
357

THE HEX EDITOR

THE CODE EDITOR

INTRODUCTION

This chapter explains the operation of Resorcerer’s Code Editor, which is an
integrated extension to its Hex Editor. The Code Editor lets you
disassemble code resources containing Motorola 68000-family machine
instructions. The Editor can disassemble all 68040 instructions, including
PMMU and FPU co-processor instructions.

This chapter only covers the extensions the Code Editor brings to the Hex
Editor, so you should also be familiar with the operation of the Hex Editor,
whose operation is documented in the “Hex Editor” chapter later in this
volume. Also, this chapter does not attempt to document 68040 assembly
language. The disassembler’s output is based on Motorola’s documentation.

If you are not already familiar with general resource editing, see the
“Editing Resources” chapter earlier in the manual.

TOPICS COVERED

• Creating new code resources
• Opening a code resource
• Using the Code Editor
• Making patches

358

RESORCERER USER MANUAL

CREATING A NEW CODE RESOURCE

Code resources are typically created by the compiler or assembler in an
application development environment. The Code Editor does not contain an
assembler, although it can make a few of the most common patches for you.

OPENING A CODE RESOURCE

Standard 68000 application code is compiled and stored in resources of type
‘CODE’. There are also a variety of other standalone code resource types
commonly used in applications, such as Menu Definition (‘MDEF’)
Procedures, Control Definition (‘CDEF’) Procedures, and List Definition
(‘LDEF’) Procedures. Resorcerer is shipped with the knowledge of about 50
resource types that contain system or application code. These are all
declared as synonyms of ‘CODE’ resources so that the Code Editor will open
them automatically for you (for more on declaring synonyms, see the
“Synonym Preferences” section of the “Preferences” chapter).

DISASSEMBLING THE CODE

The Code Editor extends the Hex Editor by adding an extra code
viewing area to the Hex Editor’s standard offset, hex, and text display
areas. When the Editor opens the code resource, the disassembler
parses the entire resource into individual machine instructions, each of
which ranges in length from 1 to 11 16-bit words. The Hex Editor then
inserts a paragraph break at the start of each instruction. Unlike the
Hex Editor, the Code Editor does not mark the paragraph boundaries in
the offset area, since the code area makes these obvious. The code area
then disassembles the starts of each paragraph (line) on the fly as you
display different parts of the hex data.

359

THE HEX EDITOR

Note: The Hex/Code Editor is a 32-bit Editor, and requires a 10-
byte overhead per instruction (paragraph). Thus, a 32K
code resource with an average of 3 bytes/instruction will
require about 100K available memory to open, plus the
resource data, a possible backup copy, and another 80K or
so for the Editor itself. All of which adds up to an easy
250K. To open multiple or much larger code resources,
you will likely have to increase Resorcerer’s partition size.

If an instruction appears illegal, the disassembler assumes it is actually
inline data, and breaks it up into the appropriate number of word data
declarations. It then continues to disassemble at the next instruction.

In addition to breaking the data up into instructions,
the Code Editor analyzes the code when it opens it,
looking for likely procedure boundaries so that it can
parse any MacsBug name strings and extra compiler
data that might be appended to routines. The Editor
marks the starts of the routines with their names,
and the offset area displays them (in red) on the left.
If a routine has no name, the disassembler assigns it
a default name, “<Anon-xx>”, where each “xx” is a
unique number.

Sorcery: You can configure the Editor to avoid
using brackets (‘<’ and ‘>’) for
unnamed routines. Search for “<anon”
in Resorcerer’s own string lists and
delete the initial ‘<’.

Resorcerer sorts the names of procedures in the code
alphabetically, and installs them in the Routines
menu’s 27 submenus. It places any non-alphabeticly named routines in
the Other submenu. You can navigate (scroll to) any named routine
simply by choosing its name from its menu.

360

RESORCERER USER MANUAL

USING THE CODE EDITOR

As an extension of the Hex Editor, most of the features of the Hex Editor are
also available in the Code Editor. You can select bytes in either the hex or
text data areas, enter data, search for and replace hex strings, etc. The rest
of this chapter explains the features the Code Editor adds to the Hex Editor.

VIEWING OPTIONS

To adjust the widths of the
individual display areas, click on a
vertical divider line and drag it right
or left. If you have long MacsBug
names, you may want to slide the
first divider (the one between the
offset area and the code area) to the
right. In the illustrations here, we’ve
done this as well as dragged the
second and third divider lines all the
way to the right.

The window’s Grow and Zoom Boxes enlarge all display areas
proportionally.

When working on small displays,
there may be times when you want to
ensure that you can always see all
the hex data. You can do this by
double-clicking on either divider line
next to the hex data. This turns on
the hex word wrap feature. If the
hex data of an instruction wraps,
subsequent lines in the code area
show continuation dots until the next
instruction starts.

The Decimal Offsets command in the Code
menu tells the disassembler and the offset
display area to produce base-10 numerical
output. In this mode, the code area displays 3-
digit numbers for bytes, 5-digit numbers for
words, and 10-digit numbers for longs.

361

THE HEX EDITOR

The Line-break relative offsets
menu item in the Hex Editor is
renamed Routine-relative offsets
in the Code Editor. With this option
normally on, the disassembler
generates numerical offsets that are
relative to the start of each routine.
With this option turned off,
disassembled offsets are with respect
to the start of the data, although the
offset area still marks the starts of routines with a horizontal line above
the starting offset. In addition, lines mark the starts of the actual
MacsBug name data at the ends of routines. Regardless of this option’s
setting, the Editor displays the current insertion offset or selection
bounds just above the data display area in resource-relative offsets.

It is sometimes more useful to view instruction formats in binary than
hex (for instance, Motorola’s documentation is in binary). You can use
Resorcerer’s Value Converter (in the Edit menu) to view and edit any
selected 8-, 16-, or 32-bit hex value in binary or a variety of other
common formats (for more information on this, see the “Value
Converter” chapter later in the manual).

MAKING SELECTIONS

To select one instruction, click on its line in the code area, or double
click within its hex or text data.

To select a sequence of instructions, click on the first one, and drag the
mouse, or Shift-click to extend the selection. For the purposes of cutting
and pasting, you can also click just to the left of any instruction to place
a code insertion caret at the start of the instruction without selecting it.

To select an entire subroutine, double-click on any instruction in it.

Note: You cannot select portions of an instruction’s text
disassembly, nor can you enter assembly instructions.

Above the upper left corner of the scrollable area, the Editor displays
information about the current selection. If the selection is empty, then
it shows you the position, as an offset from the beginning of the
resource, of the blinking insertion caret, as well as what routine it is in.
If the selection range is non-empty, you can see the range’s endpoints
(again, as offsets from the start of the resource data) followed by the
range length and the routine the selection starts in.

362

RESORCERER USER MANUAL

To the right of the data is a scroll bar that lets you position your view to
any word offset in the data. As you drag the scroll bar’s thumb, the
Code Editor immediately updates the offset, and routine containing that
offset, to give you a better idea of where you’re going to scroll to.

To change the active selection highlight from the code area to the hex
area or to the character area, use Switch Selection in the Code menu.

If the first instruction of the
selection contains a PC-relative
branch offset, the Editor displays
a (red) arrow on the left side of
the offset area, which extends
either forward or backward
(depending on the sign of the
offset) to the destination
instruction. You can instantly
scroll to one end or the other of
the arrow by clicking anywhere on it. The arrow adheres to the branch
instruction until you select another branch.

REFORMATTING

There may be parts of the data that look to the disassembler like code,
but which are in fact in-line non-executable data. You can override the
disassembler’s initial decision as to whether a line of data is an
instruction or data using the Format as Code and Format as Data
commands in the Code menu.

Sorcery: Many standalone code resources (for instance, those
compiled with THINK C) begin with an unconditional
branch instruction around a data header area. When the
disassembler sees the first instruction as an absolute
branch, it declares the following data as just data instead
of disassembling it. It begins disassembling again when it
reaches the destination of the branch.

CUTTING, COPYING, AND PASTING

When the active selection highlight is in the text area, copying or
cutting places only the selected bytes in the clipboard. When the active
selection highlight is in the hex area, the hex digits of the data area are
placed in the clipboard.

363

THE HEX EDITOR

When the active selection is in the code area, the Editor puts both the
instruction data and their text disassembly into the clipboard. You can
cut and paste series of instructions this way, although in general this is
very dangerous and you should not attempt it unless you really know
what you are doing. In particular, you cannot easily change the length
of any section of code over which a branch or jump statement extends.

SETTING THE TEXT STYLE

The Set Text Style… command in the Resource menu lets you view
and edit your code data using any installed font on the Mac. This is
useful for larger displays, where a larger fixed width font is easier on
the eyes; or for resources with international string data in them. Both
the hex and the character areas of the display draw single characters at
a time, so if you choose a variable width font, the spacing may be
uneven.

If you click on Save & OK, the type style you choose is recorded in
Resorcerer’s preferences file, so that every time you use the Code Editor
it displays with your favorite font. If you click on OK, then the change
is only temporary.

USING DEBUGGER ON DATA

If you have a debugger installed in your Mac, such as MacsBug, you can
use it to disassemble the code data, in case Resorcerer’s Code Editor is
doing something different.

Note: Your low-level debugger’s disassembler generally assumes
that the code it is disassembling is part of the currently
running application, in this case, Resorcerer.
Consequently, it may provide incorrect disassembly,
particularly with regards to jump table references.

364

RESORCERER USER MANUAL

MAKING PATCHES

One of the most common uses of a Code Editor is to perform surgery on an
existing application you’ve built in order to fix (or bypass) a bug that is
causing grief to your user. In Resorcerer’s own case, we have been able to fix
about a third of the reported bugs in earlier versions of Resorcerer by
providing simple patches for specific ‘CODE’ resources.

The Code Editor’s Patch menu
assists you in making the three
most common length-preserving
patches used to fix certain types
of bugs. In the first two cases,
you should select the instructions
that you want to avoid executing,
and either change them all to
NOP instructions, which do
nothing, or change the first few
words of the selection into an
absolute branch to the first
instruction after the selection.

In the third type of patch, you must first select an instruction that uses the
condition code bits syntax. These are the Bcc , DBcc , Scc , or TRAPcc
instructions, where the cc can be any of the condition abbreviations listed in
the above menu. Just choose the condition you want the selected instruction
to use from the heirarchical submenu of conditions.

A typical example of how this is useful is when you have discovered in your
source code that the condition computed by an if statement should have
been >= rather than >. You need first to use your development system
debugger or disassembler to help you find the instruction(s) in the segment
(‘CODE’ resource) that correspond to the condition evaluation, and change
the related branch instruction.

Note: The Bcc instruction, where the condition cc is T (Always True),
is generally disassembled as BRA (unconditional branch).

