
The CCP4 Suite
— Computer programs for

protein crystallography

Overview and manual

Edition of February 2006
(also available as part of the CCP4 distribution)

Copyright c© 1993 – 2006 The CCP4 Project, CCLRC Daresbury Laboratory

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copy-
ing, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above condi-
tions for modified versions, except that this permission notice may be stated in a translation approved by CCP4.

You can get extra printed copies of this document from Daresbury at cost.

The Secretary to CCP4
CCLRC Daresbury Laboratory
Warrington WA4 4AD
UK

Telephone: (+44) 1925 603929 (direct line)
Facsimile: (+44) 1925 603825
e-mail:ccp4@ccp4.ac.uk

Contents

Preface vii

I Introduction 1

1 Introduction 1
1.1 CCP4 constitution . 1
1.2 Philosophy of the CCP4 suite . 1
1.3 Referencing CCP4, etc. 2

II Tutorial material 3

2 Overview 5
2.1 Steps in structure solution . 5
2.2 Program overview . 7

2.2.1 Data processing . 7
2.2.2 Data scaling and reduction 7
2.2.3 Data combination and scaling different sets 8
2.2.4 Obtaining ab initio phases 8
2.2.5 Map and structure factor calculation 9
2.2.6 Molecular averaging and phase improvement9
2.2.7 Map interpretation and manipulation10
2.2.8 Refinement of protein models 10
2.2.9 Coordinate analysis . 10
2.2.10 Pictorial presentation of results 11
2.2.11 Utility programs . 12
2.2.12 Data Harvesting Utilities . 13
2.2.13 Graphical user interface . 13
2.2.14 Other systems . 13

3 General CCP4 usage 15
3.1 Program documentation . 15
3.2 Running the programs . 15

3.2.1 Command line arguments/file connexion 15
3.2.2 Keyworded input . 16

3.3 Examples . 18
3.3.1 Unix . 18

3.4 Output . 19
3.5 Rudiments of reflexion files . 19
3.6 Transporting data files . 19
3.7 Details of logical name processing etc. 20

3.7.1 Command line . 21
3.8 Graphical User Interface . 21

4 Data processing and reduction 23
4.1 Data processing . 23
4.2 Data reduction . 23

The CCP4 manual iii

iv

5 Manipulating and Displaying Data Files 25
5.1 hkl manipulation . 25
5.2 Map file utilities and plotting . 25
5.3 Interpretation and manipulation of coordinates 25

5.3.1 Converting between fractional and orthogonal coordinates . . 26
5.4 Plotting . 27

6 Isomorphous Replacement 29
6.1 MIR structure solutions: steps and programs 29
6.2 Combination of phase information30
6.3 Background . 30
6.4 Determination of heavy atom positions 31

6.4.1 Scaling between native and derivative data 32
6.4.2 Estimation ofFH . 32
6.4.3 Determination of the heavy atom positions33

6.5 Refinement of heavy atom parameters 35
6.5.1 “Maximum Likelihood Phase” refinement 35
6.5.2 Vector space refinement . 36
6.5.3 “FH” refinement . 36

6.6 Phase determination . 36
6.6.1 Isomorphous replacement data 36
6.6.2 Anomalous scattering data 36
6.6.3 Multi-wavelength Anomalous scattering Data 37
6.6.4 Density modification . 37
6.6.5 Treatment of errors . 37
6.6.6 Hendrickson–Lattman coefficients 38
6.6.7 Single Isomorphous Replacement 38

7 Molecular Replacement 39
7.1 Molecular replacement: steps and programs 39

7.1.1 Detection of non-crystallographic symmetry using self rotation
function . 39

7.1.2 Cross rotation function . 39
7.1.3 Translation function . 40
7.1.4 Checking the results . 40

7.2 Introduction . 40
7.3 The rotation function . 40

7.3.1 Model . 41
7.3.2 Resolution limits . 41
7.3.3 Patterson integration radius 42
7.3.4 Model unit cell size . 42
7.3.5 Omitting weak terms . 42
7.3.6 Normalising . 42
7.3.7 Origin Removal . 43
7.3.8 Non-crystallographic symmetry 43

7.4 The translation search . 44
7.4.1 R factor search . 44
7.4.2 Translation functions . 45

8 Phase Improvement 47
8.1 Density Modification . 47

8.1.1 The Problem . 47
8.1.2 The Method . 47

8.2 Usingdm . 49
8.3 Using Solomon . 50
8.4 Estimating solvent content . 50

The CCP4 manual

v

9 Refinement and validation 53
9.1 Least squares structure refinement 53

9.1.1 Comparison ofrestrain andprolsq 53
9.2 Maximum Likelihood refinement . 54

9.2.1 TLS refinement inrefmac5 54
9.3 Automated model building . 54
9.4 Difference map generation . 54
9.5 Why is protein refinement difficult?55
9.6 FreeR factor . 55
9.7 Validation, gross and overall errors 56

9.7.1 Validation . 56
9.7.2 Errors . 56
9.7.3 Bad practice . 56

10 The Fast Fourier Transformation 59
10.1 Introduction . 59
10.2 How it works . 59

10.2.1 Example . 60
10.2.2 Why is it fast? . 60

10.3 CrystallographicFFT . 61
10.4 Programs . 61

III The propagation, care and feeding of a CCP4 installation 63

11 Installation 65
11.1 First off . 65
11.2 Directory structure . 65
11.3 Building under Unix . 66

11.3.1 Preliminaries . 66
11.3.2 Unpacking the files . 66
11.3.3 Environment variables andccp4.setup 66
11.3.4 Configuration . 67
11.3.5 Building . 67
11.3.6 Testing . 67
11.3.7 Problems . 68
11.3.8 Saving space and shared libraries 68
11.3.9 Installing updates . 68
11.3.10 Installation summary . 69

11.4 CCP4I . 69
11.5 X-windows programs . 69
11.6 The full story onconfigure . 69

12 Support, bug reports etc. 73
12.1 Release policy . 73
12.2 Support and bug reports . 73

12.2.1 Reporting bugs . 74

13 Resources 75
13.1 CCP4 Web Pages . 75
13.2 Anonymous ftp . 75
13.3 Electronic mailing lists .75

13.3.1 The CCP4 Bulletin Board 75
13.3.2 The Bulletin Board Subscriber Service 76
13.3.3 The developers’ list . 76
13.3.4 Summary . 76

13.4 Other crystallographic software 76

The CCP4 manual

vi

13.5 Crystallographic information/discussion 77
13.6 Sources of general free software 77

13.6.1 Free compilers . 77

IV Hackers’ bit 79

14 Writing and contributing programs 81
14.1 General advice . 81
14.2 Requirements for CCP4 code . 81
14.3 Non-portable features . 82
14.4 Stealing code . 83
14.5 Using the pre-processor in programs 83
14.6 Library modules . 83

15 Porting CCP4 85
15.1 Portability features . 85
15.2 Fundamental operating system dependencies 85
15.3 Unix-flavour dependencies . 85

16 File formats 87
16.1 Reflexions (MTZ) . 87

16.1.1 Orientation data . 88
16.1.2 Standard column names and types 89
16.1.3 Missing Data Treatment . 89

16.2 Maps . 91
16.3 Coordinates . 91
16.4 PLOT84 graphics files . 93
16.5 Library data files . 93

16.5.1 Symmetry operators:syminfo.lib 93

V Appendices 95

References 97

Program index 103

Index 109

The CCP4 manual

Preface

> Alice in Wonderland: the best book on computer science for the layman.
The best book onanythingfor the layman.

— Anon., Usenet book recommendations.1

This manual attempts to provide documentation of the CCP4 program package at a
level above that of detailed input requirements for individual programs. Sadly over
the years material has become incomplete in places. Suggestions for improvement are
welcome, particularly in the form of new passages for inclusion!

Although there is tutorial material included here, noviceswill need background
material e.g., from textbooks like (Blundell & Johnson, 1976; Glusker & Trueblood,
1985; Luger, 1980; Stout & Jensen, 1989; Drenth, 1994; Giacovazzoet al., 1992;
Perutz, 1992; Rhodes, 1993) and sources such as (Hahn, 1992).

It is also worth noting that the HTML formatted documentation included with the
CCP4 suite itself contains much supplementary material - see for example the docu-
ments under theGeneral section of the main program index.

Cross-references in the text of the form ‘§n.m’ refer to chaptern, sectionmetc.

Credits
This document contains material from various sources. It ismostly based on the
previous manual (which was mainly an installation guide) and Wojtek Rypniewski’s
‘overview’ man ‘page’. The previous manual was updated by Dave Love from a ver-
sion containing contributions from Peter Daly, Kim Henrickand Wojtek Wolf. Chapter
1 contains material originating from Phil Evans and John Campbell. Chapter 6 was
originally based on material by Silvia Onesti. Some of§8 was taken from material by
Andrew Leslie and Kevin Cowtan. The description of the MTZ file format was taken
from Sandra Mc Laughlin’smtzlib documentation and that formaplib from John
Campbell and Phil Evans’. Several of the sections outliningprocedures and program
usage are taken from lecture notes by Eleanor Dodson and often have accompanying
example files (in theexamples directory) derived from that course.

Wojtek Rypniewski’s acknowledgements for what he wrote include: “I had asked
various people for help and comments. I would like to thank Ian Tickle for reading
very thoroughly the chapter on molecular replacement and making several corrections.
Fred Antson did the same for molecular averaging. Sandra McLaughlin helped me
write some guidelines on programming standards.”

Dave Love edited, designed and typeset this document. Subsequent updates from
Martyn Winn and Peter Briggs.

Many people have contributed both to the software and documentation—see the
program writeups—but Eleanor Dodson Phil Evans and Ian Tickle deserve special
mention.

1The quotations by or relating to Lewis Carroll have some significance because Carroll (Dodgson) was
born at Daresbury, administrative base of CCP4. Also the original editor was never previously far from either
Looking Glass House or Dodgson’s college.

The CCP4 manual vii

Part I

Introduction

Chapter 1. Introduction

“Where do you come from?” said the Red Queen,
“And where are you going?”

— Through the Looking Glass

1.1 CCP4 constitution
The CCP4 program suite is a collection of disparate programscovering most of the
computations required for macromolecular crystallography. They have been collected
and developed under the auspices of the Collaborative Computing Project Number 4,
in Protein Crystallography, supported by the UK Science andEngineering Research
Council (SERC) since 1979 and currently the Biotechnology and BiologicalSciences
Research Council (BBSRC), and coordinated at Daresbury Laboratory. The Project
aimed to support collaboration between those working on such software in the UK,
and to assemble a comprehensive collection of it to satisfy the computational require-
ments of the relevant UK groups. The results of this effort are also made available
for distribution to academic and commercial users outside the UK. The distribution,
described herein, is often loosely referred to as ‘CCP4’, but is properly ‘The CCP4
Suite’.

CCP4 is overseen by two committees: Working Group 1, largelycomprising heads
of groups, normally meets annually and makes general policy. Working Group 2 meets
more frequently and coordinates the developers. The current chairmen of WG1 and
WG2 are Jim Naismith (University of St. Andrews) and Phil Evans (MRC LMB) re-
spectively. Working Group 2 has a representative of industrial users, currently Tadeusz
Skarzynski of GlaxoWellcome. The various CCPs are coordinated by a steering com-
mittee. The core activities of the CCP4 project are run by a group at Daresbury Labora-
tory, which currently (February 2006) comprises Martyn Winn, Peter Briggs, Charles
Ballard, Francois Remacle, Norman Stein, Daniel Rolfe, Ronan Keegan and Maeri
Howard. CCP4 also fund a number of developers in the UK through the BBSRC grant
and receipts from industry.

1.2 Philosophy of the CCP4 suite
Unlike many other packages, particularly for small molecule crystallography, the CCP4
suite is a set of separate programs which communicate via standard data files, rather
than all operations being integrated into one huge program.This has some disadvan-
tages in that it is less easy for programs to make decisions about what operation to do
next—though it is seldom a problem in practice—and that the programs are less con-
sistent with each other (although much work has recently been done to improve this).
The advantage of loose organisation is that it is very easy toadd new programs or to
modify existing ones without upsetting other parts of the suite. This is the approach
successfully taken by Unix. Converting a program to use the standard CCP4 file for-
mats is generally straightforward, and the philosophy of the collection has been to be
inclusive, so that several programs may be available to do the same task. The compo-
nents of the whole system are then a collection of programs using a standard subroutine
library to access standard format files. Most of the programsare written in standard
FORTRAN77.

To use the programs the user must assign input and output files, including library
and scratch files where necessary (though defaults are usually defined), and run the
programs. Often an output file becomes the input to the next step, and system parameter
substitution may be used to create filenames in a systematic way. Most crystallographic
calculations involve a series of steps in which no decisionsneed be made until the end,

The CCP4 manual 1

2 Introduction

and a command file provides an easy way of chaining calculations. A graphical user
interface is now also provided as a way of facilitating running of the programs.

Standard file formats are defined for the principal sorts of data used in crystallog-
raphy: reflection data; electron density maps; and atom coordinates. In defining these
formats, a number of trade-offs have to be made between efficiency (in space and ac-
cess time), flexibility, portability, and simplicity of use. Since the data formats form
the core of the suite, they are described in more detail in§ 16. The formats used in the
CCP4 suite share many characteristics with those used in other packages.

The programs are distributed in source form, so they can be studied (don’t looktoo
closely!), modified and fixed by recipients, in contrast to most commercial software.
In addition, executables are distributed for some common platforms. Otherwise, you
will need Fortran, C and C++ compilers to build the suite, although there are freely-
obtainable Fortran and C/C++ implementations (see§13.6). There are freely-available
Unix implementations for PC-type boxes at least, and the combination of a sufficiently
well-resourced top-end PC and, say, the Linux operating system and compilers reput-
edly makes a competent environment for scientific computing.

There is a policy of continual technical and scientific updates to the suite. Where
existing programs have been incorporated into the suite they have often subsequently
undergone considerable modification above that needed to use the CCP4 file formats.

1.3 Referencing CCP4, etc.
Please see the distribution conditions for the suite (available from the CCP4 website at
http://www.ccp4.ac.uk/ccp4license.html). In particular, please note that any publica-
tion arising from use of the CCP4 program suite should include a reference to (Collab-
orative Computational Project, Number 4, 1994) given as:

COLLABORATIVE COMPUTATIONAL PROJECT, NUMBER 4. 1994. “The
CCP4 Suite: Programs for Protein Crystallography”.Acta Cryst. D50,
760–763.

Such citations may be valuable to us in the future in maintaining funding. In addition,
authors of specific programs should be referenced where applicable—see the program’s
documentation and/or output.

The CCP4 manual

Part II

Tutorial material

Chapter 2. Overview of the crystallographic process and CCP 4
programs

“What is it you want to buy?” the Sheep said at last, looking upfor a moment from
her knitting.

“I don’t quiteknow yet,” Alice said very gently. “I should like to look all round me
first, if I might.”

— Through the Looking Glass

2.1 Steps in structure solution
The basis of any crystallographic project iswell diffracting crystalswhich allow the
diffraction pattern to be measured accurately. This can be achieved in a variety of
ways depending on the type of structure we are attempting to solve, the availability of
equipment and on the personal preferences and prejudices ofthe investigator.

The basic choice in data collection is between diffractometers and area detectors
(including photographic film and image plates). Area detectors are usually more suit-
able for proteins. Most machines provide their own softwarefor data collecting. The
raw data are integrated and suitable corrections are made. The relevant software is
briefly summarised in§2.2.1.

Once we have extractedintegrated intensitiesfrom the images the responsibility
of CCP4 is to pick up these intensities and provide tools for further processing and
analysis. The data are scaled and merged. Corrections are applied, the data are then
scaled together and reduced to the asymmetric unit. Finallythe intensities are converted
to structure factor amplitudes. The relevant software is summarised in§2.2.1.

From this point solving the structure is nothing other than finding thephasesi.e.,
the other 50% of the information we need but cannot measure directly.

The fundamental technique for obtaining phases ab initio isthe multiple isomor-
phous replacement(MIR). It involves introducing strong scatterers (heavy atoms)into
the crystal lattice. If, as a result, the lattice was not significantly damaged, the presence
of the heavy atom should cause small but measurable changes in intensities. Several
different heavy atom derivatives are usually needed. Data from them are collected and
finally the various data sets are scaled together using the programs summarised in§6.

The Patterson difference map is calculated for each derivative to see if the heavy
atom positions can be determined for any of them. This is usually only possible if there
are a few of the heavy atoms. In most cases this is done manually although programs
for automatic peak interpretation or direct methods can also be used. Once the major
heavy atom sites for one of the derivatives are determined they can be used to calculate
preliminary phases. The phases then can be used to solve for heavy atom positions in
the other derivatives. Next the positions and occupancies of heavy atoms for all the
derivatives can be refined simultaneously to give an improved set of phases. It is an
iterative process during which more heavy atom sites can be found (usually with low
occupancy) and included in the refinement. Finally a statistically best set of phases is
obtained. The relevant programs are summarised in§2.2.4.1.

If we already have a reasonable model of the structure we are trying to solve, e.g.
from a homologous protein or the same protein in a different crystal lattice, we may
attempt a method known asmolecular replacement. As more and more structures are
solved this is an increasingly successful method of determining preliminary phases.
First the molecule’s orientation in the crystal unit cell isdetermined from a cross ro-
tation function. If the molecule has an internal (non-crystallographic) symmetry the
orientation of the symmetry elements can be determined froma self rotation function
and checked for consistency with the cross rotation. The translational parameters are

The CCP4 manual 5

6 Overview

then obtained from anR factor search or from a translation function. The relevant
programs are summarised in§2.2.4.2.

In case of small molecules the phases are usually obtained bydirect methods. These
have been successful with structures of up to about 150 atoms. However, they have
sometimes been used to find positions of the heavy atoms in some difficult cases of
heavy atom derivatives. The programs are summarised in§2.2.4.3.

A basic crystallographic tool is theFourier transform. Using it, Patterson maps are
calculated from structure factor amplitudes and electron density maps are calculated
from structure factor amplitudes and phases (transformations from reciprocal space to
real space). Quite often one also has to calculate structurefactors from coordinates via
an ‘Fcalc map’ (real space to reciprocal). Most of the relevant programs use the fast
Fourier transformFFT algorithm. They are summarised in§2.2.5.

One may attempt to improve the phases bydensity modification. A variety of
methods can be used to modify the electron density map which are summarised in
§2.2.6. For structures where there is a non-crystallographic symmetry we can also
usemolecular averaging. This is a powerful means of improving phases, especially in
cases of high non-crystallographic symmetry, but if carefully used in combination with
solvent flattening even a two-fold averaging can lead to a substantial improvement of
the map. One first has to determine the symmetry transformations for averaging, either
from heavy atom positions or from molecular replacement. Then a molecular envelope
is determined either automatically or from an existing model. Cycles of averaging and
solvent flattening are carried out until convergence is reached. The relevant software is
summarised in§2.2.6.

Having satisfied ourselves that we have obtained the best possible phases we should
now attempt tointerpret the electron density map. Tracing the polypeptide chain of
a new structure and the subsequent readjustments are very demanding on both good
judgement and time. It is therefore very important that the graphics software we use is
convenient to use and reliable. It is summarised in§2.2.7,2.2.10.

Next follows a process ofrefinement. If our starting model comes from molecular
replacement it is likely to contain large systematic errorsin the coordinates. A prelim-
inary step of rigid body refinement should be carried out to reduce the largest errors in
coordinates. In this technique the model is divided into a number of constrained ‘rigid
bodies’. The number of parameters refined here is relativelysmall, so one can refine
using low resolution data and thus increase the radius of convergence. The ‘classical’
restrained least-squares refinement has a relatively smallradius of convergence. This is
because it uses a linear approximation to a strongly non-linear problem. Discrepancies
are minimised between the observed structure factors and those calculated from the
model. The positions of the atoms are shifted while maintaining geometric constraints
on the known bond lengths, angles and Van der Waals contacts.Many cycles of re-
finement are usually required as well as several rounds of mapinspection and manual
readjustments of the model. An alternative to least-squares refinement is to minimise
a residual based on maximum likelihood ideas. In recent years techniques employing
molecular dynamics in crystallographic refinement have become increasingly popular.
Thermal motions are simulated to help the refinement overcome the local minima. The
programs used in refinement are summarised in§2.2.8.

Throughout the process of refinement one often needs to assess the quality of the
model. Various programs for theanalysis of coordinatesare summarised in§2.2.9.

The complexity of macromolecules makes clearpictorial presentationof their struc-
tures particularly tricky. The plotting programs are summarised in§2.2.10.

CCP4 provides a collection of useful utility programs whichmay be used at vari-
ous stages, including those useful in collecting together information for deposition of
macromolecular structures (data harvesting). There is also agraphical user interface
to many of the programs.

The CCP4 manual

2.2 Program overview 7

2.2 Program overview
Programs mentioned below which are marked with an asterisk are not part of the CCP4
suite (although this classification is not always well defined) but are listed here for
completeness. Some of these are what we term “aggregated” tothe suite (distributed
with CCP4), and some are completely separate (“external”) packages not distributed
with CCP4. The tutorial chapters have more information on the use of these programs.
See also the program index (page 103) and§ 13.4 for information on obtaining some
non-CCP4 programs.

2.2.1 Data processing
2.2.1.1 Film/image plates/CCDs

mosflm mosflm is a widely used data processing program for image plate, CCDand
oscillation data.

denzo* film and image plate processing package (Otwinowski, 1993).
d*trek* Image processing package.
LAUE* For processing data taken with the Laue method. (Aggregated.)
ipdisp For viewing and measuring images under X-Windows.
hklview displays zones of reciprocal space as pseudo-precession images under X-

Windows.
rotgen Simulate X-ray diffraction rotation images.

2.2.1.2 Other area detectors
madnes* Package for processing FAST area detector data (and data from other de-

tectors). (See also CCP4 programsundupl andmadlat .)
xentronics* Proprietary program for processing Xentronics data.
XDS* Kabsch’s program for processing Xentronics data.

2.2.1.3 Diffractometers
Most machines provide their own software and produce anASCII file. f2mtz or
combat will convert this intoMTZ format respectively for merged and un-merged
data.

2.2.2 Data scaling and reduction
combat is ajiffy 1 for converting various foreign formats of un-merged intensity data

to multi-recordMTZ format for input toscala . It can easily be extended to
accept additional formats.

scalepack2mtz Converts merged scalepack output into MTZ format.
detwin Detwins reflection data from merohederally twinned crystals.
dtrek2mtz Converts d*trek scalemerge output into MTZ format.
dtrek2scala Converts integrated intensity and header files from d*trek into multi-

recordMTZ format for input toscala .
postref postrefinement of film data.
scala Replaces rotavata and agrovata. Scales batches of data fromprocesed images

together in a similar way to (Kabsch, 1988). Applies scale factors, adds together
partially recorded reflexions, monitors and rejects bad agreements between re-
peated measurements or symmetry equivalents and averages them for output.
Various statistics on the averaging are produced.

truncate Converts from intensities toFs by the method of (French & Wilson, 1978)
and does a Wilson plot to estimateB factor.

unique Generates a unique list of reflexions.
uniqueify Script for completing a dataset up to a high resolution limit, and adding

free-R flags.
wilson Makes a Wilson plot.
rebatch Alters batch numbers in an unmerged MTZ file (saves runningmosflm

again).

1‘Jiffy’ has been adopted in this community to mean a small utility program c.f., mainstream jargon use
as a unit of time (Raymond, 1993).

The CCP4 manual

8 Overview

2.2.3 Data combination and scaling different sets
cad Combines Assorted Data from severalMTZ files and resorts, changes asymmetric

unit etc. See alsomtzutils .
scaleit scaling of derivative to native data with anisotropic temperature factor; see

alsofhscal .
icoefl ScalingFo to two or moreFcs (for bulk solvent etc.).
rstats Least squares scaling betweenFo andFc.
fhscal Scales native to derivative data.

2.2.4 Obtaining ab initio phases
2.2.4.1 Heavy atoms (MIR, MAD, SAD)

(See also scaling byfhscal andscaleit above.)
abs Determines the absolute configuration (hand) of the heavy atom substructure.
vecsum Patterson search peak search.
vectors Generates all Patterson vectors from a list of input atoms and produces a

list of all vectors which fall within the volume of the Patterson calculated.
havecs Generates Patterson vectors from fractional sites, writing them as orthogonal

coordinates in Brookhaven format.
mlphare Calculates phases and refines heavy atom parameters; for refinement of

parameters see alsovecref . See alsoSHARP.
oasis Program for breaking phase ambiguity in OAS or SIR, from QuanHao
professs Determination of NCS operators from heavy atoms (Kevin Cowtan).
findncs Detect NCS operations automatically from heavy atom sites.
vecref Refines heavy atom parameters in vector space. See alsomlphare .
sapi use direct-methods program to find heavy atom sites.
sigmaa Phase combination of isomorphous and calculated phases, calculation of

Sim weight, etc. (Read, 1986).
MULTAN* Direct methods package. Can be used for finding heavy atom sites from the

Patterson map.
SHELX-97* Direct methods package. Can be used for finding heavy atom sites using

isomorphous differences. (see http://linux.uni-ac.gwdg.de/SHELX/)
rsps Determines heavy atom positions from derivative difference Patterson maps.

Can be used interactively to examine the fit of potential sites to the map.
crossec tabulates anomalous scattering factorsf ′ and f ′′.
SHARP* Statistical Heavy-Atom Refinement and Phasing program. Probably

the program of choice for heavy atom refinement and phasing. (see
http://babinet.globalphasing.com/)

BP3 Multivariate likelihood substructure refinement and phasing of S/MIR(AS) and
SAD. See alsomlphare .

2.2.4.2 Molecular replacement
amore is a complete molecular replacement system in one program, from Jorge

Navaza.
molrep automated program for molecular replacement, from Alexei Vagin. (Vaguine

et al., 1999)
phaser-MR is crystallographic software for phasing macromolecular crystal struc-

tures with maximum likelihood techniques. This is the molecular replacement
module, which replacedbeast .

beast brute-force molecular replacement with Ensemble Average Statistics, Max-
imum likelihood-based molecular repaclement (Randy Read). Obsoleted by
phaser-MR

bulk applies bulk solvent correction for the translation searchand rigid body refine-
ment steps of AMoRe.

fsearch performs up to 6 dimensional molecular replacement solution given a pre-
determined envelope.

ecalc calculate normalized structure amplitudesEs fromFs.
chainsaw model preparation.

The CCP4 manual

2.2.5 Map and structure factor calculation 9

almn Crowther fast rotation function. Obsoleted byamore .
polarrfn Kabsch’s fast polar rotation function with plot.
stnet, stgrid Generate stereographic net plots for use with polarrfn.
rfcorr analyzes correlations between cross- and self-rotation functions
getax Real space searching for rotation axis of aD〈n〉 orC〈n〉 multimer.
tffc space group general translation function.
mapsig peak search and statistics on signal/noise for translationfunction map. Also

sum, product, ratio of two maps.
rsearch R factor search.
MERLOT* a complete molecular replacement package by Paula Fitzgerald (Fitzgerald,

1988).
CNS*
rotmat givesX-PLOR/MERLOT/amore equivalent rotation angles.

2.2.4.3 Direct methods

acorn ab initio procedure for the determination of protein structure at atomic resolu-
tion (Yao Jia-Xing).

rantan Direct Method module for the determination of heavy atom positions in a
macro-molecule structure or to determine a small molecule structure.

sapi

SHELX-97* Comprehensive package of ab initio structure solution, Patterson peak
analysis, unconstrained refinement etc.

MULTAN* Find phases by direct methods. Most useful for finding heavy atom sites.
HySS* Hybrid Substructure Search.

2.2.4.4 MAD phasing

mlphare

abs

madsys* ‘Geometric’ approach by Wayne Hendrickson/B. Weis
SHARP* Statistical Heavy-Atom Refinement and Phasing program. (see

http://babinet.globalphasing.com/)
revise estimates FM using MAD data, where FM is an optimised value ofthe nor-

malised anomalous scattering.
BP3 Multivariate likelihood substructure refinement and phasing of S/MIR(AS) and

SAD.

2.2.5 Map and structure factor calculation

sfall Structure factor calculation using inverseFFT.
fft Map calculation using fast Fourier algorithm.
mapmask Extend asymmetric unit of mask or map to cover any grid volume.
mapdump Print map header and part or all of map.

2.2.6 Molecular averaging and phase improvement

cpirate Statistical Phase Improvement from Kevin Cowtan.
dm Density modification using solvent flattening, Sayre’s equation, histogram match-

ing, NCS averaging and iterative skeletonisation.
dmmulti A multi-crystal version of DM.
solomon Modifies the electron density maps by averaging, solvent flipping and pro-

tein truncation.
demon/angel* Fred Vellieux’s molecular averaging and solvent flatteningpackage;

there are versions for both Groningen BIOMOL files and CCP4MTZ files.
RAVE* The Uppsala averaging package.

The CCP4 manual

10 Overview

2.2.7 Map interpretation and manipulation

ccp4mg The CCP4 molecular graphics program. Optimised for the generation of
presentation graphics and surfaces.

COOT The Crystallographic Object Orientated Toolkit, for modelbuilding, completion
and validation.

xdlmapman Manipulates maps, bones skeletonisation, exchanges formats etc. (Kley-
wegt & Jones, 1996a).

bones2pdb Convert abones output file to to PDB file forncsmask .
extends extend Fourier maps and the compute standard uncertainty ofelectron den-

sity
fffear A package which searches for molecular fragments in poor quality electron

density maps.
O* General model building/manipulation/display graphics program (Joneset al.,

1991).
OOPS* Facilitates process of rebuilding protein structure inside electron density

(Kleywegt & Jones, 1996b).
mama2ccp4 ConvertRAVE/MAMA-format masks to CCP4 format.
map2fs Convert a CCP4 map to XtalView fsfour format.
mapmask map/mask extend program
maprot map skewing, interpolating, rotating and averaging program
mapsig can do arithmetic on two maps.
omit calculate omit-maps according to Bhat procedure.
ncsmask Performs operations on non-crystallographic symmetry masks, e.g. before

dm.
RAVE* and associated programs (see above).
PyMOL* Python enhanced molecular graphics program (see

http:/pymol.sourceforge.net).
overlapmap Map summation (averaging) and subtraction, real-space correlation co-

efficients andR factors.
peakmax Pick peaks on map (e.g., for searching for water).

2.2.8 Refinement of protein models

refmac5 Refine or idealize structures, using intensity or amplitudebased least
squares or -loglikelihood residuals. (Murshudovet al., 1997)

libcheck Generates and manages the library files which provide complete chem-
ical and geometric descriptions of residues and ligands used in refinement by
refmac5 . sketcher is part of ccp4i and provides a graphical interface to
libcheck.

arp waters version 5.0 of the Automated Refinement Procedure. (Lamzin &Wil-
son, 1992). See http://www.embl-hamburg.de/ARP/ for the most recent version
of arp warp .

restrain, tlsanl restrained geometry, rigid body, use of amplitude and phaseob-
servations, group anisotropic displacement parameters, disordered solvent cor-
rections (Driessenet al., 1989)

rdent Create dictionary entries forrestrain from PDB file.
CNS* X-ray and molecular dynamics refinement, also for ‘rigid body’.
TNT* Ten Eyck and Tronrud’s refinement package, also for ‘rigid body’.
SHELX-97* Least squares refinement.

2.2.9 Coordinate analysis

act Coordinate checking.
angles Calculates angles and bond lengths, Ramachandran plot.
anisoanl Analyses of anisotropic displacement parameters.
areaimol Finds solvent accessible area (or area differences) of atoms in a

Brookhaven coordinate file (or files).

The CCP4 manual

2.2.10 Pictorial presentation of results 11

baverage AverageB values for main and side chain atoms. Very useful program
which gives average r.m.s.Bs for main and side chain atoms. Much simpler
alternative to Branden real spaceR factor. Can be used to truncateBs to exclude
wildly too small or too high values. See alsooverlapmap .

bplot Plots B-factors by residue.
cavenv Calculates cavities in macromolecular structures.
compar Compares two or three sets of atomic coordinates. R.m.s. differences as a

function of residue, atom type andB values.
contact Calculates various types of contacts and analyses water hydrogen bonding.

(See alsoact .)
distang Calculates intra- and inter-molecular distances.
dyndom Determines dynamic domains when two conformations are available. (Hay-

ward & Berendsen, 1998)
dssp* Definition of secondary structure; produces dictionary of secondary structure

(Kabsch & Sander, 1983).
gensym Generates all symmetry-related sites from a list of input atoms, and produces

a list of all sites which fall within the volume of the defined volume.
geomcalc Does various geomtry calculations on a molecule.
hgen Generates hydrogen atoms for a protein coordinate file with standard geometry.
lsqkab Least squares fit of two sets of coordinates.
ncont Analyses contacts between subsets of atoms in a PDB file.
pdbcur A curation tool providing various analyses and manipulations of PDB files.
pdbset Various useful manipulations ofPDB files: e.g., addCRYSTand SCALE

lines, generate symmetry-related subunits, rename chains, renumber residues,
transform coordinates.

polypose Superposition of multi-domained structures.
procheck Comprehensive stereochemistry checking.
rotamer List amino acids whose side chain torsion angles deviate from Richardson’s

Penultimate Rotamer Library (Dirk Kostrewa).
rwcontents Count atoms by type, and other analyses.
sc Program to analyse shape complementarity of molecular interfaces.
sfcheck Program for assessing agreement between atomic model and X-ray data
sortwater Sorts waters by the protein chain to which they “belong” in the case of

a protein with several equivalent subunits.
surface Determines accessible surface area.
topp An automatic topological and atomic comparison program forprotein struc-

tures.
volume Determines polyhedral volume around selected atoms.
watertidy Assigns waters to nearest subunit and residue.
watncs Pick waters which follow NCS and sort out to NCS asymmetric unit.
watpeak Lists peaks found bypeakmax near to atoms.

2.2.10 Pictorial presentation of results
ccp4mg The CCP4 molecular graphics program. Optimised for the generation of

presentation graphics and surfaces.
COOT The Crystallographic Object Orientated Toolkit, for modelbuilding, completion

and validation.
astexviewer Java program for displaying molecular structures and electron den-

sity maps
loggraph Plots graphs of tables from (many) CCP4 programs’ log files, as part of

ccp4i .
mapslicer Section viewer for CCP4 map files.
O* General model building/manipulation/displaygraphics program which can produce

hardcopy.
molscript* good representation of molecules often used together withraster3D

(Kraulis, 1991).
npo Plots maps and draws structure onto them. Various graphicalrepresentations.

The CCP4 manual

12 Overview

ortep2* A small molecule drawing program; some of its features are now in npo .
pltdev, xplot84driver, xccpjiffy2idraw Convert PLOT84 metafiles to

X-Windows, Tektronix, HPGL or PostScript format.xccpjiffy2idraw con-
verts the result to PostScript which can be edited withidraw .

prepi* a molecular graphics program which can be used to interac-
tively manipulate many different types of molecular representations.
(http://bonsai.lif.icnet.uk/people/suhail/prepi.html)

proplot Assorted pretty plots from theprocheck suite (q.v.); includes Ramachan-
dran plot.

RasMol X-Windows (and MS Windows) visualiser for PDB files.
raster3D* a set of tools for generating high quality raster images of proteins or

other molecules, including rendering pictures composed inmolscript .
ribbon* John Priestle’s package (Priestle, 1988) for Jane Richardson-type cartoon

drawings or graphics displays usingfrodo . Associated programs:ribrot ,
postplot , pltout , pdbrot , splitd . (Aggregated.)

setor* hardware-lighted 3-dimensional solid model representations of macro-
molecules.

topdraw Sketchpad for creating protein topology diagrams.
xloggraph Plots graphs of tables from (many) CCP4 programs’ log files under X-

Windows.

2.2.11 Utility programs
axissearch Changes axis and cell. (See alsotracer .)
Babel* Interconverts many coordinate formats.
cad Combine assorted data (and sort) a number of reflection files with various possi-

ble operations on the data items. Apart from manipulating the values, data may
be converted from one area of reciprocal space to another. Other special func-
tions allow for the generation of input data, for expansion of the data to a lower
symmetry if required, and for the generation of data for input to rsearch .

cif2mtz program to convert mmCIF structure factors (e.g. from PDB) to MTZ
(Martyn Winn).

coordconv Interconverts various coordinate formats.
f2mtz Converts (free-)formatted reflection files to MTZ format.
freerflag Tags each reflection in an MTZ file with a flag for cross-validation.
hklplot Plots “precession” pictures from reflexion files.
hklview is better thanhklplot if you have X-Windows. (Aggregated.)
matthews coef Misha Isupov’s Jiffy to calculate Matthews coefficient.
mtzMADmod Generates F+/F- or F/D from other for anomalous data.
mtzdump List header and reflections to terminal or printer (Unix script mtzdmp runs

it more simply.)
mtzmnf Identify missing data entries in an MTZ file and replace with missing number

flag (e.g. NaN).
mtztona4 Converts MTZ files to portableNA4 ASCII format. (For exchange with

another machine.)
mtzutils Edit columns, title or labels, combine two reflection files. See alsocad .
mtz2various Produce a file in suitable form forSHELX, X-PLOR, CNS, etc. or in

mmCIF or a user-defined format.
na4tomtz Inverse ofmtztona4 .
phistats Performs analysis of agreement between phase sets, and checking against

weighting factors.
reindex Reindexes MTZ files when you realise something is wrong. Alsochange

symmetry of residue to asymmetric unit.
sftools Reflection data file utility program including some density map handling
sortmtz Sort and/or merge MTZ files.
stereo Reconstruct 3D coordinates from measurements of stereo diagrams.
tracer Lattice TRAnsformation/CEll Reduction.
wulff.ps For generating Wulff net.

The CCP4 manual

2.2.12 Data Harvesting Utilities 13

xdldataman Manipulates reflection files, exchanges formats etc. (Kleywegt &
Jones, 1996a).

2.2.12 Data Harvesting Utilities
cif2xml Convert mmCIF data harvesting files into XML format.
cross validate Validate harvesting files prior to deposition.
Data Harvesting Manager A graphical tool to curate data harvesting files, this

is part ofccp4i .
pdb extract A suite of programs from the PDB/RCSB for generating harvestfiles

from program logfiles.

2.2.13 Graphical user interface
ccp4i is the CCP4 graphical user interface.

2.2.14 Other systems
I hope they give us a plug. . .

BIOMOL The BIOMOL package is a set of programs developed in the Groningen
protein crystallography group for most crystallographic tasks which is being con-
verted to use CCP4 file formats.

PHASES Phasing.
Protein “The ‘PROTEIN’ program system is an integrated collection of crystallo-

graphic programs designed for the structure analysis of macromolecules.”
Xtal Is a package for small molecule and macromolecular calculations which is avail-

able for (reasonably large) PC systems.
XtalView “is a complete package for solving a macromolecular crystalstructure

by isomorphous replacement, including building the molecular model.” X-
Windows-based. (Mc Ree, 1993)

The CCP4 manual

Chapter 3. General CCP4 usage

“It’s not a modern, iconic, user friendly, menu driven, color, PC compatible user
interface,” replied the queen, in a tone that would need to come up two notches to be

vaguely considered condescending.
“It happens to suit me just fine,” retorted Alice.

“What are you an engineer or something?” asked the 7 of spades.
— Alice in DIGITALand (anon.)

3.1 Program documentation
Writeups for the programs are currently in HTML one per program and can be viewed
through the local Web browser by typingccp4help . Formatted versions are in the
$CDOC1 directory and can be viewed conveniently with an editor.2 However, the
CCP4 installation makes it possible for you to use the man utility, you should be able
to use things likeman fft or man -k fft on a Unix system; this is providing the
ccp4.setup file has been modified correctly (see§11.3).

3.2 Running the programs
Information flows to and from the programs in two ways:

• input and output data files are connected as specified bycommand line argu-
ments, given after the name of the program to be invoked.

• parameters and option specifications are read on thestandard inputstream and a
‘log file’ of printed output is produced on thestandard outputstream (see§3.4).
This input is usuallykeyworded(see§3.2.2).

This mechanism works uniformly under Unix, butonly if certain system-dependent
definitions have been made, usually by executing a command file as part of the login
procedure (see§11).

Users of CCP4 Microsoft Windows should use the programs via the graphical user
interfaceccp4i , which hides many of these details (see§3.8).

3.2.1 Command line arguments/file connexion

Input and output data files are specified by associating the with logical names. This ab-
straction was influenced by VMS, with the command line processing following more
the Unix model. Logical names are alphanumeric, possibly also including underscores.
They are associated with file names of a form appropriate for the operating system, but
including a name part and possibly an extension/type, directory specification and ver-
sion. The association is usually made by specifying name/value pairs on the command
line following the program name. Thus the format of a programinvocation is

〈program name〉 [〈logical name〉 〈file name〉] . . .

where ‘〈 〉’ indicates place holders and ‘[]. . . ’ indicates optional repeated items i.e.,
zero or more, here and elsewhere in the documentation. ‘|’ may also be used to describe
syntax, and indicates alternatives between the items on each side.

A concrete example is

fft hklin native-Fs.mtz mapout 2Fo-Fc.map

1The notation $〈name〉 refers to the value of a Unix environment variable, defined inthe standard startup
scripts. In Unix it is substituted using the leading ‘$’.

2Theprocheck documentation is a PostScript file in themanual directory as well as a plain text.doc
file.

The CCP4 manual 15

16 General CCP4 usage

Here anFFT is performed on the MTZ reflexion dataset associated with thelogi-
cal namehklin (filenamenative-Fs.mtz) and a map is output to logical name
mapout (file 2Fo-Fc.map).

Logical names are case-insensitive - remember that the file names are case-sensitive
in Unix, though. Each standard logical name has a default extension associated with
it, which is appended is one isn’t specified. Thus the.mtz and .map extensions in
the above example are redundant since they are the defaults for the logical names in
question.

Unix pitfall: Beware of trying to default the extension for file names which already
contain a dot, since the part of the name after the dot will be taken as an explicit
extension. (This could arise if, for instance, you were generating filenames with a
resolution included as a real number, perhaps in some parameterised script.)

There is a library of standard logical names with associateddefault extensions and
access modes (read, write or read/write). Names from this set which are appropriate
to each program are detailed in the programs writeups. Some will default to reading
a library file (e.g. of symmetry operators) or writing a file inthe scratch directory,
and usually are not specified. Otherwise, if a file isn’t givenfor the logical name, the
program will attempt to open a file in the current directory with a name corresponding
to the logical name.

Some common logical names with default extensions are:

HKLIN input MTZ reflection file (.mtz);
HKLOUT output MTZ reflection file (.mtz);
MAPIN input map file (.map);
MAPOUT output map file (.map);
XYZIN input coordinate file (.brk);
XYZOUT output coordinate file (.brk).

In some cases more than one file corresponding to the same typeof entry in$CINCL/default.def
is required e.g., several input reflexion files. In this case they are typically specified
asHKLIN〈n〉, for instance, where〈n〉 is a sequence number. The rules for match-
ing logical names with the default specifications given above then apply to the pre-
fix of the name which matches the entries in the files$CINCL/environ.def and
$CINCL/default.def .

In Unix the environment variableCCP4OPENcan be used to determine whether
logical names opened as new over-write existing files with the name specified. Over-
writing will occur if the value of the variable isUNKNOWN; otherwise the program will
abort.

For the fine print of the logical name mechanism, see§3.7.

3.2.2 Keyworded input
Most programs take ‘keyworded’ input to set their parameters. This is read on the
standard input in the form of records with a leading keyword followed, possibly, by
arguments which might be numbers or strings or keyword/value pairs of the form
〈keyword〉=〈value〉. Such arguments are separated by spaces, tabs, commas or= char-
acters. The detail of the input expected is given in the documentation for each program,
of course. However, there are some general rules:

• Only the first four characters of keywords are significant (although you are rec-
ommended to use complete keywords) and they are case-insensitive;

• Records may be continued across line breaks using&, - or \ as the last non-
blank, non-comment character on the line to be continued;

• Text following a non-quoted! or # is treated as a comment and ignored. A
continuation character may precede the comment;

• Strings may be single- or double-quoted but the quotes may beomitted if a string
doesn’t contain whitespace or a comment or continuation character (as above) or
if the whole of the rest of the record is read as a single string(which is the case
with title information etc.). E.g.:

TITLE nothing special

The CCP4 manual

3.2.2 Keyworded input 17

TITLE "don’t continue me-"
TITLE ’! not a !#" comment’

• Leading spaces are ignored
• If an input record is of the form@〈filename〉, with possible surrounding whites-

pace, the contents of the file〈filename〉 will be included as input at that point,
after which the following records will be read.

3.2.2.1 Common keywords

Specifications of some keywords common to various programs follow:

CELL a b c [α β γ]
Specifies cell dimensions (in̊A) and optionally angles in degrees (which default
to 90◦);

END
Terminate input and start the program going. End-of-file will usually have the
same effect;

GO| RUN
Are sometimes provided in potentially-interactive programs with the same effect
asEND.

HEADER NONE| BRIEF | HIST | FULL
Controls printing of MTZ information as:
NONE no header output
BRIEF brief header output
HIST brief, with MTZ history
FULL full header output from MTZ reads

HISTORY〈history〉
Adds a record to the history stack in an MTZ file, pushing olderones off the
bottom if there are too many.

LABIN 〈program label〉=〈file label〉. . .
Associates the column labels that the program expects with column labels in
the input MTZ file. If there is no ambiguity, the program and file labels can be
swapped on the other side of the=.

LABOUT〈program label〉=〈file label〉. . .
Associates column labels in the output file with labels used by the program sim-
ilarly to LABIN .

RESOLUTION〈limit 〉 [〈limit 〉]
Specifies resolution limits. If only a single〈limit 〉 is given, it is an upper limit,
otherwise the upper and lower limits can be in either order. They are inÅ unless
both are<1.0, in which case they are in units of 4sin2 θ/λ2;

SYMMETRY〈number〉 | 〈name〉 | 〈operators〉
Specifies symmetry in terms of—e.g. P212121—either
〈number〉 spacegroup number e.g.19;
〈name〉 spacegroup name e.g.P212121 ;
〈operators〉 explicit symmetry operators e.g.

X,Y,Z * 1/2-X,-Y,1/2+Z * 1/2+X,1/2-Y,-Z * -X,1/2+Y,1/2-Z .
where each follows the conventions of (Hahn, 1992) and matches an entry in the
file with logical nameSYMOP(usually $CLIBD/syminfo.lib). Names are
the ‘short’ form given in (Hahn, 1992); the subscripts are typed asis and overbar
is typed as a leading- so that e.g. P1 is typed asP-1 . Explicit operators (rarely
needed!) may have thex,y,z triplets separated by spaces or* and the coordinate
and translation part may be in either order. It is also possible to specify the
operators in reciprocal space usingh,k, l instead ofx,y,z. See also§16.5.1.

TITLE 〈title〉
The rest of the line (or up to 80 characters of it) is taken as a title, usually for an
output file.

The CCP4 manual

18 General CCP4 usage

#!/bin/csh -fe
sfall HKLOUT ˜/test XYZIN ../Brk/xylose.brk \

HKLIN xylose << EOF-sfall
〈your keywords here〉
EOF-sfall

fft hklin ˜/test mapout xylose.map << fft-eof
〈your keywords here〉
fft-eof
#

Figure 3.1: C-shell script example.

#!/bin/sh
sfall HKLOUT $HOME/test XYZIN ../Brk/xylose.brk \

HKLIN xylose << EOF-sfall &&
〈your keywords here〉
EOF-sfall
fft hklin $HOME/test mapout xylose.map << fft-eof
〈your keywords here〉
fft-eof
#

Figure 3.2: Bourne shell script example.

3.3 Examples
Example scripts to run many programs are available in subdirectories of $CEXAM.
Those in $CEXAM/unix/runnable can actually be run using thedistributed data in
$CEXAM/toxd and $CEXAM/rnase.

This is not a discussion of the details of any particular program so only the script
framework is given—the keywords are omitted. The programs are usually run from
scripts/command procedures with the ‘keyworded’ command data read inline (on the
‘standard input’ stream) rather than coming from separate files but can be run interac-
tively, of course. One such script/com file often runs several programs in sequence.

Programs can also be run using the graphical user interfaceccp4i (see§3.8. En-
tries inccp4i correspond to program keywords. Tutorials using the inteface are dis-
tributed in $CEXAM/tutorial.

3.3.1 Unix

The line#!/bin/csh -fe in the C-shell example in fig. 3.1 ensures the script is
executed by the C shell (without reading˜/.chsrc and exiting if a command fails).
The input is re-directed from the ‘here-is document’ comprising the lines between the
delimitersEOF-sfall . Between these delimiters the shell substitutes environment
variables preceded by$ and various other things—seecsh (1).3 The exit status of the
first program is tested and the second not executed if it fails. The terminating# avoids
problems if there isn’t a trailing newline in the file.

There are some differences if you use the Bourne shellsh (1) or a derivative like
ksh or bash , apart from the initial#! line (see fig. 3.2). In this case, the˜ metachar-
acter isn’t available (use$HOME), theterminatingword for the<< redirection should
not be quoted if the introducing one is, and it is convenient to chain programs contin-
gent on exit status with&&4 or to useset -e at the top of the scrip in modernsh
implementations. An example of usingsh and substituting inside the here-is document
is thesortmtz example inexamples/unix/runnable .

3Such substitutions can be useful in re-usable scripts. To turn them off, enclose the delimiters in quotes.
This will avoid nasty surprises with shell metacharacters if you don’t want the facility.

4In csh it seems not to be possible to use&&with multiple ‘here-is’ documents in this way.

The CCP4 manual

3.4 Output 19

Which Unix shell you use, at least for scripts, is a somewhat religious issue, but
authorities recommendsh for various reasons. If you are of thecsh faith, at least
get the improved implementationtcsh and use it for writing scripts. See the FAQ for
Usenet group comp.unix.shell.

Unix gotcha: beware of calling an executable script the same name as the program
it’s running. Depending on your command path, you may end up running the script
recursively until you run out of processes or memory. (A goodcase can be made
for avoiding ‘. ’ in your path and invoking executables in the current directory with a
leading ‘./ ’.)

3.4 Output
The ‘log file’ output may contain error messages and warnings. If the program en-
counters a fatal error, it will print a message at the end of the output, along with timing
information. If it runs successfully a message likeNormal termination will be
printed with the timing information. The condition code setby the program will indi-
cate success or failure as appropriate for the operating system, e.g. in Unix, zero for
success, non-zero on error.

Many of the programs produce graphical information. Outputfrom the programs
should be redirected to a ‘log file’ which can be viewed withloggraph (or the older
xloggraph). Some log files are marked up in HTML, and can therefore be viewed
in a browser such as Netscape. Graphs appear as Java applets.

3.5 Rudiments of reflexion files
The MTZ format for reflexion data has some features which it ishelpful to understand
since CCP4 depends heavily on the standard file formats (or the information the files
contain) and the MTZ one in particular. The data are stored inthe files (which usually
have the ‘extension’.mtz) notionally ascolumnsof real or integer numbers, each
with a label.5 The first three columns are the Miller indices of the reflexion, with labels
H, K andL. The programs expect you to set up a correspondence between the labels in
your data file and names of data columns they recognise.

‘Standard’ MTZ files have one record per reflexion. During theinitial data-processing,
unmerged data are stored inmulti-record filesin which each reflexion occupies sev-
eral records which are distinguished by differentbatch numbers, symmetry numbers,
etc. In this case the fourth column is the ‘m/isym’ number, recording the symmetry
and whether the reflexion is fully recorded, and the fifth column is thebatch num-
ber. Multi-record files have fixed column names which are understood by the relevant
programs.

The files also contain various other information in aheaderblock. This includes
cell parameters, symmetry, column limits, sort order, title and history information. For
more details see§16.1. See also§16 for the standard coordinate and map file formats.

3.6 Transporting data files
Reflexion, map andPLOT84 files are binary and are not generally portable between
machines with different representations of integer and/orreal numbers. However, re-
flexion and map (butnot PLOT846) files written using the current CCP4 release are
readable on all machines from the set we recognise. They are written using the ma-
chine’s native number formats and can be read back on the samearchitecture without
overhead. On a different architecture the necessary conversions between foreign and
native formats will be done with some overhead (which is not likely to be noticeable
on modern machines).

This facility relies on a ‘machine stamp’ in the file header toidentify the architec-
ture on which the file was written. If this doesn’t exist the library assumes that the file
was written in the native format of the machine with a warning. If you have, say, MTZ
files written with an old (pre- release 2.2) version of CCP4, you can easily insert the

5The similarity with relational database tables is intentional.
6If you need to transport them, usep842asc andasc2p84 .

The CCP4 manual

20 General CCP4 usage

check existence of ‘in’ files

check extensions

check existence of ‘in’ files

?

?
-

?

check extensions

?

execute program body

?

?

-

program starts

readenviron.def file

readdefault.def file

parse command line arguments

Figure 3.3: Description of CCP4 Program startup

machine stamp by runningmtztona4 andna4tomtz back to backusing the current
na4tomtz . Similarly with map files andmaptona4 .

3.7 Details of logical name processing etc.
[The gory details in this section can be skipped by casual users. They are relevant if
you want to redefine or add to the default logical names, for instance.]

When a CCP4 program starts up, it goes through apre-processingstage before
the main body of the program is run (see fig. 3.3). It starts by reading in a file called
environ.def (in theinclude sub-directory pointed to by$CINCL unless you use
the-e switch—see below). This file specifies thelogical namesthat can be expected
and some information about the type of file associated with each logical name. A
typical line may beSYMOP=in.lib , which says that the logical name SYMOP is
associated with a file that is input only (‘in ’) and has a default extension of.lib ;
other file types are ‘out ’ (output only) and ‘inout ’ for read/write files.

After this, the pre-processor then reads in the filedefault.def , which speci-
fies some common logical names defined for all CCP4 processes.A typical line here
may beSYMOP=syminfo.lib and means that the logical name SYMOP will be as-
sociated with the filesyminfo.lib . You can editdefault.def to use different
files by default e.g., a new atomic scattering dictionary, but usually the defaults are
overridden by command line options (§3.7.1).

Finally, the command line arguments are parsed and the logical name/file name
pairs are matched up and assigned. An alternative to specifying logical names on the
command line is to define a Unix environment variable corresponding to the logical
name with the file name as its value, although this is not the recommended way of
operating. Command-line values override any defined in the environment. A logical
name on the command line that has not been defined inenviron.def causes the
name to be added to its internal list and a warning to be issued.

Within this procedure are several devices to make running the program easier.
Firstly, files without extensions have them appended using the default value, where de-

The CCP4 manual

3.7.1 Command line 21

fined inenviron.def . Secondly, files with extension.lib , .dic , .bes or .prt
which donot have a full path name have the directory $CLIBD put in front ofthem
(so, logical name SYMOP will actually be associated with $CLIBD/syminfo.lib).
Thus you only need specify values for logical names such as SYMOP if you want to
use other than the library file.7 Furthermore, files with extension.scr are deemed to
be scratch files and are assigned to the scratch directory.

Files of type ‘in’ are checked for existence and the program fails with a message if
it can’t find them. Under Unix, using output files that alreadyexist will also cause the
program to stop unless the environment variableCCP4_OPENis set toUNKNOWN, in
which case they will be overwritten with a warning message.

3.7.1 Command line
The programs can take several command line switches to modify the pre-processing
that is done, though they are rarely useful. These must be given before the other argu-
ments and have the Unix-style ‘- ’ prefix rather than ‘/ ’ . They are:

–n Do not read the global filesdefault.def andenviron.def ;
–v 〈0–9〉 Verbose output. You can also use-h instead of-v . Higher values give

more debug information from the program, the default value is 1. Use-v 0 if
you want to turn off messages about file opening, otherwise-v is currently only
useful for debugging. An error occurs if you omit the number;

–d 〈file〉 Specify an alternative to thedefault.def file;
–e〈file〉 Specify an alternative to theenviron.def file.

3.8 Graphical User Interface
As an alternative to running the programs via scripts as outlined above, a graphical user
interfaceccp4i is also available. The interface is written in the scriptinglanguage
Tcl/Tk and will run on any platform which supports an interpreter for Tcl/Tk. This
includes both Unix and Microsoft Windows platforms.

The main function of the first version of the interface is to make running the pro-
grams easier, by hiding many of the details of logical names and keyworded scripts
that are outlined above. It also presents options for running the programs in clearer
ways than just bare keywords, which makes it particularly accessible for inexperienced
users. At the same time, since the programs are independent of the interface more ex-
perienced users can jump in and out ofccp4i to run one or two programs, without
becoming “locked in” to the system.

Within ccp4i access to programs is organised bytask, where a task usually cor-
responds to one main program but may also use other helper programs. For example,
the interface tofft may also run themapmaskprogram to extend the map, then use
other utilities to convert the map file format to something appropriate for a graphics
program. Related groups of tasks are further organised intomodules, corresponding
to different parts of the structure solution process such asExperimental Phasing or
Molecular Replacement.

In additionccp4i also has a simple project management system, which allows
work to be divided into separateprojectsand which automatically keeps a database8

of the jobs that have been run in that project. The database retains details of input and
output files as well as automatically storing the parameters, which makes it easier to
keep track of progress.

The graphical user interface offers some other useful features, for example it has
an extensive system of help files in HTML format, and is linkedto a number of util-
ities for viewing different types of files (for exampleloggraph , sketcher and
mapslicer).

7N.B. The mechanism for looking for files in $CLIBD can cause confusion if youdo want to use your
own version of a file from the current directory. In this case,either give it an extension different to the list
here or use an explicit path e.g,
SYMOP ./symop.lib (Unix)

8Though purists will object that this is not a true database.

The CCP4 manual

22 General CCP4 usage

To start up the interface within a Unix environment, use the command
ccp4i

at the command prompt. Within Microsoft Windows environments, click on theCCP4
icon, or select the appropriate option from theStart menu

The CCP4 manual

Chapter 4. Data processing and reduction

“About a thousand and four,” said Bruno.
“You mean ‘about a thousand’,” Sylvie corrected him.

“There’s no good saying ‘and four’: youcan’tbe sure about the four!”
— Sylvie and Bruno Concluded

This is a vital part of your experiment. Don’t be afraid to repeat it until you are satisfied
with the results. Extensivexloggraph facilities are available from the programs to
monitor the results.

More information on data collection, processing and reduction can be found in the
CCP4 Study Weekend proceedings (Helliwellet al., 1987; Sawyeret al., 1993).

4.1 Data processing
By data processingwe mean that you:

• index the image correctly;
• assign profiles;
• refine orientation etc., to get the best set ofhkl, I , σI and fractionality where the

hkl are the measured indices.
Relevant programs are provided, for example, in themosflm system; see also the
tutorial information included with it.

4.2 Data reduction
Data reductionis the next stage. We need to use the processed set of reflexions and to
produce the optimal set ofhkl, F andσF, where thehkl lie in the chosen unique part
of the reciprocal lattice.

The steps involved are:
1. Apply geometric corrections which are independent of data collection device.

These are Lorentz and polarisation corrections.
Try to apply absorption corrections (often not easy but important).

2. Find symmetry equivalents of measured indices.
Steps 1. and 2. may be done by the data processing program or may be in a separate
program (e.g.absurd for madnes).

3. (If you use a data-processing program which doesn’t output MTZ files, e.g.
denzo or XDS, usecombat to produce a multi-record MTZ file from a file of
un-mergedreflexions orf2mtz for programs which produce a plain-text file of
mergedreflexions. Some systems can output both merged and un-merged data,
so be careful. You may have to extendcombat for formats it doesn’t already
support.)

4. Sort(/merge) the data so all equivalent sets of indices are adjacent usingsortmtz .
5. Usereliable equivalent measurements from different sets to calculate relative

scale factors. Check the scales make physical sense.
6. Merge equivalent reflexions, applying scale factors.
7. Examine the data carefully for outliers. Try to correct orat least understand as

far as possible.
8. Analyse for better estimates of standard deviations, testing data and processing

guestimates against observation scatter. Correct guestimates as far as possible.
Steps 5. to 8. are done withscala which will need to be run several times.

9. Analyse the final data for sensible crystallographic behaviour. Usingtruncate :
cumulative intensity distribution; Wilson plot, e.g. withwilson .

The CCP4 manual 23

24 Data processing and reduction

10. Run uniquify script to complete your dataset, and add freeR column. This should
be done for your native dataset. See programunique for more information.

To merge data from different sources, you need to produce multi-record files (one
from each source, as step 3. above) and go to step 4. iff the files at this stage have
the same number and type of columns. (sortmtz will merge an arbitrary number of
files.) Otherwise usemtzutils to merge (sorted) files.1 To combine low and high
resolution data usescala with different ‘run’ numbers for the different resolutions.
See thescala document for more hints.

To merge unscaled data with a set of previously-scaled data,produce a multi-record
file from the scaled MTZ file usingcombat with input typeMTZFand go to step 4.

1Your files may have different columns if you are using, say,mosflm andcombat output together.

The CCP4 manual

Chapter 5. Manipulating and Displaying Data Files

— Graham, Knuth and Patashnik,Concrete Mathematics

[More information on data manipulation and display can be found in§2.2.]

5.1 hkl manipulation
Reflexion datasets are stored as ‘MTZ’ files (which are binary). These containhkl, Fs,
σs, phases etc. in a labelled column format. (See also§16.1). Utility programs are
available to produce and handle these files.
f2mtz reads a formatted file and outputs an MTZ file.
mtz2various exports reflexion files to formats for other systems.
mtzdump dumps part or all of any MTZ file as plain text. You will always get the

header information; i.e., column names, types and range. Plus number of zero
observations etc.

cad (Collect Assorted Data) is the best program for combining several data sets to-
gether. It reads up to 9 input files, with up to 20 assigned columns in each, assigns
column types (and new labels if necessary), moves all data tothe same asymmet-
ric unit (necessary if you are bringing data together from several sources), and
outputs all columns. It can apply a scale factor to all columns in a file (exclud-
ing phases). It can also be used to extend your data to cover more of reciprocal
space.

sortmtz Sorts/merges MTZ files.
mtzutils has many purposes. It can:

• Select columns from one or two input files;
• Merge (interleave) two sorted files;
• Change header or labels;
• Change symmetry etc.

5.2 Map file utilities and plotting
mama2ccp4 ConvertMAMA-format masks to CCP4 format;
mapmask General map and mask manipulation program;
O displays maps (amongst other things);
overlapmap does map manipulation;
npo can contour map sections (amongst other things);
mapdump prints sections of maps and is useful to extract the RMS density deviation

for assigning plotting contour levels;
xdlmapman Interconverts formats and does manipulations;

5.3 Interpretation and manipulation of coordinates
Most CCP4 programs use the Brookhaven format for reading andwriting coordinates.
They require theCRYST1andSCALEi cards to be present and use these to convert to
fractional values when required. See also§16.2.

• Manipulation
bones2pdb ConvertMAMA-format masks to PDB format;
coordconv interconverts formats;
pdbset

The CCP4 manual 25

26 Manipulating and Displaying Data Files

– applies specified rotations and translations;
– generates symmetry equivalent coordinates;
– truncatesB-values outside specified range;
– renumbers residues, changes chain ids. . .
– Inputs/outputsX-PLOR format,Oformat etc.
– finds range of a PDB file.

lsqkab least-squares fits subsets of coordinates together using the Kabsch al-
gorithm and outputs rotated coordinates;

baverage averages and analysesB-factors residue-by-residue;
watertidy part of a procedure to move and rename water molecules to sen-

sible values relative to the protein molecule;
sortwater similar towatertidy ;
rwdict converts a PDB file into PROTIN dictionary format;
chemnotes (commercial) will build you a substrate and output a PDB file.

• Coordinate checking:
act Various analyses;
distang calculates distances and angles between near atoms using symmetry.

Used to check bad contacts and find hydrogen bonds etc.;
contact similar;
procheck checks file for standard naming conventions and sorts the atoms

within a residue into the standard order. Checks structuralgeometry; should
be used at all stages of refinement;

libcheck, refmac5 which are part of the refinement package also check for
bad distances, planarity, chirality, torsion angles. Theycan be used for this
purpose without the refinement option.

5.3.1 Converting between fractional and orthogonal coordi nates
This is a recurring problem, especially when using coordinates extracted from direct
methods programs, or frommlphare .

To remind you: If you have a PDB file

xfrac

yfrac

zfrac

 = Scalei×

Xorth

Yorth

Zorth

1

, (5.1)

where

Scalei =

Scale11 Scale12 Scale13 Scale14

Scale21 Scale22 Scale23 Scale24

Scale31 Scale32 Scale33 Scale34

 , (5.2)

the matrix at the head of a PDB file, i.e.

xfrac

yfrac

zfrac

 =

Scale11Xorth+Scale12Yorth+Scale13Zorth+Scale14

Scale21Xorth+Scale22Yorth+Scale23Zorth+Scale24

Scale31Xorth+Scale32Yorth+Scale33Zorth+Scale34

 . (5.3)

Therefore, extendingScalei to ScaleiExt so that the 4×4 inverse matrix can be gener-
ated1

ScaleiExt =

Scale11 Scale12 Scale13 Scale14

Scale21 Scale22 Scale23 Scale24

Scale31 Scale32 Scale33 Scale34

0.00 0.00 0.00 1.00

, (5.4)

xorth

yorth

zorth

 = ScaleiExt
−1×

xfrac

yfrac

zfrac

1

. (5.5)

1The extension line ([0.00 0.00 0.00 1.00]) is necessary to cope withScale14,Scale24,Scale34, the trans-
lation component of the transformation.

The CCP4 manual

5.4 Plotting 27

The programscoordconv , vectors andhavecs will all convert (various for-
mats of) fractional coordinates to orthogonal ones.havecs ’s PHAREinput type cor-
responds tomlphare ’s output coordinate format.

5.4 Plotting
mapslicer can display sections from map files interactively.npo can plot map
and coordinate files, e.g. for inspecting map sections. It produces aPLOT84 metafile
which can be displayed withxplot84driver under X-Windows or plotted with
pltdev . astexviewer can display maps and coordinates interactively in three
dimensional views.Oprovides general interactive graphics and model building,etc.;
there are various programs from Uppsala associated with it.hklview andhklplot
can be used to plot precession pictures.molscript andribbon (and others) can
plot ribbon diagrams from coordinates.

The CCP4 manual

Chapter 6. Isomorphous Replacement

One pill makes you larger
And the other pill makes you small

And the ones that Mother gives you don’t do anything at all
— Grace Slick,White Rabbit

6.1 MIR structure solutions: steps and programs

derivatives together

with anomalous

differences

Native-Fs.mtz

Deriv-Fs.mtz
CAD SCALEIT FFT

Put all available

quality

Fderivs and assess

scale Fnat and

FHSCAL

1) Find heavy atom sites.

 a) Solving Patterson for first derivative to give major site(s):

Nat-deriv.mtz

calculate difference maps

Calc. diff.

FFT PEAKMAX NPO

b) Heavy atom phasing:

2)a) Heavy atom refinement:

3) Difference Fouriers to find new heavy atom sites in first and other derivatives:

4) Back to calculate and check Pattersons for other derivatives.

MLPHARE Maximum Likelihood PHAsing and REfinement.

MLPHARE, VECREF

PATSEE

MULTAN

SHELX
 b) Use Direct Methods to find site(s):

VECTORS,HAVECS
generates expected

vectors from coordinates

NPO
to plot interesting(Checking Patterson)

sections

PEAKMAX

Patterson map

Figure 6.1: MIR structure solution.

The main steps in obtaining initial phases by MIR are shown infig. 6.1 and a tutorial
example is available in $CEXAM/tutorial. These steps are:

• Scale derivative data to native using eitherscaleit or fhscal (Kraut scal-
ing, probably better).Be particularly careful about the observations’ standard

The CCP4 manual 29

30 Isomorphous Replacement

deviations—turn on weighting by them iff you believe what your data processing
produces.

• Find heavy atom sites
1. Solve the Patterson for the first derivative to give the major site(s) (see

fig. 6.1 andrsps , vecsum);
2. Use direct methods to find sites:SHELX(patsee), multan .

Note however that these methods will not in general be able todecide the enan-
tiomorph of the heavy atom site. Also, you must check that allcoordinates refer
to the same origin.

• Refinement and phasing:
1. Heavy atom refinement and phasing:mlphare (Maximum Likelihood

Phasing and Refinement) has several options for this.
2. Heavy atom refinement:vecref . This vector space refinement may be

better thanmlphare ’s reciprocal space refinement.
• Difference Fouriers to find new heavy atom sites in first and other derivatives:

fft −→ peakmax −→ npo

with fft calculating difference maps.
• Back to calculate and check Pattersons for other derivatives. (It is advisable to

do the same procedurestartingwith a different derivative to check for errors or
bias; do try to start on the same origin.)

6.2 Combination of partial structure and isomorphous phase information

Nat-MIR.map Preliminary refinement

(SFALL/PROTIN/PROLSQ

XPLOR

TNT)

SFALL

calculate Fc alpha-c

SIGMAA

build model

FFT

new map

Lattman phase

probabilities

with Hendrickson-

combine alpha-c’s

calculated

MLPHARE
using

MIR-phases obtained using

MLPHARE

O

Figure 6.2: Combination of partial structure and isomorphous phase information

6.3 Background
The basic technique of solving the phase problem in protein crystallography isisomor-
phous replacement. Molecular replacement is usually limited to particular cases where
a homologous structure is already known. The size of the problem and the intrinsic
limitation in resolution make the use of direct methods almost impossible.

Two crystals are said to beisomorphousif they have essentially the same structure
but are composed of chemically different atoms. In protein crystallography what is
called ‘isomorphous replacement’ should properly be named‘isomorphous addition’,
since it is usually the binding of a heavy atom in a position previously occupied by
disordered solvent. The electron density of the isomorphous derivative should differ
from the electron density of the native crystal just for the peaks due to one or a few
specifically-bound heavy atoms; the unit cell dimensions and the protein molecule must
be essentially the same in both.

How heavy should the heavy atom be to cause useful changes in the diffraction
pattern? Perutz (Greenet al., 1954) first pointed out that, although one might doubt
that the presence of a couple of Hg atoms would produce significant intensity changes
in the diffraction pattern generated by 5000 C, N and O atoms,many of the scatter-
ing contributions of the light atoms cancel out by interference, while 80 Hg electrons
scatter in phase.

The CCP4 manual

6.4 Determination of heavy atom positions 31

In a more rigorous treatment Crick and Magdoff (1956) compared the average
change in intensity produced by adding extra atoms to the crystal with the average
change in intensity produced by small shifts of the protein molecules and slight changes
in the unit cell dimension. They showed that the r.m.s. fractional change in intensityI
produced by the stoichiometric binding ofNH heavy atoms of scattering powerfH to a
protein ofNP atoms having a mean scattering powerfP is

〈∆I2〉
1/2/

〈I〉 ≃ (NH/NP)
1/2(fH/ fP). (6.1)

This analysis is useful not only to give a clue about the size of the heavy atom
required, but also to check how flexible the definition of isomorphism should be. Their
conclusion was that small shifts either of the molecule or ofthe cell dimensions may
produce changes in the intensity sufficient to interfere seriously with the changes due
to the heavy atoms at high values of 1/d. They also proposed some methods to identify
lack of isomorphism. One could examine the variation of〈∆I2〉

/

〈I〉, or alternatively of
|FPH−FP|

/

FP, with resolution: if the ratio increases at high 1/d some movements of
the protein have taken place.

The ‘Normal’ analysis (Smith & Howell, 1992) is a good methodof assessing a
derivativeif the standard deviations are reasonable. They suggest looking at the distri-
bution of isomorphous differences against standard deviations for all the observations.
The central limit theorem predicts that if theFph measurements are essentially the same
as theFp measurements 66% of the differences should lie within one standard deviation
of the mean. If this is not so, it is possible that there is a real difference between the
two sets of data.

Serious problems in the search for heavy atom derivatives can arise in the case of
crystals with very large asymmetric units. From Crick and Magdoff’s analysis it is clear
that, in order to have a detectable difference in intensity,whenNP increases eitherNH

or fH must increase. ObviouslyfH is limited by the number of electrons of the heavier
stable atoms available. It is possible to label the protein at many sites by standard heavy
atom compounds, but derivatives containing single atoms atmultiple sites are usually
difficult to solve and the risk of obtaining non-isomorphouscrystals is increased. What
is needed is the scattering power of multiple substitutionsconcentrated at one or a few
sites; this can be achieved by the use of clusters. In fact, for a derivative with one heavy

metal atNH sites〈∆I2〉
1/2/

〈I〉 ≃ (NH/NP)
1/2 fH/ fP, while for a complex ofNH atoms

in a single site〈∆I2〉
1/2/

〈I〉 ≃ (1/NP)
1/2NH fH/ fP. The advantage of using groups

in contrast to conventional compounds becomes especially evident when the sites of
substitutions are to be located in a difference Patterson.

More information on isomorphous replacement can be found inthe Study Weekend
proceedings (Wolfet al., 1991) and Blundell and Johnson (1976). Useful references to
the development of the method are: Greenet al. (1954), Harker (1956), Perutz (1956),
Crick and Magdoff (1956), Blow (1958), Kendrewet al. (1958) and Blow and Crick
(1959).

6.4 Determination of heavy atom positions
In order to use the isomorphous replacement method, the amplitude and phase of the
heavy atom contribution to the structure factor of the derivative has to be determined.
This means that the sites of substitution must be worked out from the observed dif-
ferences in scattering amplitudes caused by the introduction of the heavy atoms. The
techniques used to do this are:

• Patterson searches of different kinds;

• direct methods;

• difference Fouriers.

These have to work with some estimate ofFH obtained only from the observed differ-
ences.

The CCP4 manual

32 Isomorphous Replacement

6.4.1 Scaling between native and derivative data
The first step is to scale the native and derivative data sets together. In comparing
different sets of data the normal procedure is to use a Wilsonplot to put both of them
onto the same absolute scale but this is never very reliable with data to a resolution
below 2.5Å. A sort of relative Wilson plot, comparing〈F2

P〉 and〈F2
PH〉, can also be

used (Dodson, 1976). This will not be accurate since no allowance can be made for the
additional contribution from∑ f 2

H, and this quantity depends on the degree of heavy
atom substitution, which is difficult to estimate at the beginning. However, the various
Patterson functions are not very sensitive to errors in scale of up to 10%, and this
estimate is usually good enough for preliminary calculations.

Kraut suggested a relatively simple way of calculating the derivative scale factor
by equating the Patterson origins:

∑F2
H = ∑(KsFPH)2−∑F2

P (6.2)

whereKs is the scale factor to be estimated (Krautet al., 1962; Tickle, 1991); see also
thefhscal documentation. This method often gives excellent results.

Once the heavy atom positions have been determined the relative scale and tem-
perature factor can be refined along with the other heavy atomparameters (positional
coordinates and occupancies).

6.4.2 Estimation of FH

It is necessary to estimate the amplitude of the heavy atom contributionFH. Once this is
done we can sum the contributions to give a Patterson map where we should see heavy
atom–heavy atom vectors. The structure factors of the native proteinFP, the derivative
FPH and the heavy atom structureFH are related by the vector equation:

FH = FPH−FP. (6.3)

We can only get the magnitudes ofFPH (FPH) and ofFP (FP) from experiment. As the
phase information is unavailable at this stage it is impossible to use the equation above
to calculateFH. Therefore we must estimate it using the procedures defined below.

6.4.2.1 Centric reflexions
For centric reflexionsFPH andFP are collinear. This meansFH must equal either|FPH−
FP| or |FPH+ FP|. In general the contribution of the heavy atom is small with respect
to the structure factor of the protein and the phases ofFPH andFP are very likely to be
the same. ThereforeFH should be equal to|FPH−FP|. In a few cases, usually with very
weak reflexions, the sign ofFPH can be different from the sign ofFP andFH should be
evaluated by|FPH+FP| (crossing-over).

6.4.2.2 Acentric reflexions
For acentric reflexions the phases ofFPH andFP will not, in general, be correlated and
therefore the exact relationship would be given by:

Fiso = |FPH−FP|

=

∣

∣

∣

∣

FH cos(αPH−αH)−2FPsin2 (αP−αPH)

2

∣

∣

∣

∣

(6.4)

and, since usuallyFH is rather small compared toFP andFPH, we can assumeαP≃ αPH

and sin2(αP−αPH) ≃ 0. It follows that

|FPH−FP| ≃ |FH cos(αPH−αH)|. (6.5)

This term is usually adequate for calculating an isomorphous difference Patterson
(see below).

Anomalous scattering data can also be used to estimateFH. The approximate for-
mula is:

∆Fano = |F+
PH−F−

PH|

≃ 2k−1FH sin(αPH−αH) (6.6)

The CCP4 manual

6.4.3 Determination of the heavy atom positions 33

wherek is defined asFH/F ′′
H and can be obtained from the International Tables although

it is more usual to substitute an empirical value derived from the data (see below).
Although both isomorphous and anomalous data are inaccurate, they give comple-

mentary information and used together can give a better estimate forFH. The problem
arises of how isomorphous and anomalous data may be put together to give an accu-
rate estimate ofFH. The simplest way is tosumthe contributions with the appropriate
scaling:

∆F2
iso+(k2/4)∆F2

ano≃ F2
H cos2(αPH−αH)+F2

H sin2(αPH−αH) = F2
H. (6.7)

A more precise equivalent expression can be used tocombinethe isomorphous and
anomalous data (Matthews, 1966; Singh & Ramaseshan, 1966):

F2
H ≃ F2

M +F2
P ±2

[

F2
MF2

P − (k/4)2(∆I)2]1/2
, (6.8)

whereF2
M = 1

2(F+
PH

2
+F−

PH
2
) and∆I = F+

PH
2
−F−

PH
2 and we assume 1/k2 ≪ 1.

As the isomorphous differences are only small, only the solution with the negative
sign is normally considered, yieldingFHLE (Heavy atom Lower Estimate)

F2
HLE = F2

M +F2
P −2

[

F2
MF2

P − (k/4)2(∆I)2]1/2
. (6.9)

k, the ratio of the real and imaginary parts of the heavy atom structure factor can be
approximated from the data (Matthews, 1966):

k = 2|FPH−FP|
/

|F+
PH−F−

PH| = 2∆Fiso
/

∆Fano . (6.10)

The anomalous differences are usually overestimated, and this causes an overesti-
mation ofFHLE for acentric reflexions. French (Dodsonet al., 1975) suggested a for-
mula for the bias forFHKL and proposed the use of(FHKL −bias(FHKL))2 to calculate
Pattersons.

Isomorphous and anomalous data (as well as any prior information) can be com-
bined correctly in a maximum likelihood approach (Bricogne, 1991).mlphare pro-
vides a rough approximation to the correct approach.

6.4.3 Determination of the heavy atom positions
The estimatedFHs are used to find the heavy atom positions. These coordinateswill
then be used to calculate the vectorFH required to find the protein phases.

6.4.3.1 Patterson methods
The most general method that does not require any previous information is the use
of Patterson techniques. An isomorphous difference Patterson synthesis is a Fourier
summation of the terms

|FPH−FP|
2 ≃ |FH cos(αPH−αH)|2. (6.11)

In the case of centric reflexions|FPH−FP| really corresponds toFH and a Patterson
with (FPH−FP)

2 coefficients is a good estimate of aF2
H Patterson; the only noise is due

to the few cases of crossing-over, and to measurement errors. However, erroneously
large differences and the lack of centric data can reduce thequality of the Patterson.

For acentric reflexions, we can use

cosθ2 = (1+2cos(2θ))/2 (6.12)

to show that the summation has two terms:FH
2/2 andFH

2cos2(αPH−αH). The first
term will generate vectors between the heavy atoms at half the ideal height. The second
term will contribute only noise, since there is no connection between theFH and the
phases used.

The fact that for acentric reflexions the magnitude of the differences between native
and derivative amplitudes is not generally equal to the heavy atom structure factors

The CCP4 manual

34 Isomorphous Replacement

does not represent the only cause of noise. Much more serioussources of noise are
measurement and scaling errors, as well as lack of isomorphism. Since the size of the
FH contribution is two or three percent ofFPH andFP, it may be of the same order as
the standard deviation of the observations, and since a Patterson function is dominated
by its largest terms, a few spuriously large differences candisguise the Patterson signal
completely.

An anomalous difference Patterson synthesis is a Fourier summation of the terms

|F+
PH−F−

PH|
2 ≃ 2k−1FH sin(αPH−αH)

2
(6.13)

The formula sinθ2 = (1−2cos(2θ))/2 means the summation of∆F2
anoshould also give

peaks in the Patterson corresponding to vectors between heavy atoms plus noise. There
is no lack of isomorphism in the anomalous difference, but ingeneral theF ′′ signal is
much weaker than theFH signal, so the random errors inherent in the measurements
can swamp it more easily.

Better Patterson maps can sometimes be obtained using estimates ofFH which take
into account both isomorphous and anomalous data i.e. thesummedor combined(FHLE)
Patterson. However if the measurements are reasonably accurate, and the heavy atom
is well substituted, both the isomorphous and anomalous difference Pattersons should
be interpretable.

6.4.3.2 Solving the Patterson

Even an error free Patterson generated from several sites can be hard to interpret, es-
pecially in a high symmetry space group. Automated search procedures for locating
heavy atoms in difference Patterson maps have also been developed (Terwilliger &
Eisenberg, 1987); see alsorsps andvecsum . A systematic search procedure is es-
pecially necessary in the presence of high non-crystallographic symmetry, as in crys-
talline viruses (Rossmannet al., 1986). These automatic procedures can fail when
two vectors that are close overlap to form one big peak. Thus the heavy atom may
be placed incorrectly at a special position. Solution by hand may be the only way of
avoiding this. It is good practice to find consistency between Pattersons, calculated
from different resolution ranges, rather than to rely on just one. Difference Pattersons
can determine whether your solution is correct, see below.

6.4.3.3 Direct methods
The location of a larger number of heavy atoms by difference Patterson becomes in-
creasingly difficult and the use of direct methods can help insolving the problem.

Standard direct method programs (for exampleSHELX86 (Sheldrick, 1991) or
MULTAN(Germainet al., 1970)) can sometimes find heavy atom sites consistent with
the isomorphous or anomalous differences (Mukherjeeet al., 1989).

6.4.3.4 Difference Fouriers
When a previous estimate of the protein phases exist (for example when we are dealing
with thenth derivative, or looking for further sites in the current derivative) a Fourier
synthesis with coefficientsm(FPH−FP)eiαP, wherem is the weight associated with this
phase, is the simplest way to locate the heavy atoms. This method usually works even
when the protein phases are very inaccurate.

The biggest problem with this method is the fact that these Fourier syntheses will
often have ‘ghost’ peaks or halos at or near the heavy atom sites used for phasing.
These can be erroneously interpreted as minor sites. It is sensible to check any sites
against the derivative Pattersons.

6.4.3.5 Choice of origin and hand

Any Patterson function will be equally well satisfied by coordinatesx,y,zor−x,−y,−z.
This is true for direct methods techniques as well. In other words, thehand of the
solution will not be determined. In addition, in many spacegroups there is an arbitrary
origin choice, and it is essential that all derivatives use the same origin and are on the
same hand. The first choice is in fact arbitrary, but once fixed—for example assigning

The CCP4 manual

6.5 Refinement of heavy atom parameters 35

the coordinates to an heavy atom in one isomorph—must be usedconsistently for all
subsequent derivatives. The use of a difference Fourier based on the phases of the
first derivative will give the sites of the subsequent derivatives on the same relative
origin and hand (Matthews, 1966). Various correlation functions working in Patterson
space have also been used. Perutz (1956) proposed two correlation functions, later
improved and modified (Blow, 1958). Rossmann (1961) suggested a method based on
the calculation of difference Pattersons between pairs of derivatives, with coefficients
(FPH1 −FPH2)

2. This synthesis will give positive peaks for vectors between atoms in
the same derivative, and negative peaks for the correlationvector between atoms in
different isomorphs. More elaborate correlation functions have been proposed (Kartha
& Partharasarathy, 1965).

6.5 Refinement of heavy atom parameters
After rough heavy atom parameters have been found they must be refined to their best
values before being used for phase determination. An important aim of the refinement
is to discover all the possible minor sites. The techniques are similar to the ones used
to refine small molecule structures but there are more difficulties due to the fact that,
especially for acentric reflexions, the estimate ofFH can be relatively poor and errors
due to lack of isomorphism and scaling cause the data to be less accurate. Usually,
since the ratio observations/parameters to be refined is high, it is wise to reject any
suspect reflexions, as long as those remaining are uniformlydistributed through sin2 θ.

6.5.1 “Maximum Likelihood Phase” refinement

In ‘Maximum Likelihood phase’ refinement (Otwinowski, 1991) we find a probability
distribution for values of the protein phasesφP and then minimise the weighted differ-
ences between observed and calculated values ofFPH generated with this phase, with
respect to the heavy atom parameters. These are:

• relative scale and temperature factor between protein and derivative data;
• coordinates;
• real and anomalous relative occupancies;
• thermal factors (either isotropic or anisotropic);
• error estimates which are used when finding the appropriate weight for each

observation.

The parameters are updated and another cycle of refinement iscarried out. The function
to be minimised is:

Rj = ∑
φP

∑
h

w(φP)
(

Fobs
PHj

−Fcalc
PHj

(φP)
)2

(6.14)

where j refers to thej th derivative.
This procedure refines scale factors, relative occupanciesand estimated errors for

different derivatives. It is not seriously biased by incorrect models. Since all possible
protein phases are sampled for each reflection, the procedure rapidly eliminates incor-
rect sites. For reflections with well defined phases the weight of the protein phases will
be very small for all values except the best phase. But there are many reflections where
the protein phase is poorly defined and for these reflections the ‘maximum likelihood’
approach avoids the old problem of biasing the results towards phases derived from
incorrect sites.

Note thatmlphare does not implement a correct approach to maximum likeli-
hood estimation, which should involve a ‘straightforward’optimisation of the likeli-
hood function after integrating out the unknown nativeF and phase (Bricogne, 1991;
Read, 1991). This optimisation is carried out at least as a function of the (resolution-
dependent) lack of closure (non-isomorphism) parameters and possibly also as a func-
tion of the heavy atom parameters, although vector space refinement (see below) may
be a better way of determining those if anomalous data are notinvolved.

The CCP4 manual

36 Isomorphous Replacement

This refinement can be quite slow, and if there are sufficient centric data it is sen-
sible to refine against them first. When there are two independent derivatives it is pos-
sible to use the sign of the ‘anomalous occupancy’ to decide the hand of the solution.
If the anomalous occupancies are negative, the heavy atom sites are very likely to lie
at−x,−y,−z. (Another possibility is that you have confused the intensity observations
and indexed the(h,k, l) as(−h,−k,−l).)

The final and essential check is to calculate difference Fouriers (or “residual maps”)
with coefficients

∑
h

(∆Fiso−Fcalc
H)eiαH (6.15)

These may show some peaks corresponding to new heavy atom sites.

6.5.2 Vector space refinement
Vector space refinement as implemented invecref has advantages over the reciprocal
space treatment inmlphare . It is not known to have been tried with anomalous (MAD)
data but should work. See (Tickle, 1991).

6.5.3 “ FH” refinement
In this scheme the function to be minimised is a difference between the “observed”
and calculatedFH. It was first proposed (Rossmann, 1960) as a procedure to refine
heavy atoms parameters for two derivatives. A modified version ofFHLE refinement has
been proposed (Terwilliger & Eisenberg, 1983). This was implemented in the program
heavy but has been superseded by the maximum likelihood techniqueof mlphare .

6.6 Phase determination
6.6.1 Isomorphous replacement data

From the vector triangleFPH = FP+FH, knowledge of the amplitudesFPH, FP, FH, the
phaseαH and using the cosine law,αP can be derived:

αP = αH +cos−1((F2
PH−F2

P −F2
H)

/

2FPFH)

= αH ±φ (6.16)

To obtain an unambiguous estimate ofαP we need to repeat the phase determination
using another vectorFH2, not collinear with the first one, since the two solutions are
symmetric with respect toαH; this can be done by using another derivative with heavy
atoms substituted at different sites.

Harker (1956) gave an elegant geometrical solution to the problem of phase deter-
mination: he showed that if a phase circle of radiusFP is drawn from the origin of the
Argand plane, and another circle of radiusFPH1 is drawn from the end of the vector
−FH1, their points of intersection will give the two solutions for αP. With a second
derivative we obtain a circle with radius FPH2 and origin at−FH2, that should intersect
theFP circle at one of the two previous values, giving a unique solution for αP.

In practice, however, experimental errors, approximations in determiningFH and
lack of isomorphism affect the precision of this graphical construction and usually we
need more than two derivatives to obtain satisfactory protein phases—MIR or Multiple
Isomorphous Replacement.

6.6.2 Anomalous scattering data
In phase determination using anomalous data, the out-of-phase componentF′′

H acts
in the same way as the entire vectorFH in the isomorphous method; we can obtain
F+

PH from F−
PH+2F′′

H in the same way asFPH from FP+FH. SinceF′′
H andF′

H are
in general perpendicular one each other, they give complementary information and, in
the absence of errors, one could get a unique solution for thephaseαP by combining
isomorphous and anomalous data. Although this phase solution is unique, it is es-
sential that phases are generated from both possible heavy atom solutions(x,y,z) and
(−x,−y,−z). Each solution will give the same phasing statistics, one will be approxi-
mately correct, and the other wrong. The solutions obtainedby combining the Single

The CCP4 manual

6.6.3 Multi-wavelength Anomalous scattering Data 37

Isomorphous Replacement and Anomalous Scattering data using a single derivative are
referred to asSIRAS phases. Phasing bySIRAS benefits from the use of synchrotron
radiation, where it is possible to select the wavelength to optimise the anomalous con-
tribution. It is possible to obtain the hand of the heavy atoms from one anomalous
derivative at one wavelength, (Woolfon & Yao, 1994)

6.6.3 Multi-wavelength Anomalous scattering Data
The values off ′ and f ′′ are wavelength dependent. Thus if data are collected at sev-
eral wavelengths, there will be small ‘isomorphous’ changes between theFhkls, and the
anomalous differences will also have different magnitudes. The advantage of this is
that only one derivative needs to used and the data sets are all isomorphous, if they are
from the same crystal. The disadvantages are that one needs atunable X-ray source
and the experiments are more complex. The increased complexity is due to the fact
that the effective signals are even smaller than normally present in MIR or SIRAS. The
signal and thus the wavelengths need to be optimised. This isachieved by using wave-
lengths around an absorption edge for the heavy atom in question. See Hendrickson
(1991) for more details on experimental procedures. These differences can be used to
determine the protein phase, either usingmadsys or by maximum likelihood phasing
(mlphare); the latter is probably the method of choice.

Although there is no ‘native’ in a MAD experiment,mlphare requires an effective
native to be defined. This can lead to negative occupancies. To avoid this, use the data
set with the largest negative value forf ′ as the ‘native’. Negative occupancies are
not necessarily incorrect and do not affect the phasing. It just means that the average
scattering power of the ‘derivative’ is less than that of the‘native’.

6.6.4 Density modification
Isomorphous phases are usually improved by use of a density modification procedure
(§8) before the initial map is calculated.

6.6.5 Treatment of errors
[Errors are now refined as part of the Maximum Likelihood refinement and phasing
procedure.]

Up to now we have assumed that the analysis is free of errors. In practice, however,
there are errors that can be thought of as deriving from two different sources:

• Errors in measuring intensities of reflexions will produce errors (δ) in the ampli-
tudesFP andFPH;

• Errors in locating and describing the scattering of the heavy atoms as well as
lack of isomorphism will introduce errors (ε) in FH.

The result is that the two derivative circles will not intersect the native one at precisely
the same point. The total errorE, is a measure of the discrepancies between theory and
experiment:

〈E〉2 = 〈δ〉2 + 〈ε〉2, (6.17)

where〈δ〉 can be estimated by comparing symmetry equivalent reflexions from the
same crystal or the same reflexions from different crystals.The estimation of〈E〉 can
be made for centric reflexions from the difference betweenFPH−FP andFH: in acentric
cases this is not possible becauseFPH−FP is not a correct estimate ofFH. The error
estimate is refined during the maximum likelihood phase refinement.

The influence of such errors was originally discussed by Blowand Crick (1959).
See also Blow and Rossmann (1961), Bricogne (1991), Otwinowski (1991) and Read
(1991).

One hopes that the use of more than one derivative will solve the phase ambiguity;
unfortunately it happens that in many cases there is a strongtendency for the probabil-
ity distribution of the phases to be bimodal and a strategy for making the “best” choice
needs to be developed. In fact, the obvious choice of taking the maximum of the prob-
ability distribution can lead to big errors where other choices have a certain probability
of being correct. We need a compromise between these different choices, in such a
way as to minimise the mean squared error in the electron density. This “best” Fourier

The CCP4 manual

38 Isomorphous Replacement

is calculated with phases corresponding to the centroid of the distribution weighted by
thefigure of merit, m, which is a measure of the reliability of the phase determination.
If the probability is sharp and unimodalm will be close to 1, but if the probability is
almost uniformly distributed along the circle,m will be very small.

Therefore, the best Fourier has coefficients

mFPeiαbest. (6.18)

It can be shown (Dickersonet al., 1961) thatm is related to the mean value of the cosine
of the error in the phase angle for the reflexion:

m= 〈cos∆αi〉 (6.19)

(for examplem= 0.866 corresponds to an expected error of 30◦ in αP).
The maximum likelihood approach of assigning each possiblephase a likelihood

and combining these means that weights are more realistic (i.e., lower) and phases
more accurate since spurious sites are lost more completely.

An alternative procedure avoiding the limiting assumptionthat all the errors lie in
the determination ofFPH has been proposed (Culliset al., 1961).

6.6.6 Hendrickson–Lattman coefficients
The formulation of the phase probability function given by Blow and Crick has the
disadvantage that for every reflexion a summation must be carried out over all the
derivatives. This means that every time new derivatives (orphase information from
other sources) are available, everything has to be re-calculated. A variation of the Blow
and Crick method (Hendrickson & Lattman, 1970) represents the phase probability for
each derivative by the equation:

Pi(α) = ek+Acosα+Bsinα+Ccos2α+Dsin2α. (6.20)

Calculating the probability function using various information is simply a matter of
summing the corresponding coefficients.

6.6.7 Single Isomorphous Replacement
The phase ambiguity can be removed by another isomorphous compound, but the need
for two or more derivatives has often created difficulties, since their preparation is one
of the most time-consuming steps in protein crystallography. Therefore it is of interest
to minimise the number of isomorphous crystals which are needed. In some cases just
one derivative can be enough.

The best results can be obtained if data from anomalous scattering are available
but there are limitations due to the fact that anomalous differences are small and would
require the diffraction data to be measured with a degree of accuracy that is often unob-
tainable;SIRAS phases are normally considered the first step in anMIR determination,
instead of the final result.

A different approach that utilises a procedure known as noise filtering has been
proposed by Wang (see§8). Analogous procedures which make use of different phys-
ical constraints have been used to improve the electron density maps; they have been
reviewed (Podjarnyet al., 1987). However, all these approaches are more useful for
‘cleaning’ a badMIR map than actually solving phase ambiguities inSIR phases.

There are a number of techniques used to break the phase ambiguity of one-wavelength
anomalous scatterering with some success (Ralph & Woolfson, 1991; Fanet al., 1990;
Hao & Woolfson, 1989).

The CCP4 manual

Chapter 7. Molecular Replacement

“He must have imitated someone else’s hand,” said the King. (The jury all brightened
up again.)

— Alice’s Adventures in Wonderland

7.1 Molecular replacement: steps and programs

1) Detection of non-crystallographic symmetry using Crowther’s FFT rotation function.

 (self-rotation function):

Native-Fs.mtz AMORE Run trials with

integration sphere

and resolution limits

location of.

non-crystallographic

symmetry axes

2) Crowther’s cross rotation function:

Model.brk

co-ordinates of

model structure

TFFC

ECALCNative-Fs.mtz

AMORE (α,β,γ) rotation angles

also for all symmetry

equivalents

3) Translation function:

Model.brk

Model.brk

co-ordinates of

model structure

Rotated using

rotation matrix

from 2).

ECALCNative-Fs.mtz

AMORE (α,β,γ) rotation angles

(x,y,z) translation vector

different ranges of
POLARRFN

Figure 7.1: Molecular Replacement

The main steps in obtaining initial phases by Molecular Replacement are shown in
fig. 7.1. The principal program isamore (Navaza, 1994) which is a state-of-the-art
molecular replacement program incorporating the rotationand translation steps plus
rigid body fitting within one program1.

7.1.1 Detection of non-crystallographic symmetry using se lf rotation function
amore or polarrfn yields the rotation function from nativeFs. Run trials with dif-
ferent ranges of the integration sphere and resolution limits to locate non-crystallographic
symmetry axes. (amore ’s rotation function is superior toalmn ’s (Navaza, 1993;
Driessen & Tickle, 1994).)

7.1.2 Cross rotation function
pdbset finds the dimensions of a model molecule from the inputPDB file.
sfall calculates structure factors in a P1 cell for the model if necessary (not neces-

sarily for amore); ecalc may be used to produce normalised structure factors
(Es), which may give better results (also for the translation function).

1In the CCP4 implementation—this has diverged from Navaza’s.

The CCP4 manual 39

40 Molecular Replacement

amore uses the the externally- or internally-calculatedFs (or, preferably,Es calcu-
lated externally) and selected radii and resolution rangesto evaluate the rotation
function. This is described by the Eulerian angles(α,β,γ); all symmetry equiv-
alents are listed. NB. the rotation function inalmn is inferior to that inamore .

amore, CNS, MERLOT calculate the cross rotation function.

7.1.3 Translation function
pdbset rotates the coordinates of the model structure and outputs anew set of coor-

dinates.
sfall takes the resulting coordinates and calculates structure factors for this model

in the new cell without applying the symmetry operators.
cad collectsFobss andFcs for all symmetry equivalents.
tffc calculates translation function Fourier coefficients. A phased translation func-

tion may also be calculated usingfft . rsearch may also be used in particular
cases where you know the solution must be somewhere special but this method
is computationally inferior.

fft then calculates the map.
amore’s translation function may be run for many possible RF solutions at once, but

is somewhat inferior totffc s at present.
mapsig prints TF map statistics.

7.1.4 Checking the results
distang checks for bad symmetry contacts. There are various other programs for

checking packing, including ones frommerlot andpacman from Uppsala.
graphics
rigid body refinement e.g.,amore (Castellanoet al., n.d.),CNS

7.2 Introduction
It is often possible to determine the structure of a moleculeusing a similar or homolo-
gous structure that is already known. One such case may be when we try to determine
the crystal structure of a known molecule which has crystallised in a different space
group. Another area in whichmolecular replacement(MR) is particularly useful is
site-directed mutagenesis where large numbers of mutants are produced and studied.
Even a minor change in sequence may change the way a protein crystallises. The most
economical way to solve such structures is usuallyMR. Another of its uses involves
different proteins belonging to the same structural family. As the number of known
structures increases it is becoming apparent that the number of distinct protein folds
is limited and that even functionally unrelated proteins may share a common fold. It
is therefore increasingly likely that a new protein has a structure related to one that is
already known.MR then becomes a possible way of solving it. Thus, although it is
already an important technique,MR is bound to be used to an even larger extent in the
future.

In MR a preliminary model of the crystal structure is obtained by first orienting
(rotating) and then positioning (translating) the model molecule in the crystal lattice.
Having found the correct orientation and position we can calculate phases from the
model and combine them with the observed structure factor amplitudes. The structure
factors thus obtained, and the corresponding electron density map, contain a strong bias
towards the starting model but they are usually sufficientlyclose to the correct values
for a successful refinement.

More information onMR may be found in the Study Weekend proceedings (Machin,
1985; Dodsonet al., 1992).

7.3 The rotation function
The rotation function is used to find the correct orientationof the model in the crystal
lattice. This may be achieved by testing the agreement between the Patterson functions
calculated from the model and from the data at various relative orientations. The con-
cept is simple: the rotation function can be thought of as a convolution in a rotational

The CCP4 manual

7.3.1 Model 41

space. At the relative orientation that superposes the model onto the crystal, the product
of the two Patterson functions—which are maps of interatomic vectors—should have
a large value. The function was originally formulated as

R(C) =

Z

U
P1(x)P2(x′)dV, (7.1)

whereP1 andP2 are the two Patterson functions,C is a matrix defining a rotation ofx
with respect tox′, andU is the volume of integration. For mathematical convenience
this can be reformulated as an integral over all space:

R(C) =

Z

all space
P1(x)U(x)P2(Cx)dV, (7.2)

whereU(x) is defined equal to one inside the sphere of integration and zero elsewhere.
In reciprocal space this becomes

R(C) = ∑
h

Iobs(h)FM2(Ch)), (7.3)

where theIobs(h) are the observed intensities andFM2(Ch), the Fourier transform of
U(x)P2(Cx), is a continuous function defined over all reciprocal space.This formula-
tion, first used by Lattman (1970), is conceptually clear andflexible in application but
unfortunately slow to compute.

The usual way to compute the rotation function is by the fast Fourier method
(Crowther, 1972). It uses the idea that, since we are rotating spherical volumes, it
should be more appropriate to expand the Patterson density in a sphere in terms of
Bessel spherical harmonics.

The following are some guidelines and practical points to consider when calculat-
ing and interpreting the rotation function.

7.3.1 Model
Firstly one should try to use the best search model available. Refined coordinates
should be used whenever possible. The importance of this maynot seem obvious
especially as the data we use in the calculations do not usually extend beyond 3.0–3.5̊A.
In practice, however, the difference may be between a clear solution and no solution
at all. In general one should also remove from the model any atoms that are known to
differ from the target structure. For example, side chains that are known from sequence
alignment to be different should be trimmed down to alanine.Similarly, differences in
the loop regions—the insertions in particular—should be removed.

On the other hand one should not remove too much of the model and should bear
in mind that structure is generally conserved better than sequence and that two cor-
responding pieces of chain in related proteins may differ chemically but still have a
similar fold. Including many wrong atoms in the model increases the overall noise
level, whereas removing too many correct atoms reduces the signal we are looking for.
Here one tries to balance having a complete model and having awrong one. If several
related structures are known one could try to construct the ‘best’ model by assembling
from previously superposed models the pieces that are most homologous to our protein.

It is sensible to try several models if they are available. Interpretation is easier if
they are all oriented in the same way to begin with.

7.3.2 Resolution limits
Next we consider how best to maximise the signal we want to extract from the cal-
culation. First of all, what resolution limits are most useful? For a case of identical
structures we would use the data to the highest available resolution. In practice the
model is not identical with the expected structure and a resolution limit of at least two
or three times the expected mean coordinate difference should be used. Low resolution
terms should be omitted as they contain information mostly about solvent rather than
protein. This means that the terms lower then 10Å should be omitted.

The CCP4 manual

42 Molecular Replacement

7.3.3 Patterson integration radius

As we have previously said, the Patterson function is a collection of interatomic vec-
tors; some will be vectors between atoms within the same molecule i.e.,self vectors,
and some will be vectors between neighbouring molecules i.e., cross vectors. In the
rotation function we try to include the self vectors and to eliminate the cross vectors as
much as possible.

We start by placing the model molecule in a large cell with no symmetry (space
group P1). If the smallest intermolecular distance is larger than the largest dimension of
the molecule, all the cross vectors are eliminated as the limit of the Patterson synthesis
does not normally exceed the dimension of the molecule.

For data it is impossible to eliminate all the cross vectors as the molecules in a real
crystal lattice are closely packed, but the optimal radius of summation can be estimated.
This depends a lot on the shape of the molecule. For a spherical molecule the optimal
radius of summation would be the diameter of the molecule, asit would contain all
the self vectors. For a very elongated molecule the choice isdifficult. The longest self
vector will be equal to the length of the molecule but at that radius there will also be
many cross vectors. In such a case one would have to test various shorter radii, but in
general there seems to be little point in including less than(say) half the self vectors.
On the other hand some cross vectors in the summation should not be fatal. David
Blow points out that fortunately most proteins have an approximately spherical shape
and a of search radius of 75–80% of the molecular diameter includes∼90% of the self
vectors. Ian Tickle recommends using 75% of theminimumdiameter of the molecule
(the shortest edge of the minimal box into which it fits). Jorge Navaza has suggested
using a radius equal to the maximum distance of atoms from themolecule’s centre of
mass, limited by the smallest dimension of the minimal box and such that the volume
of the integration sphere doesn’t exceed the volume of the box.

7.3.4 Model unit cell size

The choice of dimensions of the P1 unit cell for the model is straightforward. It must
be at least the size of the molecule’s minimal box plus the integration radius in each
direction. Navaza suggests the ‘at least’ should involve adding the resolution to this
sum.

7.3.5 Omitting weak terms

The rotation function is approximately proportional to|F |4 so that it will be dominated
by the largest terms. The small terms can usually be omitted from the calculations if
computing speed is a problem. Fortunately, these days and with this type of problem,
computing time is not usually a serious limitation. In general, if there are no compelling
reasons, data should not be omitted.

7.3.6 Normalising

Normalisinginvolves dividing data into resolution shells of constant volume and scal-
ing the data so that the mean intensity does not decrease withresolution. (This is like
calculating theE values used in direct methods). The scaling is usually done by apply-
ing an exponential ‘temperature’ factor to the structure factors. The normalised data are
what we would get if atoms were like geometric points rather than spheres of electron
density. Normalising increases the contrast of the Patterson map and the peaks should
be better resolved.

If we decide to leave weak terms out of the calculation it is important that we do
it after normalising. Thus we ensure that the reciprocal space is sampled evenly and
not dominated by a few large, low resolution terms. Normalising can introduce series
termination ripples in the Patterson but this has not been found to be a serious prob-
lem. The procedure can be recommended generally for both rotation and translation
searches. A Bayesian justification is given by Bricogne in (Dodsonet al., 1992).

N.B. Normalising is related to but distinct fromsharpeningwhere high resolution
intensities are scaled up by applying an exponentialB factor.

The CCP4 manual

7.3.7 Origin Removal 43

7.3.7 Origin Removal
Patterson maps always have a strong origin peak. It arises from the null vectors i.e.,
from an atom to itself. Normally the origin peaks just add a constant term to a rotation
function. There is, however, one case where the origin peak can cause problems. If the
integration radius is close to one of the cell dimensions then the integration in Patterson
space could include an origin peak one lattice translation from the origin, introducing
large and meaningless artifacts into the rotation function.

The best way to avoid the problem is to keep the radius of integration smaller than
the smallest cell dimension minus twice the resolution limit (i.e., the diameter of the
origin peak). Alternatively we can subtract the origin peak. This can be done by
dividing the data into resolution shells and subtracting from each shell its average. In
fact this can conveniently be combined with the normalisation, because by definition
the averageE2 is 1, so all one has to do to get an origin-subtracted normalised Patterson
is to useE2−1 instead of justE2.

7.3.8 Non-crystallographic symmetry
In MR it is usually helpful to have non-crystallographic symmetry. Firstly, knowing the
local symmetry can help us pick the correct solution of the cross rotation function.

7.3.8.1 Native Patterson
In general the effect of a non-crystallographic rotation axis is to produce a pseudo-
Harker plane through the origin and perpendicular to the local symmetry axis. The
Harker plane transforms in the reciprocal space to produce amore easily interpretable
peak in the rotation function in the direction of the rotation axis. In some cases, how-
ever, it is instructive to examine the native Patterson separately. In particular, when the
local and crystallographic axes have the same order (e.g., both are two-fold) and are
parallel, the combination of the two symmetry elements results in pure translation.

The Harker plane should have an identifiable peak where the intermolecular vectors
coincide, and the position of this peak indicates the position of the molecular axis
relative to the crystal axis. If the two axes are not exactly parallel the vectors do not
coincide and the peaks become smeared out.

7.3.8.2 Self rotation function
Often there is more than one molecule (subunit) in the asymmetric unit. A self rotation
function i.e., a rotation function where the native Patterson is compared with itself,
can be calculated in such cases to find the transformation that superposes the different
molecules. It is often difficult to decide whether a given peak is significant. The self
rotation function has a massive origin peak, correspondingto zero rotation, and all
the other peaks are relatively small. It is helpful to calculate the mean and standard
deviation for all the values after the origin peak has been removed. We can take as a
rule of thumb that if a peak exceeds five standard deviations it is significant. If it is
weaker it may still be significant but it must be treated with skepticism.

The crucial test for the correctness of a solution is that it must be consistent with
the cross rotation function. In addition, if we are dealing with a symmetric molecule
i.e., a dimer or tetramer, the solution should correspond tothe appropriate point group
symmetry. A stereographic projection of, e.g. aκ = 180◦ (in polar convention) section
of the rotation function can be plotted. It should contain all the peaks corresponding to
two-fold axes. If, for example, we have a tetramer in the asymmetric unit (point group
222) the 180◦ section should contain a set of three orthogonal peaks 90◦ apart.

7.3.8.3 Concluding remarks
In a typical case several calculations of the rotation function are needed at various
resolution limits and integration radii to find the correct solution. The correct solution
does not always correspond to the highest peak in the rotation function but it should be
the most persistent feature as the different parameters arevaried.

It is worth trying to solve the rotation problem as accurately as possible as all the
methods for finding the translational parameters are quite sensitive to mis-orientation
errors.

The CCP4 manual

44 Molecular Replacement

7.4 The translation search
Having found the orientation of the molecule(s) in the asymmetric unit we now have
to determine the translational parameters needed to position the molecule correctly
relative to the symmetry axes. We might expect this to be easier than solving the
rotation problem since the methods we use for this task involve correlating the complete
set of structure factors or Patterson functions. In some cases, however, it turns out to
be the more difficult part of the problem. The most likely reason for this is the errors
introduced by the inaccurate orientation of the model. To get the translation search
working well it is important that the rotational parametersare optimised. It is worth
running translation searches for slightly different rotations.

The two main approaches to solving the translation problem i.e., theR factor search
and translation functions are described next.

7.4.1 R factor search
This is the conceptually simplest used method for determining the translational pa-
rameters. It involves testing the agreement between the data and the structure factors
calculated from a model placed at various positions in the unit cell. It is apparent that
this is a computationally large task. It would seem that the calculation should involve
looping over all atoms, for each calculated structure factor, for each position in the unit
cell. The problem however is not quite so bad and we shall now see that there are some
simplifying features.

Starting with model coordinates of the molecule in the correct orientation but in
an arbitrary position, we can calculate the structure factors in a P1 cell with the same
dimensions as in the crystal as

Fc(h) =
n

∑
i

fi e
2πh.xi , (7.4)

where thexi are the coordinates of theith atom, fi is the atomic scattering factor andh
is the reciprocal lattice vector. The position of theith atom with respect to the crystallo-
graphic origin will bexi +p, wherep is the translation vector we want to determine. For
mmolecules in the unit cell there will also be atoms atRj(xi +p)+ t j with 1≤ m≤ j,
whereRj is the rotation matrix andt j the translation vector for the appropriate symme-
try operation. The structure factor equation now becomes:

Fc(h) =
m

∑
j

n

∑
i

f j e
2πih.[Rj (xi+p)+t j]

=
m

∑
j

Fj(h)e2πih.(Rj p), (7.5)

whereF(h) = ∑n
i f je2πih.(Rj xi+t j). TheFj(h)s—which are independent ofp—need only

be calculated once, and theR factor for eachp can be calculated without having to loop
over all atoms for each value ofh.

In general theR factor varies only slightly as the model is moved throughoutthe
asymmetric unit, so a sudden drop of a few percent is likely tobe significant. Difficul-
ties may arise mainly from two factors:

• TheR factor is quite sensitive to misorientation of the model; a misorientation
of a few degrees may be disastrous. If no clear solution is obtained initially, it
may be worthwhile, though tedious, to repeat the calculation with the orientation
slightly altered.

• The second point to remember is that theR factor varies steeply with the position
of the model and if the function is not sampled on a sufficiently fine grid the
solution may easily be missed altogether. If possible the grid points should be
spaced no less than 1Å apart.

Despite all the tricks to speed things up, theR factor search is still slower that the
Translation Function. For example in aP6522 problem, the Translation Function took

The CCP4 manual

7.4.2 Translation functions 45

4.3 minutes on a microVax 3, on a 1Å grid2. TheR factor search for the same problem
but using a coarser grid (2̊A) took 34 hoursCPU time! On a 1Å grid it would have
taken 275 hours! Clearly in such a case the method of choice should be the Translation
Function.

7.4.2 Translation functions
The translation function is conceptually related to the rotation function. Here we in-
vestigate the correlation between the observed intensities and the cross-vectors between
the symmetry related molecules of the model as it is moved about the unit cell. When
the model is positioned correctly the function should have peaks at values correspond-
ing to the translation vectors between the symmetry relatedmolecules. There are sev-
eral forms of the translation function to choose from but theT2 function is normally
used. A brief description of the main options follows. A moredetailed description of
the various translation functions is given in (Tickle, 1985; Tickle, 1992).

7.4.2.1 The T function

TheT function was first proposed by Crowther and Blow (1967). It isderived from the
general form of the translation function

T(t) = ∑
h

Iobs(h)F2
c (h, t), (7.6)

whereF2
c (h) is the calculated intensity andt is a vector defining the position of the

test molecule. The calculated intensity can be expressed interms of the molecular
transforms of the individual symmetry-related molecules.

Thus for a simple example of two molecules in the unit cell related by a two-fold
axis we get

F2
c (h) = Fc(h)F∗

c (h) = (FM1 +FM2)(F
∗
M1 +F∗

M2) (7.7)

whereFM1 and FM2 are the molecular transforms of the two molecules sampled at
pointh in reciprocal space, and * denotes complex conjugation. Fora model molecule
shifted byx from an original position only the phase of its molecular transform changes
andFM becomesFMe2πih.t . The calculated intensities can now be expressed as follows

F2
c (h) =

(

FM1(h)e2πih.ti +FM2(h)e2πih.t2
)

×
(

F∗
M1(h)e−2πih.ti +F∗

M2(h)e−2πih.t2
)

. (7.8)

We should keep in mind that the two molecular transforms and their putative posi-
tions t1 andt2 are related by symmetry. We can now substitute the above expression
into the translation function:

T(t) = ∑
h

Iobs(h)
[

F2
M1 +F2

M2 +FM1F∗
M2e2πih.t +F∗

M1FM2 e−2πih.t], (7.9)

wheret now equalst1− t2.
We are only interested in terms determining the cross vectors i.e., dependent on the

relative positions of molecules, so we can omit the first twoF terms which represent
the self vectors for the two molecules. For simplicity one ofthe cross terms is also
omitted. The result is known as theT function.

T(t) = ∑
h

Iobs(h)FM1F∗
M2e−2πih.t . (7.10)

7.4.2.2 Removing the self-vectors: the T1 function

In an attempt to improve the signal-to-noise ratio we may tryto subtract the coefficients
for the self vectors from the the observed intensities

Icross= Iobs−k
(

F2
M1−F2

M2

)

. (7.11)

2The time was mainly spent in theFFT.

The CCP4 manual

46 Molecular Replacement

This rests on the approximation that the search model and thestructure have the same
self vector set. It should be pointed out that correct scaling is critical for the self-vector
subtraction to work.

The complete formula for theT1 function as it is usually defined can now be writ-
ten:

T1(t) = ∑
h

Icross(h)FM1F∗
M2e−2πih.t , (7.12)

where
Icross(h) are the observed intensities with the the self vectors subtracted;
FM1 is the Fourier transform of one of the molecules in the crystal;
F∗

M2 is the complex conjugate Fourier transform of a second molecule;
h is the reciprocal vectorhkl;
t is the translation vector between moleculeM1 and moleculeM2.

The functionT1, defined in this way, is an ordinary Fourier summation and can be
evaluated by a fast Fourier algorithm.

7.4.2.3 T2 function
Whereas theT1 function has to be calculated for every pair of symmetry related
molecules theT2 function combines all the symmetry. It has the form

T2(t) = ∑
h

Icross(h)×2∑
i

∑
j<i

FMiF
∗
M j e

−2πih.t . (7.13)

TheT2 function applies phase shifts so that all the peaks pile up at the same place,
defined by a single translation vectort for the reference molecule, so the signal/noise
is much better than for a singleT1 function. This is implemented bytffc .

7.4.2.4 The TO/O function
This is an attempt to generalise the translation search by combining a 3-dimensional
translation function with a packing function (Haradaet al., 1981). This is implemented
by tffc . Some of the published results are impressive.

The function has the form

TH(x) = TO(x)/O(x) (7.14)

whereTO(x) is like the translation functionT (§7.4.2.1) with a normalisation factor,
and has the form

TO(x) =
∑h Iobs(h) Ic(x,h)

∑h I2
obs(h)

. (7.15)

O(x) is a packing function that measures the interpenetration ofthe molecules:

O(x) =
∑h Ic(h,x)

N∑h FM(h)
. (7.16)

The CCP4 manual

Chapter 8. Phase Improvement by Density Modification: Solve nt
Flattening and Molecular Averaging etc.

You boil it in sawdust, you salt it in glue;
You condense it with locusts and tape,

Still keeping one principal object in view —
To preserve its symmetrical shape.

— The Hunting of the Snark

8.1 Density Modification
8.1.1 The Problem

Approximate electron density maps phased by such methods asMIR or anomalous
scattering may or may not be enough to deduce the structure ofthe molecule. Exami-
nation shows that they fall into two groups:

1. Those maps in which there are visible structural features, and which it is possible
at least to attempt an interpretation. Once a significant portion of the map has
been interpreted it is often possible to use this information to improve the rest of
the map.

2. Those maps which do not appear to contain structural motifs, from which it is
not possible to attempt an interpretation.

The distinction may seen obvious, but in fact we could imagine a third case: when
a map is not good enough to show the correct structure, then itcould clearly show an
incorrect structure. The fact that an experienced worker can distinguish an interpretable
map from an uninterpretable map suggests that it may be possible in some manner to
quantify the property of map quality. If we the modify the mapin such a manner to
increase this quantity then it may be possible to convert a uninterpretable map into an
interpretable one.

8.1.2 The Method

How are good electron density maps distinguished from poor ones? Even without
knowing the structure of a particular protein there are somefeatures which can be
expected to appear in the correct map, such as:

Flat solvent. The solvent in which the protein is crystallised will fill thegaps caused
by imperfect packing of the molecules. This solvent is usually disordered from
cell to cell, and so in the diffraction structure the electron density will be constant
to a first approximation. This is applied to an estimated map through the process
of solvent flattening (Wang, 1985; Leslie, 1988).

Predictable distribution of density values in the protein. Most proteins have fairly
similar proportions of atomic types, distributed throughout the cell according
to known constraints of atomic spacing. As a result the distribution of density
values in the protein region is fairly similar from protein to protein. This infor-
mation is applied through the process of histogram matching(Zhang & Main,
1990).
Histogram matching employs the predictable atomic makeup of biological macro-
molecules to predict the histogram of density values in the protein region. The
current density map can then be systematically modified to bring it into consis-
tency with the predicted histogram. This technique is complementary to solvent
flattening, since solvent flattening operates on the whole ofthe solvent region
and histogram matching operates on the whole of the protein region. The known

The CCP4 manual 47

48 Phase Improvement

density histogram is a weaker constraint on the electron density than solvent flat-
ness, but the volume involved is usually larger, and histogram matching has more
power for phase extension than solvent flattening. The combination of solvent
flattening and histogram matching usually converges in 10–20 cycles.

Connectivity of electron density. Proteins consist of linearly connected chains of pep-
tide units. A good map will show this linear connectivity, and it is this feature
which provides the starting point for building a model of thestructure. The con-
nectivity of the map can be enhanced by a process of iterativeskeletonisation, as
developed in thePRISMpackage (Bakeret al., 1994).

Known properties of the structure. Some features of the structure may be known
from analysis of the X-ray data, or from biochemical sources. These include
the presence of non-crystallographic symmetries relatingdifferent parts of the
map, or relationships with other molecules, from which a portion of the structure
can be deduced. This information can be applied through non-crystallographic
symmetry averaging (Bricogne, 1974) and molecular replacement respectively.

Molecular averaging can be used in the case of non-crystallographic symmetry
(NCS). NCS-related regions of the map are averaged together, thus reducing the
signal-to-noise ratio in the density. The NCS-relationships and masks must be
determined before this calculation can be performed.

Atomicity. In the high resolution limit, the electron density map for a structure will
show resolved atomic features. Atomicity can be enhanced bymodifying the
map to satisfy Sayre’s equation (Zhang & Main, 1990; Cowtan &Main, 1993).

Sayre’s equation is a technique from small molecule direct methods, which ap-
plies the constraint of atomicity to the density. Protein structures do not normally
diffract to atomic resolution; however, in the case of a goodstarting map and ob-
served magnitudes at close to 2.0Å Sayre’s equation can be a powerful tool for
phase improvement.

Note that all of these features can be distinguished in a map without knowing the de-
sired structure. Techniques have been developed by which a poor density map can be
altered in a sensible manner in order to bring it into line with each of these constraints,
these are set out in more detail in the references given above.

All these techniques depend on knowledge of the molecular boundary.dmcan cal-
culate this automatically by Wang’s method (Wang, 1985; Leslie, 1988) if the fraction
of the unit cell occupied by solvent is known.

The phase improvement calculation is cyclic and involves modification of the phases
in order to obtain best agreement with the known constraintson the electron density and
the observed structure factor data. This process is shown diagrammatically in fig. 8.1.

Fobs(h)
φi(h),wi(h)

Fmod(h)
φmod(h)

ρi(x)

ρi+1(x)

Density
Modification

Phase
Recombination
φi+1(h), wi+1(h)

FFT

FFT

Figure 8.1: Phase improvement schematic.

The CCP4 manual

8.2 Using dm 49

8.2 Using dm

dmprovides an automatic procedure for using the techniques described above. A single
run will read an initial reflection file, apply multiple cycles of density modification and
produce an updated reflection file.

The initial reflection file must contain at least the observedstructure factor magni-
tudes and their deviations, and the estimated phases and their weights. In the case of an
MIR dataset the phases and weights will come direct from theMIR phasing (typically
from the programmlphare). It is also possible to useMAD data, although typically
the phase extension scheme will be different since there is usually some phase infor-
mation at all resolutions. This sort of calculation has proven particularly effective.

Density modification can also be applied in a molecular replacement calculation.
In this case the correctly oriented model is used to generatea new set of structure
factor magnitudes and phases. The agreement between the observed and model magni-
tudes is then used to generate weights for the model phases (typically usingsigmaa ’s
PARTIAL option). The calculated phase and resultant weight are theninput into the
density modification calculation.

The use of sensible defaults means that the program can be operated very simply.
In the case of a non-crystallographic symmetry averaging calculation, it is necessary
to generate a mask covering one non-crystallographic subunit (usually one molecule),
and in addition the non-crystallographic symmetry matrices must be included in the
command file.

The most common application of the program involves use of the histogram match-
ing and solvent flattening methods. These are very quick (< 1 minute for 10 cycles with
a unit cell volume of∼105 Å3 on a typical workstation) and in the majority of cases
lead to a good map improvement. In the case of very poor starting maps, the histogram
matching can lead to a very broken map, in which case it may help to apply a temper-
ature factor to smooth the map, or else repeat the calculation with solvent flattening
alone. Averaging is always useful if the symmetry elements and mask can be deter-
mined. Sayre’s equation is usually only helpful when the starting map is very good,
and its application is very slow.

Other features available indminclude input of a user-defined solvent mask, output
of the internally calculated solvent mask, averaging of multiple non-crystallographic
symmetry related domains with different matrices, and automatic refinement of non-
crystallographic symmetry matrices. The output of the program can be examined using
xloggraph . The most useful indicator of whether the method has been successful
is the ‘freeR factor’. This is analogous to the freeR factor used in coordinate re-
finement in that it is calculated using a set of reflections which are excluded from the
initial map calculation. However, once phase relationships between structure factors
are introduced it becomes impossible to completely isolatea set of reflection since the
absence of a set of reflections leads to a systematically error in the phasing of the rest
of the reflections. Thus it is necessary to change the freeR set from cycle to cycle, or
if time is not a factor to run each cycle twice with and withouta freeR set.

The density modification freeR is a property of both the density modification tech-
nique and the initial data set, so it can not be used to comparedifferent density mod-
ification techniques. During a typical calculation the density modification freeR will
drop from∼0.60 to∼0.45.

In the case of averaging calculations, the correlation between regions related by
non-crystallographic symmetry provides a good indicationof whether the mask and
matrices have been correctly determined. In later cycles this agreement will have in-
creased through the averaging of the regions, and so becomesless informative.

The solvent flattening and molecular averaging techniques are closely related and
are most effective when used together They are both noise filtering techniques and
involve modification of electron density. They can be used toimprove and extend
phases.

The CCP4 manual

50 Phase Improvement

8.3 Using Solomon
Several stages are required for phase refinement with Solomon. The stages described
here assume that the phase probability distributions were determined experimentally
(i.e. SIR, MIR, MAD).

• Determine phase probability distributions, described by Hendrickson- Lattman
coefficients. This is done automatically bymlphare .

• Calculate the map to be flattened. Initially, you will have a map calculated from
experimental phases. It is advised that you start from a resolution which has got
significant phase information and do not yet extend the resolution!
Subsequent maps can be calculated from coefficients produced bysigmaa . This
gives the advantage that missing reflections can be estimated from the corre-
sponding Fc (calcuated from the flattened map). The procedure can be improved
by substituting in this way for the low resolution reflections that are missing.

• Have a look at the map and compare it with the original FOM weighted map.
If there is no non-crystallographic symmetry, you might getsome additional
improvement by playing around with the solvent multiplication factor and the
truncation level (see the keywords “TRUNC” and “SLVMUL”). If the crystals
contain a lot of solvent (70 to 80%) you might try phase extension, but make
sure the map actually improves by doing so. If you have got very weak phase
information at higher resolution, try including it from thestart, but keep the
RADIUS at the lower resolution. (If you have got reasonable phase information
to 3.7Å, and very weak information to 3.2̊A, use a radius of 3.7̊A, and a high
resolution cutoff of 3.2̊A; don’t extend to 3.2, but use all information from the
first cycle).

• Identify and refine non-crystallographic symmetry if present. The Uppsala pro-
grammes “O”, “mama” and “imp” are ideally suited for this purpose. You must
remove overlap between symmetry related masks. The mask canbe either in “O”
or “CCP4” format.

• The mask will encompasses a monomer. Each mask has a set of associated
symmetry operators which descibe how the density within this mask is related
to other density within the asymmetric unit. This is a bit different from the way
things are done in the “rave” package and has some advantages.

• include the non-crystallographic restraints in “Solomon”and run the script again.
You might need to reduce the level of truncation a bit and the solvent multiplier
should probaly be a bit less negative.

8.4 Estimating solvent content
Estimating solvent content

This section summarises the results of (Matthews, 1968) forsolvent content.
Matthews’ number is:

VM =
cellvolume(Å

3
)

Mnasymunmolsasu
=

V
MZ

(8.1)

where:
M is the protein molecular weight in Daltons
V is the unit cell volume
nasymuis the number of asymmetric units
nmolsasu is the number of molecules in the asymmetric unit
Z, the number of molecules in unit cell= nasymunmolsasu.

Molecular weight is:

• something you get off a gel;
• or number of protein residues in molecule×110—very roughly!
• or number of non-hydrogen protein atoms in molecule×14—roughly!

The CCP4 manual

8.4 Estimating solvent content 51

(Use rwcontents to read yourPDB file if you have one; it will count the number
of atoms of each type. The output oftruncate provides information on the cell
contents.)

Matthews foundVM between 1.66 and 4.0, corresponding to protein contents of 30–
75%, but proteins with higher solvent contents will give higher values ofVM. (Solvent
content of 90%⇒VM = 12. . ..

CalculateVM assuming nmolsasu= 1,2,3 etc. . . . Youmaybe able to narrow down
the number of possibilities for nmolsasu.

Turning this into the fraction of protein in the asymmetric unit:

Vp =
MZAV

VNADp
=

AV

NADpVM
(8.2)

where:
Vp is the fraction of protein volume in the asymmetric unit
Dp is the density of protein= 1.35 (Matthews, 1968)
AV is the average atomic volume in̊A3, = 10 approximately
NA is Avogadro’s constant.
(This is the same as Matthews’ formula:Vp = 1.66v/VM; 1.66 = AV/NA , 1/Dp is
Matthew’sv = 0.74 cc/g.) Alternatively:Vp = NpAV/N, whereNp is the number of
protein atoms in the unit cell (including hydrogens). (There are about the same number
of hydrogens as C N O etc.)

If Vp is the fraction of protein volume in the asymmetric unit, thedensity

ρ = ρpVp + ρs(1−Vp)

= 1.35Vp+1.0(1−Vp)

= 0.35Vp+1.0 (8.3)

whereρs is the solvent density (1.0 for water). Therefore

Vp = (ρ−1.0)/0.35. (8.4)

If you know the density you can work backwards and find the number of molecules
in the asymmetric unit exactly. (axissearch will tell you the volume of the unit cell
in Å3.)

Now you get this useful information:
• Possible molecular weight per asymmetric unit;
• Fraction of protein/solvent (from 8.4);
• If you know the number of atoms in your protein subunit, (roughly 14 times

the number of residues, including hydrogens) and saying roughly again that the
volume per atom is 10̊A3 it is possible to get an estimate of number of subunits/
asymmetric unit. Even if you do not know the density accurately it is often
possible to guess how many subunits there might be per asymmetric unit.

Often there is only one possible solution forNsubunits.

The CCP4 manual

Chapter 9. Refinement and validation

I don’t believe there’s an atom of meaning in it.
— Alice’s Adventures in Wonderland

Refinement has been covered in three Study Weekends, (Machinet al., 1980; Goodfel-
low et al., 1989; Dodsonet al., 1996); see also (Tronrud, 1994). The principal CCP4
refinement program is nowrefmac which is undergoing active development. Infor-
mation in this chapter is liable to become out-of-date, and the reader is recommended
to read the latestrefmac documentation.

9.1 Least squares structure refinement
The CCP4 suite provides the programrestrain for least squares structure refine-
ment. The old program prolsq has now been made obsolete by theMaximum Likeli-
hood programrefmac , see section 9.2. The least-squares programrestrain incor-
porates a number of differences fromrefmac (see section 9.1.1) and may be useful.

Alternative refinement programs includeTNT, CNS, SHELX93.

9.1.1 Comparison of restrain and prolsq

Here is some discussion of the differences between the leastsquares refinement pro-
gramrestrain and the obsolete prolsq. Most of these points also apply to a com-
parison ofrestrain andrefmac .

restrain does constrained anisotropic thermal parameter refinementusing the
TLS (translation/libration/screw-rotation) model. Unconstrained anisotropic refine-
ment is not feasible without atomic resolution data (i.e. 1Åor better), so this is out
of the question for all but a handful of very small proteins. The end result of the
TLS analysis should give some insight into secondary structure or domain motions.
refmac5 now does TLS refinement as well.

A major difference of approach is that prolsq uses an FFT for structure factor and
derivative calculations, whereasrestrain uses slow FT’s. This means that prolsq
takes many cycles (∼50) to converge but each cycle is very fast, whereasrestrain
takes only a few cycles (∼5), but each one is much slower. Normally prolsq has the
advantage here.

restrain ’s functionally is much like prolsq’s with some small differences:
• prolsq treats all main-chain peptide residues as though they had identical geom-

etry; recent data indicates that glycine and proline are different from the others.
restrain treats them differently.

• restrain uses individual distance constraint weights based on the estimates
of the standard deviations of (Engh & Huber, 1991) (these values are all in the
dictionary together with the ideal distances). prolsq usesblanket values for the
weights, because its dictionary doesn’t contain the s.d.s.

• restrain has a coupled occupancy refinement option for disordered sidechains.
• restrain has a full-matrix option for estimating individual positional standard

deviations. However it requires alot of memory, and at present needs to be
compiled with a re-parameterised include file.

• prolsq has the option of applying non-bonded intermolecular repulsion restraints
(i.e. between symmetry-related molecules) as well as the intramolecular ones.
At presentrestrain only applies the intramolecular repulsions.

• There is a subtle difference in the way the planar groups (peptide groups plus
PHE, ARG etc. sidechains) are treated. prolsq restrains to the plane calculated
from the coordinates before each refinement cycle, whereasrestrain restrains
to the current best plane; this should allow the planes more flexibility of move-
ment.

The CCP4 manual 53

54 Refinement and validation

9.2 Maximum Likelihood refinement
The maximum likelihood approach to model refinement has beenimplemented in the
CCP4 programrefmac . The refmac program is used for the restrained or unre-
strained refinement or idealisation of a macromolecular structure. It minimises the
model parameters to satisfy a Maximum Likelihood residual.There are options to
use different minimization methods.refmac produces an MTZ output file containing
sigmaa -style coefficients suitable for the calculation ofmFo−DFc and 2mFo−DFc

maps usingfft .
The latest version of REFMAC is significantly different to earlier versions and is

known as “refmac5 ”. The key functionalities ofrefmac5 are:

• Restraints are calculated within the main program. A large dictionary of standard
geometries is included. Restraints can also be created for novel ligands, see in
particular the Monomer Library Sketcher inccp4i ,(which is an interface to the
libcheck program).

• TLS refinement can be used. This is particularly useful when there is signif-
icant anisotropy, but the resolution does not warrant refinement of individual
anisotropic displacement parameters (U values).

• A bulk solvent correction is calculated within the program,see the SOLVENT
keyword.

• For atomic resolution data, full anisotropic refinement canbe performed with
anisotropic displacement parameters being refined for someor all atoms.

• If good experimental phases are available then they can be included in the maxi-
mum likelihood target. The accuracy of experimental phases, as described by the
Figure of Merit or the Hendrickson-Lattman coefficients, isoften overestimated,
and a blurring function is provided to compensate for this.

• Rigid-body refinement can be performed, and may be useful in the early stages
of refinement. One or more rigid-body domains can be defined via the RIGID-
BODY keyword.

9.2.1 TLS refinement in refmac5

TLS refinement inrefmac5 results in:

• TLS parameters for each defined TLS group, held in theTLSOUTfile and in the
header of theXYZOUTfile.

• Residual B factors output in the ATOM lines of theXYZOUTfile. These B factors
do not include any contribution from the TLS parameters.

The XYZOUTandTLSOUTfiles can be passed to the programtlsanl , which will
analyse the TLS tensors and also derive individual anisotropic displacement parameters
from the TLS parameters.

9.3 Automated model building
Victor Lamzin’s Automated Refinement Procedure program (renamedarp warp due
to a clash with a Unix command) can be alternated with a refinement program such
asrefmac5 to automatically build or rebuild parts of a model.arp warp updates
the model by identifying and removing poorly defined atoms and adding new atoms.
Rejection of atoms is carried out on the basis of the density interpolated at the atomic
centre, the deviation of the density shape from sphericity and some distance criteria.
Addition of atoms is performed on the basis of difference density coupled with distance
constraints.

CCP4 distributes an older version ofarp warp (version 5.0) which has been re-
named asarp waters , and which should only be used for adding waters while cy-
cling with refmac5 .

9.4 Difference map generation
On completing a round of refinement, various types of difference map can be generated
with the programfft for comparison with the current model (e.g. using the graphics
programO). refmac produces weighted map coefficients suitable formFo−DFc and

The CCP4 manual

9.5 Why is protein refinement difficult? 55

2mFo−DFc maps: these coefficients reduce model bias and are recommended over the
unweightedFo−Fc and 2Fo−Fc maps. To obtain weighted coefficients from the output
of restrain , the programsigmaa can be used.

XDLMAPMAN

O

MAPMASKFFT

calc. 2mFo-DFc map

 mFo-DFc

map format exchange

asymmetric unit

molecule rather than

select grid volume to cover

REFMAC

EXTEND

model.brk

Native-Fs.mtz

RESTRAIN SIGMAA
alternative
refinement
program

σA -weighted map coefs.

Native-SF.mtz

cαnew Fc, Sim wt and

(Fo scaled to Fc)

-weighted map coefs.Aσ

Figure 9.1: Steps in generating an electron density difference map.

9.5 Why is protein refinement difficult?
Small molecule people manage analysis and refinement with very few problems. Macro-
molecular crystals present several particular problems inrefinement.

• For macromolecular crystals, the unit cell is big, and thereare a very large num-
ber of X-ray data to collect, all of which have low signal-to-noise ratio. It is
therefore not usually possible to collect data to atomic resolution as is normal
for small molecule structures. The data available often suffer from both system-
atic and random errors. These are due to the crystal size, problems of mounting,
absorption and crystal decay.

• Protein crystals have an additional problem. There is usually a high solvent
content, and the crystal forces are weak. Some parts of the chain may not be
crystalline at all, and others may have high thermal motion.This means that not
all the unit cell can be properly parameterised. This is truefor almost all pro-
teins, not just those which diffract to lower resolution. This problem particularly
reduces the intensity of the high resolution data. In addition it leads to severe
effects of radiation damage.

• These two problems mean that experimental data extend to limited resolution,
typically to a maximum limit in the range 3–2̊A.

• This means that the ratio of observations to parameters to befitted is too low for
conventional least-squares minimisation to converge.

9.6 Free R factor
A freeR factor may be calculated by excluding a randomly-chosen fraction of reflex-
ions from the refinement (Brünger, 1992)—a special case of the technique of cross-
validation (A. T. Brünger, 1995). The agreement between their FP andFc is indepen-
dent of the refinement procedure.freerflag may be used to add a column of tags
to an MTZ file to label this set of reflexions. This is also included in theuniqueify
script, which should be run on a dataset as soon as possible (seeunique documenta-
tion). Note the CCP4 convention for this differs fromX-PLOR—see thefreerflag
documentation.f2mtz andmtz2various may be used respectively to import and
exportX-PLORandSHELXdatasets with a freeRflag to CCP4 taking into account the
different conventions.

Since the deviation inRfree is roughly proportional to its value divided by the square
root of the number of reflections, a test set of about 1000 reflections should be accept-
able. BothRcryst andRfree are global measures which cannot detect local errors. If
atoms are placed in correct positions theR factor will decrease even if they are chem-
ically inappropriate. NCS will reduce the value ofRfree and different types of NCS

The CCP4 manual

56 Refinement and validation

will have different effects. Any pseudo lattice where the NCS does not increase the
reciprocal space sampling cannot easily be utilised for refinement.

9.7 Validation, gross and overall errors
9.7.1 Validation

An lot of validation requires common sense. For example a good structure will not have
most of its torsion angles in strange parts of the Ramachandran plot. Other obvious,
but very useful, checks include:

• Are there unacceptable symmetry contacts between adjacentmolecules?
• Are theB factors sensible, e.g. higher at the surface than in the core, not wildly

divergent between adjacent atoms?
• Does the chemistry make sense? e.g.: do the H-bondable groups actually make

H-bonds? Are there charged groups buried in hydrophobic environments?
• Do the maps show the expected features, e.g.: do omit maps reveal the missing

atoms; do difference maps show substrate atoms?
• Is there a suspicious divergence from NCS?

Most programs flag many of the above.

9.7.2 Errors
Serious mistracing is rare but can happen.The existing tools (Rfree, stereochemical

checks as applied inprocheck andwhat-if) easily detect such errors if ap-
plied sensibly. Actually the Ramachandran plot alone is a powerful tool for cross
validation to identify such gross errors since the dihedralangles are not usually
used as restraints in refinement programs.

Local errors such as loops out of register can easily be overlooked or ignored. They
can be identified by the real spaceR factor andB values as a function of residue
number.

Overall imprecision and refinement not taken to convergence is difficult to detectbut
happens—there are many examples of structures refined first against one data set
to a certain resolution, then re-refined against a differenthigher resolution data
set. The final structure gives a lowerR factor against the original data than the
one refined against that data. This is may be due to poor weighting of prior and
experimental information.

9.7.3 Bad practice
9.7.3.1 Not using all the available data

• Do not use a low resolution cut-off, e.g. many structures arestill reported as
being refined with data in the resolution range 5–2Å. The data within the 5̊A
shell contain a wealth of important information on your structure.

• Make sure you have not lost all the strong (often low resolution) terms through
detector saturation—especially important with image plates at synchrotrons. Make
a second data collection pass, or even a third, to avoid this.Thebig terms domi-
nate all steps in your structure analysis.

• If you can possibly avoid it do not leave a large wedge of data uncollected. Offset
your crystal by up to 15◦ to avoid a blind region. Make sure you cover the
appropriate rotation range, and start at an appropriate orientation.

9.7.3.2 Attempting refinements when the observation to parameter ratio is too low

• At about 2.8Å for a protein crystal with about 50% solvent, the number of obser-
vations is equal to the number of positional (xyz) atomic parameters. Even at this
resolution the least-squares minimum is no longer well defined. Unless there is
non crystallographic symmetry (or extremely high solvent content) it is therefore
foolish to “refine” against data sets at resolutions below 2.8Å. If there is NCS
this limit can be relaxed with care, always ensuring the number of parameters
is less than the observations: this absolutely requires theNCS to be imposed.
Caveat: if your NCS is close to pseudo crystallographic symmetry (e.g.P21212

The CCP4 manual

9.7.3 Bad practice 57

but pseudo I222 orP65 pseudoP6522), then it is less powerful and you will have
special problems.

• Do not try to refine individual isotropic atomicB values till you have enough
observations to about 2.5̊A or better.

• The significance of introducing extra parameters should be cross validated using
Rfree.

The CCP4 manual

Chapter 10. The Fast Fourier Transformation
— or some of the things you always wanted to know about the FFT
but were afraid to ask

“Of course,” the Mock Turtle said: “advance twice, set to partners—”
“—change lobsters, and retire in same order,” continued theGryphon.

— Alice’s Adventures in Wonderland

10.1 Introduction
There must be very few algorithms that have made as great an impact on science as the
Fast Fourier Transform (FFT).1 It was Lynn Ten Eyck (1973; 1977) who introduced
the FFT to crystallography and we have been using it ever since. Whenever we do
something that involves a calculation of an electron density map or structure factors
i.e., moving between real and reciprocal spaces, it is almost certain that the program
we use has anFFT algorithm embedded somewhere inside it. We can tell if it does
not—the calculation is orders of magnitude slower than whatwe have come to expect.
In addition to the above uses, theFFT has an important role in molecular replacement,
in the calculation of the rotation and translation functions. This development is mostly
due to Tony Crowther (1972), who showed how the rotation function can be calculated
by anFFT if the Patterson function is expanded in spherical harmonics, and David Blow
(Crowther & Blow, 1967), who applied theFFT to translation functions.

10.2 How it works 2

Although it is not necessary to know anything about the mechanism of theFFT in
order to use it, it might still be interesting—especially ifthe explanation is reasonably
understandable. A good description of theFFT is given in (Presset al., 1986). It goes
like this:

If we have a discrete Fourier transform of lengthN we can split it into two trans-
forms of lengthN/2 each. One of them is formed from the even-numbered terms and
the other from the odd-numbered terms:

Fh =
N−1

∑
j=0

f je
2πi jh/N

=
N/2−1

∑
j=0

f2 je
2πih(2 j)/N +

N/2−1

∑
j=0

f2 j+1e2πih(2 j+1)/N

=
N/2−1

∑
j=0

f2 je
2πi jh/(N/2) +Wh

N/2−1

∑
j=0

f2 j+1e2πih j/(N/2)

= Feven
h +WhFodd

h , (10.1)

whereWh = e2πih/N.
Depending onN we can continue dividing the original transform. This is known as

factoring. We then get a series of terms likeFeven,odd,even...
k , in this case, for a Fourier

1C. F. Gauß reputedly used the equivalent of real-valued FFTsin 1805, but no surprise there. There
were independent discoveries of FFT algorithms in modern times preceding that of Cooley and Tukey, often
referred to as the discoverers.

2It is ‘interesting’ to note that there are various software patents connected with the FFT and similar
transforms which monopolies may restrict your freedom to use these algorithms; (this is of course
impossible). Such software monopolies are a serious threatto free software and quasi-free software such
as CCP4. Oppose software patents and interface copyrights!

The CCP4 manual 59

60 The Fast Fourier Transformation

transform of points that are successively even, odd, even etc. in the successive subdivi-
sions of the data. In the extreme case, whenN is some power of two, we can divide the
data all the way down to transforms of length one. A transformof length one is just an
identity operation. Now the transform consists of terms like

Feven,even,odd,even,odd,odd... even
k = fn. (10.2)

The problem now is with book-keeping—we need to know whatn is. The answer is
as follows. Let even= 0, odd= 1 and then read the resulting patterns backwards i.e.,
reverse the bits, and you get in binary the value ofn. It works because the successive
subdivision of data into even and odd are tests of successiveleast significant bits ofn. If
we now rearrange the data into the bit-reversed order, the transform can be constructed
by combining adjacent pairs of points to get two-point transforms, then the adjacent
pairs of pairs are combined to get four-point transforms andso on until the first and the
second half of the data is combined into the final transform.

If you have a mathematical or functional programming bent and want a deep un-
derstanding of the algorithm, consult (Jones, 1989) for acalculationof it.

10.2.1 Example
Let’s take a simple example of an 8-point transform. The coefficients ofFs of the
successive divisions of data are:

e(=even) o(=odd)
ee eo oe oo

eee eeo eoe eoo oee oeo ooe ooo

In binary this becomes

000 001 010 011 100 101 110 111,

and with the bits reversed:

000 100 010 110 001 101 011 111,

which in decimal corresponds to elements numbered 0 4 2 6 1 5 3 7. This means that
we first have to combine element 0 with 4 (adjacent pairs on theabove list), 2 with 6,
1 with 5 and 3 with 7 to get two-point transforms. (N.b., each element is normally a
complex number).

Next we combine the resulting elements 0 with 2, 1 with 3, 4 with 6 and 5 with 7
to get 4-point transforms. Finally we combine the resultingelements 0 with 1, 4 with
5, 2 with 3 and 6 with 7 to get the complete 8-point transform. Done.

10.2.2 Why is it fast?
Let’s now see how fast theFFT is compared with the traditional, ‘brute force’ approach.
First the data have to be rearranged into the bit reversed order. That takes very little time
and requires no extra memory as it only involves swapping pairs of data. The transform
itself is constructed in log2N sweeps through the data i.e., the number of times all theN
data points can be factored—three in the above example. At each level data points are
combined pairwise. This means the number of operations in each sweep is proportional
to N. Thus the whole algorithm is of orderN log2N. SuchO(N logN) asymptotic
complexity is typically associated with ‘divide-and-conquer’ algorithms like this. The
transform can be parallelised and vectorised.

What about the non-FFT approach? From the expression

Fh =
N−1

∑
j=0

f j e
2πi jh/N (10.3)

we see that for everyFh, numberingN, we cycle over allf js, (also numberingN). Thus
the number of operations is proportional toN2.

What is the difference betweenN2 andN log2N? ForN = 1000 the factor is 100.
ForN = 1000000 the factor is 50000—roughly the difference betweenone minute and
one month. Moral: beware of algorithms with quadratic (or higher) complexity.

The CCP4 manual

10.3 Crystallographic FFT 61

10.3 Crystallographic FFT
So far we have only discussed the case where the number of datapointsN is a power
of two. What if N cannot be factored all the way to single points? There are other,
highly optimised, algorithms tailored for handling transforms of various lengths. In
fact, the crystallographicFFT does not requireN to be a power of 2, but in generalN
has to be a ‘nice’ number. No prime factors greater than 19 arepermitted. Additional
requirements have to be satisfied for specific space groups.

In crystallographic applications theFFT is additionally optimised to take advan-
tage of crystallographic symmetry. The application of theFFT in crystallography is
explained in full by Ten Eyck (1973; 1977; 1985).

Spacegroup-specific transforms use symmetry to speed up thecalculation but are
more likely to have bugs, especially in uncommon spacegroups. Use of P1 is thus
recommended if speed isn’t a problem; if it is, test the higher-symmetry version against
P1.

10.4 Programs
The CCP4 suite contains several programs making use of theFFT, e.g: fft (based on
Ten Eyck’s original) calculates Fouriers, difference Fouriers, Pattersons and difference
Pattersons from reflection data;sfall calculates structure factors and X-ray gradi-
ents for refinement using inverse and forwardFFTs; almn calculates rotation function
overlap values usingFFT techniques; etc. . . .

fftbig is an in-core version offft which runs in P1 only. It may be faster you
have enoughreal memory available—otherwise it will cause page thrashing. This has
replaced the original fft program.

The CCP4 manual

Part III

The propagation, care and
feeding of a CCP4 installation

Chapter 11. Installation

README file : n. By convention, the top-level directory of a UNIX source
distribution always contains a file named ‘README’. When asked, hackers

invariably relate the README convention to the famous scenein Lewis Carroll’s
‘Alice’s Adventures In Wonderland’ in which Alice confronts magic munchies

labelled ”Eat Me” and ”Drink Me”.
— (Raymond, 1993)

11.1 First off
The distribution is supplied in source form. You will need Fortran, C and C++ compil-
ers! (See§13 for hints about freely-available systems if necessary.). To buildphaser
python is required.

By default the ‘unsupported’ programs will be built as well as the main set. You
may want to avoid building them to save space. Make sure you have plenty of spare
disc space to build in.

You need∼250 MB free for $CCP4MASTER if everything in ccp4 is downloaded
off the web site (ccp4/phaser). The space taken by the full set of binaries will vary con-
siderably with system and compiler options, but is∼350 MB on an Iris compiled with
the default configuration; you can reduce this either by playing with the configuration
options or only by compiling a subset of the programs. If ccp4mg and coot are also
downloaded the space requirements will increase to∼1GB. Some of the programs use
considerable amounts of scratch space in execution—you will need 10s of MB free in
the directory pointed at by $CCP4SCR (seeccp4.setup (Unix)). In some cases
you may find a need for∼100 MB of scratch space, depending on the programs you
use and their input. Some programs take up large amounts of memory which can cause
problems. Personal memory useage quotas can be exceeded or for small systems, like
PCs, hard limits!

11.2 Directory structure
The directories under theccp4 directory which holds the CCP4 suite are as follows:
bin is the default destination for installed program binaries
ccp4i graphical user interface for the suite
doc plain text documentation files (generated from thehtml files)
etc Unix shell scripts
examples example scripts/DCL procedures

toxd data and model coordinates for a small protein (alpha-dendrotoxin from
green mamba venom: “toxd”) used in the examples

rnase data and model coordinates for a second protein (ribonuclease from
Streptomyces aureofaciens) used in the examples

unix
non-runnable scripts which can’t be run for want of data
runnable scripts which can be run with the data intoxd

tutorial contains procedural scripts in five main areas, namely MR, MIR,
refinement, MAD and density modification.

html library and program documentation in HTML form
include setup scripts and the.def files needed for program startup (§3.7)
lib The default destination for installation of the binary library files

ccif source code for the CCIF library
data machine-independent ‘library’ files such as the symmetry operators
src source code for the CCP4 library

The CCP4 manual 65

66 Installation

mmdb source code for the MMDB library
clipper source code for pirate and the clipper libraries
ssm source code for superpose and ssm libaries
fftw source code for the MIT fftw libaries

man contains soft links to enablemancommand

manual LATEX source for this manual and corresponding PostScript file

src program source

unsupported source for the ‘unsupported’ stuff

x-windows X-Windows programs (xloggraph etc.)

Theccp4 directory itself contains top-level configuration files etc.

11.3 Building under Unix
11.3.1 Preliminaries

First decide where you want to put the sources for the software—this will be a direc-
tory we’ll refer to as $CCP4MASTER1—which will contain theccp4 directory. A
conventional possibility for $CCP4MASTER is /public/xtal , but somewhere in
/usr/local is more in line with Unix conventions.

11.3.2 Unpacking the files

If you got the distribution by ftp or via the web site as gzip’dor compressed tar files,
you can do the following:

gunzip 〈file〉 or uncompress 〈file〉
tar xvf 〈file〉

where〈file〉 is replaced by the name of each.tar.gz or .tar.Z file in turn. This
may be performed automatically by the suppliedinstall.sh .

If you got the distribution on cd-rom,cd into $CCP4MASTER and read the cd-
rom usingtar :

tar xvf 〈device〉

where〈device〉 is the appropriate cd drive e.g.,/dev/cdrom and thev option lists the
file names as they come off (for comfort only). An additional option likeo is necessary
on some systems e.g., IRIX, to prevent the files’ original ownership being retained.

If you don’t want the ‘aggregated’ software—just CCP4—use

tar xvf 〈device〉 ccp4

11.3.3 Environment variables and ccp4.setup

The suite depends on some environment variables being set upappropriately. This
is usually done by the script $CCP4/include/ccp4.setup (where $CCP4 is
$CCP4MASTER/ccp4). Copy the suppliedccp4.setup-dist in theinclude
directory toccp4.setup and edit it appropriately for your needs according to the
instructions in the comments2. Note particularly the remarks in it about setting up for
X-Windows programs; this is highly system-dependent.

With ccp4.setup edited to your satisfaction, execute it by

source $CCP4/include/ccp4.setup

to define the variables in the environment. Each user wishingto use CCP4 should
have a similar line in their.login file, where $CCP4 is replaced by the appropriate
absolutepath (with any necessary qualification for shared filesystems).

1Where the $ implies that this is the value of an environment variable.
2ccp4.setup and the examples below mostly assume your shell iscsh (or tcsh), where there is a

distinction fromsh and derivatives likeksh andbash , but if you don’t use acsh -like shell you should have
no trouble in adapting the instructions. There is, however,accp4.setup-bash version ofccp4.setup
which bash users can use as a basis for a version to be sourced in.bash profile

The CCP4 manual

11.3.4 Configuration 67

11.3.4 Configuration

Now you’re ready toconfigurethe source directory for the peculiarities of your version
of Unix. Here we assume that you are using the normal vendor-supplied compilers and
that you’ve used the default paths suggested inccp4.setup so that the suite is built
and installed in the $CCP4 directory. If you have more complicated requirements,
consult the full story onconfigure in §11.6. If you wish to do multiple installations
for multiple machine types, then see below.

With $CCP4 as your current directory, type

./configure 〈system〉

where〈system〉 describes one of the known operating systems correspondingto what
you’re running. This might be something likeirix , sunos , etc. To find the possibil-
ities, try

./configure help

configure will grind away and after some sanity checks e.g., on the values of
the environment variables you’ve defined, will establish the correct directories and
Makefile s. (If configure doesn’t support your system you’ll have to consult
the porting guide (Chapter 15) and/or seek advice from CCP4.)

If you wish to do multiple installations for multiple machine types, then you should
run the scriptduptree first. This will produce a further script containing informa-
tion on the source directory tree. This second script shouldthen be run once for each
machine type — in each case a duplicate source tree is createdwith soft links to the
original source. Theconfigure script should then be run within each duplicate
source tree. The scriptduptree contains further details.

11.3.5 Building

With a configured system you can now actually build the programs. Still in the
$CCP4 directory, just typemake and leave it to build. When you’re satisfied with
the build—see§11.3.6 for information on testing—you can usemake install to
copy things to the appointed places3. You can follow this bymake realclean
to tidy up by deleting the files you’ve copied from where they were built unless you
want to do tests before overwriting an existing installation, for instance4. Alternatively,
make clean empty-targets will leave dummy copies of the binaries so that if
the sources get updated,make will only rebuild the relevant ones5. The suite should
now be functional and you can start doing some useful work with it. Although, the
program documenation is in plain text and HTML form, when building the Suiteman
pages are also generated.

11.3.6 Testing

If you want to run tests before installing the suite, you haveto put the compiled pro-
grams on your path; do (withcsh):

set path=(〈builddir〉/src $path)

where〈builddir〉 is the directory in which you ranconfigure ($CCP4 in the case
described above). You’ll find a small example dataset in $CCP4/examples/toxd ,
and a second one in $CCP4/examples/rnase , and some runnable scripts in
$CCP4/examples/unix/runnable . Some log files generated at Daresbury are
distributed for comparison.

3You could usemake install to start with if you’re confident and there’s no problem with clobbering
a previous CCP4 installation.

4make realclean will delete the directories containing split files used to build the library and you
will need these if you have to run a symbolic debugger with library code. In this case you may prefer to
make clean and thenmake empty-targets ; the latter will make empty files in place of the compiled
programs, saving space, but preserving the time information thatmake can use later.

5If you can’t keep the CCP4 directory around on disc, aftermake empty-targets you might back it
up to cd withtar to preserve the date information if you subsequently get updates.

The CCP4 manual

68 Installation

11.3.7 Problems

Since the amount of testing of different systems we can do is limited, there may
be problems with the installation on less widely-used systems, perhaps due to non-
standard Fortran code which hasn’t yet been eliminated, or peculiarities of different
versions of Unix. First of all check our Web page (problems.html) which has a list
of known problems with the current release. If there is no fix then please try to solve
the problem locally, if you can and let CCP4 know about what changes you needed to
make; if you can send us patches (made withdiff -c) electronically, that would be
most helpful. If you successfully use without changes a configuration which reports
itself as ‘untested’ or ‘not properly tested’ it would be helpful if you could let CCP4
know that it works.

If you can’t solve the problem, contact CCP4 (see§12.2) and we will help if we
can (but no promises!). One thing you can do is to try buildingthe library and running
the test program for it withmake testlib to look for clues—if you complain to
CCP4 we will ask you for the results of this if we suspect a low-level library problem.
In the meantime, if there are problems building some of the programs (make fails on
the srcdir target, having done thelibdir target successfully) you can build as
much as possible usingmake -i and then install this much withmake instsome
in the src and/orunsupported/src directory. (Theinstsome target doesn’t
insist that everything is properly built first.)

11.3.8 Saving space and shared libraries

The program binaries are big, and you may need or want to make them smaller. There
are various possible ways to do this which are system-dependent. Increasing the op-
timisation level of the compiler might make the binaries bigger or smaller. However,
under agressive optimisation the programs may not work at all. Using shared libraries
will definitely make them smaller. On some systems you can usethe configure
argument--with-shared-lib successfully to build a shared version of the CCP4
library to link against (but make sure you have the correct setup to find the shared CCP4
library at runtime, namely the location of the shared library should be included in the
environment variable LDLIBRARY PATH). Other system supporting thedlopen
mechanism, at least, should be able to use the library sharedtoo. See§11.6 for ways to
change the configuration parameters or use parameters tomake, e.g.

make FOPTIM=-O

In extremis you can probably save some space by removing all debugging information
from the binaries using thestrip program or installing usinginstall -s . This
will prevent diagnosing some problems, though.

11.3.9 Installing updates

If you subsequently get updates as a complete distribution,copy it into the right places
in $CCP4 as per§11.3.2 and usemake [install] again; you probably don’t need
to re-editccp4.setup , but it’s worth looking at the new version to make sure. Re-run
configure , although this may not be strictly necessary. If bug-fix updates arrive as a
patchfile, you should copy this into $CCP4MASTER and use thepatch program to
apply them6. A helpful tutorial on usingpatch is in the documentation for version 2.0
and later of the GNUdiff implementation. See also http://www.ccp4.ac.uk/problems/patches.html

To build individual programs (the interesting ones you knowhave changed), run
make 〈name〉 in $CCP4/src where〈name〉 is the program name e.g.,fft . When
you have installed the changes to your satisfaction, amake clean will remove the
.orig files left behind bypatch . If you kept the directory intact after running
make empty-targets , a simplemake will just rebuild the necessary.

Before installing a new major version it is possible to remove the installed bina-
ries from the previous one withmake uninstall . In particular, this will remove
obsolete binaries.

6You can getpatch from the usual archives of free Unix software—it’s distributed by the GNU project,
for instance—or from the Daresbury info-server if necessary (see§13).

The CCP4 manual

11.3.10 Installation summary 69

11.3.10 Installation summary
Here’s a summary of the simplest procedure for installation(again, depending on the
platform this may be performed automatically):

• cd $CCP4
• gunzip [if necessary]
• tar x . . .
• [edit include/ccp4.setup]
• ./configure 〈system〉
• make testlib [not normally called-for]
• make [optional step]
• set path=($CCP4/src $path) , run some tests and re-setpath [op-

tional]
• make install
• make clean [or realclean or empty-targets] [optional, to tidy

up]

11.4 CCP4I
From version 4.0, the suite includes a graphical user interface called ccp4i. The files
for this reside in sub-directory $CCP4/ccp4i . Necessary environment variables are
set in the main setup fileccp4.setup . ccp4i exists as a set of tcl scripts, and requires
no compilation. Once the setup file has been sourced, it can berun simply by typing
ccp4i .

ccp4i does however require a local installation ofTcl/Tk with the blt
extension. Details on this and other installation issues can be found at
http://www.ccp4.ac.uk/ccp4imain.html

11.5 X-windows programs
If you wish to use the X-Windows-based programs such asxloggraph you will have
to ensure that they have access to theresources’ relevantapplication defaultsfiles.
Where these files are might depend on how you install the programs and the mechanism
for picking up the resources is likely to vary from site to site. An example is given in
ccp4.setup for Unix users. The X-Windows-based programs can now be built on
SGi machines running irix, PC Linux-based machines and DEC machines, using the
general CCP4 procedure - see the--with-x option below. If you are not using one of
these systems consult theREADMEfiles in thex-windows directory for instructions.

11.6 The full story on configure
§11.3 described a simple use ofconfigure . This section explains its use in more
complicated situations, where it really comes into its own7.

The Unix configuration system allows you automatically and consistently to cre-
ate the system-dependentMakefile s etc., to operate several systems with shared
files in a distributed filesystem, and to test new versions without disrupting the pro-
duction ones. It is based on a Bourne shell script, someMakefile skeletons and
macro-processable program files which are manipulated under the script’s control. The
configure script encapsulates most of the information about the system dependen-
cies in the suite and automates their application. The rest of this information resides in
the macro-processor directives inunix.m4 and the.[ch] files.

The main configuration parameters (apart from the system type) are controlled by
command-line flags toconfigure of the form

-- 〈flag〉=〈value〉
where〈flag〉 may be abbreviated uniquely and= may be replaced by whitespace. The
currently-implemented flags of this form are are:

--srcdir The CCP4 source directory (referred to as $CCP4 in§11.3);

7Those familiar with GNU software will recognise the influence behind thisconfigure , but beware
that it isn’t quite like the GNUconfigure scripts.

The CCP4 manual

70 Installation

--bindir Where the program binaries get installed;
--libdir Where the library files get installed.

Other common options are controlled by flags of the form--with- 〈feature〉or --disable- 〈feature

--with-f2c Use the freef2c compiler rather than a ‘native’ one;
--with-shared-lib Build a shared version oflibccp4 and link against it.
--with-x Build the X-Windows-based programs on some platforms.
--disable-〈feature〉 Disable build components. Among these options arephaser ,

cctbx , clipper , pdb extract .

configure currently assumes that the shareable (plain-text) libraryfiles remain in
$CCP4/lib/include rather than being installed elsewhere.

If the build is not done in $CCP4,configure createssrc and lib directories
mirroring those in $CCP4 and does the compilations there.

configure examines the environment variables necessary for running the suite
as defined byccp4.setup and tries to check them as far as reasonable, but these are
not actually used in the build process. There are a number of configuration parameters
that you don’t usually want to change, but whose defaults canbe over-ridden by the
values of environment variables whenconfigure is run:

CC the C compiler (default is system’s native compiler; another possibility might be
gcc);

COPTIM C compiler optimisation flags (default is the highest optimisation which is
considered safe or unagressive);

XCFLAGS any extra flags you need to give to the C compiler, apart from those for
optimisation (these are system dependent);

FC the Fortran compiler (default is system’s native compiler); there isn’t currently any
support for other than native compilers;

FOPTIM Fortran compiler optimisation flags. The default varies, but will have no
debugging extras. In some cases (notably IRIX), the defaultis used because
there are so many problems encountered with the optimiser. You may want to try
higher optimisation levels and see if there’s a significant performance improve-
ment and that the code still works. . .

XFFLAGS any extra flags necessary for the Fortran compiler, apart from those for
optimisation; you might want to change this, for instance toadd -s to make
smaller binaries at the expense of debugging ability;

CXX the C++ compiler;
CXXOPTIM C++ compiler optimisation flags;
XCXXFLAGS any extra flags you need to give the C++ compiler;
XLDFLAGS any extra flags needed forld , typically extra libraries;
F LIBS the additional libraries included by the FORTRAN compiler;
C LIBS the additional libraries included by the C compiler;
CXX LIBS the additional libraries included by the C++ compiler;
RANLIB dummy on SysV Unix,ranlib on BSD, depending on whetherar r

builds a symbol table itself;
LNS indicates how to make symbolic links in the filesystem (usually ln -s), elsecp

to copy rather than link.ln (hard links) could be used in the absence of symbolic
links if you don’t need to operate across file systems;

M4 how to run them4macroprocessor and define a symbol to indicate the system type
(seeconfigure source);

MAKE the name of the ‘make’ program for use in recursiveMakefile s if the sys-
tem’s make doesn’t define the symbolMAKE. Usually null;

SETFLAGS set appropriately if individual programs need special Fortran compiler
flags (most likely to suppress optimisation)—see theconfigure source;

INSTALL PROGRAM a command to install executables. Usesinstall -c if a
BSD version is available (to avoid interfering with runningprograms), elsecp ;

INSTALL DATA a command to install non-executables. If BSDinstall is avail-
able, usesinstall -m 644 , elsecp .

The CCP4 manual

11.6 The full story on configure 71

cd $CCP4
mkdir iris-build
cd iris-build
debugging, diagnostics for C,
some optimisation and debugging for fortran
env CC=gcc XCFLAGS=’-g -Wall’ FOPTIM=-g1 \
./configure irix --src=/ccpdisk/xtal/ccp4 --bin=/pxbin \

--lib=˜ccp4/lib
make

Figure 11.1:configure example.
(Don’t follow this slavishly!)

There are correspondingMakefile variables that you can override, e.g.:
make FOPTIM=-g

Suppose you support several types of system and share the CCP4 source and system-
independent data files across a network with a distributed file system such as NFS, AFS
or RFS. Then it may be convenient to have a sub-directory in $CCP4 for each system
in which to build and, possibly, in which to keep the resulting binaries. Directories for
binaries can be anywhere, though.

As an example, a configuration used on the Daresbury Iris is given in fig. 11.1,
which includes debugging options and scattered directories.

Installing only the library
Some people require only the CCP4 library to support other systems and don’t want to
configure/install the CCP4 programs as such. Usuallyconfigure will expect to find
the subdirectorysrc in the directory specified using the--srcdir flag, containing
at least the makefile skeleton. You can avoid this requirement (so you don’t have to
fetchsrc.tar.Z by ftp, for instance) by using the flag--onlylib as an argument
to configure . This will avoid configuring thesrc andunsupported directories.
Build the library usingmake onlylib at the top level. The--onlylib flag may
be abbreviated uniquely.

The CCP4 manual

Chapter 12. Support, bug reports etc.

“Mine is a long and a sad tale!” said the Mouse, turning to Alice, and sighing.
— Alice’s Adventures in Wonderland

12.1 Release policy
Continuous updates of the suite are no longer made. Instead there are intermittent
releases of well-defined versions. Patches for serious bugsin the current version are
made available by ftp (in theprerelease directory), and advertised on theccp4bb
mail list (see§13.3) and the Problems Page on the web (see§13.1). New major ver-
sions are also announced onccp4bb , of course, and possibly by posts to appropriate
network news groups. (Update notifications to non-commercial users are only made
electronically and in the occasional CCP4 printed newsletter.) Releases may have ver-
sion numbers of the formn.m.p, wheren.m is the major version andp indicates the
number of the ‘patch’ to that version, but at the time of writing this system has had
to be dropped (this is a bug) and releases just have major version labels. A change
of n in the version is intended to be used for substantial changes, e.g. when the file
formats change in an incompatible way. The sources distributed by ftp and tape always
correspond to the latest version, but ‘patch files’ of differences between different minor
versions are available by ftp for the convenience of users wishing to upgrade from an
earlier minor version.

12.2 Support and bug reports
Remember:non-trivial programs generally contain bugs. You may or may not feel
that CCP4 has more than similar systems of the same size, but you do have the source
to fix them if necessary.

Although CCP4 makes no commitment to support for the suite,1 we are keen to
improve it and will be grateful for reports of bugs (particularly with fixes!) or gen-
eral constructive comments regarding functionality, usability etc., including installa-
tion and documentation.The primary purpose of bug reports is to get problems fixed
in a subsequent version for the good of all, but we will often be able to furnish fixes or
workarounds to avoid your research being stymied. Also, if you make significant en-
hancements to the software, please pass these on (as required by the licence). Programs
not in theunsupported directory will get the most attention as they have someone
specifically assigned to look after them.

Our ability to maintain different flavours of Unix is limitedby their availability to
us, but we are happy to include compatible changes supplied to us which are necessary
for other platforms. Unfortunately, our VMS expertise and facilities are limited—most
CCP4 development work is now done in Unix—but we do our best. .. . We cannot
support operating systems other than VMS and Unix; if you need to run the suite under
another OS, consult§15 in the first instance and we will be interested to hear of your
experience.

Please make reports etc. to the CCP4 Secretary at Daresbury,preferably by elec-
tronic mail (toccp4@dl.ac.uk). If you don’t get a response within a few days,
try again, but please make sure that it is possible to reply: problems we quite often
encounter include invalid return paths (From: or Reply-to:) fields of your mail
header with a bad network address and failure of the local system to deliver mail due
to a bad user id or configuration problem. Theccp4bb list is not intended for bug
reports.

1Any mention of support by us in this document or elsewhere should be understood to be in quotes if not
already so, to indicate that it isn’t guaranteed.

The CCP4 manual 73

74 Support, bug reports etc.

We don’t have time to answer queries not directly related to CCP4 software—please
address questions about running system utilities etc. to your local computing support
staff. Failing that, if you have access to it, Usenet news is the ultimate fount of wisdom
(but not necessarily about CCP4 (!) and don’t assume the developers read netnews).
(See§13.6 and§13.4 for some information on obtaining non-CCP4 software.)

12.2.1 Reporting bugs
Before reporting a bug, please check whether it’s been fixed in the latest version if you
don’t already have the latest. The distribution contains aCHANGESfile which lists
the major changes since the previous release. Next, check the Problems Page on the
web site (see§13.1) to see if it has been fixed since the latest release. There is also
a file calledPROBLEMSin the distribution describing long-standing known bugs. In
any case, it will usually be useful to know what version you are using (look in the
‘banner’ that the programs print on startup) and, if there might be some programming
or compiler problem, what operating system you are using.

There is no orthodox standard for submitting effective bug reports, but some infor-
mation that can typically be useful as well as mistakes to avoid is given in this advice
adapted from Cygnus Support:

“In general, common sense (assuming such an animal exists) dictates the kind of in-
formation that would be most helpful in tracking down and resolving problems in soft-
ware.

• Include anythingyouwould want to know if you were looking at the report from
the other end. There’s no need to include every minute detailabout your envi-
ronment (users have been known to provide the values of everyvariable in their
environments), although anything that might be different from someone else’s
environment should be included (your path, for instance). Often we will want to
see the complete output (‘log file’) from the run.

• Narratives are often useful, given a certain degree of restraint. If a person re-
sponsible for a bug can see that A was executed, and then B and then C, knowing
that sequence of events might trigger the finding of an intermediate step that
was missing, or an extra step that might have changed the environment enough
to cause a visible problem. Again, restraint is always in order (“I set the build
running, went to get a cup of coffee (Columbian, cream but no sugar), talked to
Sheila on the phone, and then THIS happened. . . ”) but be sure to include any-
thing relevant. [It is sometime helpful to know what (scientifically) you were
hoping to do if this is unusual.]

• Richard Stallman writes, “The fundamental principle of reporting bugs usefully
is this: report all the facts. If you are not sure whether to state a fact or leave it
out, state it!” This holds true across all problem reportingsystems, for computer
software or social injustice or motorcycle maintenance. Itis especially important
in the software field due to the major differences seemingly insignificant changes
can make (a changed variable, a missing semicolon).

• Submit onlyoneproblem with each problem report. If you have multiple prob-
lems, use multiple reports. This aids in tracking each problem and also in
analysing the problems associated with a given program.”

The CCP4 manual

Chapter 13. Resources

Could you tell me, please, which way I ought to go from here?
— Alice’s Adventures in Wonderland

13.1 CCP4 Web Pages
The CCP4 Web Pages are located at:

http://www.ccp4.ac.uk

We now make extensive use of these pages, and this should be your first stop when
searching for information on CCP4 resources and activities.

13.2 Anonymous ftp
The CCP4 programs can be obtained from Daresbury via Internet anonymous ftp. It
should be noted, however, that this in no way relieves the enduser of the need to return a
licence agreement. (A copy can be found on the CCP4 website athttp://www.ccp4.ac.uk/ccp4license.h
Commercial users of CCP4mustobtain the right to access the source from CCP4 be-
fore any transfer takes place.
The current Internet address of this service isftp.ccp4.ac.uk [IP number 148.79.112.134].
Users should log in with the id ‘ftp’ or ‘anonymous’ and theire-mail address as pass-
word. The sub-directoryccp4 contains the relevant files. Transfers using this service
are logged.

The files are held as ‘compressed tar’ files to reduce the size of them. There are
several files described by aREADME.

A typical Unix ftp session may go as follows; not all output from ftp is shown, but
the general idea is given with your input slanted. (Yourftp command may have a
different interface.)

ftp ftp.ccp4.ac.uk
Connected to ftp.ccp4.ac.uk
Name : anonymous
Guest login ok, send your complete e-mail address as passwor d.
Password: d.love@dl.ac.uk

Welcome to the CCP4 ftp distribution service.
230 Guest login ok, access restrictions apply.
ftp> cd ccp4/current/linux
ftp> binary
ftp> get README —more
ftp> get ccp4-core.tar.gz
ftp> get phaser-cctbx.tar.gz
ftp> bye

You now need to uncompress and untar the files e.g.
cd $CCP4
tar xzf ccp4-core.tar.gz

13.3 Electronic mailing lists
13.3.1 The CCP4 Bulletin Board

The CCP4 Bulletin Board1 is intended to be a forum for discussion, to query aspects
of the CCP4 Program Suite, to publicise or announce meetings, etc., or to ask the
user community for help. It is not intended for bug reports which should be sent
to ccp4@dl.ac.uk . To send messages to and receive messages from the Bulletin

1‘Bulletin board’ is a historical misnomer—this is just an electronic mailing list.

The CCP4 manual 75

76 Resources

Board, you need to subscribe (see below). The address to sendmessages to the Bul-
letin Board isccp4bb@dl.ac.uk , and the system re-broadcasts these to the list of
subscribers.

13.3.2 The Bulletin Board Subscriber Service
In order for you to use the Bulletin Board, you must first inform the system that you
wish to subscribe to the list—subscriptions are handled by an automatic system. In its
simplest form send the messageSUBSCRIBE CCP4BBto: Majordomo@dl.ac.uk .

Note: take care with the address to manipulate your access to the list: a common
error is to send the message toccp4bb@dl.ac.uk , which results in the user com-
munity getting the message and no action taken by the system.

Messages toMajordomo@dl.ac.uk have blank lines ignored and all commands
are case-insensitive. Your e-mail address will be worked out by the server, but can be
changed with theRETURN-PATHcommand. To remove yourself from the list send
UNSUBSCRIBE CCP4BBto Majordomo@dl.ac.uk . If necessary, just sendHELP
for guidance.

13.3.3 The developers’ list
As well as the CCP4BB list, there is a list for people who consider themselves ‘develop-
ers’ of CCP4 code, on which policy is discussed, problems aired, fixes suggested, etc.
To subscribe, send a messageSUBSCRIBE CCP4-DEVto: Majordomo@dl.ac.uk .
The list itself isccp4-dev@dl.ac.uk .

13.3.4 Summary
Here is a summary of the relevant network addresses:

Majordomo@dl.ac.uk is for (un)subscribing to the CCP4BB and CCP4-DEV lists;
ccp4bb@dl.ac.uk is for broadcasting messages to the CCP4BB subscribers;
ccp4-dev@dl.ac.ukis for broadcasting messages to the ccp4-dev subscribers;
ccp4@dl.ac.uk is for contacting the Daresbury CCP4 staff for bug reports etc.;
ccp4a.dl.ac.uk is the address for retrieving files by anonymous ftp.

13.4 Other crystallographic software
Here is how to obtain some of the other crystallographic software mentioned herein but
not distributed by CCP4. Network references are given as Uniform Resource Locators.
A URL like ftp:// 〈site〉/ 〈directory〉 means anonymous ftp to〈directory〉 at 〈site〉.
Babel ftp://joplin.biosci.arizona.edu
BIOMOL ftp://rugcbc.chem.rug.nl/pub , <cfb@chem.rug.nl> ;
corels ftp://sgjs1.weizmann.ac.il/pub/corels ;
demon ftp://lccp.ibs.fr/dist/demon ; F.M.D. Vellieux

<vellieux@lccp.ibs.fr> ;
dssp Chris Sander<Sander@embl-heidelberg.de ;
FRODO/TOM <frodo-request@biochem.ualberta.ca>
madnes Jim Pflugrath<pflugrath@cshl.org> ;
madsys Bill Weis <weis@cuhhca.hhmi.columbia.edu> ;
merlot Paula Fitzgerald, Merck Sharp and Dohme Research Laborato-

ries, PO Box 2000, RY80M203, Rahway, New Jersey, USA 07065
<paula fitzgerald@merck.com> ;

molscript Per Kraulis,<per.kraulis@sto.pharmacia.se> ;
mosflm ftp://ftp.mrc-lmb.cam.ac.uk/pub ;
O, RAVE Alwyn Jones <alwyn@xray.bmc.uu.se> . See also

http://kaktus.kemi.aau.dk/ ;
PDB information http://www.rcsb.org , http://www.ebi.ac.uk/msd ;
PHASES W. Furey, VA Medical Center and University of Pittsburgh

<300531@vm2.cis.pitt.edu> ;
Photon Factory software (e.g.weis) ftp://pfweis.kek.jp ;
Protein W. Steigemann<steigema@biochem.mpg.de> ;
raster3D ftp://stanzi.bchem.washington.edu ;

The CCP4 manual

13.5 Crystallographic information/discussion 77

SHELX, PATSEE George Sheldrick, Institut für Anorganische Chemie, Universität
Göttingen, Tammannstr. 4, D–37077 Göttingen, Germany; fax +49–551–393373
<gsheldr@shelx.uni-ac.gwdg.de> ;

sftools ftp://mycroft.mmid.ualberta.ca ;
Turbo Frodo http://afmb.cnrs-mrs.fr/TURBO FRODO/turbo.html ;
X-PLOR Axel Brünger<xplor@laplace.csb.yale.edu> ;
Xtal Syd Hall<syd@crystal.uwa.edu.au>
XtalView <ccms-help@sdsc.edu>

13.5 Crystallographic information/discussion
‘Bionet’ provides a number of discussion/information forums by both e-mail and
network news (equivalently). The ‘bionet.xtallography’ group discusses protein
crystallography; there is also a network news group ‘sci.techniques.xtallography’.
The ‘jobs’ group might be of interest to some. For more information, e-mail
biosci-help@net.bio.net or (preferably) seehttp://www.bio.net/ .

The crystallography entry in the World Wide Web virtual library is at
http://www.unige.ch/crystal/crystal index.html .

WWW access to the BMCD crystallisation database is through
http://ibm4.carb.nist.gov:4400/bmcd/bmcd.html .

13.6 Sources of general free software
Sources of free2 software such as the GNU project distribution include the following
anonymous ftp sites at the time of writing:

Asia ftp.cs.titech.ac.jp, utsun.s.u-tokyo.ac.jp:ftpsync/prep, cair.kaist.ac.kr:pub/gnu;
Australia archie.oz.au:gnu (archie.oz or archie.oz.au for ACSnet);
Europe src.doc.ic.ac.uk:gnu, ftp.informatik.tu-muenchen.de,

ftp.informatik.rwth-aachen.de:pub/gnu, nic.funet.fi:pub/gnu, ugle.unit.no,
isy.liu.se, ftp.stacken.kth.se, ftp.win.tue.nl, ftp.denet.dk, ftp.eunet.ch,
nic.switch.ch:/mirror/gnu, archive.eu.net;

United States wuarchive.wustl.edu, ftp.cs.widener.edu, uxc.cso.uiuc.edu,
col.hp.com, gatekeeper.dec.com:pub/GNU, ftp.uu.net:systems/gnu.

These are probably mainly, but not solely, appropriate for Unix stuff.
Even if you acquire the GNU software by ftp, please consider making a donation

to the Free Software Foundation, e.g. by buying a tape or CD from them (CCP4 devel-
opment depends on GNU software). Their address is:

Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307
USA
+1-617-542-5942 (voice), +1-617-542-2652 (fax)gnu@gnu.org

To search for a particular program in the sites registered inthe system, get hold of
the invaluablearchie program. Usenet users might see also the FAQ posting for the
Usenet news group comp.sources.wanted and postings to news.answers.

There is free literature on the network too. A case in point is
http://www.Germany.EU.net/books/carroll/alice.html .

13.6.1 Free compilers
If your Unix system has an unbundled C compiler (i.e. one doesn’t come with the
system), you may be able to use GNUgcc and the GNU C libraries if you can get
binaries or bootstrap them on another system. If you want support, there are several
companies willing to sell it to you—see the distribution.

CCP4 will compile with (a suitably recent version of) the free f2c
compiler, so you don’t need a Fortran compiler either.f2c ’s home is
ftp://netlib.att.com:netlib/f2c but it’s available elsewhere. The latest

2as in ‘freedom’, not necessarily price

The CCP4 manual

78 Resources

version of the GNU Fortran compilerg77 will compile CCP4 with some effort, and
remaining problems should be ironed out soon.

The CCP4 manual

Part IV

Hackers’ bit

Chapter 14. Writing and contributing programs

“It’s my own invention”
— Through the Looking Glass

CCP4 is acollaborativeproject, and such collaboration is intended to encompass pro-
tein crystallographers anywhere. You’re encouraged to write new software or adapt
the CCP4 programs and donate the results to CCP4 for the benefit of the community.
Below are some guidelines for doing so. The current softwaremay not all obey these
guidelines for one reason or another, but do as we say, not as we do!

If you’re doing development work on the code you may want to join theccp4-dev
mailing list (§13.3.3).

14.1 General advice
Please, especially if you are writing new code, use the library routines where appropri-
ate. Using library routines has various advantages from thepoint of view of maintain-
ability, portability, consistency and (possibly) efficiency. Abstraction is your friend.If
you see the need for new facilities in the library, please letCCP4 know. The library
routines are (imperfectly) documented in the same place as the programs; if necessary
use the source.

14.2 Requirements for CCP4 code
The following conditions should be satisfied by code to be included in the suite. (We
are aware that not all the code in it currently fulfils these conditions, but . . .)
Language Most code is expected to be written inANSI standard FORTRAN77 (ANSI,

1978), although we’re prepared to accept some extensions which are in Fortran90
taken from (DOD, 1978), primarily long variable names, lower case, blockDO,
INCLUDEandIMPLICIT NONE. Don’t use:

• ! -style comments;
• * n qualifications on non-character declarations without goodreason,

like a serious need to save space—justINTEGER, REAL, DOUBLE
PRECISION, COMPLEXor LOGICALand noBYTE;

• system-specific subroutines (other than at the CCP4 librarylevel);
• CHARACTERvariables inCOMMONwith non-CHARACTER;
• non-standard ordering of declarations—DATAmust come last.
• FORMATstatements without all items (including line termination descrip-

tors) being separated by commas.
Besides ensuring portability, such restrictions allow us to use useful tools to
check and maintain the code.
C is also acceptable for non-numerical applications but discouraged for numeri-
cal ones. Code in the library should not depend onANSI C features since some
peoplestill have only ‘K&R’ C, but for non-library code they can be expected
to acquiregcc if necessary. Try to make CPOSIX.1-compliant (Zlotnik, 1991)
and fix it up for those systems without the relevant features.
If you have to use Pascal it will need to be a dialect that can begrokked byp2c
for translation to C.

Data formats Programs should use the standard data formats (§16) for reflexion, co-
ordinate and map data.

Initialisation Fortran programs should call the routineCCPFYPinitially, allowing one
to run them using the mechanism

〈program〉 hklin 〈file〉 hklout 〈file〉 ...

The CCP4 manual 81

82 Writing and contributing programs

Termination There should beno STOPstatements within the code; rather, call the
subroutineCCPERR. This has the form

CALL CCPERR(〈num〉, ’ 〈string〉’) ,

where〈num〉 is an exit value (0 for normal termination) and the〈string〉 is a
suitable message. Programs should terminate successfullywith the call

CALL CCPERR (0, ’Normal termination’)

Keywords wherever possible use the standard input keywords. Subroutines for han-
dling the input of the most common keywords are provided in the parser sub-
routine library (or, probably better, the higher-levelkeyparse library).

Logical names Where possible the logical names for file connexion should have stan-
dard values, as follows (see alsoenviron.def):
HKLIN Input reflexion file;
HKLOUT Output reflexion file;
XYZIN Input coordinate file;
XYZOUT Output coordinate file;
MAPIN Input map file;
MAPOUT Output map file.
TheDATAandPRINTERfiles for parameter input and log output, respectively,
are assumed to be preconnected, although it is good practiceto call CCPDPN
for them anyhow. If several files of one type are required thentheir file names
should be derived by adding numbers to the names given above,e.g.HKLIN1 ,
HKLIN2 .

File opening There should benoOPENstatements in Fortran code. Instead callCCPDPN
for general files, and appropriate library routines for the standard data formats.
This avoids problems with such things as VMSREADONLY.

Version printing A call to CCPRCSwill be inserted to output version information if
it is not present already.

MTZ history Programs which operate on MTZ files should use the subroutineLWHIST
to write a line of informational text to the history header, stating at least the pro-
gram name and the date on which it was run.

Documentation This should preferably be in HTML format. Plain text versions are
produced at Daresbury using thelynx browser, for viewing with editors or as
Unix ‘manpages’.

Output It is helpful to instrument the output forxloggraph (see its documentation).

14.3 Non-portable features
There are a number of things to be wary of if your Fortran code is to be portable and
thus acceptable to CCP4, in particular:

Uninitialised variables Don’t assume you can use variables that haven’t been as-
signed to or initialised inDATA;

Static allocation assumptionsDon’t assume that you can avoidSAVEwhere it is re-
quired by the Fortran standard, e.g. for local variables maintained between sub-
routine calls,DATAwhich are altered,COMMONnot declared inMAIN, varying-
lengthCOMMONblocks;

Assumptions about storage layoutDon’t assume any more about storage than the
standard dictates; you may not assume anything about the internal representation
of values of different types or detailed argument-passing conventions; any bit-
twiddling mustbe done with library routines;

Assumptions about arithmetic accuracyYou can’t assume either IEEE standard arith-
metic, or VAX-type arithmetic—use double precision if necessary.

Otherwise, you need to observe the items indexed under ‘restriction’ in the standard
(ANSI, 1978) such as on ‘association of entities’. Theftnchek program is useful
if your compiler is unhelpful about warning of non-standard/non-portable things (see

The CCP4 manual

14.4 Stealing code 83

PROGRAM〈name〉
〈declarations〉

C advertise the version:
CALL CCPRCS(LUNSTO(1), ’ 〈name〉’, ’$Date: 2006/02/05 16:53:41 $’)

C call the pre-processor:
CALL CCPFYP

C initialise the MTZ routines:
CALL MTZINI

C open input MTZ file:
CALL LROPEN(1, ’HKLIN’, ...)

C open input map file:
CALL MRDHDR(IN2, ’MAPIN’, ...)
...

C close the files
CALL LRCLOS(1)
CALL MRCLOS(IN2)
CALL CCPERR(0, ’Normal termination’)
END

Figure 14.1: Skeleton example CCP4 program using MTZ and mapfiles.

13.4). If ftnchek objects seriously to your code, we’ll want it fixed. The (free) Tool-
pack software is even more useful (or the commercial NAGwareTools development of
it).

14.4 Stealing code
There are many advantages to ‘stealing’ code from reputablesources, but make sure it
is freely-distributable and you acknowledge it as required. In particular, note that the
copyright conditions in Numerical Recipes(Presset al., 1986) prevent code from there
being used directly, and anyway, it is not well thought of by the experts. Free, solid
numerical code can be had in abundance from the ‘Netlib’ archives by Internet ftp or
mail-server.

14.5 Using the pre-processor in programs
To use the pre-processor in existing code, the only thing youneed to add to your code
is a call to the routineCCPFYPas the first executable statement in your program. This
routine performs all of the pre-processing. It should be called before any other CCP4
library routines.

14.6 Library modules
Here is a brief list of the modules in the CCP4 library. Documentation on them is
available, mostly as.doc files in thedoc directory.
ccplib contains various utility routines which are potentially machine-dependent. It

is built on VMS-specific code invms.for andvmsdiskio.for and Unix-
specific code inunix.m4 andlibrary.c (derived from the literate program
file library.nw);

diskio contains routines for random access to stream-mode files, but most of
the relevant code is actually inlibrary.c . The VMS version is in
vmsdiskio.for ;

fftlib crystallographicFFT routines;
keyparse a higher-level interface to theparser routines;
maplib for handling CCP4-style map data;
modlib fairly random collection of mainly numerical analysis routines;
mtzlib reflexion file handling;
parser processing free-format input containing ‘keywords’—it actually lexes more

than parses;

The CCP4 manual

84 Writing and contributing programs

plot84lib low-level graphics withPLOT84 metafiles;
plotsubs higher-level interface toPLOT84 (or, possibly, other) routines;
rwbrook for handling coordinate (PDB/Brookhaven) files;
symlib useful routines for handling symmetry operations.

The CCP4 manual

Chapter 15. Porting CCP4

CCP4 is currently maintained for various flavours of Unix andfor windows. It should
be straightforward to port it to anything else with a (reasonably tolerant) FORTRAN77
compiler, C (preferablyANSI C) andPOSIX.1 bindings for C (subject to the problems
noted in§15.2). A POSIX.2 environment will probably allow you to use the Unix
scripts. There should be nothing fundamentally preventingit running under other op-
erating systems, but there are undoubtedly would be some practical problems doing
this.

15.1 Portability features
There are several abstractions used to promote portabilityand implemented in the li-
brary (ccplib , diskio and the routines they call). These include

• Command line specification of file connexion by associating ‘logical names’
with file names;

• Calls hiding file opening specifics rather than using FortranOPEN—one of the
least portable Fortran features;

• Binary, seekable ‘stream files’;
• ‘Bit-twiddling’ routines for packing/unpacking, for instance, bytes to/from words;
• Access to some system services such as timing.

15.2 Fundamental operating system dependencies
Should you wish to undertake a port to a completely differentoperating system, to find
operating system dependencies (whichshouldbe confined to the basic library mod-
ules), the first thing to do would be to look for occurrences oftheVAXVMScall in the
Fortran code. This will mainly concern filing system things.Some possibilities for
assumptions which are made include:

• Hierarchical filing system with file names of the form〈foo〉.〈bar〉 and possibly
rather long;

• ASCII character set;
• 32-bit words, 8-bit bytes,not middle-endian.

It is definitely assumed that the system has environment variables (‘symbols’ or ‘logi-
cal names’ in VMS DCL) that can be read and set from programs—although the library
could implement its own dictionary mechanism instead—and that programs can inter-
rogate their command line.

15.3 Unix-flavour dependencies
Most of the flavour- and compiler-specific stuff should be confined to the low-level
routines defined inlibrary.c 1, binsortint.c , unix.m4 and the configuration
variables set in theconfigure script. For a new port the first thing to do try is to
run configure with argumentgeneric to generateMakefile s etc. with all the
defaults and see what you need to change. One thing youwill need to find out is what
your compiler’s conventions are for calling C from Fortran and make the appropriate
edits tolibrary.c andbinsortint.c . If the number representation of your ar-
chitecture isn’t picked up correctly by thelibrary.c code, you may need to alter
that. If you’re lucky, this will be the same as one of the existing conventions and you
won’t have to do much editing. You may be able to guess other configuration param-
eters from existing ports or by trying first withconfigure generic . Edit a new

1This is not meant to be readable. It’s derived from theliterate program—check out
comp.prog.literate —in the file library.nw , which can be used directly if you have thenoweb
tools mentioned in the code. It’s done that way to be more maintainable at Daresbury.

The CCP4 manual 85

86 Porting CCP4

the target intoconfigure and try to run it and use the configuration tomake test
at the top level. When you’ve got that working, allshouldbe OK; try it out, e.g. on the
data in theexamples/toxd directory.

It’s worthwhile contacting the CCP4 staff before starting any porting work, for your
benefit and ours.

The CCP4 manual

Chapter 16. File formats

The information below about the format of reflexion, map and coordinate files is not
normally required since libraries are provided for handling files in these formats. In-
formation is stored in the headers of MTZ and map files to allowtransparent reading
on architectures other than that on which a file was written (see§3.6). For details of
the ‘na4’ASCII exchange format for.mtz and.map files, see the documentation and
code for the programmtztona4 . The obsoleteLCF format for reflexion files is only
relevant for converting old datasets—see thelcflib code.

The file formats are binary. We don’t subscribe to the school of thought which
advocates text-only files in this case of large amounts of floating point data, although
they are a good idea in other cases. There are two basic reasons:

• Clear text files are substantially larger and consequently take more time to read
from disc even if the decoding is relatively cheap and space isn’t a consideration.
An efficient text encoding such as NA4 presumably defeats theobject or clarity;

• With clear text you can’t (in general) preserve bit patternson reading and writing
and may lose accuracy, particularly on repeated i/o—consider 100 iterations.
You’re anyway probably at the mercy of the compiler’s i/o library which may
well not use the optimal algorithms for text↔binary conversion anyhow.

16.1 Reflexions (MTZ)
The MTZ1 reflexion file format uses fixed length records with, in general, four bytes for
each data item (REAL*4), with a minimum of 3 columns and currently a maximum of
200 columns of data per record—though these limits are imposed only by the software
parameters. Additional information (title, cell dimensions, column labels, symmetry
information, resolution range, history information and, if necessary, batch titles and
orientation data) is contained in labelled header records.The columns of the reflexion
data records are identified by alphanumeric labels held as part of the file header in-
formation.2 The user relates the item names used by the program to the required data
items, as identified by the labels, by means of assignment statements in the program
control data.

The file contains basically two classes of records—header records and reflexion
data records. A standard reflexion data file contains the following items, in the order
given. Not necessarily all items have to be present.

• MTZ identification record, containing the ‘machine stamp’ encoding the number
formats of the architecture it was written on as a full word atbyte 8 from the start
of the file;

• Reflexion data: columns of data held as REAL*4;
• A beginning of header record;
• A set of keyworded records containing;

VERS Version stamp (Character*10, currentlyMTZ:V1.1)
TITLE File Title—short identification of file (Character*70)
NCOL number of columns, number of reflexions in file, number of batches

(Integer). If the number of batches> 0 this indicates a multi-record file.
CELL Cell Parameters (Real(6))
SORT Sort order of 1st 5 columns in file (Integer(5))

1MTZ’s Terribly Zany, but Means Tilde Zero—Mc Claughlin, Terry and Zelinka were its progenitors.
2This may bring to mind ‘tables’ or ‘relations’ in relationaldatabases—intentionally so. The model for

an MTZ file is two relations, one (the header) keyed on keywords such asSYMMETRY, the other (comprising
the reflexions) keyed on theH, K andL attributes/columns. This formalism has been largely forgotten, but
clarifies some things, particularly operations inmtzutils (or a replacement) which should implement
some of relational calculus.

The CCP4 manual 87

88 File formats

SYMINF Number of Symmetry operations (Integer); Number of Primitive op-
erations (Integer); Lattice Type (Character*1); Space Group Number (In-
teger); Space Group Name (Character*10); Point Group Name (Charac-
ter*10).

SYMM Symmetry operations in International Tables style
RESO Minimum (smallest number) and maximum (largest number) resolution

stored as 1/d2 (Real(2))
VALM Value with which Missing Number Flag is represented.
COL Column Label (Character*30); Column Type (Character*1) for each col-

umn; Minimum and Maximum value in each column (Real); ID of corre-
sponding dataset (Integer)

NDIF Number of datasets represented in the file.
PROJECT ID of dataset (Integer); Project Name (Character*64). Normally

one for each structure determination.
DATASET ID of dataset (Integer); Dataset Name (Character*64). May be sev-

eral for each structure determination, e.g. for different crystals or deriva-
tives.

DCELL Cell dimensions for a particular dataset. (Real(6))
DWAVEL Wavelength for a particular dataset (useful e.g. for MAD). (Real)
BATCH Batch Serial Number for each batch present (Integer). This line is not

present if number of batches is 0.
• END of main header card;
• Up to 30 Character*80 lines containing history information;
• For multi-record files: Batch title (Character*70) and (optionally) orientation

data for each batch present in the file;
• End of all headers record.

N.b. Column Types are an extra check that the user input assignment for a requested
program label is of the correct type.

Normally the Miller indices will be in the first three columns, though in the defi-
nition of the format there is no restriction on the use of the columns of the reflexion
data records. However, the subroutines which output the MTZheader information in a
formatted way presume that the first 3 columns of a standard MTZ file are the Miller
Indices, and the first 5 columns of a multi-record MTZ file are H, K, L, M/ISYM and
Batch number.

16.1.1 Orientation data
The orientation block contains values of the orientation parameters, constraint flags for
cell parameters, and the relative scale and temperature factor to put this batch on the
same scale as the reference intensity:

1. Six cell dimensions (̊Angström and degrees, real numbers). These define an
orthogonalization matrixB to convert indiceshkl to Cartesian crystal axesxyz.

x = Bh

B =

a∗ b∗ cosγ∗ c∗ cosβ∗

0 b∗ sinγ∗ −c∗sinβ∗cosα
0 0 λ/c

This givesx parallel toa∗, andy in thea∗b∗ plane.
2. Six cell dimension flags (integer) defining which parameters may be varied.

−1 parameter is freely variable;
0 parameter is fixed (i.e. cell angle= 90◦ or 120◦);
i > 0 parameter is constrained to have the same value as parameter numberi.

3. Orthonormal matrixU (9 real numbers in orderU11,U12,U13,U21 etc.) to ro-
tate the crystal Cartesian coordinates to the camera Cartesian coordinates. The
idxref matrix isA = UB. The matrixU defines a standard orientation, and is
a function of the mounting axis and the axis defined asφ = 0, but it is not depen-
dent on the misorientation angles. Typically,U will be a permutation matrix.

The CCP4 manual

16.1.2 Standard column names and types 89

4. the ‘mounting’ axis, as defined foroscgen (1,2,3 for h,k, l)
5. Six misorientation angles, rotation axis mis-setting (six real numbers):φx1,φy1,φz1,φx2,φy2,φz2.

The first three refer to the orientation at the beginning of the rotation range (at
φstart), the second threeφ angles (if present) refer to to the end of the rotation
range (atφend). The second set should be set equal to the first set if no crystal
slippage is assumed.

6. Start and stop rotation angles, and range ofφ values (3 real numbers)φstart, φend,
φrange.

7. Crystal mosaicity in degrees.
8. λ,δλ/λ, correlated dispersion.
9. Scale and temperature factors for this batch (fromscala etc.). The correction

to be applied is
scaleexp(−2B(sinθ/λ)2). (16.1)

16.1.2 Standard column names and types
Standard names are normally used for the items as in fig. 16.1.The column types are
as follows:

H indexh,k, l
J intensity
F structure amplitudeF
D anomalous difference
Q standard deviation of anything: J,F,D or other
G structure amplitude associated with one member of an hkl -h-k-l pair, F(+) or F(-)
L standard deviation of a column of type G
K intensity associated with one member of an hkl -h-k-l pair,I(+) or I(-)
M standard deviation of a column of type K
P phase angle in degrees
W weight (of some sort)
A phase probability coefficients (Hendrickson/Lattman)
B BATCH number
Y M/ISYM, packed partial/reject flag and symmetry number
I any other integer
R any other real

16.1.3 Missing Data Treatment
In a typical series of diffraction experiments, not all Bragg reflexions for a given
resolution range are in fact recorded. Hence, aftertruncate some reflexion data
records may be entirely missing from the MTZ file, although the reflexion indices lie
within the measured resolution range. It is strongly recommended that index sets are
made complete within the desired resolution range — a scriptto do this is provided in
$CETC/uniqueify . The MTZ file will then contain records where there are indices
but no measured data e.g.:

0 0 2 MD MD
0 0 4 517.0 23.0
0 0 6 1567.0 57.0

.

This means that it is easy to estimate completeness and laterprograms can “restore”
values if possible. Furthermore, a particular reflexion maybe recorded for the native
protein but not for a derivative, and the corresponding combined reflexion data record
should indicate “missing data” for the derivative.

To-date, missing data has been indicated in a variety of ways. For example, a zero
standard deviation is taken to mean that the corresponding datum (e.g. structure factor
amplitude) is missing. In all cases, however, the indicatoris a number upon which
arithmetic operations can (erroneously) be performed. This convention has now been
discarded in favour of representing missing data as specialvalues, namely IEEE NaN
or VMS Rop. All relevant programs check for the presence of NaNs or Rops in input

The CCP4 manual

90 File formats

Name Type Item
H, K, L H Miller indices.

IC I Centric flag, 0 for centric, 1 for acentric.
M/ISYM Y Partiality flag and symmetry numbera

BATCH B Batch number.

I J IntensityI .
I’ J Selected mean intensity.
SIGI Q σI (standard deviation).
SIGI’ Q σI ′.

FRACTIONCALC R Calculated partial fraction of spot.

IMEAN J Mean intensity.
SIGIMEAN Q σImean.

FP F NativeF value.
FC F CalculatedF .
FPHn F F value for derivativen.

DP D Anomalous difference for native data (F+−F−).
DPHn D Anomalous difference for derivativen.

SIGFP Q σFP (standard deviation).
SIGDP Q σDP.
SIGFPHn Q σFn.
SIGDPHn Q σDPHn.

PHIC P Calculated phase.
PHIM P Most probable phase.
PHIB P Phase.

FOM W figure of merit.
WT W weight

HLA, HLB, HLC, HLD A ABCDH/L coefficients

FREE W freeR flag (as program label)
FreeRflag W freeR flag (as file label)

a256M + Isym whereM is the partiality flag (0 for full, 1 for partial) and the ‘symmetry number’Isym is
normally 0 (withF = (F+−F−)/2 for anomalous data with both components measured) but is 1 if F = F+

or 2 for F = F−.

Figure 16.1: MTZ standard column labels and types (16.1.2).

The CCP4 manual

16.2 Maps 91

MTZ files, and take appropriate action. In particular, when displaying MTZ files using
the programmtzdump (or the script $CETC/mtzdmp) missing data can be identified
and are subsequently represented in the output in an unambiguous manner. Currently,
missing data are given the value 1.E30 which should be representable on all boxes, but
which will overflow the format such that the output field is filled with asterisks.

All programs will now output NaNs or Rops where appropriate.Where such values
occur in an input MTZ file, they will be carried through to the output. Alternatively,
NaNs or Rops may be generated when for some reason no value canbe calculated for
a particular reflection and column.

A new programmtzmnf has been provided to convert old-style MTZ files to the
new convention. This program relies on being able to identify “missing data”, and to
this end the following cases are checked:

(a) If SIGF= 0.0 then SIGF and the corresponding F (and D/SIGD if present) are
replaced by NaN or Rop.

(b) If SIGI= 0.0 then SIGI and the corresponding I are replaced by NaN or Rop.

(c) If SIGD= 0.0 and the reflection is acentricthen SIGD and the corresponding D are
replaced by NaN or Rop.

(d) If the weight WT= 0.0 then PHIB, WT and the corresponding Hendrickson-Lattman
coefficients A, B, C, D (if present) are replaced by NaN or Rop.

(e) If the calculated structure factor FC= 0.0 then FC and PHIC are replaced by NaN
or Rop.

As a safety feature, only columns which are explicitly specified in the input tomtzmnf
are converted. Old-style MTZ files may still be used with all CCP4 programs, and old-
style checks on missing data remain in place (occurring after the check for a NaN or
Rop). However, new data sets, completed with $CETC/uniqueify and combined
with cad , should automatically include the necessary NaN and Rop entries.

16.2 Maps
The electron density map format was devised by Phil Evans. Itcan also be used for
envelopes and images. Maps are stored in a randomly-accessible binary file as a 3-
dimensional array preceded by a header which contains all the necessary information
about the map. The header is organised as 56 words followed byspace for ten 80 char-
acter text labels, as in fig. 16.2. Maps are structured as a number ofsectionseach con-
taining a (fixed) number of rows and each row contains a (fixed)number of columns.

16.3 Coordinates
The standard format adopted for coordinate data is that usedin the Brookhaven Protein
Data Bank3. The programs of the suite will handle either complete files or files con-
taining only a subset of the types of record which may be present in a complete file. In
particular the records containing the coordinate data (ATOMor HETATMrecords) are of
interest. ThesePDB file records have the structure shown in fig 16.3. The Protein Data
Bank provides a full description of the complete format (see§13.4).

A typical Fortran format for reading such records (as indicated by the third column
of fig. 16.3) is

(A6,I5,1X,A4,A1,A3,1X,A1,I4,A1,3X,3F8.3,2F6.2,1X,I3).

The standard setting of the orthogonal axes for the Brookhaven format is:

x ‖ a y ‖ c∗×a z‖ c∗.

The suite assumes these settings if theSCALEcards are not present in a coordinate file.

3This format will eventually be replaced by the new macromolecular CIF format.

The CCP4 manual

92 File formats

1 NC number of columns (fastest changing in map)
2 NR number of rows
3 NS number of sections (slowest changing in map)
4 MODE Data type:

0 envelope stored as signed (8-bit) bytes (in the range−128 – 127);
the convention is that values6=0 are ‘true’ (within the mask)
although masks should normally only comprise values of 0
and 1.

1 image stored as (16-bit) half-words

2 image stored as (32-bit) reals

3 transform stored as complex 16-bit integers

4 transform stored as complex 32-bit reals

Note: Mode 2 is the normal one used in CCP4 programs for maps
and mode 0 is used for ‘masks’; others haven’t been tested recently
and may not work.

5 NCstart Number of first column in map
6 NRstart Number of first row in map
7 NSstart Number of first section in map
8 Nx Number of intervals alongx
9 Ny Number of intervals alongy

10 Nz Number of intervals alongZ
11–13 x,y,z Cell dimensions (̊A)
14–16 α,β,γ Cell angles (degrees)

17 MAPC Which axis corresponds to cols. (1, 2, 3 for X, Y, Z)
18 MAPR Which axis corresponds to rows (1, 2, 3 for X, Y, Z)
19 MAPS Which axis corresponds to sects. (1, 2, 3 for X, Y, Z)
20 Amin Minimum density value
21 Amax Maximum density value
22 Amean Mean density value (Average)
23 ISPG Space group number
24 Nsymbt Number of bytes used for storing symmetry operators
25 LSKFLG Flag for skew transformation, =0 none, =1 if foll

26–34 SKWMAT Skew matrixS(in orderS11, S12, S13, S21 etc.) if LSKFLG6=0.
35–37 SKWTRN Skew translationt if LSKFLG 6=0. Skew transformation is from

standard orthogonal coordinate frame (as used for atoms) toorthog-
onal map frame, asX0(map) = S(X0(atoms)− t)

38–52 future use Some of these are used by the MSUBSX routinesin mapbrick ,
mapcont andfrodo . (All set to zero by default.)

53 MAP Character string ‘MAP ’ to identify file type
54 MACHST machine type stamp, as for MTZ files.
55 ARMS Rms deviation of map from mean density
56 NLABL Number of labels being used

57-256 LABEL(20,10) 10 80 character text labels (i.e. A4 format)

Symmetry records—if any—follow, stored as text as in International Tables, operators separated
by *x and grouped into ‘lines’ of 80 characters (i.e., symmetry operators do not cross the ends
of the 80-character ‘lines’ and the ‘lines’ do not terminatein a *).
Binary data follow as a byte-stream.

Figure 16.2: Map file format

The CCP4 manual

16.4 PLOT84 graphics files 93

Field # Column Fortran
(range) format Description

1 1–6 A6 Record ID (e.g.,atom , hetatm)
2 7–11 I5 Atom serial number

(residues in order beginning with amino
terminus)

– 12 1X Blank
3a 13–14 A2 Chemical symbol, right justified, e.g., ‘N’
3b 15 A1 Remoteness indicator e.g.,D
3c 16 A1 Branch descriptor e.g.,1
4 17 A1 Alternative location indicator (if any)
5 18–20 A3 Standard 3-letter amino acid code for residue
– 21 1X Blank
6 22 A1 Chain identifier
7 23–26 I4 Residue sequence number
8 27 A1 Code for insertion of residue (if any)
– 28–30 3X Blank
9 31–38 F8.3 Atom’s x-coordinate (̊A)

10 39–46 F8.3 Atom’s y-coordinate (̊A)
11 47–54 F8.3 Atom’s z-coordinate (̊A)
12 55–60 F6.2 Occupancy value for atom
13 61–66 F6.2 B (temperature factor)
– 67 1X Blank

14 68–70 I3 Footnote number

Figure 16.3:PDB file coordinate record format.

16.4 PLOT84 graphics files
CCP4 currently uses a homegrown graphics metafile format called PLOT84, imple-
mented by the routines inplot84lib . Its format might be relevant if you wanted to
write a driver for a different graphics device, in which casesee existing programs like
pltdev as an example or consult the documentation indoc/plot84.doc .

16.5 Library data files
Various data files used by the library routines and specific programs live in the $CLIBD
directory:

font84.ascii data for creating the binary PLOT84 font file in $CCP4LIB with
fontpack —see the PLOT84 code and documentation;

atomsf.lib, atomsf neutron.lib X-ray and neutron formfactors for every
known atom (forsfall).

See documentation/code for the programs mentioned for further information.

16.5.1 Symmetry operators: syminfo.lib

Contains symmetry operators for the 230 spacegroups listedin (and following the con-
ventions of) (Hahn, 1992) (‘IT’) and non-standard settingsused by various CCP4 pro-
grams. Each space group has a header line comprising space-separated values of:

• Spacegroup number;
• Number of lines of symmetry equivalents (‘positions’ in IT)(n);
• Number of lines of primitive equivalents (p);
• Spacegroup ‘short’ name; subscripts are typed as-is and a prefix ‘-’ represents

an overbar, e.g.P21/m ≡ P21/m, P-1 ≡ P1;
• Point group name; the IT name is prefixed byPG; contrary to the spacegroup

name convention, an overbar is represented by a trailingbar , e.g.PG4bar3m;
• Crystal system;
• Possible comments about non-standard settings etc.

The CCP4 manual

94 File formats

Following the header aren lines of symmetry equivalents, of which the firstp are the
primitive ones.

Layout is such that:
• The symmetry operator lines are limited to 80 characters;
• The elements of operator triplets are separated by commas, and triplets are sep-

arated by* or newline.; the translations may be before or after the coordinate,
e.g.1/2+X or X+1/2 ;

• The header lines should start in the first column and the otherlines be indented
(for ease of locating the headers).

The CCP4 manual

Part V

Appendices

References

A. T. Brünger. 1995. The freeRValue: A More Objective Statistic for Crystallography.
Methods in Enzym.

ANSI. 1978.American National Standard Programming Language FORTRAN. Amer-
ican National Standards Institute, Inc.

Baker, D., Bystroff, C., Fletterick, R. J., & Agard, D. A. 1994. Acta Cryst., D49.
Blow, D. M. 1958.Proc. Roy. Soc., A247, 302.
Blow, D. M., & Crick, F. H. C. 1959.Acta Cryst., 12, 794–802.
Blow, D. M., & Rossmann, M. G. 1961. The Single Isomorphous Replacement

Method.Acta Cryst., 14, 1195–1202.
Blundell, T. L., & Johnson, L. N. 1976.Protein Crystallography. London: Academic

Press.
Bricogne, G. 1974. Geometric Sources of Redundancy in Intensity Data and Their Use

for Phase Determination.Acta Cryst., A30, 395–405.
Bricogne, G. 1991. A maximum-likelihood theory of heavy-atom parameter refinement

in the isomorphous replacement method.In: (Wolf et al., 1991).
Brünger, A. T. 1992. The FreeR value: a Novel Statistical Quantity for Assessing the

Accuracy of Crystal Structures.Nature, 355, 472–474.
Castellano, E. E., Oliva, G., & Navaza, J. Fast Rigid-Body Refinement for Molecular-

Replacement Techniques.
Collaborative Computational Project, Number 4. 1994. The CCP4 Suite: Programs for

Protein Crystallography.Acta Cryst., D50, 760–763.
Cowtan, K. D., & Main, P. 1993. Improvement of Macromolecular Electron-Density

Maps by the Simultaneous Application of Real and ReciprocalSpace Constraints.
Acta Cryst., D49, 148–157.

Crick, F. H. C., & Magdoff, B. S. 1956. The Theory of the Methodof Isomorphous
Replacement for Protein Crystals. I.Acta Cryst., 9, 901.

Crowther, R. A. 1972. The Fast Rotation Function.Pages 173–178 of:Rossmann,
M. G. (ed),The Molecular Replacement Method. Int. Sci. Rev. Ser., no. 13. New
York: Gordon and Breach.

Crowther, R. A., & Blow, D. M. 1967. A Method of Positioning a Known Molecule in
an Unknown Crystal Structure.Acta Cryst., 23, 544–548.

Cullis, A. F., H., H. Muirhead, Perutz, M. F., Rossmann, M. G., & North, A. C. T.
1961.Proc. Roy. Soc. A, 265, 15.

Dickerson, R. E., Kendrew, J. C., & Strandberg, B. E. 1961. The Crystal Structure
of Myoglobin: Phase Determination to a Resolution of 2Å by the Method of
Isomorphous Replacement.Acta Cryst., 14, 1188.

DOD. 1978. Military Standard, Fortran, DOD Supplement to American Standard
X3.9–1978, MIL–STD–1793. US Government Printing Office.

Dodson, E. J. 1976. A Comparison of Different Heavy Atom Refinement Procedures.
Pages 259–268 of:Ahmed, F. R. (ed),Crystallographic Computing Techniques.
Copenhagen: Munksgaard.

Dodson, E. J., Evans, P. R., & French, S. 1975.Pages 423–436 of:Ramaseshan, S., &
Abramson, S. C. (eds),Anomalous Scattering. Copenhagen: Munksgaard.

Dodson, E. J., Gover, S., & Wolf, W. (eds). 1992.Molecular Replacement. CCP4
Daresbury Study Weekend, nos. DL/SCI/R33, ISSN 0144–5677.Warrington
WA4 4AD, UK: Daresbury Laboratory, for Daresbury Laboratory.

Dodson, E. J., Moore, M., & Bailey, S. (eds). 1996.Macromolecular Refinement. CCP4
Daresbury Study Weekend. Warrington WA4 4AD, UK: DaresburyLaboratory,
for Daresbury Laboratory.

Drenth, Jan. 1994.Principles of Protein X-ray Crystallography. Springer–Verlag.

The CCP4 manual 97

98

Driessen, H., Haneef, M. I. J., Harris, G. W., Howlin, B., Khan, G., & Moss, D. S.
1989.J. Appl. Cryst., 22, 510–516.

Driessen, Huub P. C., & Tickle, Ian J. 1994. The use of normalised amplitudes in the
Rotation Function.Joint CCP4 and ESF–EACBM Newsletter on Protein Crystal-
lography, June.

Engh, R. A., & Huber, R. 1991. Accurate bond and angle parameters for X-ray protein
structure refinement.Acta Cryst., A47, 392–400.

Fan, Hai-Fu, Hao, Quan, & Woolfson, M. M. 1990. On the Application of One-
Wavelength Anomalous Scattering. II An Analytical Approach for Phase Deter-
mination.Acta Cryst., A46, 659–664.

Fitzgerald, P. M. D. 1988. MERLOT, n Integrated Package of Computer Programs
for the Determination of Crystal Structures by Molecular Replacement.J. Appl.
Cryst., 21, 273–281.

French, G. S., & Wilson, K. S. 1978.Acta Cryst., A34, 517.
Germain, G., Main, P., & Woolfson, M. M. 1970.Acta Cryst., B26, 274–285.
Giacovazzo, C., Monaco, H.L., & Viterbo, B. 1992.Fundamentals of Crystallography.

International Union of Crystallography Texts on Crystallocraphy. Oxford.
Glusker, J. P., & Trueblood, K.N. 1985.Crystal structure analysis: a primer. Second

edn. Oxford University Press.
Goodfellow, J., Henrick, K., & Hubbard, R. (eds). 1989.Molecular Simulation and

Protein Crystallography. CCP4 Daresbury Study Weekend, nos. DL/SCI/R27,
ISSN 0144–5677. Warrington WA4 4AD, UK: Daresbury Laboratory, for Dares-
bury Laboratory.

Green, D. W., Ingram, V. M., & Perutz, M. F. 1954.Proc. Roy. Soc. A, 225, 287.
Hahn, Theo (ed). 1992.International Tables for Crystallography. third edn. Vol. A.

Kluwer.
Hao, Quan, & Woolfson, M. M. 1989. Application of the Ps-function Method to

Macromolecular Structure Determination.Acta Cryst., A45, 794–797.
Harada, Y., Lifchitz, A., Berthou, J., & Jolles, P. 1981. A Translation Function Com-

bining Packing and Diffraction Information: An Application to Lysozyme (High-
Temperature Form).Acta Cryst., A37, 398–406.

Harker, D. 1956.Acta Cryst., 9, 1.
Hayward, S., & Berendsen, H. J. C. 1998. Systematic Analysisof Domain Motions in

Proteins from Conformational Change; New Results on Citrate Synthase and T4
Lysozyme.Proteins, Structure, Function and Genetics, 30, 144.

Helliwell, J. R., Machin, P. A., & Papiz, M. Z. (eds). 1987.Computational As-
pects of Protein Crystal Data Analysis. CCP4 Daresbury Study Weekend, nos.
DL/SCI/R25, ISSN 0144–5677. Warrington WA4 4AD, UK: Daresbury Labora-
tory, for Daresbury Laboratory.

Hendrickson, W. A. 1991. Determination of Macromolecular Structures from Anoma-
lous Diffraction of Synchrotron Radiation.Science, 254, 51–58.

Hendrickson, W. A., & Lattman, E. E. 1970. Representation ofPhase Probability
Distributions for Simplified Combination of Independent Phase Informaton.Acta
Cryst., B26, 136–143.

Jones, Geraint. 1989.Deriving the fast Fourier algorithm by calculation. Technical
report TR-4-89. Oxford University Programming Research Group.

Jones, T. A., Zou, J-Y., Cowan, S. W., & Kjeldgaard, M. 1991. Improved Methods for
Building Protein Models in Electron Density Maps and the Location of Errors in
these Models.Acta Cryst., A47, 110–119.

Kabsch, W. 1976. A Solution for the Best Rotation to Relate Two Sets of Vectors.Acta
Cryst., A32, 922–923.

Kabsch, W. 1988. Evaluation of Single-Crystal X-ray Diffraction Data from a Position-
Sensitive Detector.J. Appl. Cryst., 21, 916–924.

Kabsch, W., & Sander, C. 1983. Dictionary of protein secondary structure: pat-
tern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22,
2577–2637.

The CCP4 manual

99

Kartha, G., & Partharasarathy, R. 1965. Combination of Multiple Isomorphous Re-
placement and Anomalous Dispersion Data for Protein Structure Determination.
I. Determination of heavy-Atom Positions in Protein Derivatives.Acta Cryst., 18,
745.

Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., & Phillips, D. C.
1958. A Three-dimensional Model of the Myoglobin Molecule Obtained by X-ray
Analysis.Nature (London), 181, 662–666.

Kleywegt, G. J., & Jones, T. A. 1996a.Acta Cryst., D52, 826–828.
Kleywegt, G. J., & Jones, T. A. 1996b. Efficient Rebuilding ofProtein Structures.Acta

Cryst., D52, 829–832.
Kraulis, P. 1991. MOLSCRIPT: a Program to Produce Both Detailed and Schematic

Plot of Protein Structures.J. Appl. Cryst., 24, 946–950.
Kraut, J., Sieker, L. C., High, D. F., & Freer, S. T. 1962. Chymotrypsinogen: a Three-

dimensional Fourier Syntheis at 5Å Resolution.Proc. Nat. Acad. Sci., 48, 1417–
1424.

Lamzin, Victor S., & Wilson, Keith S. 1992. Automated Refinement Procedure.In:
(Dodsonet al., 1992).

Laskowski, R. A., Arthur, M. W. Mac, Moss, D. S., & Thornton, J. M. 1993.
PROCHECK: a program to check the stereochemical quality of protein structures.
J. Appl. Cryst., 283–291.

Lattman, E. E., & Love, W. E. 1970. A Rotational Search Procedure for Detecting a
Known Molecule in a Crystal.Acta Cryst., B26, 1854–1857.

Leslie, A. G. W. 1988. A Reciprocal Space Algorithm for Calculating Molecular Enve-
lope using the Algorithm of B. C. Wang. CCP4 Daresbury Study Weekend, nos.
DL/SCI/R26, ISSN 0144–5677. Warrington WA4 4AD, UK: Daresbury Labora-
tory, for Daresbury Laboratory.

Luger, Peter. 1980.Modern X-ray Analysis on Single Crystals. Berlin, New York:
Walter de Gruyter.

Machin, P. A. (ed). 1985.Molecular Replacement. CCP4 Daresbury Study Week-
end, nos. DL/SCI/R23, ISSN 0144–5677. Warrington WA4 4AD, UK: Daresbury
Laboratory, for Daresbury Laboratory.

Machin, P. A., Campbell, J. W., & Elder, M. (eds). 1980.Refinement of Protein Struc-
tures. CCP4 Daresbury Study Weekend, nos. DL/SCI/R16, ISSN 0144–5677.
Warrington WA4 4AD, UK: Daresbury Laboratory, for Daresbury Laboratory.

Matthews, B. W. 1966. The Determination of the Position of Anomalously Scattering
Heavy Atom Groups in Protein Crystals.Acta Cryst., 20, 230.

Matthews, B. W. 1968. The Solvent Content of Protein Crystals. J. Mol. Biol., 33,
491–497.

Mc Ree, Duncan E. 1993.Practical protein crystallography. Academic Press.
Mukherjee, A. K., Helliwell, J. R., & Main, P. 1989. The use ofMULTAN to Locate

the Positions of Anomalous Scatterers.Acta Cryst., A45, 715–718.
Murshudov, G. N., Vagin, A. A., & Dodson, E. J. 1997. Refinement of Macromolecular

Structures by the Maximum-Likelihood Method.Acta Cryst., D53, 240–253.
Navaza, J. 1993. On the Computation of the Fast Rotation Function. Acta Cryst., D49,

588–591.
Navaza, J. 1994. AMoRe: an Automated Package for Molecular Replacement.Acta

Cryst., A50, 157–163.
Otwinowski, Zbyszek. 1991. Maximum likelihood refinement of heavy atom parame-

ters. In: (Wolf et al., 1991).
Otwinowski, Zbyszek. 1993. Oscillation data reduction program. In: (Sawyeret al.,

1993).
Perutz, M. F. 1956. Isomorphous Replacement and Phase Determination in Non-

centrosymmetric Space Groups.Acta Cryst., 9, 867.
Perutz, Max. 1992.Protein structure: new approaches to disease and therapy. New

York: W.H. Freeman and Co.

The CCP4 manual

100

Podjarny, A.D., Bhat, T.N., & Zwick, M. 1987. Improving Crystallographic Macro-
molecular Images: the Real-space Approach.Ann. Rev. Biophys. Biophys. Chem.,
16, 351–373.

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1986. Numerical
Recipes: The Art of Scientific Computing. Cambridge Scientific Press.

Priestle, John P. 1988. RIBBON: a stereo cartoon drawing program for proteins.J.
Appl. Cryst., 21, 572–576.

Ralph, A. C., & Woolfson, M. M. 1991. On the Application of One-Wavelength
Anomalous Scattering. III The Wilson and MPS Method.Acta Cryst., A47, 533–
537.

Raymond, Eric (ed). 1993.The New Hacker’s Dictionary. Second edn. MIT Press.
Read, R. J. 1986. Improved Fourier Coefficients for Maps Using Phases from Partial

Structures with Errors.Acta Cryst., A42, 140–149.
Read, R. J. 1991. Dealing with imperfect isomorphism in multiple isomorphous re-

placement.In: (Wolf et al., 1991).
Rhodes, Gale. 1993.Crystallography Made Crystal Clear: A Guide for Users of

Macromolecular Models. San Diego; London: Academic Press.
Rossmann, M. G. 1960. The Accurate Determination of the Position and Shape of

Heavy-Atom Replacement Groups in Proteins.Acta Cryst., 13, 221.
Rossmann, M. G. 1961. The Position of Anomalous Scatterers in Protein Crystals.

Acta Cryst., 14, 383–388.
Rossmann, M. G., Arnold, E., & Vriend, G. 1986. Comparison ofVector Search and

Feedback Methods for Finding Heavy-Atom Sites in Isomorphous Derivatives.
Acta Cryst., A42, 325–334.

Sawyer, L., Isaacs, N., & Bailey, S. (eds). 1993.Data Collection and Processing.
CCP4 Daresbury Study Weekend, nos. DL/SCI/R34, ISSN 0144–5677. Warring-
ton WA4 4AD, UK: Daresbury Laboratory, for Daresbury Laboratory.

Sheldrick, G. M. 1991. Heavy atom location using SHELXS-90.In: (Wolf et al.,
1991).

Singh, A. K., & Ramaseshan, S. 1966. The Determination of Heavy Atom Positions in
Protein Derivatives.Acta Cryst., 21, 279–280.

Smith, David, & Howell, Lin. 1992. Identification of Heavy-atom Derivatives by Nor-
mal Probability Methods.J. Appl. Cryst., 25, 81–86.

Stout, George H., & Jensen, Lyle H. 1989.X-ray Structure Determination: a practical
guide. Second edn. New York: John Wiley.

Ten Eyck, L. F. 1985. Fast Fourier Transform Calculation of Electron Density Maps.
In: (Wyckoff et al., 1985).

Ten Eyck, Lynn F. 1973. Crystallographic Fast Fourier Transforms. Acta Cryst., A29,
183–191.

Ten Eyck, Lynn F. 1977. Efficient Structure-Factor Calculation for Large Molecules
by the Fast Fourier Transform.Acta Cryst., A33, 486–492.

Terwilliger, Thomas C., & Eisenberg, David. 1983. UnbiasedThree-Dimensional Re-
finement of Heavy-Atom Parameters by Correlation of Origin-Removed Patterson
Functions.Acta Cryst., A39, 813–817.

Terwilliger, Thomas C., & Eisenberg, David. 1987. Isomorphous Replacement: Effects
of Errors on the Phase Probability Distribution.Acta Cryst., A43, 6–13.

Tickle, I. J. 1985. Review of space group general translation functions that make use of
known structure information and can be expanded as Fourier series.In: (Machin,
1985).

Tickle, I. J. 1992. Fast Fourier Translation Functions.In: (Dodsonet al., 1992).
Tickle, Ian. 1991. Refinement of SIR heavy atom parameters inPatterson vs reciprocal

space.In: (Wolf et al., 1991).
Tronrud, D. E. 1994. Methods of Minimization and their Implications. CCP4

Daresbury Study Weekend, nos. DL/SCI/R35, ISSN 0144–5677.Warrington
WA4 4AD, UK: Daresbury Laboratory, for Daresbury Laboratory.

Vaguine, A. A., Richelle, J., & Wodak, S. J. 1999.Acta Cryst., D55, 191–205.

The CCP4 manual

101

Wang, Bi-Cheng. 1985. Resolution of Phase Ambiguity in Macromolecular Crystal-
lography.In: (Wyckoff et al., 1985).

Wolf, W., Evans, P. R., & Leslie, A. G. W. (eds). 1991.Isomorphous Replacement and
Anomalous Scattering. CCP4 Daresbury Study Weekend, nos. DL/SCI/R32, ISSN
0144–5677. Warrington WA4 4AD, UK: Daresbury Laboratory, for Daresbury
Laboratory.

Woolfon, M. M., & Yao, Jia-Xing. 1994. On the Application of One-Wavelength
Anomalous Scattering. IV The Absolute Configuration of the Anomalous Scat-
terers.Acta Cryst., D50, 7–10.

Wyckoff, H., Hirs, C. H. W., & Timasheff, S. N. (eds). 1985.Diffraction Methods for
Biological Macromolecules. Methods in Enzymology, vol. 115. Academic Press.

Zhang, K. Y. J., & Main, P. 1990.Acta Cryst., A46, 377–381.
Zlotnik, Fred. 1991. The POSIX.1 Standard: A Programmer’s Guide. Ben-

jamin/Cummings.

The CCP4 manual

Program index

And thick and fast they came at last
And more, and more, and more
— Through the Looking Glass

CCP4 programs
abs 8, 9, Determine the absolute configuration (hand) of heavy atom substructure.
absurd 23
acorn 9, ab initio procedure for the determination of protein structure at atomic

resolution.
act 10, 11, 26, Analyse coordinates.
almn 9, 39, 40, 61, Crowther’s rotation function usingFFT.
amore 8, 9, 39, 40, Molecular replacement (Navaza, 1994).
angles 10, [Unsupported.] Bonds and dihedral angles from coordinate files.
anisoanl 10, Analyses of anisotropic displacement parameters.
areaimol 10, Solvent accessible area or area differences.
arp waters 10, 54, Automated Refinement Procedure (version 5.0).
asc2p84 19, [Unsupported.] ConvertsASCII file to PLOT84-type meta file.
astexviewer 11, 27, Java program for interactive 3-d display of molecular

structures and electron density maps.
axissearch 12, 51, [Unsupported.] Changes axis and cell.
baverage 11, 26, AveragesB over main and side chain atoms.
beast 8, Brute-force molecular replacement with Ensemble Average Statistics,

Maximum likelihood-based molecular repaclement. Obseleted byphaser .
bones2pdb 10, 25, Convertbones output to a PDB file.
BP3 9, multivariate likelihood substructure refinement and phasing of S/MIR(AS)

and/or S/MAD.
bplot 11, Plot averageB-factors along the chain.
bulk 8, Bulk solvent correction for translation search and rigidbody refinement

steps ofAMoRe.
cad 8, 12, 25, 29, 30, 40, 91, Collecting assorted reflection data.
cavenv 11, Calculates cavities in macromolecular structures.
ccp4i 11, 13, 54
ccp4mg 10, 11
chainsaw 8, Molecular Replacement model truncation
cif2mtz 12, Program to convert mmCIF structure factors (e.g. from PDB) to

MTZ.
cif2xml 13, Program to convert mmCIF files to XML.
combat 7, 23, 24, Produces anMTZ file in multirecord form suitable for input to

SCALA (replacement for ROTAPREP).
compar 11, [Unsupported.] Comparison of coordinates.
contact 11, 26, Calculates various contacts in protein structure.
coordconv 12, 25, 27, Interconverts various coordinates formats.
COOT 10, 11
cpirate 9, Statistical phase improvement
cross validate 13, Validate harvest files for deposition.
crossec 8, Interpolates X-ray cross sections and computes anomalous scattering

factors f ′, f ′′

crunch2 Direct method phase extension
Data Harvesting Manager 13

The CCP4 manual 103

104 Program index

data harvesting manager tool for managing data harvesting files.
detwin 7, Detwin merohedrally twinned reflection data.
difres [Unsupported.] Compares two files of atomic coordinates in PDB for-

mat.
distang 11, 26, 40, Calculates distances and angles in protein molecule.
dm 9, 10, 48, 49, Various density modification techniques: canned solvent flatten-

ing, Sayre’s equation, histogram matching and iterative skeletonisation
dmmulti 9, A multi-crystal version of DM.
dtrek2mtz 7, Converts d*trek scalemerge output into MTZ format.
dtrek2scala 7, Convert integrated intensity and header files from d*trekinto

multi-record MTZ files suitable forscala .
dyndom 11, Determines dynamic domains when two conformations are available.
ecalc 8, 39, Calculates normalised structure amplitudes.
extend 55, [Unsupported.] Extends the map to cover the specified volume of

the unit cell.
extends 10
f2mtz 7, 12, 23, 25, 55, Converts a formatted reflection file toMTZ file.
fffear 10, Fast Fourier Feature Recognition for density fitting.
ffjoin Joining model fragments from FFFEAR.
fft 9, 29, 30, 40, 54, 55, 61, 68, In-memory crystallographic fast Fourier trans-

formation (P1 only).
fftbig 61
fhscal 8, 29, 32, Scaling derivative to native by Kraut’s method.
findncs 8, Detect NCS operations automatically from heavy atom sites.
freerflag 12, 55, Tag reflexions in MTZ file with freeR flags.
fsearch 8, 6-d molecular replacement (envelope) search.
gensym 11, Generate sites by symmetry.
geomcalc 11, Does various geometry calculations on a molecule.
getax 9, Real space searching for rotation axis of aD〈n〉 or C〈n〉 multimer.
havecs 8, 27, 29, [Unsupported.] Generates Patterson vectors fromatom coor-

dinates (more-or-less replaced byvectors andgensym).
hbond [Unsupported.] Calculates possible main chain H-bonds.
helixang [Unsupported.] Distances and angles between helices.
hgen 11, Generate hydrogen atom positions for proteins.
hklplot 12, 27, Plots a precession picture from a reflection file.
hklview 7, 12, 27, Displays zones of reciprocal space as pseudo-precession

images under X-windows.
icoefl 8, Scaling of multipleFcs toFobs.
ipdisp 7, Display various types of image file under X-Windows.
libcheck 10, 26, 54, Checks a monomer’s description for refmac5.
loggraph 11, 19
lsqkab 11, 26, Optimise fit of atomic coordinates from two data sets (Kabsch,

1976).
madlat 7, [Unsupported.] Readsmadnes output file(s), generates vector list for

plotting in frodo to visualize reciprocal lattice.
makedict Converts PDB file to TNT dictionaries.
mama2ccp4 10, 25, ConvertsMAMA-format masks to CCP4 ones.
map2fs 10, Convert a CCP4 map to XtalView fsfour format.
mapdump 9, 25, Prints sections of electron density maps.
mapexchange [Unsupported.] Converts binary map file intoASCII one and

reverse. (Obsolete—use NA4 format except for archaeological purposes.)
mapmask 9, 10, 25, 55, Map and mask manipulation.
mapreplace [Unsupported.] Combines parts of two maps.
maprot 10, Map skewing, interpolating, rotating and averaging program.
mapsig 9, 10, 40, Print statistics on signal/noise for translationfunction map.

Also sum, product, ratio of two maps.
mapslicer 11, 27, Section viewer for CCP4 map files.

The CCP4 manual

Program index 105

maptona4 20, Converts binary map file toNA4 format and reverse.
matthews coef 12, Misha Isupov’s Jiffy to calculate Matthews coefficient.
mlphare 8, 9, 26, 27, 30, 33, 35–37, 49, 50, Phase calculation and refinement

(Otwinowski, 1991).
molrep 8, automated program for molecular replacement.
mosflm 7, Program for processing image plate and CCD data.
mstamp [Unsupported.] Add ‘machine stamp’ to MTZ or map files lacking it.
mtz2various 12, 25, 55, MakesASCII reflection files fromMTZ file.
mtzdmp 12, Script for simple running ofmtzdmp.
mtzdump 12, 25, 91, Displays the contents of theMTZ file.
mtzMADmod 12, Generates F+/F- or F/D from other for anomalous data.
mtzmnf 12, 91, Identify missing data entries in an MTZ file and replace with

missing number flag (e.g. NaN).
mtztona4 12, 20, 87, TransformsMTZ file to transferableNA4 file.
mtzutils 8, 12, 24, 25, 87, Reflection data file utility program.
na4tomtz 12, 20, TransformsNA4 file to MTZ one.
ncont 11, Computes various types of contacts in protein structures.
ncsmask 10, Performs operations on non-crystallographic symmetrymasks, e.g.

beforedm.
npo 11, 12, 25, 27, 29, 30, Plot molecules end electron density maps.
oasis 8, Program for breaking phase ambiguity in OAS or SIR.
omit 10, Calculate omit-maps according to Bhat procedure.
overlapmap 10, 11, 25, Calculate the overlap of two maps.
p842asc 19, [Unsupported.] ConvertsPLOT84-type meta file toASCII.
pdb extract 13, Programs for extracting harvest information from program

log files.
pdbcur 11, Curation and manipulation tool for coordinate files.
pdbset 11, 25, 39, 40, Various useful manipulations on coordinate files.
peakmax 10, 11, 29, 30, Search for peaks in the electron density map.
phaser 65
phaser-1.3 Maximum likelihood molecular replacement.
phaser-MR 8
phistats 12, Analysis of agreement between phase sets, and checking it against

weighting factors.
pltdev 12, 27, 93, Convert PLOT84 metafiles to printer-speak.
pmf PMF pattersons search.
polarrfn 9, 39, Fast rotation function in polar coordinates.
polypose 11, Superposition of multi-domain structures.
postref 7, [Unsupported.] Post-refinement of film data.
procheck 11, 12, 15, 26, 56, Checking stereochemistry (Laskowskiet al., 1993).

(Comprisesnb , proclean , anglen , secstr , mplot , tplot , pplot ,
probplot .)

procheck_comp Version ofprocheck for related structures. (Usesrmsdev
in addition.)

professs 8, Determination of NCS operators from heavy atoms.
proplot 12, Plotting and listing forprocheck . (Usespplot , tplot and

probplot .)
rantan 9, Direct Method module for the determination of heavy atom positions

in a macro-molecule structure or to determine a small molecule structure
RasMol 12
rdent 10, Create dictionary entries forrestrain from PDB file.
rebatch 7, Alters batch numbers in an unmerged MTZ file (saves running

mosflm again).
refmac 53–55
refmac5 10, 26, 53, 54, Refine or idealize structures, using intensity or ampli-

tude based least squares or -loglikelihood residuals.
reform [Unsupported.] Various on-line coordinate transformations.

The CCP4 manual

106 Program index

reindex 12, ReindexMTZ file.
restrain 10, 53, 55, Structure refinement (Driessenet al., 1989)
revise 9, Program to generate normalised anomlous scattering factor magni-

tudes from MAD data.
rfcorr 9, Analysis of correlations between cross- and self-rotation functions.
rotamer 11, List amino acids whose side chain torsion angles deviatefrom

Richardson’s Penultimate Rotamer Library.
rotaprep [Unsupported.] Produces multirecordMTZ file from foreign formats.
rotgen 7, Simulate X-ray diffraction rotation images.
rotmat 9, Interconverts CCP4/merlot /X-PLOR rotation angles.
rsearch 9, 12, 40, R-factor search.
rsps 8, 30, 34, Heavy atom positions from derivative difference Patterson maps.
rstats 8, Scales two data sets.
rwcontents 11, 51, Count atoms by type inPDB file.
rwdict 26, [Unsupported.]PDB ↔ PROTIN dictionary inter-conversion.
sapi 8, 9, Heavy atom site location program.
sc 11, Program to analyse shape complementarity of molecular interfaces.
scala 7, 23, 24, 89, Scaling together multiple observations of reflections (re-

placement for ROTAVATA and AGROVATA).
scaleit 8, 29, Various derivative and native scaling.
scalepack2mtz 7, Converts merged scalepack output into MTZ format.
sfall 9, 30, 39, 40, 61, 93, Structure factor calculations usingFFT.
sfcheck 11, Program for assessing agreement between atomic model and X-ray

data
sftools 12, Reflection data file utility program including some density map

handling
sigmaa 8, 30, 49, 50, 54, 55, Phase combination (Read, 1986).
sketcher 10, Monomer library sketcher and graphical interface tolibcheck .
solomon 9, Modifies the electron density maps by averaging, solvent flipping

and protein truncation.
sortmtz 12, 18, 23–25, SortingMTZ file(s).
sortwater 11, 26, Assign waters to nearest protein atoms.
stereo 12, Reconstruction of 3D coordinates from measurements of astereo

diagrams.
stgrid 9, Generates stereographic projection frompolarrfn for measuring

angular coordinates.
stnet 9, Stereographic net for use withpolarrfn plots.
superpose Secondary structure allignment.
surface 11, Accessible surface area.
symfit [Unsupported.] Fit best molecular transformations to setsof crystallo-

graphic coordinates e.g., heavy atom coordinates, relatedby non-crystallographic
symmetry.

tffc 9, 39, 40, 46, Translation function.
tlsanl 10, 54, TLS analysis afterrestrain
topdraw 12, Sketchpad for creating protein topology diagrams.
topp 11, An automatic topological and atomic comparison programfor protein

structures.
tracer 12, Reduced cell calculations.
truncate 7, 23, 51, 89, Converts intensities to amplitudes (French & Wilson,

1978).
undupl 7, Remove duplicates frommadnes data, afterabsurd .
unique 7, 24, 55, Generate unique reflection data set.
uniqueify 7, 55, Script to complete dataset and add free-R flags.
vecref 8, 30, 36, Vector space refinement of the heavy atoms. Consider also

mlphare .
vecsum 8, 30, 34, [Unsupported.] Automated Patterson solution.
vectors 8, 27, 29, Generates Patterson vectors from atomic coordinates.

The CCP4 manual

Program index 107

volume 11, Polyhedral volume around selected atoms.
watertidy 11, 26, Rearranges water position.
watncs 11, Pick waters which follow NCS and sort out to NCS asymmetric unit.
watpeak 11, Selects peaks from peakmax and puts them close to the respective

protein atoms.
wilson 7, 23, Makes Wilson plot.
xccpjiffy2idraw 12, Convertsxloggraph /xplot84driver output to

(editable)idraw format.
xdldataman 13, manipulates reflection files, exchanges formats etc.
xdlmapman 10, 25, 55, manipulates maps, exchanges formats etc.
xloggraph 12, 19, 23, 49, 66, 69, 82, Display plots derived from log filesunder

X-Windows.
xplot84driver 12, 27, 29, Display PLOT84 plots under X-Windows.
zeroed [Unsupported.] Sets part of the map to zero.

Non-CCP4 programs

BP3, 8
Babel , 12, 76
CNS, 9, 10, 12, 30, 40, 53
FRODO/TOM, 76
HySS, 9
LAUE, 7
MAMA, 10, 25
MERLOT, 9, 40
MULTAN, 8, 9, 34
OOPS, 10
O, 10, 11, 25–27, 30, 54, 55, 76
PATSEE, 77
PRISM, 48
PyMOL, 10
RAVE, 9, 10, 76
SHARP, 8, 9
SHELX-97, 8–10
SHELX86, 34
SHELX93, 53
SHELX, 12, 30, 55, 77
TNT, 10, 30, 53
Tcl/Tk , 69
X-PLOR, 9, 12, 26, 55
XDS, 7, 23
angel , 9
archie , 77
arp warp , 10, 54
bash , 18, 66
bibtex , 113
blt , 69
bones , 10
cd , 69
chemnotes , 26
configure , 67–71
corels , 76
cp , 70
csh , 18, 19, 66, 67
d*trek , 7
demon, 9, 76
denzo , 7, 23

diff , 68
dssp , 11, 76
duptree , 67
dvips , 113
f2c , 70, 77
frodo , 12, 30, 92
ftnchek , 82, 83
ftp , 75
g77 , 78
gcc , 70, 77, 81
gunzip , 69
heavy , 36
html , 65
idraw , 12
idxref , 88
install , 70
ksh , 18, 66
ld , 70
ln , 70
lynx , 82
m4, 70
madnes, 7, 23, 76
madsys , 9, 37, 76
makeindex , 113
make, 67, 68
man, 66, 67, 82, 109
mapbrick , 92
mapcont , 92
merlot , 40, 76
molscript , 11, 12, 27, 76
mosflm , 7, 23, 24, 76
multan , 30
noweb, 85
ortep2 , 12
oscgen , 89
p2c , 81
pacman, 40
patch , 68
patsee , 30
pdbrot , 12

The CCP4 manual

108 Program index

pltout , 12
postplot , 12
prepi , 12
ranlib , 70
raster3D , 11, 12, 76
ribbon , 12, 27, 113
ribrot , 12
setor , 12
sftools , 77
sh , 18, 19, 66

splitd , 12
strip , 68
tar , 66, 67
tcsh , 19, 66
weis , 76
what-if , 56
wulff.ps , 12
xentronics , 7
xfig , 113

The CCP4 manual

Index

Yes, this index is incomplete and untidy. . .

man, 67

ab initio phases, 8
absorption corrections, 23
abstraction, 81
Adams, Douglas, 59
aggregated software, 7, 12, 66
Alice in Wonderland, vii, 77
analysis of coordinates, 6
anomalous differences, 90
anomalous occupancy, 36
anomalous scattering, 8, 103
anonymous ftp,seeftp
archaeology, 104
area detector, 5, 7
asymmetric unit, changing, 8
atomicity, 48
averaging, 48, 49

Ballard, Charles, 1
binary files, 19
Bionet, 77
BMCD, 77
Briggs, Peter, 1
Brookhaven format, 25
bugs, 73

reporting, 74, 76
bulk solvent, 8
bulk solvent correction, 54
‘bulletin board’, 75

C, 2, 65, 81, 85
C++, 2, 65
Campbell, John, vii
Carroll, Lewis, vii
CCD, 7
ccp4i, 21, 69
centricity, 90
CIF, 91
citation, CCP4, 2
column labels, MTZ, 90
column types, MTZ, 89
combination of data, 8
command line arguments, 15, 20, 21
common error, 19
common keywords, 17
condition code, 19
configuration, 67
connectivity, map, 48

constitution, CCP4, 1
coordinate transformations, 105
coordinates

interpretation and manipulation, 25
copyright, 83
Cowtan, Kevin, vii
cross rotation function, 5, 40
cross vectors, 42
cross-validation, 55
crystallisation database, 77
crystallographic software, non-CCP4, 76
Cygnus Support, 74

Daly, Peter, vii
data collection, 5, 7
data combination, 8
data formats, 81
data reduction, 7
DCL, 65, 85
density maps, 6
density modification, 47, 104
density,protein, 51
derivative data, 8
difference map, 54
diffractometers, 5, 7
direct methods, 30
distributed file system, 71
documentation, 15, 81, 82

metalanguage, 15
Dodson, Eleanor, vii

e-mail, 73
Easter egg, 113
environment variable, 15, 16, 20
error messages, 19
Eulerian angles, 40
Evans, Phil, vii, 1
examples, 65, 67

FAST, 7
fast Fourier transform,seeFFT

FFT, 9, 59, 83
file

extension, default, 16
extensions, 21
library, 16

file formats, 1, 2, 73
files

connexion, 15

The CCP4 manual 109

110 Program index

input and output, 15
pre- release 2.2, 20

film, 5, 7
Fortran, 2, 65, 81, 82, 85

FORTRAN77, 1, 81, 85
Fortran90, 81
non-portable features, 82
standard, 81

fractional coordinates, 26
fractional sites, 8
freeR factor, 55

density modification, 49
free software, 2, 59, 77
Free Software Foundation, 77
ftp, 66, 73, 75, 76, 83

sites, 77
funding, 1

C. F. Gauß, 59
geometric corrections, 23
GNU, 68
GNU project, 68, 77
Graphical user interface, 2
graphical user interface, 21
graphics

editing, 12
graphics metafile, 93

heavy atom positions, 5, 31
Hendrickson-Lattman coefficients, 38, 90
Henrick, Kim, vii
histogram matching, 9, 47, 49, 104
homologous protein, 5
Howard, Maeri, 1
HPGL, 12

image plate, 5, 7
initialisation

program, 81
input

keyworded, 15
IRIX, 66, 70
isomorphous differences, 8

Jane Richardson-type cartoons, 12

Kabsch algorithm, 26
Keegan, Ronan, 1
keyworded input, 15, 16
keywords, 82, 83
kluges, 1–113
k ōan, 113
Kraut scaling, 32

Laue method, 7
Leslie, Andrew, vii
library routines, 81
Linux, 2

literate programming, 83
log file, 15, 19, 74
logical names, 15, 20, 82, 85

common, 16
library, 16

login procedure, 15
Love, Dave, vii, 113
Lp correction, 23

machine stamp, 19, 87
MAD , 9, 36, 37, 49
map files, 9, 19
maps

calculation, 9
extension, 9

masks, 92
Matthews’ number, 50
maximum likelihood, 6, 33, 54
maximum likelihood phasing, 30, 35
Mc Laughlin, Sandra, vii, 87
merging, 5, 7, 23
metalanguage

documentation, 15
Miller indices, 19
MIR, 29, 49
missing data, 89
molecular dynamics, 6
molecular envelope, 6
molecular replacement, 6, 8, 39, 48, 49
molecular weight, 50, 51
MS Windows, 12
MTZ, 17, 87

header, 17
MTZ files, 19

column labels, 90
column types, 89
multi-record, 19

MTZ format, 19
multi-record files, 7, 19, 23, 24, 88

NA4 format, 87
Naismith, Jim, 1
NaN, 89
NCS averaging, 9
Netlib, 83
network news, 77
noise filtering, 49
non-crystallographic symmetry, 5, 6, 39,

43, 48
refinement, 49

numerical code, 83

Onesti, Silvia, vii
operating system dependencies, 85
operating systems, 73, 85
orthogonal coordinates, 26
outliers, 23

The CCP4 manual

Program index 111

output
verbosity, 21

partiality, 90
partially recorded reflexions, 7
Pascal, 81
patch files, 73
patents, 59
Patterson, 30
Patterson functions, 32
Patterson map, 5, 6, 8
Patterson search, 8
Patterson vectors, 8
PC, 13
peak search, 8
phase combination, 8
phase determination, 36
phase extension, 48, 49
phase improvement, 9, 48, 49
phase refinement

maximum likelihood, 35
phased translation function, 40
Photon Factory, 76
pitfall, 16
PLOT84, 84, 93
PLOT84, 93
plotting, 6, 12, 25, 27
portability

code, 81, 82, 85
data files, 19

porting, 73
POSIX, 81, 85
postrefinement, 7
PostScript, 12, 15, 66
pre-processor, 83
precession pictures, 27
program initialisation, 81
program options, 21
program output, 19
program startup, 20
program termination, 82
python, 65

R factor search, 6
Ramachandran plot, 10, 12, 56
references, 2
refinement, 5

Hendrickson–Konnert, 53
least-squares, 53

reflexion files, 19
relational database, 19, 87
release policy, 73
Remacle, Francois, 1
reporting bugs, 74
ribbon diagrams, 11, 12, 27
Richard Stallman, 74
rigid body fitting, 39

rigid body refinement, 6, 40
Rolfe, Daniel, 1
Rop, 89
rotation function, 39–43
Rypniewski, Wojtek, vii

Sayre’s equation, 9, 48, 49, 104
scaling, 5, 7, 8, 23
scratch files, 21
self rotation function, 5
self vectors, 42
shared libraries, 68
shell, login, 66
shells, Unix, 19
Sim weight, 8
Skarzynski, Tadeusz, 1
skeletonisation, 9, 10, 48, 104
small molecule drawing, 12
solvent content, 50, 51
solvent flattening, 6, 9, 47, 49
sorting, 12, 25
spacegroups

specifying, 17
standard input, 15
standard output, 15
standards

C, 81
Fortran, 81, 82
POSIX, 81

stealing code, 83
Steele, Guy L., 113
Stein, Norman, 1
stereochemistry, 11
subroutine library, 1
support, 73
symmetry equivalents, 23
symmetry operators, 17
syntax description, 15

Tcl/Tk scripting language, 21
Tektronix, 12
temperature factor, 8
termination

program, 82
Terry, Howard, 87
Tickle, Ian, vii
TLS refinement, 53, 54
Toolpack, 83
tools

Fortran, 83
translation function, 6, 40, 45–46

phased, 40
translation search, 44–45

unique reflexions, 7
Unix, 1, 2, 15, 16, 19–21, 65, 67, 73, 77,

82, 85
common error, 19

The CCP4 manual

112 Program index

pitfall, 16
shells, 19

unmerged data, 19
update notifications, 73
URL, 76
Usenet, 19, 77

verbose output, 21
version numbers, 73
VMS, 15, 73, 82, 83, 85

web site, 65, 66

Wilson plot, 7, 23
windows, 85
Winn, Martyn, 1
Wolf, Wojtek, vii
World Wide Web, 77
writeups, 15
WWW, seeWorld Wide Web

X-Windows, 7, 12, 13, 27, 66, 69, 70, 107
Xentronics, 7

Zelinka, Jan, 87

The CCP4 manual

Colophon 113

Colophon 4

This manual was typeset using LATEX in (mainly) Times, Helvetica, Courierand Com-
puter Modern maths rendered bydvips at 300 dpi. Various common style options
and special definitions were used—see the source. The bibliographic information was
produced usingbibtex and the index usingmakeindex ; some figures were drawn
with xfig and converted to PostScript, which was included with thepsfig macros.
Since the editor considers himself a competent LATEX hacker, the source might serve as
a useful model for producing similar documents such as theses.. . . The bibliography
file (in BibTEX format) might also be useful.

And to answer the question on everyone’s lips: the structureon the front cover is
the DHFR example from theribbon distribution.

4Look it up!

The CCP4 manual

