VNATIONAL .
’ INSTRUMENTS

TestSTAND™ PROCESS MODELS

Contents

You can better understand the information in this document if you have
already read the Process Models section in Chapter 1, TestStand
Architecture Overview, and Chapter 14, Process Models, of the TestStand
User Manual. This document assumes an understanding of process models
that those chapters provide.

The purpose of this document is to provide a detailed overview of the
architecture and implementation of the process models that ship with
TestStand.

Architecture of the TestStand Modelscccooevveeieviiviiiiniinininiicnne 2
Details of the Sequential Model...........cccccoceeviniineniinininiineieneeee, 7
The SEQUENCESeevviriiiiieieniiiieeieeceeee ettt 7
TeSt UUTS .o 11
SINEIE PASS .t 13
Details of the Parallel Modelccoceveniiiiiiiiiiiininiiincccceee 13
The SEQUENCES ...c..eovueriiiiiriiiiiriiee ettt 13
TESt UUTS .t 18
Test UUTs — Test Socket Entry Point.......c..coccoverieniniencnicncnenn. 19
SINEIE PASS ..eeniiiiieieeiiieece e e 20
Single Pass — Test Socket Entry Point.........cccooevieninvencnicnenene. 21
Details of the Batch Modelccocooiiineiiiiiiiiiiiiccccceee 21
The SEQUENCESeovveriiiiiriiiiiniiee ettt 21
TSt UUTS . e 28
Test UUTs — Test Socket Entry Point.......c..coccovevieniniincnicncnene. 31
SINELIE PASS ..ttt 33
Single Pass — Test Socket Entry Point.........ccccooeveeniniencnicncnene. 35
Support Files for the TestStand Process Modelsc.ccecevireencnennnens 36
Report Generation Functions and Sequencesc..cccceveevenienneene. 37

CVI™, LabVIEW™ TestStand™, National Instruments™, and ni.com™ are trademarks of National Instruments Corporation. Product and company
names mentioned herein are trademarks or trade names of their respective companies.

370360A-01

Copyright © 2001 National Instruments Corp. All rights reserved. March 2001

Architecture of the TestStand Models

The sequential, parallel, and batch models all have the same basic structure
within which they run a test sequence. Using their Test UUTs or Single
Pass entry point, these models run the user’s test sequence, generate a
report, and log results to a database according to the configuration settings
the user provides. The following diagram illustrates the basic process that
these models follow:

TestStand Process Models 2 ni.com

Initialization Initialization

Get current report options, Get current report options,
database options, and database options, and
model options model options

Get UUT’s serial number

Continue
Testing?

Call the test sequence Call the test sequence
Display the UUT's result
Generate a report Log results to a database

Log results to a database

Cleanuy

© National Instruments Corporation TestStand Process Models

TestStand Process Models

The main difference between the process models is how many UUTs on
which they run this process at a time and how they relate and synchronize
the UUTs with each other.

The simplest case is the sequential process model. The sequential model
runs the Test UUTs or Single Pass process on only one UUT at a time.
When you run the Test UUTSs or Single Pass entry point on this model, the
entry point sequence itself runs the Test UUTs or Single Pass process
directly on the client sequence file.

Test UUTs Single Pass

The parallel model runs the Test UUTs or Single Pass process in parallel on
the number of UUTs that the user specifies. Its Test UUTs and Single Pass
entry points are actually controller sequences that launch and monitor
separate TestStand executions for each instance of the Test UUTs or Single
Pass process they run in parallel. The model refers to these instances as test
sockets.

4 ni.com

Test UUTs Test UUTs Test UUTs
Test Socket 0 Test Socket 1 Test Socket n-1

Single Pass Single Pass Single Pass
Test Socket 0 Test Socket 1 Test Socket n-1

The batch model, similar to the parallel model, runs multiple instances of
the Test UUTSs or Single Pass process at a time. However these processes
do not run independently like they do in the parallel model, instead the
controlling sequence contains a higher level version of the process and
synchronizes the test socket executions with it so that they run through the
steps of the process as a group. The following diagram illustrates this:

© National Instruments Corporation 5 TestStand Process Models

Batch Test Socket - Test UUTSs Process

Create test socket executions
Sync Point

Add test sockets to batch

Get serial numbers

Continue
Testing?

Sync Point

ync Point

Display result statuses

Sync Point

Generate and write batch report

Cleanup

Continue
Testing?

| Call the test sequence

Generate report
Log results to a database

| Cleanup |

TestStand Process Models 6

ni.com

At each sync point in the diagram above, the controlling and test socket
executions wait for each other until all are at the same sync point. When
they all arrive at the same sync point, the controlling sequence executes its
code first, then, before reaching the next sync point, tells the test socket
executions to continue executing their code.

Details of the Sequential Model

The Sequences

© MNational Instruments Corporation 7

The figure below shows a list of all the sequences in the sequential process
model (SequentialModel.seq). The first two red sequences are execution
entry points, the next three dark blue sequences are configuration entry
points, the next fifteen green sequences are model callbacks that you can
override in a client sequence file, and the remaining four light blue
sequences are utility subsequences that the other sequences call.

ezt UUTs

ingle Pasz

Configure Report Optionz
Configure Databasze Options
Configure Model Options
kains equence

PrellUT

Post T

PreUUT Loop
PoztUUTLoop

Feportd ptions

D atabaze0ptions
kodel0ptions
TestReport

ModifvR eportHeader

b odityR eportE ntry
todifyR eportFooter
LogT ol atabaze
FroceszsSetup
FrocezsCleanup

et Report Optionz

Get Station | nfo

et Database Ophions
Get Model Options

TestStand Process Models

TestStand Process Models

Test UUTs—This sequence is an execution entry point that initiates a
loop that repeatedly identifies and tests UUTs. When a window for a
client sequence file is active, the Test UUTSs item appears in the
Execute menu. This document contains more information on the Test
UUTs entry point later in this section.

Single Pass—This sequence is an execution entry point that tests a
single UUT without identifying it. In essence, the Single Pass entry
point performs a single iteration of the loop that the Test UUTs entry
point performs. When a window for a client sequence file is active, the
Single Pass item appears in the Execute menu. This document
contains more information on the Single Pass entry point later in this
section.

Configure Report Options—This sequence is a configuration
entry point that displays a dialog box in which you can specify the
contents, format, and pathname of the test report. The settings you
make in the dialog box apply to the test station as a whole. The entry
point saves the station report options to disk. The entry point appears
as Report Options in the Configure menu. Refer to Chapter 15,
Managing Reports, for more information on the report options.

Configure Database Options—This sequence is a configuration
entry point that displays a dialog box in which you can specify the
database logging options. The settings you make in the dialog box
apply to the test station as a whole. The entry point saves the station
database options to disk. The entry point appears as Database Options
in the Configure menu. Refer to Chapter 18, Databases, for more
information on the report options.

Configure Model Options—This sequence is a configuration
entry point that displays a dialog box in which you can specify model
options other than database or report options. The settings you make in
the dialog box apply to the test station as a whole. The entry point saves
the station model options to disk. The entry point appears as Model
Options in the Configure menu. In the sequential model, this entry
point is disabled because the model does not support any model
options. Refer to Chapter 14, Process Models, for more information on
the model options.

MainSequence—This sequence is a model callback that the Test
UUTs and Single Pass entry points call to test a UUT. The
MainSequence callback is empty in the process model file. The client
file must contain a MainSequence callback that performs the tests on
aUUT.

preUUT—This sequence is a model callback that displays a dialog box
in which the operator enters the UUT serial number. The Test UUTs
entry point calls the PreUUT callback at the beginning of each iteration
of the UUT loop. If the operator indicates through the dialog box that

8 ni.com

© MNational Instruments Corporation

no more UUTs are available for testing, the UUT loop terminates. If
the operator chooses to stop testing, the Identi£yUUT step sets
ContinueTesting parameter, which is a local variable that the Test
UUTs sequence passes, to False. If the operator enters a serial number,
the IdentifyUUT step stores the serial number in the

UUT. SerialNumber parameter, which is a local variable that the Test
UUTs sequence passes.

PostUUT—This sequence is a model callback that displays a banner
indicating the result of the test that the MainSequence callback in the
client file performs on the UUT. The Test UUTSs entry point calls the
PostUUT callback at the end of each iteration of the UUT loop.

PreUUTLoop—This sequence is a model callback that the Test UUTs
entry point calls before the UUT loop begins. The PreUUTLoop
callback in the process model file is empty.

PostUUTLoop—This sequence is a model callback that the Test
UUTs entry point calls after the UUT loop terminates. The
PostUUTLoop callback in the process model file is empty.

ReportOptions—This sequence is a model callback that the
execution entry points call through the GetReportOptions
subsequence. After reading the test station report options from disk,
GetReportOptions calls the ReportOptions callback to give the
client sequence file an opportunity to modify the report options. For
example, you might want to force the report format to be ASCII text
for a particular client sequence file. The ReportOptions callback in
the process model file is empty.

DatabaseOptions—This sequence is a model callback that the
execution entry points call through GetDatabaseOptions
subsequence. After reading the test station database options from disk,
GetDatabaseOptions calls the DatabaseOptions callback to give
the client sequence file an opportunity to modify the database options.
The DatabaseOptions callback in the process model file is empty.

ModelOptions—This sequence is a model callback that the
execution entry points call through the GetModelOptions
subsequence. After reading the test station model options from disk,
GetModelOptions calls the ModelOptions callback to give the
client sequence file an opportunity to modify the model options. The
ModelOptions callback in the process model file is empty.

TestReport—This sequence is a model callback that the execution
entry points call to generate the contents of the test report for one UUT.
You can override the TestReport callback in the client file if you
want to change its behavior entirely. The default process model defines
a test report for a single UUT as consisting of a header, an entry for
each step result, and a footer. If you do not override the TestReport
callback, you can override the ModifyReportHeader,

9 TestStand Process Models

ModifyReportEntry, and ModifyReportFooter model callbacks
to customize the test report.

Depending on the setting you make in the Report Options dialog box,
the TestReport callback determines whether TestStand builds the
report body with sequences or with a DLL. If you select the sequence
report generation option, TestReport calls the AddReportBody
sequence in either ReportGen txt.seq or ReportGen html.seq
to build the report body. The sequence report generator uses a series of
sequences with steps that recursively process the result list for the
execution. If you select the DLL report generation option, TestReport
calls a single function in modelsupport2.d11l to build the entire
report body before returning. You can access the project and source
code for this LabWindows/CVI-built DLL. If you select the DLL
option, TestStand generates reports faster, but TestStand does not call
ModifyReportEntry callbacks.

ModifyReportHeader—This sequence is a model callback that the
TestReport model callback calls so that the client sequence file can
modify the report header. ModifyReportHeader receives the
following parameters: the UUT, the tentative report header text, and
the report options. The Modi fyReportHeader callback in the process
model file is empty.

ModifyReportEntry—This sequence is a model callback that the
TestReport model callback calls so that the client sequence file
can modify the entry for each step result. Through subsequences,
TestReport calls ModifyReportEntry for each result in the result
list for the UUT. ModifyReportEntry receives the following
parameters: an entry from the result list, the UUT, the tentative report
entry text, the report options, and a level number that indicates the call
stack depth at the time the step executed. The ModifyReportEntry
callback in the process model file is empty.

@ Note In the Report Options dialog box, you can choose to use sequences or a DLL to
produce the report body. If you select the DLL option, TestStand generates reports faster,
but TestStand does not call Modi fyReportEntry callbacks.

TestStand Process Models

ModifyReportFooter—This sequence is a model callback that the
TestReport model callback calls so that the client sequence file can
modify the report footer. ModifyReportFooter receives the
following parameters: the UUT, the tentative report footer text, and the
report options. The ModifyReportFooter callback in the process
model file is empty.

LogToDatabase—This sequence is a model callback that the
execution entry points call to populate a database with the results for
one UUT. You can override the LogToDatabase callback in the client
file if you want to change its behavior entirely. LogToDatabase

10 ni.com

Test UUTs

receives the following parameters: the UUT, the result list for the UUT,
and the database options.

Process Setup—This sequence is a model callback that the
execution entry points call from their setup step groups to give the
client file an opportunity to execute any setup steps that must run only
once during the execution of the process model.

Process Cleanup— This sequence is a model callback that the
execution entry points call from their cleanup step groups to give the
client file an opportunity to execute any cleanup steps that must run
only once during the execution of the process model.

Get Report Options—This sequence is a utility sequence that the
execution entry points call at the beginning of execution. Get Report
Options reads the report options and then calls the ReportOptions
callback to give you an opportunity to modify the report options in the
client file.

Get Station Info—This sequence is a utility sequence that the
execution entry points call at the beginning of execution. Get
Station Info callback identifies the test station name and the
current user.

Get Database Options—This sequence is a utility sequence

that the execution entry points call at the beginning of execution. Get
Database Options reads the database options and then calls the
DatabaseOptions callback to give you an opportunity to modify the
database options in the client file.

Get Model Options—This sequence is a utility sequence that the
execution entry points call at the beginning of execution. Get Model
Options reads the model options and then calls the ModelOptions
callback to give you an opportunity to modify the model options in the
client file.

The following table lists the most significant steps of this entry point:

Action
Number Description Remarks
1 Call PreUUTLoop model callback. Callback in model file is empty.
2 Call Get Model Options utility Reads model options from disk. Calls
sequence. ModelOptions model callback to
allow client to modify options.
3 Call Get Station Info utility Identifies the test station name and the

sequence.

current user.

© MNational Instruments Corporation 11

TestStand Process Models

Action

Number Description Remarks
4 Call Get Report Options utility Reads report options from disk. Calls
sequence. ReportOptions model callback to
allow client to modify options.
5 Call Get Database Options utility | Reads database options from disk.
sequence. Calls DatabaseOptions model
callback to allow client to modify
options.
6 Increment the UUT index. —
7 Call preuuUT model callback. Obtains the UUT serial number from
the operator.
8 If no more UUTs, go to action 17. —
9 Determine the report file pathname. —
10 Clear information from previous loop | Discard previous results and clear the
iteration. report and failure stack.
11 Call MainSequence model callback. | MainSequence callback in client
performs the tests on the UUT.
12 Call PostUUT model callback. Displays a pass, fail, error, or terminate
banner.
13 Call TestReport model callback. Generates test report for the UUT.
14 Call LogToDatabase model callback. | Log test results to database for the
UUT.
15 Write the UUT report to disk. Can append to an existing file or create
a new file.
16 Loop back to action 6 —
17 Call PostUUTLoop model callback. Callback in model file is empty.

TestStand Process Models 12

ni.com

Single Pass

The following table lists the most significant steps of this entry point:

Action
Number Description Remarks
1 Call Get Model Options utility Reads model options from disk. Calls
sequence. ModelOptions model callback to
allow client to modify options.
2 Call Get Station Info utility Identifies the test station name and the
sequence. current user.
3 Call Get Report Options utility Reads report options from disk. Calls
sequence. ReportOptions model callback to
allow client to modify options.
4 Call Get Database Options utility | Reads database options from disk.
sequence. Calls DatabaseOpt ions model
callback to allow client to modify
options.
5 Determine the report file pathname. —
6 Call MainSequence model callback. | MainSequence callback in client
performs the tests on the UUT.
7 Call TestReport model callback. Generates test report for the UUT.
8 Write the UUT report to disk. Can append to an existing file or create
a new file.
9 Call LogToDatabase model callback. | Log test results to database for the
UUT.

Details of the Parallel Model

The Sequences

The figure below shows a list of all the sequences in the parallel process
model (ParallelModel.seq). The first two red sequences are the main
execution entry points, the next fourteen light blue sequences are utility
sequences that the main execution entry points use, the next two red
sequences are hidden execution entry points that the main execution entry
points use to start the test socket executions, the next three dark blue
sequences are configuration entry points, the next fifteen green sequences
are model callbacks that you can override in a client sequence file, and the

© MNational Instruments Corporation 13 TestStand Process Models

TestStand Process Models

remaining four light blue sequences are utility subsequences that the other

sequences call.

ext UUTs

ingle Pazs

Initialize TestSock.et

Tile Execution Windows

b oritor Threads
ProcezsDialogRequests
Fun UUT Info Dialog
Continue TestSocket
Teminate TestSocket
Abort TestSocket

Frestart TestSocket
Terminate 4l TestSockets
Abort All Tests ockets

Stop All TestSockets

Yiew TestSocket Fepart
Yiew TestSocket Repart - Current Only
ezt UUTs - Test Socket Entry Paint
ingle Pazs -- Test Socket Entry Point
Configure Report Options
Configure Database Options
Configure bModel Qptions

t ainSequence

PrelUT

PostJUT

PrelUTLoop

PostJUT Laop
Fiepartdptions

D atabazelptions

b odeldptions

TestReport

b odifyF eportHeader

b odifyR eportE kg

b odifyR eportFooter

LogToD atabasze
ProcessSetup
ProcessCleanup

Get Station Info

Get Report Options

Get Databaze Options

Get Model Options

14

ni.com

© MNational Instruments Corporation

Test UUTs—This sequence is an execution entry point that controls
the test socket executions it creates using the Test UUTs - Test
Socket Entry Point sequence. When a window for a client
sequence file is active, the Test UUTSs item appears in the Execute
menu. This document contains more information on the Test UUTs
entry point later in this section.

Single Pass—This sequence is an execution entry point that
controls the test socket executions it creates using the Single Pass
- Test Socket Entry Point sequence. When a window for a
client sequence file is active, the Single Pass item appears in the
Execute menu. This document contains more information on the
Single Pass entry point later in this section.

Initialize TestSocket—The controlling execution calls this
sequence to initialize the data for and create the test socket executions.

Tile Execution Windows—The controlling execution calls this
sequence to tile the test socket execution windows by building a list of
executions and posting a UIMessage to the operator interface
requesting it to tile the execution windows.

Monitor Threads—The ProcessDialogRequests sequence calls
this sequence periodically from the controlling execution to poll to see
whether any of the test socket executions have been terminated or
aborted. If any have, it updates the ModelData for that test socket to
indicate its new state and tells the dialog, if any, to update its display
for that test socket.

ProcessDialogRequests—The controlling execution calls this
sequence from the Test UUTs sequence. It loops waiting for requests
that the dialog enqueues into the
ModelData.DialogRequestQueue. Those requests are names of
sequences to call. When this sequence receives such a request it calls
the requested sequence. Additionally, this sequence periodically calls
the Monitor Threads sequence to check to make sure the test socket
executions are still running and update information about them if they
are not.

Run UUT Info Dialog—The controlling execution calls this
sequence from a new thread. This sequence initializes and runs the
modeless dialog that the Test UUTs entry point uses to allow the user
to control the test socket executions.

Continue TestSocket—This is a dialog request callback that the
ProcessDialogRequests sequence calls. This sequence sets a
notification for the test socket that the request specifies allowing the
test socket execution to continue. The test socket execution waits on
this notification in its default implementation of the PreUUT and
PostUUT callbacks.

15 TestStand Process Models

TestStand Process Models

Terminate TestSocket—This is a dialog request callback that the
ProcessDialogRequests sequence calls. This sequence terminates
the execution for the test socket that the request specifies.

Abort TestSocket—This is a dialog request callback that the
ProcessDialogRequests sequence calls. This sequence aborts the
execution for the test socket that the request specifies.

Restart TestSocket—This is a dialog request callback that the
ProcessDialogRequests sequence calls. This sequence restarts the
execution for the test socket that the request specifies. After restarting
the execution, this sequence optionally, depending on model option
settings, re-tiles the execution windows to include the one it restarts.

Terminate All TestSocket—Thisis adialog request callback that
the ProcessDialogRequests sequence calls. This sequence
terminates all of the test socket executions.

Abort All TestSocket—This is a dialog request callback that the
ProcessDialogRequests sequence calls. This sequence aborts all
of the test socket executions.

Stop All TestSocket—This is a dialog request callback that the

ProcessDialogRequests sequence calls. This sequence sets a flag
for each test socket execution telling them to stop after they complete
their current UUT test sequence and sets a notification to allow them
to execute to that point without interruption.

View TestSocket Report—This is a dialog request callback that
the ProcessDialogRequests sequence calls. This sequence
launches a report viewer on the report file for the test socket that the
request specifies.

View TestSocket Report - Current Only—This is a dialog
request callback that the ProcessDialogRequests sequence calls.
This sequence launches a report viewer for the report last generated for
the test socket that the request specifies. This sequence differs from the
View TestSocket Report sequence in that it only shows the last
report rather than the whole report file.

Test UUTs - Test Socket Entry Point—This entry point is
never displayed to the user. Instead it is used by the controlling
execution to create the TestSocket executions. If you insert a new step
in this sequence, disable the Record Results option for the step. This
sequence implements the Test UUTSs process for the test socket
executions. This document contains more information on this entry
point later in this section.

Single Pass - Test Socket Entry Point—This entry pointis
never displayed to the user. Instead it is used by the controlling
execution to create the TestSocket executions. If you insert a new step
in this sequence, disable the Record Results option for the step. This

16 ni.com

© MNational Instruments Corporation

sequence implements the Single Pass process for the test socket
executions. This document contains more information on this entry
point later in this section.

Configure Report Options, Configure Database
Options, and Configure Model Options—See the descriptions
of these sequences in the section of this document on the Sequential
model for more information.

MainSequence—This sequence is a model callback that the Test
UUTs - Test Socket Entry Point and Single Pass - Test
Socket Entry Point sequences call to test a UUT. The
MainSequence callback is empty in the process model file. The client
file must contain a MainSequence callback that performs the tests on
a UUT.

preUUT—This sequence is a model callback that calls into the
modeless dialog box that the controlling execution creates in which the
operator enters the UUT serial numbers for the test sockets. The Test
UUTs - Test Socket Entry Point sequence calls the PreUUT
callback at the beginning of each iteration of the UUT loop. If the
operator indicates through the dialog box that no more UUTs are
available for testing, the UUT loop terminates. If the operator chooses
to stop testing, the code for the dialog box sets

TestSocket . ContinueTesting parameter to False. If the operator
enters a serial number, the code for the dialog box stores the serial
number in the TestSocket . UUT. SerialNumber parameter.

PostUUT—This sequence is a model callback that calls into the
modeless dialog that the controlling execution creates to tell it to
display a banner indicating the result of the test that the
MainSequence callback in the client file performs on the UUT. The
Test UUTs - Test Socket Entry Point calls the PostUUT
callback at the end of each iteration of the UUT loop.

PreUUTLoop—This sequence is a model callback that the Test UUTs
- Test Socket Entry Point sequence calls before the UUT loop
begins. The PreUUTLoop callback in the process model file is empty.

PostUUTLoop—This sequence is a model callback that the Test
UUTs - Test Socket Entry Point sequence calls after the UUT
loop terminates. The PostUUTLoop callback in the process model file
is empty.

ReportOptions, DatabaseOptions, ModelOptions,
TestReport, ModifyReportHeader, ModifyReportEntry,
ModifyReportFooter, and LogToDatabase—See the
descriptions of these sequences in the section of this document on the
Sequential model for more information.

Process Setup—This sequence is a model callback that the Test
UUTs and Single Pass execution entry points call from their setup

17 TestStand Process Models

Test UUTs

step groups to give the client file an opportunity to execute any setup
steps that must run only once during the execution of the process
model. These setup steps are run from the controlling execution only,
the test socket executions do not call this callback.

Process Cleanup—This sequence is a model callback that the Test
UUTs and Single Pass execution entry points call from their cleanup
step groups to give the client file an opportunity to execute any cleanup
steps that must run only once during the execution of the process
model. These cleanup steps are run from the controlling execution
only, the test socket executions do not call this callback.

Get Station Info, Get Report Options, Get Database
Options, and Get Model Options—See the descriptions of these
sequences in the section of this document on the Sequential model for

more information.

This entry point is the sequence that the controlling execution runs. The
following table lists the most significant steps of this entry point:

Action
Number Description Remarks
1 Call Get Model Options utility Reads model options from disk. Calls
sequence. ModelOptions model callback to
allow client to modify options.
2 Call Get Station Info utility Identifies the test station name and the
sequence. current user.
3 Call Get Report Options utility Reads report options from disk. Calls
sequence. ReportOptions model callback to
allow client to modify options.
4 Call Get Database Options utility | Reads database options from disk.
sequence. Calls DatabaseOptions model
callback to allow client to modify
options.
5 Call Run UUT Info Dialog utility Creates a modeless dialog that displays
sequence. info and gathers serial numbers for the
test socket executions.
6 Determine the report file pathname. Determines the report file path name to

use if the report options are configured
so that all UUT results for the model
are written to the same file.

TestStand Process Models 18

ni.com

Action

Number Description Remarks
7 Create and initialize test socket See the table for the Test UUTs -
executions. Test Socket Entry Point
sequence for more information on
what the test socket executions do.
8 Call ProcessDialogRequests. Waits for dialog requests in a loop until

the model is ready to be shut down.

Test UUTs - Test Socket Entry Point

This entry point is the sequence that the test socket executions run. The
controlling execution creates the test socket executions in its Test UUTs
entry point sequence. The following table lists the most significant steps of

this entry point:

Action
Number Description Remarks

1 Call PreUUTLoop model callback. Callback in model file is empty.

2 Increment the UUT index. —

3 Clear information from previous loop | Discard previous results and clear the

iteration. report and failure stack.

4 Call PreUUT model callback. Obtains the UUT serial number from
the operator.

5 If no more UUTSs, go to action 13. —

6 Determine the report file pathname. —

7 Call MainSequence model callback. | MainSequence callback in client
performs the tests on the UUT.

8 Call PostUUT model callback. Tells the modeless dialog that the
controlling execution creates to
display a pass, fail, error, or terminate
banner for this test socket.

9 Call TestReport model callback. Generates test report for the UUT.

10 Call LogToDatabase model callback. | Log test results to database for the

UUT.

© MNational Instruments Corporation 19

TestStand Process Models

Action

Number Description Remarks
11 Write the UUT report to disk. Can append to an existing file or create
a new file.
12 Loop back to action 2 —
13 Call PostUUTLoop model callback. Callback in model file is empty.

Single Pass

This entry point is the sequence that the controlling execution runs. The
following table lists the most significant steps of this entry point:

Action
Number Description Remarks
1 Call Get Model Options utility Reads model options from disk. Calls
sequence. ModelOptions model callback to
allow client to modify options.

2 Call Get Station Info utility Identifies the test station name and the

sequence. current user.

3 Call Get Report Options utility Reads report options from disk. Calls

sequence. ReportOptions model callback to
allow client to modify options.

4 Call Get Database Options utility | Reads database options from disk.

sequence. Calls DatabaseOptions model
callback to allow client to modify
options.

5 Determine the report file pathname. Determines the report file path name to
use if the report options are configured
so that all UUT results for the model
are written to the same file.

6 Create and initialize test socket See the table for the Single Pass -

executions. Test Socket Entry Point
sequence for more information on
what the test socket executions do.

7 Wait for test socket executions to —

complete

TestStand Process Models 20

ni.com

Single Pass — Test Socket Entry Point

This entry point is the sequence that the test socket executions run. The
controlling execution creates the test socket executions in its Single
Pass entry point sequence. The following table lists the most significant

steps of this entry point:

Action
Number Description Remarks

1 Determine the report file pathname. —

2 Call MainSequence model callback. | MainSequence callback in client
performs the tests on the UUT.

3 Call TestReport model callback. Generates test report for the UUT.

4 Call LogToDatabase model callback. | Log test results to database for the
UUT.

5 Write the UUT report to disk. Can append to an existing file or create
a new file.

Details of the Batch Model

The Sequences

The figure below shows a list of all the sequences in the batch process

model (BatchModel.seq). The first two red sequences are the main
execution entry points, the next fifteen light blue sequences are utility
sequences that the main execution entry points use, the next two red
sequences are hidden execution entry points that the main execution entry
points use to start the test socket executions, the next light blue sequence is
a utility sequence that the hidden test socket execution entry points use, the
next three dark blue sequences are configuration entry points, the next
fifteen green sequences are model callbacks that you can override in a
client sequence file, the next four light blue sequences are utility
subsequences that the other sequences call, and the remaining eight green
sequences are model callbacks unique to the batch model that the main
execution entry points of the model call.

© MNational Instruments Corporation 21 TestStand Process Models

TestStand Process Models

Frestart TestSocket
Initislize TestSocket
tonitar Batch Threads

PostUUT
PrelUTLoop
PostJUT Loop
FeportOptions

D atabazedptions

Tile Execution Windows M odel0ptions

Add TestSocket Threads ta B atch TestReport

Motify TestSocket Threads M odifpR eportHeader
All TestSockets 'Waiting? b odifyR eportEntry
ProceszsTestSocketRequests b odifyF eportFooter
Wl aitForT estSocket LogToDatabaze
ProceszzDialogR equests ProcessSetup

Fun Batch Info Dialog ProceszCleanup

Wiew TestSocket Feport et Station Info

Wiew TestSocket Repart - Current Orly et Report Options
"iew Batch Feport Get Database Options
"iew Batch Report - Current Only Get Model Options
Test UUTz - Test Socket Entry Paint PreB atch

Single Pags - Test Socket Entry Paoint PoztBatch

SendControllerRequest PreBatchLoop
Configure Repart Options PoztB atchLoop
Configure [atabaze Options BatchR eport

Configure Model Options b odifyE atchi eportH eader
b ainSequence b adifyE atchif eportE ntry
PrelUT b odifyE atchif eportFooter

Test UUTs—This sequence runs in the controlling execution of the
process model. It creates a separate execution for each test socket using
the Test UUTs -- Test Socket Entry Point sequence, adds the
main threads of those executions to a batch synchronization object, and
controls the flow of execution using queues and notifications such that
all test socket executions execute the main sequence of the client file
together as a group. After a group of UUTs executes, this sequence
generates a batch report and loops back around to run the client
sequence on the next group of UUTs and controls the subsidiary test
socket executions to keep them in sync with each other. When a
window for a client sequence file is active, the Test UUTs item appears
in the Execute menu. This document contains more information on the
Test UUTSs entry point later in this section.

Single Pass—This sequence runs in the controlling execution of the
process model. It creates a separate execution for each test socket using
the Single Pass -- Test Socket Entry Point sequence, adds
the main threads of those executions to a batch synchronization object,

22 ni.com

© MNational Instruments Corporation

and controls the flow of execution using queues and notifications such
that all test socket executions execute the main sequence of the client
file together as a group. After the group of UUTSs executes, this
sequence generates a batch report and waits for all subsidiary
executions to complete. When a window for a client sequence file is
active, the Single Pass item appears in the Execute menu. This
document contains more information on the Single Pass entry point
later in this section.

Restart TestSocket—This is a dialog request callback that the
ProcessDialogRequests sequence calls. This sequence restarts the
execution for the test socket that the request specifies.

Initialize TestSocket—This sequence, called by the controlling
execution, initializes the data for and creates the test socket executions.

Monitor Batch Threads—ProcessDialogRequests,
ProcessTestSocketRequests, and WaitForTestSocket call
this sequence periodically from the controlling execution to poll to see
whether any of the test socket executions have been terminated or
aborted. If any have, it updates the ModelData for that test socket to
indicate its new state and tells the dialog, if any, to update its display
for that test socket.

Tile Execution Windows—This sequence, called by the
controlling execution, tiles the test socket execution windows by
building a list of executions and posting a UIMessage to the operator
interface requesting it to tile the execution windows. This sequence
only tiles running, non-disabled test socket executions.

Add TestSocket Threads to Batch—The Test UUTs and
Single Pass entry points call this sequence from the controlling
execution to add the main threads of the test socket executions to a
batch synchronization object. The threads remove themselves from the
batch after running the main sequence of the client sequence file. This
removal from the batch is done in the Test UUTs -- Test Socket
Entry Point and the Single Pass -- Test Socket Entry
Point sequences.

Notify TestSocket Threads—The controlling execution calls
this sequence to tell the running test socket execution threads to
continue executing from their last call to SendControllerRequest
in which they block. This sequence optionally waits for each test
socket to get to its next call to SendControllerRequest (i.e. the
next sync point) before telling the next test socket to go. Doing this
ensures serial execution of the test socket executions for the sections of
their sequences following the location at which they currently block.

All TestSockets Waiting?— The sequence returns true if all
running test sockets are waiting for the WaitingForRequest
parameter or if all test sockets are Stopped.

23 TestStand Process Models

TestStand Process Models

ProcessTestSocketRequests—The controlling execution calls
this sequence to wait for the test socket executions to sync up with it at
the appropriate point in their execution. When all running test sockets
are at their appropriate point in their executions, the sequence returns
allowing the controlling execution to continue. While waiting for the
test sockets, this sequence monitors the test socket threads to make
sure they are still running. If all test sockets stop running this sequence
will return to allow the controlling sequence to continue.

WaitForTestSocket—The controlling execution calls this sequence
from the Notify TestSocket Threads sequence to wait for a test
socket execution to get to its next controller request (i.e. its next sync
point) before telling the next test socket execution to continue, thus
allowing the controlling execution to guarantee that only one test
socket runs particular sections of its sequence at a time. This is used to
write the test socket reports to a file in test socket index order when the
configuration of report options specifies that they are to write reports
to the same file.

ProcessDialogRequests—This sequence is called by the
controlling execution from the Test UUTs sequence. It loops waiting
for requests that the dialog enqueues into the
ModelData.DialogRequestQueue. Those requests are names of
sequences to call. When this sequence receives such a request it calls
the requested sequence. Additionally this sequence periodically calls
the Monitor Batch Threads sequence to check to make sure the
test socket executions are still running and update information about
them if they are not.

Run Batch Info Dialog—The controlling execution calls this
sequence from a new thread from the Test UUTs entry point. This
sequence initializes and runs the dialog that the Test UUTs entry point
uses to allow the user to enter serial numbers and see the results for a
particular run of the batch.

View TestSocket Report—This is a dialog request callback that
the ProcessDialogRequests sequence calls. This sequence
launches a report viewer on the report file for the test socket that the
request specifies.

View TestSocket Report - Current Only—This is a dialog
request callback that the ProcessDialogRequests sequence calls.
This sequence launches a report viewer for the report last generated for
the test socket that the request specifies. This sequence differs from the
View TestSocket Report sequence in that it only shows the last
report rather than the whole report file.

View Batch Report—This is a dialog request callback that the
ProcessDialogRequests sequence calls. This sequence launches a
report viewer on the report file for the batch report.

24 ni.com

© MNational Instruments Corporation

View Batch Report - Current Only—This is a dialog request
callback that the ProcessDialogRequests sequence calls. This
sequence launches a report viewer for the batch report last generated.
This sequence differs from the View Batch Report sequence in that
it only shows the last report rather than the whole report file.

Test UUTs -- Test Socket Entry Point—This entry point is
never displayed to the user. Instead, the controlling execution uses it to
create the test socket executions. If you insert a new step in this
sequence, disable the Record Results option for the step. This
sequence implements the Test UUTs process for the test socket
executions. This document contains more information on this entry
point later in this section.

Single Pass - Test Socket Entry Point— This entry point
is never displayed to the user. Instead, the controlling execution uses it
to create the test socket executions. If you insert a new step in this
sequence, disable the Record Results option for the step. This
sequence implements the Single Pass process for the test socket
executions. This document contains more information on this entry
point later in this section.

SendControllerRequest — The test socket executions call this
sequence to sync up with the controlling execution at various locations
in their sequences. They pass a string parameter that indicates the
reason and location at which they are attempting to sync up with the
other executions. When all of the test socket executions that are
running sync up with the controlling sequence at the same location by
calling this sequence, the controlling execution’s sequence then
performs some operations and tells the test socket executions when to
continue.

Configure Report Options, Configure Database
Options, and Configure Model Options—See the descriptions
of these sequences in the section of this document on the Sequential
model for more information.

MainSequence—This sequence is a model callback that the Test
UUTs - Test Socket Entry Point and Single Pass - Test
Socket Entry Point sequences call to test a UUT. The
MainSequence callback is empty in the process model file. The client
file must contain a MainSequence callback that performs the tests on
a UUT.

preUUT—This is a model callback sequence that the test socket
executions call to support backwards compatibility with the TestStand
1.0.x process model. The implementation of this sequence is empty in
the batch process model. You can override this callback in the client
sequence file to get the serial number for the UUT, but if doing so, you
should also override the PreBatch callback, which currently is where

25 TestStand Process Models

TestStand Process Models

the batch model displays a dialog to get the serial numbers for all of
the UUTs in the batch. There is an example of overriding these
callbacks in the
<TestStand>\Examples\Callbacks\BatchModel directory.

PostUUT—This is a model callback sequence that the test socket
executions call to support backwards compatibility with the TestStand
1.0.x process model. The implementation of this sequence is empty in
the batch process model. You can override this callback in the client
sequence file to display the result status for a UUT, but if doing so, you
should also override the PostBatch callback, which currently is where
the batch model displays a dialog to show the result status for all of the
UUTs in the batch. There is an example of overriding these callbacks
in the <TestStand>\Examples\Callbacks\BatchModel
directory.

PreUUTLoop—This sequence is amodel callback that the Test UUTs
- Test Socket Entry Point sequence calls before the UUT loop
begins. The PreUUTLoop callback in the process model file is empty.

PostUUTLoop—This sequence is a model callback that the Test
UUTs - Test Socket Entry Point sequence calls after the UUT
loop terminates. The PostUUTLoop callback in the process model file
is empty.

ReportOptions, DatabaseOptions, ModelOptions,
TestReport, ModifyReportHeader, ModifyReportEntry,
ModifyReportFooter, and LogToDatabase—See the
descriptions of these sequences in the section of this document on the
Sequential model for more information.

pProcess Setup—This sequence is a model callback that the Test
UUTs and Single Pass execution entry points call from their setup
step groups to give the client file an opportunity to execute any setup
steps that must run only once during the execution of the process
model. These setup steps are run from the controlling execution only,
the test socket executions do not call this callback.

Process Cleanup—This sequence is a model callback that the Test
UUTs and Single Pass execution entry points call from their cleanup
step groups to give the client file an opportunity to execute any cleanup
steps that must run only once during the execution of the process
model. These cleanup steps are run from the controlling execution
only, the test socket executions do not call this callback.

Get Station Info, Get Report Options, Get Database
Options, and Get Model Options—See the descriptions of these
sequences in the section of this document on the Sequential model for
more information.

26 ni.com

© MNational Instruments Corporation

pPreBatch—Displays a dialog box in which the operator enters the

Batch and UUT serial numbers. Override this in client file to change or
replace this action. There is an example of overriding this callback in
the <TestStand>\Examples\Callbacks\BatchModel directory.

PostBatch—Displays a pass, fail, error, or terminated banner for
each TestSocket and allows viewing of Batch and UUT reports.
Override this in client file to change or replace this action. There is an
example of overriding this callback in the
<TestStand>\Examples\Callbacks\BatchModel directory.

PreBatchLoop—The model calls this callback before looping on
batches of UUTs. This callback is empty in the model file. Override
this callback in the client file to perform an action before any batches
of UUTs are tested.

PostBatchLoop— The model calls this callback after looping on
batches of UUTs. This callback is empty in the model file. Override
this callback in the client file to perform an action after all batches of
UUTs are tested.

BatchReport—This sequence is a model callback that the Test
UUTs and Single Pass execution entry points call to generate the
contents of the batch report for the UUTSs that ran in the last batch. You
can override the BatchReport callback in the client file if you want
to change its behavior entirely. The batch process model defines a
batch report for a single group of UUTsS as consisting of a header, an
entry for each UUT result, and a footer. If you do not override the
BatchReport callback, you can override the
ModifyBatchReportHeader, ModifyBatchReportEntry, and
ModifyBatchReportFooter model callbacks to customize the
batch report.

ModifyBatchReportHeader—This sequence is a model callback
that the BatchReport model callback calls so that the client sequence
file can modify the batch report header.
ModifyBatchReportHeader receives the following parameters: the
batch serial number, the tentative report header text, and the report
options. The ModifyBatchReportHeader callback in the process
model file is empty.

ModifyBatchReportEntry—This sequence is a model callback that
the BatchReport model callback calls so that the client sequence file
can modify the entry for each test socket’s UUT result in the batch
report. Through subsequences, BatchReport calls
ModifyBatchReportEntry for each test socket.
ModifyBatchReportEntry receives the following parameters: the
TestSocket data, the tentative report entry text, and the report options.
The ModifyBatchReportEntry callback in the process model file is
empty.

27 TestStand Process Models

Test UUTs

* ModifyBatchReportFooter—This sequence is a model callback
that the BatchReport model callback calls so that the client sequence
file can modify the batch report footer. ModifyBatchReportFooter
receives the following parameters: the tentative report footer text, and
the report options. The ModifyBatchReportFooter callback in the
process model file is empty.

This entry point is the sequence that the controlling execution runs. The
following table lists the most significant steps of this entry point:

Action
Number Description Remarks
1 Call Get Model Options utility Reads model options from disk. Calls
sequence. ModelOptions model callback to
allow client to modify options.

2 Call preBatchLoop model callback. | Callback in model file is empty.

3 Call Get Station Info utility Identifies the test station name and the

sequence. current user.

4 Call Get Report Options utility Reads report options from disk. Calls

sequence. ReportOptions model callback to
allow client to modify options.

5 Call Get Database Options utility | Reads database options from disk.

sequence. Calls DatabaseOptions model
callback to allow client to modify
options.

6 Create and initialize test socket See the table for the Test UUTs -

executions. Test Socket Entry Point
sequence for more information on
what the test socket executions do.

7 Call Run Batch Info Dialog. Calls this sequence in new thread and
waits for it to initialize the dialog box
code.

8 Wait for test sockets to get to Initialize | Calls the ProcessTestSocketRequests

synchronization point. sequence to wait for and monitor test
socket executions.

9 Call ndd TestSocket Threads to | Adds test socket execution threads to

Batch.

the batch synchronization object. This
allows the user’s test sequence to use
batch synchronization.

TestStand Process Models 28

ni.com

Action
Number Description Remarks

10 Allow test socket executions that are Calls the Notify TestSocket Threads
waiting at Initialize synchronization sequence.
point to continue.

11 Increment the Batch index. —

12 Wait for test sockets to get to Calls the ProcessTestSocketRequests
GetUUTSerialNumber sequence to wait for and monitor test
synchronization point. socket executions.

13 Call preBatch model callback. Obtains the Batch and UUT serial

numbers from the operator.

14 If no more UUTs, set test socket data | Sets the ContinueTesting test socket
to tell test sockets to stop running their | data variable to false for all of the test
UUT loops. sockets and marks them all as enabled

so that they will be re-added to the
batch and exit normally.

15 Remove disabled test socket threads Disabled test sockets need to be
from batch and re-add re-enabled test | removed from the batch so that they
socket threads. don’t block the threads that are

running.

16 Allow test socket executions that are Calls the Notify TestSocket Threads
waiting at GetUUTSerialNumber sequence.
synchronization point to continue.

17 If no more UUTS, go to action 34. —

18 Wait for test sockets to get to Calls the ProcessTestSocketRequests
ReadyToRun synchronization point. sequence to wait for and monitor test

socket executions.

19 Determine the report file pathname for | Determines the report file path name to
Batch and UUT report files. use if the report options are configured

so that all UUT results for the model
are written to the same file or if they
are written to the same file as the batch
reports.

20 Allow test socket executions that are Calls the Notify TestSocket Threads
waiting at ReadyToRun sequence.
synchronization point to continue.

21 Wait for test sockets to get to Calls the ProcessTestSocketRequests
ShowStatus synchronization point. sequence to wait for and monitor test

socket executions.

© MNational Instruments Corporation 29

TestStand Process Models

Action

Number Description Remarks

22 Call Add TestSocket Threads to | The test socket executions remove

Batch. themselves from the batch after
executing MainSequence in order to
cleanup the state of the batch incase
the sequence was terminated or the
user didn’t match enters and exits
properly. This is where the test socket
execution threads are added again to
the batch.

23 Call postBatch model callback. Displays a pass, fail, error, or terminate
banner for all of the test sockets in the
batch.

24 Allow test socket executions that are Calls the Notify TestSocket Threads

waiting at ShowStatus synchronization | sequence.
point to continue.

25 Wait for test sockets to get to Calls the ProcessTestSocketRequests
WriteReport synchronization point. sequence to wait for and monitor test

socket executions.

26 Call BatchReport model callback. Generates batch report for the last run
of the batch of UUTs.

27 Write the batch report to disk. Can append to an existing file or create
a new file.

28 Allow test socket executions that are Calls the Notify TestSocket Threads
waiting at WriteReport sequence passing true for the
synchronization point to continue. ReleaseThreadsSequentially

parameter so that only one UUT report
is written at a time in test socket index
order.

29 Wait for test sockets to get to Calls the ProcessTestSocketRequests
UUTDone synchronization point. sequence to wait for and monitor test

socket executions.

30 Tell status dialog box that report This is so that it can enable the view

generation is done.

report buttons so that the user can view
the reports from the dialog box.

TestStand Process Models 30

ni.com

Action

Number Description Remarks
31 Wait for status dialog box. If the status dialog box was displayed
by the PostBatch callback (i.e. it
wasn’t overridden) then the sequence
waits for the user to dismiss the dialog
here if they have not already done so.
32 Allow test socket executions that are Calls the Notify TestSocket Threads
waiting at UUTDone synchronization | sequence.
point to continue.
33 Loop back to action 11. —
34 Wait for test socket executions to —
complete.
35 Call PostBatchLoop model callback. | Callback in model file is empty.

Test UUTs — Test Socket Entry Point

This entry point is the sequence that the test socket executions run. The
controlling execution creates the test socket executions in its Test UUTs
entry point sequence. The following table lists the most significant steps of

this entry point:

Action
Number Description Remarks

1 Sync with controlling execution for Calls SendControllerRequest and
Initialize synchronization point blocks until the controlling execution

sets the test socket’s notification.

2 Call PreUUTLoop model callback. Callback in model file is empty.

3 Increment the UUT index. —

4 Clear information from previous loop | Discard previous results and clear the
iteration. report and failure stack.

5 Sync with controlling execution for Calls SendControllerRequest and
GetUUTSerialNumber blocks until the controlling execution
synchronization point sets the test socket’s notification.

6 Call preuuT model callback. Callback in model file is empty.

7 If no more UUTSs, go to action 20. —

© MNational Instruments Corporation 31

TestStand Process Models

Action

Number Description Remarks
8 Sync with controlling execution for Calls SendControllerRequest and
ReadyToRun synchronization point blocks until the controlling execution
sets the test socket’s notification.
9 Determine the report file pathname. —
10 Call MainSequence model callback. | MainSequence callback in client
performs the tests on the UUT.
11 Remove the test socket’s thread from | This is necessary to cleanup the state
batch synchronization. of the batch incase MainSequence was
terminated or the user didn’t match
enters and exits properly. The
controlling execution re-adds the
thread to batch synchronization before
continuing past the next
synchronization point. Disabled test
sockets do not get re-added to the
batch.
12 Sync with controlling execution for Calls SendControllerRequest and
ShowStatus synchronization point blocks until the controlling execution
sets the test socket’s notification.
13 Call PostUUT model callback. Callback in model file is empty.
14 Call TestReport model callback. Generates test report for the UUT.
15 Call LogToDatabase model callback. | Log test results to database for the
UUT.
16 Sync with controlling execution for Calls SendControllerRequest and
WriteReport synchronization point blocks until the controlling execution
sets the test socket’s notification.
17 Write the UUT report to disk. Can append to an existing file or create
a new file.
18 Sync with controlling execution for Calls SendControllerRequest and
UUTDone synchronization point blocks until the controlling execution
sets the test socket’s notification.
19 Loop back to action 3. —
20 Call PostUUTLoop model callback. Callback in model file is empty.

TestStand Process Models 32

ni.com

Single Pass

This entry point is the sequence that the controlling execution runs. The
following table lists the most significant steps of this entry point:

Action
Number Description Remarks
1 Call Get Model Options utility Reads model options from disk. Calls
sequence. ModelOptions model callback to
allow client to modify options.
2 Call Get Station Info utility Identifies the test station name and the
sequence. current user.
3 Call Get Report Options utility Reads report options from disk. Calls
sequence. ReportOptions model callback to
allow client to modify options.
4 Call Get Database Options utility | Reads database options from disk.
sequence. Calls DatabaseOpt ions model
callback to allow client to modify
options.
5 Create and initialize test socket See the table for the Single Pass -
executions. Test Socket Entry Point
sequence for more information on
what the test socket executions do.
6 Wait for test sockets to get to Calls the ProcessTestSocketRequests
ReadyToRun synchronization point. sequence to wait for and monitor test
socket executions.
7 Call Add TestSocket Threads to | Adds test socket execution threads to
Batch. the batch synchronization object. This
allows the user’s test sequence to use
batch synchronization.
8 Determine the report file pathname for | Determines the report file path name to
Batch and UUT report files. use if the report options are configured
so that all UUT results for the model
are written to the same file or if they
are written to the same file as the batch
reports.
9 Allow test socket executions that are Calls the Notify TestSocket Threads
waiting at ReadyToRun sequence.
synchronization point to continue.

© MNational Instruments Corporation 33

TestStand Process Models

Action
Number Description Remarks

10 Wait for test sockets to get to Calls the ProcessTestSocketRequests
PostMainSequence synchronization sequence to wait for and monitor test
point. socket executions.

11 Call Add TestSocket Threads to | The test socket executions remove
Batch. themselves from the batch after

executing MainSequence in order to
cleanup the state of the batch incase
the sequence was terminated or the
user didn’t match enters and exits
properly. This is where the test socket
execution threads are added again to
the batch.

12 Allow test socket executions that are Calls the Notify TestSocket Threads
waiting at PostMainSequence sequence.
synchronization point to continue.

13 Wait for test sockets to get to Calls the ProcessTestSocketRequests
WriteReport synchronization point. sequence to wait for and monitor test

socket executions.

14 Call BatchReport model callback. Generates batch report for the last run

of the batch of UUTs.

15 Write the batch report to disk. Can append to an existing file or create

a new file.

16 Allow test socket executions that are Calls the Notify TestSocket Threads
waiting at WriteReport sequence passing true for the
synchronization point to continue. ReleaseThreadsSequentially

parameter so that only one UUT report
is written at a time in test socket index
order.

17 Wait for test sockets to get to Calls the ProcessTestSocketRequests
UUTDone synchronization point. sequence to wait for and monitor test

socket executions.

18 Allow test socket executions that are Calls the Notify TestSocket Threads
waiting at UUTDone synchronization | sequence.
point to continue.

19 Wait for test socket executions to —
complete

TestStand Process Models 34 ni.com

Single Pass — Test Socket Entry Point

This entry point is the sequence that the test socket executions run. The
controlling execution creates the test socket executions inits Single Pass
entry point sequence. The following table lists the most significant steps of

this entry point:

Action
Number Description Remarks

1 Sync with controlling execution for Calls SendControllerRequest and
ReadyToRun synchronization point blocks until the controlling execution

sets the test socket’s notification.

2 Determine the report file pathname. —

3 Call MainSequence model callback. | MainSequence callback in client

performs the tests on the UUT.

4 Remove the test socket’s thread from | This is necessary to allow other test
batch synchronization. socket threads to do batch

synchronization without counting this
thread anymore. The controlling
execution re-adds the thread to batch
synchronization before the thread runs
the main sequence again. Disabled test
sockets do not get re-added to the
batch.

5 Sync with controlling execution for Calls SendControllerRequest and
PostMainSequence synchronization blocks until the controlling execution
point sets the test socket’s notification.

6 Call TestReport model callback. Generates test report for the UUT.

7 Call LogToDatabase model callback. | Log test results to database for the

UUT.

8 Sync with controlling execution for Calls SendControllerRequest and
WriteReport synchronization point blocks until the controlling execution

sets the test socket’s notification.

9 Write the UUT report to disk. Can append to an existing file or create

a new file.

10 Sync with controlling execution for Calls SendControllerRequest and
UUTDone synchronization point blocks until the controlling execution

sets the test socket’s notification.

© MNational Instruments Corporation 35

TestStand Process Models

Support Files for the TestStand Process Models

Many sequences in the TestStand process model files call functions in
DLLs and subsequences in other sequence files. TestStand installs these
supporting files and the DLL source files in the same directory that it
installs the process model sequence files.

The table below lists the files that TestStand installs for the
TestStand process models in the
<TestStand>\Components\NI\Models\TestStandModels
directory.

File Name Description
SequentialModel. seq, Entry point and model callback sequences for the TestStand
ParallelModel.seq, and process models.

BatchModel.seq

reportgen html.seq

Subsequences that add the header, result entries, and footer for a
UUT into an HTML test report.

reportgen_txt.seq

Subsequences that add the header, result entries, and footer for a
UUT into an ASCII text test report.

modelsupport2.dll

DLL containing C functions that the process model sequences
call. Includes functions that display the Report Options and
Model Options dialog boxes, read and write those options from
disk, determine the report file pathname, obtain the UUT serial
number from the operator, and display status banners.

modelsupport2.prj

LabWindows/CVI project that builds modelsupport2.dll.

modelsupport2. fp

LabWindows/CVI function panels for the functions in
modelsupport2.dll.

modelsupport2.h

C header file that contains declarations for the functions in
modelsupport2.dll.

modelsupport2.1lib

Import library in Visual C/C++ format for modelsupport2.dll.

modelpanels.uir

LabWindows/CVI user interface resource file containing panels
that the functions in modelsupport.dll use.

modelpanels.h

C header file containing declarations for the panels in
modelpanels.uir.

main.c

C source for utility functions.

banners.c

C source for functions that display status banners.

TestStand Process Models

36 ni.com

File Name

Description

report.c C source for functions that display the Report Options dialog box,
read and write the report options from disk, and determine the
report file pathname.

uutdlg.c C source for the function that obtains the UUT serial number

from the operator.

c_report.c

C source for generating HTML and ASCII reports for the DLL
option in the Report Options dialog box.

modeloptions.c

C source for the functions that display Model Options dialog box
and read and write the model options from disk.

batchUUTdlg.c and
parallelUUTdlg.c

C source for the functions that display the UUT identification
dialogs for the Batch and Parallel process models. The files are
part of modelsupport2.dll but the default process model,
SequentialModel.seq, does not call them.

You can view the contents of the reportgen_html.seq and reportgen_txt.seq
sequence files in the sequence editor. Both of these files are model
sequence files and contain an empty ModifyReportEntry callback. Each
file has a PutOneResultInReport sequence that calls ModifyReportEntry.
The client sequence file can override the ModifyReportEntry callback.
TestStand requires that all sequence files that contain direct calls to model
callbacks must also contain a definition of the callback sequence and must
be model files.

The TestStand process model sequence files also contain an empty
ModifyReportEntry callback, even though no sequences in those files call
ModifyReportEntry directly. They contain a ModifyReportEntry callback
so that ModifyReportEntry appears in the Sequence File Callbacks dialog
box for the client sequence file.

Report Generation Functions and Sequences

To customize the report generation for your test station, create your own
process model or modify the default TestStand process model files.
However, do not modify the files in the
<TestStand>\Components\NI\Models\TestStandModelsdirectory
because later installations of TestStand will overwrite your modifications.
Instead, make a copy of the components and modify the copy. Using
Windows Explorer, copy the TestStandModels folder from
<TestStand>\Components\NI\Models\TestStandModels to
<TestStand>\Components\User\Models\TestStandModels. The
following tables list the process model sequences and C functions that
generate the report and the locations of the files that contain them. The table

© MNational Instruments Corporation 37 TestStand Process Models

below lists the default process model sequences that generate the report
header and footer.

Table 1. Sequence in <TestStands>\Components\NI\Models\TestStandModels\

Report Header or Footer
Report Format Header Footer
HTML AddReportHeader sequence in AddReportFooter sequence in
ReportGen Html.Seg ReportGen Html.Seg
Text AddReportHeader sequence in AddReportFooter sequence in
ReportGen_ Txt.Seq ReportGen_ Txt.Seq

The table below lists the default process model sequences and C functions
that generate the report body for each step result.

Table 2. Sequence or C Function in <TestStand>\Components\NI\Models\TestStandModels)\

Report Body Generator Selected in the Report Options Dialog Box

Report Format Sequence DLL

PutOneResultInReport sequence PutOneResultInReport Html
in ReportGen Html.Seq function in ¢_report.c in the
ModelSupport2.prj
LabWindows/CVI project

HTML

PutOneResultInReport sequence | PutOneResultInReport Txt
in ReportGen Txt.Seq function in ¢_report.c in the
ModelSupport2.prj
LabWindows/CVI project

Text

You can also alter the report generation for each client sequence file that
you run. To alter report generation, you override the report-generation
model callbacks in the client sequence file. The table below lists the
report-generation model callbacks. Refer to the Sequence File Callbacks
section in Chapter 5, Sequence Files, in the TestStand User Manual for
more information on overriding model callbacks.

Section of the Report to Alter Model Callback Sequence to Override

Report Header ModifyReportHeader

Report Footer ModifyReportFooter

TestStand Process Models 38 ni.com

Section of the Report to Alter Model Callback Sequence to Override

Each Step Result ModifyReportEntry (TestStand does not call the
ModifyReportEntry callback if you select the DLL report
body generator in the Report Options dialog box.)

Entire Report TestReport

In addition, each step in the sequence can add text to its corresponding
result in the report. To make these additions, the step stores the text to add
to the report in its Step.Result.ReportText property.

© MNational Instruments Corporation 39 TestStand Process Models

	TestStand Process Models
	Contents
	Architecture of the TestStand Models
	Details of the Sequential Model
	The Sequences
	Test UUTs
	Single Pass

	Details of the Parallel Model
	The Sequences
	Test UUTs
	Test UUTs – Test Socket Entry Point
	Single Pass
	Single Pass – Test Socket Entry Point

	Details of the Batch Model
	The Sequences
	Test UUTs
	Test UUTs – Test Socket Entry Point
	Single Pass
	Single Pass – Test Socket Entry Point

	Support Files for the TestStand Process Models
	Report Generation Functions and Sequences
	Table 1. Sequence in <TestStand>\Components\NI\Models\TestStandModels\
	Table 2. Sequence or C Function in <TestStand>\Components\NI\Models\TestStandModels\

