

Sports Arbitrage and More

A Real‐Time System for Sports Arbitrage.

Submitted May 2009, in partial fulfilment of

the conditions of the award of the degree Software Systems BSc (Hons) G601

Jonathan Stuteley
Jas06u

School of Computer Science and Information Technology
University of Nottingham

I hereby declare that this dissertation is all my own work, except as indicated in the
text:

Signature ______________________

Date _____/_____/_____

 i

Abstract

In certain situations it is possible to make a guaranteed profit by placing proportional bets with

multiple bookmakers on all of the outcomes of a single sporting event.

This project attempts to automate the process of finding these profitable opportunities by:

• Acquiring odds data from bookmakers.

• Interpreting the odds data to group comparable odds together.

• Processing the data to find collections of outcome odds that could potentially form a

profitable opportunity.

• Evaluating the profitability of opportunities.

• Presenting opportunities and odds data to the end user, so that they could potentially take

advantage of them.

 ii

Contents

Abstract i

1. Motivation for the Work 1

2. Description of the Work 2

3. Project Planning 4

4. Related Work 6

5. Design 10

6. Implementation 20

7. Testing 34

8. Evaluation 40

Bibliography 43

Glossary 44

Appendices

A System request.

B Gantt chart.

C Input to database Data Flow Diagrams.

D Database tables.

E Sample database data and descriptions of table columns.

F Data View SQL queries.

G Unit Tests.

H Sample test schedule.

I JavaDocs of Standard Objects and Constants.

J Example Data Acquisition module configuration file.

K SAM Installation Manual.

L SAM User Manual.

M SAM Programmer Manual – Opportunity Definitions.

N SAM Programmer Manual – Data Miners.

 1

1. Motivation For The Work

In finance “arbitrage” is defined as ‘…the practice of taking advantage of a price differential between

two or more markets…’(Wikipedia). Sports arbitrage is taking advantage of situations where it is

possible to bet on all outcomes of a sporting event and make a guaranteed profit.

I shall attempt to explain why these situations occur by drawing parallels with currency exchange (in

italics).

• When bookmakers (bookies) set the odds for the outcome of an event, they set them so

that it is impossible to make a profit by betting on all event outcomes (through them).

It is impossible to make a profit by buying foreign currency from a local travel agent then

immediately selling it back to them as the agent’s buy price is lower than its sell price.

• As different bookies take bets on the same events and want to get more of the market

share of wagers than other bookies the odds get more competitive. As odds vary

between bookies and change with time, profitable opportunities (including sports

arbitrage) can occur.

Different foreign currency exchanges sell the same currency at different exchange rates.

American dollars may be cheaper at travel agent #1 than they are at travel agent #2, and

it may be possible to make a profit from buying and selling American dollars.

• A profitable opportunity might occur on a sporting fixture involving team #1 and team #2

in an event where there must be a winner (no tie allowed). This might consist of betting

on team #1 to win with bookmaker #1 and team #2 to win with bookmaker #2.

It may be possible to make a profit by buying American dollars from travel agent #1 and

selling them to travel agent #2.

• Profit is possible with sports arbitrage by betting proportionally on all of the outcomes of

a sporting event as long as the reciprocals of all of the (decimal) odds taken add up to less

than 1.

Profit is possible with buying and selling foreign currency if a person can buy at a lower

price than he/she can sell at.

In both of these situations (sports arbitrage and the currency exchange example) the key to being able

to make a profit is having accurate odds information (or buy and sell prices) so that an informed

decision about the profitability of a situation can be made.

This project attempts to automate the acquisition and interpretation of odds data before presenting

opportunities and a rating as to their profitability to the user of the end product so that they might

take advantage of it.

 2

2. Description Of The Work

Initial Systems Request

Appendix A details the systems request received from the project’s customer.

During the initial project meeting the customer divulged the information that a prototype system had

been produced to clarify their requirements and test whether a sports arbitrage system was indeed

plausible. The customer was able to give this project some access to the prototype code, full access

to the database and access to all of the documentation that was produced (although this was limited).

The prototype was later analysed (documented in the Related Work section) and the following revised

specification was developed and approved by the customer.

Revised Specification

The revisions from the initial Systems Request that were identified by this project are in italics.

Functional Requirements:

• Be able to retrieve data from up to 100 bookmakers/sources of odds.

• Record odds from numerous events and various sports.

• Be able to record various types of odds given for different occurrences (e.g. result odds,

score odds, handicap result odds etc).

• Be able to recognize when odds from different bookmakers are comparable (i.e. predict

the same outcome of the same event).

• Be able to identify various types of “profitable opportunities” including but not limited to

“arbitrages” and “middles”.

• Be able to identify “profitable opportunities” as soon as the data is available and highlight

them to a user.

• Allow the user to view data in at least the following ways:-

1. All profitable opportunities, sorted by profitability.

2. Sporting events, sorted by start time/date.

After selection of a fixture:

3. All odds on this event grouped by their type and then grouped with others that

they logically should be (e.g. all “Home Win” odds grouped with “Draw” and

“Away Win” odds).

4. All opportunities on this event, sorted by profitability, with all the odds of the

bet types that it consists of.

After selection of an opportunity:

5. All odds for the constituent bet types.

• Allows an “administrator” to amend participant alias data.

• Keep a history of all odds collected for future analysis. This should be able to be backed up

by administrator actions.

 3

Non-functional Requirements:

• Due to the involvement of multiple project teams working towards similar goals, the

customer would like the data storage and its interface(s) implemented as soon as possible.

The customer can then let the other projects use these with a view to having multiple

products that can be interfaced with the same “core” component.

• The system should be implemented with a view to cater for easy expansion of types of odds

stored and types of opportunities calculated.

• The system should be implemented so that the client’s programming staff can maintain

the supplied data miners (and parsers) and write more of their own.

• The system should be well documented to facilitate the above two requirements.

• The system should cater for data retrieval from xml and html sources.

• It should be possible for the data acquisition to be done in (numerous) separate locations

then submitted to a central location for storage.

• It should be possible to view data as a user from any computer (via the internet).

• The system should be installable on standard Microsoft XP/Vista based PCs.

• The system should run on one PC but be optimal on 3+, allowing for the other requirements

to be fulfilled.

Other Project Considerations

Here is a list of considerations that need to be taken into account:

• Bookmakers may not like people trying to find sports arbitrage opportunities. Although on the

face of it they may get some business that they may not have otherwise got, bookmakers as a

whole lose out. This may lead bookmakers to employ countermeasures.

• A bookmaker may stop accepting bets (or suspend accounts) from users that try to access their

website from an IP address that interrogates their website too regularly.

• Bookmakers may stop an IP address from accessing their website faster than at a pre-defined rate.

• Bookmakers may sometimes input odds wrongly. These could be incorrect or just transposed (e.g.

between home win and away win).

• Bookmakers may get suspicious of accounts that place bets using strange stakes (e.g. £52.61).

Real-Time Term Clarification

The term “real-time” is a rather relative term that implies a quick and highly responsive system but

this is relative to the context of the system’s operation. This project will be real-time in that the data

and information presented should be a true reflection of the odds market at the present time, with

opportunities that can be acted upon. In the Related Work section of this report a rival piece of

software “…aim(s) to deliver arbs to you within 60 seconds of their existence”. Although no response

restrictions have been requested by the customer, this project certainly aims to compete with this

response time, although a lot is dependant on network connection speeds.

 4

3. Project Planning

Choice of Design Methodology

The project did not conform to a standard development methodology as there was a prototype of a

system (produced for the customer prior to project commencement) that contained certain

characteristics that were requested to be included in the new system. There was some access to the

prototype code, full access to the database and access to all of the documentation that was produced

(although this was limited). A Hybrid of methodologies was most appropriate here.

Figure 3.1 - Project Design Methodology

With access to a prototype and with the customer’s evaluation of it, the project could be considered

to have started in the middle of the Throwaway Prototyping methodology, at the stage where

evaluation of the prototype was taking place. More work was required on evaluation of the

prototype, before a system design could be produced and a design methodology decided upon for

moving forward.

Following further analysis of the prototype, it was evident that the project broke down into three

main sections, which could be developed independently (following initial overall system design).

These sections were:

• Data acquisition and interpretation.

• Data storage, analysis and manipulation.

• Data display and notification.

Communications between these sections’ development processes would only be required in order to

confirm the interfaces between those parts of the system. This conformed to the standard design

methodology of Parallel Development, which has been employed for the remainder of the project.

 5

Time Plan

One of the requirements of the project was to produce the data storage part of the system (and its

interfaces) at the earliest possible time, so that other projects (aimed solely at the data acquisition or

data display sections of this project’s specification) could use this common module. The overall result

for the customer being a full product (this project) with optional data acquisition and display modules

that could be plugged in, instead of the original ones. The data storage and its interface was

therefore the priority when constructing the time plan for the project. A Gantt chart showing the

project schedule is included as Appendix B.

Plan B

Overall, the project is keeping quite close to the schedule although the time plan does not allow much

slack time to take up unforeseen extensions in workload or reduction in manpower. This will be

closely monitored and should there be the need to cut the workload down a list of timesaving

initiatives has been drawn up. This is not a negative step, it is taking heed of the old adage ‘prepare

for the worst, hope the best’.

• Curtailment of Data Display & Notification module. – It is known that the customer has another

project team working solely on a module to carry out this function. Although a module is needed

by this project to demonstrate the capabilities of the rest of the package, a fairly simple

implementation would suffice.

• Reduction in the number of data miners produced. – Although the number of miners that this

project will include has not been set, it is hoped that it will be at least six. The project needs to

produce at least two data miners to demonstrate mining both types of data source (HTML and

XML). As with the display, miners are also required to demonstrate the rest of the package. It is

fully appreciated however that the ability to easily create and add more data miners to the

package is a more important function and that the quality of this should not be sacrificed for the

quantity of supplied miners.

• Reduction in the number of opportunity types searched for. – The implementation of the

opportunity finder is in two stages; a “Basic” followed by a later “Real” implementation. The

number of plausible opportunity types is quite high (possibly up to 100 just on football alone)

with some being mathematically quite complicated. As above, the ability to easily create new

opportunity types and to demonstrate functionality outweighs the need to develop many.

 6

4. Related Work

Other sports arbitrage systems are frequently advertised online but they all cost to use and

download. It is a bit of a black subject as surely a working system makes the owner/writer money. If

it were doing this then why would they want to advertise the fact or share the creation by selling the

software (or a service), when the attention might lead bookmakers to counter the arbitrage efforts?

Mike Moffatt of “Your Guide to Economics” at About.com makes the following argument about sports

arbitrage software available on the Internet:

‘…There's a more fundamental reason why I believe such software is not likely to

work. If someone has discovered a system where they can make a lot of money

easily by betting on sporting events, why would they tell you about it? Sure, they

make money from selling the software. But by letting the world know about their

system, they'd end up killing the golden goose. […] If these pieces of software truly

worked, the writers of such software would have to make an awful lot of money by

selling the software, because by doing so, they're making it a lot more difficult to use

the software for themselves to make easy money...’

Below is a short analysis of the customer’s prototype followed by the results of limited research into

the features of other systems advertised on the Internet. Then there is a description of the features

that make this project’s system unique.

Short Analysis of Prototype

Prototype Design

The prototype was developed in two stages by different teams. The first team focused on showing

that the system was feasible whilst the second worked on improving the data acquisition part of the

system. Below is a diagram of the overall system design.

Figure 4.1 - Overall design of customer’s prototype

 7

This design had a lot of merit. It separated the system into four modules that had distinct

responsibilities:

• Controlling and monitoring the data acquisition.

• Parsing data.

• Storing data.

• Displaying data.

The running prototype worked effectively and (on the whole) the customer was happy with it.

Analysis during this project showed many positive points in the prototype’s design and

implementation, but below are the negatives that were identified.

Prototype Critique

The customer identified the following areas for improvement (how this affected the System Request

is in italics):

1. The PHP data view needed to be refreshed to get up-to-date data. It did not change when the

data changed. – Requested data view to change “as soon as the data is available”.

2. There was no history of how the odds changed over time. – Requested a record of all odds to

be kept.

3. Certain parsers did not work as well as they had originally, in fact one didn’t work at all. The

code was difficult to follow and there was no documentation on how the parser/miner

worked, so it could not be fixed. – Requested that the data mining (and parsing) code be

implemented so that it could be maintained by the customer’s programming staff and that

documentation facilitated this too.

Extra criticisms identified by this project (how this affected the Revised Specification is in italics):

4. The ability to record odds data was very limited at just win, lose or draw. - This needed to be

extended and preferably unlimited.

5. The ability to record only arbitrages limited the system with consideration of (4). - This needed

to be extended and preferably unlimited.

6. The data acquisition all being done by one program on one computer was a potential bottle-

neck due to bookmaker limits as to how often odds can be retrieved from a single IP address.

Also, adding lots of miners/parsers may have put too much load on a single processor. –

Allowing the data store to run independently from the data acquisition and on a separate

machine would allow the load to be shared. Multiple data acquisition modules could then be

running on separate machines and feeding the same data store via remote connection.

Other Software

Below are what other sports arbitrage software claim to be their features.

ArbitragePro (www.arbitragepro.com)

• Faster discovery and delivery of arbs. We aim to deliver arbs to you within 60 seconds of

their existence.

• More arbs due to the speed of multi-computer scanning.

 8

• Validated arbs - no rules mismatches with tennis, baseball and ice hockey. No inconsistent

handicaps in American sports.

• Option to have rules-mismatched arbs in tennis and baseball.

• Filtering by sport, account or arb percentage.

• Set bookmaker currencies.

• Arb calculator that works with multiple currencies.

• Set individual exchange commission rates.

• We recognise the extra value of middles and highlight these to maximize your profit.

• Online service so you can receive the service wherever you are, not just where you receive

your email.

 Software from Sports-arbitrage.com

• This software downloads the lines directly from the sportsbooks to your computer!

• Easily spot bad lines! Speculators can instantly compare every price available on an event.

• Set WRF software to download multiple books at the same time, many opportunities only

last a few minutes. If you have a fast computer and a nice internet connection, you can get

the lines within a few seconds after the sportsbooks update their servers.

• Have an alarm sound on your computer speakers when an arbitrage is found.

What Makes This Project’s Software Unique

The aim of this project is to create a sports arbitrage system even though it is dubious as to whether it

is possible to actually make money from sports arbitrage. If it is possible to make money then by

using the same piece of software as hundreds of other people, who will be notified about the same

opportunities at the same time, a user would have to be very alert in order to take advantage of the

opportunity before bookies realise what is happening and change their odds to remove the

opportunity.

By producing a brand new piece of software from scratch, this project is maximizing the possibility of

identifying an opportunity and notifying a user before any other system does because it scans a

different range of bookies in a different way.

This project embraces the best parts of the customer’s prototype, features claimed by other systems

and ideas generated by the development team. It must also be pointed out that this software, unlike

software that is available to purchase (of the type identified above), is aimed at a customer that has

the necessary resources to add to the software, on a programming level. As a result some of the

features identified will not be available from a user interface but will be code or database design

features that have been defined or agreed by this specific customer. The benefits of many of these

features will be evident to the user of the product.

Features include:

• Definable bet types for use with definable sports and definable opportunity types. This

makes the system capable of being used with a huge (possibly unbounded) range of bet

types from all kinds of sports and other bet-able events.

• More frequent scanning of bookies odds by optional use of multi-computer scanning.

 9

• Online end-user interface that allows user to access the system from any computer with

Internet access.

• Definable opportunity types to take advantage of “middles” as well as arbitrages.

• Define payout rules for individual sport-bookie combinations to highlight issues that might

affect validity of opportunities.

• By displaying all of the available odds, not just the best ones, it is easy to spot incorrect

odds (normally bookies input errors) and evaluate whether to take advantage of the

alternative odds from another bookie.

Unique Selling Point

The first feature mentioned in the system features was “Definable bet types for use with definable

sports and definable opportunity types”. As far as this project is aware (from the limited knowledge

of working systems due to Mike Moffat’s Golden Goose argument) no other system offers this level

definition freedom. This feature gives the system the ability to search for a potentially huge range of

opportunity types. This also means that it doesn’t necessarily need to compete with other systems on

speed of data acquisition, speed of user notification or range of bookies interrogated even though it

should do just that. (The only time constraint found was ArbitragePro’s claim to notify within 60 secs

of odds change.)

 10

5. Design

Overall System Design

Figure 5.1 - Overall Design.

Options have been left open for a couple of possible Data View modules as depicted on the overall

design above. This is due to both being equally viable and the possibility of other projects creating a

data view that interfaces with this the Data Storage module of this project.

Communal Files

There are certain data containers, interfaces and constants that will be used by multiple programs in

this system, so there will be an archive (.jar) file that contains all of these that will be required by the

java programs; certainly the Data Acquisition and Data Storage modules.

The data containers keep all submitted data standardized and encapsulated in meaningful packages

that contain information about real objects, while the constants allow the code to reference by name

instead of using seemingly random numbers. The constants often reflect entries in the “Manually

Inserted Reference Information” part of the database.

There will be at least the following objects:

• A BetSubmissionObject – holding possible bet data.

• An EventSubmissionObject – holding event data.

• A SubmissionObject – holding a single EventSubmissionObject and multiple

BetSubmissionObjects.

• A class for holding constants that can be referenced.

 11

Data Storage

The Data Storage module of this system has three major responsibilities:

1. To insert data into the database that it receives from Data Acquisition modules.

2. To manage the data in the database.

3. To retrieve data from the database that is requested by the Data View (should this be

implemented).

The only one of these that is (currently) important from an external point of view is the first; the

insertion of data. A submission is carried out by calling three methods on the Data Inserter (via the

RMI Server). The first requests authority to submit, the second submits data (this can be called

multiple times) and the third notifies that submission has finished.

To start submitting the submitter must request to submit its current bookmaker’s data by calling a

method and passing in the bookie’s ID. If authority is granted (if it is not currently accepting data

about that bookie) a unique identifier is returned to submit the data with. This is so that two bookies

don’t submit similar data at the same time and confuse the system when it tries to delete data that

wasn’t updated in the most recent submission. This authority request also starts a timer that

automatically notify itself of the senders desire to finish submitting if it is taking more than a pre-

defined time to complete its submission. This is designed to stop a submitter from blocking other

submitters indefinitely if it takes too long to submit or stops submitting due to error conditions (loss

of network connection etc).

As responsibilities one and two (from above) both require access to the database and will be running

concurrently, it is possible that the data insertion mechanism will read some data and later rely on it

even though the data management has already deleted it. There is therefore a need to guard against

this happening by introducing a locking mechanism to implement atomic actions for multiple accesses

to the database.

Database

Data Flow Diagrams for inputting data into the database (following data acquisition) can be found in

Appendix C. These were developed alongside the database tables (Appendix D) whilst considering all

of the operations and checks that need to be carried out on new data and following the insertion of

new data. Sample database data and descriptions of table columns are in Appendix E.

The data storage requirements for this project fall into four main categories:

• Manually Inserted Reference Information (6 tables) –

This is data that doesn’t change and is used to classify data into sections and will

therefore be repeated as easy to reference Java constants for use in the code. It is also

used to describe data for display purposes by way of referencing to it.

• Current Market Information (6 tables) –

This is defined as all of the data that has been collected and inserted into the database

(primary data). It consists of event, bet and bookie information as well as references to

data in the Manually Inserted Reference Information section. The “Bookies” table is in

this section but would be equally at home in the Manually Inserted Reference

Information section as some of its data is manually inserted.

 12

• Current Opportunity Information (2 tables) –

This is the data representing the opportunities that have been derived from the

Current Market Information. This information is managed by the Opportunity Finder.

• Past Information (5 tables) –

The history of bets and opportunities is secondary data written to by the Data Inserter

and the Opportunity Finder respectively. This data will need to be manually managed

as the customer didn’t want a mechanism to automatically control/restrict the size of

this section.

Database Control

This part of the system is responsible for accessing the database and will have methods for all access

types required. Each method will have at least one database query associated with it. This is the only

part of the system that accesses the database directly.

Data Inserter

Data Flow Diagrams (DFDs) for this section (located in Appendix C) may help when trying to

understand the flow and manipulation of data in this section. There are nine DFDs entitled:

• Overview - An overview of the data insertion operation.

• Input Event - Overview of inputting/locating an event.

• Event with 1 ID - Locating an event with only 1 referenced alias.

• Event with no Ids - Locating an event with no referenced aliases.

• Insert/Update bet - Inserting or updating a possible bet.

• Current Data Management - Keeping Current Market Info’ section up-to-date.

• Opportunity Finder - Inserting into the Current Opportunity section.

• Opportunity Updater - Updating Opportunities Past and Current.

• Post-Insertion Checks - Updating Current Market Information.

Data will be submitted to the Data Inserter in the standard objects that were mentioned above in the

Communal Files section.

Event Identification

In order for this project to produce a functional piece of software, it is imperative that data from

bookie A is matched against data from bookie B. In order to do this bets from bookie A on an event

have to be matched against the same event identified by bookie B, using three critical pieces of data;

the event start timestamp (time/date) and the participant aliases. Although time is easy to compare

(as long as the same datum is being used) participant names are not, especially when Manchester

United can be identified by “Man U”, “Man Utd”, “Manchester Utd” or its full title to name a few

possibilities. Worse still, the bookie may miss-spell whichever abbreviation they choose!

This event identification problem will be addressed using a number of techniques around the same

theme of keeping an alias list for all known participants. The techniques are as follows:

1. First of all the alias string will be processed in the following way so that it observes a standard

form. This is to limit the number of aliases that are saved in the database and to give an alias

the best chance of being recognised. The processing steps are:

 13

• Full stops are replaced with spaces.

• Spaces at the start and end of the String are removed.

• Any capital letters are turned to lower case.

• Multiple spaces are replaced with single spaces.

• All characters not between “a” and “z” (except the space character) are replaced

with the “?” character.

2. All of a participant’s aliases will map to the participant they’re assigned to, so any of the

inserted aliases for Manchester United will identify the same participant.

3. If an unknown alias is used, the system will insert it into the acceptance list only if the other

participant and timestamp correctly identify a current event and there is a “basic” string

match between the unknown alias and one of the known aliases for that participant. (See DFD

“Event with 1 ID”.)

4. If two unknown aliases are used, the system will insert the aliases into the acceptance list only

if there is an event already defined that has “good” string matches between the two unknown

aliases and the aliases of the participants of an event. (See DFD “Event with no Ids”.)

If participant IDs and a timestamp do not identify a defined event (after an attempt to transpose the

aliases) a new event is inserted into the Current Market Information and Past Information sections of

the database. (See DFD “Input Event”.)

String Matching

String matching is a potential area for a lot of future research. In this project (under the heading of

Event Identification) the requirement for two levels of string matching has been identified:

1. A “basic” string match for use when the strings are suspected to be a match and quick

confirmation is required.

2. A “good” string match when the string is being tested against another speculatively and needs

to be a closer match in order to pass.

Possible Bet Entry/Update (See DFD “Insert/Update bet”.)

In order to insert bet information into the database the type of the bet must first be identified in

order to be able to compare it with like bets. Each bet type will be identified using the event that it

takes place on, the style of the bet and the bet style mutator.

 Event – This was retrieved or generated during the Event Identification phase.

Bet Style – This was classified before its submission and could take values of “Result

Participant#1 win”, “Asian Handicap Participant#2 win”, “Handicap

Result Draw” or many more.

Bet Style Mutator – Certain bet styles need number to go with them to make sense. A

football match result home win would not need a mutator, but an Asian

handicap away win would need a number like “+2” or ”-0.5” for

example, to make any sense and define the bet so that it could be

compared against others of exactly the same type.

 14

If this bet type has already been identified a search will be carried out looking for this bet type and

bookie combination. If one is found it will update the odds and timestamp, otherwise a new possible

bet will be created. Either way, the best odds for this bet type will then be updated only if it is

required. If it is then an entry in the Past Information section of the database will be created to say

that this bookie was offering these odds on this bet type at this time.

If these three pieces of data do not identify a bet type, new ones will be created in the Current

Market Information and Past Information sections of the database. The opportunity finder will then

notify the Opportunity Finder to look for opportunities involving this new type of bet. (See DFD

“Opportunity Finder”.)

If the best odds for this bet type are changed then the Opportunity Manager will be notified to update

the data of the dependent opportunities. (See DFD “Opportunity Updater”.)

Current Market Information Management

There will be two mechanisms at work under this heading that together ensure that data in the

Current Market Information section of the database is up-to-date and relevant. Their specific

purposes are:

1. To remove any possible bets that belong to the bookie that has just submitted but who’s odds

were not updated. This is because the odds can’t be relied upon to be valid. (See DFD

“Current Data Management”.)

2. To remove any information that relates to an event that has passed its start timestamp

(started). (See DFD “Post-Insertion Checks”.)

Opportunity Manager

This section has control over inserting into and updating the Current Opportunity Information section

of the database. This responsibility falls under two headings:

• Opportunity Finder – This will be notified when a new bet type is created. It will check the

bet type against a list of opportunity templates to find if it features in any of them. If the

bet type appears in a template a search is carried out for the other bet types required to

create the opportunity. If found, the relative secondary data is entered into the database.

(See DFD “Opportunity Finder”.)

• Opportunity Updater – It is important to keep the secondary information in the database

synchronised with the primary data. When a bet type’s best odds are changed fields in

both the Opportunities and Opportunity Bet List database tables will need updating. (See

DFD “Opportunity Updater”.)

The deletion of opportunities will be done by Current Market Information Management after the start

of the event that it relates to.

The opportunity manager will have a list of opportunity definitions that describe a collection of bet

styles and mutators that are required before a valid opportunity can be created. These opportunity

definitions will often have a lot of common features that are the same apart from a variable or two. It

 15

makes sense to design a standard opportunity definition that all other definitions can inherit from and

specialise.

Figure 5.2 – Opportunity Definition Inheritance Hierarchy.

Data Retriever

(Due to time constraints this has not been designed as part of this project.)

Centralised Error Reporting

Error reporting will be done from a central location provided by a singleton pattern. The benefits of

this are that it is accessible from anywhere in the module and that it reduces the occurrence of similar

code. It also allows for the centralised generation of error messages that are displayed to the user

and written to the log file at the same time.

Data Acquisition

This module will be a program in its own right that can run on the same computer as the Data Storage

module or a different one, as long as has access to a copy of the communal files. Of course, in order

to submit data to the Data Storage module from a remote location there will have to be a network

connection too, but this will also be required for the module to run using “live” data.

Data Acquisition can be broken down into five sections, all of which are described below. It will

conform to the MVC pattern of coding in that there will be a data model that contains all of the

transient program information. This data model will be updated by all parts of the program and is the

sole source of information that the data view displays data from. The main advantage of having this

centralised data area is that it decouples the Data View from the rest of the program, allowing it to be

swapped for another with minimal effort.

Acquisition Control

This is the part of the module that initialises the system components and sets them in motion. It will

read the XML configuration file of miner information, set variables, create objects and have overall

control of the module. Following program initialisation the acquisition control becomes the Control in

the MVC pattern, allowing a user to interact with this module.

Miner Scheduler

The Miner Scheduler does exactly what one would expect, it has full control over which miners mine

and when. In order to do this efficiently there will be numerous threads of operation working at any

one time in a multiple producer, multiple consumer environment. This needs to be managed

correctly to avoid the notorious “Race Conditions” or “Loss of Increment” on the shared variable(s).

 16

There will be a producer thread for each of the miners instantiated (identical miner objects can be

mining different URLs from the same bookmaker), which will place its miner into a list of waiting jobs

every time its time period elapses. The consumer threads will do the actual data mining. They will

take jobs from the job list and process them before coming back for another. The number of

consumer threads will be user definable, and will need to be set with consideration of the processing

power and network capacity of the computer that the Data Acquisition module is being run on, as will

the time periods between successive calls to a miner.

Control View

The view will display all of the information that is useful to the user and provide the facility by which

the user can change what is happening. Facilities that this will offer are:

Display:

• Miner description (location of data being mined).

• Miner status (working, waiting, failed, etc).

• Miner stats (events processed, bets processed).

• Server connection details (host, port).

• Server connection status.

• Miner thread status’.

• Connection proxy information.

Control:

• Stop and start miners.

• Change the number of mining threads.

• Set proxy information.

• Change server details.

The view used by the customer’s prototype performs almost all of these tasks and looks like a neat

solution. The customer is also happy with this view, so it is the aim of this project to create something

that resembles this in looks and function.

Figure 5.3 – Prototype Screenshot.

 17

Miners

There will be XML miners and HTML miners and even though HTML is far more difficult to extract data

from there are many similarities between these two types. There will therefore be a hierarchy of

inheritance associated with the miners, involving characteristics common to both XML miners and

HTML miners.

Figure 5.4 – Miner Inheritance Hierarchy.

Each miner is tailored to the specific requirements of the code that it is designed to mine, so they will

have to be designed as they are implemented. No matter what the implementation is like, they will

need to have features that are common to all miners. They need to:

• Extract event information from data:

− Event start time and date.

− Event participants.

− Sport type. *

− Event description (optional).

• Extract associated bet type information:

− Bet style. *

− Bet style mutator (for certain bet styles only).

− Odds.

− URL, so that a user can take advantage of the bet quickly.

• Create submittable objects with the data.

• Update statistics about the data parsed.

• Notify the data model as to their status.

*(Classified as a communal object constant value).

Miners also need to provide statistical feedback to the user as to their success (events found, useful

events, possible bets found, useful possible bets).

 18

Data Submitter

Data submission will work on a multiple producer, single consumer basis. There will be lots of miners

producing submittable objects and adding them to a list of objects that are ready for submission. A

single submission thread will be the consumer that takes these objects out of the list and sends them

off to the Data Storage module. Again there are concurrency issues that require attention in order to

ensure that none of the objects go missing.

Data View

The Data View Module of this project was not properly designed or implemented due to time

constraints covered in the evaluation section of this report. Included below however is some design

information about what would have been created.

Data Retrieval and Display

Below is a list of database query descriptions (based on information from the project specification)

that this section will be based around.

• View all opportunities, sorted by profitability, for a single opportunity type.

• View all profitable opportunities, sorted by profitability.

• View all profitable opportunities, sorted by profitability, for a single opportunity type.

• View all sporting events, sorted by start time/date.

• View all sporting events, sorted by start time/date, for a single sport type.

• View all sporting events, sorted by first participant name, for a single sport type.

• View all sporting events, sorted by second participant name, for a single sport type.

• View all sporting events, sorted by event description, for a single sport type.

• View all opportunities on a single event, sorted by profitability.

• View all possible bets on a single opportunity, grouped by bet type, ordered by odds.

• View all possible bets on a single event, grouped by bet type, ordered by odds.

• View the possible bets and stake percentages that a user needs to take advantage of a

single opportunity (odds in original retrieved incomparable state, not processed

comparable state).

However this is implemented there would have been various view options from a “home” page.

Upon selecting a higher level view (e.g. all events) there would have to be the facility to select a lower

level view (e.g. all opportunities on a single event) and then maybe a lower level again (e.g. possible

bets on an opportunity).

 19

Alias Management Interface

This section needs to fulfil the basic requirement of being able to insert new participants into the

database as this is not possible in any other way. It also needs to supply a method for managing the

aliases collected. For these purposes the user needs to be able to:

• View already inserted participant information.

• View already inserted alias information.

• Insert a participant and (processed) alias version of the participant’s primary name.

• Amend the participant id that aliases are related to.

There is no need to insert aliases into the database as all aliases that are mined are kept in the

database even if they are not recognised as relating to any of the known participants.

Continuity of Service

As this will be a distributed system it is no good if when a network connection is interrupted an

element of the system has to be manually reset/restarted, especially if these elements are a large

distance apart. To minimise the need for this there will be contingency built into the system at all of

the connecting stages:

• Database to Data Storage module.

• Data Storage module to Data Acquisition module.

• Data Acquisition module to The Internet.

Contingency will be based on the ability of one of the elements to detect the loss of connection and

re-establish a connection via the same means by which it made the connection in the first place.

Java RMI

Following a brief look into Java RMI it is the opinion of this project that it will not be difficult to

implement for the basic requirements of this project. There is no specific design associated with this,

just the writing of both the Data Inserter and Data Retriever so that the RMI server can relay the

methods calls to them.

 20

6. Implementation

Software

As preferred programming language of the workforce it was decided early in the project development

lifecycle that Java would be the preferred language for writing code as long as it was suitable for the

purpose. When it became clear that remote connections between modules would be needed, the

combination of Java’s popularity and its RMI (Remote Method Invocation) facility made it an easy

choice to make. Java was therefore selected to be used for the main bulk of the code (Database

Controller, Data Inserter, Data Retriever, Opportunity Finder, Data Acquisition Controller, Data Miners

and Data Acquisition View).

There are many common database packages successfully used today so the choice between them for

this project was not initially a simple one. The following factors helped to reduce the list of possible

solutions:

• The project workforce had experience with mySQL only.

• The customer would need to access the database manually in order to update certain

reference data, so an included easy to use interface would be preferable. If this facility

wasn’t supplied by the used software then this project may have had to supply suitable

software.

• The customer had experience of a piece of WAMP (Windows, Apache, mySQL, PHP)

software called EasyPHP and was very happy with its performance.

• There had to be support for the database access in the language chosen for the Data

Storage Module.

After researching similar WAMP software packages including Server2Go and Apache2Server it was

this project’s view that EasyPHP was quite a popular choice for projects of this scale and that there

weren’t any major benefits of any of its rival WAMPs. Due to the customer’s preference and the fact

that EasyPHP used software familiar to the project workforce (mySQL and PHP), it was decided that

EasyPHP would be used in the project to supply the mySQL database software.

Using a WAMP like this has some added bonuses:

• The overall project design loaded minimal processing onto the display module. In fact the

only processing comes from the areas of participant manipulation and the possible

inclusion of a stake calculator, which are minimal. The display module therefore lends

itself to the possibility of using Server Side Processing (like PHP) to produce HTML views of

the data, and PHP is an integral part of the WAMP software.

• A graphical interface to access the database structure and data.

About halfway through the project (late Dec ‘08/early Jan ‘09) a problem was experienced with the

EasyPHP WAMP software when it suddenly (and seemingly inexplicably) stopped functioning. Re-

installation did not cure the problem so an alternative needed to be found.

XAMPP was selected as the replacement due to the following reasons:

• Like EasyPHP it used mySQL for its database.

 21

• Like EasyPHP it used PHP for its server-side processing of web pages.

• It used the same admin interface to mySQL as EasyPHP, called phpMyAdmin.

• Installation of the software was quick and easy.

• The software looked very professional.

• Unlike Easy PHP (French), all documentation was in English including the website.

• The release was recent (Dec ‘08) and the impression was that it was well maintained and

supported.

XAMPP was used without any problems for the remainder of the project and it is the opinion of this

project that it is in fact a superior product to the original first choice of EasyPHP.

Communal Files

The communal data objects have been defined and are described below.

• BetSubmissionObject – Object that contains all data that makes up a bet.

• EventSubmissionObject – Object that contains all data that makes up an event.

• SubmissionObject – Object that contains an EventSubmissionObject and a Vector of

BetSubmissionObjects that are related to the event.

• SAMConstants – Constants used by different (separated) parts of the system. Using these

makes sure that different programs define certain important parameters (like bet style ID)

the same, without (seemingly) random numbers in the code. These are currently defined

for Sport Types, Bet Styles and Opportunity types but this will be expanded by the

customer as they identify more and more opportunities that they would like to monitor.

• DBControllerInterface – this defines the methods that the Data Acquisition module can call

on the Data Storage RMI Server.

Data Storage

This module was implemented, as designed, to handle submitted data and manage the current data in

the database. An addition to the original design was a simple GUI, which is documented later in this

section.

The potential concurrency issues concerning database access highlighted at the design stage are

addressed using a read-write lock in the DataStorage class. I mention it here specifically as any future

additions to the module (like implementation of a Data Retriever) should make use of this lock in

order to guarantee the concurrent access to the database.

Submission Process

The submission procedure was originally based on the use of three methods; the first to request

permission to submit, the second to submit and the third to notify of submission completion.

Following this notification the system deleted all data for the bookie that had just submitted that

didn’t fall between the timestamps generated at the first and last method calls, thus getting rid of any

data that hadn’t just been updated.

This system was found to work but:

• It assumed that submissions were of large volumes of data.

 22

• It assumed that submissions contained all of the data available for the bookie.

• It assumed that any data not updated was no longer useful.

• As RMI method calls are synchronous the actual submission call was having to wait until

the data had all been processed before it returned and allowed the submitter to get on

with submitting anything else.

This was found to be unworkable when a parser was written for Pinnacle, who only deliver

information about the markets that have changed since a data miner’s last data request, not a full

listing of odds every time. Problems were also highlighted when the first HTML miner was written

and it was appreciated just how much slower these operate, due to the amount of data they need to

download compared to an XML miner. In a system where accurate data is required, it was not

satisfactory to wait minutes between retrieving data and submitting it.

There were radical changes implemented in order to maximize the efficiency of the submission

process:

• The idea of blanket purging of all old data was abandoned and a new data persistence was

built in that was focussed on the individual odds as apposed to the bookmaker. This

allowed market data to stay in the system for a maximum pre-defined time (30 minutes

say), after which it was deleted.

• Submission now only requires the data to be sent. The authority and notification calls

were abandoned as they were surplus to requirement with respect to the above.

• Processing of data was given a separate thread of execution and a buffer of data was

established so that the submitter no longer had to wait for data to be processed, just for it

to be placed into the buffer. The submitter could then get on with the next submission

whilst the new processing thread got on with processing the data.

Database

The database was implemented true to the design in Appendix D, but the design has evolved slightly

as the process has progressed. This is mainly due to the customer’s enthusiasm for the improvements

to the specification that this project suggested.

One such change is that there is now a Stake Percentage column in the Opportunity Bet List table that

advises the user what percentage of their stake needs to be bet on the associated Bet Type.

Originally this system was meant to advise the user of where the opportunity lay, and the taking

advantage of it was the user’s responsibility. As the customer investigated different kinds of

opportunities that the system could find, the customer wanted to implement more and more complex

combinations of bets. So complex in fact that it would be difficult for a user to use the data to take

advantage of an opportunity without the extra information that the new column holds.

Database Control

This is the section of the code that contains all of the commands that access the database. It consists

of a Java Interface (DatabaseInterface) that defines all of the generic methods needed to perform the

necessary operations on the database. There are then concrete implementations of these methods in

the SQLController class that implements this interface. As mySQL has been chosen as the database

software, this class connects to the project database on the mySQL server (started by the WAMP

 23

software), via windows data sources ODBC (Open Database Connectivity). The object then issues the

SQL commands required to achieve the method’s purpose.

Writing the database access in this way allows the database software to be changed at a later date

with minimal change to the existing code. The only change would be referencing the new database

access object class (that would need writing) that inherits from the interface, which would be a single

line of code. All of the method calls would then go to the new database controller.

Figure 6.1 – Database Control Inheritance Hierarchy.

The constructor of the SQLController takes string arguments describing the database name, access

username and password. This means the database name and the access information are defined at

runtime, allowing the user to easily change the database that the system uses. This will be very useful

for maintenance purposes, allowing the “real” database to be kept safe while a new data miner is

being tested on a dummy database.

There were teething problems with the database connection due to there being a compatibility issues

between jdk (java development kit), JDBC (Java Database Connectivity) driver, ODBC interface and the

Data Storage Module. The problem was that the main development computer was 64bit and there

was a mismatch between the software versions so they weren’t communicating. Eventually the

source of this issue was recognised and it was decided that 32bit versions would be used across the

board, which meant using the 32bit ODBC interface that 64bit versions of Windows Vista hide away

from users.

Built into the database control section is a mechanism for reconnecting to the database if the

connection is dropped. This also displays a notification that there is a problem. As there is often a

high rate of database access calls it was necessary to limit these notifications to stop the user from

being swamped by notifications, making the program unusable.

If the database connection is lost then the efforts to reconnect would take a little time, and as an

attempt to reconnect happens with every new submission that arrives, there is potential for the

buffer that the submissions are entered into getting very big. To combat this a limit has been set at

100,000 (100 bookmakers supplying 1000 submissions each) that once reached starts deleting the

oldest submission item every time a new one enters the buffer. This has the added bonus of allowing

the database connection to be lost temporarily with no/little loss of new data. There is a readout of

the current buffer size on the GUI and there are user notifications and a log file entries generated to

notify the user that the buffer maximum has being reached.

Data Inserter

The Data Inserter part of the Data Storage module was implemented fairly true to the original design.

Some of the changes that were documented at the start of this Data Storage section were relating to

data insertion and below are a few other minor change that were required.

 24

Event Identification

There is no longer the requirement for the time of an event to match the time of the event that is

trying to match it. This is due to mistakes by bookmakers causing multiple (non-comparable) events

being inserted into the database for the same participants on the same day. This caused potential

opportunities to be overlooked because odds were attached to seemingly different events. Now, as

long as the participants and day of the event matches, two sets of event data are deemed to be the

same, and the time is taken from the data set that was used to insert the event into the database,

whether it was right or wrong.

It is possible that this will very occasionally cause an “in progress” event, which is normally wiped

from the database, to persist. This may get updated with new odds even when the score of the event

has changed and these may be compared with odds collected before the event started. This would

result in spurious opportunities being highlighted but as soon as a user tried to take advantage of

them it would be obvious from the bookmakers’ websites that the event was underway.

This is currently an accepted “issue” that on the other side of the argument could produce a lot of

useful opportunities that would otherwise be overlooked.

String Matching

Although two levels of string matching were specified in the design and two methods have been

implemented there is only one matching algorithm with the “basic” match internally calling the

”good” match method. It is a very simple algorithm with the following steps:

1. “?” Characters are removed from both of the strings.

2. Both strings’ lengths are checked and a failure is returned if either is less than a pre-defined

length. This makes sure there is enough content in the string to compare.

3. A test is then carried out to see if all of the characters of the smaller string feature in the

longer string in the same order, and acceptance of a match is only issued if this is true.

String matching could be seen to be an area of research all on it’s own, so this project made the

decision to stick with the simple solution above. As the program never creates new participants and

only accepts new aliases for participants when there is little doubt that their identity is the same

(aliases fit an already defined event between two participants) the string matching does not need to

be too clever. If it were being used to define new events between unknown aliases then it would

need a lot more time spent developing it, but as opportunities will never occur unless multiple

bookies supply odds for the same event, if the event hasn’t already been defined there is nothing to

gain by inserting the odds without near certain participant identification.

Possible Bet Entry/Update

In addition to the original design specification, this section also makes the odds comparable by

changing them if the bookie takes a “cut” of any winnings. This translation must be “undone” by a

potential data view or else a user will not be able to find the value of the odds that are accredited to

the bookmaker concerned.

 25

During testing, this part of the module reported many errors in the submitted data. As a result the

checking of data and the error reporting for the whole of this module has evolved and become far

more robust.

If an event is identified as one in the database but with the participants transposed it is this section of

the code that processes the associated bet data to make it valid before its insertion into the database.

Bet style id (integer) constants are arranged so that the inverse can be found (away win if the original

is home win) by adding one to even ids and subtracting one from odd ids, but this only happens if

there is a valid entry in the database for that BetStyleID (there is no inverse for a draw for example).

This arrangement allows the odds of a transposed event to be inserted into the database correctly.

Opportunity Manager

The opportunity manager has undergone no conceptual changes since its design, although it has

evolved since it was first implemented. Originally, new opportunity definitions had to be registered

with the opportunity manager before they could be used. Now, when the module is initialised it

searches for opportunity definitions, which means they can be included just by adding the compiled

code to the module’s working directory. This means that there is no need to re-compile the module

code and that including a new opportunity definition is a single step process).

There have been eight opportunity types implemented, using nine different bet types. These do have

a lot of inherited code from the OpportunityDefinition superclass, which makes it very easy to write

simple new opportunities. It is also possible to write complicated definitions including uneven

weightings to the bet types that are required (as the user has stressed is needed). Please see the

Opportunity Definition Manual in Appendix M for a full description of how to create new definitions.

Figure 6.2 – Opportunity Definition Inheritance Hierarchy.

 26

Data Retriever

This module was not implemented due to time constraints.

GUI

It was decided late on that there simply had to be some sort of display for the Data Storage module.

If there wasn’t, a user would have to either monitor the WAMP database interface to check that the

module was working (by way of assumption due to there being data in the database), or look at the

output window of an IDE that the program was being run from. Of course this second choice would

force the user to run an IDE every time that they wanted to use the program, which is highly

undesirable.

A simple GUI was designed that allows a user to quickly and easily ascertain whether the module is

functioning and what the overall status of the database is. It displays the number of current and past

possible bets, bet types, events and opportunities. It is important to display “current” data levels to

show what the program’s current condition is, and past data as this needs to monitored so that it

doesn’t get too big (as the customer specified that no past data deletion mechanism was required).

There is also a readout of how many submissions have been received without being processed and

also an indication of how long ago the last submission was received. The whole interface changes

colour from green to red to indicate database connection problems.

Figure 6.3 – Data Storage Module GUI.

Centralised Error Reporting

Along with the GUI, the centralised error reporting (that was implemented as designed) helps to keep

the user informed about the module status. The user is notified of problems using dialogue boxes on

the screen (figure 6.4) and notifications inserted into a log file, with a reference time and date of

when the problem occurred and often some explanation as to why.

 27

Figure 6.4 – Data Storage Module GUI with Error Message.

Data Acquisition

GUI Simplification

It was fairly quickly appreciated, following the Christmas break and exam period, just how little time

there was to progress this project in the way it was originally planned. It was decided that the Data

Acquisition module would be implemented in a simpler way than it had first been designed, with the

intention of reviewing this once a fully functional system had been realised.

It was known from experience that graphical user interfaces take up a lot of programming time, often

striving for perfection as little problems can annoy users greatly. It was decided that this part of the

Data Acquisition module was the least important to the functionality of the project and therefore the

part that would be curtailed.

The control of data acquisition was deemed to be a luxury function as all of the same control could be

implemented in a simpler, non-interactive way. The XML configuration file’s role was expanded to

take up as much of this functionality as possible and give greater control over the initial setup of the

module. It is the view of this project that no functionality, just convenience has been sacrificed here.

The view was implemented to be easy to see how the miners (and submission manager) were

progressing. By colour coding each element a monitor could see that everything was functioning

correctly in just a few seconds. All of the monitoring information can be seen on the GUI

representation of the component and a countdown to the next time the miner will mine has been

included too. A point to note is that the bet-at-home miner displays such a large number of events

mined as the XML file redefines the event for every set of odds that are given.

 28

Figure 6.5 – Data Acquisition Module GUI (console hidden).

The view is refreshed on a timer (currently every 200ms) so that information from the data model

makes its way to the user fairly quickly. This could have been implemented so that it was updated

whenever the data changed but this could have been twenty times a second (or more) and there was

no need for such accuracy.

Figure 6.6 – Data Acquisition GUI Inheritance Hierarchy.

The components that have a status and change colour all inherit from SAMActiveJPanel class, so the

code for this is only written once.

As the GUI components all implement the SAMGUIComponent interface their update methods are

recursively called from the top level container, allowing them all to update themselves with a single

call to the update method of the top level component. This is achieved with the following code (in

SAMView).

00133 @Override

00134 public void update(){

00135

updateRecursive(this.getContentPane().getComponents());

00136 }

00137

00138

00139 private void updateRecursive(Component[] comps){

00140 for (int i=0; i<comps.length; ++i){

00141 if (comps[i] instanceof SAMGUIComponent)

((SAMGUIComponent)comps[i]).update();

00142

 29

00143 else if (comps[i] instanceof Container)

updateRecursive(((Container)comps[i]).getComponents());

00144 }

Figure 6.7 – Data Acquisition GUI Recursive Update code.

There is also a drop-down console which displays lots of progress information. If one of the miner

components turned red (say) there would be a reason displayed here along with the build up events

that may have leads to its failure. As this is drop-down it is easy to hide this detailed view and just use

the simpler colour coded part of the display.

Figure 6.8 – Data Acquisition Module GUI (console showing).

The configuration file has a section for system configuration as well as the original miner information

section. This includes variables for the number parsing threads, proxy and server information as were

in the original GUI specification.

Acquisition Control/Configuration File

Following on from the points raised above, this part of the module which was originally the Control in

the MVC pattern, now reads the configuration file, validates its contents and sets up the Data

Acquisition module to perform as the user requires. Following this it has no further function.

The configuration file (example at Appendix J) contains the following information:

• Connection

− Server address.

− Server port.

− RMI interface name.

− Proxy host.

− Proxy port.

 30

• Configuration

− Number of mining threads.

− Number of failures before a miner is reset.

− Whether output is to log file or the server specified above.

• Miner Definitions

− Miner class to instantiate.

− URL to direct miner to.

− The sport type of the URL (only required if sport specific url).

− Period between mining attempts (in secs).

− How many periods between full data refreshes are required (only if required).*

*(Some miners set the URL for their next mine as they go. This allows the user to specify how often

the miner must return o the above URL.)

Miner Scheduler

The designed method for miner scheduling worked well and has not been changed. All miners

starting from the same starting time, however, led to bursts of activity followed by large periods of

inactivity. To try to even out the activity levels the user can define varying miner periods of operation

(via the configuration file) and there is a random start to all of the miners that sets each one going at

a (pseudo-) random point in their period.

Data Miners

Four data miners have been implemented. Three XML miners were initially created by making

bookmaker specific handlers to work with a generic XML miner. An HTML miner followed and at this

point it was appreciated what common features the two types of data retrieval had, so the XML

handlers were re-written as miners in their own right. Both miner types now inherit from a common

superclass and act as superclass to bookmaker specific subclasses. Both types follow an event-driven

pattern that calls methods when “interesting” code is found by the parser.

Figure 6.9 – Miner Inheritance Hierarchy.

In the case of the XML miners the inherited code parses the data and calls methods on the subclass

when predefined interesting tags are found. This makes the bookmaker specific sub-classes hold

 31

minimal code and it is this project’s opinion that it couldn’t be much easier to create a new XML

miner.

HTML miners are different as they parse the data themselves, using generic tools that generate the

events that the miner must handle. This offers more freedom to tailor the miner to the bookmaker’s

website but it means more code is needed to create a miner. Part of this is due to HTML mining being

about a whole website as apposed to just a page of HTML. In the one HTML miner that was created

the required data was spread between a “master” page and many event specific pages who’s URLs

were found on the master page. Other websites distribute their information in slightly different ways

and this kind of uncertainty means that there must be a less constricted framework to write the code

for a new miner in. Unfortunately this means a higher degree of difficulty in writing a new HTML

miner.

SAX Parser Problem

There were two utilities included in the standard java development kit (jdk) to help parse xml code;

SAX and DOM. DOM creates a tree like structure in the memory and holds all of the data for

programmers to use as they please, where as SAX navigates through the code returning information

when it hits start tags, end tags and the characters in between. The SAX parser was chosen for use by

this project as it is far more memory efficient, especially for large XML files.

The problem that the title of this section refers to is that the SAXParser Parse method has a tendency

to trap the thread of execution if the network connection is lost before the method returns, certainly

on Windows Vista 64bit anyway (the problem could not reproduce on Windows XP 32bit). Even

interrupting the thread did not have any effect. In order to maintain the specified number of parsing

threads and to not lose the miner that made the offending parse method call, a work-around was

required.

The user can define the number of times that a miner can be asked to start and fail before the work-

around is initiated. If this number is exceeded (whether due to failure or a too short period being

set), the miner is deemed to have failed. In this case it is the mining thread that is trying to initialise

the already mining miner that takes the action. It interrupts the trapped thread (just in case it does

respond at some point) and also the thread that schedules that miner before creating a new instance

of the miner, its scheduling thread and a new mining thread to replace the trapped and dispensed

with objects. This effectively sets adrift the mining thread and miner, replacing them with identical

copies.

This is a good plan but it relies on the user specifying that there is more than one mining thread as the

mining threads “save” each other. Furthermore it assumes that all of the mining threads will not get

trapped at the same time. To this end, a second mechanism was implemented. If the queue of

miners ready for mining becomes more than the number of miners instantiated (the same miner in

the list more than once) the whole system is deemed to have stopped responding. In this case it is

one of the threads that schedules mining jobs that becomes the saving thread, resetting all miners,

scheduler threads and miner threads. It then tells itself to (effectively) die as soon as everything is

reset.

 32

Data Submission

Data can be submitted either to the designated Data Storage module (via an RMI server) or to a log

file in the working directory of the Data Acquisition module. Selection of an output target is done

very easily in the configuration file.

Figure 6.10 – Data Submission Inheritance Hierarchy.

Having the ability to output to a file allows a programmer to test new miners in an enclosed

environment so that their performance can be easily evaluated and improved. A miner should only

be allowed to submit to a live Data Storage module when it has been tested thoroughly and this offers

a quick and easy local way to check the status of the data that the miner is creating.

Here the actual submission is done by a separate submission thread of execution, from a buffer that is

fed by the numerous miners in the SubmissionManager class. As with other code in this project, this

is written with concurrency issues in mind. The buffer also has a maximum size where (once reached)

the oldest submission item is removed to make way for a more recent one. If the maximum buffer

size is reached a message is output to the GUI Console. If this occurs there must’ve been a reason for

it (like connection to Data Storage lost), which would have resulted in an error status and a change of

colour to a GUI component. As the user will already be aware of a problem there is no other specific

user notification (like a dialogue box for example) of buffer overload.

If the connection to the Data Storage module is lost efforts are made to re-establish the connection

with every item in the buffer that this part of the program tries to submit.

Data View

The data view part of this project was not properly designed or implemented due to time constraints

covered in the evaluation section of this report. Included below however is information on the work

that was carried out.

Data Retrieval and Display

The mySQL code for the queries specified in the design section are listed in Appendix F. They can be

used with the WAMP phpMyAdmin interface to find the data that would have been available in a Data

View produced in this project, although using them is a little cumbersome. If a project in the future

wanted to expand on this one, these queries would be very helpful.

Alias Management Interface

The original plan was for alias management to be done via the Data View interface. As there was no

data view realised in this project and no time to implement an alternative complete solution other

ways of meeting the requirements of the design have been found.

 33

Three of the four requirements laid out in the design section can be achieved using the phpMyAdmin

interface of the WAMP software. These are:

• View already inserted participant information. (View the participants table.)

• View already inserted alias information. (View the alias_list table.)

• Amend the participant id that aliases are related to. (Amend records in the alias_list

table.)

The other requirement (Insert a participant and (processed) alias version of the participant’s primary

name) has been addressed individually. If it weren’t addressed, there would be no way to enter

participants into the database without trying to manually imitate the processing of an alias, which

could introduce dangerous inconsistencies.

As this was not a part of the original design and could be seen as a temporary fix for this important

lack of functionality, access to it is very discreet. A small interface has been written that is accessible

from the GUI of the Data Storage module by clicking the tiny button in the bottom right hand corner

(see below).

Figure 6.11 – Participant Inserter Interface Button.

It is a fairly crude interface and time certainly hasn’t been spent making it look pretty, but it works.

Functionally it is sound, as it checks the database for duplicate entries, asks the user for confirmation

if the alias is already in the database and offers confirmation about what has been done. This is the

only way to input new participants into the database and keep the database consistent. Even though

minimal time has been spent on it’s visual design, for this reason it had to be included.

Figure 6.12 – Participant Inserter GUI.

 34

7. Testing

Overview

The SAM system has not undergone the same kind of pre-conceived rigorous testing schedule that a

highly interactive program would require. The reason for this is the highly limited method of input

that is used on the system. Highly interactive user interfaces require testing schedules that model a

high proportion of the many inputs that a user could possibly make, but SAM doesn’t have interactive

input. The predictability of the inputs makes SAM very easy to test by comparison.

The Data Storage module of SAM receives inputs from the Data Acquisition module and from the

database in the WAMP software upon request. Both the data in the database and the Data

Acquisition module are completely controlled by this project so data values are predictable. Even the

errors that can be generated by the database access are predictable.

The Data Acquisition module has control over its inputs as they are the result of controlled mining

actions, the only other “inputs” there can be are errors due to bad URLs etc. Every piece of data

mined is validated to make sure the it has the correct characteristics (data type etc), so exceptions

caused by errors here are predictable too.

In general, the testing technique used here was to test each individual part of the modules in

isolation, the complete modules and then the whole system. This could be described as Unit Testing

followed by Integration Testing for the separate modules then System Testing. All tests were initially

carried out with test data that was injected into the necessary methods. The first system tests were

carried out like this too before the first bookmaker’s miner was created and a saved XML page was

used repeatedly as “real” but not “live” test data. The next stage was “live” testing when the miner

actually downloaded data, parsed it and fed it into the system. Data checks were then carried out to

make sure that the data in the database was a true likeness of the online data.

This approach was taken to first show that the methods/objects performed as they were supposed to,

then to incrementally include more and more of the module before the two modules were integrated.

This methodical approach allowed the individual sections of code to be virtually bug free by the time

they were used in conjunction with too many other sections, allowing ease of fault tracing. The bugs

that were found after the unit tests were usually due to the integration of separately coded units.

It was decided quite early on that writing many test cases was not a productive use of time. As inputs

were fairly “predictable” (as discussed earlier) it was far easier and probably more productive to use

live data to test with, once there was a certain level of confidence in the quality of the code. This

could be seen as automatic live testing as it only required a tester to look at the log file when and if a

problem was found.

Some issues that could only be identified by testing in an operational environment were:

• Internet connection speed leading to maximum number of miners/minimum period of re-

mine.

• Processing capacity limits.

 35

• Concurrency issues that would not show without such an abundance of test data.

• Overloading of database – just how quickly does the unmanaged “past data” grow.

Unit Tests

Unit tests were undertaken during the implementation stage of the project, during and following the

writing of objects and methods. Basic outlines of these were documented but have been moved to

the appendix section (Appendix G) as they were a little tedious to read and they would have made

this section a lot larger than it needed to be.

Module Tests

Data Storage

This module was tested in conjunction with its RMI interface with the use of a dummy miner program

that submitted contrived submission objects designed to mimic complete real data. This program ran

on the same computer as the Data Storage, then it was transplanted to another computer (within the

same LAN). In both sets of tests the Data Storage module performed well, as expected, with new

opportunities being inserted into the database at the right times and data being managed correctly.

There is an example test schedule in Appendix H to show the type of testing that was undertaken

here.

The participant inserter was a late addition to this module but has been tested with a good range of

valid and invalid data. This includes data values that are technically “valid” but should not be inserted

into the database due to repetition or ambiguity.

Data Acquisition

The testing of this module started with the injected data, moved on to real data stored locally and

then on to live data from The Internet. The main aim was to test the basic framework rather than the

individual data miner code, although in later tests a live mining was required. All outputs were sent to

the log file and examined for consistency with the data that was used for input.

In all tests the required submission objects were created when they were supposed to be, correctly

filled with the relevant data then successfully submitted or destroyed if they contained insufficient

data to define anything useful. During some tests intermediate data was examined using output from

the SubObjBuilder class (submission object builder).

System Tests

Testing for the system followed a similar progression to the module testing of the Data Acquisition

module; the input data getting more ”live” with every test and the outputs (in the database) being

evaluated against the input data for consistency.

As the module tests didn’t highlight any notable errors it was no surprise that when the system was

ran as a whole the contrived data didn’t expose any errors either. It was the following set of tests

that exposed a few interesting issues.

 36

This next test involved the repeated mining of the same xml file that was stored locally. Data miners

build data objects using a SubObjBuilder (submission object builder) object, which was not being

refreshed in between mining operations. This meant that the second time that the miner parsed the

file it submitted the new and old data (exactly the same data) twice. As this was received by the Data

Storage module at the same time (due to it working with the old 3-step submission process that

submitted all bookie data at the same time) it meant that the receive timestamps were identical too.

This meant that two identical sets of data were being inserted into the database, which had the same

primary keys and therefore threw database exceptions for duplicate entries. It is interesting to note

that this error may not have been picked up (at least not in the same way) with the new (superior)

single step submission process.

Live mining using a single bookmaker’s miner was the next testing hurdle that the system needed to

get over and from a data perspective there were no additional major bugs to report. A loss of

internet connection did however highlight the issue that was documented in the implementation

section under the heading “Sax Parser Problem”. Please read the “Continuity of Service” section

below for further details on this.

The testing stage of running multiple live miners was the final stage of the system tests to be

implemented. Following separate integration stage testing of the new miners, they were specified in

the configuration file and all called to run “live” together for the first time. These tests highlighted

the difference in mining speed of the XML miners (that visit a single URL) and an HTML miner that

(that can visit tens or even hundreds). This exposed the vital need to set well thought out mining

periods for HTML miners, as too short periods might either use all of the available network bandwidth

or the module might reset the miner due to it classifying the miner as unresponsive.

Some errors that were found and fixed here were:

• All miners ran once at module initialisation due to the same list being used as the queue of

waiting miners as was used during the instantiation of the miner objects. This was

unsatisfactory as they were supposed to observe a random sleep period.

• It became evident that once a certain bet type with mutator had been entered into the

database it was possible to enter another one without a mutator and it was regarded as

the same type as checking only looked at types and should have been looking for the

combination of bet type and mutator.

• Certain errors on the Data Storage module caused continuous repetitive notification to the

user. This was changed so that the user was only notified once then not again until the

error condition was rectified and then it reappeared again some time later.

• Initially all errors that notified the user by dialogue box had to wait for the user to respond

before the thread could be freed to perform other tasks. This was found to be highly

undesirable, especially when the error condition could have been fixed by later operations

had the thread of operation been freed. The error reporting evolved to have the capability

to highlight an error to the user and wait or highlight to the user and continue depending

on the nature of the error.

• Certain data was being seemingly mixed up by the miners. It transpired that superclass

variables that were only supposed to be a reference were being changed by a certain

miner, so that all the other miners now operated from the changed (incorrect) references.

 37

• The submitter part of the data acquisition GUI hardly ever showed up red (failed) even

when not working as it would turn orange (processing) too quickly to see. The

“processing” status was removed so that it showed only red (failed) or green (ok).

• Some HTML odds were attributed to the wrong bet types as each line of code was tested

by the regular expressions (used for identifying data) only until one of them returned. The

HTMLPageProcessor class now tests every line against every regular expression.

• One American miner’s event start times were all out by an hour after the change from

GMT to BST. This was repaired in the miner in question but the issue of daylight saving

hours needs to be considered for all new miners.

• Database access errors appeared after the data storage module was closed then open

again whilst a Data Acquisition module was submitting. The closing operation now needs

to acquire the database write lock prior to closing down to ensure that any data input or

management is complete.

Data Checks

This involved the manual checking of database data against the data on the websites/in the XML files.

As there was no Data View to facilitate this the WAMP software database access program

phpMyAdmin was used with the following query:

SELECT bookies.Bookie_Name,

participants.Primary_name,

participants2.Primary_name,

events.Event_Start_Timestamp,

bet_Styles.Bet_Description,

bet_types.Bet_Style_Mutator,

possible_bets.Odds

FROM possible_bets

INNER JOIN bet_types

 ON possible_bets.Bet_Type_ID = bet_types.Bet_Type_ID

INNER JOIN events

 ON bet_types.Event_ID = events.Event_ID

INNER JOIN participants

 ON events.Participant_ID_1 = participants.Participant_ID

INNER JOIN participants participants2

 ON events.Participant_ID_2 = participants2.Participant_ID

INNER JOIN bet_styles

 ON bet_styles.Bet_Style_ID = bet_types.Bet_Style_ID

INNER JOIN bookies

 ON bookies.Bookie_ID = possible_bets.Bookie_ID

Figure 7.1 – Data Check SQL Query.

This query resulted in a page being displayed with the following data:

• Bookie’s name.

• Participant 1 name.

• Participant 2 name.

 38

• Event start time and date.

• Bet style description.

• Bet style mutator.

• Odds.

From this it was easy to check a random selection (yet full coverage) of odds from the database

against the odds on the bookmakers’ websites to validate the integrity of the data over the whole of

the SAM system.

Figure 7.2 – Example Data Check output.

Compatibility Tests

Most system tests were carried out on a Windows Vista 64bit dual processor machine but a second

machine was also used in order to test compatibility of the software. This machine was a Windows XP

32bit single processor machine that ran noticeably slower than the Vista machine. The software did

show a slight quirk here in that the Acquisition Module display took a while to show if there was no

connection to the server. This was corrected by creating a separate thread specifically for trying to

connect to the Data Storage server upon program startup. Once this is completed (having succeeded

or failed) the status of the submission section of the GUI is updated and the thread has no further

use.

Continuity of Service

The “SAX Parser Problem” highlighted to this project just how much of an emphasis there should be

on maintaining the continuity of the working system. It prompted an increased effort towards

maintaining data connections and re-establishing them once they had been severed.

Testing of what happened following the loss and subsequent regaining of the three connections in

question (between the database, Data Storage module, Data Acquisition module and The Internet)

was implemented by switching off components and physically severing links. This highlighted

numerous issues (listed below) that were subsequently addressed and corrected before being re-

tested to prove their working state.

• Following the interruption of an XML miner Boolean values were not being reset which resulted

in future mining operations returning no data.

 39

• There was no attempt to re-establish a connection to the database following disconnection.

• The initial purge of old data was not reattempted if it failed during Data Storage module startup.

• A submission that got interrupted during the 3-stage submission process effectively locked the

associated bookie out of future submissions. The answer was to have a submission time limit

that terminated the submitter’s window of opportunity after 30 seconds. (The 3-stage

submission process was later replaced as described in the implementation section, which made

this fix surplus to requirement.)

• The submission thread’s operating loop was initially designed poorly, so that it was possible for

the thread to return and no more submissions to take place due to a thrown exception.

• Loss of connection between acquisition and storage modules had already been programmed to

reconnect, but testing showed that there was data loss as a result. This resulted in the

implementation of a buffer to limit data loss and allow for glitches in connectivity.

 40

8. Evaluation

Project Management

The first few weeks of this project were spent refining the projects specification, investigating the

subject of the project and evolving a database design that would be the centre of this project (and

used by other projects). The time and effort put into this initial stage really paid off as it developed an

enthusiasm for the project that helped drive it on. The fact that the database has changed very little

from this initial state is testament to the research that was put in at this stage.

The creation of a Gantt chart at an early stage was a very useful tool. It may not have been referred

to very often or even kept to particularly closely but it certainly helped to appreciate the work that

was required over the whole project. It would be fair to say that the time plan underestimated the

time needed for thorough testing of the system, which is apparently a common mistake in a lot of

software products.

It was suggested at the beginning of this project that the aims may be a little adventurous, which

turned out to be correct. This advice was taken on board at the planning stage though, and the

important stages of the project programmed in first so that any overrun could be at the expense of

less important work. As the design methodology chosen was a sequential version of Parallel

Development it was the whole development of the Data View module that was sacrificed for the

quality of the other two modules.

This project has had regular meetings with the customer and has taken heed of valuable advice that

has helped to shape the final piece(s) of software.

Project Result

Both the Data Storage and Data Acquisition modules have been designed and implemented to a high

standard and true to the Revised Specification included in the Description section of this report. This

project has fulfilled a large proportion of the functional and non-functional requirements laid out in

the specification for this project. The requirements that have not been achieved due to the projects

failure to implement a Data View module have been addressed and suggestions have been made how

to achieve the same outcomes by using alternative methods; by using the WAMP phpMyAdmin

interface along with the SQL queries prepared in Appendix F.

It was a part of the design that modules should do their utmost to maintain working service whenever

possible. In the associated parts of the Implementation section of this report it has been detailed

what the modules do to reconnect when service is lost. It is the opinion of this project that the hopes

and aims on this front have been very successful and that this is a major achievement in making the

software viable for “real” use.

Project Evaluation

It was clear from the start that this project was about more than just producing a working piece of

software. It was about a software product that would be the framework for expansions and

 41

enhancements that might one day make a profitable system (for somebody). This required a high

level of coding standards, good code documentation (see Appendix I for an example of the docs

available in the code submission), programmer guides that explained how to expand the software and

code that was as easy to expand as possible.

It is important to note that most software submitted as part of a Computer Science (or Software

Systems) degree will probably be shown and evaluated around submission deadline day, then will

never be ran again. This software will have a life after deadline day as it will be ran often for long

periods of time and probably before a mark is issued, so there will be ample opportunity to spot any

frailties. This prospect of end use has been one of the motivations behind the successful drive for

high quality and stable software.

There is no doubt that Sports Arbitrage and More (SAM) does work, as a peek at the database clearly

shows. In fact, at this very moment (15:42 17/04/09) in the database there are:

• Over 1500 possible bets (sets of odds).

• Over 1000 bet types.

• Over 150 events.

• Over 750 opportunities.

The past data is gradually increasing too.

The best opportunity is a 0.9% arbitrage on the result of a Coca Cola League 2 match (15:00 18/04/09)

between Bury and Macclesfield Town, with odds from Skybet and PinnacleSports. This is very good

considering there are only four bookmakers mined for only nine styles of odds. With more bet styles

mined and more miners running this project is very confident that profitable opportunities will be

highlighted with a frequency that makes taking advantage of them a very profitable prospect.

Critique

Apart from the implementation of the Data View module as was hoped, with more time the project

could have been improved in a number of ways. Below are a just a few suggestions for

improvements.

• After the implementation of HTML miners and the subsequent re-writing of XML miners to

conform to a neater event driven style it is evident that other parts of the code could have done

with a make-over in the same way. The miner scheduler class has a lot going on and would

benefit greatly from being separated into separate classes to help encapsulate the two different

functions more clearly. At present the mining threads and the miner scheduling threads could be

easily confused, so miner schedulers could be separated off and defined as a separate object that

has a timer to fire its operation.

• The random starting of miners could have been designed to deliver more efficient mining if it

were more cleverly implemented. Adhoc schedules could have been created that minimised the

occurrence of multiple schedules running at once and periods of complete inactivity.

• There could have been a more consistent theme of designing to interface, to make it easier to

replace certain functions of the code. Moreover, there could have been the developed re-usable

stubs and drivers that could have been used during testing of the project and been kept for

 42

future re-use by the project customer for if they wanted to develop the code in the future. The

testing that was carried out was not re-useable.

• It would have been nice to develop more HTML miners. As three XML miners were written there

was an evolution as commonalities were found between mined code, but only creating a single

HTML miner did not allow the same opportunity for improvement. With more HTML miners

would have come more generic HTML mining code in the superclass’.

 43

9. Bibliography

Books

Jiawei Han, Micheline Kamber (2006). Data Mining, Second Edition: Concepts and Techniques.

Morgan Kaufmann

Hornick, Mark F, (2007). Java data mining : strategy, standard, and practice : a practical guide for

architecture, design, and implementation. Morgan Kaufmann.

Websites

1. www.sports-arbitrage.com

Useful information on Sports Arbitrage. They supply an arbitrage calculator that I used at the

very start of the project whilst conducting research.

2. http://sportsarbitragereview.co.uk/

A money making scheme based on Sports Arbitrage (or the promise of).

3. www.arbitragepro.com

Rival software.

4. www.arbhunters.co.uk/

Subscriber service offering sports arbitrage.

5. http://divisionoflabour.com/archives/002495.php

Argument for possibility of sports arbitrage.

6. http://economics.about.com/od/arbitrage/a/sports_arb.htm

Argument for possibility of sports arbitrage but not with a subscriber service.

7. http://www.arbets.com/guide/sports-arbitrage-betting-starter-guide/

Guide to sports arbitrage.

8. http://economics.about.com/b/2006/04/20/can-sports-arbitrage-software-make-you-easy-

money-2.htm

Information about “middles”.

 44

Glossary

Arbitrage - Process of taking advantage of a price differential between the same product

on two or more markets in order to make a profit.

Middle - Like an arbitrage but a proportion of an event’s outcomes are covered by

more than one bet and the bet placer is not guaranteed to make a profit on an

individual “middle”. The advantage of this kind of opportunity is that the

“middled” outcome returns up to double the returns of the other outcomes. If

the middled outcome comes up say one fifth of the time and the others lose the

bet placer one tenth of their stake, over an average five bets the bet placer will

win once and lose four times. Overall that’s winning 80% and losing 40%, which

is an overall win gain of 40%.

Sports Arbitrage - An opportunity where bets can be made to cover all outcomes of an event

that guarantees the bet placer an overall profit.

Appendices

System Request

 A1

System Request

Project:

Sports Arbitrage - Develop a real-time system that advises a user how to bet on all outcomes

of a specific sporting event where a guaranteed profit can be made.

Aim:

Sports arbitrage takes advantage of a price differential between two or more betting

markets that supply odds on a common event. In a competitive market, the bookmaker’s

profit margin is low (to make a competitive price). If there is a difference in opinion

between bookmakers as to the likelihood of an outcome occurring an arbitrage may be

found if odds are taken for the different outcomes from different bookmakers. Bets are

then placed on all possible outcomes of an event in a way where overall profit is guaranteed.

The required system automates the identification of arbitrages, records their occurrence and

notifies the user with the information required to take advantage of them.

Functional Requirements:

• Be able to retrieve data from up to 100 bookmakers/sources of odds.

• Record odds from numerous events and various sports.

• Be able to record the following sports fixture result odds:

1. Home win.

2. Draw.

3. Away Win.

• Be able to recognize when odds from different bookmakers are comparable (i.e.

predict the same outcome of the same event).

• Be able to identify arbitrages as soon as the data is available and highlight them to a

user.

• Allow the user to view data in at least the following ways:-

1. Arbitrages, sorted by profitability.

2. Sporting events, sorted by start time/date.

3. All odds from every bookmaker on a selected event, with highlighting of the

best odds.

• Allows an “administrator” to amend participant alias data.

• Keep a history of all odds collected for future analysis. This should be able to be

backed up by administrator actions.

Non-functional Requirements:

• Due to the involvement of multiple project teams working towards similar goals, the

customer would like the data storage and its interface(s) implemented as soon as

possible. The customer can then let the other projects use these with a view to

having multiple products that can be interfaced with the same “core” component.

• Should be implemented so that client’s programming staff can maintain the supplied

data miners (and parsers) and write more of their own.

• Should be well documented to facilitate the above requirement.

• Allow for implementation of data retrieval from xml and html sources.

• Should be possible to view data as a user from any computer (via the internet).

• System should be able to be installed on standard MS Windows/Vista based PCs.

Appendices

Gantt chart

Appendices

Input to database Data Flow Diagrams

Start.

Insert

Last_Poll_Start_Timestamp

into Bookies table.

Get next

event.

Has event

passed?

Any more

events?

Find/Input

Event (see

other DFD).

Insert/Update

Bet Data (see

other DFD).

Any more

bets?

Insert

Last_Poll_End_Timestamp

into Bookies table.

YES

NO

Get next

bet.

NO

YES

YES

NO

Post-insertion

checks (see other

DFD).

End.

Overview of operations on new data.

Start.
Get

Participant_ID.

Is Alias #1

in Alias

Lists Table?
YES

Insert into Alias List Table with

Participant_ID referenced to

UNKNOWN PARTICIPANT.

NO

Get

Participant_ID.

Is Alias #2

in Alias

Lists Table?
YES

Insert into Alias List Table with

Participant_ID referenced to

UNKNOWN PARTICIPANT.

NO

Are both

Participant_IDs

not 0?

Is just one

participant_ID

0?

Is event in

Events

table?

Is event in

Event table with

IDs

transposed?

Has event

identification

been

successful?

NO

Identify event with

no Participant_IDs

(see separate DFD).

Identify event with

one Participant_ID

(see separate

DFD).

YESNO

Get

Event_ID.

YES

YES

NO

YES YES Create event

and get

Event_ID.

NO

Return

EventReturn

Object.

Return

NULL.
NO

Get Event_ID

noting transposal.

Find/Input Event.

Create past

event.

Start.

Search for events in Events table

starting at this timestamp and featuring

the known (not 0) Participant_ID

(without transposition of participants).

Get event’s other

Participant_ID.

Found an

event?

Is the unknown alias

similar to any of the

other Participant_ID’s

aliases?

Add this Participant_ID ref to

that of the (formerly) unknown

alias in the Alias Lists table.

Return

Event_ID.

YES YES

Return NULL.

NO NO

Find Event Using One Participant_ID.

Start.

Add these Participant_IDs to those

of the (formerly) unknown aliases

in the Alias Lists table.

Return

Event_ID.
Return NULL.

NO

Are any

Participant_2

aliases similar to

alias #2?

Event Using No Participant_IDs.

Search through the Events

table for events that start

at this timestamp

Found at

least 1

event?

Get event.

Are any

Participant_1

aliases similar to

alias #1?

Any more

events?

YES YES

NO

NO

NO

YES

YES

Start.

Search Bet Type table for

entry with this Event_ID,

Bet_Style_ID and

Bet_Style_Mutator

Bet type

found?

Insert entry into Past

Bet Types table. Get

Past_Bet_Type_ID.

Insert entry into

Bet Types table.

Get Bet_Type_ID.

Insert entry into

Possible Bets table.

Update

Fetch_Timestamp

in Possible Bets

table.

Update Best_Odds

in Bet_Types table.

Search for entry in

Possible Bets table with

this Bet_Type_ID and

this Bookie_ID.

Possible

bet found?

YES

YES

Are odds

different?

If new entry was made in

Bet Types table, notify

Opportunity Finder to look

for new opportunities on this

Event_ID, this Bet_Type.

Update odds in

Possible Bets table.

NO
YES

Create entry in

Past Bets table.

Do Best Odds

need updating in

Bet Types table?

Return.

YES

NO

NO

NO

Insert or Update Bet.

Update Opportunities

(Opp_percentage)

dependent on this

Bet_Type.

Start.
Get next

event data.

Has event

passed?

Remove event entry

from Events table.

Get Bet_Type_IDs that

reference the Event_ID in Bet

Types table.

Remove entries in Bet Types

table with these

Bet_Type_IDs.

Remove entries in Possible

Bets table that reference

these Bet_Type_IDs.

Remove entries in Current Bet

List table with these Opp_IDs.

Get Opp_IDs that reference

these Bet_Type_IDs in

Current Bet List table.

Remove entries in

Opportunities table with these

Opp_IDs.

Any more

events?

YES

NO

END.

NO

YES

Current Data Management.

Notified of

new bet type

created.

Have any potential

opportunities that need this

type got all other types

required?

END.

Create past

opportunity,

get ID.

Create past

bet list.

Create

Opportunity,

get ID.

Create bet

list.

NO

YES

Opportunity Finder

Notified of

bet type best

odds

change.

END.

Opportunity Updater

Search for

opportunities that

depend on bet type.

Found

opportunities?

Update

opportunity

percentage.

Update stake

percentages for

opportunity.

Update past opportunity

max percentage if

required.

Any more

opportunities?

Get

opportunity.

NO
NO

YES

YES

Post-Insertion Checks

Notified of

finished

insertion.

Search Possible Bets table

for entries from this bookie

that don’t fall between poll

start and end timestamps.

Found

Possible Bets?

Remove

possible bet.

Re-evaluate

best odds for

bet type.

Has best odds

changed?

Notify

Opportunity

Update (see

other DFD).

END.

Any more

possible bets?

NO

NO
NO

YES

YES

YES

Appendices

Database Tables

Current Market Information

Bookies

Bet_Type_ID PK FK Bet_Type_ID PK FK Event_ID PK FK Bookie_ID PK FK

Bookie_ID PK FK Event_ID FK Participant_ID_#1 FK Bookie_Name

Odds Bet_Style_ID FK Participant_ID_#2 FK Last_Poll_Start_Timestamp

Fetch_Timestamp Bet_Style_Mutator Event_Start_Timestamp Last_Poll_End_Timestamp

Bet_URL Best_Odds Event_Description Bookie_URL

Bet_Caution_ID FK Past_Bet_Type_ID FK Bookie_Percentage

Current Opportunity Information

Participant_ID PK FK Alias (lower case only) PK

Primary_Name Participant_ID FK Opp_ID PK FK

Sport_ID FK Opp_Percentage

Opp_Type_ID

Manually Inserted Reference Information Past_Opp_ID FK

Sport_ID PK FK Opp_Type_ID PK FK Sport_ID PK FK

Bookie_ID PK FK Opp_Description Draw_Possible Opp_ID PK FK

Bookie_Caution_ID FK Profitable_Threshold Sport_Description Bet_Type_ID PK FK

Stake_Percentage

Bookie_Caution_ID PK FK Bet_Style_ID PK FK Bet_Caution_ID PK FK

Bookie_Caution Description Bet_Description Bet_Caution_Description

Past Information

Past_Opp_ID PK FK Past_Event_ID PK FK Past_Bet_Type_ID PK FK Past_Bet_Type_ID PK FK

Opp_Type_ID FK Participant_ID_#1 FK Bookie_ID PK FK Past_Event_ID FK

Max_Percentage Participant_ID_#2 FK Past_Fetch_Timestamp PK Past_Bet_Style_ID FK

Event_Start_Timestamp Past_Odds Past_Bet_Style_Mutator

Event_Description Bet_Caution_ID FK

Past_Opp_ID PK FK

Past_Bet_Type_ID PK FK

Opportunity Bet List

Past Events

Opportunity Types

Possible Bets EventsBet Types

Past Opportunities

Sport TypesBookie Caution List

Participants

CK

Past Bet List

Bet Cautions

Past Bet Types

Bet StylesBookie Cautions

Past Bets

CK

Alias Lists

CK

Opportunities

CK

Appendices

Sample database data and descriptions of table

columns

 E1

alias_list

Alias (Lower case alias of a participant.) Participant_ID (Foreign Key. Participant_ID that this alias belongs to.)

arsenal 101

aston villa 102

blackburn rovers 103

arsenl 101

arsenal f.c. 101

aston v 102

aston villa f.c. 102

bet_cautions

Bet_Caution_ID (Easy to reference ID. Represents a reason to be cautious (or not)
about a bet.)

Bet_Caution_Description (Description of the caution for output
purposes.)

0 Low/No bookie profit from set of bets.

bet_styles

Bet_Style_ID (Easy to reference ID. Represents the betting style
described below.)

Bet_Description (Description of the bet style (e.g. Result Participant #1 win). For output
purposes.)

0 Result Participant #1 Win

1 Result Participant #2 Win

2 Result Draw

3 Asian Handicap Participant #1 Win

4 Asian Handicap Participant #2 Win

5 Handicap Participant #1 Win

6 Handicap Participant #2 Win

7 Handicap Draw

 E2

bet_types

Bet_Type_ID (Easy to reference
ID representing the unique
combination of Event_ID,

Bet_Style_ID and Bet_Style
Mutator. When creating entry
leave as NULL and it will auto-

increment.)

Event_ID (Easy to
reference ID

representing the
event this bet type

is on.)

Bet_Style_ID (Easy
to reference ID.
Represents the

style of bet this is.)

Bet_Style_Mutator (This mutates
the bet style by adding a

variable (e.g. +0.5 Identifies an
Asian Handicap participant #1
win as a +0.5). Can be NULL.)

Best_Odds
(Best odds of all

the possible
bets of this

type.)

Past_Bet_Type_ID (Easy to
reference ID. Represents

the place where the history
of this bet type is recorded.)

1 1 0 NULL 1.4 4

2 1 1 NULL 11 5

3 1 2 NULL 5 6

bookies

Bookie_ID
(Easy to

reference
ID.)

Bookie_Name
(Name of the
bookie (for

output purposes
only).)

Last_Poll_Start_Timestamp
(Timestamp representing the

start of the data miner's
transmission)

Last_Poll_End_Timestamp
(Timestamp representing the

end of the data miner's
transmission.)

Bookie_URL (String
representing the URL of
the bookie's website.)

Bookie_Percentage (Float
representing the

percentage of your
winnings that the bookie
takes (normally only for

betting exchanges).)

0 William Hill 2008-10-27 00:00:00 2008-10-27 00:05:00 http://www.willhill.com 0

1 Ladbrokes 2008-10-27 00:00:00 2008-10-27 00:03:00 http://www.ladbrokes.com 0

2 Bet365 2008-10-27 00:00:00 2008-10-27 00:09:00 www.bet365.com 0

3 Betfair 0000-00-00 00:00:00 0000-00-00 00:00:00 http://www.betfair.com 5

bookie_cautions

Bookie_Caution_ID (Easy to
reference ID.)

Bookie_Caution_Description (Description of the reason to be cautious (e.g. Football result taken at the end of extra
time instead of 90 mins). Used during output.)

0 Results taken as after any extra time, not after 9...

1 Winner is decided even if match abandoned.

 E3

bookie_caution_list

Sport_ID (Easy to reference ID representing the
sport this caution is concerned with.)

Bookie_ID (Easy to reference ID representing the
bookie this caution is concerned with.)

Bet_Caution_ID (Caution ID that is relevent to
this bookie and this sport.)

0 0 0

2 1 1

events

Event_ID (Easy to
reference ID. When

creating entry leave as
NULL and it will auto-

increment.)

Participant_ID_1 (Easy to
reference ID. Foreign key to

reference the "Home"
participant.)

Participant_ID_2 (Easy to
reference ID. Foreign key to

reference the "Away"
participant.)

Event_Start_Timestamp
(Timestamp representing the time
and date when the event starts.)

Event_Description (Description
of the event (e.g. English

premier league). Can be Null.
Used during output.)

1 0 3 2008-11-12 19:30:00 Premier League

2 2 1 2008-11-12 19:30:00 Premier League

opportunities

Opp_ID (Easy to reference ID. When
creating entry leave as NULL and it

will auto-increment.)

Opp_Percentage (Float
representing the profit margin of

this opportunity.)

Opp_Type_ID (Easy to reference
ID. Represents the type of

opportunity.)

Past_Opp_ID (Easy to reference ID.
Represents the place where the history of

this opportuniyty is stored.)

1 -0.6 0 2

opportunity_bet_list

Opp_ID (Easy to
reference ID.)

Bet_Type_ID (Easy to reference ID. **This table links an
opportunity to the bet types that it depends on**.)

Stake_Percentage Float representing the percentage of a stake
that the user should bet on this type.

1 0 30

1 1 40

1 2 30

 E4

opportunity_types

Opp_Type_ID (Easy to
reference ID.)

Opp_Description (Description of the opportunity (e.g.
Arbitrage). Used during output.)

Profitable_Threshold (Float representing the threshold at which the
Opp_Percentage becomes "Interesting".)

0 Arbitrage 0

1 Middle -5

participants

Participant_ID (Easy to reference ID representing an individual
event participant. When creating entry leave as NULL and it will

auto-increment.)

Primary_Name (A String used to
identify this participant during

output.)

Sport_ID (Easy to reference ID representing
the sport/event type that this participant

competes in.)

0 UNKNOWN PARTICIPANT 0 0

1 UNKNOWN PARTICIPANT 1 1

2 UNKNOWN PARTICIPANT 2 2

3 UNKNOWN PARTICIPANT 3 3

100 Arsenal 0

101 Aston Villa 0

102 Blackburn Rovers 0

103 Bolton Wanderers 0

104 Chelsea 0

105 Everton 0

106 Fulham 0

107 Hull City 0

108 Liverpool 0

109 Manchester City 0

110 Manchester United 0

111 Middlesbrough 0

112 Newcastle United 0

113 Portsmouth 0

114 Stoke City 0

 E5

Participant_ID (Easy to reference ID representing an individual
event participant. When creating entry leave as NULL and it will

auto-increment.)

Primary_Name (A String used to
identify this participant during

output.)

Sport_ID (Easy to reference ID representing
the sport/event type that this participant

competes in.)

115 Sunderland 0

116 Tottenham Hotspur 0

117 West Bromwich Albion 0

118 West Ham United 0

119 Wigan Athletic 0

past_bets

Past_Bet_Type_ID (Easy to
reference ID representing the

history of a possible bet.)

Bookie_ID (Easy to
reference ID

representing the
bookie.)

Past_Fetch_Timestamp (Timestamp
representing when these odds were

retrieved.)

Past_Odds (Float
representing the odds of

this bet type, of this bookie,
at this time.)

Bet_Caution_ID (Easy to
reference ID representing a

reason to be cautious of this
bet.)

1 0 2008-10-01 00:00:00 1.5 NULL

1 0 2008-10-01 05:00:00 2 NULL

2 0 2008-10-01 00:00:00 2 NULL

2 0 2008-10-01 05:00:00 2 NULL

3 0 2008-10-01 00:00:00 10 NULL

3 0 2008-10-01 05:00:00 10 NULL

1 1 2008-10-01 00:00:00 1.4 NULL

1 1 2008-10-01 04:00:00 1.3 NULL

2 1 2008-10-01 00:00:00 2.2 NULL

2 1 2008-10-01 04:00:00 2.3 NULL

3 1 2008-10-01 00:00:00 12 NULL

3 1 2008-10-01 04:00:00 13 NULL

1 2 2008-10-01 00:00:00 1 NULL

1 2 2008-10-01 06:00:00 1.1 NULL

2 2 2008-10-01 00:00:00 1.5 NULL

2 2 2008-10-01 06:00:00 1.6 NULL

 E6

Past_Bet_Type_ID (Easy to
reference ID representing the

history of a possible bet.)

Bookie_ID (Easy to
reference ID

representing the
bookie.)

Past_Fetch_Timestamp (Timestamp
representing when these odds were

retrieved.)

Past_Odds (Float
representing the odds of

this bet type, of this bookie,
at this time.)

Bet_Caution_ID (Easy to
reference ID representing a

reason to be cautious of this
bet.)

3 2 2008-10-01 00:00:00 17 NULL

3 2 2008-10-01 06:00:00 20 NULL

4 0 2008-10-27 00:00:00 1.33 NULL

4 1 2008-10-27 00:00:00 1.37 NULL

4 2 2008-10-27 00:00:00 1.4 NULL

5 0 2008-10-27 00:00:00 5 NULL

5 1 2008-10-27 00:00:00 4.8 NULL

5 2 2008-10-27 00:00:00 4 NULL

6 0 2008-10-27 00:00:00 10 NULL

6 1 2008-10-27 00:00:00 11 NULL

6 2 2008-10-27 00:00:00 10 NULL

past_bet_list

Past_Opp_ID (Easy to reference
ID.)

Past_Bet_Type_ID (Easy to reference ID. **This table links a past opportunity to the past bet types that it depended
on**.)

1 1

1 2

1 3

2 4

2 5

2 6

 E7

past_bet_types

Past_Bet_Type_ID (Easy to reference ID
representing a past bet type. When creating entry

leave as NULL and it will auto-increment.)

P_Event_ID (Easy to
reference ID representing

past event.)

Bet_Style_ID (Easy to
reference ID representing the

style of the past bet.)

Past_Bet_Style_Mutator (This is the
past version of the Bet_Style_Mutator.)

1 1 0 NULL

2 1 1 NULL

3 1 2 NULL

4 3 0 NULL

5 3 1 NULL

6 3 2 NULL

past_events

Past_Event_ID (Easy to
reference ID representing a
past event. When creating
entry leave as NULL and it

will auto-increment.)

Participant_ID_1 (Easy to
reference ID. Foreign key
to reference the "Home"

participant.)

Participant_ID_2 (Easy to
reference ID. Foreign key
to reference the "Away"

participant.)

Past_Event_Description
(Description of the event for

output purposes. Can be NULL.)

Event_Start_Timestamp
(Timestamp representing the time
and date when this event was due

to start.)

3 0 3 Premier League 2008-11-12 19:30:00

4 2 1 Premier League 2008-11-12 19:30:00

1 3 1 FA Cup 2008-10-06 00:00:00

2 0 2 League Cup 2008-10-04 00:00:00

past_opportunities

Past_Opp_ID (Easy to reference ID representing a past
opportunity. When creating entry leave as NULL and it will auto-

increment.)

Opp_Type_ID (Easy to reference ID.
Represents the type of opportunity.)

Max_Percentage (Float representing the best
percentage that this opportunity returned.)

1 0 1.55

2 0 -0.6

 E8

possible_bets

Bet_Type_ID (Easy to
reference ID.

Represents the type
of bet.)

Bookie_ID (Easy to
reference ID.

Represents the
identity of the

bookie.)

Odds (Float
representing the

odds offered.)

Fetch_Timestamp (Timestamp
representing the time and date

when these odds were
collected.)

Bet_URL (String
representing the URL to

get straight to this bet with
this bookie. Can be NULL.)

Bet_Caution_ID (Easy to
reference ID. Represents a
reson to be cautious about

this bet.)

1 0 1.33 2008-10-27 00:00:00 NULL NULL

1 1 1.37 2008-10-27 00:00:00 NULL NULL

1 2 1.4 2008-10-27 00:00:00 NULL NULL

2 0 5 2008-10-27 00:00:00 NULL NULL

2 1 4.8 2008-10-27 00:00:00 NULL NULL

2 2 4 2008-10-27 00:00:00 NULL NULL

3 0 10 2008-10-27 00:00:00 NULL NULL

3 1 11 2008-10-27 00:00:00 NULL NULL

3 2 10 2008-10-27 00:00:00 NULL NULL

sport_types

Sport_ID (Easy to reference ID.
Represents a sport/event type.)

Draw_Possible (Boolean representing whether a draw is possible
(1) or impossible (0) in this sport.)

Sport_Description (String describing this
sport/event type.)

0 1 Football

1 1 Rugby

2 0 Tennis

3 1 BasketBall

Appendices

Data View SQL queries

 F1

Data View SQL Queries

Comments are in square brackets e.g. [Integer corresponding to opportunity type].

View all opportunities, sorted by profitability, for a single opportunity type:

SELECT Opp_Type_ID,

Opp_Percentage

FROM opportunities

WHERE Opp_Type_ID = [Integer corresponding to an opportunity type]

ORDER BY Opp_Percentage DESC

View all profitable opportunities, sorted by profitability:

SELECT Opp_ID,

 Opp_Percentage,

 Opp_Description

FROM opportunities

INNER JOIN opportunity_types

ON opportunities.Opp_Type_ID = opportunity_types.Opp_Type_ID

WHERE Opp_Percentage >= Profitable_Threshold

ORDER BY Opp_Percentage - Profitable_Threshold DESC

View all profitable opportunities, sorted by profitability, for a single opportunity type:

SELECT Opp_ID,

 Opp_Percentage,

 Opp_Description

FROM opportunities

INNER JOIN opportunity_types

ON opportunities.Opp_Type_ID = opportunity_types.Opp_Type_ID

WHERE Opp_Percentage >= Profitable_Threshold

AND opportunities.Opp_Type_ID = [Integer corresponding to an opportunity type]

ORDER BY Opp_Percentage - Profitable_Threshold DESC

View all sporting events, sorted by start time/date:

SELECT Event_ID,

 Participants.Primary_Name,

 Participants2.Primary_Name,

 Event_Start_Timestamp,

 Event_Description,

Sport_Description

FROM events

INNER JOIN participants

ON events.Participant_ID_1 = participants.Participant_ID

INNER JOIN participants participants2

ON events.Participant_ID_2 = participants2.Participant_ID

INNER JOIN sport_types

ON sport_types.Sport_ID = participants.Sport_ID

ORDER BY Event_Start_Timestamp

View all sporting events, sorted by start time/date, for a single sport type:

SELECT Event_ID,

 Participants.Primary_Name,

 F2

 Participants2.Primary_Name,

 Event_Start_Timestamp,

 Event_Description

FROM events

INNER JOIN participants

ON events.Participant_ID_1 = participants.Participant_ID

INNER JOIN participants participants2

ON events.Participant_ID_2 = participants2.Participant_ID

WHERE participants.Sport_ID = [Integer corresponding to a sport type]

ORDER BY Event_Start_Timestamp

View all sporting events, sorted by first participant name, for a single sport type:

SELECT Event_ID,

 Participants.Primary_Name,

 Participants2.Primary_Name,

 Event_Start_Timestamp,

 Event_Description

FROM events

INNER JOIN participants

ON events.Participant_ID_1 = participants.Participant_ID

INNER JOIN participants participants2

ON events.Participant_ID_2 = participants2.Participant_ID

WHERE participants.Sport_ID = [Integer corresponding to a sport type]

ORDER BY Participants.Primary_Name

View all sporting events, sorted by second participant name, for a single sport type:

SELECT Event_ID,

 Participants.Primary_Name,

 Participants2.Primary_Name,

 Event_Start_Timestamp,

 Event_Description

FROM events

INNER JOIN participants

ON events.Participant_ID_1 = participants.Participant_ID

INNER JOIN participants participants2

ON events.Participant_ID_2 = participants2.Participant_ID

WHERE participants.Sport_ID = [Integer corresponding to a sport type]

ORDER BY Participants2.Primary_Name

View all sporting events, sorted by event description, for a single sport type:

SELECT Event_ID,

 Participants.Primary_Name,

 Participants2.Primary_Name,

 Event_Start_Timestamp,

 Event_Description

FROM events

INNER JOIN participants

ON events.Participant_ID_1 = participants.Participant_ID

INNER JOIN participants participants2

ON events.Participant_ID_2 = participants2.Participant_ID

WHERE participants.Sport_ID = [Integer corresponding to a sport type]

ORDER BY Event_Description

 F3

View all opportunities on a single event, sorted by profitability:

SELECT Event_ID,

 Opp_Description,

Profitable_Threshold,

 Opp_Percentage

FROM

(SELECT DISTINCT opportunities.Opp_ID,

bet_types.Event_ID,

 Opp_Description,

Profitable_Threshold,

 Opp_Percentage

FROM opportunities

INNER JOIN opportunity_bet_list

ON opportunities.Opp_ID = opportunity_bet_list.Opp_ID

INNER JOIN bet_types

ON bet_types.Bet_Type_ID = opportunity_bet_list.Bet_Type_ID

INNER JOIN events

ON events.Event_ID = bet_types.Event_ID

INNER JOIN opportunity_types

ON opportunities.Opp_Type_ID = opportunity_types.Opp_Type_ID

WHERE events.Event_ID = [Integer corresponding to an event id])

AS temp_table

ORDER BY Opp_Percentage - Profitable_Threshold DESC

View all possible bets on a single opportunity, grouped by bet type, ordered by odds:

WARNING: The odds displayed here are “processed” to take into account any cut in winnings that the

bookmaker takes. The odds shown here may not be the odds that were collected but the comparable

equivalent according to the value in bookies.Bookie_Percentage.

SELECT opportunities.Opp_ID,

 Bet_Description,

 Bet_Style_Mutator,

Odds,

Bookie_Name,

Bet_URL,

Bet_Caution_Description

FROM possible_bets

INNER JOIN bet_types

ON bet_types.Bet_Type_ID = possible_bets.Bet_Type_ID

INNER JOIN opportunity_bet_list

ON opportunity_bet_list.bet_Type_ID = bet_types.bet_Type_ID

INNER JOIN opportunities

ON opportunities.Opp_ID = opportunity_bet_list.Opp_ID

INNER JOIN bet_styles

ON bet_styles.Bet_Style_ID = bet_types.Bet_Style_ID

INNER JOIN bookies

ON bookies.Bookie_ID = possible_bets.Bookie_ID

LEFT JOIN bet_cautions

ON bet_cautions.Bet_Caution_ID = possible_bets.Bet_Caution_ID

WHERE opportunities.Opp_ID = [Integer corresponding to an opportunity id]

 F4

ORDER BY opportunity_bet_list.bet_Type_ID, possible_bets.Odds

View all possible bets on a single event, grouped by bet type, ordered by odds:

WARNING: The odds displayed here are “processed” to take into account any cut in winnings that the

bookmaker takes. The odds shown here may not be the odds that were collected but the comparable

equivalent according to the value in bookies.Bookie_Percentage.

SELECT Bet_Description,

 Bet_Style_Mutator,

Odds,

Bookie_Name,

Bet_URL,

Bet_Caution_Description

FROM possible_bets

INNER JOIN bet_types

ON bet_types.Bet_Type_ID = possible_bets.Bet_Type_ID

INNER JOIN bet_styles

ON bet_styles.Bet_Style_ID = bet_types.Bet_Style_ID

INNER JOIN bookies

ON bookies.Bookie_ID = possible_bets.Bookie_ID

LEFT JOIN bet_cautions

ON bet_cautions.Bet_Caution_ID = possible_bets.Bet_Caution_ID

INNER JOIN events

ON events.Event_ID = bet_types.Event_ID

WHERE events.Event_ID = [Integer corresponding to an event id]

ORDER BY bet_types.Bet_Type_ID, possible_bets.Odds

View the possible bets and stake percentages that a user needs to take advantage of a single

opportunity (odds in original retrieved incomparable state, not processed comparable state):

SELECT Bet_Description,

Bet_Style_Mutator,

 ((Odds -1) / ((100 - Bookie_Percentage) /100)) +1 AS Odds,

Stake_Percentage,

Fetch_Timestamp,

Bet_Caution_Description,

Bet_URL,

Bookie_Name,

 Bookie_URL

FROM

(SELECT Bookie_Name,

 Bookie_URL,

 Fetch_Timestamp,

Bet_URL,

Bet_Style_Mutator,

Stake_Percentage,

Bet_Description,

 Bet_Caution_Description,

Odds,

Best_Odds,

Bookie_Percentage

 F5

FROM possible_bets

INNER JOIN bet_types

ON bet_types.Bet_Type_ID = possible_bets.Bet_Type_ID

INNER JOIN opportunity_bet_list

ON opportunity_bet_list.bet_Type_ID = bet_types.bet_Type_ID

INNER JOIN opportunities

ON opportunities.Opp_ID = opportunity_bet_list.Opp_ID

INNER JOIN bet_styles

ON bet_styles.Bet_Style_ID = bet_types.Bet_Style_ID

INNER JOIN bookies

ON bookies.Bookie_ID = possible_bets.Bookie_ID

LEFT JOIN bet_cautions

ON bet_cautions.Bet_Caution_ID = possible_bets.Bet_Caution_ID

INNER JOIN events

ON events.Event_ID = bet_types.Event_ID

INNER JOIN participants

ON events.Participant_ID_1 = participants.Participant_ID

INNER JOIN participants participants2

ON events.Participant_ID_2 = participants2.Participant_ID

INNER JOIN sport_types

ON sport_types.Sport_ID = participants.Sport_ID

WHERE opportunities.Opp_ID = [Integer corresponding to an opportunity id]

AND Odds = Best_Odds)

AS temp_table

Appendices

Unit tests

 G1

Unit Tests

Under the headings of the following sections of code are a short description of the approach taken

and problems found with that section of the program.

Data Storage: Database/Database Control

Description:

The database and database control were tested as the control methods and associated

database queries were written. There was a main method set up in the class and each of the

public methods were called individually, with valid and invalid data. The results of these were

taken straight from the database (via the phpMyAdmin interface of the WAMP software), or

written to the console in the IDE.

Comments:

There were issues identified with the written mySQL syntax as well as the java implementation

of the written queries, most of which were easy to identify and to put right due to the small

section of code being tested at any one time. Valid inputs returned as they were supposed to

and invalid inputs threw exceptions where they were supposed to.

The main issue raised was the ability to insert a Null value into the database, which wasn’t as

easy as was first thought. Because the queries are written as string objects a null value either

appeared as the string “null” in the table or threw an exception. Once these values were

replaced with the string “IS NULL” this problem was resolved.

Data Storage: StringMatching

Description:

As this section of the code merely processes string objects, then checks them against each

other and returns a Boolean it was very simple to test. The public methods were called from a

main method and using static values that tested the processing of the strings (to get rid of

unwanted characters) and the matching of them at the same time.

Comments:

This is a small but important piece of code that mainly uses java library methods so there

wasn’t much that could go wrong. Tests came back positive so there was no need to debug.

Data Storage: Event Identification

Description:

Tests were carried out with the use of the already tested string matching section of code.

Some participant data was planted into the database so that there was an initial state to the

system. Initially the purpose of testing was to make sure that the code reacted correctly to a

variety of inputs; some that were meant to be accepted and some that weren’t. Some of the

data was suppose to be rejected on the first attempt but (following other queries) were later

meant to be accepted.

Comments:

 G2

Initial tests tested the code’s selection of identification method by using input data that was

meant to make the code identify events using both, either, or no participant ids by using

aliases that would and would not be recognised. The event start time/date was also varied.

The methods called just printed out their method names and the arguments that they were

called with to the screen, and all of them functioned as expected.

The second stage here was to implement the methods and allow the insertion of events, the

correct identification of events and the rejection of event data due to being unable to identify

both participants. Some tests were run that correctly failed to relate to a similar event due to

unknown aliases, which were subsequently able to relate to it due to the increased alias list

that a participant had built up during the tests in between (a demonstration that as a

participant’s alias list grows it will “learn” to accept more and more correct aliases). Again the

code functioned as expected, as was evident from the state of the database and the returned

values that were printed to the IDE console.

The first attempt at some of these tests failed due to an inconsistent database state. As the

database was being manually manipulated to mimic a real state, errors in the consistency of

this state (the requirement for events to have a related past event) caused errors in the

program. This was a completely correct response by the program and the tests were later

performed a second time with the correct database state.

Data Storage: Possible Bet Entry/Update

Description:

These tests were similar in style to the tests in the above section. Initial tests just tested the

ability of the code to identify whether a bet should be inserted or updated where as later tests

actually tested the ability to do this.

Comments:

Initially there were many exceptions thrown by this section of the code due to assuming valid

values of passed in variables and returned variables from the database. Many extra validation

points were inserted into the code to make it more robust. Some of these may be considered

to be over-kill as it some of the problems were due to was injected database inconsistencies,

but as it is a requirement that some data be inserted into the database manually there will

always be mistakes made. It is better that these mistakes are recognised and dealt with

properly in a way that highlights the issue to the user than in an ambiguous and difficult to

debug way that would otherwise happen.

Data Storage: Current Market Information Manager

Description:

Tests on this section were limited as this code only really implements regular calls to methods

of the database control that had already been tested. It does also catch some exceptions

though so correct handling of this required testing too.

Results:

The database control methods had already been shown to work so the testing here was

focussed on whether the regular calling was working correctly, which it was. The caught

exceptions also contacted the centralised error reporting successfully. These were both

proven again by screen output.

 G3

Data Storage: Opportunities

Description:

Opportunities were tested using static variable values as their job is to process data.

Comments:

 The simple operation of these made it very easy to spot and diagnose inconsistencies.

Data Storage: Opportunity Finder

Description:

Testing this code involved database access so it was done in conjunction with the database

control module. Static variables were injected and output statements were generated in the

IDE output console to keep track of the process. The final database status was evaluated

against expected values. The aim of the tests was to examine whether the section of code

recognised which opportunities it should create when, and that it created them in the

database at the correct time.

Comments:

These tests were difficult to implement as they required the database to start in a specific

state. As the tests changed the database the database needed to be set up before every test,

which took a lot of time and attention to detail. As a result many tests failed due to user set

up mistakes. The section of code worked well though with only minor changes due to issues

like only single opportunity identification when multiple opportunities were applicable.

Data Storage: Opportunity Updater

Description:

Again, the testing of this code involved database access so it was done in conjunction with the

database control module. After the opportunity finder had inserted an opportunity into the

database all that was required was a manual change to one of the maximum percentages of

one of the opportunities bet types. The opportunity updater section of code could then be

called with the bet type changed as an argument. Again, the status of the database was then

checked for the results.

Comments:

 All went well.

Data Storage: Centralised Error Reporting

Description:

The basic operation of this section of code was tested here, that is the ability to write the error

to the log file and display dialogue boxes to the user etc.

Comments:

These two simple functions operated well, as expected, as they are common operations.

Data Acquisition: Acquisition Control/Configuration File

Description:

The main aim of this section’s tests were to ensure accurate the reading in of the configuration

file, the validity checks on the read in data were ample and correct creation of the miners.

The reading in of the file was easy to test as it just involved a sample configuration file and

writing the read lines out to the IDE output console.

 G4

Testing of the validation system was achieved by changing the configuration file to have a

range states that included valid and sometimes invalid values. Code was again inserted to

output any validation errors to the IDE output console.

Creation of the miners was tested by telling the miners to output their state upon creation.

Comments:

As the configuration file was xml a lot of the techniques used for parsing this data were

developed whilst writing the xml miner code, so there were no major problems with this.

Validating the data extracted from the xml file is a difficult task as it could contain all sorts of

invalid data. The only real tests possible were on the data type (e.g. making sure that what

should be an integer value is an integer), the inclusion of a value for necessary fields, the

validity of the file specified and the validity of the XML in that file. All of the configuration file

errors mentioned have been tested and all display dialogue boxes to the user that describe the

problem at the correct time. They then terminate the program as it cannot function without

this initial startup information.

As invalid miner data results in the miner not being instantiated, testing the miner creation

involved changing configuration file values and seeing the outputs in the IDE console that

correspond to successful miner creation.

Data Acquisition: Miner Scheduler

Description:

Tests for the Miner Scheduler merely output to the IDE when the miners were selected for

their next mining operation and when the mining threads actually called the mining method

on the mining thread. This was an extended test over a number of hours so timestamps were

output to keep track of events and so that a tester was not required to be present for the

duration.

Comments:

This was just a test of time keeping and continuity that was easy to carry out and was

successful at proving that the scheduling did what it was meant to.

Data Acquisition: Miners

Description:

Initially individual miners were tested by having output statements in the submission object

builder code. Every time an object was supposed to be complete and fit for submission to the

data storage module they would print out all of the data. Later on when log file submission

was available this form of output was used instead (using the data submitter code too).

Comments:

Miners are quite complex and at least one of the sources of data changed their style whilst the

miner was being written, resulting in some major changes to the code. Even when the source

didn’t change, testing was used throughout the miner writing process to ensure that the data

was being collected correctly. As a result of testing being done during the writing of the code,

there were no major problems with miner code.

 G5

Data Acquisition: Data Submitter

Description:

The data submitter, like many other parts of SAM, uses producer-consumer style management

of the items being passed around, so the testing of the queue was a simple case of writing

output statements to display queue status information to the screen. The log file output

method was also simple to test using dummy, statically generated submission objects. Server

submission to the data storage module was tested by the creation of a dummy miner, the use

of which is described in the Data Storage module test.

Comments:

Initial log file tests failed due to the need for a file to be already in the set location in order to

write to. Code was later written to check for the directory and file and create them if they

were not found, which made a lot more sense than outputting errors just because the file was

not there.

Appendices

Sample test schedule

Test Description:

Start Conditions:

Test Data:

Part 1 alias Part 2 alias Event_Start_Timestamp Sport_ID Bet_Style_ID Bet_Style_Mutator Odds
1 0 Manchester United Aston Villa 01/07/2009 15:00 0 6 -1 3.1
2 0 Man U FC A Villa FC 01/07/2009 15:00 0 7 1 3
3 0 Man U A Villa 02/07/2009 15:00 0 8 -1 3
4 Same as test 2
5 1 Man United Aston V 01/07/2009 15:00 0 6 -1 3.3
6 0 Man U A Villa 02/07/2009 15:00 0 8 -1 2.9
7 1 Man United Aston V 01/07/2009 15:00 0 8 -1 2.8

***Current market informatin management should be switched off to allow the Data Storage module to be switched off and on without deletion of old data
in the database.***

Data Storage module tests using static data and the OD_FullTimeHandicap_Result_DrawPos opportunity definition.

The following tables should be completely empty: bet_types, events, opportunities, opportunity_bet_list, past_bets, past_bet_list, past_bet_types,
past_events, past_opportunities, possible_bets.

There should be entries in the participants table for Manchester United and Aston Villa (both sport type 0) and lower case entries in the alias_list table to
correspond.

The bet_styles, sport_types and opportunity_types tables should correspond to the constants in the SAMConstants class.
There should be bookies in the bookies table with bookie_ID = 0 and 1, both with bookie_Percentage=0.

Event info Bet info
Test no. Bookie_ID

T
est n

o
.

E
xp

ected
 O

u
tco

m
e

O
u

tco
m

e A
ch

ieved
1

T
he Last_P

oll_S
tart_T

im
estam

p is updated in the bookies table.
Y

es
A

 past event is entered into the past_events table.
Y

es
A

 corresponding event is entered into the events table.
Y

es
A

 past bet type is entered into the past_bet_types table.
Y

es
A

 bet type is entered into the bet_types table.
Y

es
A

n entry is m
ade in the possible_bets table.

Y
es

A
n entry is m

ade in the past_bets table.
Y

es
T

he best_odds field in the bet_types table is updated.
Y

es
T

he Last_P
oll_E

nd_T
im

estam
p is updated in the bookies table.

Y
es

2
T

he Last_P
oll_S

tart_T
im

estam
p is updated in the bookies table.

Y
es

T
he Last_P

oll_E
nd_T

im
estam

p is updated in the bookies table.
Y

es
C

om
m

ent: N
othing else - the event is not recognosed and neither are

the aliases.
Y

es

3
C

om
m

ent: T
he event is recognised as the sam

e event from
 test 1.

Y
es

T
he Last_P

oll_S
tart_T

im
estam

p is updated in the bookies table.
Y

es
A

n entry is m
ade in the alias_list table for "m

an u" w
ith the sam

e ID
 as

"m
anchester united".

Y
es

A
n entry is m

ade in the alias_list table for "a villa" w
ith the sam

e ID
 as

"aston villa".
Y

es

A
 past bet type is entered into the past_bet_types table.

Y
es

A
 bet type is entered into the bet_types table.

Y
es

A
n entry is m

ade in the possible_bets table.
Y

es
A

n entry is m
ade in the past_bets table.

Y
es

T
he best_odds field in the bet_types table is updated.

Y
es

T
he Last_P

oll_E
nd_T

im
estam

p is updated in the bookies table.
Y

es

4
C

om
m

ent: T
he event is now

 recognised as the sam
e event from

 tests 1
and 3.

Y
es

T
he Last_P

oll_S
tart_T

im
estam

p is updated in the bookies table.
Y

es
A

n entry is m
ade in the alias_list table for "m

an u" w
ith the sam

e ID
 as

"m
anchester united".

Y
es

A
n entry is m

ade in the alias_list table for "a villa" w
ith the sam

e ID
 as

"aston villa".
Y

es

A
 past bet type is entered into the past_bet_types table.

Y
es

A
 bet type is entered into the bet_types table.

Y
es

A
n entry is m

ade in the possible_bets table.
Y

es
A

n entry is m
ade in the past_bets table.

Y
es

T
he best_odds field in the bet_types table is updated.

Y
es

A
 entry is m

ade in the past_opportunities table.
Y

es

T
hree entries are m

ade in the past_bets_list table to link the data from

test 1 &
 3 along w

ith this test to the entry in the past_opportunities table.
Y

es

A
 entry is m

ade in the opportunities table.
Y

es

T
hree entries are m

ade in the opportunity_bet_list table to link the data
from

 test 1 &
 3 along w

ith this test to the entry in the opportunities table.
Y

es

T
he Last_P

oll_E
nd_T

im
estam

p is updated in the bookies table.
Y

es

T
est n

o
.

E
xp

ected
 O

u
tco

m
e

O
u

tco
m

e A
ch

ieved
5

T
he Last_P

oll_S
tart_T

im
estam

p is updated in the bookies table.
Y

es
A

n entry is m
ade in the alias_list table for "m

an united" w
ith the sam

e ID

as "m
anchester united".

Y
es

A
n entry is m

ade in the alias_list table for "aston v" w
ith the sam

e ID
 as

"aston villa".
Y

es

A
n entry is m

ade in the possible_bets table.
Y

es
A

n entry is m
ade in the past_bets table.

Y
es

T
he best_odds field in the bet_types table is updated.

Y
es

T
he O

pp_P
ercentage field in the corresponding opportunities table entry

is updated.
Y

es

T
he S

take_P
ercentage fields in the corresponding opportunity_bet_list

table entries is updated.
Y

es

T
he M

ax_P
ercentage field in the corresponding past_opportunities table

entry is updated.
Y

es

T
he Last_P

oll_E
nd_T

im
estam

p is updated in the bookies table.
Y

es
6

T
he Last_P

oll_S
tart_T

im
estam

p is updated in the bookies table.
Y

es
T

he possible_bets table entry is updated.
Y

es
A

n entry is m
ade in the past_bets table.

Y
es

T
he best_odds field in the bet_types table is updated.

Y
es

T
he O

pp_P
ercentage field in the corresponding opportunities table entry

is updated.
Y

es

T
he S

take_P
ercentage fields in the corresponding opportunity_bet_list

table entries is updated.
Y

es

T
he M

ax_P
ercentage field in the corresponding past_opportunities table

entry is N
O

T
 updated.

Y
es

T
he Last_P

oll_E
nd_T

im
estam

p is updated in the bookies table.
Y

es
7

T
he Last_P

oll_S
tart_T

im
estam

p is updated in the bookies table.
Y

es
A

n entry is m
ade in the possible_bets table.

Y
es

A
n entry is m

ade in the past_bets table.
Y

es
T

he best_odds field in the bet_types table is N
O

T
 updated.

Y
es

T
he O

pp_P
ercentage field in the corresponding opportunities table entry

is N
O

T
 updated.

Y
es

T
he S

take_P
ercentage fields in the corresponding opportunity_bet_list

table entries is N
O

T
 updated.

Y
es

T
he M

ax_P
ercentage field in the corresponding past_opportunities table

entry is N
O

T
 updated.

Y
es

T
he Last_P

oll_E
nd_T

im
estam

p is updated in the bookies table.
Y

es

Appendices

JavaDocs of Standard Objects and Constants

I1

Class Index

Class List
Here are the classes, structs, unions and interfaces with brief descriptions:

BetSubmissionObject .. 2

DataStorageInterface .. 5

EventSubmissionObject .. 6

SAMConstants ... 8

SubmissionObject .. 1

I2

Class Documentation

BetSubmissionObject Class Reference

BetSubmissionObjectBetSubmissionObjectInherits java::io::Serializable.Public Member Functions

• BetSubmissionObject (int betStyleID_in, Float betStyleMutator_in, float decimalOdds_in, String betURL_in, Integer

betCautionID_in)

• BetSubmissionObject (int betStyleID_in, Float betStyleMutator_in, float decimalOdds_in)

• int getBetStyleID ()

• void setBetStyleID (int styleID)

• Float getBetStyleMutator ()

• float getDecimalOdds ()

• void setDecimalOdds (float odds)

• String getBetURL ()

• Integer getBetCautionID ()

• void setBetCautionID (Integer caution)

• String toString ()

Detailed Description

Author:

Jon Stuteley

Version:

1.00 2008/11/5

Object for holding the information required for submitting a possible bet.

Definition at line 13 of file BetSubmissionObject.java.

Constructor & Destructor Documentation

BetSubmissionObject.BetSubmissionObject (int betStyleID_in, Float betStyleMutator_in, float
decimalOdds_in, String betURL_in, Integer betCautionID_in)

Creates a BetSubmissionObject the arguments passed in

Parameters:

betStyleID_in An int value representing the Bet_Style_ID.

betStyleMutator_in An java.lang.Float representing the Bet_Style_Mutator.

decimalOdds_in An float value representing the Decimal_Odds.

betURL_in An java.lang.String representing the Bet_URL.

betCautionID_in An java.lang.Integer representing the Bet_Caution_ID.

Definition at line 33 of file BetSubmissionObject.java.

BetSubmissionObject.BetSubmissionObject (int betStyleID_in, Float betStyleMutator_in, float
decimalOdds_in)

Creates an BetSubmissionObject the arguments passed in and sets betURL and betCautionID to null

Parameters:

betStyleID_in An int value representing the Bet_Style_ID.

betStyleMutator_in An java.lang.Float representing the Bet_Style_Mutator.

I3

decimalOdds_in An float value representing the Decimal_Odds.

Definition at line 57 of file BetSubmissionObject.java.

Member Function Documentation

Integer BetSubmissionObject.getBetCautionID ()

Returns the betCautionID.

Returns:

A java.lang.Integer representing the Bet_Caution_ID. (Can be null)

Definition at line 125 of file BetSubmissionObject.java.

int BetSubmissionObject.getBetStyleID ()

Returns the betStyleID

Returns:

An int value representing the Bet_Style_ID.

Definition at line 69 of file BetSubmissionObject.java.

Float BetSubmissionObject.getBetStyleMutator ()

Returns the betStyleMutator

Returns:

A java.lang.Float representing the Bet_Style_Mutator.

Definition at line 89 of file BetSubmissionObject.java.

String BetSubmissionObject.getBetURL ()

Returns the betURL

Returns:

A java.lang.String representing the Bet_URL. (Can be null.)

Definition at line 116 of file BetSubmissionObject.java.

float BetSubmissionObject.getDecimalOdds ()

Returns the decimalOdds

Returns:

A float value representing the Decimal_Odds.

Definition at line 98 of file BetSubmissionObject.java.

void BetSubmissionObject.setBetCautionID (Integer caution)

Sets the bet caution ID value.

Parameters:

caution A java.lang.Integer representing a SAMConstants value for bet cautions.

Definition at line 135 of file BetSubmissionObject.java.

void BetSubmissionObject.setBetStyleID (int styleID)

sets the bet style id

Parameters:

styleID An int value representing a bet style id. Usually a SAMConstants value.

I4

Definition at line 79 of file BetSubmissionObject.java.

void BetSubmissionObject.setDecimalOdds (float odds)

Sets the decimalOdds

Parameters:

odds A float value representing the Decimal_Odds.

Definition at line 107 of file BetSubmissionObject.java.

String BetSubmissionObject.toString ()

Returns:

A java.lang.String representation of this object.

Definition at line 158 of file BetSubmissionObject.java.

The documentation for this class was generated from the following file:

• C:/Users/Jon/Desktop/UNI/SPRING09/Dissertation/Dissertation/Java/SAM/Objects/src/BetSubmissionObject.java

I5

DataStorageInterface Interface Reference

DataStorageInterfaceDataStorageInterfaceInherits java::rmi::Remote.Public Member Functions

• void submitData (Vector< SubmissionObject > soV) throws RemoteException

Detailed Description

Author:

jon stuteley

Version:

1.00 2008/12/18

This interface defines the way that clients interact with SAM. They should call setBookiePollStart, submitData,

then setBookiePollEnd when finished. If they do not finish before the built in cut-off (currently 30 secs) the

system cuts them off automatically to stop a lost connection restricting the system for too long.

Definition at line 17 of file DataStorageInterface.java.

Member Function Documentation

void DataStorageInterface.submitData (Vector< SubmissionObject > soV) throws RemoteException

submits data to the database.

Parameters:

soV java.util.Vector of SubmissionObject objects used to submit data.

The documentation for this interface was generated from the following file:

• C:/Users/Jon/Desktop/UNI/SPRING09/Dissertation/Dissertation/Java/SAM/Objects/src/DataStorageInterface.java

I6

EventSubmissionObject Class Reference

EventSubmissionObjectEventSubmissionObjectInherits java::io::Serializable.Public Member Functions

• EventSubmissionObject (String alias_1_in, String alias_2_in, Timestamp eventStartTimestamp_in, String

eventDescription_in, int sportID_in)

• EventSubmissionObject (String alias_1_in, String alias_2_in, Timestamp eventStartTimestamp_in, int sportID_in)

• String getAlias (int num)

• void setAlias (int num, String alias_in)

• Timestamp getTimestamp ()

• String getDescription ()

• int getSportID ()

• String toString ()

Detailed Description

Author:

Jon Stuteley

Version:

1.00 2008/11/5

Object for holding the information required for submitting an event

Definition at line 15 of file EventSubmissionObject.java.

Constructor & Destructor Documentation

EventSubmissionObject.EventSubmissionObject (String alias_1_in, String alias_2_in, Timestamp
eventStartTimestamp_in, String eventDescription_in, int sportID_in)

Creates an EventSubmissionObject with the arguments passed in.

Parameters:

alias_1_in A java.lang.String representing the possible alias of a Participant_ID_1.

alias_2_in A java.lang.String representing the possible alias of a Participant_ID_2.

eventStartTimestamp_in A java.sql.Timestamp representing the Event_Start_Timestamp.

eventDescription_in A java.lang.String representing the Event_Description. (Can be null)

sportID_in A int value representing the participant's Sport_ID.

Definition at line 32 of file EventSubmissionObject.java.

EventSubmissionObject.EventSubmissionObject (String alias_1_in, String alias_2_in, Timestamp
eventStartTimestamp_in, int sportID_in)

Creates an EventSubmissionObject with the arguments passed in and eventDescription = null

Parameters:

alias_1_in A java.lang.String representing the possible alias of a Participant_ID_1.

alias_2_in A java.lang.String representing the possible alias of a Participant_ID_2.

eventStartTimestamp_in A java.sql.Timestamp representing the Event_Start_Timestamp.

sportID_in A int value representing the participant's Sport_ID.

Definition at line 51 of file EventSubmissionObject.java.

I7

Member Function Documentation

String EventSubmissionObject.getAlias (int num)

Returns the alias referenced by num

Parameters:

num An int value set to "0" to get alias 1 or "1" to get alias 2.

Returns:

A java.lang.String representing the possible alias of a Participant_ID_1 or Participant_ID_2.

Definition at line 63 of file EventSubmissionObject.java.

String EventSubmissionObject.getDescription ()

Returns a String representing description (other info) of the event

Returns:

A java.lang.String representing the Event_Description. (Can be null)

Definition at line 94 of file EventSubmissionObject.java.

int EventSubmissionObject.getSportID ()

Returns the Sport_ID associated with this event (participants).

Returns:

An int value representing Sport_ID.

Definition at line 103 of file EventSubmissionObject.java.

Timestamp EventSubmissionObject.getTimestamp ()

Returns a Timestamp representing the start of the event.

Returns:

A java.sql.Timestamp representing the Event_Start_Timestamp.

Definition at line 85 of file EventSubmissionObject.java.

void EventSubmissionObject.setAlias (int num, String alias_in)

Sets alias num to alias

Parameters:

num An int value set to "0" to set alias 1 or 1 to set alias 2.

alias_in A java.lang.String representing an alias.

Definition at line 75 of file EventSubmissionObject.java.

String EventSubmissionObject.toString ()

Returns:

A java.lang.String representing this object.

Definition at line 114 of file EventSubmissionObject.java.

The documentation for this class was generated from the following file:

• C:/Users/Jon/Desktop/UNI/SPRING09/Dissertation/Dissertation/Java/SAM/Objects/src/EventSubmissionObject.ja

va

I8

SAMConstants Class Reference

SAMConstantsSAMConstantsStatic Public Attributes

• static final int FT_Result_DrawPoss_PARTICIPANT_1_WIN = 0

• static final int FT_Result_DrawPoss_PARTICIPANT_2_WIN = 1

• static final int FT_Result_DrawPoss_DRAW = 2

• static final int FT_AsianHandicap_PARTICIPANT_1_WIN = 4

• static final int FT_AsianHandicap_PARTICIPANT_2_WIN = 5

• static final int FT_Handicap_PARTICIPANT_1_WIN = 6

• static final int FT_Handicap_PARTICIPANT_2_WIN = 7

• static final int FT_Handicap_DRAW = 8

• static final int FT_DoubleChance_PARTICIPANT_1_WIN_OR_DRAW = 10

• static final int FT_DoubleChance_PARTICIPANT_2_WIN_OR_DRAW = 11

• static final int FT_DoubleChance_PARTICIPANT_1_OR_2_WIN = 12

• static final int SPORT_TYPE_FOOTBALL = 0

• static final int SPORT_TYPE_RUGBY_UNION = 1

• static final int SPORT_TYPE_RUGBY_LEAGUE = 2

• static final int SPORT_TYPE_TENNIS = 3

• static final int SPORT_TYPE_BASKETBALL = 4

• static final int ARBITRAGE = 0

• static final int MIDDLE_2 = 1

• static final int MIDDLE_5 = 2

• static final int MIDDLE_20 = 3

• static final int LOW_NO_PROFIT = 0

• static final int EVENT_TRANSPOSED = 1

Detailed Description

Author:

jon Stuteley

Version:

1.00 2008/11/17

A collection of Constants used to easily reference data in SAM.

Definition at line 11 of file SAMConstants.java.

Member Data Documentation

final int SAMConstants.ARBITRAGE = 0 [static]

Describes the Opp_Type_ID variable associated with an "arbitrage"

Definition at line 78 of file SAMConstants.java.

final int SAMConstants.EVENT_TRANSPOSED = 1 [static]

Describes the bet_caution_ID variable associated with "Event was transposed"

Definition at line 97 of file SAMConstants.java.

final int SAMConstants.FT_AsianHandicap_PARTICIPANT_1_WIN = 4 [static]

Describes the bet associated with an Asian Handicap participant #1 win

I9

Definition at line 23 of file SAMConstants.java.

final int SAMConstants.FT_AsianHandicap_PARTICIPANT_2_WIN = 5 [static]

Describes the bet associated with an Asian Handicap participant #2 win

Definition at line 26 of file SAMConstants.java.

final int SAMConstants.FT_DoubleChance_PARTICIPANT_1_OR_2_WIN = 12 [static]

Describes the bet associated with a Double Chance participant 1 Win or participant 2 Win

Definition at line 44 of file SAMConstants.java.

final int SAMConstants.FT_DoubleChance_PARTICIPANT_1_WIN_OR_DRAW = 10 [static]

Describes the bet associated with a Double Chance participant 1 Win or draw

Definition at line 38 of file SAMConstants.java.

final int SAMConstants.FT_DoubleChance_PARTICIPANT_2_WIN_OR_DRAW = 11 [static]

Describes the bet associated with a Double Chance participant 2 Win or draw

Definition at line 41 of file SAMConstants.java.

final int SAMConstants.FT_Handicap_DRAW = 8 [static]

Describes the bet associated with a Handicap draw

Definition at line 35 of file SAMConstants.java.

final int SAMConstants.FT_Handicap_PARTICIPANT_1_WIN = 6 [static]

Describes the bet associated with a Handicap participant #1 win

Definition at line 29 of file SAMConstants.java.

final int SAMConstants.FT_Handicap_PARTICIPANT_2_WIN = 7 [static]

Describes the bet associated with a Handicap participant #2 win

Definition at line 32 of file SAMConstants.java.

final int SAMConstants.FT_Result_DrawPoss_DRAW = 2 [static]

Describes the bet associated with an event resulting in a draw (tie)

Definition at line 20 of file SAMConstants.java.

final int SAMConstants.FT_Result_DrawPoss_PARTICIPANT_1_WIN = 0 [static]

Describes the bet associated with an event resulting in a participant #1 win

Definition at line 14 of file SAMConstants.java.

final int SAMConstants.FT_Result_DrawPoss_PARTICIPANT_2_WIN = 1 [static]

Describes the bet associated with an event resulting in a participant #2 win

Definition at line 17 of file SAMConstants.java.

final int SAMConstants.LOW_NO_PROFIT = 0 [static]

Describes the bet_caution_ID variable associated with"Low/No bookie profit"

Definition at line 94 of file SAMConstants.java.

I10

final int SAMConstants.MIDDLE_2 = 1 [static]

Describes the Opp_Type_ID variable associated with an "middle" with profitable threshold 2%

Definition at line 81 of file SAMConstants.java.

final int SAMConstants.MIDDLE_20 = 3 [static]

Describes the Opp_Type_ID variable associated with an "middle" with profitable threshold 20%

Definition at line 87 of file SAMConstants.java.

final int SAMConstants.MIDDLE_5 = 2 [static]

Describes the Opp_Type_ID variable associated with an "middle" with profitable threshold 5%

Definition at line 84 of file SAMConstants.java.

final int SAMConstants.SPORT_TYPE_BASKETBALL = 4 [static]

Describes the Sport_Type associated with BasketBall

Definition at line 64 of file SAMConstants.java.

final int SAMConstants.SPORT_TYPE_FOOTBALL = 0 [static]

Describes the Sport_Type associated with Football (Soccer)

Definition at line 52 of file SAMConstants.java.

final int SAMConstants.SPORT_TYPE_RUGBY_LEAGUE = 2 [static]

Describes the Sport_Type associated with Rugby League

Definition at line 58 of file SAMConstants.java.

final int SAMConstants.SPORT_TYPE_RUGBY_UNION = 1 [static]

Describes the Sport_Type associated with Rugby Union

Definition at line 55 of file SAMConstants.java.

final int SAMConstants.SPORT_TYPE_TENNIS = 3 [static]

Describes the Sport_Type associated with Tennis

Definition at line 61 of file SAMConstants.java.

The documentation for this class was generated from the following file:

• C:/Users/Jon/Desktop/UNI/SPRING09/Dissertation/Dissertation/Java/SAM/Objects/src/SAMConstants.java

I11

SubmissionObject Class Reference

SubmissionObjectSubmissionObjectInherits java::io::Serializable.Public Member Functions

• SubmissionObject (EventSubmissionObject event, Vector< BetSubmissionObject > betV, int bookieID)

• EventSubmissionObject getEventSO ()

• Vector< BetSubmissionObject > getBetSOV ()

• int getBetSize ()

• int getBookieID ()

• String toString ()

Detailed Description

Author:

jon stuteley

Version:

1.00 2008/11/14

Object for holding an EventSubmissionObject and a java.util.Vector of BetSubmissionObject objects in a

single package.

Definition at line 13 of file SubmissionObject.java.

Constructor & Destructor Documentation

SubmissionObject.SubmissionObject (EventSubmissionObject event, Vector< BetSubmissionObject >
betV, int bookieID)

Creates a SubmissionObject using the given argumants.

Parameters:

event An EventSubmissionObject representing all the data needed to locate/insert an event.

betV A java.util.Vector of BetSubmissionObject objects representing all the bets to be submitted on the event.

bookieID An int value representing the id of the bookie, corresponding to the value in the bookies table of the

SAM database.

Definition at line 27 of file SubmissionObject.java.

Member Function Documentation

int SubmissionObject.getBetSize ()

Returns:

An int representing the number of bets in this object.

Definition at line 56 of file SubmissionObject.java.

Vector<BetSubmissionObject> SubmissionObject.getBetSOV ()

Returns the contained java.util.Vector of BetSubmissionObject objects

Returns:

A java.util.Vector of BetSubmissionObject objects representing all the bets to be submitted on the event.

I12

Definition at line 49 of file SubmissionObject.java.

int SubmissionObject.getBookieID ()

Returns:

An int representing the id of the bookie that this data is from.

Definition at line 64 of file SubmissionObject.java.

EventSubmissionObject SubmissionObject.getEventSO ()

Returns the contained EventSubmissionObject.

Returns:

An EventSubmissionObject representing all the data needed to locate/insert an event.

Definition at line 38 of file SubmissionObject.java.

String SubmissionObject.toString ()

Returns:

A java.lang.String representation of this object.

Definition at line 73 of file SubmissionObject.java.

The documentation for this class was generated from the following file:

C:/Users/Jon/Desktop/UNI/SPRING09/Dissertation/Dissertation/Java/SAM/Objects/src/

Appendices

Example Data Acquisition module configuration file

 <?xml version="1.0" encoding="UTF-8" ?>

- <!--
This section contains an example configuration file with comments in square brackets[].

<Definitions>

[root tag]

 <System>

 [marks the section associated with non-miner information]

 <Connection>

 [marks the section relating to networking]

 <ServerAddress>localhost</ServerAddress>

 [The location of a Data Storage module server. Not essential.

 If missing then a log file submitter is created whatever is in the OutputToLog tag.]

 <ServerPort>1099</ServerPort>

 [The port of a Data Storage module server. Not essential. If missing then a

 log file submitter is created whatever is in the OutputToLog tag.]

 <RMIInterfaceName>DataStorageInterface</RMIInterfaceName>

 [This is the name that is bound to the Data Aquisition module and registered with

 the RMI registry. Essential.]

 <ProxyHost>wwwcache-20.cs.nott.ac.uk</ProxyHost>

 [Sets a proxy host for the network connection. Not Essential.]

 <ProxyPort>3128</ProxyPort>

 [Sets a proxy port for the network connection. Not Essential.]

 </Connection>

 <Configure>

 [marks the section relating to system variable settings]

 <MiningThreadCount>3</MiningThreadCount>

 [Sets the number of threads of execution that are used to mine with. Essential.]

 <FailuresBeforeMinerReset>3</FailuresBeforeMinerReset>

 [Sets the number of times a miner is asked to mine and fails before the miner is reset. Essential.]

 <OutputToLog>false</OutputToLog>

 [Specifies output to log. Any value but "true" means false. Automatically

 true if ServerAddress or ServePort are missing. Not Essential.]

 </Configure>

 </System>

 <MinerDef>

 [marks the start of a miner definition. Multiple tags allowed, one for each miner required.]

 <ProcessingClass>CentrebetMiner</ProcessingClass>

 [The name of the class that will be used to mine]

 <URL>http://xmlfeed.centrebet.com/FOOTBALL_-_United_Kingdom_England.xml</URL>

 [the url to mine. Be careful of non-alphanumeric characters. ";" needs to be "&"?]

 <SportType>0</SportType>

 [If this is a sport specific url and the miner requires a sport type specified do it here.

 Not Essential (for all miners but is for CentrebetMiner)]

 <Period>200</Period>

 [period between starting mining operations. If this is too short it may lead to miner being reset.]

 <FullRefreshOnPeriod>10</FullRefreshOnPeriod>

 [Some miners change the url they mine each time. This value tells them to start from the url

 in this file every x mines. Pinnacle for example.]

 </MinerDef>

 -->

- <Definitions>

- <System>

- <Connection>

 <ServerAddress>localhost</ServerAddress>

 <ServerPort>1099</ServerPort>

 <RMIInterfaceName>DataStorageInterface</RMIInterfaceName>

 <!-- <ProxyHost>wwwcache-20.cs.nott.ac.uk</ProxyHost> -->

 <!-- <ProxyPort>3128</ProxyPort> -->

 </Connection>

- <Configure>

 <MiningThreadCount>3</MiningThreadCount>

 <FailuresBeforeMinerReset>3</FailuresBeforeMinerReset>

 <OutputToLog>false</OutputToLog>

 </Configure>

 </System>

- <MinerDef>

 <ProcessingClass>CentrebetMiner</ProcessingClass>

 <URL>http://xmlfeed.centrebet.com/FOOTBALL_-_United_Kingdom_England.xml</URL>

 <SportType>0</SportType>

 <Period>200</Period>

 <FullRefreshOnPeriod />

 </MinerDef>

- <MinerDef>

 <ProcessingClass>CentrebetMiner</ProcessingClass>

 <URL>http://xmlfeed.centrebet.com/FOOTBALL_-_United_Kingdom_Scotland.xml</URL>

 <SportType>0</SportType>

 <Period>200</Period>

 <FullRefreshOnPeriod />

 </MinerDef>

- <MinerDef>

 <ProcessingClass>BetAtHomeMiner</ProcessingClass>

 <URL>http://www.bet-at-home.com/oddxml.aspx?extended=true</URL>

 <SportType />

 <Period>240</Period>

 <FullRefreshOnPeriod />

 </MinerDef>

- <MinerDef>

 <ProcessingClass>PinnacleMiner</ProcessingClass>

 <URL>http://xml.pinnaclesports.com/xmlfeed.asp</URL>

 <SportType />

 <Period>180</Period>

 <FullRefreshOnPeriod>10</FullRefreshOnPeriod>

 </MinerDef>

- <MinerDef>

 <ProcessingClass>SkyBetMiner</ProcessingClass>

 <URL>http://www.skybet.com/skybet?action=GoEvCoupon&id=10010346</URL>

 <SportType>0</SportType>

 <Period>1200</Period>

 <FullRefreshOnPeriod />

 </MinerDef>

 </Definitions>

Appendices

SAM Installation Manual

 K1

SAM Installation Manual

Introduction

This installation manual covers the installation of all SAM (Sports Arbitrage and More) components.

The Preparation instructions must be followed before installation of the Data Storage module or the

Data Acquisition module can be started.

Preparation

These instructions assume that the target computer for installation has the below minimum system

requirements and has the below software installed prior to starting the installation procedures.

Recommended System Requirements

Microsoft Windows Vista or XP.

1GHz Processor.

512K RAM.

200Mb HD Space (for operating data).

Broadband network connection.

Software

The software listed here was used to develop SAM. Other IDEs and JDKs are not guaranteed to be

compatible.

IDE: JCreater (LE)

JDK: Version 1.6.0_11 *

Any mainstream html browser.

*It is recommended that the 32bit versions of all software (apart from operating system) is used even

if the installation computer has 64 bit architecture, to ensure compatibility.

The installation software is bundled in a folder named SAM, which contains all of the files required to

start using SAM.

Step-by-Step

1. Transfer the SAM folder to the preferred location on the installation system’s hard disk.

Data Storage Module Installation and Configuration

Step-by-Step

Installation of XAMPP Software.

1. An installation file for XAMPP v1.7.0 is included in the “Extras” folder (xampp-win32-1.7.0-

installer.exe). This should be ran and the on-screen instructions followed until successful

installation is complete.

 K2

XAMPP Setup

2. Start XAMPP using the start menu or desktop icon (left of figure 1.1). This will show the

XAMPP Control Panel (right of figure 1.1).

Figure 1.1 – XAMPP Control Panel.

3. Press the “Start” buttons for MySQL and Apache followed by the “Admin…” button for Apache.

The “Start” button text changes to “Stop” and “Running” messages appear to the left of them.

4. At this point there may be warning messages generated by firewall software (if installed).

Allow these operations.

5. The system’s default web browser should have opened with a language select page showing.

Please select the preferred language.

6. The next page shown has a menu bar on the left hand side (figure 1.2). Select “phpMyAdmin”

from the “Tools” menu.

Figure 1.2 – XAMPP Tools Menu.

7. Showing now is the phpMyAdmin interface that can be used to view and manipulate the

database manually. Create a new database called “SAM_Database” using the area in the

middle of the screen (figure 1.3). Leave the other options as they are and press the “Create”

button to create a new empty database.

 K3

Figure 1.3 – Create Database

8. Next we need to import the basic database configuration from a supplied file, so carry out the

following steps (see figure 1.4):

a. Select the “Import” tab towards the top of the screen.

b. Select the “Browse” button.

c. The file containing the standard SAM database information is

“SAM\Extras\database\BASIC.sql”. Navigate here, select the file and select “Open” on

the file chooser. Next select “Go” on the browser page.

Figure 1.4 – Database Import.

 K4

9. If successful, a list of database tables will appear on the left hand side of the page, under

“SAM_Database” that should have the number “19” in brackets beside it.

The new database has the default access account with username : “root” and a blank password (no

characters).

JDBC (Java Database Connectivity) Driver Installation

10. The installation file for this driver is “mysql-connector-odbc-5.1.5-win32.msi” it can be ran by

double clicking on the file in a file chooser window (as the database file choice could have

been made above). This will install the necessary software for a SAM Data Storage module to

access the database that has just been created, once it has registered in the next step.

Database ODBC (Open Database Connectivity) Registration

11. For 32bit operating system users there is a shortcut to the registration application in the

Control Panel/Administrative Tools folder named “Data Sources (ODBC)”.

12. 64bit operating system users may find it a little harder to locate the 32bit version of this

program as the one in the location mentioned above is the 64bit version , which is not

compatible with the other 32bit software used. On Windows Vista 64bit the program file is

located here: “C:\Windows\SysWOW64\odbcad32.exe”. Once found it is advisable to create a

shortcut to this in the Administrative Tools folder mentioned above.

13. Once the ODBC program has been started, an interface will appear on the screen that allows

registration of a database. Select the “System DSN” (to register for access by all computer

users) or the “User DSN” (access by this user only) tab and hit the “Add…” button to select the

JDBC driver that was just installed. Select “MySQL ODBC 5.1 Driver” and press the “Finish“

button to complete driver selection (figure 1.5).

Figure 1.5 – ODBC Driver Selection.

14. Configure the new connection (as shown in figure 1.6) with the following data:

 K5

Data Source Name: SAMsql

Server: localhost

Port: 3306 (default)

User: root

Password: <Left Blank>

Assuming that XAMPP is still running from earlier steps, test the connection to the database by

pressing the “Test” button. The result should be successful as depicted in figure 1.6.

Figure 1.6 – ODBC Connection Configuration.

15. Clicking “OK” finishes this database registration section of the Data Storage Module

installation. The ODBC interface can be closed.

XAMPP can be left running if running the SAM Data Storage Module is intended.

Closing XAMPP involves pressing the “Stop” buttons on the control panel next to “Apache” and

“MySQL” (where the “Start” buttons were in figure 1.1) followed by the “Exit” button.

SAM Data Storage Module Setup (JCreator)

16. The Data storage module needs its references configured to work in the new environment. To

do this first open up the project file in the supplied JCreator workspace by opening

SAM\DataStorage\DataStorage.jcw in JCreator. Next, select the “Project Settings” option on

the “Project” drop-down menu (on the JCreator menu bar). The display should look like figure

1.7.

 K6

Figure 1.7 – Data Storage Setup.

17. First of all make sure that it says “DataStorageServer” in the “Run” box at the top of the

window. If it doesn’t then try selecting it from the drop-down menu. If it is not an available

selection then:

a. Press the “Cancel” button.

b. Make sure the “Package View” is visible on the left hand side of JCreator (if not press

ctrl + alt + p).

c. Expand the folders and double click the “DataStorageServer” class to open the file.

d. Go back into “Project Settings” and “DataStorageServer” should be in the “Run” box.

18. Select the “Required Libraries” tab. The “SAMObjects” entry should be BLACK to signify that it

references a location that is valid. If the entry is RED it needs referencing to the folder

containing the SAM Objects; SAM\Objects\classes. This is achieved by:

a. Selecting the SAMObjects entry.

b. Pressing the “Edit…” button on the right.

c. Selecting the “Add” button then “Add Path”.

d. Selecting the “SAM\Objects\classes” folder.

e. Selecting and deleting the old “RED” path.

f. Clicking “OK” to get back to the Project Settings screen (figure 1.7).

Now, making sure that the SAMObjects checkbox is ticked and the text is BLACK, the Project

Settings “OK” button can be pressed to exit this window.

 K7

19. The project can now be re-compiled by pressing F7 to “Build Project”.

SAM Data Storage Module Setup (Command prompt)

20. The batch file entitled “startDataStorage.bat” in the SAM folder can be used to run the Data

Storage module without the aid of an IDE, but configuration of the jdk folder reference is

require. To do this (see figure 1.8):

a. Open SAM\startDataStorage.bat in a simple text editor.

b. Change the path on the first line to reflect the “bin” folder of the jdk

c. Save the file.

Figure 1.8 – Batch File.

RMI Registry Batch File Configuration

21. This step is almost identical to step 20, only using a the file “startRMIReg.bat”. Change the

reference to the jdk “bin” folder in the same way as in this step.

This Installation of the SAM Data Storage module is now complete. Please refer to the User Manual

for information about how to start the module running.

Data Acquisition Module Installation and Configuration

This procedure is exactly the same as the “SAM Data Storage Module Setup” section above but with a

few changes to names. It has been re-written here with those changes for completeness.

Step-by-Step

SAM Data Acquisition Module Setup (JCreator)

1. The Data Acquisition module needs its references configured to work in the new environment.

To do this first open up the project file in the supplied JCreator workspace by opening

SAM\DataAcquisition\DataAcquisition.jcw in JCreator. Next select the “Project Settings”

option on the “Project” drop-down menu (on the JCreator menu bar). The display should look

like figure 1.9.

 K8

Figure 1.9 – Data Acquisition Setup.

2. First of all make sure that it says “DataAcquisition” in the “Run” box at the top of the window.

If it doesn’t then try selecting it from the drop-down menu. If it is not an available selection

then:

a. Press the “Cancel” button.

b. Make sure the “Package View” is visible on the left hand side of JCreator (if not press

ctrl + alt + p).

c. Expand the folders and double click the “DataAcquisition” class to open the file.

d. Go back into “Project Settings” and “DataAcquisition” should be in the “Run” box.

3. Select the “Required Libraries” tab. The “SAMObjects” entry should be BLACK to signify that it

references a location that is valid. If the entry is RED it needs referencing to the folder

containing the SAM Objects; SAM\Objects\classes. This is achieved by:

a. Selecting the SAMObjects entry.

b. Pressing the “Edit…” button on the right.

c. Selecting the “Add” button then “Add Path”.

d. Selecting the “SAM\Objects\classes” folder.

e. Selecting and deleting the old “RED” path.

f. Clicking “OK” to get back to the Project Settings screen (figure 1.9).

Now, making sure that the SAMObjects checkbox is ticked and the text is BLACK, the Project

Settings “OK” button can be pressed to exit this window.

 K9

4. The project can now be re-compiled by pressing F7 to “Build Project”.

SAM Data Acquisition Module Setup (Command Prompt)

5. This step is almost identical to step 20 of the Data Storage module setup, only using a the file

“startDataAcquisition.bat”. Change the reference to the jdk “bin” folder in the same way as in

this step.

Appendices

SAM User Manual

 L1

SAM User Manual

Introduction

SAM (Sports Arbitrage and More) is a collection of programs that identifies ways in which a user can

make profit by betting on all outcomes of a sporting event with multiple bookmakers. A Data

Acquisition module retrieves event and bet information from the internet using bookmaker specific

miners and sends them to the Data Storage module where the data is analysed, grouped together and

evaluated. This data can then be viewed by a user, along with stake percentage advice, and taken

advantage of if it is so wished.

Figure 1.1 – SAM Overview

This user manual covers the use of all of SAM (Sports Arbitrage and More) components. Installation

must have taken place in accordance with the SAM Installation Manual in order for this user manual

to have full relevance.

The “user” of this software is assumed to be of a programmer class as the software is designed to be

expanded. There are separate manuals designed to assist in the creation of new opportunity

definitions (Appendix M) and new data miners (Appendix N) so this User Manual is aimed simply at

running the software and explaining the functions accessible to the user whilst it is running.

Storage Module Guide

The Data Storage module of SAM comes pre-configured in every aspect of its operation. There are no

configuration parameters that can be set by a user for the general use of this software. Once running,

this module is completely autonomous. The only interactions with the user come when there are

infrequent error messages that are produced for a variety of reasons.

 L2

A late addition to this module was the inclusion of the facility to input new participants to the

database. The use of this function will be fully explained.

Getting Started

Start XAMPP

XAMPP supplies the mySQL database that the Data Storage module uses. To start it:

1. Start XAMPP using the start menu or desktop icon (left of figure 1.1). This will show the

XAMPP Control Panel (right of figure 1.1).

Figure 1.2 – XAMPP Control Panel.

2. Press the “Start” buttons for MySQL and for Apache followed by the “Admin…” button for

Apache. The “Start” button text changes to “Stop” and “Running” messages appear to the left

of them.

Start RMI Registry

The RMI registry allows the Data Acquisition modules to connect to the Data Storage module.

3. Double click on the batch file named “startRMIReg.bat” in the SAM folder (figure 1.2). This will

open a command prompt window (DOS prompt style) that should show no errors and no

prompt after the “rmiregistry” command. This is now running and able to direct incoming

connections to the (soon to be) running Data Storage module.

 L3

Start the Java Data Storage Module (JCreator)

This is an alternative to the command prompt version of this step below, so they should not both be

carried out.

4. Open up the Data Storage module project file in the supplied JCreator workspace by opening

SAM\DataStorage\DataStorage.jcw in JCreator. Run the project by pressing the F5 key and the

GUI should pop up on the screen (figure 1.3). JCreator can now be minimized.

Figure 1.3 – Data Storage GUI.

Start the Java Data Storage Module (Command Prompt)

This is an alternative to the JCreator version of this step above, so they should not both be carried

out.

4. Simply double click/run the batch file in the SAM folder entitled “startDataStorage.bat”.

General Use

Once the Data Storage module is running it sits on the desktop causing little fuss. The statistics visible

in figure 1.3 are updated to show the current state of the database, as are the two values below.

Unprocessed submissions refers to the size of the buffer accepting data that is submitted. This will

increase at busy times and reduce back to zero at quieter times. The seconds since last submission

value is reset to zero every time a submission is received.

If any errors occur, like loss of connection to the database, the display turns red and a dialogue box is

displayed to notify the user, giving them as much information as possible (figure 1.4). The same

information is written to a log file. If the user is away from the system and the connection is re-

established, the dialogue box remains to inform the user that the error happened, but the GUI returns

to its green, working condition and the processing of submissions is allowed to continue.

 L4

Figure 1.4 – Data Storage Database Connection Error.

Maintenance

Database Size Management

As data in the past data section of the database is never deleted, without management this will grow

large and affect the efficiency of the database. When the past data statistics displayed on the GUI

reach high levels the user must manually delete data from the database (this is the way the customer

specified data management). This manual interference can be dangerous as it can cause

inconsistencies in data and errors to occur if care isn’t taken.

To do this safely the user must ensure that the Data Storage module is NOT running and that the

database is not being used by any other source before manipulating data directly. The user must

access the phpMyAdmin interface supplied by the XAMPP software (details of how to do this are in

the Installation Manual).

It is advised that the best way to ensure post maintenance consistency is to empty ALL of the

database tables EXCEPT the following:

1. alias_list

2. bet_cautions

3. bet_styles

4. bookies

5. bookie_cautions

6. bookie_caution_list

7. opportunity_types

8. sport_types

 L5

Assigning An Alias To A Participant

This is achieved using direct database manipulation as above, using the phpMyAdmin interface.

Again, it is advised that no other database access is taking place.

1. Find the Participant_ID of the participant that the alias is to be assigned to by browsing the

participants table of the database.

2. Locate the alias in the alias_list table of the database that is to be assigned.

3. Edit the record of the alias and update the Participant_ID field to the required value.

Insert A New Participant

This could be very dangerous if implemented using the same techniques as above, as alias strings are

processed by the Data Storage module before they are entered into the database. Direct insertion

may allow values that could cause serious consistency issues for SAM. To this end, an interface has

been bolted onto the Data Storage module GUI to do just this job.

With the Data Storage module running, click the tiny button in the bottom right hand corner of the

GUI (figure 1.5). The result is the appearance of another window specifically for participant insertion

(figure 1.6).

Figure 1.5 – Participant Insertion Button

Figure 1.6 - Participant Insertion Window

From here insertion of new participants is possible. The user must select a sport type and insert the

primary name for the participant then press the “Insert” button (or press the “Return” key).

Duplicate primary names are not accepted. If the insertion of a name would result in the use of an

alias that is already in the database, the user is prompted for confirmation to take the alias from its

 L6

current participant. Following insertion the new participant identification number is displayed to the

user.

Data Acquisition Module Guide

The Data Acquisition module has no interaction once running but has an XML configuration file

(SAM\DataAcquisition\classes\config\SAMconfig.xml) that defines its operation and performance. It

can be viewed in any simple text viewer or using any popular web browser. The file (also sown in

Appendix J) is also annotated to describe the function of each line of the code, so this should be

studied prior to running the Data Acquisition module.

Getting Started

Start the Java Data Acquisition Module (JCreator)

This is an alternative to the command prompt version of this step below, so they should not both be

carried out.

1. Open up the Data Acquisition module project file in the supplied JCreator workspace by

opening SAM\DataAcquisition\DataAcquisition.jcw in JCreator. Run the project by pressing

the F5 key and the GUI should pop up on the screen (figure 1.7). JCreator can now be

minimized.

Figure 1.7 – Data Acquisition GUI.

Start the Java Data Acquisition Module (Command Prompt)

This is an alternative to the JCreator version of this step above, so they should not both be carried

out.

4. Simply double click/run the batch file in the SAM folder entitled “startDataAcquisition.bat”.

General Use

The Data Acquisition GUI is composed of miner and submitter visualisations and a console for

outputting a running commentary of progress. The console can be hidden at the touch of a button to

 L7

reduce the GUI down to a simple interface that displays the status all of the module’s components in

a quick and easy to appreciate way. The console displays mining, submitter and error information so

that a user can see the full history of what has happened since startup.

There are separate miner visualizations for all of the miners specified in the configuration file and a

single one for the submitter. They are designed so that a single glance reassures the user that

everything is working fine by colour coding the components in a traffic light style with green for

“good”, red for “bad”, orange for “operating” (the submitter does not turn orange) and grey for

“unknown”.

Each miner visualization displays statistics from the last/current mining operation so that a judgement

about its efficiency can be made. This can show when a miner is not functioning correctly or the

format of the mined data has changed so the miner is no longer working properly even though there

are no errors generated.

Viewing data

Unfortunately there is no custom viewing interface for the data at present, so the phpMyAdmin

interface is used to fulfil this function. Tables can be viewed very easily using this software and sql

queries can be created and ran (with the use of search tools etc.) to get any view that the user wants.

Appendix F of the report that this manual is a part of contains numerous useful queries for this

purpose, allowing a user to see event, opportunity or betting data in a number of different ways.

Appendices

SAM Programmer Manual – Opportunity Definitions

 M1

SAM Programmer Manual - Opportunity Definitions

This document describes how to add a new Opportunity Definition to the Data Storage module of the

SAM system.

Creating a new opportunity description can be very easy, depending on the opportunity

characteristics. All that is required is to write an object class that inherits from the

OpportunityDefinition class. Then, every time a new bet type is registered in the database the system

will check to see if the new bet type can be used to create an opportunity of this kind. There is no

need to register the class anywhere, just make sure that when it is compiled the .class file resides in

the working directory that all other class files are in.

The only way to tell which opportunity definitions have been found is by checking the standard

output on the IDE when the Data Storage module is run. Once it has been confirmed that the

program has recognised a new definition once, it can be assumed that it will keep on doing it.

Writing an Opportunity Definition Object Class

The OpportuityDefinition class is very comprehensive and most of its methods are reusable by most

new definitions. It is this class that has the public methods that will be called and the subclass (in

almost all cases) will merely specialise it by providing values for it operation.

Below is an example of a simple opportunity definition defining the arbitrage created by the odds for

a home winning, an away win and a draw in an event.

1.1 A simple Opportunity

1. The name of the class starts with “OD_” and it describes the opportunity succinctly. The

opportunity will only be recognised if its name starts with these characters.

2. All new opportunity classes must extend OpportunityDefinition.

3. There is only a constructor here, no methods, as will be explained below.

4. All constructors must take a DBInterface as argument. This is later passed to the superclass.

 M2

5. An array of betStyles that make up this arbitrage. The bet styles are defined in the

SAMConstants class.

6. A call to the superclass with the specific data and database interface for this opportunity.

7. A description of this opportunity (the class name is used for consistency).

8. A description of the type of opportunity (arbitrage, middle, 20% middle). This defined in the

SAMConstants class.

The OpportunityDefinition class has provided two protected methods for this subclass that could have

been overriden if the opportunity was more complex. These methods are described below.

protected Vector<BetSaM> getOtherSaMs(BetSaM betSaM)

This method returns a vector of BetSaMs (bet styles and mutators) that the caller would also need in

the database in order to create one of these opportunity objects. It does not need to be overriden in

this case as there are no mutators used with the bet styles. It only requires overwriting if mutators

are used in this opportunity.

protected void calculateOpportunity(int oppID, Vector<Float> bestOdds) throws Exception

This method is called after the opportunity has been inserted into the database. It calculates the

return percentage of this opportunity as well as the stake percentages that a user would need in

order to take advantage of this opportunity. The default implementation of the method assumes that

all of the bet types that make up the opportunity have an equal weighting, which is true for a classic

arbitrage. This may not be the case for complicated middles (say), if the opportunity was made out of

odds (say) for:

• The home team scoring 1 goal or more.

• The away team scoring 1 goal or more.

• No goals being scored in the match.

Here you may expect the no goals possible bet to have less of a chance of occurring, so may want to

assign it less “weight”. If this were the case, this method would need to be overriden. The following

information will be useful in this case.

oppID - is the Opp_ID of the opportunity (int).

bestOdds - is a Vector of Float objects representing the best odds of the bet

types that make up the opportunity (ordered by the bet types’

betStyleID).

The new method would need to end with the following call:

 updateDB(oppID, oppPercentage, stakePercentage);

Where: oppID - is the Opp_ID of the opportunity (int).

 OppPercentage - is the calculated return percentage of this opportunity (float).

StakePercentage - is an array of stake percentages associated with the bet types in

this opportunity, ordered by their betStyleID (float).

Appendices

SAM Programmer Manual – Data Miners

 N1

SAM Programmer Manual - Data Miners

This document describes how to add a new Data Miner to the Data Acquisition module of the SAM

system. It is very difficult to write a complete guide as to how to create new miners as so much

depends on the format or style of the data that is being parsed. With the information in this

document, the source code of the already implemented miners and the associated code

documentation, a skilled programmer should be able to write miners for their chosen bookmaker’s

data however it is laid out.

Overview

There are two kinds of miner that can be written; one for XML data that must inherit from the

XMLMiner class and one for HTML data that must inherit from the HTMLMiner class. Both of these

superclasses inherit from a superclass called SAMMiner, which itself inherits from SAMMinerExtras.

These two classes (SAMMiner and SAMMinerExtras) can be considered to be the same class for

functional purposes, with the only reason for their separation being that together their size was

unmanageable.

Figure 1.1 – Miner Inheritance Hierarchy.

Useful Objects/Methods

There are many superclass methods defined which are used by the current miners. It is essential that

these current miners are studied, and the superclass documentation read, in order get the full use out

of inherited code and the supporting objects.

getSOB();

This method retrieves the SubObjBuilder (submission object builder) from the superclass.

SubObjBuilder

This object class (a submission object builder) allows a miner to slowly build the necessary

submission objects by giving it event and bet data as and when the miner finds it. This reduces

the requirement for lots of local variables. There is one created in a superclass and a

reference to it can be is returned by calling the above method.

There is a Boolean (debug) flag in this class that allows the output (to the IDE console) of all of

the accumulated data prior to the attempt to create a submission object. This can be used to

 N2

de-bug a new miner as output (to a submitter log file for example) is only possible if the

SubmissionObject has been correctly built. If it hasn’t then the SubmissionObject is thrown

away and it will not be output.

reorderMarketBetStyles(int market, int pos1, int pos2);

Often a market is defined then the odds are given without a description of what the individual

odds are for. The superclasses therefore allow the selection of a market that puts the

expected bet types (and mutators) into a buffer(s) that can then be accessed as the odds are

given.

If the odds for a market come in a different order to the “standard” order described in

SAMMinerExtras (MARKET_BET_STYLES), a re-ordering will be required. Match Results for

instance are expected in the order home win, draw, away win. If this is incorrect then a call to

this superclass method will be required, passing in the required arguments with reference to

the MARKET_BET_STYLES constants in SAMMinerExtras.

HTMLPageProcessor

This is a class that is designed to be used by an html miner object, and does a lot of the hard

work for it too. It takes as arguments:

1. A url String (where to fetch the html from).

2. An array of regular expressions to locate the important bits of data.

3. An array of integers that tell it how much to chop off the FRONT of a string returned by a

regular expression. (Called startChaff in SkyBetMiner.)

4. An array of integers that tell it how much to chop off the BACK of a string returned by a

regular expression. (Called endChaff in SkyBetMiner.)

5. A java.awt.event.ActionListener (the HTML miners implement this interface) that will be

notified when some useful data is found.

setNextURLAddition(String string)

This method allows a miner to change the URL that will be mined the next time that the miner

mines.

Please see the associated code documentation for more information.

Constructors

For both types of miner the constructor that will be written can (currently) only take arguments if:

• The url string assigned to this miner is sport specific. In this case there may be no

indication on the page what sport the data refers to so it must be defined prior to parsing.

• The miner only mines the “full” version of the odds every “x” times it mines, and this “x” is

the argument passed in. This is demonstrated in the PinnacleMiner class.

The first thing that the new miner’s constructor must do is call the superclass constructor with the

three arguments (first two only for HTML) listed below, which are usually set manually as constants in

the new object class’ local variables.

 N3

bookieID - An int representing the bookieID that matches the one in the database

“bookies” table.

marketStrings - A String array containing the strings used in the XML data to represent

the required markets. The currently defined required markets (in

SAMMinerExtras - MARKET_BET_STYLES) are Match Result, Handicap

Result and Double Chance.

tags - A String array of the “used” tags in the xml file; the ones that hold

important information and that require further action when one is

found.

Finally, consideration as to whether a call to reorderMarketBetStyles(int market, int pos1, int pos2) is

required.

Creating An XML Miner

This is by far the easiest of the two miners to create as the structure of the parsed code is fairly

predictable. Although this is true every bookmakers’ XML pages are different, so there has been

flexibility included into the inherited code. XML miners inherit from the XMLMiner class and the new

object is controlled from the superclass by it calling the overriden methods.

Overriden Methods

There are three methods that need to be overriden in order to get an XML miner to compile:

protected void startTag(int tagID, Attributes atts)

This method will be called by a superclass when the parser finds an XML element’s start tag

that is “used” (the name was in the array “tags” in the constructor).

The tagID is equal to the array position that the string had in the “tags” array.

The atts argument is an object that implements the org.xml.sax.Attributes interface and

represents attributes of the tag. This can be used if the useful data in the XML is stored in the

attributes of the start tag (e.g. <info data1=”blue”></info>). Often this will not be the case

and atts will not be needed as the useful data will be between the start and end tags of an

element (e.g. <info>blue</info>).

protected void endTag(int tagID)

This method is similar to startTag() but it is called when that parser finds a “used” end tag.

 Again the tagID argument is the position that the string had in the “tags” array.

protected void characters(Short tagID, String string)

This method is called when text is found in between “used” start and end tags (e.g.

<info>blue</info>).

Again the tagID argument is the position that the string had in the “tags” array.

 N4

The string argument is the text that was found between the tags. The SAXParser used to parse

XML here has been known to return a fragment of the string between the start and end tags

here if certain characters are used in the XML. In this case this method will be called again

immediately after the first call with the rest of the characters in the string argument and it is

suggested that in this case the first string is buffered and the second string is added to it and

the whole set of characters is used.

XML Approach

When any of the above methods are called the current miners all have a switch statement that

decides how to handle the data depending on the tagID variable (position in the tag names array that

the superclass was called with). Actions can then be carried out with the data that the method is

given, or actions can be carried out due knowing that the parser has reached a certain part of the XML

(like ending an event in the SubObjBuilder when the endTag method is called with an argument that

corresponds to an “Event” tag). See the Submission Object Building section below for more details.

Creating An HTML Miner

As the structure of bookmaker website HTML is extremely variable, this type of miner is quite

different from its XML sibling. The control of this object is in the new subclass, so it is has far more

freedom to work with the specific html that it is written for. Please see the SkyBetMiner class for an

example of an HTML miner.

Overriden Method

There are two methods that require overriding in order to get a new HTML miner to compile:

protected void parse() throws Exception

This method hands control of the mining thread to the new miner object, which is then free to

mine however the implementer sees fit. Typically it will create an HTMLPageProcessor with

object variables and call its processPage method.

public void actionPerformed(ActionEvent ae)

This method is invoked when an action occurs in objects that this object is registered with.

The idea of HTML mining in SAM is that an HTMLPageProcessor, once set up with page specific data,

creates events containing the important information in the HTML document. The new miner class

implements the java.awt.event.ActionListener interface (via a superclass) and is notified of any

important information by way of an java.awt.event.ActionEvent that contains:

1. A reference to the HTMLPageProcessor that fired the event as the “Source”. (Call

getSource() on the actionEvent.)

2. A reference to the position in the array (used to construct the HTMLPageProcessor) of

the regular expression that was matched. (Call getID() on the actionEvent.)

3. The string that was returned from the matched regular expression once the specified

number of characters had been chopped off the front and back (specified again in the

HTMLPageProcessor). (Call getActionCommand() on the actionEvent.)

 N5

HTML Approach

The general approach of HTML miners is to be notified when “interesting information” is parsed by an

HTMLParser in a similar way to the XML miner, but they have freedom how they do this as they

implement it for themselves. They do this by implementing the actionPerformed method above then

calling methods that they have created to handle the data included in the ActionEvent in the same

way that the characters method does in XML mining. This method can have a switch statement that

switches on the ID field of the ActionEvent (which is the array position of the regular expression that

has been satisfied), so that it is easy to see which code is written to handle which data.

Submission Object Building

With the “interesting information” the miners build a SubmissionObject gradually using a the submit

methods on a SubObjBuilder. The SubObjBuilder needs to be explicitly told that the miner has come

to the end of a bet or event (by calling endNewBet() or endNewEvent() respectively) at which point it

tries to create the relevant submittable object. At any time a miner can call its own submit() method

that will take any SubmissionObjects from the SubObjBuilder and send them to the submission

manager.

Updating statistics

Both types of miners need to update statistics. The successfully mined data stats are provided by the

SubObjBuilder, it is the overall events and bet lines that need to be kept track of. Two superclass

method calls increment the events found (incrementEvents()) and the possible bets found

(incrementPossibleBets()) and should be called every time a new event and possible bet are located.

These statistics are used to notify the user of the miner’s success.

Other things to consider when writing miners

Is the same URL mined every mining operation?

It is possible to set the URL that is mined the next time that the miner is told to mine by calling

the setNextURL method in the SAMMiner superclass. If this function is used a miner can be

told to return to the originally mined URL every X mining operations using the content of the

FullRefreshOnPeriod tag in the configuration file. An example of this is in the PinnacleMiner

class.

Is the odds source in the same time zone and is daylight saving going to affect the mined times?

When submitting event start times to the SubObjBuilder class there is an argument for the

time difference. This should be carefully considered whilst writing a miner. A good example

of a miner that is sensitive to both of these issues is PinnacleMiner. This has a manual time

difference variable for the different time zone but the source does not change times for

daylight saving. This manually inserting any daylight saving time.

	1_ProjectTitlePage.pdf
	jas06u_final_report.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

