

MS.NETGrid OGSI User Manual

Project Title: MS.NETGrid

Document Title: MS.NETGrid OGSI User Manual

Document Identifier: MS.NETGrid-OGSIUserManual-v1.1

Authorship: Ally Hume, Daragh Byrne

Document History:

Personnel Date Summary Version

EPCC 16th October 2003 EPCC Approved 1.1

EPCC 16th June 2003 EPCC Approved 1.0

MJJ 13th June 2003 Second Draft – Changes and Comments 0.2

ACH 10th June 2003 First Draft 0.1

Approval List: EPCC: Project Leader, Technical Staff, Technical Reviewer, Coach

Mike Jackson, Daragh Byrne, Ali Anjomshoaa, Neil Chue Hong

Approval List: Microsoft Research Limited: Managing Director, University Relations x 3

Andrew Herbert, Fabien Petitcolas, Van Eden, Dan Fay

Copyright © 2003 The University of Edinburgh. All rights reserved.

MS.NETGrid-OGSIUserManual-v1.1 2

Contents

1 Introduction .. 4

1.1 Product Licence... 4

1.2 Project WWW Site.. 4

1.3 Support and Queries... 4

2 Installation .. 5

2.1 Configuration .. 5

2.2 Running a Demonstration Client... 6

3 Class documentation .. 8

4 Writing a simple persistent service... 9

4.1 Write the service skeleton .. 9

4.2 Write the portType class(es) .. 10

4.3 Write the proxy class .. 10

4.4 Compile the service classes and proxy class into an assembly 11

4.5 Write a .asmx file for the service .. 12

4.6 Configure the OGSI container... 12

4.7 Installing the service ... 12

5 Writing a client of a persistent service ... 14

6 Writing a transient service and a persistent factory service 15

6.1 Write the transient service class .. 15

6.2 Write the persistent factory service class.. 16

6.3 Write factory initialiser class ... 17

6.4 Write proxy classes ... 18

6.5 Compile classes into an assembly .. 19

6.6 Write .asmx files for the transient service and factory service 19

6.7 Configure the OGSI container... 19

6.8 Install the services ... 20

MS.NETGrid-OGSIUserManual-v1.1 3

7 Writing a client of a transient service... 22

8 Service data... 24

8.1 Default service data elements... 24

8.2 Service data set.. 24

8.3 The ServiceData class.. 25

8.3.1 Service data element properties ... 25

8.3.2 Service data values... 25

8.3.3 Using a callback to determine service data values dynamically 26

8.3.4 Lifetime attributes ... 26

8.3.5 Service data evaluators.. 27

9 PortTypes .. 28

9.1 OgsiPortTypeAttribute... 28

10 Example services... 30

10.1 Basic Grid Service ... 30

10.2 Counter Service ... 30

10.3 OGSA-DAI Demonstrator Service... 30

References .. 35

MS.NETGrid-OGSIUserManual-v1.1 4

1 Introduction

MS.NETGrid is an ASP.NET-based implementation of the Open Grid Services Infrastructure.
This user manual is aimed at the Grid service developers and describes how to use the
MS.NETGrid implementation to create Grid services. Details of how to write clients that use
these services – in the form of running examples – are also included. This document
complements [MS.NETGridOgsiDesignOverview] that is included with this distribution.

1.1 Product Licence

The MS.NETGrid software is released under the licence described in LICENSE.TXT under
the root directory of the distribution.

1.2 Project WWW Site

The MS.NETGrid Project WWW site is at:

http://www.epcc.ed.ac.uk/~ogsanet

1.3 Support and Queries

Please note that our software is intended as a proof-of-concept to demonstrate the
applicability of Microsoft .NET in general and ASP.NET in particular to the development of
Grid services rather than as a fully-functioning product. In consequence we do not provide
any support for our software. However please feel free to forward any comments, queries,
suggestions or problems you have to:

ogsanet-queries@epcc.ed.ac.uk

MS.NETGrid-OGSIUserManual-v1.1 5

2 Installation

The download consists of a zip file called MS.NETGridOGSI-TP1.1.zip. Extract this to a
convenient directory of your choice. We recommend that you install at the root of your C:
drive, so that upon unzipping you have a folder called C:\MS.NETGrid. At this location,
there will be a directory called MS.NETGrid. This directory will have a number of
subdirectories one of which is called Ogsi.Container. This Ogsi.Container directory
contains the ASP.NET-based OGSI container, as well as all source code for the container.

The Ogsi.Container directory must be set up as a virtual directory under Internet
Information Services (IIS). This can be done using Microsoft’s Internet Services Manager;
see the user documentation for this product for details of creating a virtual directory. Call the
virtual directory ogsa. Further information about creating a virtual directory under IIS may
be found at http://localhost/iishelp/iis/htm/core/iicodirv.htm if you have a standard installation
of IIS and are logged in as an administrator.

Throughout the rest of this document the notation <OGSIContainer> refers to the full path
name of the Ogsi.Container directory, e.g, C:\MS.NETGrid\Ogsi.Container.
<install_dir> refers to the directory into which the MS.NETGrid directory was unzipped,
e.g. C:\.

2.1 Configuration

The file Web.config in the directory
<install_dir>\MS.NETGrid\Ogsi.Container can now be edited to suit the
server machine. Open this file using an XML editor (notepad will do) and navigate to the
XML node configuration/gridContainer.config/containerProperties.
This node contains a number of child nodes that look like the following:

<containerProperties>
 ……
 <add key="persistentServiceProxyDirectory" value="persistent" />
 <add key="transientServiceProxyDirectory" value="transient" />
 <add key="serviceDirectory" value="services" />

 ……
 <!--
 This bit needs to be changed.
 -->
 <add key="domain" value="www.mydomain.org" />
 <add key="port" value="80" />
 ……
 <add key="addTextTraceListener" value="false" />
 <add key="traceFileRoot" value="C:\Log" />
 </containerProperties>

The domain container property needs to be changed to reflect the name of your domain. By
default it is set to localhost, which is fine for doing development on your local machine.
If you wish to expose grid services to other computers on your network, you need to change
this value to the name of your computer, e.g. PC10. If you are exposing services on a public
Web server, you need to enter the name of the Web server here. For example, if you are
running the Grid server under www.mydomain.org, enter the value www.mydomain.org here.

http://localhost/iishelp/iis/htm/core/iicodirv.htm
http://www.mydomain.org/
http://www.mydomain.org/

MS.NETGrid-OGSIUserManual-v1.1 6

You can enable tracing (logging and debugging) for the application by changing the value of
the addTextWriterTraceListener from false to true. This allows the container to
send debug output to a text file. The prefix/directory for the trace files may be specified by
the value of the traceFileRoot property.

2.2 Running a Demonstration Client

The installation is configured to initialise a counter service factory that can be used in
conjunction with a supplied client to test your installation. The client is located in
<install_dir>/MS.NETGrid/DemoServices/CounterService/CounterClient. Go
to the bin subdirectory and run the CounterClient executable. Click on the "Create New
Counter" button. This creates a new instance of a transient counter service. You can set the
initial value of this counter service instance upon creation by use of the “Initial Value” text
box. The Grid Service Handle for this service instance should appear in the "Created counter
handle" box. If it does not, please make sure that IIS is running and the ogsa virtual
directory is visible from Internet Services Manager.

Several operations may be performed on this service instance. The count value may be set
using the "Set count value" button. This sets the current value of the counter to be that of the
box to the left of this button. The "Increment" and "Decrement" buttons may be used to adjust
the value of the counter by the amount displayed in the box between the buttons. The "Find
Service Data" button can be used to obtain service data by name. The count service data is
found by default. The ServiceData values are displayed in the bottom textbox as pure XML. If
this client operates correctly, the installation has been successful. The correctly operating
client looks like the following screenshot.

MS.NETGrid-OGSIUserManual-v1.1 7

MS.NETGrid-OGSIUserManual-v1.1 8

3 Class documentation

Source code documentation is available in Microsoft Help format at:

<install_dir>/MS.NETGrid/doc/API/MS.NETGridHelp.chm

MS.NETGrid-OGSIUserManual-v1.1 9

4 Writing a simple persistent service

In this section we go through the stages required to write and deploy a simple persistent Grid
service. You can follow these steps using Visual Studio.NET or Notepad. The required stages
are:

1. Write the service skeleton class that acts as the main class for the service.

2. Write the classes that implement the functionality of the portTypes offered by the
service.

3. Write the proxy class that exposes the service's public methods.

4. Compile the service classes and proxy class into an assembly.

5. Write a .asmx file for the service.

6. Configure the OGSI container.

7. Install the service.

The Grid service we write here will be a persistent Grid service. We will implement a single
method called hello(), on the MyService portType. This method takes one argument
called name and will return the string "hello name n" where name is the value of the
name argument and n is an integer that starts at 1 and increments every time the method is
called.

The Grid service will inherit additional methods (e.g. findServiceData() and
destroy()) that correspond to the GridService portType operations that all Grid services
must provide.

Visual Studio.NET

In the case that you are using Visual Studio.NET, the type of project you start should be of
type “Class Library”. Make sure that no “hidden” files such as resource or CodeBehind files
are created by Visual Studio.NET. If they are, delete them. Each of the files mentioned in the
following steps can then be added to the project individually.

4.1 Write the service skeleton

The service skeleton is a class from which the functionality of the Grid service is “hung”. In
general, no functionality is directly implemented on this class. Rather, it acts as a reference
class for deploying your services, and does behind the scenes lifetime and serviceData
management. The code for this class is as follows and should be saved in a file called
MyServiceImpl.cs:

MS.NETGrid-OGSIUserManual-v1.1 10

using Ogsi.Core;
namespace MyGridServices
{
 [OgsiPortType(typeof(MyGridServices.MyServicePortType),
 “http://mydomain.com/myNameSpace”,
 “MyGridService”)]
 public class MyServiceImpl : PersistentGridServiceSkeleton
 {

 }
}

This class inherits from the Ogsi.Core.PersistentGridServiceSkeleton class. All
persistent Grid services must inherit from this class. In contrast, transient Grid services
must inherit from the Ogsi.Core.GridServiceSkeleton class.

This service class does not contain any business logic. It does have a single OgsiPortType
attribute. This attribute declares that the service exposes a portType called “MyGridService”
whose default namespace is “http://mydomain.com/myNameSpace”. The .NET type that
implements this portType is “MyGridServices.MyServicePortType”. The
implementation of the portType class is discussed in the next section. More than one portType
implementation can be associated with the service class by use of multiple OgsiPortType
attribute. This attribute-based model encourages modularity and reuse of portType
implementations.

As can be seen from the code, implementing the service class for a Grid service is very
similar to writing any other class. The Ogsi.Core.PersistentGridServiceSkeleton
and Ogsi.Core.GridServiceSkeleton classes give access to other Grid service
infrastructure such as service data that the service may wish to use. This simple example does
not use service data.

4.2 Write the portType class(es)

Next you must write the service logic, which normally resides on the portType classes. Create
a file called MyServicePortType.cs. Its contents should be as follows:

using Ogsi.Core;
namespace MyGridServices
{
 public class MyServicePortType : PortTypeBase
 {
 private int count_ = 0;

 public string hello()
 {
 return “Hello, “ + count_++;
 }
 }
}

4.3 Write the proxy class

The proxy class is used to expose the service's public methods, or, in other words, the
operations of the Grid service.

http://mydomain.com/myNameSpace
http://mydomain.com/myNameSpace

MS.NETGrid-OGSIUserManual-v1.1 11

The code for the proxy class – which should be saved in a file called MyService.cs – is as
follows:

using System.Web.Services;
using Ogsi.Container.Instances.Proxy;

namespace MyGridServices
{
 public class MyService :
 PersistentGridServiceInstanceAspProxy
 {
 [WebMethod]
 public string hello(string name)
 {
 object [] args = { name };
 return (string) CallMethodOnPortType(
 “MyGridServices.MyServicePortType”,
 "hello",
 args);
 }
 }
}

This class inherits from the PersistentGridServiceInstanceAspProxy class (in the
namespace Ogsi.Container.Instances.Proxy). The
System.Web.Services.WebMethodAttribute is used to tell ASP.NET to expose this
method as a public Web method of the service. Other ASP.NET method attributes may be
used to provide further customisation. See the ASP.NET user documentation for details.

Every public method on any of the portType classes that is to be exposed as part of the Grid
service must have a corresponding method defined for it in the proxy class. The methods in
the proxy class are all very similar. They simply put the arguments into an array and then
pass these arguments and the method name to the CallMethodOnPortType() method that
is a public method of the base class. This method essentially farms out the work requested by
clients of the service to instances of the portType classes that are maintained by the container.

4.4 Compile the service classes and proxy class into an assembly

To compile the service class and proxy class into an assembly use the following command
line instruction (which should be typed on a single line):

csc /t:library /out:MyServices.dll MyServiceImpl.cs
MyServicePortType.cs MyService.cs
 /r:<OGSIContainer>\bin\Ogsi.Container.dll
/r:<installDir>/MS.NETGrid/Ogsi.Common/bin/Ogsi.Common.dll
/r:System.Web.Services.dll

<OGSIContainer> is the path to the OGSI container installation. We need to reference this
dll as it contains the base classes for our types.

If you are using the Microsoft Visual Studio development environment configure your project
to output an assembly called MyServices.dll. You will have to add the following
references to the project before building:

o <OGSIContainer>\bin\Ogsi.Container.dll

MS.NETGrid-OGSIUserManual-v1.1 12

o <installDir>\MS.NETGrid\Ogsi.Common\bin\Ogsi.Common.dll

o System.Web.Services.dll

Regardless of whether you have used Visual Studio or the command line you should now
have created an assembly called MyServices.dll, located in the current directory.

4.5 Write a .asmx file for the service

To utilise ASP.NET to deploy our Grid service we must create a .asmx file for the service.
This simply maps the service name to the proxy class.

The .asmx file is (save this in a file called MyService.asmx):

<%@ WebService Class="MyGridServices.MyService"%>

The name of the .asmx file determines the Grid Service Handle (GSH) for the service. This
file can be created by hand with Notepad.

4.6 Configure the OGSI container

For each Grid service hosted by the OGSI container an entry must be added to the container's
Web.config file (this file is located at <OGSIContainer>\Web.config).

Inside the <gridServiceDeployment> element of the file add the following entry:

<gridServiceDeploymentDescriptor
 asmxProxyFileName="MyService.asmx"
 serviceClass="MyGridServices.MyServiceImpl"
 assembly="MyServices"
 persistence="persistent"
 >
</gridServiceDeploymentDescriptor>

This entry specifies:

o The name of the .asmx file generated in section 4.5, for example MyService.asmx.

o The full name of the service class created in section 4.1, for example
MyGridServices.MyServiceImpl.

o The name of the assembly created in section 4.4, for example MyServices.

o Whether the service is persistent or transient.

4.7 Installing the service

To install the service:

o Copy the MyServices.dll assembly to <OGSIContainer>\bin.

o Copy the MyService.asmx file to <OGSIContainer>\services\persistent.

o Restart IIS.

MS.NETGrid-OGSIUserManual-v1.1 13

� To restart IIS obtain the Control Panel, select Administrative Tools
and then select Internet Services Manager. Select the appropriate web
site (probably Default Web Site) and use the stop and start icons to
stop and restart the server.

MS.NETGrid-OGSIUserManual-v1.1 14

5 Writing a client of a persistent service

Writing a client to talk to a persistent Grid Service is identical to writing a client to talk to a
Web Service. Firstly we must create a client-side proxy class (do not confuse this with the
server-side Grid Service proxy) for the service and then use it in our own code.

If you are developing clients with Visual Studio.NET, you can use the “Add Web Reference”
facility to automatically generate proxy classes for your use. You would direct Visual
Studio.NET to add the reference from, for example,
“http://localhost/ogsa/services/persistent/MyService.asmx”.

To create a proxy class create a new directory and within that directory use the following
command line instruction:

WSDL http://localhost/ogsa/services/persistent/MyService.asmx

If you are accessing our container from a remote host then you can replace localhost with the
name of the host upon which our container is running.

This will create a proxy class called MyService in a file called MyService.cs. Note that
this proxy class will be in the default namespace. WSDL.exe contains options for creating
the class in a namespace of your choice; execute WSDL without any command line parameters
for details. We can now write a client that uses the service. Code for an example client of our
service is:

using System;

class MyClient
{
 static void Main()
 {
 MyService GridService = new MyService();
 Console.WriteLine(GridService.hello("Horace"));
 }
}

Compile this file along with the MyService.cs file as shown in the following command line
instruction:

csc /out:MyClient.exe MyClient.cs MyService.cs

This will produce an executable called MyClient.exe that will call the Grid service’s
hello() method when it is run producing the output shown below (identical results will be
produced if you use Visual Studio.NET):

C:\Projects\ogsanet\client>MyClient
hello Horace 1

C:\Projects\ogsanet\client>MyClient
hello Horace 2

C:\Projects\ogsanet\client>MyClient
hello Horace 3

MS.NETGrid-OGSIUserManual-v1.1 15

6 Writing a transient service and a persistent factory service

In this section we go through the stages required to write and deploy a simple transient Grid
service with a corresponding persistent factory service. The factory service can be used to
create instances of the transient Grid service. The stages are:

1. Write the transient service class that implements the functionality of the transient
service, and the associated portType classes.

2. Write the factory service class.

3. Write the factory initialiser class that is used by the factory to initialise new service
instances.

4. Write proxy classes for the service class and factory service class.

5. Compile classes into an assembly.

6. Write .asmx files for the transient service and factory service.

7. Configure the OGSI container.

8. Install the services.

The transient Grid service we write here is very simple. It is initialised with a single string
argument called greeting provided to the factory service – via the Factory portType
CreateService operation – that will create our transient Grid service and we will
implement a single method called hello(). The method takes one argument called name
and will return the string “greeting name n” where greeting is the value of the
greeting argument the service was initialised with, name is the value of the name argument
of the hello() method and n is an integer that starts at 1 and increments every time the
method is called. The Grid service will inherit additional methods (e.g.
findServiceData() and destroy()) that correspond to the GridService portType
operations that all Grid services must provide.

6.1 Write the transient service class

The service class is the class that implements the specific functionality of the Grid service.
The code for this class – which should be saved in a file called MyTransServiceImpl.cs –
is as follows:

using Ogsi.Core;

namespace MyGridServices
{
 [OgsiPortType(typeof(MyGridServices.GreetingPortType),
 “http://mydomain/myNameSpace”,
 “GreetingService”)]
 public class MyTransServiceImpl : GridServiceSkeleton
 {
 }
}

This class inherits from the Ogsi.Core.GridServiceSkeleton class. All transient Grid

http://mydomain/myNameSpace

MS.NETGrid-OGSIUserManual-v1.1 16

services must inherit from this class.

The next step is to write the GreetingPortType class. This class looks like the following:

using Ogsi.Core;
namespace MyGridServices
{
 public class GreetingPortType : PortTypeBase
 {
 private int count_ = 1;
 private string greeting_;

 public string Greeting
 {
 set
 {
 greeting_ = value;
 }
 }
 public string hello(string name)
 {
 return greeting_ + " " + name + " " +
 (count_++).ToString();
 }
 }
}

6.2 Write the persistent factory service class

The factory service class is the class that implements the functionality of the persistent factory
service. The code – which should be saved in a file called
MyTransServiceFactoryImpl.cs – is as follows:

using System;
using Ogsi.Core;

namespace MyGridServices
{
 [OgsiPortType(
 typeof(FactoryPortType),
 "http://localhost/MyTransServiceFactoryNS",
 "MyTransServiceFactoryPortType")]
 public class MyTransServiceFactoryImpl :
 PersistentGridServiceSkeleton
 {
 }
}

As can be seen this is a very simple class. The class is for a persistent service so it inherits
from Ogsi.Core.PersistentGridServiceSkeleton. The service is to be a factory so
the we have used the OgsiPortType attribute to specify that the service exposes the Factory
portType. A generic, configurable factory portType implementation is provided with the
MS.NETGrid-OGSI container. When we use the OgsiPortType attribute to specify that a

MS.NETGrid-OGSIUserManual-v1.1 17

service supports the Factory portType the majority of the implementation is done for us – all
we have to do is write an initialiser class to create instances of the service the factory creates
and then specify the initialiser class is associated with the factory. These tasks are covered in
sections 6.3 and 6.7 respectively.

The second and third arguments to the OgsiPortType attribute specify the namespace and
name of the portType. These values are not used in the current release but are intended to
provide a reference to the portType for use in future releases.

6.3 Write factory initialiser class

The factory initialiser class is used to initialise instances of transient services after they have
been created by a factory. Due to the nature of the OGSI implementation we provide, it is not
possible to pass information to the portType classes via a constructor. We use initialiser
classes then to perform any custom initialiser role. The code – which should be saved in a file
called MyTransServiceInitialiser.cs – is:

using System;
using System.Xml;
using Ogsi.Core;

namespace MyGridServices
{
 public class MyTransServiceInitialiser :
ITransientServiceInitialiser
 {
 public void InitialiseServiceFromParameters(
 GridServiceSkeleton instance,
 XmlElement creationParams)
 {
 GreetingPortType gpt =
instance.PortTypeProviders[“MyGridServices.GreetingPortType”]
as GreetingPortType;
 if(gpt != null)
 gpt.Greeting = “Hello there, “; // or whatever
 }

 }
}

The factory creator class must implement the ITransientServiceInitialiser interface.
This interface has only one method called InitialiseServiceFromParams().
Essentially what this method does is initialise the service object that has been instantiated by
the factory.

The creationParams parameter of the CreateService() method can be used to pass an
arbitrary XML element from the client to the factory. For examples of how to specify the
XML type of this element, and how to use the information contained within it, please see the
Counter Service example in
<installDir>/MS.NETGrid/DemoServices/CounterService. Files of interest
in this directory include CounterServiceSimpleImpl.cs,
CounterServiceSimpleInitialiser.cs and CounterPortType.cs. It is also
possible to restrict the type of the XML input element for the Factory portType to be of one of
a number of certain types, and a demonstration of this is given in the PostCreate()

MS.NETGrid-OGSIUserManual-v1.1 18

method of CounterServiceSimpleFactoryImpl.cs.

6.4 Write proxy classes

We have to write proxy classes for both the transient service and the factory service.

The code for the service class’s proxy class – which should be saved in a file called
MyTransService.cs – is:

using System.Web.Services;
using Ogsi.Container.Instances.Proxy;

namespace MyGridServices
{
 public class MyTransService :
 TransientGridServiceInstanceAspProxy
 {
 [WebMethod]
 public string hello(string name)
 {
 object [] args = { name };
 return (string) CallMethodOnPortType(
 “MyGridServices.GreetingPortType”,
 "hello", args);
 }
 }
}

This class is virtually identical to the proxy class for the persistent service discussed in section
4.3. The only difference here is that this class inherits from
TransientGridServiceInstanceAspProxy because it is a transient rather than
persistent service.

The code for the factory class’s proxy class – which should be saved in a file called
MyTransServiceFactory.cs – is:

using System.Web.Services;
using Ogsi.Container.Instances.Proxy;
using Ogsi.Core.Types;

namespace MyGridServices
{
 public class MyTransServiceFactory :
 PersistentGridServiceInstanceAspProxy
 {

 [WebMethod]
 public LocatorType createService(CreationType creation)
 {
 FaultType fault = null;
 object [] arguments = { creation, fault };
 LocatorType retval = (LocatorType) CallMethodOnPortType(
 "Ogsi.Core.FactoryPortType",
 "CreateService",
 arguments);

MS.NETGrid-OGSIUserManual-v1.1 19

 CheckFault(fault);
 return retval;
 }
 }
}

In this case, CallMethodOnPortType is used as the CreateService method is not defined
directly on MyTransServiceFactoryImpl, but on the FactoryPortType provider object
associated with MyTransServiceFactoryImpl using OgsiPortTypeAttribute. The
first argument to CallMethodOnPortType is the name of the object type and is used to
select the appropriate provider. The second argument is the name of the method to call and
the third argument is the parameters to pass to the method. Note that one of the parameters of
the implementation of CreateService on FactoryPortType is an
Ogsi.Core.Types.FaultType object. This is used to pass any fault information back
to the proxy client. The CheckFault() method is used to see if the fault is not null and
throws an exception in a standard manner if a fault has occurred. This is a standard paradigm
that you should use for operations that may return a fault.

6.5 Compile classes into an assembly

To compile all the classes into an assembly use the following command line (this should be
typed on a single line):

csc /t:library /out:MyTransServices.dll
 MyTransService.cs MyTransServiceFactory.cs
 MyTransServiceInitialiser.cs MyTransServiceFactoryImpl.cs
 MyTransServiceImpl.cs GreetingPortType.cs
 /r:<OgsiContainer>\bin\Ogsi.Container.dll
 /r:<installDir>/MS.NETGrid/Ogsi.Common/bin/Ogsi.Common.dll
 /r:System.Web.Services.dll

6.6 Write .asmx files for the transient service and factory service

To utilise ASP.NET to deploy our Grid service we must create a .asmx file for the transient
service and the factory service. As in the case of the persistent service this simply maps the
service name to the proxy class.

The .asmx file for the transient service is (save in file MyTransService.asmx):

<%@ WebService Class="MyGridServices.MyTransService"%>

The .asmx file for the factory service is (save in file MyTransServiceFactory.asmx):

<%@ WebService Class="MyGridServices.MyTransServiceFactory"%>

6.7 Configure the OGSI container

For each Grid service hosted by the OGSI container an entry must be added to the container's
Web.config file (this file is located at <OGSIContainer>\Web.config).

For the transient service the following entry must be added to the
<gridServiceDeployment> element of the Web.config file:

<gridServiceDeploymentDescriptor
asmxProxyFileName="MyTransService.asmx"
 serviceClass="MyGridServices.MyTransServiceImpl"

MS.NETGrid-OGSIUserManual-v1.1 20

 assembly="MyTransServices"
 persistence="transient"
 >
</gridServiceDeploymentDescriptor>

This contents of this element are similar to that shown in section 4.6 for the simple persistent
service. Notice the value of the “persistence” attribute is now “transient”.

For the factory service the following element must be added to the
<gridServiceDeployment> element of the Web.config file:

<gridServiceDeploymentDescriptor
asmxProxyFileName="MyTransServiceFactory.asmx"
serviceClass="MyGridServices.MyTransServiceFactoryImpl"
assembly="MyTransServices"
persistence="persistent"

 >
 <!-- The type of the service object to create -->
 <serviceParameter
 name="creationType"

 value="MyGridServices.MyTransServiceImpl”/>
 <!-- The type of the initialiser, with its assembly -->
 <serviceParameter
 name=”initialiserType”
 value=”MyGridServices.MyTransServiceInitialiser,
 MyTransServices”/>
</gridServiceDeploymentDescriptor>

The majority of this element is very similar to that for the transient service. The
<serviceParameter> elements are new. ServiceParameter elements provide a way of
passing services customisable information when they are created. This element specifies a
parameter that is passed to the service. In this case one parameter name is “creationType”.
The parameter value is the full name of the type created by this factory service. The second
serviceParameter, called initialiserType, has as its value the name of the initialiser
that the factory service uses to initialise services after they are created, along with its
assembly name.

The final piece of configuration that must be carried out is to set the domain name that is used
when creating transient services. This is simply the domain name of the machine running IIS.
Edit the following line in the Web.config file (found in the
configuration/gridContainer.config/containerProperties element) and set the
value field to the appropriate domain name (e.g. “www.epcc.ed.ac.uk”). This domain
information is used when generating URLs and handles for grid services.

 <add key="domain" value="localhost"/>

6.8 Install the services

To install the service:

o Copy the MyTransServices.dll assembly to <OGSIContainer>\bin.

o Copy the MyTransService.asmx file to
<OGSIContainer>\services\transient

MS.NETGrid-OGSIUserManual-v1.1 21

o Copy the MyTransServiceFactory.asmx file to
<OGSIContainer>\services\persistent.

o Restart IIS

MS.NETGrid-OGSIUserManual-v1.1 22

7 Writing a client of a transient service

Writing a client to talk to a transient Grid Service is virtually identical to writing a client to
talk to a Web Service. Firstly we must create a proxy classes for the services and then use
them in our own code.

To create proxy classes create a new directory and within that directory issue the following
command line commands (each should be entered on a single line):

WSDL /namespace:MyTransServiceNS
 http://localhost/Ogsi.Container/services/transient/MyTransService.asmx

WSDL /namespace:MyTransServiceFactoryNS
 http://localhost/Ogsi.Container/services/persistent/MyTransServiceFactory.asmx

This will create proxy classes called MyTransService.cs and
MyTransServiceFactory.cs each within their own namespace to avoid name clashes with
common types.

We can now write a client that uses the factory and the service instances it creates. The code
for the client is (save this in a file called MyTransClient.cs):

using System;
using System.Xml;

using MyTransServiceNS;
using MyTransServiceFactoryNS;

class MyTransClient
{

 static void Main()
 {
 // Create a factory service object
 MyTransServiceFactory factoryService =
 new MyTransServiceFactory();

 // Construct XML creation element this is used to create
 // the service instance
 XmlDocument doc = new XmlDocument();
 XmlElement xmlParams = doc.CreateElement("initialValue");
 XmlNode val = doc.CreateTextNode("Ciao");
 xmlParams.AppendChild(val);

 // Construct a creation object
 MyTransServiceFactoryNS.CreationType creation;
 creation = new CreationType();
 creation.terminationTimeSpecified = false;
 creation.serviceParameters = xmlParams;

 // Create a service using the factory
 MyTransServiceFactoryNS.LocatorType locator;
 locator = factoryService.createService(creation);

 Console.WriteLine("Have a service the locator is:\n"
 + locator.handle[0]);

MS.NETGrid-OGSIUserManual-v1.1 23

 // Create service object
 MyTransService service = new MyTransService();

 // Tell this service object the location of the service
 // instance
 service.Url = locator.handle[0];

 // Use the service object
 Console.WriteLine(service.hello("Mike"));
 Console.WriteLine(service.hello("Daragh"));
 Console.WriteLine(service.hello("Ally"));

 // Destroy the transient service when finished
 Service.destroy();
 }
}

There are several points to note about the code:

o We construct an XML element called xmlParams that contains the data required by
the factory creator class. The schema of this element is specific to this particular
factory, other factories can use different schema for their creation service parameters.

o The creation parameters XML element is bundled inside a CreationType object
that is passed as input to the factory’s createService() method.

o The Url property of all transient services proxies must be set before any methods of
the proxy are called. The Url property must be set to the handle returned by the
factory via the LocatorType object.

o The transient service can be destroyed when the client is finished with it by calling
the destroy() method.

Compile this file along with MyTransService.cs and MyTransServiceFactory.cs as
shown in the following command line:

csc /out:MyTransClient.exe MyTransClient.cs MyTransService.cs MyTransServiceFactory.cs

This will produce an executable called MyTransClient.exe that will use the factory to
create a new instance of the transient Grid service and then call that service’s hello()
method several times to producing the output shown below:

Have a service the locator is:
http://localhost/Ogsi.Container/services/transient/MyTransService.asmx?instanceId=instance-
141776660--214136689-104091352482151152689462196422965123173137
Ciao Mike 1
Ciao Daragh 2
Ciao Ally 3

MS.NETGrid-OGSIUserManual-v1.1 24

8 Service data

The concept of service data is an important part of OGSI. The GridServiceSkeleton base
class provides a collection for service data via the InstanceServiceData property.
Through this collection the service developer can manipulate the service data in many ways.
This section describes how the developer can manipulate the service data.

8.1 Default service data elements

All services will have several service data elements by default. These are defined by the
OGSI specification and are implemented in the GridServiceSkeleton base class. The
default service data elements are:

o interface

o factoryLocator

o gridServiceHandle

o gridServiceReference

o findServiceDataExtensibility

o setServiceDataExtensibility

o terminationTime

o serviceDataName

8.2 Service data set

The GridServiceSkeleton base class provides a protected member variable through
which service implementations can access the service data collection. This member variable
is called serviceDataSet_ and is of type ServiceDataSet. The service data set is a
container for service data elements. Each service data element is referenced by an XML
qualified name (consisting of a local name and a namespace). The ServiceDataSet class
provides methods to create new service data elements, add service data elements to the
collection, access service data elements from the collection as well as several others. See the
class documentation for full details of the class.

New service data elements can be added to the collection with code similar to the following:

// Construct a qualified name for the service data element
System.Xml.XmlQualifiedName sdeName =
 new System.Xml.XmlQualifiedName(“mySdeName”,
 “MySdeNamespace”);

// Create a new service data element
ServiceData sde;
sde = serviceDataSet_.Create(sdeName);

// . . . code to populate the ServiceData object goes here

MS.NETGrid-OGSIUserManual-v1.1 25

// Add service data element to the service data set
serviceDataSet_.Add(sde);

The indexer property of the ServiceDataSet can be used to access the ServiceData
objects by the service data element’s qualified name as show here:

// Construct the qualified name for the service data element
System.Xml.QualifiedName terminationTimeQName;
terminationTimeQName =
 new System.Xml.QualifiedName(“terminationTime”
 CoreConstants.OGSI_NAMESPACE_URI);

// Obtain the ServiceData object using the indexer
ServiceData sd = serviceDataSet_[terminationTimeQName];

// can now use sd to access and alter the termination time
// service data element

8.3 The ServiceData class

The ServiceData object is used to store the properties and values of the service data
elements. For full details of the ServiceData class see the class documentation – this
section provides an introduction to some of the mean features of the class.

8.3.1 Service data element properties

There are a number of standard OGSI properties that are associated with a service data
element. These are listed below along with their default values and corresponding property of
the ServiceData class.

OGSI property Default value ServiceData property

Minimum occurs 0 minOccurs

Maximum occurs 1 maxOccurs

Mutability static mutability

Modifiable false modifiable

Nillable false nillable

8.3.2 Service data values

Service data elements can have zero or more values. It is important to initialise a
ServiceData object with details of the values that can be stored within it. For example, the
following code configures a ServiceData object to store values of type MyClass:

// Assume there is a ServiceData object called sd

// Specify that the ServiceData objects will store values of
// type MyClass
sd.ValuesType = typeof(MyClass);

Values can be added to the ServiceData using the AddValue() method. For example:

MS.NETGrid-OGSIUserManual-v1.1 26

MyClass myObject = new MyClass();
sd.AddValue(myObject);

There are several other methods and properties defined on the ServiceData class to
manipulate the values of a service data element. See the class documentation for more
details.

8.3.3 Using a callback to determine service data values dynamically

In some instances it is preferably to calculate the service data values dynamically as and when
they are needed rather than storing a collection of values in the ServiceData object. This
can be easily done by providing a callback class that the ServiceData class will use to
determine the service data values whenever they are requested.

The callback class must implement the IServiceDataValuesCallback interface. This
interface specifies a single read-only property called ServiceDataValues that returns an
array of objects that are the service data values. For example:

class MyCallbackClass : IServiceDataValuesCallback
{
 public object[] ServiceDataValues
 {
 get
 {
 // code to create an object array of values goes here
 return result;
 }
 }
}

To specify that the callback mechanism should be used to determine the service data values
the Callback property of the ServiceData class must be set to the instance of the callback
class. For example:

MyCallbackClass callbackInstance = new MyCallbackClass();
sd.Callback = callbackInstance;

It is important to note that this mechanism for dynamic service data value creation can only
be used when the service data element is non-modifiable.

8.3.4 Lifetime attributes

Service data values can have lifetime attributes associated with them. To add a service data
value with specific lifetime values to a ServiceData object the overloaded AddValue()
method can be used. There is a version of the method that takes lifetime values as well as the
value object itself. For example:

// Create value object
MyClass myObject = new MyClass();

// Create lifetime objects
System.DateTime goodFrom = System.DateTime.Now;
System.DateTime goodUntil = Ogsi.Core.Util.GridDateTime.INFINITY;
System.DateTime availableUntil =
 Ogsi.Core.Util.GridDateTime.INFINITY;

MS.NETGrid-OGSIUserManual-v1.1 27

sd.AddValue(myObject,
 goodFrom,
 goodUntil,
 availableUntil);

If no lifetime values are specified the goodFrom attribute defaults to the current time and the
goodUntil and availableUntil attributes default to INFINITY.

It is possible to obtain the lifetime attributes associated with the values of a ServiceData
object using the GetLifetimes() method. This method returns an array of
ServiceDataAttributes objects each corresponding to a service data value. The
ServiceDataAttributes class has properties to get and set the lifetime attributes and also
get and set the value to which the lifetime attributes are associated.

See the class documentation for classes ServiceData and ServiceDataAttributes for
more details.

8.3.5 Service data evaluators

The grid service findServiceData and setServiceData operations are implemented
by the GridServiceSkelton base class. By default the findServiceData operation
supports the queryByServiceDataNames query expression and the setServiceData
operation supports the setByServiceDataNames and deleteByServiceDataNames query
expressions.

It is possible to add new query expressions to these operations. To add support for a new
query expression you must implement a new query evaluator to evaluate the query. Query
evaluators must implement the IExpressionEvaluator interface. The evaluator must then
be added to the query engine. The GridServiceSkeleton base class has a protected
member variable queryEngine_ of type Ogsi.ServiceData.Query.QueryEngine.
This class has a method RegisterEvaluator() that can be used to add a query evaluator to
the query engine. For examples of query evaluators see the implementations of
QueryByServiceDataNamesEvaluator and SetByServiceDataNamesEvaluator
both in the Ogsi.ServiceData.Query namespace.

MS.NETGrid-OGSIUserManual-v1.1 28

9 PortTypes

A large portion of [OGSI-Spec] addresses the issue of services providing multiple portTypes,
and allowing services to inherit from multiple portTypes. In our approach, the
WebMethodAttribute-marked methods in the proxy classes essentially represent the most-
derived portType for a service, and it is with this that the clients communicate. At present, it
is only possible to present this most-derived portType to the client. It is possible to alter the
properties and namespaces of the exposed operations by using the WebServiceAttribute,
SoapDocumentMethodAttribute and SoapRpcMethodAttribute classes, and others,
provided by the .NET framework. See the .NET user documentation for details.

We address the issue of portType re-use in the following manner. When developing a service
implementation, service methods may be placed on the class you derive from
GridServiceSkeleton, like so:

public class MyService : PersistentGridServiceSkeleton
{
 public string myMethod()
 {
 this.InstanceServiceDataSet[someQName] = 10;
 return "hello";
 }
}

With this method, access to the service's ServiceDataSet is via the
InstanceServiceData property inherited from GridServiceSkeleton. Adding
methods in this manner essentially means adding methods to a base service portType.

In other circumstances, it may be desirable to use functionality developed elsewhere to
provide operations, or to logically group related functionality into single portTypes, which
you then wish to aggregate on your service. We provide means of doing this using the
Ogsi.Core.OgsiPortTypeAttribute and Ogsi.Core.OperationProviderBase
classes and the Ogsi.Core.IOperationProvider interface.

9.1 OgsiPortTypeAttribute

We use as an example a class SomeUsefulClass, with a method SomeUsefulMethod. It is
desired to expose this method as an operation on your service. The simplest way to do this is
as follows:

[OgsiPortType(typeof(MyAssembly.SomeUsefulClass),
 "http://mydomain.com/myNameSpace",
 "UsefulPortType");
public class MyService : PersistentGridServiceSkeleton
{
}

The first parameter in the attribute is the type of your provider class. The second parameter is
the URI of the namespace for this new portType. The third parameter is the name of the
portType. The latter two parameters do not have an effect at the moment but are included for
possible future work.

When the MyService class is instantiated by the container, instances of every class defined
by its OgsiPortTypeAttributes are created and associated with the service instance.

MS.NETGrid-OGSIUserManual-v1.1 29

When developing proxy methods for provider-based methods, the CallMethodOnPortType
method of GridServiceInstanceAspProxy is used:

[WebMethod]
public int SomeOtherUsefulMethod()
{
 return CallMethodOnPortType(
 "MyAssembly.SomeUsefulClass",
 "SomeUsefulMethod",
 (object[]) null
);
}

The provider classes can be given access to the ServiceDataSet of the service in the
following manner. If the provider classes are found to implement IPortTypeProvider, the
ServiceInstance property defined by this interface is initialised with a reference to the
instance of MyService that it is associated during initialisation.

We provide a basic implementation of IPortTypeProvider called
Ogsi.Core.PortTypeBase for convenience.

The provider class may now access the service's ServiceDataSet by obtaining a reference
from the reference it maintains to the service class:

public class SomeOtherUsefulClass : OperationProviderBase
{
 public int SomeOtherUsefulMethod()
 {
 int i;
 // process
 ...
 this.ServiceInstance.InstanceServiceData[someQName] = i;
 return i;
 }
}

MS.NETGrid-OGSIUserManual-v1.1 30

10 Example services

As an example of using portTypes, serviceData and persistent and transient services, we
provide a pair of demonstration services. These are located in the
<install_dir>/MS.NETGrid/DemoServices directory.

10.1 Basic Grid Service

The basicService subdirectory contains a persistent Grid Service that implements the
GridService portType, a transient version of this service and a factory for creating instances
of the transient service.The code for the service implementation classes, the proxy classes and
the .asmx file are all found in this directory. These services do not expose any additional
functionality, but do demonstrate the programming model that this document describes.

10.2 Counter Service

The counter subdirectory contains a more interesting example. The transient service, located
in CounterServiceSimple.cs, exposes all the functionality of the GridService portType,
inherited from GridServiceSkeleton. In addition, Increment and Decrement methods are
provided. A serviceData element called count is defined with its own namespace. The
Increment and Decrement methods are used to alter the value of this serviceData element.
In addition, the value of count may be set using the setServiceData operation provided by
the GridService portType.

The deployment for the transient counter service and the persistent counter factory service
may be examined in <install_dir>/MS.NETGrid/Ogsi.Container/Web.config.

The counter factory demonstrates the use of previously existing portTypes via the
OgsiPortTypeAttribute attribute. It also demonstrates the use of state in Grid services
via serviceData. The CounterFactoryCreator class demonstrates the use of the
IFactoryProvider interface. The CreateServiceObject() method takes an XML
element with that specifies the initial value of the counter.

10.3 OGSA-DAI Demonstrator Service

For more information about the architecture of OGSA-DAI, please see
http://www.ogsadai.org.uk. OGSA-DAI is an attempt to establish standard mechanisms for
accessing and manipulating data, both structured and unstructured, using Grid services.

This section contains instructions on how to install the OGSA-DAI Grid Data Service within
the MS.NETGrid OGSI container. At the time of release, the service is designed to work with,
and has been tested using, a standard installation of SQL server.

The relevant source and binary modules are found in
<installDir>\MS.NETGrid\DemoServices\OgsaDaiDemo. There should be four
directories in this directory, namely:

Client
Service
Utils
Docs

http://www.ogsadai.org.uk/

MS.NETGrid-OGSIUserManual-v1.1 31

The code for the Grid Data Service is contained in the Service directory.

To install the Service, carry out the following steps:

1. Copy the file OgsaDaiDemo\Service\bin\GsdDemoService.dll to the
directory <OGSIContainer>\bin.

2. The service uses a utility library that is located at
OgsaDaiDemo\Utils\bin\GdsUtils.dll. Copy this file to
<OGSIContainer>\bin, i.e. the same directory as above.

3. Copy the file OgsaDaiDemo\Service\GridDataService.asmx to the folder
<OGSIContainer>\services\persistent.

4. Copy the contents of
OgsaDaiDemo\Service\applicationFiles\GridDataService to
<OGSIContainer>\applicationFiles\GridDataService. You will need to
create the GridDataService directory in applicationFiles.

5. Add a child element to the configuration\gridContainer.config\gridServiceDeployment
element. The element should be called gridServiceDeploymentDescriptor and should look
like the following:

<gridServiceDeploymentDescriptor
 asmxProxyFileName="GridDataService.asmx"
 serviceClass="Ogsi.Gds.Service.GridDataServiceImpl"
 assembly="GdsDemoService"
 persistence="persistent"
>
 <serviceParameter
 name="connectionString"
 value="data source=MACHINE_NAME;initial
catalog=pubs;persist security info=False;user
id=ogsadai;pwd=ogsadai;workstation id=MACHINE_NAME;packet
size=4096" />
 <serviceParameter
 name="performDocumentSchemaLocation"

value="file://C:\MSNETGRID_INSTALL_DIR\MS.NETGrid\Ogsi.Contain
er\applicationFiles\GridDataService\perform_document.xsd" />
 <serviceParameter
 name="sqlQueryStatementActivitySchemaLocation"

value="http://localhost/ogsa/applicationFiles/GridDataService/
sql_query_statement.xsd" />

</gridServiceDeploymentDescriptor>

The connection string should be set appropriately to point to the relevant database server and
database. The service should now be deployed and running in the container. You can check
that this is so by running the client, found in the bin directory of the Client directory.

MS.NETGrid-OGSIUserManual-v1.1 32

Try running arbitrary SQL queries. The results should be displayed in a datagrid on the main
form of the client. The correctly functioning Grid Data service should look like the following.
If an exception occurs, it is most likely to do with incorrect configuration information.

MS.NETGrid-OGSIUserManual-v1.1 33

Glossary

For convenience of reference we include the following glossary.

.NET – The Microsoft .NET platform, including the .NET SDK (Software Development Kit),
associated development tools such as Visual Studio .NET [http://www.microsoft.com/net]
and the Common Language Runtime.

Common Language Runtime – a runtime environment that executes Microsoft Intermediate
Language (MSIL).

MSIL – The .NET bytecode, a low-level assembler-like language executed by the Common
Language Runtime.

Managed code – Code that runs on the .NET CLR.

IIS – Microsoft Internet Information Server, a web server offering communication over a
variety of internet protocols.

ISAPI – An Application Programming Interface (API) that allows applications to use the
network services provided by IIS. Commonly used to provide HTTP filters that respond to all
HTTP requests on the server.

AppDomain – .NET allows the partitioning of a single Operating System process into a
number of AppDomains, which are essentially memory safe areas within the process. If the
code in an AppDomain crashes, other AppDomains within the process are unaffected. This
concept has some performance advantages as using AppDomains avoids the overheads
associated with starting a new process.

.NET Remoting – The mechanism by which .NET allows Remote Procedure Call (RPC)
between AppDomains and between remote machines.

ASP – Active Server Pages, a Microsoft technology that works in conjunction with IIS to host
Web Applications.

ASP.NET – The .NET version of ASP, with extensions for Web Services and Enterprise
Applications.

C# - Pronounced C-Sharp, a new Microsoft programming language that takes advantage of
.NET platform features.

Assembly – A collection of managed code, which may form an executable or a library, and
may be distributed across a number of physical files. Assemblies facilitate the separation of
logical and physical resources.

OGSA – The Open Grid Services Architecture, which is a set of proposed architectures and
protocols for Grid computing [Anatomy].

OGSI – The Open Grid Services Infrastructure, a specification of behaviours and properties of
Grid Services [Physiology, OGSI-Spec].

OGSA-DAI – OGSA Data Access and Integration, Grid Services framework for seamless
access and integration of data using the OGSA paradigm [OGSA-DAI].

MS.NETGrid-OGSIUserManual-v1.1 34

Globus – The Globus toolkit. A standard toolkit of Grid software. Version 3 will contain an
implementation of OGSI in Java [http://www.globus.org].

WSDL – The Web Services Description Language [http://www.w3.org/TR/wsdl].

Web Services – Refers to network-enabled software capabilities accessed using common
Internet protocols such as HTTP and SOAP and described using WSDL.

Grid Services – Web Services conforming to the OGSI specification.

Grid Service Instance – A network accessible instance of an OGSI-compliant service.

PortType – A set of operations supported by a Web or Grid Service.

ServiceData – An XML-based mechanism that allows a client to query the state of a service
instance in a flexible and extensible manner.

ServiceDataElement – A particular element of serviceData, identified by a name and a value

Tomcat – A container for Java-based Web Applications [http://jakarta.apache.org].

AXIS – A Web Application running under Tomcat, which provides Web Services
functionality. [http://xml.apache.org].

Programming Model – A set of procedures and APIs used to develop an application in a
given domain

MS.NETGrid-OGSIUserManual-v1.1 35

References

Documents referenced in the text, and other related documents, include the following.

[MS.NETGridOgsiDesignOverview] MS.NETGrid OGSI Implementation Design Overview
(MS.NETGridOgsiDesignOverview-v1.0), D.Byrne, EPCC, June 16th 2003.

[MS.NETGrid-Proj-Def] Project Definition for a Collaboration Between Microsoft and EPCC
(MS.NetGrid-ProjDef-V2.0), M. Jackson, EPCC, April 25th 2003.

[OGSI-Spec] Open Grid Services Infrastructure (Draft 29), S. Tuecke, K. Czajkowski, I.
Foster, J. Frey, S. Graham, C. Kesselman, T. Maquire, T. Sandholm, D. Snelling, P.
Vanderbilt, April 5thth 2003. http://www.gridforum.org/ogsi-wg.

[Virginia-Impl] – OGSI.NET: An OGSI-compliant Hosting Container for the .NET
Framework, Grid Computing Group, University of Virginia. WWW site:
http://www.cs.virginia.edu/~humphrey/GCG/ogsi.net.html.

[GTk3] – Globus Toolkit version 3 and OGSI, Available at http://www.globus.org/ogsa

[Physiology] – The Physiology of the Grid (Draft 2.9), I. Foster, C. Kesselman, J.Nick, S.
Tuecke, Available at http://www.gridforum.org.org/ogsa-wg

[Anatomy] – The Anatomy of the Grid, I. Foster, C. Kesselman, S. Tuecke, Available at
http://www.gridforum.org/ogsa-wg

[OGSA-DAI] – Open Grid Service Architecture, Database Access and Integration
http://www.ogsadai.org.uk

[WSDL-Spec] Web Services Description Language 1.1, http://www.w3.org/TR/2001/NOTE-
wsdl-20010315

[AXIS] – The Apache Axis SOAP Engine, http://ws.apache.org/axis/

http://www.globus.org/
http://www.globus.org/
http://www.globus.org/
http://www.ogsa-dai.org.uk/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

	Introduction
	Product Licence
	Project WWW Site
	Support and Queries

	Installation
	Configuration
	Running a Demonstration Client

	Class documentation
	Writing a simple persistent service
	Write the service skeleton
	Write the portType class(es)
	Write the proxy class
	Compile the service classes and proxy class into an assembly
	Write a .asmx file for the service
	Configure the OGSI container
	Installing the service

	Writing a client of a persistent service
	Writing a transient service and a persistent factory service
	Write the transient service class
	Write the persistent factory service class
	Write factory initialiser class
	Write proxy classes
	Compile classes into an assembly
	Write .asmx files for the transient service and factory service
	Configure the OGSI container
	Install the services

	Writing a client of a transient service
	Service data
	Default service data elements
	Service data set
	The ServiceData class
	Service data element properties
	Service data values
	Using a callback to determine service data values dynamically
	Lifetime attributes
	Service data evaluators

	PortTypes
	OgsiPortTypeAttribute

	Example services
	Basic Grid Service
	Counter Service
	OGSA-DAI Demonstrator Service

	References

