT

With each execution the output OUT is calculated with the following formula:

If OUT exceeds the threshold value thld:
� the counter cter will be incremented:

� the threshold value thld will be deducted from the output:

Explanation of
formula
variables

Meaning of the variables in the formulas above:

Output of the
integral results

In consideration of this principle, the function block can issue three integral results:

Element Data type Meaning

outc REAL Total result of the integration of IN

cter UINT Counter for integral calculation

done BOOL "1" : output OUT achieves integral threshold thld

OUT new() OUT old() IN ∆T×+=

cter cter 1+=

OUT OUT thld–=

Variable Meaning

time elapsed since last block execution

Value of the output OUT at the end of the previous execution of the
controller

∆T

OUT old()

Result Explanation

Partial collective index OUT indicates the integral result of input IN from the last
threshold value overflow.

cter Frequency of achieving the threshold value

Collective register (outc) corresponds to the integral result of the input IN since the
beginning of the integral invoice This counter will be updated
at every execution via the following formula:

outc thld cter× OUT+=
516 33002211

TOTALIZER: Integrator
Detailed description

Setting the
integral
threshold thld

The integral threshold value corresponds in general to a process property, which is
simple to determine (e.g. the content of a tank).

The function block can also be used for the integral calculation of smaller input
values, as well as when the result of the integral invoice is very large. In this case
there is the risk that the integral values will become so strongly reduced in relation
to the total values that they will no longer be considered. The solution offered by
TOTALIZER is in the limit of the collective index OUT on the threshold value thld, so
that the integral value is never insignificant in relation to the partial collective index.
The result of the integral total (outc) is also calculated: the controller saves the
frequency of achieving the threshold value thld on the collective index OUT.

When the threshold value thld corresponds to the value 0, the integral value will not
be calculated, the outputs remain blocked.

Further
properties

As soon as the output OUT exceeds the threshold value thld, the output done is set
to 1. With the following execution of the function block they are set to zero again.

When the counter cter achieves its maximum value (65535), this value will no longer
change. The outputs OUT and done continue to function when the threshold value
thld is included, the output outc and the counter cter may however no longer be
used.

The negative values of the input IN will never be considered, because they always
lie below the division cut-off.
33002211 517

TOTALIZER: Integrator
Timing diagram Timing diagram of the TOTALIZER block

td Time span

thld

td

cter
cter=cter+1

done

cter=cter+1

outc

3 x thld

2 x thld

thld

OUT

done=1 done=1
518 33002211

TOTALIZER: Integrator
Operating modes There are 3 individual operating modes for the TOTALIZER function block: Tracking,
Reset and Halt:

Operating mode Parameter Meaning

Tracking TR_S = 1 The parameter TR_I will be run on outc and the
parameter OUT and cter will be set so that the
following equation applies:
outc= thld x cter + OUT.
The tracking mode enables renewed
synchronization of the controller outputs with the
control process (e.g. as a consequence of a sensor
failure).

Reset rst = 1 The outputs OUT, outc, cter and done are set to
zero.
The reset via rst allows a new start from the zero
reference point (for example after phase change in
production).

Halt hold = 1 Integration is paused. The outputs keep their
previous values.

Note: By simultaneous activation of the inputs TR_S, rst and hold, the tracking
mode has priority over the other operating modes and the reset operating mode
has priority over halt.
33002211 519

TOTALIZER: Integrator
Reverse integral
summation
(inc_dec = 1)

Display of the function principle

td Time span

In tracking mode (TR_S = 1) the parameter TR_I will be run on outc and the
parameter OUT and cter will be set so that the following equation applies:

outc = thld x cter + (thld –OUT).

outc is calculated using the following formula: outc = thld x cter + (thld –OUT).

Function
principle of the
reverse of the
integral
summation

The following function principle applies:

thld

td

cter
cter=cter+1

done

cter=cter+1

outc

3 x thld

2 x thld

thld

OUT

done=1 done=1

Step Action

1 At the first execution or positive on edge on rst the output OUT will be initiated
by thld.

2 Thereafter with each execution the output OUT is calculated with the following
formula:

3 As soon as the output OUT becomes negative, the following happens:
� The counter cter will be incremented:

cter = cter + 1
� The threshold value thld will be added on to the output OUT:

OUT = OUT + thld
� done is set to 1

OUT new() OUT old() IN– ∆T×=
520 33002211

TOTALIZER: Integrator
Runtime error

Status word The following messages are displayed in the status word:

Error message A runtime error is signaled if a non-floating point value is inputted or if there is a
problem with a floating point calculation. In this case the OUT, outc, cter and done
outputs remain unmodified.

Warning In the following cases a warning is given:

Bit Meaning

Bit 0 = 1 Error in a floating point value calculation

Bit 1= 1 Invalid value recorded at one of the floating point value inputs

Bit 2= 1 Division by zero during a floating point value calculation

Bit 3 = 1 Capacity overflow during floating point value calculation

Bit 4 = 1 The input TR_I or one of the Paramaters thld or cutoff are negative: For
calculation, the function block uses the value 0

Bit 6 = 1 The count register cter has reached its maximum value (65535) : cter is
locked at this value and the output outc no longer has any meaning. The
OUT outputs and done can however continue to be used.

If… Then…

thld < 0 For calculation, the controller uses the value 0

cutoff < 0 For calculation, the controller uses the value 0

cter = 65535 cter is blocked at this value and the output outc no longer has any
meaning. The OUT and done outputs can however continue to be used.
33002211 521

TOTALIZER: Integrator
522 33002211

33002211
61

TWOPOINT_CON1: Two point
controller
Overview

At a Glance This chapter describes the TWOPOINT_CON1 block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 524

Representation 525

Detailed description 526

Runtime error 528
523

TWOPOINT_CON1: Two point controller
Brief description

Function
description

The Function block forms a two-point controller, which maintains PID-similar
behavior through two dynamic feedback paths.

EN and ENO can be configured as additional parameters.

Properties The function block TWOPOINT_CON1 has the following properties:
� Manual, halt and automatic modes
� Two internal feedback paths (1st Degree Delay)
524 33002211

TWOPOINT_CON1: Two point controller
Representation

Symbol Block representation

Parameter
description

Block parameter description

TWOPOINT_CON1

MANBOOL
HALTBOOL

SPREAL
PVREAL
KREAL

LAG_NEGTIME

LAG_POSTIME
DBREAL
XF_MANREAL
YMANBOOL

BOOLY

REALERR_EFF

Parameter Data type Meaning

MAN BOOL "1" = Manual mode

HALT BOOL "1" =Halt mode

SP REAL Setpoint input

PV REAL Process value input

K REAL Feedback gain

LAG_NEG TIME Rapid feedback path time constant

LAG_POS TIME Slow feedback path time constant

DB REAL Two-point switch hysteresis

XF_MAN REAL Feedback path reset value in % (0 to 100)

YMAN BOOL "1" = Manual value for ERR_EFF

Y BOOL "1" = Output manipulated variable

ERR_EFF REAL Effective error
33002211 525

TWOPOINT_CON1: Two point controller
Detailed description

Structure of the
controller

Structure of the two-point controller:

G s() GAIN
1 LAG_NEG s×+
--=

G s() GAIN
1 LAG_POS s×+
--=

ERR_EFF
+

-

+

-

SP

PV

Y

+

-

Y

xf

xf1

xf2
526 33002211

TWOPOINT_CON1: Two point controller
Principle of the
two-point
controller

The actual two-point controller will have two dynamic feedback paths (PT1
elements) added. By appropriately choosing the time constant of these feedback
elements, the two-point controller exhibits a dynamic behavior corresponding to that
of a PID controller.

Principle of the two-point controller:

The selected feedback gain K must be greater than zero!

Entries for XF_MAN (percentages from 0 to 100%) must be in the range 0 to 100
inclusive!

Internal feedback
paths

The feedback parameter set, consisting of the feedback gain K and the feedback
time constants LAG_NEG and LAG_POS, allows a universal employment of the
two-point controller.

The following table provides detailed information:

Hysteresis The parameter DB indirectly specifies the threshold values, below which the
effective error ERR_EFF must pass, to trigger output Y being reset back to "0" (i.e.
hys is the hysteresis "bandwidth" centered on "0", the absolute values of the relative
switching points = DB/2). The dependence of the output Y depending of the effective
switch value ERR_EFF and the Parameter DB, becomes clear in the illustration
"Principle of the two-point controller, p. 527". The value of the parameter DB is
typically set to 1% of the maximum control range [max. (SP - PV)].

ERR_EFF

0

1

Y

DB

ERR_EFF
+

-

Xf

+

-

SP

PV

Y

Feedback LAG_NEG LAG_POS

2-point behavior (without feedback path) = 0 = 0

negative feedback > 0 = 0

negative + positive feedback > 0 > LAG_NEG

Warning, regeneration! (neg. feedback with LAG_POS) = 0 > 0

Warning, regeneration! (only neg. feedback with lag_neg) > LAG_POS > 0
33002211 527

TWOPOINT_CON1: Two point controller
Operating modes There are three operating modes selectable through the inputs MAN and HALT:

Runtime error

Error message If HYS > 2 * DB, an Error Messageappears.

Warning In the following cases there will be a Warning:

Operating mode MAN HALT Meaning

Automatic 0 0 The Function block will be handled as
described previously.

Manual 1 0 or 1 The output Y is set to the YMAN value.
xf1 and xf2 are calculated according to the
following formula:

Halt 0 1 The output Y is held at its last value. xf1 and xf2
are set to GAIN * Y.

xf1 XF_MAN
GAIN

100
----------------×=

xf2 XF_MAN
GAIN

100
----------------×=

If… Then…

LAG_NEG = 0 and LAG_POS > 0 the controller works as if it only had a negative
feedback path with the time constant LAG_POS.

LAG_POS < LAG_NEG > 0 the controller works as if it only had a negative
feedback path with the time constant LAG_NEG.

XF_MAN < 0 or XF_MAN > 100 the controller operates without internal feedback
paths response.
528 33002211

33002211
62

VEL_LIM: Velocity limiter
Overview

At a Glance This chapter describes the VEL_LIM block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 530

Representation 531

Detailed description 532

Runtime error 533
529

VEL_LIM: Velocity limiter
Brief description

Function
description

The Function block realizes a velocity limiter with manipulated variable limiting.

The gradient of the input variable IN is limited to a predefinable RATE value. It also
limits the output OUT to within OUT_MAX and OUT_MIN. This allows the function
block to adjust signals to the technologically limited pace and limits from actuators.

EN and ENO can be configured as additional parameters.

Properties The function block has the following properties:
� Tracking and automatic operating modes
� Manipulated variable limiting in automatic mode
530 33002211

VEL_LIM: Velocity limiter
Representation

Symbol Block representation

Parameter
description

Block parameter description

VEL_LIM

INREAL

RATEREAL
OUT_MINREAL

OUT_MAXREAL

TR_IREAL
TR_SBOOL

REALOUT

BOOLQMIN

BOOLQMAX

Parameter Data type Meaning

IN REAL Input

RATE REAL Maximum velocity limiting

OUT_MIN REAL Lower limit

OUT_MAX REAL Upper limit

TR_I REAL Initiating input

TR_S BOOL Initiation type
"1" = Operating mode Tracking
"0" = Automatic operating mode

OUT REAL Output

QMIN BOOL "1" = Output OUT, has reached lower limit

QMAX BOOL "1" = Output OUT has reached upper limit
33002211 531

VEL_LIM: Velocity limiter
Detailed description

Parametering Parameter assignment for the function block is accomplished by establishing the
maximum velocity RATE as well as the OUT_MAX and OUT_MIN limits for the
output OUT. The maximum velocity rate indicates by how much the output may
change within one second.

Actual RATE = 0, becomes OUT = IN.

The limits OUT_MAX and OUT_MIN limit the upper output as well as the lower
output. Hence OUT_MIN ≤ OUT ≤ OUT_MAX.

The outputs QMAX and QMIN signal that the output has reached a limit, and thus
been capped.
� QMAX = 1 if OUT ≥ OUT_MAX
� QMIN = 1 if OUT ≤ OUT_MIN

Operating modes There are two operating modes, which can be selected via the input TR_S:

Operating mode TR_S Meaning

Automatic 0 The current value for OUT will be constantly calculated and
displayed.

Tracking 1 The tracking value TR_I is transferred directly to the output
OUT. The control output is, however, limited by OUT_MAX
and OUT_MIN.
532 33002211

VEL_LIM: Velocity limiter
Example Explanation of the dynamic behavior of the VEL_LIM function block.

The function block follows the transition at the input IN at its maximum velocity
change rate. It can also be clearly seen that the output OUT is limited by OUT_MAX
and OUT_MIN with the associated QMAX and QMIN signals.

Runtime error

Error message With OUT_MAX < OUT_MIN an Error message appears

0

0

1

1

OUT_MIN

OUT_MAX
IN

OUT

QMAX

QMIN
33002211 533

VEL_LIM: Velocity limiter
534 33002211

33002211
63

VLIM: Velocity limiter: 1st order
Overview

At a Glance This chapter describes the VLIM block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 536

Representation 537

Detailed description 538

Rum-time error 539
535

VLIM: Velocity limiter: 1st order
Brief description

Function
description

The Function block realizes a velocity limiter of the 1st order with limiting of the
manipulated variable.

The output Y follows the input X, but at the maximum gradient rate. Furthermore, the
output Y will be limited by YMAX and YMIN. This allows the function block to adjust
signals to the technologically limited pace and limits from controlling elements.

EN and ENO can be projected as additional parameters.

Properties The function block contains the following properties:
� Operating mode, Hand, Halt, Automatic
� Manipulated variable limiting
536 33002211

VLIM: Velocity limiter: 1st order
Representation

Symbol Block representation

VLIM parameter
description

Block parameter description

Parameter
description
Mode_VLIM

Data structure description

Parameter
description
Para_VLIM

Data structure description

Parameter
description
Stat_MAXMIN

Data structure description

VLIM

XREAL

MODEMode_MH
PARAPara_VLIM

YMANREAL

REALY

Stat_MAXMINSTATUS

Parameter Data type Meaning

X REAL Input

MODE Mode_MH Operating modes

PARA Para_VLIM Parameter

YMAN REAL Manually manipulated value

Y REAL Output

STATUS Stat_MAXMIN Y output status

Element Data type Meaning

Man BOOL "1": Manual mode

Halt BOOL "1": Halt mode

Element Data type Meaning

rate REAL Maximum velocity (maximum x’ / sec)

ymax REAL Upper limit

ymin REAL Lower limit

Element Data type Meaning

qmax BOOL "1" = Y has reached upper limit

qmin BOOL "1" = Y has reached lower limit
33002211 537

VLIM: Velocity limiter: 1st order
Detailed description

Parametering The parametering of the function block appears through specification of the
maximum upper speed RATE as well as the limits YMAX and YMIN for output Y. The
maximum upper speed specifies to which value the output can change within one
second.

The amount will be resolved from the parameter RATE.

Exception:
RATE = 0

If RATE = 0 is projected, then output Y follows input X automatically (Y=X).

Limits The limits YMAX and YMIN limit the upper output as well as the lower output. So that
means YMIN ≤ Y ≤ YMAX.

The outputs QMAX and QMIN signal that the output has reached a limit, and thus
been capped.
� QMAX = 1 if Y ≥ YMAX
� QMIN = 1 if Y ≤ YMIN

Operating mode There are three operating mode, which are selected via the elements MAN and
HALT:

Operating mode MAN HALT Meaning

Automatic 0 0 The current value for Y will be constantly
calculated and displayed.

Hand 1 0 or 1 The manual value YMAN will be transmitted
fixed to the output Y. The control output is,
however, limited through ymax and ymin.

Halt 0 1 The output Y will be held at the last value. The
output will no longer be changed, but can be
overwritten by the user.
538 33002211

VLIM: Velocity limiter: 1st order
Example Explanation of the dynamic behavior of the VLIM function block.

The function block follows the jump to input X with maximum change in speed
(RATE). Output Y remains at a standstill in Halt mode, in order to subsequently
move on from the rank at which it has stopped. It is also clear to see the limits of
output Y through YMAX and YMIN with the relevant messages QMAX and QMIN.

Rum-time error

Error message There is a Error message, if
� an invalid floating point number lies at input YMAN or X,
� is ymax < ymin.

1

0

0

0

1

1

ymin

ymax
X

Y

halt

qmax

qmin
33002211 539

VLIM: Velocity limiter: 1st order
540 33002211

Glossary
active Window The window, which is currently selected. Only one window can be active at any
given time. When a window is active, the color of the title bar changes, so that it is
distinguishable from the other windows. Unselected windows are inactive.

Actual
Parameters

Current connected Input / Output Parameters.

Addresses (Direct) addresses are memory ranges on the PLC. They are located in the State
RAM and can be assigned Input/Output modules.
The display/entry of direct addresses is possible in the following formats:
� Standard Format (400001)
� Separator Format (4:00001)
� Compact format (4:1)
� IEC Format (QW1)

ANL_IN ANL_IN stands for the "Analog Input" data type and is used when processing analog
values. The 3x-References for the configured analog input module, which were
specified in the I/O component list, are automatically assigned to the data type and
should therefore only be occupied with Unlocated Variables.

ANL_OUT ANL_OUT stands for the "Analog Output" data type and is used when processing
analog values. The 4x-References for the configured analog output module, which
were specified in the I/O component list, are automatically assigned to the data type
and should therefore only be occupied with Unlocated Variables.

ANY In the present version, "ANY" covers the BOOL, BYTE, DINT, INT, REAL, UDINT,
UINT, TIME and WORD elementary data types and related Derived Data Types.

A

33002211 541

Glossary
ANY_BIT In the present version, "ANY_BIT" covers the BOOL, BYTE and WORD data types.

ANY_ELEM In the present version, "ANY_ELEM" covers the BOOL, BYTE, DINT, INT, REAL,
UDINT, UINT, TIME and WORD data types.

ANY_INT In the present version, "ANY_INT" covers the DINT, INT, UDINT and UINT data
types.

ANY_NUM In the present version, "ANY_NUM" covers the DINT, INT, REAL, UDINT and UINT
data types.

ANY_REAL In the present version, "ANY_REAL" covers the REAL data type.

Application
Window

The window contains the workspace, menu bar and the tool bar for the application
program. The name of the application program appears in the title bar. An
application window can contain several Document windows. In Concept the
application window corresponds to a Project.

Argument Synonymous with Actual parameters.

ASCII-Mode The ASCII (American Standard Code for Information Interchange) mode is used to
communicate with various host devices. ASCII works with 7 data bits.

Atrium The PC based Controller is located on a standard AT board, and can be operated
within a host computer in an ISA bus slot. The module has a motherboard (requires
SA85 driver) with two slots for PC104 daughter-boards. In this way, one PC104
daughter-board is used as a CPU and the other as the INTERBUS controller.

Backup file
(Concept-EFB)

The backup file is a copy of the last Source coding file. The name of this backup file
is "backup??.c" (this is assuming that you never have more than 100 copies of the
source coding file). The first backup file has the name "backup00.c". If you have
made alterations to the Definitions file which do not cause any changes to the EFB
interface, the generation of a backup file can be stopped by editing the source
coding file (Objects → Source). If a backup file is created, the source file can be
entered as the name.

B

542 33002211

Glossary
Base 16 literals Base 16 literals are used to input whole number values into the hexadecimal system.
The base must be denoted using the prefix 16#. The values can not have any signs
(+/-). Single underscores (_) between numbers are not significant.

Example
16#F_F or 16#FF (decimal 255)
16#E_0 or 16#E0 (decimal 224)

Base 2 literals Base 2 literals are used to input whole number values into the dual system. The
base must be denoted using the prefix 2#. The values can not have any signs (+/-).
Single underscores (_) between numbers are not significant.

Example
2#1111_1111 or 2#11111111 (decimal 255)
2#1110_0000 or 2#11100000 (decimal 224)

Base 8 literals Base 8 literals are used to input whole number values in the octosystem. The base
must be denoted using the prefix 8#. The values can not have any signs (+/-). Single
underscores (_) between numbers are not significant.

Example
8#3_77 or 8#377 (decimal 255)
8#34_0 or 8#340 (decimal 224)

Binary
Connections

Connections between FFB outputs and inputs with the data type BOOL.

Bit sequence A data element, which consists of one or more bits.

BOOL BOOL stands for the data type "boolean". The length of the data element is 1 bit
(occupies 1 byte in the memory). The value range for the variables of this data type
is 0 (FALSE) and 1 (TRUE).

Bridge A bridge is a device which connects networks. It enables communication between
nodes on two networks. Each network has its own token rotation sequence - the
token is not transmitted via the bridge.

BYTE BYTE stands for the data type "bit sequence 8". Entries are made as base 2 literal,
base 8 literal or base 16 literal. The length of the data element is 8 bits. A numerical
value range can not be assigned to this data type.
33002211 543

Glossary
Clipboard The clipboard is a temporary memory for cut or copied objects. These objects can
be entered in sections. The contents of the clipboard are overwritten with each new
cut or copy.

Coil A coil is a LD element which transfers the status of the horizontal connection on its
left side, unchanged, to the horizontal connection on its right side. In doing this, the
status is saved in the relevant variable/direct address.

Compact format
(4:1)

The first digit (the Reference) is separated from the address that follows by a colon
(:) where the leading zeros are not specified.

Constants Constants are Unlocated variables, which are allocated a value that cannot be
modified by the logic program (write protected).

Contact A contact is a LD element, which transfers a status on the horizontal link to its right
side. This status comes from the boolean AND link of the status of the horizontal link
on the left side, with the status of the relevant variable/direct address. A contact
does not change the value of the relevant variable/direct address.

Data transfer
settings

Settings which determine how information is transferred from your programming
device to the PLC.

Data Types The overview shows the data type hierarchy, as used for inputs and outputs of
functions and function blocks. Generic data types are denoted using the prefix
"ANY".
� ANY_ELEM

� ANY_NUM
ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)

� ANY_BIT (BOOL, BYTE, WORD)
� TIME

� System Data types (IEC Extensions)
� Derived (from "ANY" data types)

C

D

544 33002211

Glossary
DCP I/O drop A remote network with a super-ordinate PLC can be controlled using a Distributed
Control Processor (D908). When using a D908 with remote PLC, the super-ordinate
PLC considers the remote PLC as a remote I/O drop. The D908 and the remote PLC
communicate via the system bus, whereby a high performance is achieved with
minimum effect on the cycle time. The data exchange between the D908 and the
super-ordinate PLC takes place via the remote I/O bus at 1.5Mb per second. A
super-ordinate PLC can support up to 31 D908 processors (addresses 2-32).

DDE (Dynamic
Data Exchange)

The DDE interface enables a dynamic data exchange between two programs in
Windows. The user can also use the DDE interface in the extended monitor to call
up their own display applications. With this interface, the user (i.e. the DDE client)
can not only read data from the extended monitor (DDE server), but also write data
to the PLC via the server. The user can therefore alter data directly in the PLC, while
monitoring and analyzing results. When using this interface, the user can create
their own "Graphic Tool", "Face Plate" or "Tuning Tool" and integrate it into the
system. The tools can be written in any language, i.e. Visual Basic, Visual C++,
which supports DDE. The tools are invoked when the user presses one of the
buttons in the Extended Monitor dialog field. Concept Graphic Tool: Configuration
signals can be displayed as a timing diagram using the DDE connection between
Concept and Concept Graphic Tool.

Declaration Mechanism for specifying the definition of a language element. A declaration usually
covers the connection of an identifier to a language element and the assignment of
attributes such as data types and algorithms.

Definitions file
(Concept-EFB)

The definitions file contains general descriptive information on the selected EFB and
its formal parameters.

Defragmenting With defragmenting, unanticipated gaps (e.g. resulting from deleting unused
variables) are removed from memory.

Derived Data
Type

Derived data types are data types, which are derived from Elementary Data Types
and/or other derived data types. The definition of the derived data types is found in
the Concept data type editor.
A distinction is made between global data types and local data types.
33002211 545

Glossary
Derived Function
Block (DFB)

A derived function block represents the invocation of a derived function block type.
Details of the graphic form of the invocation can be found in the "Functional block
(instance)". In contrast to the invocation of EFB types, invocations of DFB types are
denoted by double vertical lines on the left and right hand side of the rectangular
block symbol.
The output side of a derived function block is created in FBD language, LD
language, ST language, IL language, but only in the current version of the
programming system. Derived functions can also not be defined in the current
version.
A distinction is made between local and global DFBs.

DFB Code The DFB code is the section's DFB code which can be executed. The size of the
DFB code is mainly dependent upon the number of blocks in the section.

DFB instance
data

The DFB instance data is internal data from the derived function blocks used in the
program.

DINT DINT stands for the data type "double length whole number (double integer)".
Entries are made as integer literal, base 2 literal, base 8 literal or base 16 literal. The
length of the data element is 32 bits. The value range for variables of this data type
reaches from -2 exp (31) to 2 exp (31) -1.

Direct
Representation

A method of displaying variables in the PLC program, from which the assignment to
the logical memory can be directly - and indirectly to the physical memory - derived.

Document
Window

A window within an application window. Several document windows can be open at
the same time in an application window. However, only one document window can
ever be active. Document windows in Concept are, for example, sections, the
message window, the reference data editor and the PLC configuration.

DP (PROFIBUS) DP = Remote Peripheral

Dummy An empty file, which consists of a text heading with general file information, such as
author, date of creation, EFB designation etc. The user must complete this dummy
file with further entries.

DX Zoom This property enables the user to connect to a programming object, to monitor and,
if necessary change, its data value.
546 33002211

Glossary
EFB code The EFB code is the executable code of all EFBs used. In addition the used EFBs
count in DFBs.

Elementary
functions/
function blocks
(EFB)

Identifier for Functions or Function blocks, whose type definitions are not formulated
in one of the IEC languages, i.e. whose body for example can not be modified with
the DFB editor (Concept-DFB). EFB types are programmed in "C" and are prepared
in a pre-compiled form using libraries.

EN / ENO (Enable
/ Error signal)

If the value of EN is equal to "0" when the FFB is invoked, the algorithms that are
defined by the FFB will not be executed and all outputs keep their previous values.
The value of ENO is in this case automatically set to "0". If the value of EN is equal
to "1", when the FFB is invoked, the algorithms which are defined by the FFD will be
executed. After the error-free execution of these algorithms, the value of ENO is
automatically set to "1". If an error occurs during the execution of these algorithms,
ENO is automatically set to "0". The output behavior of the FFB is independent of
whether the FFBs are invoked without EN/ENO or with EN=1. If the EN/ENO display
is switched on, it is imperative that the EN input is switched on. Otherwise, the FFB
is not executed. The configuration of EN and ENO is switched on or off in the Block
Properties dialog box. The dialog box can be invoked with the Objects →
Properties...menu command or by double-clicking on the FFB.

Error If an error is recognized during the processing of a FFB or a step (e.g. unauthorized
input values or a time error), an error message appears, which can be seen using
the Online → Event Viewer...menu command. For FFBs, the ENO output is now set
to "0".

Evaluation The process, through which a value is transmitted for a Function or for the output of
a Function block during Program execution.

Expression Expressions consist of operators and operands.

FFB (Functions/
Function blocks)

Collective term for EFB (elementary functions/function blocks) and DFB (Derived
function blocks)

E

F

33002211 547

Glossary
Field variables A variable, which is allocated a defined derived data type with the key word ARRAY
(field). A field is a collection of data elements with the same data type.

FIR Filter (Finite Impulse Response Filter) a filter with finite impulse answer

Formal
parameters

Input / Output parameters, which are used within the logic of a FFB and led out of
the FFB as inputs/outputs.

Function (FUNC) A program organization unit, which supplies an exact data element when
processing. a function has no internal status information. Multiple invocations of the
same function using the same input parameters always supply the same output
values.
Details of the graphic form of the function invocations can be found in the definition
"Functional block (instance)". In contrast to the invocations of the function blocks,
function invocations only have a single unnamed output, whose name is the same
as the function. In FBD each invocation is denoted by a unique number via the
graphic block, this number is automatically generated and can not be altered.

Function block
(Instance) (FB)

A function block is a program organization unit, which correspondingly calculates the
functionality values that were defined in the function block type description, for the
outputs and internal variable(s), if it is invoked as a certain instance. All internal
variable and output values for a certain function block instance remain from one
function block invocation to the next. Multiple invocations of the same function block
instance with the same arguments (input parameter values) do not therefore
necessarily supply the same output value(s).
Each function block instance is displayed graphically using a rectangular block
symbol. The name of the function block type is stated in the top center of the
rectangle. The name of the function block instance is also stated at the top, but
outside of the rectangle. It is automatically generated when creating an instance,
but, depending on the user's requirements, it can be altered by the user. Inputs are
displayed on the left side of the block and outputs are displayed on the right side.
The names of the formal input/output parameters are shown inside the rectangle in
the corresponding places.
The above description of the graphic display is especially applicable to the function
invocations and to DFB invocations. Differences are outlined in the corresponding
definitions.

Function Block
Dialog (FBD)

One or more sections, which contain graphically displayed networks from Functions,
Function blocks and Connections.

Function block
type

A language element, consisting of: 1. the definition of a data structure, divided into
input, output and internal variables; 2. a set of operations, which are performed with
elements of the data structure, when a function block type instance is invoked. This
set of operations can either be formulated in one of the IEC languages (DFB type)
or in "C" (EFB type). A function block type can be instanced (invoked) several times.
548 33002211

Glossary
Function
Number

The function number is used to uniquely denote a function in a program or DFB. The
function number can not be edited and is automatically assigned. The function
number is always formed as follows: .n.m

n = Number of the section (consecutive numbers)
m = Number of the FFB object in the section (current number)

Generic Data
Type

A data type, which stands in place of several other data types.

Generic literals If the literal's data type is not relevant, simply specify the value for the literal. If this
is the case, Concept automatically assigns the literal a suitable data type.

Global Data Global data are Unlocated variables.

Global derived
data types

Global derived data types are available in each Concept project and are occupied in
the DFB directory directly under the Concept directory.

Global DFBs Global DFBs are available in each Concept project. The storage of the global DFBs
is dependant upon the settings in the CONCEPT.INI file.

Global macros Global macros are available in each Concept project and are stored in the DFB
directory directly under the Concept directory.

Groups (EFBs) Some EFB libraries (e.g. the IEC library) are divided into groups. This facilitates
locating the EFBs especially in expansive libraries.

Host Computer Hardware and software, which support programming, configuring, testing, operating
and error searching in the PLC application as well as in a remote system application,
in order to enable source documentation and archiving. The programming device
can also be possibly used for the display of the process.

G

H

33002211 549

Glossary
I/O Map The I/O and expert modules from the various CPUs are configured in the I/O map.

Icon Graphical representation of different objects in Windows, e.g. drives, application
programs and document windows.

IEC 61131-3 International standard: Programmable Logic Controls - Part 3: Programming
languages.

IEC Format
(QW1)

There is an IEC type designation in initial position of the address, followed by the
five-figure address.
� %0x12345 = %Q12345
� %1x12345 = %I12345
� %3x12345 = %IW12345
� %4x12345 = %QW12345

IEC name
conventions
(identifier)

An identifier is a sequence of letters, numbers and underscores, which must begin
with either a letter or underscore (i.e. the name of a function block type, an instance,
a variable or a section). Letters of a national typeface (i.e.: ö,ü, é, õ) can be used,
except in project and DFB names.
Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are
interpreted as two separate identifiers. Several leading and multiple successive
underscores are not allowed.
Identifiers should not contain any spaces. No differentiation is made between upper
and lower case, e.g. "ABCD" and "abcd" are interpreted as the same identifier.
Identifiers should not be Keywords.

IEC Program
Memory

The IEC program memory consists of the program code, EFB code, the section data
and the DFB instance data.

IIR Filter (Infinite Impulse Response Filter) a filter with infinite impulse answer

Initial step The first step in a sequence. A step must be defined as an initial step for each
sequence. The sequence is started with the initial step when first invoked.

Initial value The value, which is allocated to a variable when the program is started. The values
are assigned in the form of literals.

I

550 33002211

Glossary
Input bits
(1x references)

The 1/0 status of the input bits is controlled via the process data, which reaches from
an input device to the CPU.

Input parameter
(Input)

Upon invocation of a FFB, this transfers the corresponding argument.

Input words
(3x references)

An input word contains information, which originates from an external source and is
represented by a 16 bit number. A 3x register can also contain 16 sequential input
bits, which were read into the register in binary or BCD (binary coded decimal)
format. Note: The x, which follows the initial reference type number, represents a
five-figure storage location in the user data memory, i.e. the reference 300201
signifies a 16-bit input word at the address 201 in the State RAM.

Instance Name An identifier, which belongs to a certain function block instance. The instance name
is used to clearly denote a function block within a program organization unit. The
instance name is automatically generated, but it can be edited. The instance name
must be unique throughout the whole program organization unit, and is not case
sensitive. If the name entered already exists, you will be warned and you will have
to choose another name. The instance name must comply with the IEC name
conventions otherwise an error message appears. The automatically generated
instance name is always formed as follows: FBI_n_m

FBI = Function Block Instance
n = Number of the section (consecutive numbers)
m = Number of the FFB object in the section (current number)

Instancing Generating an Instance.

Instruction (IL) Instructions are the "commands" of the IL programming language. Each instruction
begins on a new line and is performed by an operator with a modifier if necessary,
and if required for the current operation, by one or more operands. If several
operands are used, they are separated by commas. A character can come before
the instruction, which is then followed by a colon. The comment must, if present, be
the last element of the line.

Note: The x, which follows the initial reference type number, represents a five-
figure storage location in the user data memory, i.e. the reference 100201 signifies
an output or marker bit at the address 201 in the State RAM.
33002211 551

Glossary
Instruction
(LL984)

When programming electrical controls, the user must implement operation-coded
instructions in the form of picture objects, which are divided into a recognizable
contact form. The designed program objects are, on a user level, converted to
computer usable OP codes during the download process. The OP codes are
decoded in the CPU and processed by the firmware functions of the controller in a
way that the required control is implemented.

Instruction (ST) Instructions are "commands" of the ST programming language. Instructions must be
completed by semicolons. Several instructions can be entered in one line (separated
by semicolons).

Instruction list
(IL)

IL is a text language according to IEC 1131, which is shown in operations, i.e.
conditional or unconditional invocations of Functions blocks and Functions,
conditional or unconditional jumps etc. through instructions.

INT INT stands for the data type "whole number (integer)". Entries are made as integer
literal, base 2 literal, base 8 literal or base 16 literal. The length of the data element
is 16 bits. The value range for variables of this datatype reaches from -2 exp (15) to
2 exp (15) -1.

Integer literals Integer literals are used to input whole number values into the decimal system. The
values can have a preceding sign (+/-). Single underscores (_) between numbers
are not significant.

Example
-12, 0, 123_456, +986

INTERBUS (PCP) The new INTERBUS (PCP) I/O drop type is entered into the Concept configurator,
to allow use of the INTERBUS PCP channel and the INTERBUS process data pre-
processing (PDV). This I/O drop type is assigned the INTERBUS switching module
180-CRP-660-01.
The 180-CRP-660-01 differs from the 180-CRP-660-00 only in the fact that it has a
clearly larger I/O range in the control state RAM.

Invocation The process by which the execution of an operation is initiated.

Jump Element of the SFC language. Jumps are used to skip zones in the sequence.

J

552 33002211

Glossary
Keywords Keywords are unique combinations of characters, which are used as special
syntactical components, as defined in Appendix B of the IEC 1131-3. All keywords
which are used in the IEC 1131-3 and therefore in Concept, are listed in Appendix
C of the IEC 1131-3. These keywords may not be used for any other purpose, i.e.
not as variable names, section names, instance names etc.

Ladder Diagram
(LD)

Ladder Diagram is a graphic programming dialog according to IEC1131, which is
optically oriented to the "rung" of a relay contact plan.

Ladder Logic 984
(LL)

The terms Ladder Logic and Ladder Diagram refer to the word Ladder being
executed. In contrast to a circuit diagram, a ladder diagram is used by electrotech-
nicians to display an electrical circuit (using electrical symbols), which should show
the course of events and not the existing wires, which connect the parts with each
other. A usual user interface for controlling the actions of automation devices
permits a Ladder Diagram interface, so that electrotechnicians do not have to learn
new programming languages to be able to implement a control program.
The structure of the actual Ladder Diagram enables the connection of electric
elements in such a way that generates a control output, which is dependent upon a
logical power flow through used electrical objects, which displays the previously
requested condition of a physical electrical device.
In simple form, the user interface is a video display processed by the PLC
programming application, which sets up a vertical and horizontal grid in which
programming objects are classified. The diagram contains the power grid on the left
side, and when connected to activated objects, the power shifts from left to right.

Landscape Landscape means that when looking at the printed text, the page is wider than it is
high.

Language
Element

Every basic element in one of the IEC programming languages, e.g. a step in SFC,
a function block instance in FBD or the initial value of a variable.

Library Collection of software objects, which are intended for re-use when programming
new projects, or even building new libraries. Examples are the libraries of the
Elementary function block types.
EFB libraries can be divided up into Groups.

K

L

33002211 553

Glossary
Link A control or data flow connection between graphical objects (e.g. steps in the SFC
Editor, function blocks in the FBD Editor) within a section, represented graphically
as a line.

Literals Literals are used to provide FFB inputs, and transition conditions etc with direct
values. These values can not be overwritten by the program logic (write-protected).
A distinction is made between generic and standardized literals.
Literals are also used to allocate, to a constant, a value or a variable, an initial value.
Entries are made as base 2 literal, base 8 literal, base 16 literal, integer literal, real
literal or real literal with exponent.

Local derived
data types

Local derived data types are only available in a single Concept project and the local
DFBs and are placed in the DFB directory under the project directory.

Local DFBs Local DFBs are only available in a single Concept project and are placed in the DFB
directory under the project directory.

Local Link The local network is the network, which connects the local nodes with other nodes
either directly or through bus repeaters.

Local macros Local macros are only available in a single Concept project and are placed in the
DFB directory under the project directory.

Local network
nodes

The local node is the one which is currently being configured.

Located variable A state RAM address (reference addresses 0x, 1x, 3x,4x) is allocated to located
variables. The value of these variables is saved in the state RAM and can be
modified online using the reference data editor. These variables can be addressed
using their symbolic names or their reference addresses.

All inputs and outputs of the PLC are connected to the state RAM. The program can
only access peripheral signals attached to the PLC via located variables. External
access via Modbus or Modbus Plus interfaces of the PLC, e.g. from visualization
systems, is also possible via located variables.
554 33002211

Glossary
Macro Macros are created with the help of the Concept DFB software.
Macros are used to duplicate frequently used sections and networks (including their
logic, variables and variable declaration).
A distinction is made between local and global macros.

Macros have the following properties:
� Macros can only be created in the FBD and LD programming languages.
� Macros only contain one section.
� Macros can contain a section of any complexity.
� In programming terms, there is no difference between an instanced macro, i.e. a

macro inserted into a section and a conventionally created section.
� DFB invocation in a macro
� Declaring variables
� Using macro-specific data structures
� Automatic transfer of the variables declared in the macro.
� Initial values for variables
� Multiple instancing of a macro in the entire program with differing variables
� The name of the section, variable names and data structure names can contain

up to 10 different exchange marks (@0 to @9).

MMI Man-Machine-Interface

Multi element
variables

Variables to which a Derived data type defined with STRUCT or ARRAY is allocated.
A distinction is made here between field variables and structured variables.

Network A network is the collective switching of devices to a common data path, which then
communicate with each other using a common protocol.

Network node A node is a device with an address (1...64) on the Modbus Plus network.

Node Node is a programming cell in a LL984 network. A cell/node consists of a 7x11
matrix, i.e. 7 rows of 11 elements.

M

N

33002211 555

Glossary
Node Address The node address is used to uniquely denote a network node in the routing path.
The address is set on the node directly, e.g. using the rotary switch on the back of
the modules.

Operand An operand is a literal, a variable, a function invocation or an expression.

Operator An operator is a symbol for an arithmetic or boolean operation which is to be
executed.

Output
parameter
(output):

A parameter, through which the result(s) of the evaluation of a FFB is/are returned.

Output/Marker
bits
(0x references)

An output/marker bit can be used to control real output data using an output unit of
the control system, or to define one or more discrete outputs in the state RAM. Note:
The x, which follows the initial reference type number, represents a five-figure
storage location in the user data memory, i.e. the reference 000201 signifies an
output or marker bit at the address 201 in the State RAM.

Output/marker
words
(4x references)

An output / marker word can be used to save numerical data (binary or decimal) in
the state RAM, or to send data from the CPU to an output unit in the control system.
Note: The x, which follows the initial reference type number, represents a five-figure
storage location in the user data memory, i.e. the reference 400201 signifies a 16 bit
output or marker word at the address 201 in the State RAM.

Peer CPU The Peer CPU processes the token execution and the data flow between the
Modbus Plus network and the PLC user logic.

PLC Memory programmable controller

Portrait Portrait means that the sides are larger than the width when printed.

Program The uppermost program organization unit. A program is closed on a single PLC
download.

O

P

556 33002211

Glossary
Program
organization unit

A function, a function block, or a Program. This term can refer to either a type or an
instance.

Program
redundancy
system
(Hot Standby)

A redundancy system consists of two identically configured PLC machines, which
communicate with one another via redundancy processors. In the case of a
breakdown of the primary PLC, the secondary PLC takes over the control check.
Under normal conditions, the secondary PLC does not take over the control function,
but checks the status information, in order to detect errors.

Project General description for the highest level of a software tree structure, which specifies
the super-ordinate project name of a PLC application. After specifying the project
name you can save your system configuration and your control program under this
name. All data that is created whilst setting up the configuration and program,
belongs to this super-ordinate project for this specific automation task.
General description for the complete set of programming and configuration
information in the project database, which represents the source code that
describes the automation of a system.

Project database The database in the host computer, which contains the configuration information for
a project.

Prototype file
(Concept-EFB)

The prototype file contains all the prototypes of the assigned functions. In addition,
if one exists, a type definition of the internal status structure is specified.

REAL REAL stands for the data type "floating point number". The entry can be real-literal
or real-literal with an exponent. The length of the data element is 32 bits. The value
range for variables of this data type extends from +/-3.402823E+38.

Real literals Real literals are used to input floating point values into the decimal system. Real
literals are denoted by a decimal point. The values can have a preceding sign (+/-).
Single underscores (_) between numbers are not significant.

Example
-12.0, 0.0, +0.456, 3.14159_26

R

Note: Dependent on the mathematical processor type of the CPU, different ranges
within this permissible value range cannot be represented. This applies to values
that are approaching ZERO and for values that approach INFINITY. In these cases
NAN (Not A Number) or INF (INFinite) will be displayed in the animation mode
instead of a number value.
33002211 557

Glossary
Real literals with
exponents

Real literals with exponents are used to input floating point values into the decimal
system. Real literals with exponents are identifiable by a decimal point. The
exponent indicates the power of ten, with which the existing number needs to be
multiplied in order to obtain the value to be represented. The base can have a
preceding negative sign (-). The exponent can have a preceding positive or negative
sign (+/-). Single underscores (_) between numbers are not significant. (Only
between characters, not before or after the decimal point and not before or after "E",
"E+" or "E-")

Example
-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

Reference Every direct address is a reference that begins with an indicator, which specifies
whether it is an input or an output and whether it is a bit or a word. References that
begin with the code 6, represent registers in the extended memory of the state RAM.
0x range = Output/Marker bits
1x range = Input bits
3x range = Input words
4x range = Output registers
6x range = Register in the extended memory

Register in the
extended
memory
(6x-reference)

6x references are holding registers in the extended memory of the PLC. They can
only be used with LL984 user programs and only with a CPU 213 04 or CPU 424 02.

Remote Network
(DIO)

Remote programming in the Modbus Plus network enables maximum performance
when transferring data and dispenses with the need for connections. Programming
a remote network is simple. Setting up a network does not require any additional
ladder logic to be created. All requirements for data transfer are fulfilled via
corresponding entries in the Peer Cop Processor.

RIO (Remote I/O) Remote I/O indicates a physical location of the I/O point controlling devices with
regard to the CPU controlling them. Remote inp./outputs are connected to the
controlling device via a twisted communication cable.

RTU-Mode Remote Terminal Unit
The RTU mode is used for communication between the PLC and an IBM compatible
personal computer. RTU works with 8 data bits.

Note: The x, which follows each initial reference type number, represents a five-
digit storage location in the user data memory, i.e. the reference 400201 signifies
a 16 bit output or marker word at the address 201 in the State RAM.
558 33002211

Glossary
Runtime error Errors, which appear during program processing on the PLC, in SFC objects (e.g.
Steps) or FFBs. These are, for example, value range overflows for numbers or
timing errors for steps.

SA85 module The SA85 module is a Modbus Plus adapter for IBM-AT or compatible computers.

Scan A scan consists of reading the inputs, processing the program logic and outputting
the outputs.

Section A section can for example be used to describe the functioning mode of a
technological unit such as a motor.
A program or DFB consists of one or more sections. Sections can be programmed
with the IEC programming languages FBD and SFC. Only one of the named
programming languages may be used within a section at any one time.
Each section has its own document window in Concept. For reasons of clarity,
however, it is useful to divide a very large section into several small ones. The scroll
bar is used for scrolling within a section.

Section Code Section Code is the executable code of a section. The size of the Section Code is
mainly dependent upon the number of blocks in the section.

Section Data Section data is the local data in a section such as e.g. literals, connections between
blocks, non-connected block inputs and outputs, internal status memory of EFBs.

Separator
Format (4:00001)

The first digit (the reference) is separated from the five-digit address that follows by
a colon (:).

Sequence
language (SFC)

The SFC Language Elements enable a PLC program organization unit to be divided
up into a number of Steps and Transitions, which are connected using directional
Links. A number of actions belong to each step, and transition conditions are
attached to each transition.

Serial
Connections

With serial connections (COM) the information is transferred bit by bit.

S

Note: Data which appears in the DFBs of this section is not section data.
33002211 559

Glossary
Source code file
(Concept-EFB)

The source code file is a normal C++ source file. After executing the Library →
Create files menu command, this file contains an EFB-code frame, in which you
have to enter a specific code for the EFB selected. To do this invoke the Objects →
Source menu command.

Standard Format
(400001)

The five-digit address comes directly after the first digit (the reference).

Standardized
literals

If you would like to manually determine a literal's data type, this may be done using
the following construction: ’Data type name’#’value of the literal’.

Example
INT#15 (Data type: integer, value: 15),
BYTE#00001111 (Data type: byte, value: 00001111)
REAL#23.0 (Data type: real, value: 23.0)

To assign the data type REAL, the value may also be specified in the following
manner: 23.0.
Entering a comma will automatically assign the data type REAL.

State RAM The state RAM is the memory space for all variables, which are accessed via
References (Direct representation) in the user program. For example, discrete
inputs, coils, input registers, and output registers are located in the state RAM.

State RAM
overview for
uploading and
downloading

Overview:

Status Bits For every device with global inputs or specific inputs/outputs of Peer Cop data, there
is a status bit. If a defined group of data has been successfully transferred within the
timeout that has been set, the corresponding status bit is set to 1. If this is not the
case, this bit is set to 0 and all the data belonging to this group is deleted (to 0).

Variables-
Editor

RDE
Editor

Concept Project database

Variables
(Initial values)

State RAM-

Mirror (Image)

for loading from
and/or loading
in Signal-
memory

PLC-State RAM
 0x / 1x / 3x / 4x

U3 D3 D2 U1

U2

D1
560 33002211

Glossary
Step SFC-language element: Situation, in which the behavior of a program, in reference
to its inputs and outputs, follows those operations which are defined by the actions
belonging to the step.

Step name The step name is used to uniquely denote a step in a program organization unit. The
step name is generated automatically, but it can be edited. The step name must be
unique within the entire program organization unit, otherwise an error message will
appear.
The automatically generated step name is always formed as follows: S_n_m

S = step
n = Number of the section (consecutive numbers)
m = Number of the step in the section (current number)

Structured text
(ST)

ST is a text language according to IEC 1131, in which operations, e.g. invocations
of Function blocks and Functions, conditional execution of instructions, repetitions
of instructions etc. are represented by instructions.

Structured
variables

Variables to which a Derived data type defined with STRUCT (structure) is allocated.
A structure is a collection of data elements with generally different data types
(elementary data types and/or derived data types).

SY/MAX In Quantum control devices, Concept includes the preparation of I/O-map SY/MAX-
I/O modules for remote controlling by the Quantum PLC. The SY/MAX remote
backplane has a remote I/O adapter in slot 1, which communicates via a Modicon
S908 R I/O System. The SY/MAX-I/O modules are executed for you for labeling and
inclusion in the I/O map of the Concept configuration.

Template file
(Concept-EFB)

The template file is an ASCII file with layout information for the Concept FBD Editor,
and the parameters for code creation.

TIME TIME stands for the data type "time". The entry is time literal. The length of the data
element is 32 bits. The value range for variables of this data type extends from 0 to
2exp(32)-1. The unit for the data type TIME is 1 ms.

T

33002211 561

Glossary
Time literals Permissible units for times (TIME) are days (D), hours (H), minutes (M), seconds (S)
and milliseconds (MS) or combinations of these. The time must be marked with the
prefix t#, T#, time# or TIME#. The "overflow" of the unit with the highest value is
permissible, e.g. the entry T#25H15M is allowed.

Example
t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M,
time#5D14H12M18S3.5MS

Token The network "token" controls the temporary possession of the transfer right via a
single node. The token passes round the nodes in a rotating (increasing) address
sequence. All nodes follow the token rotation and can receive all the possible data
that is sent with it.

Total IEC
memory

The total IEC memory consists of the IEC program memory and the global data.

Traffic Cop The traffic cop is an IO map, which is generated from the user-IO map. The traffic
cop is managed in the PLC and in addition to the user IO map, contains e.g. status
information on the I/O stations and modules.

Transition The condition, in which the control of one or more predecessor steps passes to one
or more successor steps along a directed link.

UDEFB User-defined elementary functions/function blocks
Functions or function blocks, which were created in the C programming language,
and which Concept provides in libraries.

UDINT UDINT stands for the data type "unsigned double integer". Entries are made as
integer literal, base 2 literal, base 8 literal or base 16 literal. The length of the data
element is 32 bits. The value range for variables of this data type extends from 0 to
2exp(32)-1.

UINT UINT stands for the data type "unsigned integer". Entries are made as integer literal,
base 2 literal, base 8 literal or base 16 literal. The length of the data element is 16
bits. The value range for variables of this data type extends from 0 to (2exp 16)-1.

U

562 33002211

Glossary
Unlocated
variable

Unlocated variables are not allocated a state RAM address. They therefore do not
occupy any state RAM addresses. The value of these variables is saved in the
internal system and can be changed using the reference data editor. These
variables are only addressed using their symbolic names.

Signals requiring no peripheral access, e.g. intermediate results, system tags etc.,
should be primarily declared as unlocated variables.

Variables Variables are used to exchange data within a section, between several sections and
between the program and the PLC.
Variables consist of at least one variable name and one data type.
If a variable is assigned a direct address (reference), it is called a located variable.
If the variable has no direct address assigned to it, it is called an unlocated variable.
If the variable is assigned with a derived data type, it is called a multi element
variable.
There are also constants and literals.

Warning If a critical status is detected during the processing of a FFB or a step (e.g. critical
input values or an exceeded time limit), a warning appears, which can be seen using
the Online → Event Viewer...menu command. For FFBs, the ENO remains set to
"1".

WORD WORD stands for the data type "bit sequence 16". Entries are made as base 2
literal, base 8 literal or base 16 literal. The length of the data element is 16 bits. A
numerical value range can not be assigned to this data type.

V

W

33002211 563

Glossary
564 33002211

CBAIndex
A
ALIM, 41
Automatic regulator setting, 47
AUTOTUNE, 47

C
CLC

DELAY, 101
INTEGRATOR1, 149
LAG1, 165
LEAD_LAG, 197
LIMV, 203
PI1, 275
PID1, 309
PIDP1, 367
SMOOTH_RATE, 467
THREE_STEP_CON1, 507
THREEPOINT_CON1, 499
TWOPOINT_CON1, 523
33002211
CLC_PRO
ALIM, 41
COMP_PID, 75
DEADTIME, 95
DERIV, 107
FGEN, 121
INTEG, 137
LAG, 159
LAG2, 169
LEAD_LAG, 189
PCON2, 229
PCON3, 235
PD_or_PI, 243
PDM, 255
PI, 265
PID, 295
PID_P, 321
PID_PF, 331
PIP, 377
PPI, 389
PWM, 399
QPWM, 423
SCON3, 447
VLIM, 535

COMP_DB, 71
COMP_PID, 75
Comparison, 71
Complete PID controller, 341
Complex PID Controller, 75
565

Index
Conditioning
DTIME, 113
INTEGRATOR, 143
LAG_FILTER, 175
LDLG, 179
LEAD, 185
MFLOW, 209
QDTIME, 417
SCALING, 443
TOTALIZER, 513
VEL_LIM, 529

CONT_CTL
ALIM, 41
AUTOTUNE, 47
COMP_DB, 71
COMP_PID, 75
DEADTIME, 95
DELAY, 101
DERIV, 107
DTIME, 113
FGEN, 121
INTEG, 137
INTEGRATOR, 143
INTEGRATOR1, 149
Introduction, 27
K_SQRT, 155
LAG, 159
LAG_FILTER, 175
LAG1, 165
LAG2, 169
LDLG, 179
LEAD, 185
LEAD_LAG, 189
LEAD_LAG1, 197
LIMV, 203
MFLOW, 209
MS, 215
MULDIV_W, 225
PCON2, 229
PCON3, 235
PD_or_PI, 243
PDM, 255
PI, 265
PI_B, 283
PI1, 275
PID, 295
566
PID_P, 321
PID_PF, 331
PID1, 309
PIDFF, 341
PIDP1, 367
PIP, 377
PPI, 389
PWM, 399
PWM1, 409
QDTIME, 417
QPWM, 423
RAMP, 431
RATIO, 437
SCALING, 443
SCON3, 447
SERVO, 453
SMOOTH_RATE, 467
SP_SEL, 471
SPLRG, 479
STEP2, 485
STEP3, 491
SUM_W, 497
THREE_STEP_CON1, 507
THREEPOINT_CON1, 499
TOTALIZER, 513
TWOPOINT_CON1, 523
VEL_LIM, 529
VLIM, 535

Control for electric servo motors, 453
Controller

AUTOTUNE, 47
PI_B, 283
PIDFF, 341
STEP2, 485
STEP3, 491

Controlling 2 actuators, 479

D
DEADTIME, 95
Deadtime device, 95, 101, 417
DELAY, 101
Delay, 113
DERIV, 107
Differentiator with smoothing, 107, 185, 467
DTIME, 113
33002211

Index
F
FGEN, 121
Function

Parameterization, 23, 24
Function block

Parameterization, 23, 24
Function generator, 121

I
INTEG, 137
INTEGRATOR, 143
Integrator, 513
Integrator with limit, 137, 143, 149
INTEGRATOR1, 149
Introducing the CONT_CTL library, 27

K
K_SQRT, 155

L
LAG, 159
LAG_FILTER, 175
LAG1, 165
LAG2, 169
LDLG, 179
LEAD, 185
LEAD_LAG, 189
LEAD_LAG1, 197
LIMV, 203

M
Manual control of an output, 215
mass flow block, 209
Mathematics

COMP_DB, 71
K_SQRT, 155
MULDIV_W, 225
SUM_W, 497

MFLOW, 209
MS, 215
MULDIV_W, 225
33002211
Multiplication/Division, 225

O
Output processing

MS, 215
PWM1, 409
SERVO, 453
SPLRG, 479

P
Parameterization, 23, 24
PCON2, 229
PCON3, 235
PD device with smoothing, 189, 197
PD_or_PI, 243
PD-device with smoothing, 179
PDM, 255
PI, 265
PI Controller, 275
PI controller, 265
PI_B, 283
PI1, 275
PID, 295
PID controller, 295, 309
PID controller with parallel structure, 321,
331, 367
PID_P, 321
PID_PF, 331
PID1, 309
PIDFF, 341
PIDP1, 367
PIP, 377
PIP cascade controller, 377
PPI, 389
PPI cascade controller, 389
Pulse duration modulation, 255
Pulse width modulation, 399, 409
Pulse width modulation (simple), 423
PWM, 399
PWM1, 409
567

Index
Q
QDTIME, 417
QPWM, 423

R
RAMP, 431
Ramp generator, 431
RATIO, 437
Ratio controller, 437

S
SCALING, 443
Scaling, 443
SCON3, 447
SERVO, 453
Setpoint management

RAMP, 431
RATIO, 437
SP_SEL, 471

Setpoint switch, 471
Simple PI controller, 283
SMOOTH_RATE, 467
SP_SEL, 471
SPLRG, 479
Square root, 155
STEP2, 485
STEP3, 491
Structure changeover PD/PI controller, 243
SUM_W, 497
Summer, 497
568
T
Three point controller, 235, 491, 499
Three step controller, 447, 507
THREE_STEP_CON1, 507
THREEPOINT_CON1, 499
Time lag device

1st order, 159, 165, 175
2nd Order, 169

TOTALIZER, 513
Two point controller, 229, 485, 523
TWOPOINT_CON1, 523

V
VEL_LIM, 529
Velocity limiter, 529

1st order, 203, 535
2nd order, 41

VLIM, 535
33002211

	Table of Contents
	Safety Information
	About the Book
	General information about the block library CONT_CTL
	Parameterizing functions and function blocks
	General information on the CONT_CTL block library
	EFB Descriptions (A to PH)
	ALIM: Velocity limiter: 2nd order
	AUTOTUNE: Automatic regulator setting
	COMP_DB: Comparison
	COMP_PID: Complex PID controller
	DEADTIME: Deadtime device
	DELAY: Deadtime device
	DERIV: Differentiator with smoothing
	DTIME: Delay
	FGEN: Function generator
	INTEG: Integrator with limit
	INTEGRATOR: Integrator with limit
	INTEGRATOR1: Integrator with limit
	K_SQRT: Square root
	LAG: Time lag device: 1st order
	LAG1: Time lag device: 1st order
	LAG2: Time lag device: 2nd order
	LAG_FILTER: Time lag device: 1st order
	LDLG: PD device with smoothing
	LEAD: Differentiator with smoothing
	LEAD_LAG: PD device with smoothing
	LEAD_LAG1: PD device with smoothing
	LIMV: Velocity limiter: 1st order
	MFLOW: mass flow block
	MS: Manual control of an output
	MULDIV_W: Multiplication/ Division
	PCON2: Two point controller
	PCON3: Three point controller
	PD_or_PI: Structure changeover PD/PI controller
	PDM: Pulse duration modulation
	EFB Descriptions (PI to Z)
	PI: PI controller
	PI1: PI controller
	PI_B: Simple PI controller
	PID: PID controller
	PID1: PID controller
	PID_P: PID controller with parallel structure
	PID_PF: PID controller with parallel structure
	PIDFF: Complete PID controller
	PIDP1: PID controller with parallel structure
	PIP: PIP cascade controller
	PPI: PPI cascade controller
	PWM: Pulse width modulation
	PWM1: Pulse width modulation
	QDTIME: Deadtime device
	QPWM: Pulse width modulation (simple)
	RAMP: Ramp generator
	RATIO: Ratio controller
	SCALING: Scaling
	SCON3: Three step controller
	SERVO: Control for electric servo motors
	SMOOTH_RATE: Differentiator with smoothing
	SP_SEL: Setpoint switch
	SPLRG: Controlling 2 actuators
	STEP2: Two point controller
	STEP3: Three point controller
	SUM_W: Summer
	THREEPOINT_CON1: Three point controller
	THREE_STEP_CON1: Three step controller
	TOTALIZER: Integrator
	TWOPOINT_CON1: Two point controller
	VEL_LIM: Velocity limiter
	VLIM: Velocity limiter: 1st order
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

