
Tailored presentation of dynamic Web content for audio
browsers.

Andy Browna,∗, Caroline Jaya, Simon Harpera

aSchool of Computer Science, University of Manchester, Kilburn Building, Oxford Road,
Manchester. M13 9PL. UK

Abstract

Understanding the content of a Web page and navigating within and between
pages are crucial tasks for any Web user. To those who are accessing pages
through non-visual means, such as screen readers, the challenges offered by
these tasks are not easily overcome, even when pages are unchanging documents.
The advent of ‘Web 2.0’ and Web applications, however, means that documents
often are not static, but update, either automatically or due to user interaction.
This development poses a difficult question for screen reader designers: how
should users be notified of page changes? In this article we introduce rules for
presenting such updates, derived from studies of how sighted users interact with
them. An implementation of the rules has been evaluated, showing that users
who were blind or visually impaired found updates easier to deal with than the
relatively quiet way in which current screen readers often present them.

Keywords: Web 2.0, AJAX, Visual Disability, Eye-Tracking

1. Introduction

Screen readers are a common means for users with visual impairments to
access electronic information, including Web content. A screen reader is a piece
of software that uses synthetic speech (and non-speech sounds) to render the in-
formation in an audio form (Alliance for Technology Access, 2000; Burks et al.,
2006; Raman, 2008; Chen, 2006). It also enables the user to move around the in-
formation at different levels of granularity, for example, between letters, words,
lines, paragraphs, or sections, and to jump between different types of object
(e.g., heading or hyperlink). Although complex pages remain challenging to
understand (particularly so if the author has not made good use of semantic
markup), users are normally able to get the gist of a page and find the informa-
tion they require.

∗Corresponding author
Email addresses: andrew.brown@cs.manchester.ac.uk (Andy Brown),

caroline.jay@manchester.ac.uk (Caroline Jay), simon.harper@manchester.ac.uk (Simon
Harper)

Preprint submitted to Elsevier September 28, 2011



The Web is changing, however (‘Web 2.0’ (Oreilly, 2007)), and pages are
becoming more interactive, sometimes resembling applications more than docu-
ments. These changes are achieved by techniques such as AJAX (Asynchronous
JavaScript and XML), that allow client–server communication without needing
a full page refresh, so that regions of a page may update independently (Ma-
hemoff, 2006). This is proving problematic for screen reader users (Zajicek,
2007; Thiessen and Chen, 2007; Brown and Jay, 2008), as their technology lags
behind Web development. It also poses difficult questions for screen reader de-
velopers, who need to change their interaction model to cope with detecting
and presenting updates. The current situation is that screen readers generally
do not present updates to the user, and when they do it is done in a simple
way, neither accounting for the content of the update nor the user’s activity.
The problem is such that many of these users have not knowingly encountered
many common types of updating content. This lack of awareness is probably
not due to them not having visited pages with dynamic content, but to them
having been unable to identify the content as such. A typical scenario might
be as follows. A user encounters what seems to be a link to content they would
like, and clicks it. The link, however, is not a traditional link to another page
but a control to update another part of the page, and since the screen reader
does not inform them of the update, it appears to the user as if nothing has
happened. The user continues to browse, needing to access the information in
a different way, and unaware of having encountered dynamic content.

Currently, those efforts to improve accessibility of dynamic updates have
focused on the page creation process (Keith, 2006; Thiessen and Chen, 2009),
the most significant contribution coming from the World Wide Web Consortium
(W3C) Web Accessibility Initiative (WAI). They are coordinating the develop-
ment of markup that allows developers to annotate their ‘rich content’ (i.e.,
controls and updating regions) with information that screen readers (and other
assistive technologies) can use to aid presentation. This is known as Accessible
Rich Internet Applications, or WAI-ARIA (Gibson, 2007). The ARIA markup
can be broadly split into two areas: that which makes the controls keyboard
accessible and their roles clear; and that which deals with the areas that update
(‘live regions’). The tags associated with live regions allow assistive technologies
to be given information about an update, including how important the update
is (its politeness: polite, assertive, or off), how much of the page needs to be
re-presented to the user after the update, and how the DOM is affected by the
change. Support for ARIA is now included in the major browsers (although
it is often limited) and assistive technologies (at least partial support in recent
versions of Orca, NVDA, Window Eyes and Jaws).

Screen reader developers in both commercial and academic environments are
also tackling the difficulties arising from updating pages, not only by supporting
ARIA, but also with better general handling of updates. Of particular note is
the Hearsay Dynamo system (Borodin et al., 2008), which treats inter and intra-
page changes in the same way, allowing users to maintain focus when moving
between similar pages and when part of a single page updates. In this system,
users are notified of an update using a short sound clip, and are given commands

2



that allow them to navigate to the new content. Users are not notified about
updates involving removal of content. Evaluation of this system showed that it
improved access to the updates.

While access might be becoming more achievable in the technical sense,
however, it is still the case that visually impaired users are not receiving the
benefits that efficient access to updating pages could bring. The work described
here can be seen as complementing the ARIA approach. We believe that, while
the information the ARIA attributes and properties provide can help, it cannot
be used in a näıve manner. Thiessen and Chen (2007) found that ARIA had
limited ability to make frequently changing pages (their example was a chat
room) accessible, although further developments in ARIA and its application
are improving this (Thiessen and Chen, 2009; Thiessen and Russell, 2009). Un-
derstanding how to use ARIA tags, both from the point of view of the developer
(which settings to choose) and from that of the user-agent and assistive tech-
nologies (how to use the tags to help determine exactly when and how to present
an update), is difficult, and we believe that this process must be informed by
an empirical understanding of how sighted users interact with updates.

1.1. Contribution
Our motivation is to enable users to handle dynamic content in the most

efficient way. In this context, this means supporting the user in: becoming aware
of updates; determining their usefulness; accessing their content (if desired); and
resuming or modifying the task at hand. This must all be done with minimum
disruption to the primary task.

This paper describes a novel system for tailoring the presentation of Web
page updates — presenting each update according to its characteristics rather
than applying the same rule to all. The approach taken in the work described
here is to base an accessibility solution on a solid understanding of both the
problems faced by screen reader users, and the benefits that sighted users gain
from the visual presentation. A brief overview of the differences between ex-
ploring information in audio and visual media highlights the main problems for
screen reader users as being: difficulty gaining an overview, glancing and navi-
gating; and a lack of peripheral awareness (§ 2). An analysis of types of dynamic
content results in a classification according to how the update was initiated and
how it affected the page (§ 3). This demonstrates that there is a wide range of
updates, which are unlikely to be equally important to the user.

An eye-tracking study, exploring how sighted users interact with such up-
dates, confirmed that updates are not all equal, with automatic updates receiv-
ing little attention and user-initiated ones almost always attended (§ 4). This
study not only gave a quantitative model of attention, based on the class of
update, but also a qualitative understanding of how certain updates benefited
users. From this understanding comes the main contribution of this work: a set
of mappings that can be used as general rules about how to present updates,
as well as more specific interfaces for pop-up calendars and auto-suggest lists
(§ 4.1 – 4.10).

3



An implementation of these rules was developed for their evaluation (§ 5).
The system identified changes to a Web page, grouped them into meaningful
updates, and classified them according to the taxonomy. This allowed the pre-
sentation rules to be applied, so that each update had its presentation tailored
according to its class. This system was subject to an evaluation by users with
visual impairments (§ 6). It was compared to a system that resembled current

:::::::
popular screen readers. The system using mappings to tailor presentation was
found to be easier to use and was preferred by all participants. These rules can
be used to inform the design of screen-readers, suggesting an effective way to
deal with updates. The results and approach could also help Web developers to
apply appropriate WAI-ARIA markup to their code.

2. Audio Presentation: The Problems

In broad terms, the goal of this research is to enable users to interact with
updating content in the most efficient way possible — to minimise the disrup-
tion caused by unhelpful updates, and maximise ease of access to necessary
information. People who are browsing Web pages using a screen reader have
several disadvantages compared to those exploring visually. The ultimate causes
are that the audio information flow is essentially linear, and that it does not
provide users with an external memory (Scaife and Rogers, 1996).

The visual representation provides a two-dimensional indexed external rep-
resentation that is (relatively) permanent; thus briefly looking at an area away
from the current locus of attention only requires the memory to hold the posi-
tions of the current position and the position of the desired information. With
Web pages, there are typically many visual landmarks to ease this, but for
the audio browser landmarks are much less salient and are only present in a
one-dimensional stream. Furthermore, movement around this stream is slower.
These differences combine to make jumping around a page either difficult or
time-consuming, for the following reasons:

• Gaining an overview is difficult. The inability to move the attention
rapidly around a scene (i.e., the Web page) means that it is difficult to
get a quick, high-level, understanding of what information is available.

• Glancing is difficult. For the same reasons that the audio representation
cannot effectively act as an external memory, it is difficult to glance at
information away from the current locus of attention.

• Navigating around a scene is relatively slow and difficult. Although screen
readers allow users to jump between different HTML elements (e.g., head-
ings), moving to a precise point requires the user to keep the structure of
the document in mind, move to the appropriate section, then navigate by
line or sentence and word to the point of interest.

• There is no peripheral awareness. Although the visual perception system
has a focus, it can also detect stimuli outside of this relatively narrow field.

4



This is particularly the case for areas with certain characteristics, such as
colour or movement — these are said to have high visual salience (Carmi
and Itti, 2006; Parkhursta et al., 2002). With typical audio interfaces this
is not the case - the user listens to the word currently being spoken, and is
not aware in any way of the current state of the rest of the document. It is
possible for the designer of an audio interface to present information using
background sounds (typically, but not necessarily, non-speech) to give
users this type of information, but there are crucial differences between
this and peripheral vision: the former need to be designed and learnt,
and give less information (e.g., it is difficult to convey attributes such as
location) than the latter.

It is clear that each of these problems is relevant when dealing with updating
Web content, and that some of them are particularly acute. The lack of periph-
eral awareness means that users will not notice updates unless they are either
made explicit (notification) or the new information is discovered (and noticed to
be different) serendipitously. The discovery method is not conducive to efficient
browsing: discovery may not happen, and if it does, the discovery of the effect
(and hence that an update has occurred at all) is removed from its cause. Con-
fusion may occur when an action appears to have no effect, and disorientation
may occur when content has unexpectedly changed. Equally, the higher costs
associated with resuming a task mean that there are problems associated with
notification. Awareness of updates is crucial to efficient browsing.

The difficulties associated with glancing make the next step in the process
difficult. Once an update has been observed, sighted users are able to assess
the content relatively rapidly: a quick glance will take them to the new content,
followed by an overview to answer the question “is this chunk useful to me?”. As
we have seen, however, both glances and overviews are problematic for screen
reader users.

Consideration of these theoretical factors gives us the fundamental design
goals: extra support is necessary for users with visual impairments, both in
becoming aware of updates and in assessing their usefulness or interest.

3. Dynamic Web Pages: A Classification

Web 2.0 is a loosely-defined term, that differentiates the Web of the late
2000’s from how it was in the 1990’s. Two of the more significant features
of Web 2.0 are user-generated content and Web applications. Both of these
inevitably result in more interactive pages than was found in the original model
(a collection of linked, but unchanging, documents); modern Web content can
often be edited, combined or created by the user. One of the key technologies
behind these changes is AJAX — asynchronous JavaScript and XML (extensible
markup language) — a combination of older technologies that allows a Web page
to communicate with a server, and change its content, without visiting a new
page or refreshing the old one.

5



In order to understand the range of updates, we have developed a two-axis
classification. This is based on what initiates the update and what effect it has
on the page. A brief explanation of this classification is followed by examples.

The first axis of classification categorises updates according to how they
were initiated

::::
(the

::::::
cause

::
of

::::
the

::::::::
update). This has two broad classes, with one

further divided into two. First, updates may occur automatically, independent
from any user activity (except, of course, loading the page). A typical automatic
update might replace content according to a timer (e.g., a ‘ticker’ showing news
headlines). Note that some content, particularly sports commentary, may up-
date on a regular basis, but with not all updates resulting in a meaningful
change. The second class is for updates which are triggered by some user ac-
tivity, typically mouse or keyboard events. This can be sub-divided depending
on the users task: some updates are explicit requests, i.e., the user is asking for
more information (following a link, clicking a button, etc.); other updates are
a side-effect of the action. Examples of the latter include auto-suggest lists (a
list of suggestions given to the user while entering data into an input field) and
form validation error messages; in both cases the update is triggered by the user
(typing, or pressing the submit button), but getting the information provided
by the update was not the primary purpose of that action. We designate these
two categories user-requested and user-initiated.

The second axis is based upon the effect the update has on the host page, and
has four classes. Information may be added, removed, replaced, or rearranged.
The last category is reserved for ‘semantic’ rearrangements, where the page
model changes, not just the layout (addition updates may require other page
content to move to accommodate, but the relationships between all the original
content remain constant).

To give examples of the updates in this classification, we present the dynamic
content from the Web pages used in the evaluation. These pages simulated a
holiday booking Web site, where participants could view special offers, and
search for holidays. Table 1 summarises the taxonomy and shows how each
type of content is classified. The following sections describe the content, and
how users interact with it, in more detail. This is done from the perspective
of a sighted user — the audio interaction will depend on the screen reader (the
interaction techniques proposed in this paper will be described in section§ 5).
The different types of dynamic content are described in the order in which they
were encountered during the evaluation.

3.1. Ticker
The ticker provided the latest news from the HCW Travel Company. It

displayed a single sentence of news at a time, and updated every five seconds
(see Figure 1), looping through three headlines.

3.2. Tabs
A box in the centre of the HCW Travel home page contained the main

content. The content could be changed by clicking one of three tabs along the

6



Update class

:::::::
Effect

::::::
Cause

Requested Initiated Automatic
Insertion Expansion button

(§3.4)
Pop-up calendar
(§3.6); Form
completion error
message (§3.7)

Sports commen-
tary — new
comment.

Removal Contraction but-
ton (§3.4)

Form corrected
(§3.7)

Replacement Slideshow (§3.3),
Tabs (§3.2)

Form input sug-
gestions list (§3.5)

Ticker (§3.1)

Rearrangement Table re-ordering
(§3.8)

(Live ‘most popu-
lar’ list)

Table 1: Examples of dynamic content for each category in the classification.

::::::::
Updates

::::
are

:::::::::
classified

::::::
along

::::
two

:::::
axes,

::::::::::
according

:::
to

::::
the

::::::
cause

:::::
(how

::::
the

:::::::
update

:::
was

::::::::::
initiated)

::::
and

::::
the

::::::
effect

:::::
(how

::::
the

:::::::
update

::::::::
changes

::::
the

::::::
page).

(a) The news ticker. (b) The ticker 5 seconds later

Figure 1: The regularly updating ticker of latest news.

top of the box (see Figure 2): ‘Book Now’ revealed a link to the booking page;
‘Top Destinations’ revealed a list of recommended destinations; ‘Special Offers’
revealed a slideshow of special offers. The ‘Top Destinations’ tab was selected
initially.

(a) Top Destinations tab (b) Special Offers tab

Figure 2: The effect of clicking the the ‘Special Offers’ tab heading.

3.3. Slideshow
The ‘Special Offers’ tab contained a series of holidays stored in a slideshow

(this type of presentation is sometimes called a carousel). Each slide contained
the name of the hotel, a photograph of the hotel, the name of the location and
a description of the offer. Below the slide were two controls that could be used

7



to navigate between four slides in a loop. ‘Previous’ moved to the preceding
offer and ‘Next’ moved to the next offer (see Figure 3).

(a) Initial Slide
(b) Second Slide

Figure 3: The effect of clicking the control ‘Next’ on the slide show. The rest
of the page remains unchanged.

3.4. Expansion button
A box contained a control entitled ‘Instructions’. When this was selected,

the box expanded to reveal a bulleted list of instructions describing how to use
the form (see Figure 4). Selecting the control again removed the instructions —
this type of update would be classified as requested-removal.

(a) Initial appearance

(b) Expanded appearance

Figure 4: The effect of selecting the expansion button.

3.5. Auto-suggest list
When the user typed in the ‘Destination’ text field, a list of suggestions for

holiday locations appeared under the text field. The suggestions were destina-
tions that matched the characters that had been entered so far. Selecting a

8



suggestion entered it into the text field. Each character typed caused the sug-
gestions list to be refreshed and potentially replaced with a new set of sugges-
tions. The first appearance of the list is therefore initiated-addition. subsequent
changes are initiated-replacement (see Figure 5).

(a) Initial appearance

(b) A suggestions list ap-
pears after typing.

(c) The list changes accord-
ing to the input.

Figure 5: The appearance of a suggestions list on typing in the destination field.

3.6. Calendar
When the focus entered one of the date fields a pop-up calendar appeared.

Initially the current date was displayed in the date field, and this was visually
highlighted in the calendar (see Figure 6). Two controls could be used to move
to the preceding or next month, as in the slideshow. Selecting a date with the
mouse entered it into the date field. When a departure date had been entered,
the return date was automatically set to this too, providing it had been correctly
formatted, otherwise it remained set to the current date.

(a) Date entry field without focus

(b) Field focused

Figure 6: The appearance of the calendar on focusing the date entry field.

3.7. Error messages
To perform a search for a holiday, the user had to press the ‘Submit’ button

at the bottom of the form. If the destination or date had been entered incorrectly
(if the destination did not match an item from the list exactly, or the date was
not formatted correctly), a box containing an error message appeared just above
the ‘Submit’ button (see Figure 7).

9



(a) The lower section of the
form (b) The dynamic error message

Figure 7: The effect of submitting the form with incomplete information.

3.8. Table re-ordering
The results of the holiday search were stored in a table. Each row contained

a holiday, and details of the hotel, location, room type, package, quality (star
rating), customer rating and price were stored in separate columns. Pressing
enter when the focus was on one of the column headings reordered the holidays
from lowest to highest for that particular category (see Figure 8).

(a) Table on first appearance (b) Reordered by customer rating

Figure 8: The effect of clicking the the ‘Customer rating’ column heading.

4. Effective Audio Presentation — Mapping the Visual Experience

Sighted user studies (Jay and Brown, 2008) have given us an understand-
ing of how these users interact with the different types of dynamic content
introduced above. Two studies were performed. In the first, 20 participants
viewed either a static or dynamic version of each of three websites. These were
identical except that some regions of the dynamic pages changed automatically
whilst being viewed. In the second study 30 participants performed a series
of directed and browse-based tasks on some live websites that were chosen to
contain a significant amount of dynamic content. In both studies participants
eye-movements were tracked, and the data used to identify which regions of the
page they fixated, and when. These studies resulted in a quantitative model of
what types of content users attend (summarised in Figure 9, the output from
the SPSS Chi-Squared Automatic Interaction Detector tree classification proce-
dure), as well as a more qualitative understanding of how users use, and benefit
from, certain types of content. The findings of these studies can be summarised
as follows:

• Automatically changing content was not frequently viewed.

• Requested content was viewed immediately. This was facilitated by visual
cues and the salience of the change.

• Updates that assisted with input (e.g., calendars and suggestions lists)
were used.

10



Node 0
Category % n

30 .6 249no
69 .4 565yes

Total 100 .0 814

type
Adj. P-value=0.000, Chi-

square=346.537, df=2

viewed

Node 1
Category % n

18.2 65no
81.8 293yes

Total 44.0 358

action
Adj. P-value=0.000, Chi-square=18.

338, df=1

initiated

Node 2
Category % n

1.8 4no
98 .2 217yes

Total 27 .1 221

requested

Node 3
Category % n

76.6 180no
23.4 55yes

Total 28.9 235

automatic

Node 4
Category % n

5.3 6no
94.7 107yes

Total 13.9 113

keypress

Node 5
Category % n

24.1 59no
75.9 186yes

Total 30.1 245

click; hover

no
yes

.

Page 1

Figure 9: Sighted user studies model. This tree is the output of the SPSS
Chi-Squared Automatic Interaction Detector tree classification procedure.

• The top of new content, but not necessarily the rest, was viewed.

– Only the top three items in suggestions lists were regularly viewed.

– After table rearrangements, people looked immediately at the top
left cell.

• The tabular arrangement of pop-up calendars made relationships between
dates explicit, while mouse selection helped avoid typing errors, and re-
moved the need to deduce the date format.

Section 3 demonstrated that dynamic updates come in many forms. While
sighted users are generally able both to notice that an update has occurred and
to assess it for usefulness, an understanding of the additional problems faced
by screen reader users demonstrates that for these users these are difficult tasks
and need to be supported. It also becomes clear that supporting the user in
deciding on the usefulness of the information in an update will demand a delicate

11



balance. On the one hand, a decision can only be made if the user is aware of
an update, so some means of notification will be necessary. On the other hand,
the extra demands caused by the lack of external memory mean that it is more
difficult to return to the main task following any disruption.

These theoretical considerations suggest that it is not desirable to present all
updates to users. Such a ‘tailored presentation’ approach is supported by the
eye-tracking study, which suggests that it is also not appropriate to present all
updates: sighted users routinely ignore changes to the page they are viewing.
The question now becomes: which updates should be presented, and how?

In the perfect world, only those updates that the user decides are interesting
or useful will be presented, while the rest will be quietly ignored. Unfortunately,
automatic systems, such as screen readers, have very limited knowledge about
the user’s task, and even less about what he or she will want to read. In this
case, therefore, an alternative approach is for the screen reader to monitor the
user’s actions and the content of updates, and apply a set of rules to determine
when and how to notify the user of each. This is the approach taken here. The
remainder of this section describes the rules that were derived from the findings
of the eye-tracking study.

It is already apparent (Borodin et al., 2008) that users benefit from being
notified about updates, but how to present them is less clear. Borodin et al.
presented all updates containing new content equally, giving a brief non-speech
sound, then allowed the users to navigate to the content if they wished. They
noted that users were not entirely satisfied with this, but justified their decision
on the need to maintain the user’s orientation:

“Several participants had suggestions on how the system could bet-
ter convey the updated content to them. For instance, some wanted
the system to automatically jump to the portions of the page that
had updated. Although we developed the capability in HD to auto-
matically jump to updated content, we did not evaluate it because
we believed that overriding user intent would be too disorienting in
general.”

Our eye-tracking results, however, suggest that orientation might be main-
tained if automatic jumps are applied to certain, but not all, updates. In the
study, sighted users rarely fixated automatic updates, but normally did fixate
the first part of new content where the update was initiated by their actions. We
propose, therefore to tailor the non-visual presentation in a way that matches
this behaviour.

Presentation is dependant upon the class of update, both in terms of its
effect on the page and its initiation type. The basic principle is derived from
the model (Figure 9) and can be summed up as: provide a simple notification for
automatic updates, move the focus and start speaking the requested or initiated
updates. Table 2 gives the rule for each class of update. Despite the fact that
the model showed that initiated and requested categories had different levels of
attention, both were at a level (greater than 80%) that means that they should

12



always be presented. The default rules for presentation are therefore identical,
and Table 2 combines these classes.

The generic rules are described in more detail below, and are followed by
the refinements made to the presentation techniques that were applied to two
highly interactive types of update that eye-tracking showed to have distinct
patterns of user behaviour — auto-suggest lists and pop-up calendars. In these
cases, the standard presentation rules are supplemented with extra interaction
commands that help users interact with the information more effectively. Finally
we describe how another phenomenon that became apparent through the eye-
tracking study — visual bookmarking — was implemented. In each section,
the output for the example content (see § 3) is given: these are the interactions
experienced by participants in the evaluation (§ 6).

::::::::
Update

::::::
Class

:::::::
Cause

:::::::
Effect Requested or Initiated Automatic

Insertion

1. Non-speech notification
2. Announce “New content”
3. Move focus to new content
4. Speak first chunk of new content

Non-speech
notification

Removal
1. Non-speech notification
2. Announce “Content Removed” Non-speech

notification

Replacement

1. Non-speech notification
2. Announce “Content replaced”
3. Move focus to new content
4. Speak first chunk of new content

Non-speech
notification

Rearrangement

1. Non-speech notification
2. Announce “Content rearranged”
3. Move focus to first moved element
4. Speak first chunk of moved con-

tent

Non-speech
notification

Table 2: Summary of generic update presentation by category. Different sounds
were used for notifying users of automatic and manual or requested updates.
Some particular types of initiated update were handled in a more tailored way.

4.1. Notification
Nearly all types of update are initially presented to the user via a short non-

speech sound. This makes the user aware that something has changed, but it
is anticipated that such a background sound is no more or less disruptive than
noticing a visual change in peripheral vision. Two sounds were used: one for

13



automatic and one for requested or initiated updates. The only situations where
these sounds were not used were for pop-up calendars and auto-suggest lists.
In these particular update types, the user was found to interact much more
with the content than with other types (i.e., the information in the update
nearly always affected the user’s next action); the presentation of these updates
is described in sections 4.7 and 4.8. It should be noted that the special user
interfaces designed for these updates are not exceptions to the general rules, but
are refinements, arrived at through further qualitative analysis of the data, that
have been applied to common design patterns. These give interesting examples
of the type of information that this approach yielded, and how further studies
may enable refinement of audio user interfaces to other design patterns. Users
had the ability to disable (and re-enable) notifications for updates.

4.2. Automatic Updates
While the sighted user studies showed that these were generally ignored

by users (less than 25% of automatic updates were fixated), there are strong
theoretical reasons for making the user aware that the update has occurred.
Firstly, nearly a quarter were attended, so sighted users clearly thought that
some were worth at least a glance. Second, navigating around a changing page
is likely to be disorienting, particularly so if the page is not known to have
changed. Finally, if screen reader users are to have an experience that is equal
to that of sighted users, the same information should be available to them; this
includes knowledge about page changes. For these reasons, the notification by
non-speech sound was considered sufficient. Should the user wish to assess the
value of the update, a command is provided to listen to the content without
moving the focus.

The ticker was presented with the standard notification, regardless of the
user’s focus. If, however, the focus was on the ticker, the content was spoken
on each update. If the user did not want to be notified of these updates, he or
she could set the browser to ignore it.

4.3. Removals
Updates where content was removed from the page are announced with the

non-speech sound, and the phrase ‘content removed’ is spoken. A command was
available to allow users to hear the removed content.

4.4. Insertions
For user-requested or user-initiated insertions, the focus moves to the new

content and the announcement ‘new content’ is made. If the new content does
not immediately follow the focus in the page map, however, this announcement
is modified to ‘moving to new content’. Following the announcement, the first
chunk of the new content is spoken.

The example of this type of content used in the evaluation was the expansion
button that revealed instructions for the form (see § 3.4). When the user pressed
enter while focused on the control, the instructions were revealed. The user

14



heard the beep, then ‘new content’, followed by the first chunk of information
(‘Use this form. . . ’).

4.5. Replacements
For user-requested or user-initiated replacements, the situation is very simi-

lar to insertions. The announcements are modified slightly, however, to ‘content
replaced’, if necessary followed by ‘moving to new content’. Thus, when selecting
the special offers tab (§ 3.2), the user heard ‘Content replaced. New Content.
The Queens Hotel’. Focus was left on the title, allowing the user to navigate
on through the new content or to return to the control (see § 4.9. Similarly,
when viewing the slides, pressing enter on the ‘Next’ control gave the output:
‘Content replaced. Moving to new content. Blenheim Lodge’. Again, the focus
moved to the new content.

4.6. Rearrangements
Rearrangements are treated in the same way as replacements (it could be

argued that they are actually just a special case of replacement): the announce-
ment ‘content rearranged’ is made, and focus moves to the first element of the
rearranged content. When rearranging the results table by activating one of
the table header controls (§ 3.8), the user therefore hears: ‘Page rearranged’
followed by the name of the first hotel in the table, where the focus remains.

4.7. Auto-suggest Lists
These are a special category of user-initiated update, where a list of sug-

gestions appears when the user types in an input box. The suggestions depend
on the application but may give a list of common queries for a search box, or
a list of matches where input is constrained (e.g., entering a destination). As
updates are initiated by the user with a key press, our model shows that these
updates are nearly always attended to by sighted users (95%). In addition to
this basic fact, the sighted user studies also gave insight into the detail of how
these updates were viewed (Brown et al., 2009). The results showed that sug-
gestions further down the list were less likely to be viewed, with less than 50% of
participants viewing any suggestions after the third in all instances encountered.

This deeper understanding of how these particular updates were used en-
abled them to be presented in a more carefully tailored manner. Auto-suggest
list updates were identified by analysing the content of the update in those cases
where the update has been initiated by the user typing in a text input box. If
the content is found to be a table or a list, it is assumed that this is a list of
suggestions. In this case, the first three suggestions are spoken automatically.
If the user continues to type, or presses the escape button, this speech stops
(new suggestions will be spoken if they appear). If the user wishes to select a
suggestion, the enter button can be pressed before the next suggestion is spoken.
If he or she wishes to browse the suggestions list, this can be done using the
keys for next (or previous) sentence or word.

15



Figure 10: A participant selecting a return date from a calendar. The partic-
ipant locates the departure date, and then moves down one row to select the
date a week later.

4.8. Pop-up Calendars
Another category of user-initiated update is the pop-up calendar. Again, it

was found in sighted user studies that these were nearly always fixated: of the
26 participants for whom pop-up calendars appeared, 14 requested it by clicking
a button, all of these viewed it, and 12 initiated it by moving focus to the input
field; all but 3 of these used the calendar, with 2 not fixating once. In addition,
the eye-tracking data gave extra insight into how these updates were used, and
hence why they were useful. In the study participants were asked to select a
date of departure (for a holiday booking), then select a return date one week
later. The eye-tracking revealed that presenting the calendar as a table (one
week per row) made jumping a week at a time easy — users identified the date
of departure, then looked down a column to find the date one week later (see
Figure 10).

The non-visual implementation for pop-up calendars (Brown et al., 2010)
used some simple heuristics to detect the update type, then employed the grid
layout of the navigation keys to recreate some of the benefits of the table layout
typical in these updates. An update is assumed to be a pop-up calendar if the
update appears when entering a text field that has some characteristic of a date.
Characteristics include containing text formatted as a date, or having a label,
name, or id containing ‘date’. Presentation involves a change of mode, and
starts with the announcement ‘Date Entry’ followed by the date in the field (if
no date is present, today’s date is spoken). There is also a command to allow
this mode to be entered manually. The user may then change the date a day,
week, or month at a time, either forwards or backwards; this is done using the
number pad keys, with the top row moving months, middle row moving weeks,
and bottom moving days. The current day, date, or month is spoken using the

16



middle column, while the left and right columns move backwards and forwards
in time respectively. The ‘enter’ button puts the selected date into the input
field and the ‘escape’ button exits the calendar mode without modifying the
input field.

4.9. Bookmarking
Another observation made during the sighted user studies was the way in

which these users returned attention to controls. This was particularly the case
where updates occurred through widgets such as a carousel. In this case it
appeared that participants would glance at the new content without moving
the mouse from the control; if the content was not of sufficient interest, the user
could activate the control again with little further effort. In effect, the mouse
pointer acts as a kind of bookmark, allowing easy return to the control.

In this implementation, the assumption (based on the user studies) that users
will want to attend updates that they have requested means that the focus
automatically moves away from the control when the update appears. This,
coupled with the user’s lack of peripheral awareness, can mean that the user
loses awareness of where they are in the structure of the document (although the
controls and widget content are typically neighbouring, this is not necessarily
the case, e.g., when the controls are below the content). To compensate, to
a limited extent, for this, our implementation automatically bookmarks those
controls activated by the user. Thus, they can browse widgets such as carousels
in a similar way to sighted users: press the ‘next’ button; assess the content;
press the button, etc.

4.10. Reviewing
The system also gave users access to a list of updates, which gave them

information including the type of update (removal, insertion, etc.) as well as
the content.

5. Implementation

In order to test these rules, they were implemented in a self-voicing extension
to the Firefox Web browser. This extension was based on the Fire Vox extension
that enables exploration of Web pages using keyboard input and audio output.
The evaluation is described in section 6; this section describes the implementa-
tion, explaining the detection and processing of updates, so that they could be
presented according to the rules in sections 4.1 to 4.10.

The process can be split broadly into three:
1. Detection of page changes, then clustering them into meaningful updates.
2. Classification, according to the attributes of the update and the user’s

activity.
3. Presentation, applying the rules appropriate for the class.

Before describing these parts of the process in more detail, it is necessary to
introduce the user interface. In particular we describe the methods for navigat-
ing around a page.

17



5.1. Navigation
The user interface for the experimental prototype was changed from that

used in the standard Fire Vox, on the basis that this was not particularly in-
tuitive, and might take more learning time than would be appropriate in a
short (less than two hours) evaluation. The replacement interface was loosely
based on that used in the Orca screen reader for the Gnome desktop on Linux.
Navigating around a page can be done in two ways: sequential navigation, or
element-based navigation.

Sequential navigation allows users to move from element to element as they
appear in the Document Object Model (DOM) (a depth-first traversal of the
tree). This can be done at three levels: element, sentence or word. Moving by
element will read out the content of each HTML element from its start to either
its end or a child element. For example, a simple paragraph element will be
read in one go, but a paragraph containing a link will be read in three parts:
the text up to the link, the text of the link element, then the text following
the link. When moving a sentence at a time, sentences are determined from an
element, so a sentence containing a link will also be split. Movement by word is,
in principle, the same, although words rarely span element boundaries. Moving
at these three levels of granularity is achieved using the number pad keys found
on a typical desktop computer keyboard. Each row relates to a different level
of granularity: the top row moves by element, the middle by sentence, and the
bottom by word. The columns enable the user to move backwards (left column)
or forwards (right column), or to query their current location (middle column).

Element-based (or structural) navigation is a method for jumping between
elements of a certain type. For example, jumping between, and reading, the
headings on a page can be used to give an overview of its content. This type of
navigation is achieved by using character keys (e.g., ‘H’ moves between heading
elements) when in structural navigation mode. This mode may be toggled
between on, off, and automatic. In automatic mode, structural navigation is
enabled unless the focus is in a form element requiring typing, such as an input
box.

Links are announced as either ‘external link’, ‘internal link’, or ‘control’, the
last of which describes links that activate a JavaScript function. Pressing enter
on a link selects it, and is accompanied by a non-speech ‘click’ sound.

5.2. Detection
The aim of the first stage is to identify any changes to the document (Web

page), and to group those which are related. Technically, the events that com-
prise an update, can be considered from three different viewpoints, those of the
developer, the user, and the DOM. Consider the replacement of one paragraph
with two new ones as an example. From the user’s point of view, this is a single
event: a straight replacement of the old content with the new (no intermediate
stages are perceived). From the developer’s point of view this might be coded
as a two-stage process — remove the old paragraph, insert the new. From the
point of view of the DOM, however, there are several events, one for the re-
moval or addition of each element in the model. The aim of the detection and

18



clustering process is to identify model changes, and group them into units that
would be perceived by a user as single events.

The basic method for detecting changes is to poll for changes. This is done
every 1.5 seconds (a number achieved by trial and error). Firefox generates
DOMMutationEvents when the DOM changes, which are listened for and noted.
If any such events have occurred since the most recent poll, the update detection
system generates a map of the model and adds this to a list of maps for the page.
Comparing the new map with the last in the list identifies two sets of nodes:
those that have been removed from the model and those that have been inserted
into it. These two sets are passed to the clustering system, which groups nodes
that are neighbouring in the model tree.

The sets of clustered nodes are then parsed to detect rearrangements and
replacements. If there are neither insertions or removals, then the DOMMuta-
tionEvent was caused by nodes moving. In this case, the maps are analysed to
determine the extent of this rearrangement — the node furthest down the model
tree that contains all the moved nodes. In the other situation, where there are
both insertions and removals, the map is analysed to determine whether these
come from the same area. This is considered to be the case if the unchanged
nodes before and after the removed chunk and inserted chunk are the same.

The end result of the detection, clustering, and grouping processes is a list
of updates, which have been categorised as being one of: insertion, removal,
replacement or rearrangement.

5.3. Classification
The aim of the second stage of the process is to classify updates so that the

appropriate presentation rules may be applied. This is done by monitoring the
user’s activity, his or her location within the document, and the content of the
update.

The model developed from the sighted user studies is shown in Figure 9. This
shows that sighted users attended to updates with significantly different rates
according to whether the update was initiated, requested, or automatic. The
classification system in the implementation therefore uses the same categories. It
also attempts to distinguish between keypress and click/hover initiated updates,
although this is not simple, since users with visually impairments tend not to
use a mouse. In addition, the classification considers the effect of the update:
remove, insert, replace, or rearrange.

The first stage in the classification process, that of determining the effect of
the update on the page, was performed in the detection and clustering process,
and is described in section 5.2. The remaining task, therefore, is to determine
how the update was initiated. This is done using the last action of the user, as
shown in Table 3. Since this classification mechanism is based on heuristics, it
uses the precautionary principle: if there is doubt, updates will be assigned to a
more ‘important’ class (i.e., one which the model shows the user is more likely
to attend).

To supplement the rules in Table 3, a list of ‘live’ regions is also stored.
This records all regions of a page that have updated, and how that update

19



User’s last action
:::::::::
Inferred

::::::::::
update

::::
class

:::::::
(cause

:::::
axis)

Activated a link or button whose
target is a JavaScript function

Requested

Followed an internal link

Initiated

Entered a form field
Exited a form field
Submitted a form
Typed in a text input field
Modified an input field (e.g., ra-
dio button)
Navigated around the page
(other than those special cases
above)

Automatic

Issued a browser command
Nothing in the last X seconds
Reloaded the page New PageFollowed an external link

Table 3: Update classification based on user activity.

was thought to have been initiated. This is used to manage potential conflicts
on pages with several regions. On these pages it is possible to get automatic
updates and requested or initiated updates coinciding, in which case using the
above rules alone would lead to the automatic update being incorrectly classified.
Monitoring live regions allows these conflicts to be resolved, by assuming that
areas which have updated automatically always update automatically.

5.4. Future Work
There are many aspects of this implementation that make it sub-optimal for

general use. The system described, however, was designed for proof-of-concept
— primarily to test how effective the presentation rules derived from sighted
user studies were for users with visually impairments. The following deficiencies
are noted:

• Some of the messages are verbose, and would be better presented through
non-speech sounds. The more verbose design was used as it requires less
learning and, as such, is more suited to a 90 minute evaluation.

• The detection heuristics are relatively basic, particularly those distinguish-
ing auto-suggest lists and pop-up calendars from other user-initiated up-
dates. When used with known sites, however, they were sufficient to
evaluate the rules.

• The use of the number pad keys is not an ideal solution (these keys are
not always present, e.g., on laptops), but the interface offered appeared

20



appealingly simple and quick to learn, and under the conditions of the
evaluations it was possible to ensure that this did not cause any problems.

6. Evaluation

The implementation described above — the ‘SASWAT (Structured Acces-
sibility Stream for Web 2.0 Access Technologies) browser’ — tailors the pre-
sentation of dynamic content according to the user’s activity, the focus of the
user, and the nature of the content itself. In order to test whether this is a
helpful approach, and to test the presentation rules applied to the different
classes of update, an evaluation was performed. The core aim of the evaluation
was to determine whether the interaction metaphors developed in the SASWAT
project provided better access to dynamic micro-content than screen readers do
at present.

6.1. Methodology
The study used a within-subjects design, to compare the presentation rules

described above (§ 4) with a more homogeneous and less intrusive presentation
style, similar to the current behaviour of many

::::::::
popular screen readers, including

JAWS. This was done using two versions of an audio Web browser, named the
‘SASWAT’ browser and the ‘base case’ browser. These were identical apart from
the manner in which they handled and presented updates. In the base case, the
default method of handling updates was neither to announce the change nor
to change the user’s focus. The only occasions in which the focus was moved
were when the focus node had been moved or removed from the document; in
these cases, the focus moved to the nearest equivalent node. Thus, for the ticker,
focus remained on the sentence, the latest content of which could be determined
using the command for current chunk. For the table, focus moved to the top
left cell (the user was not notified). Auto-suggest lists and pop-up calendars
were both inaccessible to base-case users, who input their information without
the additional content. The behaviour of the base case browser with respect to
updates is similar to many

::::::::
popular screen readers.

The goal of the evaluation was to give participants an opportunity to com-
pare the behaviour of both browsers whilst interacting with a variety of dynamic
micro-content, so they could later specify which they preferred in a structured
interview. As such, they completed the same tasks, on the same website, twice.
To control for practice effects, half the participants completed the holiday book-
ing tasks using the base case browser first, the other half using the SASWAT
browser first. In addition to observing their behaviour and recording comments,
participants were asked to rate the ease of use for each browser using a scale of
1 – 5, where 1 = very hard, and 5 = very easy.

6.1.1. Participants
12 participants were recruited for the experiment. P1m (participant codes

reflect the order in which participants completed the evaluation and their gen-
der) was a member of staff and p2m and p3m were students at the University

21



Participant Frequency of Web browsing Nature of Web browsing
P1m daily work
P2m daily study, email, facebook
P3f daily shopping, study, email
P4f weekly finding things out
P5f daily study, shopping, ‘everything really’
P6m daily looking up historical information
P7m only twice in college N/A
P8f daily family tree, shopping (with help)
P9m daily work, study, email, occasional shopping
P10f monthly family tree (with help)
P11m daily shopping, price comparison, looking things up
P12f daily work, email, looking things up

Table 4: The frequency and nature of Web browsing of the evaluation partici-
pants.

of Manchester who were contacted via word of mouth (they had taken part
in previous studies and expressed an interest in participating in future ones).
These participants had provided feedback in informal iterative evaluation ses-
sions during development so had had experience of using an earlier version of
the SASWAT Web browser. The remaining participants were recruited through
advertisements placed in Macclesfield and Stockport talking newspapers, and
circulated by staff at Macclesfield Eye Society and Walthew House Deaf Blind
Services in Stockport. P4f, p5f, p6m, p7m and p11m were service users and
p8f, p9m and p10f were volunteers/staff at either Macclesfield Eye Society or
Walthew House. P12f was an IT teacher who worked with blind students. Par-
ticipants received an honorarium of £20 for taking part.

Two of the participants were partially sighted (p3f and p11m), five were
registered blind with some residual vision (p4f, p6m, p8f, p10f and p12f) and
five were profoundly blind. P1m, p2m, p3f, p6m and p12f were in the 20-45 age
group; the remaining participants were over 45. All participants normally used
Windows, and the majority browsed the Web using the screen reader JAWS (v.
10 or below). One participant used the screen magnifier ZoomText with audio
(p3f). Two used ZoomText without audio, one of whom (p8f) had experience
with audio, the other (p10f) didn’t. P11m used a standard desktop computer
set-up with a large font size, but had had experience of using JAWS at college.
Thus, participants had a range of experience with screen readers, with slight bias
towards the more experienced. Table 4 gives the experience of the participants.

6.1.2. Procedure
The investigator read out the Information Sheet and Consent Form, and

when participants had indicated that they were happy with the information
they had received, they signed the Consent Form. All participants signed the

22



form themselves, with the exception of p2m, for whom a second investigator
signed on his behalf.

Participants were shown how to use the browser and given the chance to
practice using the navigation commands on a shortened version of the Fire Vox
User Manual home page. They then completed the tasks with each browser.
Due to the step-wise nature of the interaction, the tasks were always completed
in the same order. The participants were given their instructions verbally for
each task as it arose. These told participants both what was required of them,
and what sort of content they were about to encounter. The tasks were:

Ticker Move the focus to the ticker and listen to the latest news from the HCW
Travel Company.

Tabs Select the ‘Special Offers’ tab. What is the name of the hotel featured
in the first special offer? A second task requiring interaction with tabs
occurred after the user had completed the slideshow task: Select the ‘Book
Now’ tab, and within that select the ‘Book Now’ external link to go to
the booking page.

Slideshow Find the locations featured in the next two special offers.

Expansion button Select the ‘Instructions’ control and read the instructions
for using the form.

Auto-suggest list Enter ‘Spain: Andalucia’ in the ‘Destination’ text field.

Error messages Listen to the error message to identify the part of the form
that contains an error. Note that this only applied to participants whose
actions led to an error.

Table re-ordering What it is the name of the cheapest hotel? How many
hotels are there with three stars?

In addition to voicing their thoughts, participants were able to ask questions
and were given assistance whenever requested. Once the tasks were completed
under both conditions participants took part in a structured verbal interview
in which they gave the tasks difficulty ratings, and answered questions about
their experience.

::::
This

:::::::::
interview

::::::::::
consisted

::
of

::::::
some

::::::::::::
introductory

::::::::::
questions,

:::::
then

:::::::::
questions

::::::
about

::::
the

::::::::::::
participant’s

:::::::::::
experience

:::::
with

::::
each

:::::
type

::
of

:::::::::
dynamic

::::::::
content,

::::::::
finishing

:::::
with

::
a

::::
few

:::::
more

::::::::
general

::::::::::
questions.

:::::
The

::::::::::::
introductory

::::::::::
questions

::::::
were:

1. Have you had your visual disability since birth?
2. Which assistive technology/screen reader do you usually use? Do you use

Windows and Internet Explorer?
3. How often do you browse the Web?
4. What sort of things do you use the Web for?
5. How often do you use travel websites?

23



::::
The

::::::::::
following

:::::::::
questions

::::::
were

::::::
asked

:::
for

::::::
each

:::::
type

:::
of

::::::::
content

::
in

::::
the

::::::
order

::
in

::::::
which

::::::
they

:::::
were

:::::::::::::
encountered

::::::::
(ticker,

::::::
tabs,

::::::::::
slideshow,

:::::::::::
expansion

::::::::
button,

::::::::::::
auto-suggest

::::
list,

::::::::::
calendars

::::
and

::::::::::
additional

::::::::::
content):

1. Have you come across [type of dynamic content] before on the Web?
2. On a scale of 1 to 5 (1 being very easy, 5 being very difficult), how easy

was it to access the information provided by the [type of dynamic content]
using the first browser?

3. And the second browser?
4. Would you like to be able to access information provided by [type of dy-

namic content] when you are browsing the web?
5. Can you think of a better way of presenting the information provided by

the [type of dynamic content] in audio than the methods used here?

::::::
There

::::
was

:::::
some

::::::::::
variation

:::::::::
according

:::
to

::::
the

::::::::
content:

::::
for

:::::::
tickers

:::::
there

::::
was

:::
an

::::::::::
additional

::::::::
question

:::::
(‘Did

::::
you

:::::
find

:::
the

:::::::::::
non-verbal

:::
cue

::::::::::
indicating

:::::
that

:::::::::::
information

:::
was

::::::::::
updating

:::::::::::::
automatically

::::::::::
useful?’);

:::
for

::::::::::::
auto-suggest

:::::
lists,

:::::::::
question

::
2

::::
was

::::
only

:::::::::::
appropriate

::::
for

::::
the

:::::::::::
‘SASWAT’

:::::::::
browser;

::::::::::
question

::
2

::::
was

::::
not

:::::::::::::
appropriate

:::
for

:::::::::
calendars.

:::::::::
Finally,

:::
the

::::::::::
following

:::::::
general

::::::::::
questions

:::::
were

::::::
asked:

1. Overall, which assistive technology made it easiest to complete the booking
task? Can you give a reason for this?

2. When the content on the page changes, is it useful to be told about this?
3. Do you think that if information on the web is available to someone

sighted, it should also be available to someone who is visually impaired?
4. Do you have any other comments?

Each session was audio recorded and lasted between 50 and 105 minutes,
with the majority being 60 to 70 minutes.

6.2. Results
In this section we present the quantitative results of the evaluation. The

comments made by participants during the evaluation and subsequent interview
demonstrate the reasons for their preferences and ratings, and are thus discussed
in section 7. The quantitative data were obtained from the difficulty ratings
given by participants, which were recorded for all types of dynamic content
except for ASLs and Calendars. In these cases, the base case scenarios required
users to type their information into the input box without any interaction with
dynamic content, so scores were not recorded. The median ratings for each
type of content under each condition are given in Table 5. Some participants
gave intermediate scores (e.g., 3.5); in these cases the score was allocated evenly
between the two values.

Of the 63 pairs of ratings given (one user rating the same content under each
condition), in only 1 case was the base case presentation rated easier than the
SASWAT (p5f rated the ease of using tabs as 2.5 for SASWAT and 3 for the
base case). In 4 cases equal ratings were given (all for the expansion button),

24



while for the remaining 58 (93%) the presentation of the SASWAT browser was
preferred.

Analysis of the ticker, tabs, slideshow, expansion button and table scores
using the Wilcoxon Matched-Pairs Signed-Ranks Test shows that ratings are
significantly higher for the SASWAT browser (p < 0.01). No differences were
found between the results of those participants who were experienced with screen
readers and those that were less experienced (p3f. p8f, p10f, p11m).

7. Discussion

The quantitative data showed that for tickers, tabs, slide-shows, expansion
buttons, error messages and rearranging tables, the majority of participants
preferred the access provided by the SASWAT browser. The behaviour of the
users, and the comments and feedback provided by them support this conclusion,
and extend it to the ASLs and calendars. They also provide insight into why
users liked the SASWAT form of presentation, and how effective the technique
of using eye-tracking to guide development is.

A key reason for their preference for the tailored presentation was the imme-
diate feedback the browser provided when content had updated. All participants
expressed a desire to be told when content on the page had changed, and all
thought that a facility like the beep alerting the user to the updating ticker
would be useful. Whilst being notified of automatically updating content was
desirable, receiving feedback about a requested update was vital. When us-
ing the base case browser, which did not provide verbal feedback, participants
assumed that the control had not worked.

It was not only the fact that feedback had occurred, but the fact that it
was informative that appealed: p11m, for example, appreciated the reassurance
provided by the SASWAT browser: ‘[the SASWAT browser] explained what was
happening... It’s alright doing it, and you’ve got to rely on the fact that it’s done
it. But on [the SASWAT browser] it told you that it had done it, so I was quite
confident that we were where we should be.’ The fact that the SASWAT browser

Dynamic content SASWAT Base case Wilcoxon test
Ticker 4 3 N = 12, W = 78, p < 0.001
Tabs 5 3 N = 12, W = 76, p < 0.001
Slideshow 5 3 N = 11, W = 66, p < 0.001
Expansion button 4 4 N = 8, W = 36, p < 0.01
Error Messages 5 1 N/A (N = 4)
Table 5 3 N = 11, W = 66, p < 0.001

Table 5: Median scores for ease of access to each type of dynamic micro-content
with the base case and SASWAT browsers (1 = very difficult; 5 = very easy).
The Wilcoxon Matched-Pairs Signed-Ranks Test was used to test for signifi-
cance, except for Error Messages.

25



moved straight to and read the new content was also viewed very positively by
the participants – indeed, it was what they expected to happen. When p4f failed
to receive feedback after updating the slideshow with the base case browser she
said, ‘It’s just, I thought it was going to tell me... I was just wondering what
the next offer was.’

Participants liked the fact that they got to the information they wanted
quickly. P9m preferred the SASWAT browser because ‘it gave you information
more immediately, and... yeah, that’s why really... It’s about quick accessibility
for me really – you do the job as quickly as you can.’ P12f also felt the SASWAT
browser provided a quick, intuitive response to a change in dynamic micro-
content: ‘You’ve got a lot more control with something like this than what you
would have normally, just with JAWS. It’s good... it’s a lot easier to follow. It’s
a lot easier to use. It doesn’t stop talking to you. It’s not inconsistent – it’s
consistent with its information... Once I’d had time to play I feel I could get
quite competent with that.’

When using the SASWAT browser, participants felt confident they knew
where they were on the page. In the words of p8f: ‘It’s just really, each time
you go on to each page it actually speaks to you. It tells you where you are
and what part of that page you’re up to. Because you’re having to picture it
in your mind. Where it is. And it’s very important that you know where you
are on each sheet or wherever.’ Most of the participants experienced difficulties
with orientation and navigation when using the base case browser, and these
were particularly evident in the slideshow task. The majority of participants

::
(9

::
of

::::
the

::::
12) navigated the wrong way (forwards, rather than backwards) when

attempting to reach the new content, even though they were aware that the
focus was still on the ‘Next’ control, and had previously been informed that
this was at the bottom of the slide. When using the SASWAT browser, partici-
pants intuitively navigated forwards and quickly reached the content they were
looking for. The automatic bookmarking feature was used at some point by all
participants to return to the controls once the content had been reviewed. We
believe that this functionality is a crucial part of the system if the user’s focus
is to be moved automatically, as it means that they do not need to manually
navigate back to the controls once they have finished reading the new content.
The effective use of automatic focus changes is contrary to the expectations of
Borodin et al., and perhaps would be counter-intuitive if it were not for the
eye-tracking data. Users found it more disorienting to remain where they were
than to have their focus move. This was despite the fact that they had been
informed about the type of content and were aware of the effect their actions
would have.

It is interesting to note that the one content type where there was no sig-
nificant improvement in the tailored case is expansion buttons — in this case
it can be seen that shows that this was not due to poor performance of the
SASWAT browser (5 people rated it with a score of 5, and a further 5 with a
score of 4), but primarily because participants found these updates relatively
easy to handle in the base case (the median score was 4). This is likely to be due
to the fact that the update is inserted into the content in a linear fashion, i.e.,

26



immediately after the control. For most of the other types of dynamic content,
the interaction is more complex, and often less ‘linear’, and in these cases, the
users found the SASWAT browser more helpful.

This type of behaviour provides further evidence for the efficacy of this
approach. The tailoring, which actually leads to a wider range of behaviours by
the browser — feedback and focus move differently for different types of update
— was perceived as being more consistent by the users. A likely explanation for
this is that presenting updates according to class gives behaviour that is more
consistent with the user’s mental model of his or her interaction with the page:
the potentially confusing behaviour of moving the focus actually keeps a better
match between where focus really lies on the page and where the user thinks
the focus is in his or her mental model of the page.

The automatic updates provide an illuminating contrast. The ticker (which
spoke the new content when it was the element of focus, and gave notifications
otherwise) was found annoying by most participants. All bar one chose to
turn off notification for this item, and three participants commented on the
notification being annoying. While we believe users should be informed of these
types of update, this needs to be done as unobtrusively as possible, and have
the facility for being turned off. In Hearsay Dynamo , automatic updates were
essentially presented in the same way as in the SASWAT browser. The two
systems differ, however, in the way they handle other updates. While Hearsay
Dynamo does not differentiate between update types, the SASWAT browser
does, and the conclusions of this evaluation are that this differentiation aligns
better with user’s expectations and mental models.

Another measure of the effectiveness of the update presentation in the SASWAT
browser is the number of errors made. In the base case, all participants except
p12f made an error in completing the form, and were presented with an error
message when the form was submitted; no such errors were made by users of
the SASWAT browser. The errors made were a combination of incorrect date
entry and invalid destinations (e.g., the destination did not match one in the
database), due to typing errors and the inability to browse the auto-suggest list.
Errors were also more common for users of the base case when interacting with
other types of dynamic content (e.g., the slide-show navigation discussed above),
although these generally resulted in disorientation, increasing the time taken to
complete the tasks (time to task completion was not measured, as participants
were free to make comments and ask questions during the evaluation, meaning
that overall time would not necessarily reflect the difficulties encountered).

8. Conclusions

The eye-tracking studies, iterative implementation, and final evaluation of
this tool all confirm that informing users about updates is important, but
suggest they do not consider them to all have equal importance. We rec-
ommend presenting automatic updates as unobtrusively as possible, but that
user-initiated updates should be presented more directly. Concerns that au-
tomatically moving the user’s focus to present new information would cause

27



disorientation do not appear to have been borne out. Indeed, moving focus to
new content seemed to result in a better match with the user’s mental model.
These findings could be applied by screen readers as a default way of handling
updates that do not have WAI-ARIA markup and to inform developers imple-
menting these tags. The more detailed investigation of auto-suggest lists and
pop-up calendars demonstrate that this approach can yield information that
helps build effective audio interfaces.

This research has extended and, to a certain extent, confirmed the work
Borodin et al. (2008) did with their HearSay Dynamo browser. While they
found that users benefited from update notification, they examined a limited
range of updates, and used the same form of notification for each. The results
presented here broadly confirm that users find notification helpful, and extend
this conclusion to a wide range of update types, including pop-up calendars,
auto-suggest lists and slide-shows; in each case users found notification helpful.
This work further extends HearSay Dynamo, however, by tailoring the notifica-
tion according to the update type. Thus automatic updates are presented very
tersely, while following user-requested and initiated updates, the user’s focus is
moved to the new content and the system starts to read it. The most substantial
departure from the HearSay Dynamo work, however, is that we have shown that
moving the focus of the user, for certain types of update, does not lead to the
disorientation that Borodin et al predicted. Implementation of such a feature
does, we believe, necessitate the kind of automatic bookmarking implemented
in this system, so that the user is able to review new content then simply return
to their original location; without this we would expect orientation problems.

Because potential user fatigue meant it was inappropriate to test both the use
of notification over a wider range of updates, and to compare different methods
of presentation, evidence for the benefits of the presentation techniques proposed
here are qualitative. The fact that users were aware that changes were going
to occur, however, means that it is possible to draw some valid conclusions,
primarily that moving the focus and speaking the new content for user-initiated
and user-requested updates reduces disorientation. In fact, we suspect that the
benefits of HearSay Dynamo may lie more in the way it allows users to jump
to new content than in the fact that it notifies them of a change. Our study
suggests that it is not sufficient for users to know that an action will cause a
change, or even that a change has occurred, but that the change needs to be
presented in a way that prevents disorientation. Further studies, comparing
different methods of notification and, crucially, comparing methods of access to
the new content, are necessary to confirm this, and to test further refinements
to update notification.

A second limitation of this study is that it does not directly compare tailored
presentation against uniform presentation of updates. Nevertheless, we believe
that the study supports the use of tailored presentation. The use of simple,
unobtrusive, notifications for automatic updates is supported by the fact that all
but one of the participants chose to turn these notifications off — demonstrating
that they were of minimal interest. It is also clear that moving the focus to the
updated content, which was found to be effective for user-initiated updates,

28



would prove very disruptive if applied to automatic updates — if this technique
is to be used, tailoring is essential. Finally, it should be noted that the dynamic
interaction required by updates such as auto-suggest lists would be very difficult
to achieve using a system that notifies with the option to then read the new
content.

The work of Hailpern et al. (2009) with their DTorial system, a help system
for visually impaired users of dynamic Web applications, shows that the tech-
nique applied to user-initiated updates here (moving the focus and speaking)
has been applied to dynamic content in another context, and liked by users.
Their system dynamically injected tutorials into appropriate parts of a complex
Web application (GMail), and automatically moved the user to the new con-
tent, and was generally found to be effective by participants in their evaluation.
This technique fits with our model of how sighted users might interact with
such information, and with how our participants successfully coped with similar
focus changes. It also suggests interesting future work, as the experiences of
participants in our evaluation suggested that knowledge of the type of content
they were about to interact with was helpful; implementing a tutorial system
such as DTorial that could be injected into any web page to provide help for
more general types of interaction (such as tabs or slide shows) could be useful
for novice Web users who are using screen readers.

Overall, the SASWAT browser received a very positive reception from the
evaluation participants. Qualitative analysis of the results shows that this may
because the SASWAT browser replicates for visually impaired users some of
the functionality that dynamic-micro content affords sighted users. Whilst this
study cannot prove that the approach – tailoring presentation of updates using
audio mappings based on observations of sighted users – provides screen reader
users with optimal access to dynamic micro-content, it certainly indicates it can
offer a significant improvement on the access available through current assistive
technology.

::
In

::::::::::
summary,

:::::
our

::::::::::::
experiments

:::::
and

::::::::
analysis

:::::
lead

:::
us

:::
to

::::
the

::::::
make

:::::::::
following

:::::::::::::::::
recommendations:

• Browsers should support both ARIA and DOMMutationEvents.

• Developers should implement and test ARIA markup for dynamic con-
tent. Approaching the design in the same way as we did for auto-suggest
lists and calendars — providing the benefits of the visual implementation,
rather than a direct translation of it — could prove beneficial.

• Developers should consider the structure of their page so that new content
appears in a location that will appear logical to screen reader users as well
as those viewing a page rendered with the standard style (i.e., when the
DOM is traversed depth-first). For example, it will reduce the possibility
of disorientation if, when a control is selected that causes new content to
appear, new content is inserted into the DOM tree as soon as possible
after the control.

29



• Screen readers should notify users whenever a page changes, unless the
user has turned off notification.

• Where ARIA markup has not been used, screen readers should use simple
heuristics to determine the type of update and present it accordingly:

• – Automatic updates should be presented in an unobtrusive manner.

– For user-initiated and requested updates, the focus should move to
the new content (with appropriate warning).

– Users should always be able easily to return to their location at the
time of the update.

We believe that improving access for screen reader users to dynamic content is
necessary but possible. If the recommendations above are followed, we see no
reason why these users can’t use dynamic content in a way that enhances their
use of the Web rather than acting as a barrier to it.

9. Acknowledgements

This work is part of the Single Structured Accessibility Stream for Web
2.0 Access Technologies (SASWAT) project and is funded by the UK EPSRC
(EP/E062954/1). As such the authors would like to thank them for their con-
tinued support.

References

Alliance for Technology Access, 2000. Computer and Web Resources for People
with Disabilities: A Guide to Exploring Today’s Assistive Technologies, 3rd
Edition. Hunter House, iSBN: 978-089-79330-01.

Borodin, Y., Bigham, J. P., Raman, R., Ramakrishnan, I., 2008. What’s new?
— making web page updates accessible. In: Assets ’08: Proceedings of the
10th international ACM SIGACCESS conference on Computers and accessi-
bility. ACM, pp. 145–152.

Brown, A., Jay, C., 2008. A review of assistive technologies: Can users access
dynamically updating information? Technical Report, University of Manch-
ester, http://hcw-eprints.cs.man.ac.uk/70/.
URL http://hcw-eprints.cs.man.ac.uk/70/

Brown, A., Jay, C., Harper, S., 2009. Audio representation of auto suggest lists.
In: W4A’09: Proceedings of the 2009 Cross-Disciplinary Conference on Web
Accessibility (W4A). pp. 58–61.

Brown, A., Jay, C., Harper, S., 2010. Audio access to calendars. In: W4A’10:
Proceedings of the 2010 Cross-Disciplinary Conference on Web Accessibility
(W4A).

30



Burks, M. R., Lauke, P. H., Thatcher, J., Rutter, R., Waddell, C., 2006. Web
Accessibility: Web Standards and Regulatory Compliance. Friends Of Ed.

Carmi, R., Itti, L., 2006. Visual causes versus correlates of attention selection
in dynamic scenes. Vision Research 46, 4333–4345.

Chen, C., 2006. CLC-4-TTS and Fire Vox: Enabling the visually impaired to
surf the internet. The University of Texas at Austin Undergraduate Research
Journal 5, 32–42.

Gibson, B., 2007. Enabling an accessible web 2.0. In: W4A ’07: Proceedings
of the 2007 international cross-disciplinary conference on Web accessibility
(W4A). ACM, New York, NY, USA, pp. 1–6.

Hailpern, J., Reid, L., Boardman, R., 2009. DTorial: An interactive tutorial
framework for blind users in a web 2.0 world. In: Gross, T., Gulliksen, J.,
Kotzé, P., Oestreicher, L., Palanque, P., Prates, R., Winckler, M. (Eds.),
Human-Computer Interaction INTERACT 2009. Vol. 5726 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, pp. 5–18.

Jay, C., Brown, A., 2008. User review document: Results of initial sighted and
visually disabled user investigations. Technical Report, University of Manch-
ester, http://hcw-eprints.cs.man.ac.uk/49/.
URL http://hcw-eprints.cs.man.ac.uk/49/

Keith, J., 2006. Hijax: Progressive enhancement with ajax. In: Proceedings of
X Tech 2006, Building Web 2.0.

Mahemoff, M., 2006. Ajax Design Patterns. O’Reilly Media, Inc.

Oreilly, T., 2007. What is web 2.0: Design patterns and business models for the
next generation of software. Communications and Strategies (65), 17–37.

Parkhursta, D., Law, K., Niebur, E., January 2002. Modeling the role of salience
in the allocation of overt visual attention. Vision Research 42 (1), 107–123.

Raman, T. V., September 2008. Specialized browsers. In: Harper, S., Yesilada,
Y. (Eds.), Web Accessibility: A Foundation for Research, 1st Edition. Human-
computer Interaction Series. Springer-Verlag, Ch. 12, pp. 195–213, iSBN: 978-
1-84800-049-0.

Scaife, M., Rogers, Y., 1996. External cognition: How do graphical representa-
tions work? International Journal of Human-Computer Studies 45 (2), 185–
213.

Thiessen, P., Chen, C., 2007. Ajax live regions: chat as a case example. In:
W4A ’07: Proceedings of the 2007 international cross-disciplinary conference
on Web accessibility (W4A). ACM, New York, NY, USA, pp. 7–14.

Thiessen, P., Chen, C., 2009. ARIA live regions: An introduction to channels.
Journal of Access Services 6 (1), 215–230.

31



Thiessen, P., Russell, E., 2009. WAI-ARIA live regions and channels: ReefChat
as a case example. Disability & Rehabilitation: Assistive Technology 4 (4),
276–287.

Zajicek, M., 2007. Web 2.0: hype or happiness? In: W4A ’07: Proceedings
of the 2007 international cross-disciplinary conference on Web accessibility
(W4A). ACM, New York, NY, USA, pp. 35–39.

32


