
Embedded Systems Design,
Analysis and Optimization using the
Renesas RL78 Microcontroller
BY ALEXANDER G. DEAN

Micri�m Press
1290 Weston Road, Suite 306
Weston, FL 33326
USA

www.micrium.com

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where
Micri�m Press is aware of a trademark claim, the product name appears in initial capital letters, in all capital letters, or
in accordance with the vendor’s capitalization preference. Readers should contact the appropriate companies for more
complete information on trademarks and trademark registrations. All trademarks and registered trademarks in this book
are the property of their respective holders.

Copyright © 2013 by Alexander G. Dean except where noted otherwise. Published by Micri�m Press. All rights re-
served. Printed in the United States of America. No part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher; with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

The programs and code examples in this book are presented for instructional value. The programs and examples have
been carefully tested, but are not guaranteed to any particular purpose. The publisher and content contributors do not
offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any information herein and
is not responsible for any errors or omissions. The publisher and content contributors assume no liability for damages
resulting from the use of the information in this book or for any infringement of the intellectual property rights of
third parties that would result from the use of this information.

Library of Congress subject headings:

1. Embedded computer systems
2. Real-time data processing
3. Computer software—Development

For bulk orders, please contact Micrium Press at: �1 954 217 2036

ISBN: 978-1-935772-96-5

Please report errors or forward any comments and suggestions to agdean@ncsu.edu

iii

When Renesas asked me to write another book on embedded system design using the
RL78 microcontroller family, I was excited to be able to pick up where our first text left
off. Embedded systems draw upon many fields, resulting in many opportunities for creative
and synergistic optimizations. This book provides methods to create embedded systems
which deliver the required performance (throughput and responsiveness) within the avail-
able resources (memory, power and energy). This book can be used on its own for a senior
or graduate-level course on designing, analyzing and optimizing embedded systems.

I would like to thank the team that made this book possible: June Hay-Harris, Rob
Dautel, and Todd DeBoer of Renesas, and the compositor Linda Foegen. Many thanks go
to the reviewers because their comments made this book better, especially John Donovan,
Calvin Grier, Mitch Ferguson, and Jean Labrosse.

I would like to thank Bill Trosky and Phil Koopman for opening the doors into so
many embedded systems through in-depth design reviews. I also thank the many embed-
ded systems engineers on those projects for helping me understand their goals and con-
straints as we discussed risks and possible solutions.

I also thank my research students and the students in my NCSU embedded systems
courses for bringing their imagination, excitement, and persistence to their projects. I
would like to thank Dr. Jim Conrad and his students for their collaboration in developing
our previous textbooks; these served as a launch pad for this text.

Finally, I would also like to thank my wife Sonya for sharing her passion of seeking
out and seizing opportunities, and our daughters Katherine and Jacqueline for making me
smile every day. Finally, I would like to thank my parents for planting the seeds of curios-
ity in my mind.

Alexander G. Dean
September 2013

Preface

v

For more than a decade the microcontroller world has been dominated by the quest for
ultra-low power, high performance devices—two goals that are typically mutually exclu-
sive. The Renesas RL78 MCU quickly achieved market leadership by achieving both of
these goals with a highly innovative architecture. The RL78 family enables embedded de-
signs that previously would have required some uncomfortable tradeoffs.

However there are no simple solutions to complex problems, and mastering all of the
RL78’s advanced features is not a task to be undertaken lightly. Fortunately in this book
Dr. Dean has crafted a guidebook for embedded developers that moves smoothly from con-
cepts to coding in a manner that is neither too high level to be useful nor too detailed to be
clear. It explains advanced software engineering techniques and shows how to implement
them in RL78-based applications, moving from a clear explanation of problems to tech-
niques for solving them to line-by-line explanations of example code.

Modern embedded applications increasingly require hardware/software co-design,
though few engineers are equally conversant with both of these disciplines. In this book
the author takes a holistic approach to design, both explaining and demonstrating just
how software needs to interact with RL78 hardware. Striking a balance between breadth
and depth it should prove equally useful and illuminating for both hardware and software
engineers.

Whether you are a university student honing your design skills, a design engineer look-
ing for leading edge approaches to time-critical processes, or a manager attempting to fur-
ther your risk management techniques, you will findAlex’s approach to embedded systems
to be stimulating and compelling.

Peter Carbone
Renesas
September 19, 2013

Foreword

vii

Preface iii

Foreword v

CHAPTER ONE

Introduction 1

1.1 Introduction 1

1.2 Dominant Characteristics for Embedded System Market Segments 1

1.3 Looking Inside the Boxes 3

1.4 Abstraction vs. Optimization 3

1.5 Optimizing a System Built on Abstractions 4

1.6 Organization 4

1.7 Bibliography 5

CHAPTER TWO

Designing Multithreaded Systems 7

2.1 Learning Objectives 7

2.2 Motivation 7

2.3 Scheduling Fundamentals 9

2.3.1 Task Ordering 10

2.3.2 Task Preemption 11

2.3.3 Fairness and Prioritization 12

2.3.4 Response Time 12

2.3.5 Stack Memory Requirements 14

2.3.6 Interrupts 15

2.4 Task Management 15

2.4.1 Task States 15

2.4.2 Transitions between States 17

Contents

viii CONTENTS

2.4.3 Context Switching for Preemptive Systems 18

2.4.4 Implications 18

2.5 Non-Preemptive Dynamic Scheduler 20

2.5.1 Task Table 22

2.5.2 Managing Tasks 23

2.5.3 Tick Timer Configuration and ISR 24

2.5.4 Scheduler 25

2.6 Building a Multithreaded Application Using a Scheduler 25

2.6.1 Basic Task Concepts and Creation 26

2.6.1.1 Non-Preemptive 27

2.6.1.2 Preemptive 28

2.6.2 Handling Long Tasks 31

2.6.2.1 Non-Preemptive 31

2.6.2.2 Preemptive 32

2.6.3 Synchronizing with Other Tasks and ISRs 32

2.6.3.1 Non-Preemptive 32

2.6.3.2 Preemptive 33

2.6.4 Passing Messages among Tasks 35

2.6.4.1 Non-Preemptive 35

2.6.4.2 Preemptive 36

2.6.5 Sharing Objects among Tasks 37

2.6.5.1 Shared Objects 38

2.6.5.2 Function Reentrancy 39

2.6.5.3 High-Level Languages and Atomicity 40

2.6.5.4 Shared Object Solutions and Protection 42

2.7 Recap 46

2.8 Bibliography 47

CHAPTER THREE

Real-Time Methods 49

3.1 Learning Objectives 49

CONTENTS ix

3.2 Foundations for Response Time and Schedulability Analysis 49

3.2.1 Assumptions and Task Model 50

3.2.2 Dividing the Design Space Based on the Workload and Scheduler 51

3.3 Task Priority Assignment for Preemptive Systems 51

3.3.1 Fixed Priority 52

3.3.1.1 Rate Monotonic Priority Assignment—RMPA 52

3.3.1.2 Rate Monotonic Priority Assignment with Harmonic Periods 52

3.3.1.3 Deadline Monotonic Priority Assignment—DMPA 52

3.3.2 Dynamic Priority 52

3.3.2.1 Earliest Deadline First 52

3.4 Schedulability Tests for Preemptive Systems 53

3.4.1 Fixed Priority 53

3.4.1.1 Rate Monotonic Priority Assignment—RMPA 53

3.4.1.2 Rate Monotonic Priority Assignment with Harmonic Periods 54

3.4.1.3 Deadline Monotonic Priority Assignment—DMPA 54

3.4.2 Dynamic Priority 55

3.5 Response Time Analysis for Preemptive Systems 55

3.5.1 Fixed Priority 55

3.5.2 Dynamic Priority 56

3.6 Non-Preemptive Scheduling Approaches 57

3.6.1 Optimal Priority Assignment 57

3.6.2 Schedulability Tests 58

3.6.3 Determining Worst-Case Response Time 58

3.7 Loosening the Restrictions 58

3.7.1 Supporting Task Interactions 58

3.7.2 Supporting Aperiodic Tasks 59

3.7.3 Supporting Task Interactions 59

3.7.4 Supporting Aperiodic Tasks 60

3.7.5 Supporting Shared Buses 60

3.8 Worst-Case Execution Time 60

3.8.1 Sources of Execution Time Variability 61

3.8.2 RL78 Pipeline 61

3.8.3 Determining a Worst-Case Execution Time Bound 63

x CONTENTS

3.9 Evaluating and Optimizing Response Latencies 63

3.9.1 Methods for Measurement 64

3.9.2 Interrupt Service Routine 64

3.9.2.1 RL78 Interrupts 64

3.9.3 Real-Time Kernel 66

3.9.4 Application 68

3.9.4.1 Disabled Interrupts 68

3.9.4.2 Priority Inversion from Shared Resources 68

3.9.4.3 Deadlines and Priorities 68

3.10 Recap 69

3.11 Bibliography 69

CHAPTER FOUR

Profiling and Understanding Object Code 71

4.1 Learning Objectives 71

4.2 Basic Concepts 71

4.2.1 Correctness before Performance 72

4.2.2 Reminder: Compilation is Not a One-to-One Translation 72

4.3 Profiling—What is Slow? 73

4.3.1 Mechanisms 73

4.3.2 An Example PC-Sampling Profiler for the RL78 74

4.3.2.1 Sampling the PC 74

4.3.2.2 Finding the Corresponding Code Region 76

4.3.2.3 Modifications to the Build Process 78

4.3.2.4 Running the Program 79

4.3.2.5 Examining the Resulting Profile 79

4.4 Examining Object Code without Getting Lost 81

4.4.1 Support for Mixed-Mode Viewing and Debugging 82

4.4.2 Understanding Function Calling Relationships 82

4.4.2.1 Examining Object Code 82

4.4.2.2 Call Graphs 84

CONTENTS xi

4.4.2.3 Call Graph Analysis 85

4.4.2.4 Forward Reference: Stack Space Requirements 85

4.4.3 Understanding Function Basics 87

4.4.4 Understanding Control Flow in Assembly Language 88

4.4.4.1 Control Flow Graph 88

4.4.4.2 Control Flow Graph Analysis 89

4.4.4.3 Oddities 91

4.5 Recap 91

4.6 Bibliography 92

CHAPTER FIVE

Using the Compiler Effectively 93

5.1 Learning Objectives 93

5.2 Basic Concepts 93

5.2.1 Your Mileage Will Vary 94

5.2.2 An Example Program to Optimize 95

5.3 Toolchain Configuration 97

5.3.1 Enable Optimizations 97

5.3.2 Use the Right Memory Model 98

5.3.3 Floating Point Math Precision 98

5.3.4 Data Issues 99

5.3.4.1 Data Size 99

5.3.4.2 Signed vs. Unsigned Data 99

5.3.4.3 Data Alignment 99

5.4 Help the Compiler do a Good Job 99

5.4.1 What Should the Compiler be Able to Do on Its Own? 99

5.4.2 What Could Stop the Compiler? 100

5.4.2.1 Excessive Variable Scope 100

5.4.2.2 Automatic Type Promotion 100

5.4.2.3 Operator Precedence and Order of Evaluation 102

xii CONTENTS

5.5 Precomputation of Run-Time Invariant Data 103

5.5.1 Compile-Time Expression Evaluation 103

5.5.2 Precalculation before Compilation 104

5.6 Reuse of Data Computed at Run-Time 106

5.6.1 Starting Code 106

5.6.2 First Source Code Modification 107

5.6.3 Second Source Code Modification 108

5.6.4 Third Source Code Modification 108

5.6.5 Fourth Source Code Modification 109

5.7 Recap 110

5.8 Bibliography 110

CHAPTER SIX

High-Level Optimizations 111

6.1 Learning Objectives 111

6.2 Basic Concepts 111

6.3 Algorithms 112

6.3.1 Less Computation: Lazy Execution and Early Exits 112

6.3.1.1 Optimization 1 113

6.3.1.2 Optimization 2 114

6.3.2 Faster Searches 116

6.3.2.1 Data Structure Review 116

6.3.2.2 Profiler Address Search 116

6.3.2.3 Sort Data by Frequency of Use 117

6.3.2.4 Binary Search 118

6.4 Faster Math Representations 118

6.4.1 Native Device Integer Math 118

6.4.2 Fixed Point Math 119

6.4.2.1 Representation 120

6.4.2.2 Unsigned and Signed Values 121

6.4.2.3 Notations 122

CONTENTS xiii

6.4.2.4 Support Operations 122

6.4.2.5 Mathematical Operations 123

6.4.2.6 C, Assembly, or Both? 124

6.4.3 RL78 Support for Fixed Point Math 125

6.4.3.1 Basic Instructions 125

6.4.3.2 Extended Multiply and Divide Instructions 126

6.4.3.3 Multiply/Divide/Accumulate Unit 126

6.4.4 Reduced Precision Floating Point Math 128

6.5 Faster Math using Approximations 129

6.5.1 Polynomial Approximations 129

6.5.2 Optimizing the Evaluation of Polynomials 130

6.5.3 Determining Coefficients 130

6.5.4 Accuracy 131

6.5.5 Approximating Periodic and Symmetric Functions 133

6.5.6 Speed Evaluation 133

6.6 Recap 134

6.7 References 134

CHAPTER SEVEN

Power and Energy Analysis 135

7.1 Learning Objectives 135

7.2 Basic Concepts 135

7.2.1 Power and Energy 135

7.2.2 Digital Circuit Power Consumption 136

7.2.3 Basic Optimization Methods 137

7.3 Measuring Power 138

7.3.1 MCU Power 138

7.3.2 RDK Power 140

7.4 Measuring Energy 141

7.4.1 Using Ultracapacitors 142

7.4.2 MCU Energy 143

7.4.2.1 Input Voltage Protection 143

xiv CONTENTS

7.4.3 RDK Energy 144

7.5 Power Supply Considerations 144

7.5.1 Voltage Converters 144

7.5.1.1 Linear 144

7.5.1.2 Switch-Mode 145

7.5.1.3 Trade-Offs 146

7.5.2 Power Gating Devices 146

7.5.2.1 Diodes 146

7.5.2.2 Transistors 146

7.6 RDK Power System Architecture 146

7.7 RL78 Voltage and Frequency Requirements/Power and Energy Characteristics 148

7.8 RL78 Clock Control 150

7.8.1 Clock Sources 150

7.8.2 Clock Source Configuration 150

7.8.3 Oscillation Stabilization 151

7.8.4 High-Speed On-Chip Oscillator Frequency Selection 152

7.9 RL78 Standby Modes 153

7.9.1 Halt 154

7.9.2 Stop 156

7.9.3 Snooze 156

7.10 Recap 157

7.11 References 157

CHAPTER EIGHT

Power and Energy Optimization 159

8.1 Learning Objectives 159

8.2 Modeling System Power 159

8.2.1 Basic Power Models 159

8.2.1.1 Modeling Passive Components 159

8.2.1.2 Modeling Semiconductors 160

8.2.1.3 Modeling Digital Circuits 162

CONTENTS xv

8.2.2 Modeling the Power System 163

8.2.3 Example: RDK Power System 163

8.2.4 Example: RDK Power Model 164

8.2.5 Modeling System Energy 166

8.3 Reducing Power and Energy for Peripherals 166

8.4 Reducing Power and Energy for the MCU 167

8.4.1 Optimization Approaches 167

8.4.2 Voltage Scaling 168

8.4.3 MCU Clock Frequency Scaling 168

8.4.3.1 Power Analysis 169

8.4.3.2 Energy Analysis 170

8.4.3.3 Selecting the Operating Frequency 171

8.4.4 MCU Voltage and Clock Frequency Scaling 171

8.4.4.1 Power Analysis 171

8.4.4.2 Energy Analysis 173

8.4.4.3 Selecting the Operating Point 174

8.4.5 MCU Standby Mode 174

8.5 Recap 174

8.6 References 175

CHAPTER NINE

Memory Size Optimization 177

9.1 Learning Objectives 177

9.2 Determining Memory Requirements 177

9.2.1 Why? Cost 177

9.2.2 A Program’s Memory Use 177

9.2.3 Linker Map File 178

9.2.3.1 Memory Summary 179

9.2.3.2 Module Summary 180

9.2.3.3 Analyzing the Map File 180

xvi CONTENTS

9.3 Optimizing Data Memory 181

9.3.1 Using Toolchain Support 181

9.3.2 Leveraging Read-Only Data 182

9.3.3 Improving Stack Memory Size Estimation 182

9.3.3.1 Analytical Stack Size Bounding 182

9.3.3.2 Experimental Measurement 184

9.3.4 Reducing the Size of Activation Records 185

9.3.5 Use Stack-Friendly Functions 189

9.4 Reducing Code Memory 189

9.4.1 Language Support 189

9.4.2 Compiler and Toolchain Configuration 189

9.4.3 Removing Similar or Identical Code 190

9.4.3.1 Cut-and-Paste Source Code 190

9.4.3.2 Improving the Source Code with an Array 191

9.4.3.3 Tables of Function Pointers 192

9.5 Optimization for Multitasking Systems 192

9.5.1 Use a Non-Preemptive Scheduler 192

9.5.2 Improve the Accuracy of Stack Depth Estimates 193

9.5.3 Combining Tasks to Reduce Stack Count 193

9.6 Recap 193

9.7 References 193

Index 195

1

1.1 INTRODUCTION

The goal of this book is to show how to design, analyze, and optimize embedded comput-
ing systems built on Renesas RL78 family microcontrollers (MCUs). In a perfect world,
we would just go ahead and design the perfect (optimal) system from the start. Reality pre-
vents this perfection—the complexities of the technology, design process, requirements
evolution, and human nature keep us from this goal. Instead, we approximate. We choose a
starting point based on our judgment, which comes from experience (which in turn often
comes from bad judgment). Based on the predicted, prototyped, or measured performance
of that initial design we make changes, measure their impact, and decide whether to keep
or discard them. Analysis is a necessary step between design and optimization. By repeat-
ing this process we make progress towards a system which meets the design goals.

1.2 DOMINANT CHARACTERISTICS FOR EMBEDDED
SYSTEM MARKET SEGMENTS

Economic factors have a major impact on which technology is used (and how) in embed-
ded computing systems. This was explained quite nicely by Nick Tredennick, a veteran
processor designer (Tredennick, 2000). Briefly, the embedded systems market can be di-
vided into four segments (cost, power, delay and volume, shown in Figure 1.1) based on
the dominant characteristic of that market segment. In the first three segments (low cost,
low power and low delay), that characteristic is a constraint or requirement which domi-
nates the design effort. In the last segment (low volume), the characteristic is not a con-
straint, but instead an indication that the designers have much more flexibility to meet their
design goals. Tredennick emphasizes the distinguishing segment characteristic by describ-
ing the ideal value—e.g zero-cost vs. low-cost.

� The zero-cost segment is by far the largest segment. These are consumer products
with modest computational requirements but which are sold in markets with very

Chapter 1

Introduction

2 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

strong price competition. High volumes combined with price pressures lead devel-
opers to invest extensively in up-front design to reduce per-unit costs. The high
sales volume allows for higher development costs, as these will be divided across
all the units sold.

� The zero-power segment is much smaller. It includes portable devices which must
store or harvest energy to run the system. The devices in this segment still have
price pressures, given the nature of markets.

� The zero-delay segment is smaller yet. Devices in this category have significant
computational requirements in order to provide fast processing throughput. The
devices in this segment still have price pressures.

� The zero-volume segment is still smaller. In this category, it is quite practical to
purchase pre-developed modules in order to simplify development effort because
end unit cost is irrelevant. This segment is outside the scope of this text.

Over time the challenges facing embedded system developers are growing. Rising con-
sumer expectations for performance (speed, responsiveness, etc.) are making the zero-
delay/zero-cost overlap grow. This raises computational requirements; either the existing
code must be made faster, or faster hardware must be used. Similarly, growing expectations
for longer battery life are making the zero-power/zero-cost overlap grow. Tredennick calls
the overlap of these first three segments the leading-edge wedge and describes its contents
as “cheap, highly capable devices that give us instant answers and that work on weak am-
bient light.”

Ideally Zero-Cost
Ideally Zero-Power
Ideally Zero-Delay
Zero-Volume

The Leading-
Edge Wedge

Figure 1.1 Tredennick’s Classification of Embedded Systems.

CHAPTER 1 / INTRODUCTION 3

1.3 LOOKING INSIDE THE BOXES

Creating systems in these overlaps is much easier if we understand how the internal system
operates. What determines an embedded system’s delay, cost or power? Taking a look at
the factors contributing to these top-level metrics gives some insight into how the system
design affects each.

For example, a system’s delay consists of several parts, determined by both the speed
of the code as well as the task scheduling mechanism used. How long does the code take
on the critical path from input to output? When does the scheduler start running that code,
given that the processor has other ongoing processing responsibilities? Can the critical
path code be preempted by other code while executing?

Similarly, cost consists of both non-recurring costs (e.g., development) and per-unit
production costs. For many embedded systems, the MCU cost is a large factor, while in
others it is dwarfed by other costs (e.g., power electronics). MCU costs are very sensitive
to internal SRAM size and flash ROM program size. Reducing the requirements for these
memories can reduce costs. Choosing an appropriate task scheduling mechanism can re-
duce costs significantly. Creating a working system quickly reduces development costs.
Using existing code libraries and/or a real-time operating system (RTOS) can simplify
code development significantly, albeit at the price of less control due to greater abstraction.
Similarly, the optimization process followed can affect development costs and progress.

A system’s power and energy use result from a variety of interrelated factors, often
leading to a “non-obvious” solution. Relative differences between MCU static and dy-
namic power characteristics, availability and relative benefits of power saving modes, and
peripheral power consumption characteristics all play a role.

1.4 ABSTRACTION VS. OPTIMIZATION

Optimization can be challenging because we develop systems using abstractions. When we
write a program in source code to perform operation X and compile it for a given micro-
processor and its instruction set architecture, we use the compiler to convert the source code
into object code for our abstracted box B.

We can determine that B requires a certain amount of power, time, and memory to per-
form that function. However, without inspection, we do not know how good that solution
is. Could we reduce the time used? How difficult would it be? How would that affect the
power and memory requirements?

A fundamental constraint of using abstractions is that we don’t know how “full” each
box is. If it isn’t full, we could use a somewhat smaller box, or perhaps build a better solution
which still fits in the box. We need to look inside the box to understand it, and for embedded
systems this requires expertise in a variety of fields spanning both software and hardware.

4 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

1.5 OPTIMIZING A SYSTEM BUILT ON ABSTRACTIONS

A further complicating factor is that in order to build systems of manageable complexity in
a reasonable amount of time, we must build systems out of many such boxes without un-
derstanding everything in each one. In fact, some boxes may contain other boxes. How do
we improve overall performance or resource requirements for a system with so much
hidden complexity?

Where do we start? Ideally we would know some critical facts about each box.

� How much of a problem is this particular box? That is, how much does its perfor-
mance affect the overall system’s performance?

� How good is the solution which is currently in the box?
� Is there a relatively easy way to significantly improve what’s in the box?

The first question can be answered through preliminary modeling (if the system is simple
enough) or profiling an actual system (if the system is complex, or development has pro-
ceeded enough). The second and third questions are more challenging and require both
breadth and depth of understanding. In order to evaluate a software module, we would
need to understand not only the specific solution (e.g., the quality of the algorithm used,
the source code implementation, the library code, the resulting machine code) but also
what alternatives are available and viable. One of the goals of this text is to provide the
reader with the skills needed to address these questions in the domains of code speed, re-
sponsiveness, power and energy use, and memory requirements.

1.6 ORGANIZATION

This text is organized as follows. Each group of chapters covers design concepts, analyti-
cal methods such as modeling and profiling, and techniques for optimization.

� Chapters 2 and 3 show how to create responsive systems which share a processor’s
time among multiple software tasks while providing predictable performance.
▫ Chapter 2 introduces preemptive and cooperative task scheduling approaches

and then shows how to design an application using such schedulers and serv-
ices. The �C/OS-III real-time kernel from Micrium is used (Labrosse &
Kowalski, 2010).

▫ Chapter 3 presents real-time scheduling theory for preemptive and cooperative
schedulers. These methods allow accurate calculation of the worst-case re-
sponse time of a system, enabling a designer to determine if any deadlines
may ever be missed.

CHAPTER 1 / INTRODUCTION 5

� Chapters 4, 5, and 6 examine how to make code run faster.
▫ Chapter 4 covers execution time profiling analysis and understanding the out-

put of the compiler.
▫ Chapter 5 shows how to use the compiler effectively to generate efficient code.

The IAR Embedded Workbench for RL78 is targeted.
▫ Chapter 6 examines optimization methods at the program level, including al-

gorithms and data structures as faster mathematical operations.
� Chapters 7 and 8 show how to create power- and energy-efficient systems.

▫ Chapter 7 introduces power and energy models and analytical methods. It then
examines the power- and energy-reducing features of the RL78G14 MCU, in-
cluding low power modes, peripheral snooze modes, and clocking options.

▫ Chapter 8 presents methods to apply the features of the RL78G14 to optimize
power or energy consumption for embedded applications.

� Chapter 9 examines how to make programs use less memory. It presents methods
for evaluating memory requirements (RAM and ROM) and optimization tech-
niques ranging from algorithms and data structures to task scheduling approaches.

1.7 BIBLIOGRAPHY

Labrosse, J., & Kowalski, F. (2010). MicroC/OS-III: The Real-Time Kernel. Weston, FL: Micrium Press.

Tredennick, H. L. (2000, August). The Death of DSP. Retrieved from

http://www.ttivanguard.com/dublin/dspdealth.pdf, accessed 8/16/2013.

Chapter 2

7

2.1 LEARNING OBJECTIVES

This chapter examines how to create multithreaded embedded software using a preemptive
scheduler. We will explore how to predict worst-case responsiveness, enabling us to create
real-time systems—systems which will never miss any task deadlines.

Most embedded systems have multiple independent tasks running at the same time.
Which activity should the microprocessor perform first? This decision determines how re-
sponsive the system is, which then affects how it determines how fast a processor we must
use, how much time we have for running intensive control algorithms, how much energy
we can save, and many other factors. In this chapter we will discuss different ways for a
microprocessor to schedule its tasks, and the implications for performance, program struc-
ture, and related issues.

2.2 MOTIVATION

Consider a trivially simple embedded system which controls a doorbell in a house. When a
person at the front door presses the switch, the bell should ring inside the house. The sys-
tem’s responsiveness describes how long it takes from pressing the switch to sounding the
bell. It is easy to create a very responsive embedded system with only one task. The sched-
uling approach shown below is an obvious and simple approach.

1. void main (void){
2. init_system();
3. while(1){
4. if(switch == PRESSED){
5. Ring_The_Bell();
6. }
7. }
8. }

Designing Multithreaded Systems

8 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Our doorbell is very responsive. In fact, we like it so much that we decide to add in a smoke
detector and a very loud beeper so we can be warned about a possible fire. We also add a
burglar detector and another alarm bell. This results in the following code shown.

1. void main (void){
2. init_system();
3. while(1){
4. if(switch == PRESSED){
5. Ring_The_Doorbell();
6. }
7. if(Burglar_Detected() == TRUE){
8. Sound_The_Burglar_Alarm();
9. }

10. if(Smoke_Detected() == TRUE){
11. Sound_The_Fire_Alarm();
12. }
13. }
14. }

Going from one task to three tasks has complicated the situation significantly.1 How should
we share the processor’s time between these tasks?

� How long of a delay are we willing to accept between smoke detection and the fire
alarm sounding? And the delay between the switch being pressed and the doorbell
sounding?

� Should the system try to detect smoke or burglars while the doorbell is playing?
� Should the doorbell work while the smoke alarm is being sounded? What about

when the burglar alarm is sounding?
� Which subsystem should the processor check first: the doorbell, the smoke detec-

tor, or the burglar detector? Or should it just alternate between them?
� Should the doorbell switch be checked as often as the smoke and burglar detectors,

or at a different rate?
� What if the person at the door presses the switch again before the doorbell finishes

sounding? Should that be detected?

Now that we have to share the processor, we have to worry about how long the bell rings
and the alarms sound. If we use a doorbell ringtone which lasts for thirty seconds, then
Ring_The_Bell will take at least thirty seconds to run. During this time, we won’t know if
our house is burning or being robbed. Similarly, what if the firemen come when the alarm
is sounding? How quickly should the doorbell respond in that case?

1 In fact, any number of tasks greater than one complicates the situation!

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 9

Our trivial system became much more complicated once we started sharing the processor
among different tasks and considering responsiveness and concurrent events. Designers
face this same challenge but on a much larger scale when creating embedded systems
which must manage multiple activities concurrently while ensuring quick responses (e.g.
in microseconds or milliseconds).

2.3 SCHEDULING FUNDAMENTALS

This example reveals the two fundamental issues in scheduling for responsive systems.

� If we have multiple tasks ready to run, which one do we run first? This decision de-
fines the ordering of task execution.

� Do we allow one task to interrupt or preempt another task?

Both of these decisions will determine the system’s responsiveness, which is measured by
response times for each task.

� How long will it take for the most important task to start running? To finish
running? Does this depend on how long any other tasks take to run, and how of-
ten they run?

� How long will it take for the least important task to start running? To finish
running?We expect it will depend on how long all the other tasks take to run, and
how often they run.

� If we allow tasks to preempt each other, then a task may start running very soon
but finish much later, after multiple possible preemptions.

These ranges of response times in turn affect many performance-related issues, such as:

� How fast must the processor’s clock rate be to ensure that nothing happens “late”?
� How much time do we have available for running compute-intensive algorithms?
� How much energy or power can we save by putting the processor to sleep?
� How quickly can a sleeping processor wake up and start running a task?
� How much power can we save by slowing down the processor?

A software component called a scheduler (or kernel) is responsible for sharing the proces-
sor’s time among the tasks in the system. One of its main responsibilities is selecting which
task to run currently, based on scheduling rules and task states. Figure 2.1 shows a visual
representation of some arbitrary scheduling activity. Task A is released (becomes ready to
run) at the first vertical bar. There is some latency between the release and when the task
starts running, due to other processing in the system and scheduler overhead. Similarly,
there is a response time which measures how long it takes task A to complete its process-
ing. Some scheduling approaches allow a task to be preempted (delayed) after it has started
running, which will increase the response time.

10 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Task Time

Task A

Time

Current Task

Scheduler

Latency

Response Time

Task A

Figure 2.1 Diagram and Definitions of Scheduler Concepts.

2.3.1 Task Ordering

The first factor affecting response time is the order in which we run tasks.We could always
follow the same order by using a static schedule. The code shown for the Doorbell/Fire
Alarm/Burglar Alarm uses a static schedule. Figure 2.2a shows an interesting case. If a bur-
glar broke in and a fire broke out just after someone pressed the switch to ring the doorbell,
we wouldn’t find out about the burglar for almost thirty seconds and the fire for about sixty
seconds. We probably do not want these large delays for such critical notifications.

We can change the order based on current conditions (e.g., if the house is on fire) using a
dynamic schedule. An obvious way to do this is to reschedule after finishing each task. A dy-
namic schedule lets us improve the responsiveness of some tasks at the price of delaying other
tasks. For example, let’s prioritize fire detection over burglar detection over the doorbell.

1. void main (void){
2. init_system();
3. while(1){
4. if(Smoke_Detected() == TRUE){
5. Sound_The_Fire_Alarm();
6. } else if (Burglar_Detected() == TRUE) {
7. Sound_The_Burglar_Alarm();
8. } else if (switch == PRESSED) {
9. Ring_The_Doorbell();

10. }
11. }
12. }

Notice how this code is different—there are else clauses added, which change the schedule
to a dynamic one. As long as smoke is detected, Sound_The_Fire_Alarm() will run repeat-
edly. The burglar alarm and doorbell will be ignored until no more smoke is detected. Sim-
ilarly, burglar detection will disable the doorbell. This is shown in Figure 2.2b.

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 11

This strict prioritization may or may not be appropriate for a given system. We may
want to ensure some fairness, perhaps by limiting how often a task can run. Later in this
chapter we present a periodic table-based approach which is much better than this hard-
coded design.

2.3.2 Task Preemption

The second aspect to consider is whether one task can preempt another task. Consider our
thirty-second doorbell ringtone—the task Ring_The_Doorbell will run to completion
without stopping or yielding the processor.

What if a burglar breaks the window a split second after an accomplice rings the door-
bell? In this worst-case scenario, we won’t find out about the burglar (or a possible fire) for
thirty seconds.2 Let’s say we’d like to find out within one second. We have several options:

� Limit the maximum duration for the doorbell ringtone to one second.
� Add another microprocessor which is dedicated to playing the doorbell ringtone.

This will raise system costs.

Events

Task Execution Sequences

Friend rings doorbell

Burglar breaks in

Doorbell Burglar Alarm Fire Alarm Burglar Alarm Fire Alarm

Doorbell Fire Alarm Fire Alarm Fire Alarm Fire Alarm

Fire Alarm Fire Alarm Fire Alarm Fire Alarm Fire Alarm

Negligible
delay

30 seconds

60 seconds

30 seconds

(a)

(b)

(c)

Fire breaks out

Figure 2.2 Doorbell/fire alarm/burglar alarm system behavior with different scheduling
approaches.

2 Imagine what Thomas Crown, James Bond, or Jason Bourne could do in that time!

12 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

� Break the Ring_The_Doorbell function into thirty separate pieces (e.g., with a
state machine or separate functions), each of which takes only one second to run.
This code will be hard to maintain.

� Allow the smoke and burglar detection code to preempt Ring_The_Doorbell. We
will need to use a more sophisticated task scheduler which can (1) preempt and re-
sume tasks, and (2) detect events which trigger switching and starting tasks.We will
not need to break apart any source code. This will make code maintenance easier.
However, we introduce the vulnerability to race conditions for shared data, and we
also will need more memory (enough to hold each task’s stack simultaneously).

Let’s apply this preemption option to our system.We assign the highest priority to fire detec-
tion, then burglar detection, and then the doorbell. Now we have the response timeline shown
in Figure 2.2c. The system starts sounding the doorbell after the switch is pressed. However,
a burglar is detected a split-second after the doorbell is pressed, so the scheduler preempts the
Ring_The_Doorbell and starts running Sound_The_Burglar_Alarm. And then a fire is de-
tected after another split-second, so the scheduler preempts Sound_The_Burglar_Alarm and
starts running Sound_the_Fire_Alarm. We find out about the fire essentially immediately,
without having to wait for the doorbell or buglar alarm to finish sounding. In fact, we may not
even hear them.

As with the previous example, we have strict prioritization without control of how of-
ten tasks can run. As long as smoke is detected, Sound_The_Fire_Alarm() will run repeat-
edly. The burglar alarm and doorbell will be ignored until no more smoke is detected. Sim-
ilarly, burglar detection will disable the doorbell.

2.3.3 Fairness and Prioritization

These examples all show oneweakness of our system: prioritizing some tasks over others can
lead to starvation of lower priority tasks (they may never get to run). For some systems this is
acceptable, but for others it is not. Here are two ways of providing some kind of fairness:

� We can allow multiple tasks to share the same priority level. If both tasks are ready
to run, we alternate between executing each of them (whether by allowing each
task to run to completion or by preempting each periodically).

� We can limit how often each task can run by defining the task frequency. This is
the common approach used for designers of real-time systems. Note that we can
still allow only one task per priority level.

2.3.4 Response Time

For the two non-preemptive examples in Figure 2.2, notice how the response time for the
fire alarm and the burglar alarm depends on how long the doorbell sounds. However, for

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 13

the preemptive approach those response times are independent of how long the doorbell
sounds. This is the major benefit of a preemptive scheduling approach: it makes a task’s re-
sponse time essentially independent of all processing by lower priority tasks.3 Instead,
only higher priority tasks can delay that task.

In Figure 2.3 we present these relationships in a graph. A graph is a mathematical
structure used to show how objects (called nodes or vertices) are related to each other (us-
ing connections called edges or arcs). Directed edges (with arrows) are used to show rela-
tionships in which the node order matters. Tasks and ISRs are nodes, while edges are tim-
ing dependences. For example, the edge from B to C indicates that task B’s response time
depends on task C’s duration. We can now compare timing dependences for these three
classes of scheduler.

3 There are exceptions when tasks can communicate with each other with semaphores and other such mecha-
nisms, but that is beyond the scope of this introductory text.
4 Of course, if task code can disable interrupts, then there will be three more edges leading from the ISRs back
to the tasks! That would be a total of twelve dependences, which is quite a few to handle.

Non-Preemptive
Static Scheduling

Non-Preemptive
Dynamic Scheduling

Preemptive
Dynamic Scheduling

9 dependencies
- Higher priority tasks and ISRs
- Lower priority tasks

8 dependencies
- Higher priority tasks and ISRs
- Slowest task

6 dependencies
- Only higher priority tasks

and ISRs

Task C is
slowest task

Task B’s response
time depends on
Task C’s duration

ISRs ISRs ISRs

A
A A

C C

C

BB

B

Figure 2.3 Timing dependences of different scheduling approaches.

� With the non-preemptive static scheduler each task’s response time depends on the
duration of all other tasks and ISRs, so there are nine dependences.4

� With the non-preemptive dynamic scheduler, we assign priorities to tasks (A . B . C).
In general, a task no longer depends on lower priority tasks, so we have more timing
independence and isolation. This accounts for six dependences. The exception is the

14 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

slowest or longest duration task, which is C in this example. If task C has started
running, it will delay any other task, regardless of priority. So the higher priority
tasksA and B each have a dependence edge leading to task C in Figure 2.3, which re-
sults in a total of eight dependences.

� With the preemptive dynamic scheduler, we also prioritize the tasks (A . B . C).
Because a task can preempt any lower priority task, the slowest task no longer mat-
ters. Each task can be preempted by an ISR, so there are three dependence edges to
begin with. Task A cannot be preempted by B or C, so it adds no new edges. Task
B can be preempted by task A, which adds one edge. Finally, task C can be pre-
empted by task A or B, which adds two more edges. As a result we have only six
dependences. Most importantly, these dependence edges all point upwards.5 This
means that in order to determine the response time for a task, we only need to con-
sider higher priority tasks. This makes the analysis much easier.

The real-time system research and development communities have developed extensive pre-
cise mathematical methods for calculating worst-case response times, determining if dead-
lines can ever be missed, and other characteristics of a system. These methods consider
semaphores, task interactions, scheduler overhead, and all sorts of other complexities of
practical implementations. We provide an introduction to these concepts in the next chapter.

2.3.5 Stack Memory Requirements

The non-preemptive scheduling approaches do not require as much data memory as the
preemptive approaches. In particular, the non-preemptive approach requires only one call
stack, while a preemptive approach typically requires one call stack per task.6

The function call stack holds a function’s state information such as return address and
limited lifetime variables (e.g., automatic variables, which only last for the duration of a
function). Without task preemption, task execution does not overlap in time, so all tasks can
share the same stack. Preemption allows tasks to preempt each other at essentially any point
in time. Trying to reuse the same stack space for different tasks would lead to corruption of
this information on the stack. For example, task B is running function B3 which is using the
stack for storing local data (say, an array of ten floating-point variables). The scheduler then
preempts task B to run the higher priority task A, which was running function A2. Function
A2 completes and it expects to return to function A1, which called A2. However, the call
stack doesn’t have the return address to get back to A1. Instead it has floating point vari-
ables.WhenA2 executes its return instruction, the program counter is loaded with data from
B3 (a floating-point variable) rather than the return address in A1. And so the processor re-

5 This is called a DAG or directed acyclic graph.
6 There are several ways to reduce the number of stacks needed for preemptive scheduling, but they are beyond
the scope of this text.

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 15

sumes executing code at the wrong address, or accesses an illegal address, and system fails
to operate correctly.

As a result of these memory requirements for preemptive scheduling approaches, there
are many cost-sensitive embedded systems which use a non-preemptive scheduler to mini-
mize RAM sizes and therefore costs.

2.3.6 Interrupts

Interrupts are a special case of preemption with dedicated hardware and compiler support.
They can be added to any of these scheduling approaches in order to provide faster, time-
critical processing. In fact, for many systems only interrupt service routines are needed for
the application’s work. The main loop is simply an infinite loop which keeps putting the
processor into a low-power idle mode.

When designing a system which splits between ISRs and task code, one must strike a
balance. The more work which is placed in an ISR, the slower the response time for other
processing (whether tasks or other ISRs7). The standard approach is to perform time-critical
processing in the ISR (e.g., unloading a character from the UART received data buffer) and
deferring remaining work for task code (pushing that character in a FIFO fromwhich the task
will eventually read). ISR execution duration affects the response time for other code, so it is
included in the response time calculations described in Section 2.3.4 and in Figure 2.3.

2.4 TASK MANAGEMENT

2.4.1 Task States

A task will be in one of several possible states. The scheduler and the task code itself both
affect which state is active. With a non-preemptive dynamic scheduler, a task can be in
any one of the states8 shown in Figure 2.4a:

� Waiting for the scheduler to decide that this task is ready to run. For example, a
task which asked the scheduler to delay it for 500 ms will be in this state for that
amount of time.

� Ready to start running but not running yet. There may be a higher-priority task
which is running. As this task has not started running, no automatic variables have
been initialized, and there is no activation record.

7 It is possible to make ISRs interruptable, but this introduces many new ways to build the system wrong.
Hence it is discouraged.
8 We consider preemption by an ISR as a separate state. However, since it operates automatically and saves and
restores system context, we consider it as a separate enhancement to the RTC scheduler and leave it out of our
diagrams. In fact, the scheduler relies on a tick ISR to track time and move tasks between certain states.

16 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

� Running on the processor. The task runs to the completion of the task function,
at which point the scheduler resumes execution and the task is moved to the wait-
ing state. Automatic variables have been initialized, and there is at least one acti-
vation record on the stack frame for this task. A single processor system can have
only one task in this state.

Consider a task which needs to write a block of data to flash memory. After the software is-
sues a write command to the flash memory controller, it will take a certain amount of time
(e.g., 10 ms) for the controller to program the block.9 We have two options with a non-
preemptive kernel:

� Our task can use a busy wait loop until the flash block programming is complete.
The task remains in the running state while programming. This approach delays
other processing and wastes processor cycles.

� We can break the task into a state machine with a state variable indicating which
state’s code to execute the next time the task is executed. State one issues the write
command, advances the state variable to two and returns from the task. State two
checks to see if the programming is done. If it is done, the state variable is ad-
vanced to three, otherwise the state remains at two. The state then returns from the
task. State three continues with the task’s processing.

Consider the behavior of the resulting system. The task remains in state two
until it determines that the programming is done. So when the task is in state two,

Ready

Waiting

Running

Scheduler Tick
ISR or other task
marks this task

as Ready

Scheduler selects
highest priority
ready task and
starts it running

Task function
completes

Non-preemptive Dynamic Scheduler

Ready

Waiting

Running

Task function
completes

Scheduler Tick
ISR or other task
marks this task

as Ready

Scheduler
finds a
higher
priority

ready task

Scheduler selects
highest priority
ready task and
starts it running

Preemptive Dynamic Scheduler

Figure 2.4 Task States and Transitions for Different Schedulers.

9 This write delay is inherent to flash memory hardware because it takes time to charge or discharge the float-
ing gate in each data storage transistor.

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 17

it will yield the processor very quickly each time it is called. This allows the sched-
uler to execute other tasks and share the processor’s time better. This approach
complicates program design but is practical for smaller systems. However, it
grows unwieldy for complex systems.

Allowing tasks to preempt each other reduces response time and simplifies application de-
sign. With preemption, each task need not be built with a run-to-completion structure. In-
stead, the task can yield the processor to other tasks, or it can be preempted by a higher-
priority task with more urgent processing. For example, our task can tell the scheduler “I
don’t have anything else to do for the next 10 ms, so you can run a different task.” The
scheduler then will save the state of this task, and swap in the state of the next highest pri-
ority task which is ready to run. This introduces another way to move from running to wait-
ing, as well as a way to move from running to ready. We examine these in detail next.

2.4.2 Transitions between States

We now examine the ways in which a task can move between the various states. These
rules govern how the system behaves, and therefore set some ground rules for how we
should design our system.

� The transition from ready to running:
▫ In a non-preemptive system, when the scheduler is ready to run a task, it se-

lects the highest priority ready task and moves it to the running state, typically
by calling it as a subroutine.

▫ In a preemptive system, when the kernel is ready to run a task, it selects the high-
est priority ready task and moves it to the running state by restoring its context to
the processor. The task’s context is a copy of the processor register values when
the task was last executing, just before it was preempted by the scheduler.

� The transition from running to waiting:
▫ In a non-preemptive system, the only way a task can move from running to

waiting is if it completes (returns from the task function). At this point there is
no more execution context for the task (return addresses, automatic variables),
so there is no data to save or restore.

▫ In a preemptive system, the task can yield the processor.10 For example, it can re-
quest a delay (“Hey, kernel! Wake me up in at least 10 ms!”), or it can wait or
pend on an event (“Hey, kernel! Wake me up when I get a message!”). This
makes application programming much easier, as mentioned before. At this point
there still is execution context, so the kernel must save it for later restoration.

10 What happens if the task function finishes executing depends on the kernel. The task could move to the wait-
ing state, or to a terminated state.

18 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

� The transition from waiting to ready:
▫ In a non-preemptive system using a run-to-completion scheduler, the timer

tick ISR sets the run flag to show the task is ready to run.Alternatively, another
task can set the run flag to request for this task to run.

▫ In a preemptive system, the kernel is notified that some event has occurred.
For example, time delay has expired or a task has sent a message to the mail-
box called foo. The kernel knows which task is waiting for this event, so it
moves that particular task from the waiting state to the ready state.

� The transition from running to ready:
▫ In a non-preemptive system this transition does not exist, as a task cannot be

preempted.
▫ In a preemptive system, when the kernel determines a higher priority task is

ready to run, it will save the context of the currently running task, and move
that task to the ready state.

2.4.3 Context Switching for Preemptive Systems

In preemptive systems, some of these state transitions require the scheduler to save a task’s ex-
ecution context and restore another task’s context to ensure programs execute correctly. This
is called context switching and involves accessing the processor’s general-purpose registers.

Figure 2.5 shows an example of the execution context for an RL78 family system as it
is executing task A in a system with two tasks (A and B). The CPU uses the program
counter PC to fetch the next instruction to execute, and the stack pointer to access the top
of the task’s stack. The CPU’s general purpose registers are used to hold the program’s data
and intermediate computation results. The PSW holds status bits and control bits.

In order to perform a context switch from taskA to task B correctly, we must first copy
all of this task-specific processor register information to a kernel data structure called a
task control block (TCB) for task A. The kernel uses a TCB to keep track of data for each
task which it is managing. This is shown in Figure 2.6.

Second, we must copy all of the data from task control block B into the CPU’s regis-
ters. This operation is shown in Figure 2.7. Now the CPU will be able to resume execution
of task B where it left off.

2.4.4 Implications

At first glance, a preemptive scheduler may seem to be the same as a non-preemptive
scheduler, but with a little extra support for saving, switching, and restoring contexts. This
apparently small addition in fact has a major impact on how programs are structured and
built. A task no longer needs to run to completion. Instead, it is allowed to block and wait
for an event to occur. While that task blocks (waits), the scheduler is able to work on the

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 19

AX BC DE HL

PC SP PSW CS/ES

CPU

Memory
0xFFFFF

0x00000

global data

heap

Instructions

Task A

Task B

Task B Stack

Task A Stack

Figure 2.5 Example
execution context when
executing task A.

AX BC DE HL

PC SP PSW CS/ES

CPU

Memory
0xFFFFF

0x00000

global data

heap

Instructions

Task A

Task B

Task B Stack

Task A Stack

AX BC DE HL

PC SP PSW CS/ES

TCB A

Figure 2.6 Saving task A’s
context from the CPU
registers into task control
block for task A.

20 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

AX BC DE HL

PC SP PSW CS/ES

CPU

Memory
0xFFFFF

0x00000

global data

heap

Instructions

Task A

Task B

Task B Stack

Task A Stack

AX BC DE HL

PC SP PSW CS/ES

TCB B

Figure 2.7 Restoring task B’s
context to the CPU.

next highest priority ready task. When the event occurs, the scheduler will move the task
from the blocking state to the ready state, so it will have a chance to run again (when it be-
comes the highest priority ready task). Because the system is prioritized, it is possible that
a low-priority task will never run, instead suffering starvation. All higher priority tasks
must block for a given task to be able to run. This opens the door to creating event-
triggered multithreaded programs, which are much easier to develop, maintain, and en-
hance than the equivalent run-to-completion versions.

Since event support is so valuable to (and so tightly integrated with) preemptive sched-
ulers, we refer to real-time kernels which include the scheduler, event support, and addi-
tional features which build upon both. A real-time operating system (RTOS) may include
additional features such as network protocol code, graphical user interfaces, file systems,
and standard libraries implemented with predictable timing.

2.5 A NON-PREEMPTIVE DYNAMIC SCHEDULER

We will now examine a flexible non-preemptive scheduler for periodic and aperiodic tasks.
We call it the RTC (run-to-completion) scheduler. This simple tick-based scheduler is quite
flexible and offers the various benefits:

� We can configure the system to run each task with a given period (e.g., every
40 ms) measured in time ticks. This simplifies the creation of multi-rate systems.

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 21

� We can define task priorities, allowing us to design the system’s response (which
tasks are executed earlier) when there are multiple tasks ready to run.

� We can selectively enable and disable tasks.

This scheduler has three fundamental parts.

� Task Table: This table holds information on each task, including:
▫ The address of the task’s root function.
▫ The period with which the task should run (e.g., 10 ticks).
▫ The time delay until the next time the task should run (measured in ticks).
▫ A flag indicating whether the task is ready to run.

� Tick ISR:Once per time tick (say each 10 milliseconds) a hardware timer triggers an
interrupt. The interrupt service routine decrements the time delay (timer) until the next
run. If this reaches zero, then the task is ready to release, so the ISR sets its run flag.

� Task Dispatcher: The other part of the scheduler is what actually runs the tasks. It
is simply an infinite loop which examines each task’s run flag. If it finds a task with
the run flag set to 1, the scheduler will clear the run flag back to 0, execute the
task, and then go back to examining the run flags (starting with the highest-
priority task in the table).

Figure 2.8 shows a simple example of how this works with three tasks. Task 1 becomes ac-
tive every twenty time intervals, and takes one time interval to complete. Task 2 is active
every ten time intervals, and takes two time intervals to complete. Task 3 becomes active
every five time intervals and takes one time interval to complete.

Figure 2.8 Scheduler data and processor activity using run-to-completion dynamic scheduling.

Priority Length Period

Task 1 2 1 20

Task 2 1 2 10

Task 3 3 1 5

Elapsed time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Task executed T3 T2 T3 T3 T2 T1 T3 T3

Time T1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15

Time T2 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5

Time T3 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5

Run T1 W W R

Run T2 R R

Run T3 R W W R R W W W R R

R � Running on processor W � Ready and waiting for processor

22 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

If more than one task becomes ready simultaneously (as seen at elapsed time ten), the
higher priority task is serviced first. When the higher priority task finishes, the next highest
ready task is executed. This repeats until there are no ready tasks.

2.5.1 Task Table

A scheduler uses a table to store information on each task. Each task has been assigned a
timer value. A task becomes active at regular intervals based on this value. This timer value
is decremented each tick by the timer tick ISR. Once the timer value reaches zero, the task
becomes ready to run. To reset this value after it has reached zero, an initial Timer Value
variable is used to store the time at which the task has to be active. Two variables, enabled
and run, are used to signal when a task is enabled and when it is ready to run. The func-
tion pointer *task indicates to the scheduler which function to perform.

The task’s priority is defined by its position within this array. Entry 0 has the highest
priority; whenever the scheduler needs to find a task to run, it begins at entry 0 and then
works its way through the table.

Note that there is no field specifying how long this task should be allowed to run. In-
stead, this scheduler allows each task to run to completion—until the task function returns
control to the calling function (i.e. the scheduler). The scheduler does not run again until
the task function completes.

The scheduler’s task table is defined next. Note that we can reduce the amount of RAM
required for this table using bitfields to hold single-bit values in the structure.

1. #define MAX_TASKS 10
2. #define NULL ((void *)0)
3. typedef struct {
4. int initialTimerValue;
5. int timer;
6. int run;
7. int enabled;
8. void (* task)(void);
9. } task_t;

10. task_t GBL_task_table[MAX_TASKS];

Before running the scheduler, the application must initialize the task table as follows:

1. void init_Task_Timers(void){
2. int i;
3. /* Initialize all tasks */
4. for(i = 0; i < MAX_TASKS; i++){
5. GBL_task_table[i].initialTimerValue = 0;

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 23

6. GBL_task_table[i].run = 0;
7. GBL_task_table[i].timer = 0;
8. GBL_task_table[i].enabled = 0;
9. GBL_task_table[i].task = NULL;

10. }
11. }

2.5.2 Managing Tasks

Once the initialization is completed, tasks must be added to the task structure. The new
tasks can be added before starting the scheduler or during the scheduler’s execution time.
When adding a task, the following must be specified: the time interval in which the task has
to be active, its priority, and the function on which the task has to operate. The following
code shows how adding a task is added:

1. int Add_Task(void (*task)(void), int time, int priority){
2. /* Check for valid priority */
3. if(priority >= MAX_TASKS || priority < 0)
4. return 0;
5. /* Check to see if we are overwriting an already scheduled

task */
6. if(GBL_task_table[priority].task != NULL)
7. return 0;
8. /* Schedule the task */
9. GBL_task_table[priority].task = task;

10. GBL_task_table[priority].run = 0;
11. GBL_task_table[priority].timer = time;
12. GBL_task_table[priority].enabled = 1;
13. GBL_task_table[priority].initialTimerValue = time;
14. return 1;
15. }

We can remove an existing task:

1. void removeTask(int task_number){
2. GBL_task_table[task_number].task = NULL;
3. GBL_task_table[task_number].timer = 0;
4. GBL_task_table[task_number].initialTimerValue = 0;
5. GBL_task_table[task_number].run = 0;
6. GBL_task_table[task_number].enabled = 0;
7. }

24 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

We can also selectively enable or disable a task by changing its enabled flag. Note that this
does not necessarily start the task running or stop it. Instead, it affects whether the tick ISR
manages its timer variable, and whether the scheduler tries to run it.

1. void Enable_Task(int task_number){
2. GBL_task_table[task_number].enabled = 1;
3. }
4. void Disable_Task(int task_number){
5. GBL_task_table[task_number].enabled = 0;
6. }

We can request the scheduler to run the task by incrementing its run flag. This does not
have any impact until Run_RTC_Scheduler reaches this task in the task table.

7. void Request_Task_Run(int task_number){
8. GBL_task_table[task_number].run++;
9. }

Finally, we can change the period with which a task runs:

1. void Reschedule_Task(int task_number, int new_timer_val){
2. GBL_task_table[task_number].initialTimerValue = new_timer_val;
3. GBL_task_table[task_number].timer = new_timer_val;
4. }

2.5.3 Tick Timer Configuration and ISR

A run-to-completion dynamic scheduler uses a timer to help determine when tasks are
ready to run (are released). A timer is set up to generate an interrupt at regular intervals, as
explained in Chapter 9. Within the interrupt service routine the timer value for each task is
decremented. When the timer value reaches zero, the task becomes ready to run.

1. void RTC_Tick_ISR(void){
2. int i;
3. for(i = 0; i < MAX_TASKS; i++){
4. if(GBL_task_table[i].task != NULL) &&
5. (GBL_task_table[i].enabled == 1) &&
6. (GBL_task_table[i].timer > 0)){
7. if(——GBL_task_table[i].timer == 0){
8. GBL_task_table[i].run = 1;
9. GBL_task_table[i].timer =

10. GBL_task_table[i].initialTimerValue;

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 25

11. }
12. }
13. }
14. }

2.5.4 Scheduler

The scheduler looks for ready tasks starting at the top of the table (highest priority task). It
runs every ready task it finds, calling it as a function (in line 16).

1. void Run_RTC_Scheduler(void){
2. int i;
3. /* Loop forever */
4. while(1){
5. /* Check each task */
6. for(i = 0; i < MAX_TASKS; i++){
7. /* check if valid task */
8. if(GBL_task_table[i].task != NULL){
9. /* check if enabled */

10. if(GBL_task_table[i].enabled == 1){
11. /* check if ready to run */
12. if(GBL_task_table[i].run >= 1){
13. /* Update the run flag */
14. GBL_task_table[i].run——;
15. /* Run the task */
16. GBL_task_table[i].task();
17. /* break out of loop to start at entry 0 */
18. break;
19. }
20. }
21. }
22. }
23. }
24. }

2.6 BUILDING A MULTITHREADED APPLICATION USING A SCHEDULER

In this section we examine how to create a multithreaded application. We create two ver-
sions side-by-side, using both preemptive scheduler and non-preemptive schedulers. For
the preemptive approach we use the real-time multitasking kernel �C/OS-III (Labrosse &

26 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

TABLE 2.1 Common Scheduler Functions

CATEGORY �C/OS-III RTC

Task Management OSTaskCreate AddTask

OSTaskSuspend EnableTask

OSTaskResume DisableTask

RescheduleTask

Time Management OSTimeDly

OSTimeDlyHMSM

OSTimeDlyResume

Resource Management OSMutexCreate

OSMutexPend

OSMutexPost

Synchronization OSFlagCreate RequestTaskRun

OSFlagPend

OSFlagPost

OSFlagPendGetFlagsRdy

OSSemCreate

OSSemPend, OSTaskSemPend

OSSemPost, OSTaskSemPost

OSPendMulti

Message Passing OSQCreate

OSQPend, OSTaskQPend

OSQPost, OSTaskQPost

Kowalski, 2010), and for the non-preemptive approach we use the run-to-completion
(RTC) scheduler.

Table 2.1 shows commonly used functions for the �C/OS-III and RTC schedulers.
This is not a complete list, but is provided for reference.

2.6.1 Basic Task Concepts and Creation

We use tasks (threads) and ISRs to build our system. Many tasks may need to run periodically,
such as the LED flasher (the embedded “Hello,World” equivalent) shown in Figure 2.9.

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 27

2.6.1.1 Non-Preemptive

The RTC scheduler provides periodic task triggering support to make the task function ex-
ecute at the right times. TheAdd_Task function call includes a period parameter of 250 (ms
in this case) used to set this value. We also need to specify the task priority (1), noting that
a lower number indicates higher priority.

1. void main(void){
2. ENABLE_LEDS;
3. init_Task_Timers();
4. Add_Task(Task1,250,1);
5. Init_RTC_Scheduler();
6. Run_RTC_Scheduler();
7. }

In this non-preemptive scheduling approach, a task function is started once each time it
needs to run. Because of this, it uses a run-to-completion structure in each task, so we must
ensure that there are no infinite loops in the task code.

We also need to declare the state variable as static to make it retain its value from one
task execution to the next. Remember that the stack frame holding automatic variables is
destroyed upon exiting the function, so the previous value would be lost without this
change.

Task1 LED

LED 5 ON

Time

LED 5 OFF

LED 5 ON

LED 5 OFF

Figure 2.9 Sequence diagram of Task 1 executing periodically and toggling a LED.

28 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

The resulting task is shown below, and is quite simple:

1. void Task1(void)
2. {
3. static char state = 0;
4. RED_LED = state;
5. state = 1-state;
6. }

2.6.1.2 Preemptive

Next we examine the solution using a preemptive scheduler. An application built
on �C/OS-III requires more sophisticated OS configuration due to its flexibility. We
step through the standard application skeleton code provided by Micrium with
�C/OS-III. The main function performs initialization of the CPU, the BSP (board sup-
port package), and the operating system before creating the first task (App_TaskStart)
and then starting the scheduler. We will discuss the parameters used in OSTaskCreate
shortly.

1. int main (void)
2. {
3. OS_ERR os_err;
4. CPU_Init(); /* Initialize the uC/CPU services */
5. BSP_PreInit();
6. OSInit(&os_err); /* Init uC/OS-III. */
7. OSTaskCreate((OS_TCB *)&App_TaskStart_TCB,
8. (CPU_CHAR *)”Start”,
9. (OS_TASK_PTR)App_TaskStart,
10. (void *)0,
11. (OS_PRIO)APP_CFG_TASK_START_PRIO,
12. (CPU_STK *)&App_TaskStart_Stk[0],
13. (CPU_STK_SIZE)APP_CFG_TASK_START_STK_SIZE_LIMIT,
14. (CPU_STK_SIZE)APP_CFG_TASK_START_STK_SIZE,
15. (OS_MSG_QTY)0u,
16. (OS_TICK)0u,
17. (void *)0,
18. (OS_OPT)(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),
19. (OS_ERR *)&os_err);
20. OSStart(&os_err); /* Start multitasking (i.e. give control to

uC/OS-III).*/
21. return (0);
22. }

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 29

App_TaskStart then performs additional initialization and calls functions to create the ap-
plication’s tasks and kernel objects (e.g., mutexes, semaphores, events, queues, etc.)

1. static void App_TaskStart (void *p_arg)
2. {
3. OS_ERR err;
4. BSP_PostInit();/* Initialize BSP functions */
5. App_TaskCreate();/* Create Application tasks */
6. App_ObjCreate(); /* Create Application kernel objects */
7. while (DEF_TRUE) { /* Task body, always written as an infinite

loop. */
8. BSP_LED_Toggle(1);
9. OSTimeDlyHMSM(0u, 0u, 0u, 500u,

10. OS_OPT_TIME_HMSM_STRICT,
11. &err);
12. }
13. }

App_TaskCreate then registers the tasks with the scheduler. Each task needs two supporting
data structures: a task control block (of type OS_TCB) and a function call stack (of type
CPU_STK). Pointers to these data structures are then specified to the scheduler when call-
ing OSTaskCreate (e.g., &App_Task1_TCB, &App_Task1_Stk[0]). Each task is described
as a variety of options controlled by parameters. These options include priority, stack size,
stack checking, and stack initialization. Each created task is in the ready-to-run state.

Like many other preemptive schedulers, �C/OS-III does not provide support for pe-
riodic tasks so we will need to build it into the task (or in a separate dispatcher func-
tion, not covered here). As a result, the initialization code does not include any period
information.

1. static OS_TCB App_TaskStart_TCB;
2. static OS_TCB App_Task1_TCB;
3.
4. static CPU_STK App_TaskStart_Stk[APP_CFG_TASK_START_STK_SIZE];
5. static CPU_STK App_Task1_Stk[APP_CFG_TASK1_STK_SIZE];
6.
7. static void App_TaskCreate (void)
8. {
9. OS_ERR os_err;

10.
11. OSTaskCreate((OS_TCB *)&App_Task1_TCB,/* Create task 1 */
12. (CPU_CHAR *)”Task1”,
13. (OS_TASK_PTR)App_Task1,

30 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

14. (void *)0,
15. (OS_PRIO)APP_CFG_TASK1_PRIO,
16. (CPU_STK *)&App_Task1_Stk[0],
17. (CPU_STK_SIZE)APP_CFG_TASK1_STK_SIZE_LIMIT,
18. (CPU_STK_SIZE)APP_CFG_TASK1_STK_SIZE,
19. (OS_MSG_QTY)0u,
20. (OS_TICK)0u,
21. (void *)0,
22. (OS_OPT)(OS_OPT_TASK_STK_CHK |

OS_OPT_TASK_STK_CLR),
23. (OS_ERR *)&os_err);
24. }

In the preemptive scheduling approach, a task function is started only once. In order to provide
repeated executions, we place the task code in an infinite loop and then yield the processor
after completing one iteration. If we do not yield the processor, then no lower-priority tasks
will be able to execute, as this task will use all the processor time it can (as allowed by higher-
priority tasks). The loop must contain at least one OS call (e.g., yield, pend, delay).

Here we use OSTimeDly to delay further execution of this task for the specified num-
ber of time ticks. Note that this is not a precise timing mechanism. There are various ways
in which the task can be delayed such that the OSTimeDly call slips one or more time ticks
later, reducing the task frequency. Some kernels provide true periodic task scheduling—
in �C/OS-III the OS_OPT_TIME_PERIODIC option must be passed to OSTimeDly().
Otherwise we can create a task to trigger periodic tasks using the synchronization methods
described later.

Note that the task’s state variable is automatic and does not need to be declared as
static. This is because the stack frame is never destroyed, since the function Task1 never
completes and exits.

1. void Task1(void*data)
2. {
3. OS_ERR error;
4. char state = 0;
5. for (;;)
6. {
7. RED_LED = state;
8. state = 1-state;
9. OSTimeDly(MSEC_TO_TICKS(TASK1_PERIOD_MSEC),

OS_OPT_TIME_PERIODIC, &error);
10. }
11. }

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 31

2.6.2 Handling Long Tasks

Some tasks may take so much time to execute that system responsiveness suffers. The ex-
ecution may be due to a large number of computations or waiting for an operation to com-
plete. For example, consider a task which writes data to flash memory, shown below. This
operation could take a long time (e.g., 3 ms to write a page of data to flash memory).

1. void Task_Log_Data_To_Flash(void) {
2. Compute_Data(data);
3. Program_Flash(data);
4. while (!Flash_Done()) {
5. }
6. if (flash_result==ERROR) {
7. Handle_Flash_Error();
8. }
9. }

2.6.2.1 Non-Preemptive

With this approach the task must run to completion but we wish to eliminate or reduce busy
waiting. To do this we will split the task into two. The first task will do all the work up to
busy waiting and then request for the scheduler to run the second task at some future point
in time. The second task will perform the completion test. If the flash write is done, then
the task is ready to proceed and complete the code (lines 9 and 10). However, if the write
is not done, then the task will return almost immediately, yielding the processor but re-
questing it again in the future. The scheduler will now be able to execute higher-priority
tasks, and eventually will come back to this second task.

1. void Task_Log_Data_To_Flash_1(void) {
2. Compute_Data(data);
3. Program_Flash(data);
4. //Ask scheduler to run task 2
5. }
6.
7. void Task_Log_Data_To_Flash_2(void) {
8. if (Flash_Done()) {
9. if (flash_result==ERROR) {

10. Handle_Flash_Error();
11. }
12. } else {
13. //Ask scheduler to run task 2

32 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

14. }
15. }

2.6.2.2 Preemptive

1. void Task_Log_Data_To_Flash(void) {
2. Compute_Data(data);
3. Program_Flash(data);
4. while (!Flash_Done()) {
5. OSTimeDly(3, OS_OPT_TIME_DLY, &error);
6. //try again three ticks later
7. }
8. if (flash_result==ERROR) {
9. Handle_Flash_Error();

10. }
11. }

A kernel typically provides a way for a task to explicitly yield control to the scheduler
(and hence other tasks). Rather than spin in a busy-wait loop (line 4) until the flash pro-
gramming is done (indicated by Flash_Done() returning 1), we insert an OSTimeDly(1)
call at line 5. This tells the kernel that the task would like to yield control of the processor,
and furthermore would like to be placed back into the ready queue after three scheduler
ticks have passed. At some point in the future, the scheduler will resume this task’s exe-
cution, at which point the task will once again check to see if Flash_Done() is true or not.
Eventually it will be true and the task will then continue on with the code at line eight fol-
lowing the loop.

2.6.3 Synchronizing with Other Tasks and ISRs

Often tasks need to synchronize with other tasks. For example, we may want Task 1 to be
able to signal Task 2 that it should run, as in the non-preemptive flash page write example
just discussed. Or perhaps we want an ISR to notify a task that some event has occurred
(e.g., a set of analog to digital conversions has completed), and the task should execute
(e.g., process the converted data).

2.6.3.1 Non-Preemptive

Task 1 can request for the scheduler to run Task 2 by setting or incrementing Task 2�s Run
flag in the scheduler table. Typically this is done with a scheduler API call.

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 33

1. void Task1(void)
2. {
3. ...
4. Request_Task_Run(TASK2_NUM);
5. ...
6. }

2.6.3.2 Preemptive

A kernel typically offers multiple primitives which can be used for synchronization.
�C/OS-III features semaphores, message queues, and event flags.

2.6.3.2.1 Synchronization with Semaphores Figure 2.10 shows the desired system be-
havior. We would like Task1 to run periodically. Each time it runs it should check to see if

Task1Switch Task2 LED

Switch is pressed Post Run_Sem
LED 5 ON

Switch is pressed Post Run_Sem
LED 5 OFF

Switch is pressed Post Run_Sem
LED 5 ON

Switch is pressed Post Run_Sem
LED 5 OFF

Figure 2.10 Sequence diagram of Task1 triggering Task2 with semaphore.

34 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

switch S1 is pressed, perhaps providing debouncing support as well. If the switch is
pressed, Task1 should signal Task2 by using the semaphore Run_Sem. Task2 will wait for
the semaphore Run_Sem to be signaled. When it is, then Task2 can run, toggling the LED
and waiting for the next semaphore signaling.

Details of the code are shown below. Note that the semaphore needs to be created and
initialized by the kernel, as shown in line 3. Lines 4 through 6 handle error conditions.

1. OS_SEM * Run_Sem;
2.
3. void TaskStartup() {
4. ...
5. OSSemCreate((OS_SEM *)&Run_Sem, ... &error);
6. if (error != OS_ERR_NONE) {
7. //error handling
8. }
9. ...

10. }
11. void Task1(void*data)
12. {
13. char state = 0;
14. for (;;)
15. {
16. if (!S1) { //if switch is pressed
17. OSSemPost(Run_Sem); //signal the event has happened
18. }
19. OSTimeDly(MSEC_TO_TICKS(TASK1_PERIOD_MSEC));
20. }
21. }
22. void Task2(void*data)
23. {
24. char state = 0;
25. INT8U err=OS_NO_ERR;
26. for (;;)
27. {
28. OSSemPend(Run_Sem, TIMEOUT_NEVER, &err);//await event
29. if (err == OS_NO_ERR) { //We got the semaphore
30. YLW_LED = state;
31. state = 1-state;
32. }
33. }
34. }

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 35

Semaphores can be created by tasks. However, �C/OS-III includes a semaphore in each
task because they are a common and useful synchronization mechanism. The names of the
functions accessing the task semaphores use TaskSem rather than Sem.

2.6.3.2.2 Synchronization with Event Flags: Event flags enable more flexible synchro-
nization than the one-to-one pattern just described.

First, a task can wait for (pend on) multiple events. For example, a task can be trig-
gered when any of the specified events occurs (a logical or). Alternatively, a task can be
triggered when all of the specified events have occurred (a logical and). The user creates
an event group which is a kernel object with a set of flags stored in a bit field.

Second, multiple tasks can pend on the same event flag. If the event flag is posted, all
of the pending tasks will be notified. This allows an event to have multiple results.

A call to OSFlagPost includes these parameters:

� A pointer to the event flag group
� A bitmask indicating which flag to post
� Whether to set or clear the flag
� A pointer to a result code

A call to OSFlagPend includes various parameters:

� A pointer to the event flag group
� A bitmask indicating which flags to monitor
� Whether to wait for all or any events
� Whether to wait for flags to be set or cleared
� A time out value
� A pointer to a result code

2.6.4 Passing Messages among Tasks

A task may need to send data (rather than just an event notification) to another task. Ker-
nels may provide message queues and mailboxes to do this. A mailbox holds one item of
data, while a queue can buffer multiple items of data.

2.6.4.1 Non-Preemptive

The RTC scheduler shown does not provide any message-passing support, although it
would be possible to add it.

36 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

2.6.4.2 Preemptive

�C/OS-III provides support for message passing through its message queues. Message
queues can be created by tasks. However, �C/OS-III includes one in each task because
they are a common and useful communication mechanism. The names of the functions ac-
cessing the task queues use TaskQ rather than Q, as shown in Table 2.1.

A message has three components:

� A pointer to a user defined data object.
� A variable indicating the size of the data object.
� A timestamp of when the message was sent.

There are several message queue operations possible:

� A program can create a queue using the OSQCreate function.
� A task or an ISR can enqueue a message using the OSQPost and OSTaskQPost

functions.
� A task can dequeue a message (potentially blocking until it is available) with OS-

QPend() and OSTaskQPend. The task can specify a time-out value; if no message
is received before this time has passed, then the pend function will return with an
error result.

Let’s consider an example. We would likeApp_Task1 to run periodically. Each time it runs
it should check to see if switch S1 is pressed. If it is, it should signal this by sending a mes-
sage SWITCH1_PRESSED to App_Task2’s internal task queue. There may be other
switches present, but App_Task2 is only interested in S1. App_Task2 will block until its
task queue is loaded with a message. When it is, then App_Task2 can run, process the re-
ceived message, and then wait for the next message in the queue.

1. static void App_Task1 (void * p_arg)
2. {
3. OS_ERR os_err;
4. CPU_TS ts;
5.
6. p_arg = p_arg;
7. while (1) {
8. if (Switch1Pressed() {
9. OSTaskQPost ((OS_TCB *)&App2_TCB,

10. (void *) SWITCH1_PRESSED,
11. (OS_MSG_SIZE) sizeof(void *),
12. (OS_OPT)OS_OPT_POST_FIFO,
13. (OS_ERR*) &os_err);

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 37

14. ... //do other work
15. //delay until the next time to run the task
16. OSTimeDlyHMSM(0u, 0u, 0u, 150u,
17. OS_OPT_TIME_HMSM_STRICT,
18. &os_err);
19. }
20. }
21.
22. static void App_Task2 (void * p_arg)
23. {
24. OS_ERR os_err;
25. void * p_msg;
26. OS_MSG_SIZE msg_size;
27.
28. while (1) {
29. p_msg = OSTaskQPend ((OS_TICK) 0,
30. (OS_OPT)OS_OPT_PEND_BLOCKING,
31. (OS_MSG_SIZE) &msg_size,
32. (CPU_TS *)&ts,
33. (OS_ERR*) &os_err);
34. //process the received message
35. ...
36. }
37. }
38.

Note that in this case we typecast our message SWITCH1_PRESSED into a void pointer.
We did this because the message to send was small enough to fit into a pointer. In other
cases we might need to send longer data, in which case we actually need to use the argu-
ment as a pointer to the data. We must then be careful about the lifetime of the data to be
sent. Automatic data is located within the declaring function’s stack frame and will be de-
stroyed when the function returns. Instead we need to use static data (e.g. a global) or dy-
namically-allocated data. uC/OS-III provides dynamic memory allocation through its OS-
MemGet and OSMemPut functions.

2.6.5 Sharing Objects among Tasks

Sometimes tasks may need to share an object such as a variable, a data structure, or a
hardware peripheral. Preemption among tasks introduces a vulnerability to data race con-
ditions which does not exist in systems built on run-to-completion schedulers. Now a task

38 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

can become as bug-prone and difficult to debug as an ISR! The system can fail in new
ways when:

� Multiple tasks or ISRs share an object,11 or
� Multiple instances of a function can execute concurrently.

In order to prevent these failures we need to be careful when designing our system.

2.6.5.1 Shared Objects

If an object is accessed by code which can be interrupted (is not atomic), then there is a risk
of data corruption. Atomic code is the smallest part of a program that executes without in-
terruption. Generally a single machine instruction is atomic,12 but sequences of instruc-
tions are not atomic unless interrupts are disabled.

Consider an example where task A starts modifying object O. Task B preempts it be-
fore it finishes. At this point in time object O is corrupted, as it is only partially updated. If
task B needs to read or write O, the computation results will be incorrect and the system
will likely fail.

1. unsigned time_minutes, time_seconds;
2. void task1 (void){
3. time_seconds++;
4. if(time_seconds >= 60){
5. time_minutes++;
6. time_seconds = 0;
7. }
8. }
9. void task2 (void){

10. unsigned elapsed_sec;
11. elapsed_seconds = time_minutes * 60 + time_seconds;
12. }

Here is a more specific example. Our shared object is a pair of variables which measure the
current time in minutes and seconds. Task1 runs once per second to increment the seconds,

11 Hardware registers which change outside of the program’s control also introduce problems but we do not dis-
cuss them further here.
12 Some instruction sets (but not the RL78) have long instructions (e.g., string copy, block move) which can be
interrupted, in which case those instructions are not atomic.

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 39

and possibly the minutes as well. Task2 calculates how many total seconds have elapsed
since time zero. There are data races possible:

� If task1 is preempted between lines 4 and 5 or lines 5 and 6, then when task2 runs
it will only have a partially updated version of the current time, and elapsed sec-
onds will be incorrect.

� If task2 is preempted during line 11, then it is possible that timeinutes is read be-
fore task1 updates it and time_seconds is read after task 1 updates it. Again, this
leads to a corrupted elapsed_seconds value.

2.6.5.2 Function Reentrancy

Another type of shared data problem comes with the use of non-reentrant functions. In this
case, the problem arises from multiple instances of the same function accessing the same
object. Consider the following example:

1. void task1 (){
2.
3. swap(&x, &y);
4.
5. }
6. void task2 (){
7.
8. swap(&p, &q);
9.

10. }
11. int Temp;
12. void swap (*i, *j){
13. Temp = *j;
14. *j = *i;
15. *i = Temp;
16. }

Suppose task1 is running and calls the swap function. After line 13 is executed, task2 be-
comes ready. If task2 has a higher priority, task1 is suspended and task2 is serviced. Later,
task1 resumes to line 14. Since Temp is a shared variable, it is not stored in the TASK sub-
routine shared data stack. When task1 line 15 is executed, variable x (of task1 pointed by
variable pointer i) gets the wrong value. Such function executions should not be suspended
in between or shared by more than one task. Such functions are called non-reentrant. The
code which can have multiple simultaneous, interleaved, or nested invocations which will
not interfere with each other is called reentrant code. These types of code are important for

40 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

parallel processing, recursive functions, or subroutines, and for interrupt handling. An ex-
ample of a reentrant code is as follows:

1. void swap (*i, *j){
2. static int Temp;
3. Temp = *j;
4. *j = *i;
5. *i = Temp;
6. }

Since the variable Temp is declared within the function, if any other task interrupts the exe-
cution of the swap function, the variable Temp will be stored in the corresponding task’s
stack and will be retrieved when the task resumes its function. In most cases, especially in
a multi-processing environment, the non-reentrant functions should be eliminated. A func-
tion can be checked for its reentrancy based on these three rules:

� A reentrant function may not use variables in a non-atomic way unless they are
stored on the stack of the calling task or are the private variables of that task.

� A reentrant function may not call other functions which are not reentrant.
� A reentrant function may not use the hardware in a non-atomic way.

When writing software in a system with task preemption or ISRs we need to be careful
to never call non-reentrant functions, whether directly or indirectly.

2.6.5.3 High-Level Languages and Atomicity

We can identify some but not all non-atomic operations by examining high-level source
code. Since the processor executes machine code rather than a high-level language such
as C or Java, we can’t identify all possible non-atomic operations just by examining the
C source code. Something may seem atomic in C but actually be implemented by multi-
ple machine instructions. We need to examine the assembly code to know for sure. Let’s
examine the following function and determine whether it is atomic or not:

1. static int event_count;
2. void event_counter (void){
3. ++event_count;
4. }

Example 1 in assembly language (not RL78):

1. MOV.L #0000100CH, R4
2. MOV.L [R4], R5

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 41

3. ADD #1H, R5
4. MOV.L R5, [R4]
5. RTS

Consider example 1, and then apply the first rule. Does it use shared variable event_count
in an atomic way? The ++event_count operation is not atomic, and that single line of
C code is implemented with three lines of assembly code (lines two through four). The
processor loads R4 with a pointer to event_count, copies the value of event_count into reg-
ister R5, adds 1 to R5, and then stores it back into memory. Hence, example 1 is not
atomic and not reentrant.

However, what if the processor instruction set supports in-place memory operations?
In that case, the assembly code could look like this:

Example 1 in assembly language, compiled for a different processor architecture:

1. MOV.L #0000100CH, A0
2. ADD #1H, [A0]
3. RTS

This code is atomic, since there is only one instruction needed to update the value of the
event count. Instruction 1 is only loading a pointer to the event count, so interrupting be-
tween 1 and 2 does not cause a problem. Hence it is reentrant.

The RL78 architecture supports modifications in memory, so the compiler can gener-
ate code which takes a single instruction to perform the increment. For example, this in-
struction is atomic:

1. INCW N:int_count

Now consider a slightly different example:

1. void add_sum (int *j){
2. ++(*j);
3. DisplayString(LCDLINE1, Int_to_ascii(*j);
4. }

Even though line 2 in this example is not atomic, the variable *j is task’s private vari-
able, hence rule 1 is not breached. But consider line 3. Is the function DisplayString
reentrant? That depends on the code of DisplayString, which depends on the user. Un-
less we are sure that the DisplayString function is reentrant (and do this recursively for
any functions which may be called directly or indirectly by DisplayString), example 2 is
considered to be non-reentrant. So every time a user designs a function, he or she needs to
make sure the function is reentrant to avoid errors.

42 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

2.6.5.4 Shared Object Solutions and Protection

In the previous section, we discussed the problems of using shared objects in a preemptive
environment. In this section we shall study some methods to protect the shared objects.
The solutions provided in this section may not be ideal for all applications. The user must
judge which solution may work best for the application. The Resource Management chap-
ter of the uC/OS-III manual (Labrosse & Kowalski, 2010) provides additional explana-
tions, insight, and implementation details.

2.6.5.4.1 Disable Interrupts One of the easiest methods is to disable the interrupts
during the critical section of the task. Disabling the interrupts may not take more than
one machine cycle to execute, but will increase the worst case response time of all other
code, including other interrupt service routines. Once the critical section, or shared vari-
able section, of the code is executed, the interrupt masking must be restored to its previ-
ous state (either enabled or disabled). The user must be cautious while disabling or en-
abling interrupts, because if interrupts are disabled for too long the system may fail to
meet the timing requirements. Consult the MCU programming manual to find out how to
disable and restore the interrupt masking state. A simple example of disabling interrupts
is as follows:

1. #define TRUE 1
2. #define FALSE 0
3. static int error;
4. static int error_count;
5. void error_counter (){
6. if(error == TRUE){
7. SAVE_INT_STATE;
8. DISABLE_INTS;
9. error_count++;

10. error = FALSE;
11. RESTORE_INT_STATE;
12. }
13. }

Disabling and restoring the interrupt masking state requires only one or a few machine cy-
cles. Disabling interrupts must take place only at critical sections to avoid increasing re-
sponse time excessively. Also, while restoring the interrupt masking state the user must
keep in mind the need to enable only those interrupts that were active (enabled) before they
were disabled. Determining the interrupt masking status can be achieved by referring to the
interrupt mask register. The interrupt mask register keeps track of which interrupts are
enabled and disabled.

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 43

2.6.5.4.2 Use a Lock Another solution is to associate a lock variable with each shared
object. The lock variable is declared globally. If a function uses the shared object then it
sets the lock variable, and once it has finished it resets the lock variable. Every function
must test the lock variable before accessing the shared object. If the lock variable is already
set, the task should inform the scheduler to be rescheduled once the object becomes avail-
able. Since only one variable has to be checked every time before accessing the data, using
lock variables simplifies the data structure and I/O devices access. Consider the following
example for using a lock:

1. unsigned int var;
2. char lock_var;
3. void task_var (){
4. unsigned int sum;
5. if(lock_var == 0){
6. lock_var = 1;
7. var = var + sum;
8. lock_var = 0;
9. else {

10. /* message to scheduler to check var and reschedule */
11. }
12. }

Since it takes more than one clock cycle to check whether a variable is available and use
a lock on it, the interrupts must be disabled during lines 5 and 6 of the code. Once
again, when the lock is released (in line 8) the interrupts should be disabled since lock-
ing and releasing the variable is a critical part of the code. Interrupts should be enabled
whenever possible to lower the interrupt service response time. If the variable is not
available, the scheduler is informed about the lock and the task goes into a waiting
state.

The Renesas RL78 processor family includes a Branch if True and Clear (BTCLR) in-
struction which can perform a test, clear, and branch in one atomic machine instruction,
and therefore does not require an interrupt disable/enable lock around semaphore usage.
However, the compiler is not likely to use this instruction, so the programmer must write
the assembly code with the BTCLR instruction and other instructions as needed. This lim-
its code portability significantly.

Another challenge with this approach is determining what to do in line 10 if there is no
scheduler support. There may be no easy way to tell the scheduler to reschedule this task
when the lock variable becomes available again.

2.6.5.4.3 Kernel-Provided Mutex Most operating systems provide locks for shared
variables through the use of mutexes.

44 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

A mutex is based on a binary semaphore but has additional features. Binary sema-
phores and therefore mutexes can take two values, 0 or 1. A mutex used for protecting a
resource is initialized with the value 1, to indicate the resource is initially available. At
this point no task is waiting for the mutex. Once a task requires a data, the task performs
a wait operation on the mutex. The OS checks the value of the mutex; for example, if
it is available (the value is non-zero), the OS changes the value of the mutex to zero
and assigns the mutex to the task. If the value is zero during the wait operation, the task
that requested the wait operation is placed on the mutex’s waiting list. Once the mutex
is released and becomes available, the OS grants it to the highest priority task waiting
for it.

A task can ask to wait on a mutex, potentially specifying a time limit for waiting. If the
time expires, the kernel returns an error code to the mutex-seeking function for the appro-
priate response. On the other hand, if the function has obtained the mutex, it can then com-
plete its operation using the shared resource and perform a signal operation, announcing
that the mutex is free. The OS checks if any other task is waiting for the mutex. If so, that
task is notified that it has obtained the mutex (without changing it’s value). On the other
hand, if no task is waiting for the mutex, its value is incremented to one. The wait opera-
tion is also referred to as Take or Pend, and signal operation is referred to as Release or
Post.

�C/OS-III offers both mutexes and semaphores. The difference between the two is that
semaphores do not provide priority inheritance, leading to possible priority inversion and
much longer (possibly unbounded) response times. Mutexes provide priority inheritance,
greatly reducing the worst case response time. Systems with deadlines should use mutexes
rather than semaphores when sharing resources.

The following example shows how the mutex LCD_Mutex is used to ensure only one
task can access the LCD at a time. Each task must obtain the mutex through an
OSMutexPend operation (lines 16 and 34) before using the LCD (lines 21 and 50). When
the task is done with the LCD, it must release the mutex with an OSMutexPost operation
(lines 32 and 63).

1. static OS_MUTEX LCD_Mutex;
2.
3. static void App_ObjCreate (void)
4. {
5. OS_ERR os_err;
6. OSMutexCreate((OS_MUTEX *)&LCD_Mutex,
7. (CPU_CHAR *)”My LCD Mutex”,
8. (OS_ERR *)&os_err);
9. ... //create other kernel objects

10. }

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 45

11.
12. static void App_Task1 (void * p_arg)
13. {
14. OS_ERR os_err;
15. CPU_TS ts;
16.
17. p_arg = p_arg;
18. while (1) {
19. ... //do work before using the LCD
20. //get mutex for LCD
21. OSMutexPend((OS_MUTEX *)&LCD_Mutex,
22. (OS_TICK) 0,
23. (OS_OPT) OS_OPT_PEND_BLOCKING,
24. (CPU_TS *)&ts,
25. (OS_ERR*) &os_err);
26.
27. //access shared resource
28. GlyphSetXY (G_lcd, 30, 24);
29. GlyphString(G_lcd, “Task 1”, 6);
30.
31. //release mutex
32. OSMutexPost((OS_MUTEX *)&LCD_Mutex,
33. (OS_OPT) OS_OPT_POST_NONE,
34. (OS_ERR*) &os_err);
35.
36. OSTimeDlyHMSM(0u, 0u, 0u, 150u,
37. OS_OPT_TIME_HMSM_STRICT,
38. &os_err);
39. }
40. }
41. static void App_Task3 (void * p_arg)
42. {
43. OS_ERR os_err;
44. uint8_t y;
45. CPU_TS ts;
46.
47. p_arg = p_arg;
48. while (1) {
49. //get mutex
50. OSMutexPend((OS_MUTEX *)&LCD_Mutex,

46 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

51. (OS_TICK) 0,
52. (OS_OPT) OS_OPT_PEND_BLOCKING,
53. (CPU_TS *)&ts,
54. (OS_ERR*) &os_err);
55.
56. //access shared resource
57. for (y = 16; y < 64; y += 8) {
58. GlyphSetXY (G_lcd, 0, y);
59. GlyphString(G_lcd, “—————————“, 18);
60. }
61.
62. //release mutex
63. OSMutexPost((OS_MUTEX *)&LCD_Mutex,
64. (OS_OPT) OS_OPT_POST_NONE,
65. (OS_ERR*) &os_err);
66.
67. OSTimeDlyHMSM(0u, 0u, 0u, 490u,
68. OS_OPT_TIME_HMSM_STRICT,
69. &os_err);
70. }
71. }

2.6.5.4.4 Kernel-Provided Messages We have seen that a kernel may provide other
mechanisms besides semaphores for allowing tasks to communicate, such as message
queues. It may be possible to structure your program to use messages to pass information
rather than sharing data objects directly.We leave further discussion of this approach to ex-
isting books and articles on real-time kernels.

2.6.5.4.5 Disable Task Switching If no other method seems to work, one unattractive
option is to disable the scheduler. If the scheduler is disabled, the task switching does not
take place and the critical sections or shared data can be protected by other tasks. This
method is counter-productive; disabling the scheduler increases response times and makes
analysis much more difficult. This is considered bad practice and must be properly justi-
fied; hence, consider this method as a last resort.

2.7 RECAP

In this chapter we have seen how the responsiveness of a program with multiple tasks de-
pends on the ordering of the tasks, their prioritization, and whether preemption can occur.

CHAPTER 2 / DESIGNING MULTITHREADED SYSTEMS 47

We have seen how the scheduler manages task state based on system behavior, and have
examined how to create applications using two different types of schedulers. Finally we
have examined how to protect shared data in a preemptive system.

2.8 BIBLIOGRAPHY

Labrosse, J., & Kowalski, F. (2010). MicroC/OS-III: The Real-Time Kernel.Weston, FL: Micrium Press.

ISBN 978-0-9823375-7-8.

49

3.1 LEARNING OBJECTIVES

Most embedded systems have multiple independent tasks running at the same time. Which
activity should the microprocessor perform first? This decision determines how responsive
the system is, which then affects how fast a processor we must use, how much time we
have for running intensive control algorithms, how much energy we can save, and many
other factors. In this chapter we will discuss different ways to schedule a system’s tasks
and the implications for performance and related issues.

3.2 FOUNDATIONS FOR RESPONSE TIME AND SCHEDULABILITY ANALYSIS

In the previous chapter we have seen how allowing (1) dynamic scheduling and (2) pre-
emption of tasks improves a system’s responsiveness dramatically. In this section we will
introduce the basic analytical methods which enable us to predict the timing behavior of
the resulting real-time systems accurately. There is an abundance of research papers on
real-time scheduling theory; three survey papers stand out for their clarity and context and
should be consulted as starting points (Audsley, Burns, Davis, Tindell, & Wellings, 1995;
George, Rivierre, & Spuri, 1996; Sha, et al., 2004).

We are mainly concerned with three aspects of a real-time system’s behavior:

� How should we assign priorities to tasks to get the best performance?
� How long will it take the processor to finish executing all the instructions of a par-

ticular task, given that other tasks may disrupt this timing? This is called the re-
sponse time.

� If each task has a deadline, will the system always meet all deadlines, even under the
worst case situation?A systemwhich will always meet all deadlines is called schedu-
lable.A feasibility test will let us calculate if the system is schedulable or not.

Chapter 3

Real-Time Methods

50 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

3.2.1 Assumptions and Task Model

task i, job 2 task i, job 3task i, job 1

Ti Ti

Ci

DiDi

Ci

Time
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.1 Real-time task model.

We model the computational workload according to the following assumptions and restric-
tions. Basic real-time scheduling analysis begins with this mathematical model:

� We have a single CPU.
� The workload consists of tasks ti. Each task releases a series of jobs.
� Tasks release jobs periodically at the beginning of their period .
� When a job is released, it is ready to run.
� The deadline for a job may or may not be related to its period . In some cases,

if certain relations (e.g., equal) hold for all tasks, analysis may be easier.
� We would like for the job to complete before its deadline .Hard real-time jobs

must meet their deadlines, while soft real-time jobs should meet most of their
deadlines.

� No task is allowed to suspend itself.
� For a preemptive scheduler a task can be preempted at any time by any other task.

For a non-preemptive scheduler tasks cannot preempt each other.
� The worst-case execution time of each job is . Determining this value is non-

trivial because it depends on both software (the control flow may be dependent on
the input data) and hardware (pipelining, caches, dynamic instruction execution).
Instead, people attempt to estimate a tight bound which is reasonably close to the
actual number but not smaller (which would be unsafe).

� Overhead such as scheduler activity and context switches are not represented in
the model, so they are assumed to take no time. Because of this unrealistic as-
sumption we need to accept that there will be a slight amount of error in the quan-
titative analytical results.

� Tasks are independent. They do not communicate with each other in a way which
could make one wait for another, and they do not have any precedence relationships.

Ci

Di

TiDi

Ti

n

CHAPTER 3 / REAL-TIME METHODS 51

One important aspect of the workload to consider is the utilization , which is the fraction
of the processor’s time which is needed to perform all the processing of the tasks. Utiliza-
tion is calculated as the sum of the each individual task’s utilization. A task’s utilization is
the ratio of its computation time divided by the period of the task (how frequently the com-
putation is needed):

3.2.2 Dividing the Design Space Based on the Workload and Scheduler

U � a
n

i�1
Ui � a

n

i�1

Ci

Ti

U

TABLE 3.1 Design Space Partitions

PREEMPTIVE NON-PREEMPTIVE

FIXED
PRIORITY

DYNAMIC
PRIORITY

FIXED
PRIORITY

DYNAMIC
PRIORITY

Di � Ti

Di � Ti

Di � Ti

General Case

As seen in Table 3.1, we divide the design space into partitions based on characteristics of
the workload and the scheduler because for some special cases the analysis is much eas-
ier than in the general case.

The relationship between a task’s deadline and period can be less than, equal to,
greater than, or the general case of any relationship. Similarly, the scheduler may or may
not allow preemption by tasks. Finally, priority assignment may be fixed or dynamic
(changing at run-time).

3.3 TASK PRIORITY ASSIGNMENT FOR PREEMPTIVE SYSTEMS

We can now examine different scheduling approaches using this foundation as a starting
point. One critical question which we haven’t answered yet is how do we assign priori-
ties?We can assign a fixed priority to each task, or allow a task’s priority to vary. The pros
and cons for these approaches are discussed in detail elsewhere (Buttazzo, 2005). We first
examine fixed-priority assignments.

52 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

3.3.1 Fixed Priority

3.3.1.1 Rate Monotonic Priority Assignment—RMPA

Rate monotonic priority assignment gives higher priorities to tasks with higher rates (ex-
ecution frequencies). Table 3.2 shows an example of a workload scheduled with RMPA.
RMPA is that it is optimal for workloads in which each task’s deadline is equal to its pe-
riod. There is no other task priority assignment approach which makes a system schedula-
ble if it is not schedulable with RMPA.

TABLE 3.2 Sample Workload

TASK EXECUTION TIME C PERIOD T PRIORITY WITH RMPA

t1 1 4 High

t2 2 6 Medium

t3 1 13 Low

3.3.1.2 Rate Monotonic Priority Assignment with Harmonic Periods

A special case of RMPA occurs when the task periods are harmonic: a task’s period is an
exact integer multiple of each shorter period. For example, a task set with periods of 3, 6,
18, and 54 has harmonic periods.

3.3.1.3 Deadline Monotonic Priority Assignment—DMPA

For tasks with the deadline less than the period RMPA is no longer optimal. In-
stead, assigning higher priorities to tasks with shorter deadlines results in optimal be-
havior. This is another common fixed-priority assignment approach.

3.3.2 Dynamic Priority

Instead of assigning each task a fixed priority, it is possible to have a priority which
changes. We still use all of the assumptions in our model defined previously; however, we
now need a scheduler which supports dynamic priorities. This means the scheduler must
sort tasks, incurring additional computational overhead.

3.3.2.1 Earliest Deadline First

One simple dynamic approach is called Earliest Deadline First, which unsurprisingly first
runs the task with the earliest deadline. This approach is optimal among preemptive sched-
uling approaches: if a feasible schedule is possible, EDF will find it.

Di � Ti

CHAPTER 3 / REAL-TIME METHODS 53

3.4 SCHEDULABILITY TESTS FOR PREEMPTIVE SYSTEMS

Let’s look at how to determine whether a given priority assignment makes a workload
schedulable.

3.4.1 Fixed Priority

We begin with fixed priority systems.

3.4.1.1 Rate Monotonic Priority Assignment—RMPA

For some workloads it is very easy to determine if the workload is definitely schedulable
with RMPA. The Least Upper Bound (LUB) test compares the utilization of the resulting
workload against a function based on the number of tasks.

� If is less than or equal to the LUB, then the system is definitely schedulable. The
LUB starts out at 1. As grows, the LUB approaches 0.693. This means that any
workload with RMPA and meeting the above criteria is schedulable.

� If is greater than the LUB, then this test is inconclusive. The workload may or
may not be schedulable with RMPA. We will need to use a different test to deter-
mine schedulability.1

U

n
U

U � a
n

i�1

Ci

Ti
� n a21

n � 1b � LUB

1 Researchers studying a large number of random task sets found that the average real feasible utilization is
about 0.88; however, this is just an average. Some task sets with were not schedulable,
while some with were schedulable.0.88 � U � 1

0.693 � U � 0.88

1

0.5

0
0 5 1510 20

Number of tasks n

U
ti

liz
at

io
n

Figure 3.2 Least Upper Bound for RMPA as a function of the number of tasks n.

54 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Figure 3.2 plots the rate monotonic least upper bound as a function of the number of tasks
. The area below the curve represents workloads which are always schedulable with

RMPA. For the area above the curve, the test is inconclusive.

EXAMPLE

Let’s see how this works for a system with three tasks, as shown in Table 3.2.We first com-
pute the utilization of the workload:

We compute the RM LUB for tasks:

Since , we know the system is schedulable and will meet all its deadlines. If
, we do not know if the system is schedulable using the LUB test. We will use

Response Time Analysis to determine schedulability.

3.4.1.2 Rate Monotonic Priority Assignment with Harmonic Periods

Harmonic RMPA has the benefit of guaranteeing schedulability up to 100 percent utiliza-
tion. Hence, if we are able to adjust task periods, we can make RMPA systems schedula-
ble. The trick is to make task periods harmonic: a task’s period must be an exact integer
multiple of the next shorter period. We can only shorten the period of a task to make it har-
monic, as increasing it would violate the original deadline. The challenge is that as we
shorten a task’s period, we increase the processor utilization for that task. We need to keep
utilization at or below 1 to keep the system schedulable.

Our first attempt at period modification lowers the period of task two to four time units,
and that of task three to eight time units. The resulting utilization of 1.125 is greater than
1, so the system is not schedulable. Our second attempt lowers the periods of tasks one and
three with a resulting utilization of 0.897, so the system is now schedulable.

3.4.1.3 Deadline Monotonic Priority Assignment—DMPA

Deadline Monotonic does not offer a simple utilization-based schedulability test, forcing
us to resort to response time analysis instead.

U � LUB
U � LUB

LUB � 3a21

3
� 1b � 0.780

n � 3

U � a
n

i�1
Ui � a

n

i�1

Ci

Ti
�

1

4
�

2

6
�

1

13
� 0.660

n

CHAPTER 3 / REAL-TIME METHODS 55

3.4.2 Dynamic Priority

EDF will result in a schedulable system if the total utilization is no greater than 1. This
simplifies system analysis significantly.

3.5 RESPONSE TIME ANALYSIS FOR PREEMPTIVE SYSTEMS

In some cases we may need to determine the worst-case response time (the maximum de-
lay between a task’s release and completion) for a task set.

3.5.1 Fixed Priority

In order to find the response time for a fixed priority assignment (RM, HRM, DM, etc.) we
need to figure out the longest amount of time that a task can be delayed (preempted) by
higher priority tasks.

The equation below calculates the worst-case response time for task as the sum of
that task’s computation time and the sum of all possible computations from higher-
priority tasks, as they will preempt if they are released before completes. The tricky
part of this equation is that if is preempted, then it will take longer to complete (will
grow), raising the possibility of more preemptions. So, the equation needs to be repeated

ti

ti ti

ti

Ri

Ci

Ri

U � a
n

i�1

Ci

Ti
� 1

TABLE 3.3 Sample workload with longer task three and harmonic periods.

ORIGINAL
FIRST HARMONIC
PERIOD ATTEMPT

SECOND HARMONIC
PERIOD ATTEMPT

TASK

EXECUTION

TIME C PERIOD T UTILIZATION

MODIFIED

PERIOD T UTILIZATION

MODIFIED

PERIOD T UTILIZATION

t1 1 4 0.250 4 0.250 3 0.333

t2 2 6 0.333 4 0.500 6 0.333

t3 3 13 0.231 8 0.375 12 0.231

Total 0.814 1.125 0.897

Schedulable Maybe No Yes

56 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

until stops changing or it exceeds the deadline . Note that the square half brackets
signify the ceiling function, which returns the smallest integer which is not smaller

than the argument .

EXAMPLE

Let’s evaluate the response time for the system of Table 3.3 from the previous example
(with non-harmonic periods). We will evaluate the response time for the lowest priority
task. We begin with a value of 0 for .

The estimated response time for task three to complete begins at six time units and grows
until it reaches a fixed point at ten time units. Since this is less than the deadline for task
three, we know the system is schedulable and will always meet its deadlines.

3.5.2 Dynamic Priority

Finding the worst case response time for a dynamic priority system is much more challeng-
ing due to the need to consider every possible combination of task releases, leading to a
large amount of analysis. There have been various methods developed to reduce the number
of cases which must be examined, but this remains a computationally expensive exercise.

Ri Di

R3 � C3 � a
2

j�1
l 10

Tj
mCj � 3 � l 10

4
m1 � l 10

6
m2 � 3 � 3 � 4 � 10

R3 � C3 � a
2

j�1
l 9
Tj
mCj � 3 � l 9

4
m1 � l 9

6
m2 � 3 � 3 � 4 � 10

R3 � C3 � a
2

j�1
l 7
Tj
mCj � 3 � l 7

4
m1 � l 7

6
m2 � 3 � 2 � 4 � 9

R3 � C3 � a
2

j�1
l 6
Tj
mCj � 3 � l 6

4
m1 � l 6

6
m2 � 3 � 2 � 2 � 7

R3 � C3 � a
2

j�1
l Ri

Tj
mCj � 3 � l 0

4
m1 � l 0

6
m2 � 3 � 1 � 2 � 6

Ri

Ri � Ci � a
i�1

j�1
l Ri

Tj
mCj

x
<x =

CHAPTER 3 / REAL-TIME METHODS 57

3.6 NON-PREEMPTIVE SCHEDULING APPROACHES

All of the scheduling analysis we just examined depends on the scheduler being able to
preempt any task at any time. Let’s consider scheduling when preemption is not possible.
Why? It turns out that we can save large amounts of RAM by using a non-preemptive
scheduler. A preemptive system requires enough RAM to store each task’s largest possible
call stack. A non-preemptive system only requires enough space to store the largest one of
all of the task’s call stacks. Systems with large numbers of tasks can significantly reduce
RAM requirements and correspondingly reduce MCU costs.

Removing preemption means that the processor cannot meet the deadline for a task ti

with deadline shorter than the duration of the longest task tL plus the actual computa-
tion time for our task of interest ti. This constraint rules out some systems but not all. Sys-
tems with tasks whose deadlines are sufficiently longer than the WCET of the longest
task are promising candidates for using non-preemptive scheduling. How much longer? That
depends on the range of deadlines and WCETs and requires quite a bit of analysis.

Another result of removing preemption is that sometimes it is possible to improve a
schedule by inserting a small amount of idle time to ensure that a task doesn’t start running
immediately before something more important is released. Calculating how much idle time
to insert, and where, is a computationally hard problem for general task sets, and therefore
not feasible. So we must limit ourselves to using a non-idling scheduler and accept that it
may not be as good as an idling scheduler.

We will now examine the timing characteristics of these remaining systems. Further
analysis and details are available elsewhere (George, Rivierre, & Spuri, 1996). For a given
task set and priority class (fixed or dynamic) we have several questions:

� What is the optimal priority assignment?
� Is there an easy schedulability test, and is it exact?
� How do we compute worst-case response time?

3.6.1 Optimal Priority Assignment

For dynamic priority non-preemptive schedulers, EDF turns out to be the optimal for gen-
eral task sets, in which the deadline does not need to be related to the period in any way.

For fixed priority schedulers, we can consider two cases. In the general case, with
deadlines not related to periods, there is a method to calculate the optimal priority assign-
ment (Audsley, 1991). Although this method applies directly to preemptive schedulers, it
has been modified to support non-preemptive schedulers as well. This method has a com-
plexity of .

There is a case where deadline monotonic is the optimal priority assignment. Two con-
ditions must be met. First, a task’s deadline must be no longer than its period. Second, for

O(n2)

Ci

Di

58 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

all pairs of tasks and , task with the shorter deadline must not require more computation
than task .

3.6.2 Schedulability Tests

Knowing whether a priority assignment is optimal is of limited value without knowing if it
leads to a feasible schedule.

For dynamic priority assignment of general task sets (deadline not related to the pe-
riod) there is no utilization-based test, but there is an inexact complex analytical test. It
provides a sufficient but not necessary condition for showing schedulability. For task sets
where a task’s deadline equals its period there is an exact analytical test, providing a nec-
essary and sufficient condition for schedulability.

For fixed priority assignment there is no utilization-based test. Instead, one must cal-
culate worst-case response time for each task and verify all deadlines are met.

3.6.3 Determining Worst-Case Response Time

Finding the WCRT for a task in a dynamic priority system is similar to the preemptive
case, which is already quite involved. The analysis also needs to consider the possibility of
priority inversion due to a later deadline.

Finding the WCRT for a task in a fixed priority system is less daunting. It is similar to
the preemptive case but requires considering blocking from the longest lower-priority
task. Details are omitted here.

3.7 LOOSENING THE RESTRICTIONS

The assumptions listed in the beginning of the section limit the range of real-time systems
which can be analyzed, so researchers have been busy removing them.

3.7.1 Supporting Task Interactions

One assumption is that tasks cannot interact with each other. They cannot share resources
which could lead to blocking.

Tasks typically need to interact with each other. They may need to share a resource, us-
ing a semaphore to provide mutually-exclusive resource use. This leads to a possible situa-
tion called priority inversion. If a low priority task tL acquires a resource and then is pre-
empted by a higher priority task tH which also needs the resource, then tH blocks and

Bi

j
iji

CHAPTER 3 / REAL-TIME METHODS 59

cannot proceed until tL gets to run and releases the resource. In effect, the priorities are in-
verted so that tL has a higher priority than tH.

Priority inversion is prevented by changing when a task is allowed to lock a resource.
Two examples of such rules are the Priority Ceiling Protocol and the Stack Resource Pro-
tocol. The response time analysis equation previously listed can be modified to factor in
blocking times.

3.7.2 Supporting Aperiodic Tasks

Another assumption is that each task runs with a fixed period . This is quite restrictive,
but it is possible to support aperiodic tasks by finding the minimum time between task re-
leases (inter-task release time) and using this as the period . This approach works but
overprovisions the system as the difference between minimum and average inter-task re-
lease times grows, limiting its usefulness. There are other approaches (e.g., polling servers)
which are beyond the scope of this text.

3.7.3 Supporting Task Interactions

Enabling tasks to share resources with dynamic task priorities is different from static task
priorities. With EDF, each job of a task is assigned a priority which indicates how soon its
deadline is. Priority inversion can still occur, but now job priorities may change. Re-
searchers have developed approaches such as the Stack Resource Policy (SRP), Dynamic
Priority Inheritance, Dynamic Priority Ceiling, and Dynamic Deadline Modification.

Let’s look at one example—the Stack Resource Policy. SRP assigns a preemption level
to each task in addition to its priority. Each shared resource has a ceiling,which is the high-
est preemption level of any task which can lock this resource. The system is assigned a
ceiling which is the highest of all currently locked resource ceilings. These factors are used
to determine when a job can start executing. Specifically, a job cannot start executing if it
does not both (1) have the highest priority of all active tasks, and (2) have a preemption
level greater than the system ceiling.

SRP simplifies analysis of the system because it ensures that a job can only block be-
fore it starts running, but never after. In addition, the maximum blocking time is one criti-
cal section. These factors lead to a simple feasibility test for periodic and sporadic tasks.
For each task , the sum of the utilizations of all tasks with greater preemption levels and
the blocking time fraction for this task must be no greater than one.

�i, 1 � i � n a
i

k�1

Ck

Tk
�

Bi

Ti
� 1

i

Ti

Ti

60 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

3.7.4 Supporting Aperiodic Tasks

Recall that our task model requires each task to be periodic. If a task’s period can vary, we
need to choose the minimum period and design the system according to this worst-case,
which can lead to an overbuilt system. As with fixed-priority systems, there are ways to re-
lax this limitation. For example, the Total Bandwidth Server (TBS) assigns deadlines for
aperiodic jobs so that their demand never exceeds a specified limit on the maximum al-
lowed processor utilization by sporadic tasks. The deadline which depends on the cur-
rent time and the deadline assigned for this task’s previous job. The deadline is
pushed farther out in time as the ratio of the execution time of the request and accept-
able sporadic server utilization increases.

With this approach, we can guarantee that the entire system is schedulable with EDF if the
utilization from periodic tasks and the TBS is no greater than one.

3.7.5 Supporting Shared Buses

Embedded processors may allow components besides the CPU core to control the address
and data buses. Some examples are Direct-Memory Access Controllers (DMAC) and Data
Transfer Controllers (DTC). If these devices can seize control of the buses and delay the
CPU, then their activities must also be considered as additional tasks with appropriate pri-
ority levels. A burst-mode transfer may be modeled easily as a single task, while a cycle-
stealing transfer slows whichever task is executing, complicating the analysis.

3.8 WORST-CASE EXECUTION TIME

All of the real-time system timing analysis presented here depends on knowing the worst-
case execution time (WCET) of each task (including interrupt service routines). For most
code, accurately determining theWCET is a non-trivial exercise. Instead, we attempt to es-
timate a safe upper bound—a value which may be greater than the actual WCET, but is
definitely not less than the WCET. This makes analysis using that bound safe because it
may overestimate execution time, but will never underestimate it. The tightness of the
bound indicates how close it is to the actual (unknown) WCET. As the WCET bound gets
tighter the resulting timing analysis grows more accurate and the calculated delays and uti-
lizations decrease, showing the system will respond sooner. A continual goal of researchers
in this field is to determine how to tighten WCET estimate bounds, reducing pessimistic
overestimation and the resulting overprovisioning of the resulting system.

(Us)(Up)

dk � max(rk, dk�1) �
Ck

Us

Us

Ck

dk�1rk

dk

Us

CHAPTER 3 / REAL-TIME METHODS 61

3.8.1 Sources of Execution Time Variability

Both software and hardware factors may make the execution time of a given function vary.
First, a function will likely contain different possible control-flow paths, each having a

different execution time. Programming constructs such as conditionals complicate the tim-
ing analysis, forcing the examination of each case to determine the longest. Loops with ex-
ecution counts unknown at the time of analysis are not analyzable without making as-
sumptions about the maximum number of iterations. The number of loop iterations and
selection of conditional cases may depend on input data.

Second, the MCU’s hardware may introduce timing variations. The duration of some
instructions may depend on their input data (for example, multiplying with a zero for ei-
ther operand can complete early, as the result will be zero). Pipelined processors are vul-
nerable to various hazards. Pipelined instruction processing overlaps the execution of dif-
ferent parts of multiple instructions. This increases the instruction throughput (instructions
per second), but does not reduce the time taken to execute an individual instruction.
Pipelining reduces the amount of time needed to execute code. The deeper the pipeline is,
the greater the risk and possible penalty. Most low-end microcontrollers have shallow
pipelines, reducing the impact of this risk. When taking a conditional branch, a pipelined
processor may stall (due to a control-flow hazard) as it fetches the correct instruction (the
target of the taken branch), discarding the previously fetched instruction (from the not-
taken path). Some processors may reduce the number of such stalls using a branch target
buffer (BTB). However, there may still be stalls where the BTB misses. There may also be
data-flow hazards, where one instruction depends upon the result of a prior instruction
which has not completed yet.

Cache memories introduce timing variability due to the different access times for
hits and misses. There are analytical methods to classify accesses as hits or misses, but
these typically do not cover all accesses, leaving some timing variability. Similarly,
there are methods to use caches more effectively (e.g., by locking blocks, or locating
data carefully) to reduce the number of cache misses. Some memory devices such as
DRAM include an internal row buffer which behaves as a cache, complicating timing
analysis.

3.8.2 RL78 Pipeline

The RL78 CPU pipeline has three stages, as shown in Figure 3.3:

� The IF (Instruction Fetch) stage fetches the instruction from memory and incre-
ments the fetch pointer.

� The ID (Instruction Decode) stage decodes the instruction and calculates operand
address.

62 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

� The MEM (Memory access) stage executes the instruction and accesses the speci-
fied memory location.

Many, but not all, RL78 instructions take one cycle to execute once the pipeline is full. The
RL78 Family Users Manual: Software (Renesas Electronics, 2011) presents execution
times for each instruction.

There are various situations in which instructions cannot flow smoothly through the
pipeline due to hazards. The following situations lead to hazards which stall the pipeline:

� Accessing data from flash or external memory (if present) rather than internal
RAM.

� Fetching instructions from RAM rather than from internal flash ROM.
� Current instruction using memory addressed by register written in previous in-

struction (e.g., indirect access).
� Changing the control flow of the program with instructions such as calls, branches,

and returns. Conditional branches are not resolved until the MEM stage, so the tar-
get address is not known until two cycles later. Because instruction fetching pro-
ceeds sequentially, branches are essentially predicted to be not taken. As a result,
taken conditional branches take two more cycles than not-taken conditional
branches.

IF ID

ID

ID

ID

ID

MEM

MEM

MEM

MEM

MEM

<1> <2> <3> <4> <5> <6> <7>

IF

IF

IF

IF

Elapsed time (state)

Internal system clock

Concurrent processing by CPU

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

End of
instruc-
tion 1

End of
instruc-
tion 2

End of
instruc-
tion 3

End of
instruc-
tion 4

End of
instruc-
tion 5

Figure 3.3 RL78 Instruction processing pipeline sequence.

CHAPTER 3 / REAL-TIME METHODS 63

3.8.3 Determining a Worst-Case Execution Time Bound

There are two approaches to determining the WCET. First, we can analyze a task and find
the path from entry to exit with the longest possible duration. Second, we can experimen-
tally run the task and measure the execution time.

There are two complications with the first (analytical) approach.

� First, the object code must be analyzed, not the source code. This is because it is
the object code that the MCU executes. Manual object code analysis becomes te-
dious very quickly. There are static timing analysis tools available for a limited
number of instruction set architectures and specific processors implementing those
ISAs. Developing these analyzers is complicated, and there is a limited market for
the tools.

� Second, we must make assumptions about input data. For example, what is the
maximum number of times a loop will repeat? The worse our assumptions, the
looser the timing bound, and the greater the overestimation.

The main limitation of the second (experimental) approach is that we don’t have any guar-
antee that the observed WCET is the actual WCET. Maybe we were very lucky selecting
the input data and test conditions, and chose values which led to an uncommonly fast exe-
cution. One way to reduce the risk in this area is to make many timing measurements with
a wide range of input data, while observing how much of the function has actually been ex-
ecuted (the code coverage). As the code coverage resulting from the test cases increases,
the risk of unexamined outlier cases decreases. The resulting observed WCET bound is
typically scaled up to include a safety factor.

3.9 EVALUATING AND OPTIMIZING RESPONSE LATENCIES

The CPU’s interrupt system, the RTOS, and the application program all introduce some de-
lays which limit the responsiveness of the system. In this section we explore the sources of
delays and discuss methods to reduce them.

There are three general types of critical path to consider:

� The latency between an interrupt being requested and the corresponding ISR
running.

� The latency between an interrupt being requested and a corresponding user task
running. The intervening ISR signals through the RTOS or some other mechanism
that the task should run.

� The latency between one task signaling an event or other mechanism, causing
another task (of higher priority) to run. Again, this uses an RTOS or other
mechanism.

64 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

For embedded systems, the first two cases are typically the most time-sensitive and so we
examine them here.

3.9.1 Methods for Measurement

As with any optimization activity, things go much faster when one can measure the relative
contribution of each component to the problem. This indicates where to begin optimization
efforts to maximize payoffs.

Some MCUs include mechanisms for logging a trace of executed instructions. With
proper triggering and post-processing support, this trace can be used to determine exactly
which code executed and how long each component took.

A similar approach is to instrument the software so that it signals externally which
code is executing (e.g., with output port bits or a high-speed serial communication link
such as SPI). These signals and external interrupt request lines can be monitored to deter-
mine what the processor is doing when. This approach requires access to source code to in-
sert the instrumentation instructions.

3.9.2 Interrupt Service Routine

There will be a finite latency between when an interrupt is requested and when the first in-
struction of the ISR begins to execute. Two components make up this latency.

First, the interrupt may be masked off, forcing the processor to ignore it until it is en-
abled. Any code which disables this or all interrupts will delay the response of this ISR.
Hence if interrupts must be disabled, it should be for as brief a time as possible. Note that
most CPUs disable interrupts upon responding to an interrupt request and restore previous
masking state upon returning from the interrupt. This means that interrupts are disabled
during an ISR’s execution, adding to this first latency component. Some time-critical sys-
tems may re-enable interrupts within long ISRs in order to reduce response latency.

Second, the CPU will require a certain amount of time to respond to the interrupt. This
time may include completing the currently executing instruction, saving some processor
context, loading the ISR vector into the program counter, and then fetching the first in-
struction from the ISR.

3.9.2.1 RL78 Interrupts

The RL78 architecture supports interrupts from many possible sources, both on- and off-
chip. When an interrupt is requested, the processor saves some of its execution state (pro-
gram counter and program status word), executes the ISR corresponding to the interrupt re-
quest, and then resumes the execution of the interrupted program.

CHAPTER 3 / REAL-TIME METHODS 65

The address of each ISR is listed in the interrupt vector table in memory. Whenever an
interrupt occurs, the processor uses this table to determine the location of the ISR.

CPU processing Instruction Instruction
PSW and PC saved,
jump to interrupt
servicing

Interrupt servicing
program

6 clocks

xxIF

9 clocks

Figure 3.4 Best-case interrupt response time.

CPU processing Instruction Instruction immediately
before interrupt

PSW and PC saved,
jump to interrupt
servicing

Interrupt servicing
program

xxIF

16 clocks

6 clocks8 clocks

Figure 3.5 Worst-case interrupt response time.

1. When an interrupt is requested, the CPU will finish executing the current instruc-
tion (and possibly the next instruction2) before starting to service the interrupt.
Figure 3.4 shows a best-case example, in which the ISR begins executing nine cy-
cles after the interrupt is requested. Figure 3.5 shows the worst case (with a long
instruction and an interrupt request hold situation), where this can take up to six-
teen cycles.

2 Certain instructions (called interrupt request hold instructions) delay interrupt processing to ensure proper
CPU operation.

66 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

2. The CPU pushes the current value of the PSW and then the PC onto the stack, as
shown in Figure 3.6. Saving this information will allow the CPU to resume pro-
cessing of the interrupted program later without disrupting it.

3. The CPU next clears the IE bit. This makes the ISR non-interruptible. However, if an
EI instruction is executed within the ISR, it will become interruptible at that point.

4. If the interrupt source is a maskable interrupt, the CPU next loads the PSW PR field
with the priority of the ISR being serviced (held in the bits ISP0 and ISP1). This pre-
vents the processor from responding to lower-priority interrupts during this ISR.

5. The CPU loads the PC with the interrupt vector for the interrupt source.
6. The ISR begins executing.

3.9.3 Real-Time Kernel

If the system uses a real-time kernel, then the ISR may call a kernel function in order to
signal a task to trigger its execution. The kernel code which performs this has critical sec-
tions which must be protected. A common way is to disable interrupts, which increases in-
terrupt response latency. Another approach is to lock the scheduler to prevent switching to
other tasks. This still requires disabling the interrupts for a brief time, but much less time
than the first approach.

PC7 to PC0

PC15 to PC8

PC19 to PC16

PSW

SP–4

SP–3

SP–2

SP–1

SPV

SPWSP–4
X

X

X

X

X

Interrupt, BRK instruction
(4-byte stack)

Figure 3.6 Interrupt and BRK instruction push processor status and program counter
onto stack.

CHAPTER 3 / REAL-TIME METHODS 67

Let’s examine the critical path from interrupt request to task execution in C/OS-III
using the scheduler lock method (called deferred post in C/OS-III). This is examined in
much greater detail in Chapter 9 of the C/OS-III manual (Labrosse & Kowalski, 2010).

� CPU interrupt response:
▫ The interrupt is requested.
▫ After some delay (including interrupt disable time), the interrupt is serviced.

� ISR execution:
▫ Disable interrupts, if not already disabled.
▫ Execute prologue code to save state.
▫ Process the interrupting device (e.g., copying a value from a result or received

data register).
▫ Potentially re-enable interrupts, if desired.
▫ Post the signal to the kernel’s interrupt queue.
▫ Call OSIntExit, which will switch contexts to the interrupt queue handler task

(which is now ready, and is of higher priority than any user task).
� Interrupt queue handler task:

▫ Disable interrupts.
▫ Remove post command from interrupt queue.
▫ Re-enable interrupts.
▫ Lock scheduler.
▫ Re-issue post command.
▫ Yield execution to scheduler.

� Scheduler:
▫ Context switch to highest priority task.

� Signaled task (assuming it is the highest priority):
▫ Resume execution.

Real-time kernel vendors often provide information on the maximum number of cycles re-
quired to perform various operations. These counts will depend on the target processor archi-
tecture, compiler, optimization level, and memory system. Similarly, these kernels are de-
signed to disable interrupts for as little time as possible, and will advertise these counts as well.

Some kernels can provide statistics at run-time which allow a designer to monitor var-
ious system characteristics. For example, C/OS-III provides the following information at
run-time:

� OSIntDisTimeMax indicates the maximum amount of time that interrupts have
been disabled.

� OSSchedLockTimeMax indicates the maximum amount of time which the sched-
uler was locked.

m

m

m

m

68 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

� OSSchedLockTimeMaxCur indicates the maximum amount of time for which this
task locked the scheduler.

� OSStatTaskCPUUsage indicates the percentage of CPU time used by the application.

Kernels are typically configurable in which services they offer, and scalable in how many
resources are available. Both of these parameters may affect kernel response time, depend-
ing on the implementation details. Hence the kernel should be configured to be lean and ef-
ficient, rather than providing extra services which are not needed.

3.9.4 Application

There are various ways in which an application can negatively affect a system’s
responsiveness.

3.9.4.1 Disabled Interrupts

The application can delay response to interrupts (and dependent processing) through indis-
criminate disabling of interrupts. This should be avoided if at all possible, instead disabling
only the specific interrupt leading to the ISR causing the race condition.

Similarly, for most CPU architectures the ISRs execute with interrupts disabled. Hence
any ISR can be delayed by all higher priority interrupts as well as one lower-priority inter-
rupt. ISRs should be made as short as possible. One way is to leverage the kernel’s com-
munication and synchronization mechanisms to hand off as much processing as possible to
task-level code where it will not impact responsiveness.

Another approach is to re-enable interrupts immediately upon entering the ISR. This
opens the door to all sorts of potential data race problems and should not be done without
fully understanding the consequences.

3.9.4.2 Priority Inversion from Shared Resources

If a high priority task shares a resource with a lower priority task then it is possible for pri-
ority inversion to occur. Most kernels offer mutexes in order to reduce amount of time a
high priority task spends blocking on a shared resource by temporarily raising the priority
of the lower priority task currently holding that resource.

3.9.4.3 Deadlines and Priorities

In a fixed-priority system, tasks with higher priorities will have shorter average response
latencies than those with lower priorities. Assigning task priority with a Rate Monotonic
approach implies that a task’s deadline is equal to its period. The Deadline Monotonic

CHAPTER 3 / REAL-TIME METHODS 69

approach allows deadlines to be shorter than task periods, allowing for finer control of task
responsiveness.

3.10 RECAP

In this chapter we have studied how to calculate the worst-case response time and schedu-
lability for real-time systems. We then examined worst-case execution time concepts. We
concluded with an examination of the sequence of activities from interrupt request to re-
sponse, whether in an ISR or a task.

3.11 BIBLIOGRAPHY

Audsley, N. C. (1991). Optimal priority assignment and feasibility of static priority tasks with arbitrary start

times.York: University ofYork, Department of Computer Science.

Audsley, N. C., Burns, A., Davis, R. I., Tindell, K. W., & Wellings, A. J. (1995). Fixed Priority Pre-emptive

Scheduling: An Historical Perspective. Real-Time Systems, 8(3), 173–198.

Buttazzo, G. C. (2005). Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems, 29, 5–26.

George, L., Rivierre, N., & Spuri, M. (1996). Technical Report RR-2966: Preemptive and Non-preemptive

Real-time Uniprocessor Scheduling. INRIA.

Labrosse, J., & Kowalski, F. (2010). MicroC/OS-III: The Real-Time Kernel. Weston, FL: Micrium Press.

Renesas Electronics. (2011). RL78 Family User’s Manual: Software.

Sha, L., Abdelzhaer, T., Arzen, K.-E., Cervin, A., Baker, T., Burns, A., et al. (2004, November-December).

Real Time Scheduling Theory: A Historical Perspective. Real Time Systems, 28(2–3), 101–155.

Chapter 4

71

4.1 LEARNING OBJECTIVES

This chapter deals with how to make a program run faster. In particular, it shows how to
find the slow parts of a program and address them. There are many guides to optimization
which provide a plethora of ways to improve code speed. The challenge is to know which
code to optimize. This chapter concentrates first on methods to find the slow object code.
It then presents methods to help examine object code generated by the compiler and un-
derstand its relationship to the C source code. This ability is necessary for applying many
of the analysis and optimization techniques presented in Chapters 5 and 6.

4.2 BASIC CONCEPTS

There are many reasons why an embedded program many need to run faster: a quicker re-
sponse, to free up time for using a more sophisticated control algorithm, to move to a
slower or less expensive processor, to save energy by letting the processor sleep longer, and
so on.

However, an embedded system is built of many parts, any one of which could be limit-
ing performance. The challenge is to find out which part of the system is limiting perfor-
mance. It is similar to a detective story—there are many suspects, but who really did it?

� Was the architecture a bad fit for the work at hand?
� Is your algorithm to blame?
� Did you do a bad job coding up the algorithm?
� Did the person who coded up the free software you are using do a bad job?
� Is the compiler generating sloppy object code from your source code?
� Is the compiler configured appropriately?
� Are inefficient or extra library functions wasting time?
� Is the input data causing problems?
� Are communications with peripheral devices taking too much time?

Profiling and Understanding Object Code

72 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Clearly there are many possible culprits, but we would like to find the most likely ones
quickly in order to maximize our benefits.

The real problem is that programmers have spent far too much time worrying
about efficiency in the wrong places and at the wrong times; premature
optimization is the root of all evil (or at least most of it) in programming.

—Donald Knuth

With this in mind, here is an overview of how to develop fast code quickly:

1. Create a reasonable system design.
2. Implement the system with reasonable implementation decisions. Good judgment

is critical here. However, don’t start optimizing too early.
3. Get the code working.
4. Evaluate the performance. If it is fast enough, then your work is done. If not, then

repeat the following as needed:
a. Profile to find bottlenecks.
b. Refine design or implementation to remove or lessen them.

4.2.1 Correctness before Performance

Don’t try to optimize too early. Make a reasonable attempt to make good design and im-
plementation decisions early on, but understand that it is essentially impossible for puny
earthlings like us to create an optimal implementation without iterative development. So
start with a good implementation based on reasonable assumptions. This implementation
needs to be correct. If it isn’t correct, then fix it. Once it is correct it is time to examine the
performance to determine performance bottlenecks.

Certain critical system characteristics do need to be considered to create a good imple-
mentation. In particular, one must consider the MCU’s native word size, hardware support
for floating-point math, and any particularly slow instructions (e.g., divide).

4.2.2 Reminder: Compilation is Not a One-to-One Translation

A compiler translates source code (e.g., in the C language) into object code (e.g., text-
based human-readable assembly code or binary CPU-readable machine code).1 There are
many possible correct object code versions of a single C language program. The compiler
will generally create a reasonably fast version, but it is by no means the fastest. Part of your
role in optimizing software is to understand if the compiler is generating object code which
is good enough. Some of this can come from reading the compiler manual (IAR Systems).

CHAPTER 4 / PROFILING AND UNDERSTANDING OBJECT CODE 73

However, even more understanding comes from examining that code and using your judg-
ment2 to make this decision. Examining the object code generated by the compiler is a re-
markably effective way to learn how to help it generate more efficient code.

4.3 PROFILING—WHAT IS SLOW?

There are many opportunities for optimization in any given program, but where and how
should we start? We could waste a lot of time speeding up code which doesn’t really im-
pact the system’s overall performance.3 In order to avoid this, we want to identify what
parts of the program take up most of its time. Optimizing those parts first will give us the
biggest payback on our development time. Profiling a program shows us where it spends
its time, and therefore where we should spend our time for optimization.

4.3.1 Mechanisms

There are four basic approaches to profiling a program.

1. We can sample the program counter periodically by interrupting the program to
see what it is doing by examining the return address on the call stack, and then
looking up what function (or region, to generalize) contains that instruction ad-
dress. This approach provides the biggest return on development time effort.

2. We can modify each function in the program to record when it starts and finishes
executing. After the program runs we process the function execution time infor-
mation to calculate the profile. We don’t discuss this further, as it requires exten-
sive modification to the program (for each user function and library function).
Some compilers or code post-processing tools provide this support.

3. Some debuggers use a similar approach, inserting breakpoints at the start of all
functions. Each time the debugger hits a breakpoint or returns from a function it
notes the current time and the function name. The debugger uses this information
to calculate the execution time profile of the program. This approach incurs de-
bugger overhead with each breakpoint and function return, potentially slowing
down the program significantly.

1 For the purposes of this discussion, the assembly code and machine code are two different representations of
the same object code.
2 Good judgment comes from experience. Experience comes from bad judgment.
3 You can avoid ten minutes of careful thinking by instead spending the whole day blindly hacking code.

74 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

4. We can use hardware circuitry to extract an instruction address trace by moni-
toring the address bus as the program runs. An MCU with an externally-accessible
address bus can be connected to a logic analyzer to capture the trace. Alternatively,
some MCUs do include dedicated debug hardware to capture the trace and save it
internally or send it out through a communication port. The address trace can then
be processed to create the profile.

There are two types of profiles: flat and cumulative.A flat profile indicates how much time
is spent inside a function F.A cumulative profile indicates how much time is spent in F and
all of the functions which it calls, and all the functions called by those functions, and so forth.

4.3.2 An Example PC-Sampling Profiler for the RL78

We will use the PC-sampling approach here for reasons of practicality and performance.
There are commercial and open source profiling tools available. For example, the C-Spy
debugger in IAR Embedded Workbench for RL78 supports profiling using only break-
points on the target processor, which limits execution speed.

Instead, let’s see how to build a PC-sampling profiler for the RL78 using IAR Embed-
ded Workbench.

4.3.2.1 Sampling the PC

First we need a way to sample the PC occasionally. During system initialization we con-
figure a timer array unit peripheral to generate interrupts at a frequency4 of 100 Hz. This in-
terrupt is handled at run time by the service routine shown here.

1. #pragma vector = INTTM00_vect
2. __interrupt void MD_INTTM00(void)
3. {
4. /* Start user code. Do not edit comment generated here */
5.
6. volatile unsigned int PC; // at [SP+4]
7. unsigned int s, e;
8. unsigned int i;
9.

10. if (!profiling_enabled)
11. return;

4 This is an arbitrary frequency. A higher frequency increases resolution but also timing overhead. A lower fre-
quency reduces resolution and overhead.

CHAPTER 4 / PROFILING AND UNDERSTANDING OBJECT CODE 75

12.
13. profile_ticks++;
14.
15. //Extract low 16 bits of return address
16. __asm(" MOVW AX, [SP+14]\n"
17. " MOVW [SP+4], AX\n");
18.
19. /* look up function in table and increment counter */
20. for (i = 0; i < NumProfileRegions; i++) {
21. s = RegionTable[i].Start;
22. e = RegionTable[i].End;
23. if ((PC >= s) && (PC <= e)) {
24. RegionCount[i]++;
25. return;
26. }
27. }
28. /* End user code. Do not edit comment generated here */
29. }

This ISR needs to retrieve the saved PC value from the stack. Figure 4.1 shows the stack
contents upon responding to an interrupt. The address of the next instruction to execute after
completing this ISR is stored on the stack in three bytes: PC7–0, PC15–8, and PC19–16. At
the beginning of the ISR, they will be at addresses SP�1, SP�2, and SP�3. However, the

PC7–PC0

PC15–PC8

PC19–PC16

PSW

SP–4

SP–3

SP–2

SP–1

SPV

SPWSP–4
X

X

X

X

X

Interrupt and
BRK instruction
(4-byte stack)

Figure 4.1 Stack contents upon responding to an interrupt.

76 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

ISR may push additional data onto the stack so we will need to examine the assembly code
generated by the compiler for our ISR before we can definitively identify the offsets from
the SP. In our case there is additional data allocated on the stack for local variables, so the
high byte of the saved PC (PC19-PC16) is located at SP�16 and the low word (PC0-PC7
and PC8-PC15) is at SP�14. The code at lines 16 and 17 in the listing copies the low word
of the saved PC value into register AX and then into the local variable PC on the stack.

4.3.2.2 Finding the Corresponding Code Region

TABLE 4.1 Region Address Information Table

REGION NAME START ADDRESS END ADDRESS COUNT

foo 0�00001234 0�00001267 0

bar 0�00001268 0�00001300 0

So now we have the saved PC, which shows us what instruction the processor will execute
after finishing this ISR. What program region (e.g., function) corresponds to that PC? Ide-
ally we would like a table of information such as in Table 4.1.

There are various ways to create such a table. One approach is to process the map file
created by the linker. The IAR Embedded Workbench for RL78 generates a map file in the
output directory (e.g., debug/your_project_name.map) which shows the size and location
of each function. Functions are stored in one of three types of code segment:

� CODE holds program code
� RCODE holds start-up and run-time library code
� XCODE holds code from functions declared with the attribute __far_func

Here is an example entry from the map file:

CODE
Relative segment, address: 00001238 - 000013C8 (0x191 bytes), align: 0
Segment part 11.

ENTRY ADDRESS REF BY
===== ======= ======
sim_motion 00001238 main (CG_main)

calls direct
CSTACK = 00000000 (000000A4)

— -

CHAPTER 4 / PROFILING AND UNDERSTANDING OBJECT CODE 77

It shows that the function sim_motion starts at address 00001238 and ends at address
000013C8. We can use this information to create a region table entry for the function. We
create a type of structure called REGION_T to hold a region’s start address, end address,
and label (to simplify debugging). The addresses are stored as unsigned ints (16 bits long)
because we wish to save space, and our target MCU’s program memory is located within
the first 64 KB of the address space. This would need to be changed if we needed to store
larger addresses.

1. typedef struct {
2. unsigned int Start;
3. unsigned int End;
4. char Name[16];
5. } REGION_T;

We will use an awk script to extract function names and addresses and generate a C file
which holds two arrays, as shown in the listing below. Some toolchains offer tools for ex-
tracting symbols and their information from the object code. For example, gnu binutils pro-
vides nm and objdump.

The first array (RegionTable, lines 2–19) holds the start and end addresses of the func-
tions and their names. The ISR MD_INTTM00 accesses it in lines 21 and 22 provided pre-
viously. The array is declared as a const to allow the compiler to place it into ROM, which
is usually larger and less valuable than RAM for microcontrollers.

The second array (RegionCount, line 21) is an array of unsigned integers which count
the number of times the region was interrupted by the ISR. This array is initialized to all
zeros on start-up. The ISR increments the appropriate array entry in line 26. If we do not
find a corresponding region, then no region counter is incremented.

1. #include "region.h"
2. const REGION_T RegionTable[] = {
3. {0x00000A46, 0x00000A79, "AD_Init"}, //0
4. {0x00000A7A, 0x00000A83, "AD_Start"}, //1
5. {0x00000A84, 0x00000A87, "AD_ComparatorOn"}, //2
6. {0x00000A88, 0x00000A95, "MD_INTAD"}, //3
7. {0x00000A96, 0x00000AAF, "IT_Init"}, //4
8. {0x00000AB0, 0x00000ABC, "IT_Start"}, //5
9. {0x00000AD4, 0x00000AE8, "MD_INTIT"}, //6

10. {0x00000AE9, 0x00000B8F, "main"}, //7

(many lines deleted)

11. {0x00000A1D, 0x00000A45, "matherr"}, //60
12. {0x00001606, 0x00001710, "sqrt"}, //61

78 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

13. {0x00001711, 0x0000185C, "__iar_Atan"}, //62
14. {0x0000185D, 0x00001907, "__iar_Dint"}, //63
15. {0x00001912, 0x00001964, "__iar_Dnorm"}, //64
16. {0x00001965, 0x00001B1D, "__iar_Dscale"}, //65
17. {0x00001B27, 0x00001C66, "__iar_Quad"}, //66
18. {0x00001C67, 0x00001DC2, "__iar_Sin"}, //67
19. };
20. const unsigned NumProfileRegions=68;
21. volatile unsigned RegionCount[68];

We also have the ISR increment a variable (sample_count) to count how many samples
we’ve taken. We need this value to correctly calculate the profile if any of our samples did
not hit any regions in our table.

4.3.2.3 Modifications to the Build Process

Make Region
Table

LinkerCompiler &
Assembler

Source Files

profile.c

profile.h

region.h

region.c

Object Files
Executable

File

Map File

Figure 4.2 Modified build process includes dependency on map file.

Our build process is now more complicated, because the region table depends on the map
file, as shown in Figure 4.2. The map file is not created until after the program is fully com-
piled and linked, so we will need to rebuild the program several times. With suitable tools
this build process can be automated.

� We first build the program using a dummy region.c file, which contains an empty
region table. The resulting map file has the correct number of functions, but with
addresses which will probably change, so they are wrong.

CHAPTER 4 / PROFILING AND UNDERSTANDING OBJECT CODE 79

� We run our tool to create the region table from the map file. The region table now
has the correct number of entries, but the addresses are wrong.

� We rebuild the program. The resulting map file has the correct (final) function
addresses.

� We run our tool to create the region table from the map file.
� We rebuild the program for the final time. The resulting executable contains a re-

gion table with correct address information for each function.

4.3.2.4 Running the Program

We are now ready to run the program on the target hardware using input data for the test
case(s) that we are interested in examining. We let the program run for a sufficiently long
time, noting that there may be initialization and other program phases which execute be-
fore getting to program steady-state (or the phase we would like to measure). These phases
may affect the profiling measurements, in which case we may want to wait to enable pro-
filing until the program reaches a certain operating phase or location. We can then let the
program run for a sufficient amount of time. Practically speaking, this means running the
program long enough that the relative ratios of the region counts have stabilized. Then we
can examine the resulting profile and the corresponding functions.

4.3.2.5 Examining the Resulting Profile

After running the program under appropriate conditions we are ready to examine the profile.

Figure 4.3 Raw profile information RegionCount and RegionTable arrays.

80 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

We begin by examining the raw data. As shown in Figure 4.3, we can use a C-Spy Watch
window to examine the RegionCount table in the debug window of C-Spy. This provides a
raw, unsorted view of the execution counts in the order of region number. It is helpful to
bring up the RegionTable in another window to determine which function a given region
represents. This is functional but tedious.

Figure 4.4 Debug log shows profile results in sorted and processed format.

CHAPTER 4 / PROFILING AND UNDERSTANDING OBJECT CODE 81

The second method is more sophisticated and leverages C-Spy’s macro capabilities. An en-
terprising student5 in my class developed a solution which uses C-Spy to display region in-
formation (names, sample count, and percentage of total samples) sorted in order of de-
creasing frequency, as shown in Figure 4.4.6 This makes analysis much easier. Detailed
instructions for configuring and using this solution are included in the profiler documenta-
tion.

We can now determine where the program spends most of its time. We simply find the
region with the largest number of profile hits and start looking at that region’s C and the
corresponding assembly code.

4.4 EXAMINING OBJECT CODE WITHOUT GETTING LOST

The abstractions provided by the C programming language and compiler allow us to gen-
erate sophisticated, powerful programs without having to pay attention to very many de-
tails. The downside of these abstractions is that we lose sight of the actual implementation
details which may in fact be slowing down the program significantly.

One of the first steps in optimizing code performance is looking for obvious problems
in code which dominates the execution time. Sometimes the compiler generates inefficient
object code because of issues in the source code and the semantics of the C programming
language. Chapter 5 focuses on how to help the compiler create fast, clean object code.
First, however, we need to be able examine that object code so that we can identify suspi-
cious code. Examining object code is a very time-consuming activity unless we have
proper guidance and focus.

Let’s consider a C function (shown below) which initializes an array with values of the
sine function.

1. uint8_t SineTable[NUM_STEPS];
2.
3. void Init_SineTable(void) {
4. unsigned n;
5.
6. for (n = 0; n < NUM_STEPS; n++) {
7. SineTable[n] = (uint8_t)

((MAX_DAC_CODE/2)*(1 + sin(n * 2 * 3.1415927/NUM_STEPS)));
8. }
9. }

5 Thanks to Daniel Wilson for all this! Professors love it when students come up with great ideas and run with
them.
6 Note that this shows the results of a different profiling run than shown in Figure 4.3.

82 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

4.4.1 Support for Mixed-Mode Viewing and Debugging

Most compilers provide the option to generate an assembly language listing annotated
with comments containing the C source code. For example, in IAR Embedded Workbench
this can be controlled by selecting Project -> Options -> C/C�� Compiler -> List -> Out-
put list file. Each time a file is compiled the corresponding listing (.lst) file will be gener-
ated in List subdirectory of the output directory (e.g., Debug/List). Each line in this listing
may show an address (e.g., 000001), the binary information stored there (e.g., machine
code instruction C5), and the assembly language translation of that instruction (e.g., PUSH
DE). Similarly, most debuggers provide a similar mixed-mode view for debugging code.
With IAR Embedded Workbench, theView -> Disassembly window provides an assembly-
language view of the program.

If we examine the compiler-generated assembly code listing for Init_SineTable (shown in
Section 4.4.2) we can see many specific details but lose the big picture—we can’t see the for-
est because of the trees.And this is just the code for one function! The listing for the complete
program is almost overwhelming. Unfortunately, there are many crucial clues contained
within these listing files. Some of them but not all are summarized in the linker’s map file.

4.4.2 Understanding Function Calling Relationships

We expect a compiler processing Init_SineTable to insert calls to any functions which our
code explicitly calls (i.e., sine). Similarly, we expect that using floating point variables on
an integer-only MCU will cause the compiler to add calls to library routines which imple-
ment that functionality in software (multiply, divide, and add). We also should expect calls
to data type conversion code (unsigned to float, float to unsigned).

But is there anything else? How can we determine how much code could actually exe-
cute as a result of calling a given function? After all, the more code which executes, the
longer the program takes. The abstraction of programming in a high-level language may
hide important implementation details (such as extra code) from us. Given our goal of re-
ducing program run time, it is important to see how all the program’s functions are related.
This will give us insight into how to optimize the program.

4.4.2.1 Examining Object Code

So, which subroutines could a function actually call? We could search the listing file shown
below for subroutine CALL instructions but this quickly becomes tedious, especially when
we consider that each function may call others (and each of those may call others, and so on).

1. void Init_SineTable(void) {
2. Init_SineTable:

CHAPTER 4 / PROFILING AND UNDERSTANDING OBJECT CODE 83

3. 000000 ; * Stack frame (at entry) *
4. 000000 ; Param size: 0
5. 000000 C3 PUSH BC ;; 1 cycle
6. 000001 C5 PUSH DE ;; 1 cycle
7. 000002 ; Auto size: 0
8. unsigned n;
9.

10. for (n = 0; n < NUM_STEPS; n++) {
11. 000002 F6 CLRW AX ;; 1 cycle
12. 000003 14 MOVW DE, AX ;; 1 cycle
13. 000004 EF41 BR S:??DAC_Test_0 ;; 3 cycles
14. 000006 ; ---------------------------- Block: 7 cycles
15. SineTable[n] = (uint8_t)

((MAX_DAC_CODE/2)*(1+sin(n*2*3.1415927/NUM_STEPS)));
16. ??Init_SineTable_0:
17. 000006 30FE42 MOVW AX, #0x42FE ;; 1 cycle
18. 000009 C1 PUSH AX ;; 1 cycle
19. 00000A F6 CLRW AX ;; 1 cycle
20. 00000B C1 PUSH AX ;; 1 cycle
21. 00000C 30803F MOVW AX, #0x3F80 ;; 1 cycle
22. 00000F C1 PUSH AX ;; 1 cycle
23. 000010 F6 CLRW AX ;; 1 cycle
24. 000011 C1 PUSH AX ;; 1 cycle
25. 000012 30803C MOVW AX, #0x3C80 ;; 1 cycle
26. 000015 C1 PUSH AX ;; 1 cycle
27. 000016 F6 CLRW AX ;; 1 cycle
28. 000017 C1 PUSH AX ;; 1 cycle
29. 000018 304940 MOVW AX, #0x4049 ;; 1 cycle
30. 00001B C1 PUSH AX ;; 1 cycle
31. 00001C 30DB0F MOVW AX, #0xFDB ;; 1 cycle
32. 00001F C1 PUSH AX ;; 1 cycle
33. 000020 15 MOVW AX, DE ;; 1 cycle
34. 000021 01 ADDW AX, AX ;; 1 cycle
35. 000022 F7 CLRW BC ;; 1 cycle
36. 000023 FD CALL N:?F_UL2F ;; 3 cycles
37. 000026 FD CALL N:?F_MUL ;; 3 cycles
38. 000029 1004 ADDW SP, #0x4 ;; 1 cycle
39. 00002B FD CALL N:?F_MUL ;; 3 cycles
40. 00002E 1004 ADDW SP, #0x4 ;; 1 cycle
41. 000030 FD CALL sin ;; 3 cycles
42. 000033 FD CALL N:?F_ADD ;; 3 cycles

84 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

43. 000036 1004 ADDW SP, #0x4 ;; 1 cycle
44. 000038 FD CALL N:?F_MUL ;; 3 cycles
45. 00003B FD CALL N:?F_F2SL ;; 3 cycles
46. 00003E 60 MOV A, X ;; 1 cycle
47. 00003F C5 PUSH DE ;; 1 cycle
48. 000040 C2 POP BC ;; 1 cycle
49. 000041 48 MOV (SineTable & 0xFFFF)[BC], A ;; 1 cycle
50. }
51. 000044 A5 INCW DE ;; 1 cycle
52. 000045 1004 ADDW SP, #0x4 ;; 1 cycle
53. 000047 ; ---------------------------- Block: 49 cycles
54. ??DAC_Test_0:
55. 000047 15 MOVW AX, DE ;; 1 cycle
56. 000048 444000 CMPW AX, #0x40 ;; 1 cycle
57. 00004B DCB9 BC ??Init_SineTable_0 ;; 4 cycles
58. 00004D ; ---------------------------- Block: 6 cycles
59. }
60. 00004D C4 POP DE ;; 1 cycle
61. 00004E C2 POP BC ;; 1 cycle
62. 00004F D7 RET ;; 6 cycles
63. 000050 ; ---------------------------- Block: 8 cycles
64. 000050 ; ---------------------------- Total: 70 cycles

We see that Init_SineTable can call the functions ?F_UL2F, ?F_MUL (three times),
?F_ADD, and F_F2SL. These are library functions for converting an unsigned long integer
to a floating point value, a floating point multiply, a floating point add, and converting a
floating point value to a signed long integer.

This is a start. However, can these functions call any other functions? We won’t know
without examining the assembly code for those functions. Assuming that we have that code
(which is not usually the case for library code) we can do this manually but it is quite tedious.

4.4.2.2 Call Graphs

A call graph (shown in Figure 4.5) presents all possible calling relationships between
functions clearly and concisely (Cooper & Torczon, 2011). Nodes are connected with di-
rected edges pointing toward the called function because calling a function is unidirec-
tional (the return is implicit).

Some code analysis tools can automatically create call graphs. Those which analyze
only the source code exclude the helper library functions which the compiler will need to
link in to create a functioning program. For example, building a call graph using the
C source code in Section 4.4 rather than the object code in Section 4.4.2 would have re-

CHAPTER 4 / PROFILING AND UNDERSTANDING OBJECT CODE 85

sulted in a call graph in which Init_SineTable calls only the function sine. None of the
other functions called by Init_SineTable (whether directly or indirectly) would be present
in the graph, misleading us in our analysis.

There are other call graph generator tools which analyze the object code and therefore
include those additional functions. For our purposes of profiling and optimization we need
these in order to get a complete picture. The linker map file typically includes information
on the calling relationships between functions. The same enterprising student from my
class also developed a tool to form call graphs (Figure 4.5 is one example) from map files
generated by IAR Embedded Workbench.

4.4.2.3 Call Graph Analysis

Examining the call graph in Figure 4.5 shows that the program is more complex than we
might have expected. The sine function may call __iar_Sin, which in turn may call
__iar_Quad, ?FCMP_LT, ?FCMP_EQ, __iar_Errno, ?F_NEG_L04, and other functions.
Some of these may call further other functions. In fact, calling sine may lead to executing
a total of twenty-nine different functions, and some of them may be called multiple times.
This is quite a bit of code, and it may account for a significant amount of program execu-
tion time, so it is worth investigating.

4.4.2.4 Forward Reference: Stack Space Requirements

In Chapter 9 we will examine how to measure and reduce memory requirements (both
RAM and ROM). The call graph helps us determine the maximum possible stack size and
therefore allocate a safe amount of RAM.

The call graph shows the nesting of function calls and this influences the amount of
RAM required to hold the procedure call stack. RAM size is strongly correlated with MCU
price, so designers of cost-sensitive systems would like to use the minimum possible.
However, if the stack overflows its allotted space then the program will malfunction. We
would like to allocate just enough stack space (to ensure safety) but not too much (to min-
imize RAM costs).

We can calculate maximum call stack space required by examining the stack depth at
each leaf node.7 The stack space required at a given node in the call graph is the sum of
the size of each activation record on a path beginning at graph’s root node (main) and end-
ing at node , including both nodes.

One difference between the preemptive and non-preemptive scheduling approaches
described in Chapters 2 and 3 is the amount of RAM required for call stacks. A non-
preemptive scheduler requires only one call stack, and shares this stack space over

N

N

7 In a call graph, a leaf node does not call any subroutines.

86 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

__
lo

w
_l

ev
el

_i
ni

t

R
_S

ys
te

m
in

it

R
_C

G
C

_C
re

at
e

R
_D

AC
_C

re
at

e
R

_A
D

C
_C

re
at

e
R

_D
AC

0_
S

ta
rt

D
el

ay

D
AC

_T
es

t

R
_D

AC
1_

S
ta

rt

m
ai

n

R
_M

A
IN

_U
se

rIn
it

R
_D

AC
1_

S
et

_C
on

ve
rs

io
nV

al
ue

?0
E

FU
N

C
_L

E
AV

E
_L

06

S
eg

m
en

tp
ar

t2

?C
_S

TA
R

TU
P

__
D

eb
ug

B
re

ak
In

it_
S

in
eT

ab
le

__
ex

it
ex

it

__
ex

it

si
n

?F
_U

L2
F

__
ia

r_
S

in

__
IN

IT
_W

R
K

S
E

G
?W

R
K

S
E

G
_S

TA
R

T
__

ia
r_

no
rm

_a
rg

?F
_M

U
L

?F
_F

2S
L

__
ia

r_
Q

ua
d

?F
_A

D
D

?F
_N

E
G

_L
04

__
ia

r_
D

te
st

__
ia

r_
E

rm
o

fm
od

__
ia

r_
D

un
sc

al
e

__
ia

r_
D

sc
al

e

__
ia

r_
D

in
t

?F
C

M
P

_L
T

?F
C

M
P

_E
Q

__
IN

IT
_N

E
A

R
_Z

__
ia

r_
D

no
rm

?S
L_

C
M

P
_L

03
?U

I_
R

S
H

_L
02

?I
_L

S
H

_L
02

?0
S

FU
N

G
_L

E
AV

E
_L

06

?0
E

L_
F_

D
E

A
LL

O
C

_L
06

Fi
g
u
re

4.
5
C
al
lg
ra
ph
of
a
po
rt
io
n
of
th
e
sa
m
pl
e
pr
og
ra
m
in
cl
ud
in
g
th
e
In
it_
Si
ne
Ta
bl
e
fu
nc
tio
n.

CHAPTER 4 / PROFILING AND UNDERSTANDING OBJECT CODE 87

time with the different tasks as they execute sequentially. Only the largest task stack
needs to fit into RAM. However, a preemptive scheduler requires one call stack for
each task because preemptions could occur at any point in a task’s execution (i.e., any
point within that task’s call graph). Much of the task’s state is stored on the stack, so
that must be preserved and not used by other tasks. As a result, a preemptive system
needs enough RAM to hold all task stacks simultaneously, with each potentially at its
largest. Systems with many tasks are quite sensitive to overestimation of stack-depth
requirements.

4.4.3 Understanding Function Basics

We can now look into a particular function to examine its basic internal features and meth-
ods. We are interested in understanding how the function’s object code is related to the
source code. For further details, please refer to Chapter 6 of the introductory text (Dean &
Conrad, 2013).

Typically each source function is compiled into a separate object language function,
but the compiler may optimize the program by eliminating the function or copying its body
into the calling function. The code for the function consists of a prolog, a body, and an epi-
log. Each function also contains instructions to manage local data storage in its activation
record on the call stack.

� The prolog prepares space for local storage. For example, it may save onto the
stack registers which would need to have their values preserved upon returning
from the function. It may allocate stack space for automatic variables and tempo-
rary results which are only needed within the scope of this function. Finally, it may
also move or manipulate parameters which were passed to this function.

� The body of the function performs the bulk of the work specified in the source
code.

� The epilog undoes some of the effects of the prolog. It restores registers to their
original values as needed, deallocates stack space, possibly places the return value
in the appropriate location, and then executes a return instruction.

Functions calls and returns are supported as follows:

� Calling a function involves first moving any parameters into the appropriate loca-
tions (registers or stack) according to the compiler’s parameter passing conven-
tions. The code then must execute subroutine call instruction.

� Upon returning from a function, argument space may need to be deallocated from
the stack. A return value will be in a register or on the stack according to the com-
piler’s value return convention.

88 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

How data is accessed depends on its storage class:

� External and static variables have fixed addresses and can be accessed using ab-
solute addressing or a pointer register.

� Automatic variables may be located in registers or on the function’s activation
record (frame) on the call stack. Data on the activation record is accessed using
the stack pointer as a base register and an offset which indicates the location within
the activation record.

� Some variables may be promoted temporarily to registers by the compiler in order
to improve program speed.

Function prologs and epilogs are generally easy enough to understand as they are simple
and execution flows straight through from the first instruction to the last without excep-
tions. However, function bodies tend to be more difficult to understand because their flow
of execution changes with loops and conditionals. These control flow changes make un-
derstanding assembly code much more difficult.

4.4.4 Understanding Control Flow in Assembly Language

Programming languages such as C use braces and indentation to indicate nested control
flow behavior. Code which may be repeated or performed optionally is indented, providing
a visual cue about the program’s behavior.

Assembly code is typically formatted in order to simplify parsing by the assembler.
Specific fields begin at specific columns, or after a fixed number of tab characters. All in-
structions have the same level of indentation, regardless of the amount of control nesting.
Similarly, labels indicating branch targets are placed at another level of indentation. In-
struction op-codes are at another level, and operands at yet another. This obscures program
control flow and makes assembly code examination tiring and error prone.

4.4.4.1 Control Flow Graph

A control flow graph (CFG, similar to a flowchart) shows the flow of program control
(execution) through a function. Jumps, loops, conditionals, breaks, and continues are ex-
amples of types of control flow. There are two types of CFG, based on the type of code an-
alyzed. A CFG based on source code does not consider assembly code and excludes the
impact of the compiler. Some compilers and toolchains generate (or can be extended to
generate) such CFGs.

However, we need to understand the object code details in order to perform our code
analysis and optimization. We need a CFG which represents the object code. Each node in

CHAPTER 4 / PROFILING AND UNDERSTANDING OBJECT CODE 89

such a CFG represents a basic block, a set of consecutive assembly instructions without
any control flow changes (Cooper & Torczon, 2011). If an instruction in the basic block ex-
ecutes once, then every other instruction will also execute exactly once.8 A basic block is
indivisible from the point of view of program control flow. A conditional branch can only
be the last instruction in a basic block. Similarly, a branch target can only be the first in-
struction in a basic block. CFGs and CGs are essential representations in the static timing
analysis tools described in Chapter 3.

A CFG generator program parses the object code in order to create an accurate and
complete CFG. This means that the parser must be able to understand which instructions
change the program’s flow of control and how to determine their targets. Hence a CFG
generation tool must be targeted to a specific instruction set architecture.

If we have no tool for our instruction set architecture we will need to use the next best
solution. We will instead rely on the compiler’s or debugger’s mixed-mode listings, with
the interleaved C code providing guidance on the control flow behavior of the object code.

4.4.4.2 Control Flow Graph Analysis

Figure 4.6 shows the control-flow graph of the object code for the Init_SineTable function.
Using this graphical representation we can clearly see the object code’s control flow as
well the specifics.

� The first basic block (with label Init_SineTable) includes the prolog (saving reg-
isters BC and DE on the stack) as well as the initialization of the loop control vari-
able (in register DE). The first basic block ends with an unconditional branch to
the basic block ??DAC_Test_0.

� Basic block ??DAC_Test_0 performs the loop test. Recall that the C source code
uses a for loop, which is a top-test loop. This means the code must perform the
test before executing the first iteration of the loop body.
▫ If the result of the loop test is true, then the conditional branch BC

??Init_SineTable_0 is taken and the processor will branch to the basic block
??Init_SineTable_0. That basic block begins the loop body.

▫ If the result of the loop test is false, then the conditional branch will not
change the program counter, and execution will instead continue with the next
instruction, which is located immediately after the branch instruction. This is
the fall-through or not-taken path.

8 Note that this is under normal program execution and does not consider interrupts, which are normally out-
side the scope of the compiler.

90 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Init_SineTable:
000000 PUSH BC
000001 PUSH DE
000002 CLRW AX
000003 MOVW DE, AX
000004 BR S:??DAC_Test_0

??Init_SineTable_0:
000006 MOVW AX, #0x42FE
000009 PUSH AX
00000A CLRW AX
00000B PUSH AX
00000C MOVW AX, #0X3F80
00000F PUSH AX
000010 CLRW AX
000011 PUSH AX
000012 MOVW AX, #0X3C80
000015 PUSH AX
000016 CLRW AX
000017 PUSH AX
000018 MOVW AX, #0X4049
00001B PUSH AX
00001C MOVW AX, #0XFDB
00001F PUSH AX
000020 MOVW AX, DE
000021 ADDW AX, AX
000022 CLRW BC
000023 CALL N:?F_UL2F

000026 CALL N:?F_MUL

000029 ADDW SP, #0X4
00002B CALL N:?F_MUL

00002E ADDW SP, #0X4
000030 CALL sin

000033 CALL N:?F_ADD

000036 ADDW SP, #0X4
000038 CALL N:?F_MUL

00003B CALL N:?F_F2SL

00003E MOV A, X
00003F PUSH DE
000040 POP BC
000041 MOV (SineTable & 0xFFFF)[BC], A
000044 INCW DE
000045 ADDW SP, #0X4

??DAC_Test_0:
000047 MOVW AX, DE
000048 CMPW AX, #0X40
00004B BC ??Init_SineTable_0

00004D POP DE
00004E POP BC
00004F RET

Figure 4.6 Control flow graph for object code of Init_SinTable function.

CHAPTER 4 / PROFILING AND UNDERSTANDING OBJECT CODE 91

� The loop body consists of a sequence of eight basic blocks beginning with
??Init_SineTable_0 (with relative address 000006). This code loads up various
parameters onto the parameter call stacks and then calls a sequence of functions to
process them. There are also stack-pointer adjustment instructions to free up stack
space used for passing parameters. In the last basic block, the instruction at ad-
dress 000041 moves the computed value into memory in the correct element of the
array SineTable by using the address offset specified in the BC register, which is
derived from the index variable stored in DE.

� The last basic block in the program (beginning with relative address 00004D) con-
tains the epilog. The original values of the DE and BC registers are restored and a
return from subroutine instruction pops the PC off the stack, allowing the calling
function to resume.

4.4.4.3 Oddities

Notice that the compiler has structured and laid out the code somewhat unexpectedly. First,
the code for performing the loop test is located after the loop body, even though this is a
top-test loop. Second, the loop body pushes all of the arguments onto the stack before be-
ginning to call those functions. Why didn’t the compiler just generate code to push those
arguments immediately before each call?

The simple answer is that the compiler had its own reasons and we don’t know them.
Does this create faster code? Smaller code? Is it easier to debug the object code? Was it
easier for the compiler developers to write functions which do the code this way? Does it
make it easier for later possible compiler passes to optimize? We don’t know.

The lesson to take away is that a compiler has a tremendous amount of flexibility
when compiling and optimizing a program. What is actually “under the hood” may be
quite different from what we expect to see. When we are analyzing and optimizing
software, if we limit ourselves to working at only the source code level then we are ig-
noring many details, some of which may be critical for us. We can do much better when
we examine the actual object code so we can understand why the system does what it
does and why. Understanding the object code is much easier when using visualization
tools.

4.5 RECAP

In this chapter we have seen that determining which code to optimize is an essential step
before considering how to optimize it. We have learned how to use execution-time pro-
filing to find which code dominates the execution time. We have then seen how to make
sense of object code based both on source code and program structure.

92 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

4.6 BIBLIOGRAPHY

Cooper, K., & Torczon, L. (2011). Engineering a Compiler (2nd ed.). Morgan Kaufmann.

Dean, A. G., & Conrad, J. M. (2013). Creating Fast, Responsive and Energy-Efficient Embedded Systems us-

ing the Renesas RL78 Microcontroller.Weston, FL: Micrium Press.

Knuth, D. Turing Award Lecture: Computer Programming as an Art, Communications of the ACM, 17(12),

Dec. 1974.

Chapter 5

93

5.1 LEARNING OBJECTIVES

This chapter addresses how to optimize a program by using the compiler more effectively.
We examine configuration options for the compiler and other parts of the toolchain. Then
we explore what optimizations the compiler should be able to perform, and how to help it
do them. Finally we evaluate how to reduce computations by precomputing data before
run-time or by reusing data calculated at run-time.

5.2 BASIC CONCEPTS

Figure 5.1 shows the various stages in software development, progressing from require-
ments at the top to object code at the bottom. First, the developer creates a high-level de-
sign, which involves selecting the specific architectures and algorithms that define what
system components will exist and how they will operate in order to meet the require-
ments. The developer then implements the algorithms with a detailed design which leads

Using the Compiler Effectively

Con�g.
Options

Software
Toolchain

Requirements

Algorithm
and Architecture

Detailed Design
and Source Code

Object Code

Figure 5.1 Opportunities for optimization in the software development process.

94 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

to source code. The source code is compiled to object code which can be executed and
evaluated.

Note that at each level there are typically multiple approaches possible, but only one is
selected, as indicated by the bold arrow. Similarly, there are typically many variants of a
specific approach possible, as indicated by the overlapped circles. This means that there are
opportunities for optimization at each of these levels. We can improve program perfor-
mance in various ways: improving the algorithm and architecture, improving the detailed
design, improving the source code implementing the detailed design, and improving the
quality of the code created by the software toolchain.

In the previous chapter we learned how to use profiling to identify which code is slow-
ing down the program the most, and therefore what to optimize. We also learned that
which part of the program is slowest is often a surprise.

In this chapter we focus on improving the quality of the code generated by the software
toolchain. This involves possibly changing detailed design, source code, and software tool-
chain configuration options. We examine two areas: how to configure the toolchain prop-
erly and how to help the compiler generate good code. We also examine methods for pre-
computing and reusing data.

An iterative and experimental approach is the best way to evaluate how well the com-
piler is doing its job, and to determine how to improve it. Examine the object code, modify
the source code, recompile the module, and examine the new object code output. Repeat
this process as needed.

In the next chapter we will examine how to improve the design at higher levels, touch-
ing on algorithms and architectures, as well as detailed design, source code, and mathe-
matical representations and approximations.

5.2.1 Your Mileage Will Vary

We need to keep several points in mind as we consider the optimization process.

� Each program is structured differently and likely has a different bottleneck.
� There may be several different bottlenecks depending on which code is executing.

A system with four different operating modes (or four different input events) may
have four different bottlenecks, so be sure to profile the code for a variety of oper-
ating modes and input conditions.

� A program’s bottleneck may move after an optimization is performed. After all, it
is just the slowest part of the code. If it is optimized enough, then another piece of
code becomes the slowest.

� Different processor architectures have different bottlenecks. Accessing memory in
a deeply-pipelined 2 GHz processor may cost 500 cycles. On the RL78, however,

CHAPTER 5 / USING THE COMPILER EFFECTIVELY 95

there is generally only a single cycle penalty. Hence optimizations which are ef-
fective on one processor architecture may be inconsequential on another.

� Different compilers use different approaches to generate code. Recall that there
are many possible assembly language programs which can implement the spec-
ification given by a source-level program. One compiler may aggressively un-
roll loops, while another may not. If you manually try unrolling loops with the
first compiler you likely will see no performance improvement. It is valuable
to examine the optimization section of the compiler manual for guidance and
suggestions.

There are many excellent guides to optimizing code and we do not attempt to duplicate
them. In this chapter we examine how to help the compiler generate good code for the
RL78 MCU.

5.2.2 An Example Program to Optimize

In order to illustrate the long and winding road of optimizations, let’s consider a real pro-
gram. We will use this program to provide specific optimization examples in this and the
next chapter.

We would like to determine the distance and bearing from an arbitrary position on
the surface of the earth to the nearest weather and sea state monitoring station. The
US government’s National Oceanographic and Atmospheric Administration (NOAA)
monitors weather and sea conditions near the US using a variety of sensor platforms,
such as buoy and fixed platforms. This information is used for weather forecasting and
other applications. NOAA’s National Data Buoy Center (http://www.ndbc.noaa.gov/
and http://www.ndbc.noaa.gov/cman.php) gathers information from many buoy-mounted
(and fixed) platforms and makes it available online. The locations of these platforms are
to be stored in the MCU’s flash ROM.

Finding the distance and bearing between two locations on the surface of the earth uses
spherical geometry. Locations are represented as latitude and longitude coordinates. We
use the spherical law of cosines to compute the distance in kilometers:

We compute the bearing (angle toward the location) in degrees as follows:

,

sin(lon2 � lon1) * cos(lat2)) *
180
p

a � atan2(cos(lat1) * sin(lat2) � sin(lat1) * cos(lat2) * cos(lon2 � lon1)

d � acos(sin(lat1) * sin(lat2) � cos(lat1) * cos(lat2) * cos(lon2 � lon1)) * 6371

96 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Further details are available online at http://www.movable-type.co.uk/scripts/latlong.html.
This is a mathematically intensive computation with many trigonometric functions, so we
expect many opportunities for optimization.

Let’s examine the relevant functions needed to do this work. The function Calc_
Distance calculates the distance between two points.

1. float Calc_Distance(PT_T * p1, const PT_T * p2) {
2. //calculates distance in kilometers between locations

(represented in degrees)
3. return acos(sin(p1->Lat*PI/180)*sin(p2->Lat*PI/180) +
4. cos(p1->Lat*PI/180)*cos(p2->Lat*PI/180)*
5. cos(p2->Lon*PI/180 - p1->Lon*PI/180))*6371;
6. }

The function Calc_Bearing calculates the bearing from the first to the second point.

1. float Calc_Bearing (PT_T * p1, const PT_T * p2){
2. //calculates bearing in degrees between locations

(represented in degrees)
3. float angle = atan2(
4. sin(p1->Lon*PI/180 - p2->Lon*PI/180)*cos(p2->Lat*PI/180),
5. cos(p1->Lat*PI/180)*sin(p2->Lat*PI/180) -
6. sin(p1->Lat*PI/180)*cos(p2->Lat*PI/180)*
7. cos(p1->Lon*PI/180 - p2->Lon*PI/180)
8.) * 180/PI;
9. if (angle < 0.0)

10. angle += 360;
11. return angle;
12. }

The function Find_Nearest_Point calculates the distance to each point (in line 15) to find
the one closest to the current position. It keeps track of the closest point’s distance and in-
dex in lines 18–20.

1. void Find_Nearest_Point(float cur_pos_lat, float cur_pos_lon,
2. float * distance, float * bearing, char * * name) {
3. //cur_pos_lat and cur_pos_lon are in degrees
4. //distance is in kilometers
5. //bearing is in degrees
6. int i = 0, closest_i;
7. PT_T ref;

CHAPTER 5 / USING THE COMPILER EFFECTIVELY 97

8. float d, b, closest_d=1E10;
9. *distance = *bearing = NULL;

10. *name = NULL;
11. ref.Lat = cur_pos_lat;
12. ref.Lon = cur_pos_lon;
13. strcpy(ref.Name, "Reference");
14. while (strcmp(points[i].Name, "END")) {
15. d = Calc_Distance(&ref, &(points[i]));
16. b = Calc_Bearing(&ref, &(points[i]));
17. //if we found a closer point, remember it and display it
18. if (d<closest_d) {
19. closest_d = d;
20. closest_i = i;
21. }
22. i++;
23. }
24. d = Calc_Distance(&ref, &(points[closest_i]));
25. b = Calc_Bearing(&ref, &(points[closest_i]));
26. //return information to calling function about closest point
27. *distance = d;
28. *bearing = b;
29. *name = (char *) (points[closest_i].Name);
30. }

Note that there are various other functions (e.g., for initialization) in the program, but these
three do the bulk of the work.

5.3 TOOLCHAIN CONFIGURATION

We begin by examining how to configure the toolchain. Although the default settings
should produce correct code, we may be able to improve the code by changing the settings.

5.3.1 Enable Optimizations

Be sure to enable optimization in the project options, as it may not be enabled (or maxi-
mized) by default. Most compilers support several levels of optimization, often with selec-
table emphasis on speed or code size. It is often possible to override the project optimiza-
tion options as needed for specific source modules (i.e., files). For example, we may want
the compiler to optimize for speed in general, except for a module which is rarely executed

98 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

but contains a large amount of code. Alternatively, size may be so important that we opti-
mize every module for size except for those which dominate the execution time.

5.3.2 Use the Right Memory Model

Compilers for embedded systems typically support multiple memory models, varying in
how much memory can be addressed. Using the smallest possible memory model can re-
duce the amount of code needed, speeding up the program and reducing memory require-
ments. This is because accessing more possible locations requires longer addresses and
pointers, which in turn typically require more instructions and hence memory and execu-
tion time.

The RL78 ISA has a one megabyte address space, which requires twenty bits for ad-
dressing. Some RL78 addressing modes require the instruction to specify all twenty bits of
the address. Others use implicit, fixed values for certain bits so the instruction can specify
fewer bits, typically saving space and time.

The RL78 supports addresses and pointers of two sizes: 16 bits and 20 bits. Addressing
memory with a 20 bit address involves using an additional 4-bit segment register (ES or
CS) to specify the upper portion of the address. This requires the use of additional and
slower instructions, reducing code performance and increasing code size.

Compilers and libraries for the RL78 provide memory models which match these ad-
dress sizes. Near memory models can access up to 64 kilobytes of space, using 16-bit ad-
dresses. Far memory models can access the full one megabyte of space but require 20-bit
addresses. Different memory models can be specified for code and data, allowing better
optimization.

5.3.3 Floating Point Math Precision

Double-precision floating point math is excessive for most embedded system applications,
needlessly slowing and bloating programs. Functions in math libraries often use double-
precision floating point math for arguments, internal operations, and return values.

Compilers which target embedded applications may offer an alternative single-
precision version of the math library, or single-precision functions within the double-
precision library (e.g., sinf vs. sin). Others may only offer the single-precision library
(e.g., IAR Embedded Workbench for RL78), or enable all doubles to be treated as single
precision floats. Finally, some embedded compilers may allow the user to select between
floating point math libraries with increased speed or increased precision (e.g., IAR
Embedded Workbench for RL78).

In the next chapter we will examine how to reduce or eliminate the need for floating
point math.

CHAPTER 5 / USING THE COMPILER EFFECTIVELY 99

5.3.4 Data Issues

5.3.4.1 Data Size

Use the smallest practical data size. Data which doesn’t match the machine’s native word
size will require extra instructions for processing. The native data sizes for the RL78 archi-
tecture are the bit, byte, and 16-bit word.

5.3.4.2 Signed vs. Unsigned Data

Some ISAs offer unequal performance for signed and unsigned data, so there may be a
benefit to using one type or another. The IAR Compiler manual recommends using un-
signed data types rather than signed data types if possible.

5.3.4.3 Data Alignment

Some memory systems offer non-uniform access speeds based on alignment. For example,
the RL78 has word-aligned memory, so smaller elements in a structure (e.g., chars) may re-
sult in padding bytes, and therefore wasting memory.

5.4 HELP THE COMPILER DO A GOOD JOB

5.4.1 What Should the Compiler be Able to Do on Its Own?

The compiler should be able to perform certain optimizations on its own if you enable op-
timization in the compiler options. Don’t waste your time performing these transforma-
tions manually because the compiler should do them automatically.

� Perform compile-time math operations.
� Reuse a register for variables which do not interfere.
� Eliminate unreachable code, or code with no effect.
� Eliminate useless control flow.
� Simplify some algebraic operations (e.g., x * 1 � x, x � 0 � x).
� Move an operation to where it executes less often (e.g., out of a loop).
� Eliminate redundant computations.
� Reuse intermediate results.
� Unroll loops.
� Manually inline functions (instead use macros).

100 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

5.4.2 What Could Stop the Compiler?

Sometimes the compiler can’t perform these optimizations, so it helps to examine the ob-
ject code and determine whether they occurred or not. If they didn’t, and the code would
benefit significantly, then it makes sense to investigate why the compiler didn’t perform
them and possibly implement them manually.

Compilers are very careful when it comes to optimizations—the “dark corners” of the
semantics of the C language probably allow our program to behave in a certain way which
would cause the optimized code to be incorrect. Code should be written to make it clear to
the compiler which side effects are impossible, enabling the optimizations. Another reason
is that the compiler has a harder time identifying optimization opportunities across more
complex program structure boundaries (or when accessing memory).

In this section we examine C language semantics in order to understand their impact
on the compiler’s possible optimization. This subject is covered in further detail in Jakob
Engblom’s article “Getting the Least out of your C Compiler”(Engblom, 2002).

5.4.2.1 Excessive Variable Scope

Creating variables as globals or statics when they could be local instead (automatics and
parameters) limits the compiler in two ways, resulting in slower, larger code and larger
memory requirements.

First, because global variables have a program-wide scope, they can be accessed by
any function. Consider function , which performs some operations on global variables.
The compiler may be able to optimize the code by loading these variables into registers,
operating on them, and then writing the values back to the global memory locations before
returning from . However, if calls a function , then the compiler must write the global
values back to memory before calling the function. After returning from the function, the
compiler will need to reload these global values if they are used again. This adds instruc-
tions which slow the program and increase code memory size.

Second, global and static variables are allocated permanent storage in data memory. This
is because the compiler must assume these variables are alive for the entire duration of the pro-
gram. The compiler cannot reuse this memory for other variables, reducing available space.

5.4.2.2 Automatic Type Promotion

What code will the compiler generate if we try to mix data types in an expression? For ex-
ample, how is a float variable multiplied by a char variable?

1. float f;
2. char c;

gƒƒ

ƒ

CHAPTER 5 / USING THE COMPILER EFFECTIVELY 101

3. int r;
4. r = f * c;

The compiler does not generate code to perform the mixed multiplication directly. There is
no library function to perform this mixed multiplication directly either. Instead, the com-
piler calls a library routine to convert (promote) the char variable’s data to float type.
Then the compiler can generate code tomultiply the two float values together, in this case
using a call to the floating point math library. Now that we have calculated the result, we
need to store it in an int (integer) variable. The compiler will generate a call to convert the
float to an int, and then store the result in .

The resulting object code must do this:

� call subroutine to convert from char to float
� call subroutine to perform floating point multiply with
� call subroutine to convert result from floating point to integer
� store resulting integer in

So there is quite a bit of work resulting from our simple “ ;” expression. Using
data types consistently can both reduce the overhead of conversions as well as improve the
speed of the actual mathematical operations performed.

This promotion and conversion behavior is defined by automatic type promotion rules
in ANSI C. The goal is to preserve the accuracy of data while limiting the number of cases
which the compiler and library must support. These promotions may lead to library calls
which use additional time and memory.As these promotions aren’t immediately obvious in
the source code, it is often valuable to examine the generated assembly code when dealing
with mixed conversions.

r � ƒ * c

r

ƒ
c

r

TABLE 5.1 ANSI C Standard for Arithmetic Conversions, Omitting Rules for Converting
Between Signed and Unsigned Types

1 If either operand is a long double, promote the other to a long double

2 Else if either is a double, promote the other to a double

3 Else if either is a float, promote the other to a float

4 Else if either is an unsigned long int, promote the other to an unsigned long int

5 Else if either is a long int, promote the other to a long int

6 Else if either is an unsigned int, promote the other to an unsigned int

7 Else both are promoted to int: short, char, bit field

102 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Keep in mind that functions in the math library (prototyped in math.h) are often double-
precision floating point. This can cause the compiler to promote all arguments to double-
precision floats, and then potentially convert results back to a lower precision format. This
wastes time and memory and should be avoided.

5.4.2.3 Operator Precedence and Order of Evaluation

The type promotions described above will depend on the order in which an expression’s
terms are evaluated. This order is determined by the operator’s precedence and associa-
tivity. Precedence determines which type of operator is evaluated first, while associativity
specifies the order to evaluate multiple adjacent operators of the same precedence level.
The C language semantics are shown in Table 5.2. Use parentheses as needed to change the
order of term evaluation in an expression.

TABLE 5.2 C Operator Precedence and Associativity

OPERATOR NAME OPERATOR ASSOCIATIVITY

Primary () [] . -> ++(post) --(post) left to right

Unary * & + -! ~ ++(pre) --(pre) (typecast) sizeof() right to left

Multiplicative * / % left to right

Additive + -
Bitwise Shift >> <<
Relational <> <= >=
Equality == !-
Bitwise AND &
Bitwise
Exclusive OR

^

Bitwise
Inclusive OR

|

Logical AND &&
Logical OR ||
Conditional ? : right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= right to left

Comma , left to right

1. a = b + c * d - e % f / g;

CHAPTER 5 / USING THE COMPILER EFFECTIVELY 103

For example, the expression above will be evaluated in the order shown in Table 5.3.

TABLE 5.3 Order of Evaluation of Example Code

STEP A � B � C * D � E % F /G

1 c * d

2 e % f

3 /g

4 b �

5 �

6 a �

5.5 PRECOMPUTATION OF RUN-TIME INVARIANT DATA

One particularly effective optimization is to pre-compute data which does not change when
the program is running (run-time invariant data). How much computation can be done be-
fore the program even starts running? The compiler should be able to perform some, while
other work may need to be handled with a custom tool such as a spreadsheet which gener-
ates data tables. In this section we first examine what the compiler can do, and then what
we can do before even running the compiler.

5.5.1 Compile-Time Expression Evaluation

The functions Calc_Distance and Calc_Bearing have many operations on constants—
specifically calculating PI/180. The compiler should be able to perform these divisions at
compile-time. Let’s examine at the assembly code for Calc_Distance and find out. The
compiler is set for high optimization, targeting speed without any size constraints.

1. float Calc_Distance(PT_T * p1, const PT_T * p2) {
2. //calculates distance in kilometers between locations

(represented in degrees)
3. return acos(sin(p1->Lat*PI/180)*sin(p2->Lat*PI/180) +
4. cos(p1->Lat*PI/180)*cos(p2->Lat*PI/180)*
5. cos(p2->Lon*PI/180 - p1->Lon*PI/180)) * 6371;
6. }

104 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

We would expect certain subroutine calls to implement the floating point operations, as
shown in the first two columns of Table 5.4. However, the actual object code has some ad-
ditional calls to F_DIV, the floating point division library subroutine. What is the compiler
doing and why?

The compiler should be able to perform the division of PI/180 at compile-time, elimi-
nating the need for run-time division calls. However, the C source code has six floating
point divides, so it is obvious that the compiler isn’t doing that possible optimization. It
seems that the C language’s operator precedence rules are getting in the way in the expres-
sion p1-�Lat*PI/180. Multiplication and division are the same level of precedence and are
left-associative, so p1-�Lat * PI is performed first, and then the division by 180 is per-
formed. Let’s put parentheses around all of the PI/180 terms.With this change the compiler
performs the division at compile time and eliminates the calls to F_DIV.

Another unexpected result is the missing three calls to the cosine function and the three
extra calls to the sine function __iar_Sin. The compiler is likely using a trigonometric iden-
tify to calculate the cosine using the sine function.

5.5.2 Precalculation before Compilation

If we examine Calc_Distance and Calc_Bearing we find that the second parameter to each
function is a pointer to a “const” point—one stored in the array points. These points are de-
fined at compile time and then will not change again until we update the list. We could save
quite a bit of time with two types of pre-computation:

� Storing a point’s latitude and longitude in radians rather than degrees, avoiding the
need to convert at run-time.

TABLE 5.4 Function Calls in Calc_Distance

OPERATION
CALL

TARGET
COUNT EXPECTED

FROM SOURCE CODE
COUNT MEASURED
FROM OBJECT CODE

Arc Cosine ACOS 1 1

Sine __iar_Sin 2 5

Cosine ? 3 0

Floating-Point Multiply F_MUL 10 10

Floating-Point Add F_ADD 1 1

Floating-Point Subtract F_SUB 1 1

Floating-Point Divide F_DIV 0 6

CHAPTER 5 / USING THE COMPILER EFFECTIVELY 105

� Storing the derived trigonometric values. Calc_Distance and Calc_Bearing both
use the sine of latitude and cosine of latitude.

So we will modify the spreadsheet we used to create CMAN_coords.c to precompute these
values. We will also need to modify the type definition of PT_T to include the sine and co-
sine of the latitude. This actually simplifies the code quite a bit, as shown below.

1. float Calc_Distance(PT_T * p1, const PT_T * p2) {
2. //calculates distance in kilometers between locations (represented

in radians)
3. return acos(p1->SinLat * p2->SinLat +
4. p1->CosLat * p2->CosLat *cos(p2->Lon - p1->Lon)) * 6371;
5. }
6. float Calc_Bearing(PT_T * p1, const PT_T * p2){
7. //calculates bearing in degrees between locations (represented in

degrees)
8. float angle = atan2(
9. sin(p1->Lon - p2->Lon)* p2->CosLat,

10. p1->CosLat * p2->SinLat -
11. p1->SinLat * p2->CosLat * cos(p1->Lon - p2->Lon)
12.) * 180/PI;
13. if (angle < 0.0)
14. angle += 360;
15. return angle;
16. }

We will also modify the code in Find_Nearest_Point to convert the current location to ra-
dians and save the sine and cosine of latitude.

1. void Find_Nearest_Point(float cur_pos_lat, float cur_pos_lon, float *
distance, float * bearing,

2. char * * name) {
3. //cur_pos_lat and cur_pos_lon are in degrees
4. //distance is in kilometers
5. //bearing is in degrees
6.
7. int i=0, closest_i;
8. PT_T ref;
9. float d, b, closest_d=1E10;

10.
11. *distance = *bearing = NULL;

106 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

12. *name = NULL;
13.
14. ref.Lat = cur_pos_lat*PI_DIV_180;
15. ref.SinLat = sin(ref.Lat);
16. ref.CosLat = cos(ref.Lat);
17. ref.Lon = cur_pos_lon*PI_DIV_180;
18. strcpy(ref.Name, "Reference");

5.6 REUSE OF DATA COMPUTED AT RUN-TIME

The compiler may also be able to reuse data which the program has already computed, re-
ducing program size and execution time. One method common to many compilers is
called common sub-expression elimination. In this section we examine a function with
many opportunities for this type of optimization and then evaluate how well the compiler
uses them.

5.6.1 Starting Code

1. float Calc_Bearing(PT_T * p1, const PT_T * p2){
2. //calculates bearing in degrees between locations

(represented in degrees)
3. float angle = atan2(
4. sin(p1->Lon*(PI/180) - p2->Lon*(PI/180))*
5. cos(p2->Lat*(PI/180)),
6. cos(p1->Lat*(PI/180))*sin(p2->Lat*(PI/180)) -
7. sin(p1->Lat*(PI/180))*cos(p2->Lat*(PI/180))*
8. cos(p1->Lon*(PI/180) - p2->Lon*(PI/180))
9.) * (180/PI);

10. if (angle < 0.0)
11. angle += 360;
12. return angle;
13. }

Let’s examine the Calc_Bearing function for terms which may be reused. We see that cer-
tain terms appear more than once:

� p1-�Lon*(PI/180) appears twice
� p2-�Lon*(PI/180) appears twice

CHAPTER 5 / USING THE COMPILER EFFECTIVELY 107

� p2-�Lat*(PI/180) appears three times
� p1-�Lat*(PI/180) appears twice

The source code has fourteen floating point multiplies (*). We expect the number of multi-
plications to be reduced as the compiler optimizes by reusing previous results. After com-
piling at maximum optimization for speed, we look at the object code. There are fourteen
calls to F_MUL, so it appears that these terms computed are once for each appearance in
the source code, rather than being reused.

5.6.2 First Source Code Modification

Perhaps the compiler is not reusing the results because dereferencing the pointers p1 and
p2 may access global variables which could change? To evaluate this option let’s load the
terms from memory into local variables p1Lat, p1Lon, p2Lat, and p2Lon.

1. float Calc_Bearing(PT_T * p1, const PT_T * p2){
2. //calculates bearing in degrees between locations

(represented in degrees)
3. float p1Lon, p1Lat, p2Lon, p2Lat;
4. float angle;
5.
6. p1Lon = p1->Lon;
7. p2Lon = p2->Lon;
8. p1Lat = p1->Lat;
9. p2Lat = p2->Lat;

10.
11. angle = atan2(
12. sin(p1Lon*(PI/180) - p2Lon*(PI/180))*
13. cos(p2Lat*(PI/180)),
14. cos(p1Lat*(PI/180))*sin(p2Lat*(PI/180)) -
15. sin(p1Lat*(PI/180))*cos(p2Lat*(PI/180))*
16. cos(p1Lon*(PI/180) - p2Lon*(PI/180))
17.) * (180/PI);
18. if (angle < 0.0)
19. angle += 360;
20. return angle;
21. }

The resulting object code still has fourteen calls to F_MUL and it is not clear why the re-
sults are not reused.

108 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

5.6.3 Second Source Code Modification

Let’s explicitly modify the source code to reuse the results. We will use local variables
p1LonRad, p1LatRad, p2LonRad, and p2LatRad to hold them.

1. float Calc_Bearing(PT_T * p1, const PT_T * p2){
2. //calculates bearing in degrees between locations

(represented in degrees)
3. float p1LonRad, p1LatRad, p2LonRad, p2LatRad;
4. float angle;
5.
6. p1LonRad = p1->Lon*(PI/180);
7. p2LonRad = p2->Lon*(PI/180);
8. p1LatRad = p1->Lat*(PI/180);
9. p2LatRad = p2->Lat*(PI/180);

10.
11. angle = atan2(
12. sin(p1LonRad - p2LonRad)*cos(p2LatRad),
13. cos(p1LatRad)*sin(p2LatRad) -
14. sin(p1LatRad)*cos(p2LatRad)*cos(p1LonRad - p2LonRad)
15.) * (180/PI);
16. if (angle < 0.0)
17. angle += 360;
18. return angle;
19. }

The resulting object code has nine calls to F_MUL, as expected.

5.6.4 Third Source Code Modification

There are additional reuse opportunities. Examining the source code reveals that
cos(p2LatRad) is calculated twice. Perhaps the optimizer could see this more clearly if we
pulled these calculations out of the argument list? The resulting code follows.

1. float Calc_Bearing(PT_T * p1, const PT_T * p2){
2. //calculates bearing in degrees between locations

(represented in degrees)
3. float p1LonRad, p1LatRad, p2LonRad, p2LatRad;
4. float term1, term2;
5. float angle;

CHAPTER 5 / USING THE COMPILER EFFECTIVELY 109

6.
7. p1LonRad = p1->Lon*(PI/180);
8. p2LonRad = p2->Lon*(PI/180);
9. p1LatRad = p1->Lat*(PI/180);

10. p2LatRad = p2->Lat*(PI/180);
11.
12. term1 = sin(p1LonRad - p2LonRad)*cos(p2LatRad);
13. term2 = cos(p1LatRad)*sin(p2LatRad) -
14. sin(p1LatRad)*cos(p2LatRad)*cos(p1LonRad - p2LonRad);
15. angle = atan2(term1, term2) * (180/PI);
16. if (angle � 0.0)
17. angle += 360;
18. return angle;
19. }

The resulting object code still has seven calls to __iar_Sin.

5.6.5 Fourth Source Code Modification

It looks like we will have to force the compiler to reuse the result. We will create a local
variable called cosp2LatRad to hold it.

1. float Calc_Bearing(PT_T * p1, const PT_T * p2){
2. //calculates bearing in degrees between locations

(represented in degrees)
3. float p1LonRad, p1LatRad, p2LonRad, p2LatRad;
4. float cosp2LatRad;
5. float term1, term2;
6.
7. float angle;
8.
9. p1LonRad = p1->Lon*(PI/180);

10. p2LonRad = p2->Lon*(PI/180);
11. p1LatRad = p1->Lat*(PI/180);
12. p2LatRad = p2->Lat*(PI/180);
13. cosp2LatRad = cos(p2LatRad);
14.
15. term1 = sin(p1LonRad - p2LonRad)*cosp2LatRad;
16. term2 = cos(p1LatRad)*sin(p2LatRad) -
17. sin(p1LatRad)*cosp2LatRad*cos(p1LonRad - p2LonRad);

110 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

18. angle = atan2(term1, term2) * (180/PI);
19. if (angle < 0.0)
20. angle += 360;
21. return angle;
22. }

Now there are only six calls to __iar_Sin because we have eliminated one. It is curious that
the compiler was not able to reuse these expressions. This reinforces the importance of
examining the object code to determine which optimizations were performed.

5.7 RECAP

In this chapter we focused on improving the quality of the code generated by the software
toolchain. This involves possibly changing detailed design, source code, and software tool-
chain configuration options. We examined two areas: how to configure the toolchain prop-
erly and how to help the compiler generate good code. We also examined methods for pre-
computing and reusing data. We saw that it is important to examine object code to verify
that the compiler performed the expected optimizations.

5.8 BIBLIOGRAPHY

Engblom, J. (2002). Getting the Least out of your Compiler. Embedded Systems Conference. San Francisco.

Chapter 6

111

6.1 LEARNING OBJECTIVES

In this chapter we examine high-level approaches to improving program performance.
These methods touch on algorithms and data structures as well as mathematical represen-
tations and approximations.

6.2 BASIC CONCEPTS

Figure 6.1 shows the various stages in software development, progressing from require-
ments at the top to object code at the bottom. First, the developer performs creates a high-
level design, which involves selecting the specific architectures and algorithms which de-
fine what system components will exist and how they will operate in order to meet the

High-Level Optimizations

Con�g.
Options

Software
Toolchain

Requirements

Algorithm
and Architecture

Detailed Design
and Source Code

Object Code

Figure 6.1 Opportunities for optimization in the software development process.

112 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

requirements. The developer then implements the algorithms with a detailed design which
leads to source code.

Embedded systems typically offer many opportunities for creative optimizations. This
is because the closed and well-defined nature of embedded systems software gives the de-
veloper great flexibility to optimize at multiple levels of the design hierarchy. The methods
covered in this chapter typically require much more modification of source code (and
therefore effort) than the methods in the previous chapter (which focused on helping the
compiler generate good code). Because of these larger effort requirements, we should keep
two factors in mind when considering performing these optimizations.

First, it is important to weigh the expected performance gain against the costs of the
development time spent and the schedule risk which is added. Some of the high-level
optimizations described in this chapter affect large amounts of a program’s source code,
increasing development effort and raising schedule risk. It can be difficult to predict
the quantitative performance benefits of an optimization accurately before imple-
menting it, introducing additional schedule risk. In comparison, the optimizations in the
previous chapter can be implemented much more quickly and therefore with less sched-
ule risk.

Second, code maintainability is important yet often suffers when code is optimized.
When possible, the wise developer will implement software optimizations in a way which
does not reduce its maintainability. The code is likely to be modified in the future for bug
fixes, feature changes and upgrades, and as a platform for developing product families and
downstream products. Code is usually too expensive to rewrite. Some optimization meth-
ods may make it more difficult to maintain the code. Other optimization methods may do
the same if implemented badly.

6.3 ALGORITHMS

We begin by examining how to improve the algorithms used to do the work. At times this
may require modifying the data structure to enable more efficient algorithms to be applied.
A very detailed and thorough examination of algorithms and data structures can be found
elsewhere (Knuth, 2011).

6.3.1 Less Computation: Lazy Execution and Early Exits

A common pattern of computation is performing a calculation and then making a deci-
sion based upon the result. In some cases it may be possible to use an intermediate value in
the calculation to make the decision early. A related concept (lazy or deferred execution) is
to delay performing the calculations until it is determined that they are actually needed.
It may be that calculated results are never actually used.

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 113

Some algorithms explicitly leverage these concepts to improve performance. The
source code implementation may also offer these opportunities. Will they be used? Opti-
mization passes in the compiler try to apply these optimizations but may fail due to lim-
ited visibility within the program or caution due to ensuring proper program behavior ac-
cording to the semantics of C. In these cases it is necessary to modify the source code to
either help the compiler perform the optimizations, or to directly implement the opti-
mization in the source code.

6.3.1.1 Optimization 1

1. float Calc_Distance(PT_T * p1, const PT_T * p2) {
2. //calculates distance in kilometers between locations

(represented in radians)
3. return acos(p1->SinLat * p2->SinLat +
4. p1->CosLat * p2->CosLat *cos(p2->Lon - p1->Lon)) * 6371;
5. }

Consider the example program from Chapter 5. The function Calc_Distance is repeated in
the listing above. In line 4 the code multiplies an intermediate result (produced by the arc
cosine function) by 6371 to compute the distance in kilometers between two points fol-
lowing a path staying on the surface of the Earth.1 That intermediate result is an angle mea-
sured in radians. It is converted to kilometers by multiplying by the Earth’s circumference
and dividing by (approximately 6371 km/radian).

Because the angle is proportional to the distance, the two points will also have the
smallest angle. This means we can just search for the point which produces the smallest an-
gle. After we have found that minimum angle we multiply it to get kilometers. So we can
call the following simplified function to find the closest point, eliminating NPoints-1 floating
point multiplies.

1. float Calc_Distance_in_Unknown_Units(PT_T * p1, const PT_T * p2) {
2. //calculates distance in between locations

(represented in radians)
3. return acos(p1->SinLat * p2->SinLat +
4. p1->CosLat * p2->CosLat *cos(p2->Lon - p1->Lon));
5. }

2p

1 This distance is in fact the length of a circular arc between the two points on a sphere. It is the shortest such
path on the surface of a sphere. A path going through the sphere would be shorter. We approximate the Earth as
a sphere here.

114 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

6.3.1.2 Optimization 2

We can take this a step further. The arc cosine function is a decreasing function, as shown
in Figure 6.2, so we don’t really need to calculate the arc cosine to find the closest point.
Instead, we just need to find the point with the largest input (value in Figure 6.2) to the
arc cosine, as that will result in the smallest output. That will give the smallest distance, as
it is just multiplied by a scaling constant to convert to kilometers.

The optimized version of Calc_Distance is renamed and shown below, with changes in
lines 3 and 4.

1. float Calc_Distance_Partially(PT_T * p1, const PT_T * p2) {
2. //calculates cosine of distance between locations
3. return p1->SinLat * p2->SinLat +
4. p1->CosLat * p2->CosLat *cos(p2->Lon - p1->Lon);
5. }

We need to change the function Find_Nearest_Point (listed below) slightly. First, we need
to change various aspects of the code because the arc cosine increases as distance de-
creases—we want to find the largest intermediate result.

� In line 9 we set the closest_d value to zero.
� In line 23 we look for the largest value of d.

X

3.5

3

2.5

2

1.5

1

0.5

0

21 20.5 0 0.5 1

acos(X)

X

Figure 6.2 Arc Cosine function always decreases as X increases.

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 115

Finally, we need to compute the actual distance for the point.

� In line 31 we complete the calculation of the distance for the closest point.

1. void Find_Nearest_Point(float cur_pos_lat, float cur_pos_lon,
2. float * distance, float * bearing, char * * name) {
3. //cur_pos_lat and cur_pos_lon are in degrees
4. //distance is in kilometers
5. //bearing is in degrees
6.
7. int i�0, closest_i;
8. PT_T ref;
9. float d, b, closest_d�0;
10.
11. *distance � *bearing � NULL;
12. *name � NULL;
13.
14. ref.Lat � cur_pos_lat*PI_DIV_180;
15. ref.SinLat � MYSIN(ref.Lat);
16. ref.CosLat � MYCOS(ref.Lat);
17. ref.Lon � cur_pos_lon*PI_DIV_180;
18. strcpy(ref.Name, “Reference”);
19.
20. while (strcmp(points[i].Name, “END”)) {
21. d � Calc_Distance_Partially(&ref, &(points[i]));
22. //if we found a closer point, remember it and display it
23. if (d>closest_d) {
24. closest_d � d;
25. closest_i � i;
26. }
27. i++;
28. }
29. b � Calc_Bearing(&ref, &(points[closest_i]));
30. //return information to calling function about closest point
31. *distance � acos(closest_d)*6371;
32. *bearing � b;
33. *name � (char *) (points[closest_i].Name);
34. }

116 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

6.3.2 Faster Searches

An embedded system may need to search through a large amount of data quickly. Select-
ing an appropriate data organization and an appropriate algorithm can simplify the prob-
lem significantly. In this section we examine the relationship between data organization
and algorithms.

6.3.2.1 Data Structure Review

The data structure defines how data elements are connected and organized. Some data
structures may store their data in a sorted order. The structure may be fixed at run-time (sta-
tic), or it may change (dynamic).

Three types of data structure are common in embedded systems software.

� Lists offer sequential access. Each element is contained within a node.2 Each node
is connected with at most two other nodes—a predecessor and a successor. Tra-
versing the list (e.g., to find a specific element) involves following these connec-
tions sequentially. Examples of lists include linked lists, queues, circular queues,
and double-ended queues.

� Trees offer sequential access as well but offer additional connections between
nodes, enabling a hierarchical organization which significantly reduces the aver-
age amount of traversal needed. Each node is connected with its parent node3 and
its child nodes.4 The elements of a tree are stored in a hierarchical structure which
reduces access operations. This structure may be explicitly represented by point-
ers, or implicitly represented by the actual location of the element (e.g., within an
array).

� Arrays offer random access—each element can be accessed equally quickly, as-
suming the program knows which element to access. Arrays are often used to im-
plement static lists, confusing the situation.

6.3.2.2 Profiler Address Search

Consider the execution time profiler in Chapter 4 which samples the program counter peri-
odically to determine which function is currently executing. Figure 6.3 shows the main
data structure for this operation—an array which holds the starting and ending addresses
for each code region. A search function takes the sampled program counter value which we

2 Lists and trees typically refer to data elements as nodes due to graph theory terminology.
3 A node with no parent node is called a root node.
4 A node with no child nodes is called a leaf node.

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 117

call the search address. This function examines the table to identify which array element
holds addresses which bound the search address (start address search value end
address).

In the average case, we would need to search half of the elements to find the
matching region. So the average time complexity of this approach is linear with re-
spect to the number of entries . How can we improve on this?

6.3.2.3 Sort Data by Frequency of Use

It may be possible to arrange data so that less run-time work is necessary. Sorting the data
elements by expected frequency of use will ensure that the common cases are handled
quickly. More frequently used elements are examined before the less common ones, im-
proving average performance.

n
(O(n))
(n/2)

��

Figure 6.3 Array RegionTable holds information which the profiler searches on each sam-
pling interrupt.

118 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

After the first profiling run we know which regions dominate the execution time of the
target program. We could regenerate the region table (shown in Figure 6.3) and sort it by
placing the most frequently accessed regions at the top where they will be accessed first.
This example of “profile-driven profiler optimization” could reduce the execution time of
the ISR and hence the profiling overhead.

6.3.2.4 Binary Search

Another approach is to arrange the data elements within this array in order to enable a bet-
ter search algorithm. For example, a binary search has logarithmic time complexity

. To enable a binary search the elements need to be sorted so that the addresses
are in order (either increasing or decreasing). As the number of data elements to search
within grows, the time complexity of the search algorithm becomes more critical. Hence,
systems with large data sets can benefit significantly from replacing sequential searches
with more efficient ones.

A related search method replaces the array with a specialized abstract data type
called a binary search tree (BST). This approach requires additional tools to generate the
BST and additional code to support the BST.

Examining the profiler table in Figure 6.3 shows the addresses are sorted in increasing
order of the first element (start address). This is a side effect of the order in which the linker
generates the map file for this particular code and may not always be true. So we need to
add a step to the table generation process to sort the table data before generating the source
file holding the table.

The search function can then be updated to perform a binary search; for example, with
the C standard library function bsearch() which searches a sorted array.

The larger the table, the greater the performance advantage the binary search will pro-
vide. For example, a linear search on a table of 160 entries would on average need to com-
pare about eighty entries. A binary search would on average only need to compare a little
over seven entries , eliminating roughly 90 percent of the effort.

6.4 FASTER MATH REPRESENTATIONS

Unless a microcontroller has a hardware floating point unit, floating point math is emulated
in software. It is slow and uses large amounts of memory for the library routines, your code,
and the variables. In this section we examine several alternatives to floating point math.

6.4.1 Native Device Integer Math

In some cases it is possible to avoid floating point math by using the device’s native integer
representations rather than converting to and from formats which require floating point pre-

(log2(160) � 7.3)

(O(log2 n))

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 119

cision. For example, consider a pressure-based water depth alarm. This might be used by a
scuba diver to warn of dangerous depths. Or it might be used in the tank of a water heater to
determine if the tank is not full and therefore should not turn on the heating elements.

The following program segment measures how far underwater an analog pressure sen-
sor is. It sounds an alarm if it is greater than one thousand feet deep. Line 4 reads the
ADC channel connected the pressure sensor. Line 5 converts this reading to a voltage
based on the ADC reference voltage and resolution. Line 6 converts this to a pressure in
kiloPascals, based on the pressure sensor’s specified transfer function. Line 7 converts this
pressure to a depth based on the atmospheric pressure, and the fact that pressure increases
by 101.3 kPa with every additional thirty-three feet of depth in water. We use floating point
math to ensure adequate precision.

1. uint16_t ADC_Code;
2. float V_sensor, Pressure_kPa, Depth_ft;
3.
4. ADC_Code � ad0;
5. V_sensor � ADC_code*V_ref/1023;
6. Pressure_kPa � 250 * (V_sensor/V_supply+0.04);
7. Depth_ft � 33 * (Pressure_kPa - Atmos_Press_kPa)/101.3;
8. if (Depth_ft > 1000) {
9. //sound alarm

10. }

We might be able to avoid most or all of the floating point operations if we reverse our use
of the ADC-to-depth transfer function. Here we convert from ADC code to voltage, pres-
sure, and depth, and then compare that with the target depth of one thousand feet.We could
instead go the other way: determine at compile-time whichADC code represents one thou-
sand feet best, and simply compare ADC_code to that constant value. This eliminates all
floating point operations as shown in the following code.

1. uint16_t ADC_Code;
2.
3. ADC_Code � ad0;
4. if (ADC_Code> ALARM_ADC_VALUE) {
5. //sound alarm
6. }

6.4.2 Fixed Point Math

Fixed point math represents non-integer values with an integer (called a mantissa) which is
implicitly scaled by a fixed exponent. Operations on fixed point values consist of integer

120 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

operations with minor adjustments to handle special cases. This makes the code for fixed
point math much smaller than that of floating point, resulting in significantly faster execution.

Floating point math was developed in order to represent a very large range of values
dynamically. The mantissa and exponent may need to be adjusted before an operation in
order to align the operands correctly. Similarly, the mantissa and exponent may need to be
adjusted during or after the operation to maximize precision yet prevent overflow. This pro-
cessing and support for handling special cases makes software implementations of floating
point operations large and slow.

6.4.2.1 Representation

Bit Position 7 6 5 4 3 2 1 0 . Radix

Point
Bit Weight 27 � 128 26 � 64 25 � 32 24 � 16 23 � 8 22 � 4 21 � 2 20 � 1

0 0 0 0 1 0 0 1

Figure 6.4 Example 1: Bit weighting for byte as integer.

Figure 6.5 Example 2: Bit weighting for byte as a fixed point value with radix point between bit po-
sitions three and two.

Figure 6.4 shows an example of a byte (0000 1001). If we interpret this byte as representing
an integer, then the least significant bit (LSB) position has a weight of . The value
of the byte with this representation is . The radix point is located immediately to
the right of the bit with a weight of one. For an integer representation that is bit 0 (the LSB).

20 � 1
8 � 1 � 9

Bit Position 7 6 5 4 3 . Radix

point

2 1 0

Bit Weight 24 � 16 23 � 8 22 � 4 21 � 2 20 � 1 2�1 � 1/2 2�2 � 1/4 2�3 � 1/8

0 0 0 0 1 0 0 1

It is possible to use scaling to change the range of values which those integers represent by
assuming the radix point is in a location other than after the LSB. For example, we could
move the radix point left by three bits, as shown in Figure 6.5. This would have the effect
of scaling the value of each bit by . Now the LSB of the byte has a weight of
1/8 rather than 1. With this approach we can represent fractional values with a resolution
of 1/8, but cannot represent values greater than 31 1/8.

2�3 � 1>8

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 121

Figure 6.6 Example 3: Bit weighting for byte as a fixed point value with radix point two bits right
of bit 0.

Bit Position 7 6 5 4 3 2 1 0 �1 �2 .

Radix

point
Bit Weight 29 � 512 28 � 256 27 � 128 26 � 64 25 � 32 24 � 16 23 � 8 22 � 4 21 � 2 20 � 1

0 0 0 0 1 0 0 1

Alternatively, we could move the radix point right by two bits, as shown in Figure 6.6. This
would have the effect of scaling the value of each bit by . Now the LSB of the byte
has a weight of four rather than one. With this approach, we cannot represent fractions.
However, we can represent values as large as 1020. Note that we cannot represent all values
from zero to 1020 uniquely since we no longer can specify the bits with weights 1 and 2.We
summarize these three examples in Table 6.1.

22 � 4

TABLE 6.1 Summary of Byte Interpreted with Different Fixed Point Representations

EXAMPLE MANTISSA EXPONENT VALUE REPRESENTED RESOLUTION

1 9 0 9 * 20 � 9 1

2 9 �3 9 * 2�3 � 1 � 1/8 1/8

3 9 2 9 * 22 � 36 4

It is important to recognize that the exponent is fixed so it is not stored explicitly in the
variable or anywhere in the code. Instead, the source code is written with an implicit as-
sumption of the exponent’s value. For maintainability, the code should also name the
data types, variables, arguments, and functions to indicate the value of the exponent. Suffi-
cient comments should also be provided as well.

6.4.2.2 Unsigned and Signed Values

So far we have only examined unsigned fixed point values. Handling two’s complement
fixed point values is more complicated.

One common approach which avoids this complexity is to store the absolute value of
the mantissa and also store a bit (typically the most-significant bit) to indicate the sign of
the mantissa. When operating on two values, one of the first steps is to determine the sign
of each operand and determine how to perform the operation, given that the absolute value
of the operand’s mantissa is stored, rather than the actual mantissa. For example, when
multiplying two signed operands, the result will be positive if both operands have the same

122 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

sign. Otherwise the result will be negative. The absolute values of the two operands are
multiplied and then the product’s sign is set to be the exclusive-or of the operand sign bits.

6.4.2.3 Notations

In this text we will use the notation to clearly show the integer and fraction field
sizes. Other notations exist; a format with one sign bit, three integer bits, and twelve frac-
tion bits could be called Q3.12, Q12, or fx3.16.

6.4.2.4 Support Operations

There are several common basic operations used to support fixed point math.

� Scaling consists of shifting a value in order to change from one implicit exponent
value to another. To increase the number of fraction bits by , we shift the mantissa
left by . To decrease the number of fraction bits, we shift the mantissa right by .
For example, to convert a value from Q3.12 to Q5.10 we shift the mantissa right by
two bit positions .

� Two fixed point values are called normalized if they have the same representation:
each has integer bits and fraction bits. We can normalize two values by scaling
one to match the other, or by scaling both to a new format.

� Promotion converts a value to a longer representation, increasing the total number
of bits . This can prevent overflow, described shortly.

� Rounding is used to improve the accuracy of the result when truncating one or
more least significant bits from a value. The newly-truncated mantissa is typically
incremented if the first truncated bit is a one. Rounding is performed after scaling
to a value with fewer fraction bits.

� Overflow occurs when the result of an operation does not fit into the representa-
tion. For example, adding two values in assembly language can result in a carry
out of the MSB. Addition can also result in an incorrect change of the sign bit, as-
suming it is stored in the most significant bit. Multiplying two bit values in
C produces a bit result, but the C language only uses the lower bits of the re-
sult, discarding the upper half. Overflow can be handled in various ways:
▫ The operands can be promoted to a type with more total bits before the opera-

tion is performed. This slows down the code but maintains accuracy. This is
typically required when performing fixed point multiplies in C.

▫ The operands can be scaled to a format with fewer fraction bits by shifting them
to the right by one or more bits. This introduces error but results in fast code.

▫ The overflow can be detected after the operation is performed. The code can
then attempt to compensate for the problem or signal an error.

2n n
n

(ƒ � i)

i ƒ

(12 � 10 � 2)

n n
n

Qi.ƒ (i) (ƒ)

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 123

� One way to handle overflow is saturation.An operation which provides saturation
handles an overflowing result by replacing it with the closest available value in that
representation. For example, adding two large positive values could result in an over-
flow into the sign bit, changing it to negative incorrectly. Saturation handles this by
returning a result which is the maximum positive value for that representation.

6.4.2.5 Mathematical Operations

We next examine the steps needed to perform the mathematical operations based on a rep-
resentation with a sign bit and an unsigned mantissa. For clarity we consider formats where
both operands have bits. However, the radix point may be in different locations in the
operands (i.e., they can have different numbers of fraction bits). The first operand Op1 is in
format . and the second operand Op2 is in . .
Addition and subtraction are some of the most basic operations. The number of frac-

tion bits remains the same. The result can be bits long.

� Normalize the operands.
� Add or subtract the mantissas based on operation type and the exclusive-or of the

signs.
� Handle overflow if it occurred.
� Set the sign of the result.

Multiplication does not require the operands to have the same scaling factor. The number
of fraction bits increases. The result can be bits long.

� If necessary, promote operands to a longer representation to prevent overflow.
� Multiply the mantissas.
� Add the exponents.
� Handle overflow if it occurred.
� The result has fraction bits. Scale the resulting mantissa to fit the desired

target format.
� Set the sign of the result.

Division does not require the operands to have the same scaling factor. The number of frac-
tion bits decreases. Division is more challenging to implement than the operations above.
There are three approaches based on the existence and type of division support available.

First, consider the C integer division operation (/). When dividing two integers, the
result (quotient) is an integer with the fractional bits truncated. Dividing two fixed point
operands (Op1/Op2) of formats . and . creates a result with fraction bits.
This means that if we divide two normalized values, then the result will be an integer
with no fraction bits.

ƒ2i2ƒ1i1

ƒ2i2ƒ1i1

ƒ1 � ƒ2

ƒ1 � ƒ2

2n

n � 1

n

124 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

We can set the number of fraction bits in the result by scaling an operand. To make
the result have fraction bits we scale the numerator Op1 by shifting it left by bits, or
scale the denominator Op2 by shifting it right by bits . The first approach could lead to
overflow, so we may want to promote the operands to longer formats. The second approach
reduces precision of the dividend and therefore increases error in the quotient. The first ap-
proach (shifting the numerator Op1 to the left) is more useful.

Second, consider an assembly language divide instruction. This instruction typically
produces two results: an integer quotient and an integer remainder. We can handle the
quotient with the same approach as in the C language integer division—shifting the
numerator left so the quotient will be in a fixed point format with the desired number of
fractional bits. If the remainder is 1⁄2 or larger, we round up the LSB of the quotient.

Finally, consider how to perform division without support, such as an existing divide
operation or function. We can implement fixed point division indirectly using multiplica-
tion by a reciprocal. To divide Op1 by Op2 we instead can multiply Op1 by the recipro-
cal of Op2. If Op2 is a constant then this transformation can be performed at compile time.
Otherwise the inverse must be computed at run time, for example using Newton’s method of
approximation. This involves first estimating the inverse of Op2 and then improving the ac-
curacy of that estimate with successive iterations of refinement. Each refinement requires
two multiplies, an addition and a subtraction. This method is called Newton-Raphson di-
vision. We use this division for fixed point values as in the two previous methods.

6.4.2.6 C, Assembly, or Both?

The code for performing these fixed point math operations could be written in a language
which is high-level (e.g., C, C��) or low-level (e.g., assembly language).Which is better?
Programming in a high-level language might seem to be better due to the ease of code de-
velopment (when compared with assembly code). However, this approach faces two major
problems.

First, because we use integers to represent our fixed point values, the compiler will
generate code which treats those values as integers. For most operations with most data
values this is not a problem. However, the ANSI C standard defines how to handle, inter-
pret, and modify integers, and its rules don’t always fit well for fixed point math. For ex-
ample, multiplying an int (16 bits) with an int (16 bits) produces an int (also 16 bits), even
though the hardware produces a 32 bit result. Because of these differences we need to
modify our C code in two ways.

� First we need to deal with the C rules which cause problems. We can try to pre-
vent the compiler from handling those cases. We could instead add code to undo
those undesired effects. Both of these approaches require an in-depth understand-
ing of relevant parts of the C language.

� Second we need to add code to handle the fixed point math special cases.

ƒr
ƒr ƒr

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 125

Both of these coding efforts depend on the processor’s word size and available instructions.
And the compiler optimization settings are also likely to affect the code. It is quite instruc-
tive to compare C code for fixed-point math implementations across different embedded
processors (or even compilers for the same processor).

Yet another issue is that the compiler may not be able to generate code which takes
full advantage of the processor’s instruction set and resources. The C programming
language insulates us from many processor implementation details. However, we need
to control and monitor those details in order to implement fixed point math opera-
tions efficiently. How can we convince the compiler to use the RL78G13’s Multiply/
Accumulate/Divide peripheral unit? Or to use the RL78G14�s Multiply/Accumulate
Halfword instruction?5

Considering these factors, the assembly language implementation is usually prefer-
able. The implementation could be an assembly language function, or else inline assembly
code in a C function.

6.4.3 RL78 Support for Fixed Point Math

The complexity and speed of fixed point calculations depends on the CPU’s support for in-
teger operations. Supporting operations on representations longer than the native integer
operations increases code complexity and reduces performance. This is especially acute
when performing multiplications and divisions, so native (and fast) hardware support for
multiplication and division is quite helpful. Normalization and conversion between for-
mats relies on shifting and rotation, so those are also important.

Let’s examine which instructions are available. The RL78 processor family has differ-
ent CPU cores which implement different versions of the instruction set. Some cores offer
multiply and divide instructions for longer data formats. Some RL78 devices include a sep-
arate peripheral which can perform multiplication and division.

6.4.3.1 Basic Instructions

All RL78 cores provide a multiply instruction (MULU, shown in Figure 6.7) which multi-
plies two unsigned bytes in A and X and places the 16-bit result in the AX register. The
cores offer fast shifts and rotates of 8- and 16-bit data. The cores use a barrel shifter so that
a shift or rotate instruction takes only one clock cycle, regardless of the shift amount or
direction.

5 This is similar to trying to type on a keyboard while wearing mittens.

126 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

6.4.3.2 Extended Multiply and Divide Instructions

The RL78G14 processor provides additional instructions. These are shown in Figure 6.7 and
include the following operations:

� Signed and unsigned multiplies MULH and MULHU: 16 bit * 16 bit � 32 bit
� Unsigned divide DIVHU: 16 bits/16 bits � 16 bit quotient, 16 bit remainder
� Unsigned divide DIVWU: 32 bits/32 bits � 32 bit quotient, 32 bit remainder
� Signed and unsigned multiply/accumulates MACH, MACHU: 16 bit * 16 bit �

32 bit � 32 bit

6.4.3.3 Multiply/Divide/Accumulate Unit

Some RL78 family processors (e.g., G13) include a multiplier/accumulator/divider unit
(called MD for brevity) to accelerate certain mathematical operations:

� Signed and unsigned multiplies: 16 bit * 16 bit � 32 bit
� Signed and unsigned multiply/accumulates: 16 bit * 16 bit + 32 bit � 32 bit
� Unsigned divide: 32 bits/32 bits� 32 bit integer quotient, 32 bit integer remainder

INSTRUCTION
GROUP MNEMONIC OPERANDS BYTES

CLOCK

OPERATION

FLAG

NOTE
1

NOTE
2 Z AC CY

Multiply,
Divide, Multiply
& accumulate

MULU � 1 1 — AXW A * X

MULHU 3 2 — BCAXW AX * BC (unsigned)

MULH 3 2 — BCAXW AX * BC (signed)

DIVHU 3 9 — AX (quotient), DE (remainder)
W AX � DE (unsigned)

DIVWU 3 17 — BCAX (quotient), HLDE (remainder)
W BCAX � HLDE (unsigned)

MACHU 3 3 — MACRW MACR � AX * BC
(unsigned)

x x

MACH 3 3 — MACRW MACR � AX * BC
(signed)

x x

Figure 6.7 Multiply, divide, and multiply/accumulate instructions implemented in RL78G14 processors.

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 127

Rather than use the general purpose registers such as AX, BC, DE, and HL to hold
operands, commands, and results, the MD unit uses its own special function registers.
These consist of six 16 bit data registers (MDAH, MDAL, MDBH, MDBL, MDCH, and
MDCL) and one 8 bit control register (MDUC). To use the MD unit the program config-
ures MDUC to specify the desired operation, according to Table 6.2.

DIVMODE MACMODE MDSM OPERATION SELECTED

0 0 0 Multiply, unsigned

0 0 1 Multiply, signed

0 1 0 Multiply/accumulate, unsigned

0 1 1 Multiply/accumulate, signed

1 0 0 Divide, unsigned, generate interrupt when complete

1 1 0 Divide, unsigned, no interrupt generated

TABLE 6.2 Multiplier/Accumulator/Divider Operation Selection

FLAG DESCRIPTION

MACOF Multiply/accumulate overflow

MACSF Multiply/accumulate sign flag

DIVST Division operation status; 1 � division in progress

TABLE 6.3 Multiplier/Accumulator/Divider Flags

TABLE 6.4 MD Operand Locations

OPERATION MDAH MDAL MDBH MDBL MDCH MDCL

Multiply Multiplier Multiplicand

Multiply/
Accumulate

Multiplier Multiplicand

Divide Dividend
(high word)

Dividend
(low word)

Divisor
(high word)

Divisor
(low word)

128 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

The program then loads the MD data registers with the input data as shown in Table 6.4. In
multiply mode or multiply/accumulate mode, writing to MDAH and MDAL starts the mul-
tiplication. In division mode, the DIVST bit must also be set to 1 to start the division. Af-
ter the operation completes, the results are available in the MD registers as shown in Table
6.5. The status flags shown in Table 6.3 can be examined if needed.

A multiply takes one clock cycle after the last operand is written, while a multiply ac-
cumulate takes two clock cycles. A division operation takes 16 clock cycles after the
DIVST flag is set. It is possible to configure MDUC so that the MD unit generates an
INTMD interrupt when a division completes.

TABLE 6.5 MD Result Locations

OPERATION MDAH MDAL MDBH MDBL MDCH MDCL

Multiply Product
(high word)

Product
(low word)

Multiply/
Accumulate

Product
(high word)

Product
(low word)

Accumulator
(high word)

Accumulator
(low word)

Divide Quotient
(high word)

Quotient
(low word)

Remainder
(high word)

Remainder
(low word)

6.4.4 Reduced Precision Floating Point Math

Compilers typically provide floating point data types and operations conforming to the
IEEE Standard for Floating Point Arithmetic (IEEE-754). In the previous chapter we dis-
cussed the single-precision (32-bit) and double-precision (64-bit) formats and their com-
putational costs. The computational requirements for a software implementation of even
the 32-bit format are sizable.

The author once had the opportunity to perform a software design review with a phe-
nomenal team of embedded software developers. During the review the team mentioned
that the 32-bit floating point math libraries were too slow for their power-constrained (and
therefore very under-clocked) 8-bit microcontroller. So they had modified the math library
to support 24-bit floating point math operations. The reduction in the computational re-
quirements enabled the code to meet its timing requirements.

This may seem far-fetched and excessive, but since 2008 the IEEE floating point stan-
dard has supported a half-precision (16-bit) format. This reduced precision format was de-
veloped for graphics processing units (GPUs) to cut memory requirements and bus traffic,
while still supporting the high dynamic range of values needed for graphics. This format
uses ten bits for the mantissa, five bits for the exponent, and one bit for the sign. The min-
imum and maximum positive values which can be represented are 5.96 * 10�8 and 65504,
with similar negative value limits.

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 129

The IEEE-754 2008 standard defines the half-precision format as a storage format—the
only operations available are conversion to and from other formats. However, some high-
throughput microprocessors include hardware support for performing half-precision opera-
tions, in addition to single-precision (and possibly double-precision). Similarly, some com-
pilers for these processors support the 16-bit floating point data type.

It will be very interesting to see if any half-precision floating point math libraries for
embedded processors exist or are developed. They could simplify the development of em-
bedded systems by providing a solution between full-precision floating point, integer math,
and fixed point math.

6.5 FASTER MATH USING APPROXIMATIONS

In this section we examine a valuable approach to approximating mathematical functions
which are difficult to compute. There is a wealth of information available online and in
print about this and other methods of accelerating mathematical processing for real-time
and embedded systems. One example is Crenshaw’s extensive book (Crenshaw, 2000).

The trigonometric and other functions in the C math library are very accurate—perhaps
more accurate than necessary for your application. These functions are typically imple-
mented with numerical approximations. The library designers ensured high accuracy by
using a large number of terms or iterations in the approximation. Perhaps your application
doesn’t need as much accuracy, in which case you may benefit from implementing your
own reduced-precision approximations.

Consider the cosine function. When compiled with proper toolchain settings, the cos
library function in the IAR RL78 EmbeddedWorkbench takes about 2420 clock cycles6 to
execute on an RL78G14 family processor. In comparison, a floating point multiply opera-
tion takes about 360 cycles. Can we compute a useful approximation of the cosine if we
only have time to perform seven floating point multiplies? We will find out at the end of
this section.

6.5.1 Polynomial Approximations

How can we approximate the cosine function? If we wish to approximate cosines of small
input values (e.g., 0.01), why not just use the constant value of one? After all, .
This may in fact be adequate. However, the error for this approximation grows as the input
value moves farther away from 0 radians.

cos(0) � 1

6 Note that these execution cycle counts may vary based on different input data due to the various operations
necessary to perform floating point math.

130 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

We could improve the accuracy of our estimate by including one or more factors based
on how far the input value is from our reference input value of 0 radians. For example, we
could include a factor proportional to , or . This is an example of a polynomial approx-
imation. Any arbitrary function can be represented as a polynomial of :

This polynomial provides perfect accuracy if we can use an infinite number of terms. How-
ever, it cannot be computed practically. To make computation feasible, we will truncate the
polynomial to a finite number of terms by eliminating all terms after term . This intro-
duces some error, which we will examine shortly. Above, we truncated the polynomial to
the first term when we selected the constant value of one for our approximation.

The degree of a polynomial is the highest power to which is raised. Truncating the
polynomial reduces the degree of the polynomial from infinity to a finite value. Truncating
the polynomial above after the term will make it have a degree of four.

6.5.2 Optimizing the Evaluation of Polynomials

Polynomials are attractive because they can be computed quickly with some simple
optimization.

A polynomial of degree requires up to additions and multiplications.
The equation above is in the canonical form and shows all of these operations. Since

we can reuse the result of the previous term if we evaluate the terms in or-
der of increasing degree (left to right in the equation above).

This optimization (called Horner’s Rule) reduces the number of multiplications needed
from to , significantly reducing the amount of computation required.

6.5.3 Determining Coefficients

There are various methods which the function can use to compute the terms . For ex-
ample, the Taylor series expansion of the function can be computed based on successive
derivatives of evaluated at a given reference argument . A Taylor series evaluated at

is a special case which is also called a Maclaurin series. The nth term in the equation
uses the nth derivative of , written as .

x

ƒ ƒn
r � 0

ƒ r
ƒ

ƒ(x) an

(n2 � n)>2 n

ƒ(x) � a0 � x(a1 � x(a2 � x(a3 � xa4)))

xn�1 � x * xn xn

n n (n2 � n)>2

a4x
4

x

m m

ƒ(x) � a0 � a1x � a2x
2 � a3x

3 � a4x
4 � p

ƒ(x) x
x x2

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 131

If we evaluate the cosine function at point , the result is:

Note that there are no terms with an odd degree (exponent). This is because those terms are
multiplied by an odd derivative of the cosine function. All of the odd derivatives of the co-
sine function are in fact the sine function, and so those terms disappear. The
sine function expansion is similar but the even derivatives are sines, eliminating the even
degree terms:

One interesting consequence of the alternating sign of terms is that we can estimate the
maximum error due to truncation. The error will be no greater than the first term (i.e., the
term with the lowest degree) removed by truncation.

6.5.4 Accuracy

Let’s evaluate the accuracy of our cosine approximation as we add more terms, as
shown in Figure 6.8. The solid line shows the actual value of cosine. We begin with the
Degree 0 Taylor plot, which consists of only the first term (1) of the equation. This is
in fact the constant value described earlier. The Degree 2 Taylor plot includes the sec-
ond term (a downward pointing parabola) and improves the accuracy. The Degree
4 Taylor plot includes the third term, and the accuracy improves further. Notice that the
error grows quickly as the input argument gets farther from 0. This is because we eval-
uated the terms for this Taylor series at the input value 0 (so it is also a Maclauren
series).

Taylor series expansions are typically not used for approximating functions because
there are other approaches (e.g., Chebyshev polynomials, Bessel functions, minimax opti-
mization) which provide better accuracy with the same number of terms (Hart, 1978).
Figure 6.9 shows an example comparing an optimized polynomial for cosine with the
Taylor series. Furthermore, these other methods can distribute error more evenly across
the range of input values rather than let it accumulate at the ends of the range. This reduces
the worst-case approximation error.

sin(x) � x �
x3

3!
�

x5

5!
�

x7

7!
� p

sin(0) � 0

cos(x) � 1 �
x2

2!
�

x4

4!
�

x6

6!
� p

r � 0

a
�

n�0

ƒn(r)

n!
(x � r)n

132 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

24.000 22.000 21.000 1.000 2.000 4.0000.00023.000 3.000

1.250

1.000

0.750

0.500

0.250

0.000

20.250

20.500

20.750

21.000

21.250

cos(x)

Taylor, Degree 0

Taylor, Degree 2

Taylor, Degree 4

Figure 6.8 Cosine function and Taylor series polynomial approximations.

24.000 22.000 21.000 1.000 2.000 4.0000.00023.000 3.000

1.250

1.000

0.750

0.500

0.250

0.000

20.250

20.500

20.750

21.000

21.250

cos(x)

Taylor, Degree 0

Taylor, Degree 2

Taylor, Degree 4

Optimized, Degree 2

Optimized, Degree 4

Figure 6.9 Cosine function compared with Taylor series and optimized polynomial approximations.

CHAPTER 6 / HIGH-LEVEL OPTIMIZATIONS 133

6.5.5 Approximating Periodic and Symmetric Functions

Functions which are periodic or symmetric can be approximated over a broader input range
with fewer polynomial terms or with greater accuracy by applying certain optimizations.

For example, cosine is periodic, repeating every radians. This means
. Hence we only need our approximation to be accurate over one period,

(e.g., to). If the input argument is beyond that range, we can add or subtract to
bring the argument within the range. Another feature of some functions is symmetry. The
cosine function is symmetric about 0 radians: . The cosine function also
has the characteristic that .

Using these properties we can dramatically improve the accuracy of our cosine ap-
proximation for values of which are far from 0. We perform range reduction to bring the
argument within the range of to where even a fourth-degree approximation is
reasonably accurate.

Further details, coefficients and source code are available elsewhere (Crenshaw,
2000; Ganssle, 1991).

6.5.6 Speed Evaluation

Let’s evaluate how long the cosine function and approximations take to execute. For refer-
ence, when compiled with default optimization settings, the cosine library function in the
IAR RL78 Embedded Workbench takes about 3900 clock cycles to execute on an
RL78G14 family processor. After enabling various optimization flags and library configu-
ration flags, the faster version of cos takes about 2421 cycles.

Table 6.6 shows the results of running the code. We see that the degree 6 approxima-
tion takes about half as long as the cosine function, which is a significant improvement.
Depending on the application, we may even be able to use the degree 4 approximation (see

cos(x � n2p)
cos(x) �2p

�p>2 p>2
x

cos(x) � �cos(p � x)
cos(x) � cos(�x)

n2p�p p

TABLE 6.6 Execution Cycles Needed for Optimized Floating
Point Cosine and Polynomial Approximation Functions

FUNCTION EXECUTED CLOCK CYCLES USED

Math Library cosine function (iar_cos_small) 2421

Polynomial Approximation , degree 6 1248

Polynomial Approximation , degree 4 883

Polynomial Approximation , degree 2 545

134 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Figure 6.9), in which case the approximation takes only about one third of the cosine func-
tion’s time.

6.6 RECAP

In this chapter we have seen how to reduce computations by making decisions as early as
possible and performing more efficient searches. We have seen how to use the processor’s
native integer data capabilities to represent and operate on data with fractional values much
more quickly than would be possible with floating-point operations implemented in soft-
ware. Finally, we have seen how to approximate computationally expensive functions with
easily-computed polynomials.

6.7 REFERENCES

Crenshaw, J. W. (2000). Math Toolkit for Real-Time Programming. Lawrence, KS, USA: CMP Books, CMP

Media, Inc.

Ganssle, J. (1991, May). Embedded Trig. Embedded Systems Programming.

(http://www.ganssle.com/articles/atrig.htm, http://www.ganssle.com/approx.htm).

Hart, J. F. (1978). Computer Approximations. Krieger Publishing Co.

Knuth, D. E. (2011). The Art of Computer Programming (3rd ed., Vols. 1–4A). Reading, MA, USA: Addison-

Wesley.

Chapter 7

135

7.1 LEARNING OBJECTIVES

This chapter deals with how to analyze an embedded system’s power and energy use.
The first portion deals with general concepts. We examine the concepts of power and en-

ergy and how to model the power use of digital circuits. We discuss power supply approaches
and evaluate their efficiency.We then investigate how to measure power and energy.

The second portion examines the RL78G14 processor in detail. We begin with the re-
lationships between voltage, power, and clock frequency. We then examine available fea-
tures which can reduce power or energy consumption: selecting clock sources, controlling
the clock speed, and using low-power standby modes.

7.2 BASIC CONCEPTS

Let’s begin by reviewing the concepts of power and energy.

7.2.1 Power and Energy

Power measures the instantaneous rate at which energy is used. In an electric circuit it is
the product of voltage and current. One ampere of current flowing across a one volt drop
will dissipate one watt of power.

Energy is the total amount of power used over a specified period time. Energy integrates
power (an instantaneous value) over time. Energy (represented with , as in work) is
power integrated over a certain period of time:

W(T) � �
T

t�0

P(t)dt � �
T

t�0

V(t)I(t)dt

W

P(t) � V(t)I(t)

Power and Energy Analysis

136 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

One watt being dissipated (and therefore integrated) for a period of one second represents
one joule of energy. If we have one Joule of energy, we can use it all in one second if we
power a one watt circuit. If we use a 1⁄4 watt circuit, then it will take four seconds to use that
one joule.

Do we want to save power, energy, or both?

� In some cases, there is a limited amount of energy available. For example, consider
a rechargeable NiMH AA cell with a nominal capacity of 2500 mAH, or 2.5 AH.
This means the cell can supply 2.5A for one hour.We will assume the average volt-
age is 1.2 V.1 Multiplying 1.2 V by 2.5 AH gives the cell energy capacity as 3 Watt-
Hours, or 3 * 60 * 60 J � 10800 J.

� In some cases, the power budget is limited. There may be limited power available.
For example, a photovoltaic panel may produce at most 100 mW, and less when
the sky is cloudy. In other applications there is limited cooling available. The
power dissipated by the circuit heats it above the ambient temperature, based upon
thermal resistance and available cooling. In order to keep the circuit from over-
heating we need to limit the power dissipated.

7.2.2 Digital Circuit Power Consumption

Let’s take a look at how digital circuits use power and energy. The inverter in Figure 7.1 dis-
sipates power in two ways.

1 A NiMH cell’s voltage is not constant. It depends on the state of charge, load current, and temperature. The
voltage is roughly 1.35 V when fully charged, and falls to roughly 1.0 V when mostly discharged.

In Out

Q1

Q2

Figure 7.1 Example digital inverter circuit.

CHAPTER 7 / POWER AND ENERGY ANALYSIS 137

� When the input signal is not changing, one transistor is on (saturated or active)
and the other is off. For example, a low input level will turn on Q1 and turn off Q2.
A high input level will turn off Q1 and turn on Q2. In either case, since the transis-
tors are in series, the total resistance is quite large, and only a small amount of cur-
rent flows from VDD to ground. This current leads to a static power component
which is proportional to the square of the supply voltage. The power is still dissi-
pated even though there is no switching, so it is independent of the clock frequency.

� When the input signal is changing, then as the input voltage changes from one
logic level to another, both transistors will be on simultaneously, leading to shoot-
through current flowing for a brief time from VDD to ground. In addition, some com-
ponents in the circuit have capacitance (e.g., gates, wires) which must be charged or
discharged in order to change the voltage level of a signal. This current leads to a
dynamic power component which is proportional to the square of the supply volt-
age. It also depends on the frequency of the switching (fsw).

The resulting total power dissipated can be modeled as the sum of the static and the dy-
namic power components:

Sp and Cp are proportionality constants representing conductance and capacitance and can
be experimentally derived.

7.2.3 Basic Optimization Methods

The power equation gives us some insight into how to reduce the power consumption for a
digital circuit.

� Lowering the supply voltage will reduce power quadratically for both terms. For
example, cutting VDD to 80 percent of its original value will reduce power to
(80%)2 � 64% of its original value.

� Shutting off the supply voltage for unused circuits will eliminate all of their power.
� Disabling the clock (“clock gating”) for unused circuits will eliminate their dy-

namic power.
� Reducing the switching frequency for circuits which are used will reduce their dy-

namic power proportionately.

Reducing energy is a bit more involved. As we reduce the supply voltage, transistors take
longer to switch because when they turn on they are operating closer to the threshold
voltage VTh, so they do not turn on as strongly (since a saturated MOSFET’s current de-

P � SPV
2
DD � CPV

2
DDƒsw

138 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

pends on (VGS � VTh)
2).

Looking at this from the point of view of a CPU core lowering the clock frequency means
that the processor has to be active longer to complete the same amount of processing work.
Optimizing energy is more complex than optimizing power since it requires us to balance
multiple factors. Slowing the clock lets us lower VDD and therefore both static and dy-
namic power. Slowing the clock also raises the computation time, so that power is inte-
grated over a longer time, potentially raising total energy used. If there is a low-power
standby mode available, in many cases it turns out that the best approach is to run the
processor as fast as possible (at the minimum VDD possible for that frequency) when there
is work to do, and put the processor into standby mode otherwise.

7.3 MEASURING POWER

We can calculate the power used by a circuit by multiplying the current used by the supply
voltage. We can measure the current directly using a multimeter, or indirectly by measur-
ing the voltage drop across a resistor.

7.3.1 MCU Power

The RDK includes provisions measuring the MCU’s current. As shown in Figure 7.2,
power from the 3V3 power rail (in the center) flows to two power connections on the
MCU. MCU Vdd powers the MCU internals and some of the I/O buffers, while MCU
EVdd powers the remaining I/O buffers. EVdd must be less than or equal toVdd. The RDK
connects both of those power connections to 3V3 using zero ohm resistors R108 and R109.
Figure 7.3 shows location of these various components on the RDK itself.

In order to measure MCU current we need to do the following:

� Remove resistors R108 and R109
� Short out jumper JP9 to connect MCU Vdd and MCU EVdd
� Measure current across JP7

A multimeter will give us an average current reading. This is adequate for many situa-
tions. However, there are times when we would like to see how much current the MCU
uses over time as the program executes, entering different modes and using different pe-
ripherals. One way to determine the current and power over time is to convert the current
into a voltage and then display it on an oscilloscope. We can display power if the oscillo-

ƒmax �
KP(VDD � VTh)

2

VDD

ƒmax

CHAPTER 7 / POWER AND ENERGY ANALYSIS 139

MCU Vdd MCU EVdd
3V3 MCU 3V3 MCUE3V3

1210 1210

R108 0R0 R109 0R0

JP7

JMP2,DNL

1 2

1 2
JP9

JMP2, DNL
REV 2

Figure 7.2 RDK circuit for measuring MCU current.

Figure 7.3 Location of power measurement components on RDK.

JP7

JP9

140 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

scope supports multiplying two analog inputs: one input will be the current, and the second
will be the supply voltage for the circuit. Analyzing the data is easier if we modify the pro-
gram to generate pulses on digital output pins as the processor executes the activities
whose power we are trying to measure.

One way to convert the current into a voltage is to insert a small resistor (of resistance
R) in series with either the power rail or ground connection. A current I through the circuit
also flows through the resistor, creating a voltage drop of Vr � I * R. We solve for the cur-
rent: I � Vr /R. We now multiply this by the voltage across the circuit Vc to calculate the cir-
cuit’s power use: Pc � Vc * I � Vc * Vr /R. There are also integrated circuits designed
specifically for performing this current sensing operation, and they include an amplifier to
improve the sensitivity to small currents.

7.3.2 RDK Power

To measure the RDK’s total power we need to include the current consumed by all devices
on the RDK, not just the MCU. We can measure the current coming in to the 5VIN supply
rail at auxiliary power connectors J16 or J17, or at the USB connector J19. One way to
measure the current is to modify a USB cable as shown in Figure 7.4:

� Removing the plastic outer jacket.
� Cut either the red wire (5 V) or the black wire (ground).
� Strip a small amount of insulation from the two ends of the cut wire.
� Connect an ammeter or current sense resistor across the ends of the cut wire.

Figure 7.4 USB cable modified to allow current measurement.

CHAPTER 7 / POWER AND ENERGY ANALYSIS 141

If you plan to use a current sense resistor, it is better to cut the black wire (ground). That
will eliminate about five volts of offset from the measured voltage Vr , improving the accu-
racy and removing some ground offset issues.

It is also important to know that the red wire provides a nominal 5 V, but this may vary
due to various factors (powered vs. unpowered hub, etc.). So be sure to check that voltage
before performing power calculations.

7.4 MEASURING ENERGY

Remember that energy (W) is power integrated over time:

How can we measure (in a practical way) the amount of energy a circuit uses? We can take
advantage of the fact that the energy W in a capacitor is related to the capacitance C and the
voltage V:

If we power the circuit with a capacitor then the capacitor voltage V will fall as the circuit
uses energy.We can measure capacitor voltage before and after the circuit operation and then
calculate the capacitor energy before and after. The difference is the amount of energy used.

In Figure 7.5 we examine how to measure how much energy the MCU uses in order to
perform a certain operation. The operation begins at time t1 and the voltage is V1. The

W �
CV2

2

W(T) � �
T

t�0

P(t)dt � �
T

t�0

V(t)I(t)dt

V1

V2

t2t1
Dt

Time

C
ap

ac
it

o
r

V
o

lt
ag

e

Figure 7.5 Capacitor voltage falls over time based on circuit’s power and energy use.

142 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

voltage falls at varying rates as the circuit uses different amounts of power. The operation
finishes at time t2 and the voltage is V2. We can calculate the energy used as:

We can also calculate the average power as:

One helpful relationship is that a load drawing a constant current I will take t seconds to
discharge the capacitor from V1 to V2:

Another relationship is that a load with a constant resistance R will take t seconds to dis-
charge the capacitor from V1 to V2:

7.4.1 Using Ultracapacitors

Ultracapacitors offer very high capacitances yet low leakage so they are very useful for this
type of circuit. For example, 1 F capacitor charged to 5.0 V could power a 10 mA circuit for
340 seconds until the voltage fell to 1.6 V (the minimum operating voltage for the MCU).

Note that ultracapacitors are not ideal capacitors. As shown in Figure 7.6, they consist
of the equivalent of many small capacitors connected with resistors. This means that if the

t(R) � �RCln
V2

V1

t(I) � C
V1 � V2

I

P � C
V2

1 � V2
2

2(t2 � t1)

W �
CV2

1

2
�

CV2
2

2
� C

V2
1 � V2

2

2

R R R R R R

C C C C C C
R

Figure 7.6 Equivalent circuit for ultracapacitor consists of many small capacitors connected
with resistors.

CHAPTER 7 / POWER AND ENERGY ANALYSIS 143

capacitor is charged (or discharged) to a new voltage and then disconnected, the voltage
will change for a period of time as the charge equalizes across the internal capacitors. In
addition, the capacitance value may vary significantly from the rated value (e.g., �20% to
�85%) due to manufacturing, temperature, age, and other factors. It is important to keep
these limitations in mind when using ultracapacitors to measure energy use.

7.4.2 MCU Energy

Let’s see how to use an ultracapacitor to measure the amount of power used by the MCU
on the RDK. Figure 7.7 shows the power connections for the MCU. We can connect an ul-
tracapacitor to the MCU supply rails (3V3_MCU and 3V3_MCUE) to power just the
MCU and not the other hardware on the RDK.

MCU Vdd MCU EVdd
3V3 MCU 3V3 MCUE3V3

1210 1210

R108 0R0 R109 0R0

JP7

JMP2,DNL

1 2

1 2
JP9

JMP2, DNL
REV 2

Add
ultracapacitor

here

Figure 7.7 Measuring MCU energy on the RDK by adding an ultracapacitor.

If we disconnect R108 and R109, and short JP9, then all MCU power will need to come
across JP7 from the 3V3 rail. We need to insert a diode across JP7 in order to ensure that the
ultracapacitor powers only the 3V3 MCU and 3V3 MCUE rails, but not the 3V3 rail.

7.4.2.1 Input Voltage Protection

We need to be careful to ensure that all input signals to the MCU are no greater than its
supply voltage (on 3V3_MCU). First, a sufficiently high voltage could damage the MCU.
Second, each MCU input pin is protected with a diode connected to the MCU’s internal

144 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Vdd rail. If that input pin’s voltage is high enough above the internal Vdd rail, then the
diode will begin to conduct and the MCU will be powered in part by that input signal. This
will reduce the amount of current being drawn from the 3V3_MCU rail and introduce er-
ror into our measurements. In some cases this can provide all of the current the MCU
needs, enabling operation with no voltage present on Vdd.

7.4.3 RDK Energy

Measuring the RDK energy presents different challenges from measuring the MCU en-
ergy. The RDK can draw a large amount of current (e.g., 300 mA) when the WiFi module
is transmitting. We need an ultracapacitor which is large enough to power the system for
the time of measurement. An ideal 1 F capacitor starting at 5.0 V would be able to provide
300 mA for 6.7 seconds until the voltage falls to 3.0 V, the minimum operating voltage for
the WiFi module. One approach is to use a capacitor (or several) with high capacitance.
Another is to disable unnecessary components in order to eliminate their power con-
sumption. We will examine how to do this in the next chapter.

7.5 POWER SUPPLY CONSIDERATIONS

The power supply can play a large role in a system’s energy and power efficiency. Both volt-
age converters as well as switches (e.g. diodes, transistors) must be considered.

7.5.1 Voltage Converters

These devices convert power from an input voltage to an output voltage. This conversion
may be needed for proper operation, reduced noise, improved energy efficiency, or other-
wise better performance. Some converters, called voltage regulators, use feedback to en-
sure that the output voltage is fixed regardless of changes in the input voltage (within a
given range). There are two common types of voltage converter. Each of these can be used
as a regulator with the addition of feedback control.

7.5.1.1 Linear

A linear converter produces an output voltage which is lower than the input voltage. It uses
a transistor which behaves as a variable resistor to drop the voltage to the output voltage
level. The power dissipated depends in part on output current multiplied by the difference
between the input and output voltages. The larger the voltage drop or output current, the
greater the power loss is. There is also a second power loss term resulting from the quies-

CHAPTER 7 / POWER AND ENERGY ANALYSIS 145

cent current Iq (or ground current) flowing from the input pin to the ground pin. The re-
sulting power loss is the sum of these terms:

Power loss due to quiescent current can be significant when drawing only a small output
current. For example, Figure 7.8 shows the quiescent current for a linear voltage regulator.
Even with no load, this regulator draws 1.8 mA. There are other linear regulators available
with lower quiescent currents which would serve a low power application better.

Ploss � Iout * (Vout � Vin) � Iq * Vin

IBIAS vs. VIN (mPC29M33A)

TJ 5 25°C

IO 5 0.5 A

IO 5 0 A

IO 5 0.35 A

50

40

30

20

10

0
0 2 4 6 8 10 12 14 16 18 20

VIN - Input Voltage - V

I B
IA

S
-Q

ui
es

ce
nt

C
ur

re
nt

-m
A

Figure 7.8 Quiescent current for linear voltage regulator as function of input voltage.

7.5.1.2 Switch-Mode

There are various types of switch-mode power converters. A buck converter produces an
output voltage which is lower than the input voltage. A boost converter produces an output
voltage which is higher than the input voltage. There are other types as well.

A switch-mode converter is typically much more efficient than a linear converter be-
cause it stores energy (using an inductor and a capacitor) and switches it (using transistors
and possibly a diode) to perform the voltage conversion. The voltage conversion ratio is
determined by the duty cycle of the periodic switching activity of the transistors (and possi-
bly diodes).

146 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

The losses in the converter come from the non-ideal (parasitic) characteristics of these
components. Conduction losses result from a component’s non-zero resistance when cur-
rent is flowing through it. Switching losses result from having to charge and discharge par-
asitic capacitances (e.g., transistor gate, diode junction), and also from the transistor’s time
in a lossy, partially conductive state between being fully off and fully on.

7.5.1.3 Trade-Offs

Linear regulators for low-power applications (e.g., � 1 W) are small and inexpensive, yet
are likely to be less energy-efficient. Switching regulators for low-power applications are
larger and more expensive than linear regulators due to the need for additional compo-
nents, some of which are relatively large (e.g., inductors). However, they tend to be more
efficient.

7.5.2 Power Gating Devices

Power supplies often need to control which sources provide power and which loads are
powered. Diodes provide automatic gating while transistors can be switched on or off
based on a control signal.

7.5.2.1 Diodes

Diodes can be used to provide protection by ensuring that current only flows in one direc-
tion. This allows multiple possible circuits to drive a given supply rail safely. Power loss in
a diode is equal to the product of its forward voltage drop and the current I. Note that the
forward voltage drop depends on the current I.

7.5.2.2 Transistors

Transistors can be used to control whether power is provided to a domain or not. When the
transistor is on, the power loss is equal to the product of the drain-to-source resistance rDS

and the square of the current I.

7.6 RDK POWER SYSTEM ARCHITECTURE

Let’s examine the architecture of the power system for the RDK, shown in Figure 7.9.

Ploss(I) � I2 * rDS

Vƒ

Ploss(I) � I * Vƒ

CHAPTER 7 / POWER AND ENERGY ANALYSIS 147

The RDK has the following nine power domains:

� Input power (nominally at 5 V) can be supplied through the USB jack (J19) to
drive the VUSB domain.

� Input power (again nominally 5 V) can also be provided with a barrel connector
(J16) or a two pin 0.1� header (J17) to drive the 5VIN domain.

� The 5V0 domain is driven by either 5VIN or VUSB (whichever has a higher volt-
age). Diodes D5 and D7 are used do this safely by protecting the 5VIN rail from
the VUSB rail. Without the diodes, if power were applied at different voltages to
J19 and J16 or J17, then the power supplies would likely be damaged due to ex-
cessive current.2

� A low-dropout (LDO) linear voltage regulator (U22, type UPC29M33A) draws its
power from the 5V0 rail and drops it to a fixed 3.3 V to drive the 3V3 rail.

� Power for the MCU is provided using 3V3_MCU and 3V3_MCUE. The current
on these rails can be monitored at jumpers JP7 and JP9, after removing shorting re-
sistors R108 and R109 discussed previously.

J16

J19

J17

5VIN

VUSB

D5

D7

JP7

5V0

3V3

3V3_MCU

3V3_MCUE

VBATT

3V3A

WIFIVIN

L1

D6

Q7

Linear
V. Reg.

JP9

Figure 7.9 RDK power supply system drops nominal 5 V input to 3.3 V regulated output and offers
switching and protection.

2 Note that J16 and J17 are not protected with diodes, so do not try to power the board from both connectors si-
multaneously.

148 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

� VBATT charges an ultracapacitor which provides standby power for the WiFi
module when the RDK is not powered.

� Power for noise-sensitive analog portions of the RDK is provided on the 3V3A
rail, which is connected to the 3V3 rail using an inductor to reduce noise.

� The WiFi module’s power comes from the WIFIVIN rail, which can be switched
on or off using the P-channel MOSFET transistor Q7.

The major devices in each power domain are listed here:

� 5V0: LED1, LED17, optocoupler Q3 for triac, LED2, backlight LED for LCD,
Eink display and driver U21, TK debugger U25

� 3V3: serial EEPROM U2, zero crossing detector U3, ambient light sensor U4,
LCD, micro SD card interface, speaker amplifier U8, accelerometer U13, temper-
ature sensor U12, RS232 transceiver U14, LIN transceiver U15, LED3-LED16,
IR emitter D4, IR detector U19, pushbuttons SW2–4

� 3V3_MCU: MCU U1
� 3V3_MCUE: MCU U1
� 3V3A: headphone amplifier U7, microphone U10 and microphone amplifier U9,

potentiometer VR1
� WIFIVIN: Gainspan WiFi module U16, WiFi serial EEPROM U18
� VBATT: ultracapacitor C72 for WiFi module

7.7 RL78 VOLTAGE AND FREQUENCY REQUIREMENTS/POWER
AND ENERGY CHARACTERISTICS

Let’s look at the RL78/G14 data sheet’s electrical characteristics section. As shown in
Table 7.1, the minimum voltage required increases as the desired clock frequency in-
creases. The transistors need higher voltages to switch faster and support higher clock
frequencies.

TABLE 7.1 Minimum Supply Voltages Required for Different Operating Frequencies

OPERATING FREQUENCY MINIMUM VDD

4 MHz 1.6 V

8 MHz 1.8 V

16 MHz 2.4 V

32 MHz 2.7 V

CHAPTER 7 / POWER AND ENERGY ANALYSIS 149

Next let’s examine how much energy is used per clock cycle at four different operating
points, as shown in Table 7.2. This data was gleaned from the hardware manual and is a
good starting point to see how the MCU behaves.

� The lowest power operating point runs the clock as slow as possible (using the
32.768 kHz oscillator), and therefore can use a low voltage (2 V) to reduce power.
The resulting power is 10 �W. Each clock cycle uses 305.2 pJ of energy.

� The lowest energy operating point also occurs when using the low-speed oscilla-
tor. Running at higher speeds consumes more energy per clock cycle, although the
8 MHz operating point is almost as low (325 pJ).

It might seem that the lowest power and lowest energy operating points will always be the
same. However, reality is a bit more complicated. This comparison is biased by the re-
markably low power consumption of the 32 kHz oscillator. If we examine the operating
points using just the high speed oscillator, we find the lowest energy point is at 8 MHz.
Remember that static power is wasted from the point of view of computation. As we in-
crease the clock frequency, we divide the overhead of static power over more clock cycles.
This reduces the overhead per instruction. In general, the most energy-efficient way to use
an MCU is to run at the most energy-efficient speed when there is any work to do, and shift
into an extremely low-power standby state otherwise.

It is interesting to note that the MCU can operate with lower power or energy than
these levels by using a lower operating voltage. Notice that VDD � 1.6 V is sufficient for
running at 32 kHz (see Table 7.1). This is an optimal operating point: it provides the high-
est clock frequency which will run at a given voltage. We would expect the power to fall to
about (1.6 V/2.0 V)2 � 64% of the original value. If we scale all of the power and energy
calculations according to the minimum voltages we can predict the minimum power and
energy required, as shown in Table 7.3.

The results of the calculations show that the power used for the 32 kHz case falls
by nearly one half, and the energy falls by about one third. The other cases see a smaller in-
crease because the relative voltage drops are smaller (2.0 V to 1.8 V, and 3.0 V to 2.7 V).

TABLE 7.2 RL78G14: Energy per Clock Cycle for Various Speeds and Voltages

FREQUENCY
(MHz)

VOLTAGE
(V)

CURRENT
(mA)

POWER
(mW)

ENERGY PER CYCLE
(pJ)

0.032768 2.0 0.005 0.010 305.2

4 2.0 1.40 2.80 700.0

8 2.0 1.30 2.60 325.0

32 3.0 5.4 16.2 506.3

150 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

TABLE 7.3 Estimated Power and Energy for RL78G14 Running at Optimal Operating Points

FREQUENCY
(MHz)

VOLTAGE
(V)

ESTIMATED POWER
(mW)

ESTIMATED ENERGY PER CYCLE
(pJ)

0.032768 1.6 0.006 195.3

8 1.8 2.106 263.3

32 2.7 13.122 410.1

7.8 RL78 CLOCK CONTROL

Let’s start by looking at how we control the clock frequency and perform clock gating for
the RL78 family of MCUs (Renesas Electronics Corporation, 2011a).

7.8.1 Clock Sources

There are multiple oscillators in an RL78 family MCU, as shown in Figure 7.10. The first
three can be used to clock the CPU and most of the peripherals (serial and timer array
units, analog to digital converter, I2C interface, etc.).

� The high-speed on-chip oscillator is configurable and generates clock signal fIH at
certain frequencies from 1 to 32 MHz. It also can generate a clock signal of up to
64 MHz for timer operation. These frequencies are approximate, and the accuracy
can be increased by adjusting the value in the trimming register HIOTRM.

� The high-speed system clock oscillator uses an external crystal, resonator, or clock
signal to generate the signal fMX, which can range from 1 to 20 MHz.

� The subsystem clock oscillator uses an external 32.768 kHz resonator, crystal, or
clock signal to generate the fXT signal, which is called fsub when clocking the MCU
or peripherals.

There is a fourth oscillator available as well:

� The low-speed on-chip oscillator generates the fSUB signal at approximately 15 kHz
(�/�2.25 kHz). This signal can only be used by the watchdog timer, real-time
clock, or interval timer.

7.8.2 Clock Source Configuration

There are several registers used to configure the various clocks and how they are used.

� The Clock Operation Mode Control Register (CMC) determines critical parame-
ters such as oscillation amplitude and frequency range, and whether external pins

CHAPTER 7 / POWER AND ENERGY ANALYSIS 151

are used as crystal connections or input ports. It can only be written once after re-
set in order to protect it from corruption by abnormal program behavior.

� The SystemClock Control Register (CKC) selects the CPU/peripheral hardware clock
(fCLK) using the CSS bit, and the main system clock (fMAIN) using the MCM0 bit.

� The Clock Operation Status Control Register (CSC) controls whether an oscillator
is stopped or running. The MSTOP bit controls the high-speed system clock oscil-
lator, the XTSTOP bit controls the subsystem clock oscillator, and the HIOSTOP
bit controls the high-speed on-chip oscillator.

� The Peripheral Enable Register 0 (PER0) allows the program to disable the clock
signals for unused peripherals in order to save power. The analog to digital con-
verter, and each timer array unit, serial array unit, and IIC unit, can be controlled
independently.

7.8.3 Oscillation Stabilization

There is some time delay between when the high-speed system clock oscillator is started
and when it runs at the correct frequency and amplitude, as shown in Figure 7.11. There are
two registers associated with controlling and monitoring this time delay.

High-Speed
On-Chip
Oscillator

High-Speed
System Clock

Oscillator

Subsystem
Clock

Oscillator

Low-Speed
On-Chip
Oscillator

FRQSEL HOCODIV

fIH 1-32 MHz

fMX 1-20 MHz

fSUB 32.768 kHz

fIL ~15 kHz

fCLK

RTC

IT

WDT

CPU

TAU0

TAU1

SAU0

SAU1

ADC

IICA0

IICA1

MCM0 CSS

fMAIN

PER0

Figure 7.10 RL78 clock system overview.

152 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

� The Oscillation Stabilization Time Select Register (OSTS) specifies how long the
MCU waits for the X1 clock to stabilize when coming out of stop mode. Delays
from 28 to 218 X1 counts are possible (i.e., from tens of microseconds to tens of
milliseconds).

� The Oscillation Stabilization Time Counter Status Register (OSTC) indicates how
much time has elapsed since coming out of stop mode. Each bit is set to one as the
time threshold passes and remains at one.

7.8.4 High-Speed On-Chip Oscillator Frequency Selection

The high-speed on-chip oscillator’s output frequency fIH can be selected in two ways.
First, the FRQSEL bits of option byte 000C2H can be used to specify a speed.

STOP mode release

X1 pin voltage
waveform

a

Figure 7.11 High-speed system clock oscillator start-up time.

FRQSEL4 FRQSEL3 FRQSEL2 FRQSEL1 FRQSEL0

FREQUENCY OF THE HIGH-SPEED
ON-CHIP OSCILLATOR CLOCK

fHOCO fIH

1 1 0 0 0 64 MHz 32 MHz

1 0 0 0 0 48 MHz 24 MHz

0 1 0 0 0 32 MHz 32 MHz

0 0 0 0 0 24 MHz 24 MHz

0 1 0 0 1 16 MHz 16 MHz

0 0 0 0 1 12 MHz 12 MHz

0 1 0 1 0 8 MHz 8 MHz

0 1 0 1 1 4 MHz 4 MHz

0 1 1 0 1 1 MHz 1 MHz

Other than above Setting prohibited

Figure 7.12 Oscillator speed selection with option byte 000C2H.

CHAPTER 7 / POWER AND ENERGY ANALYSIS 153

Second, the frequency select register HOCODIV can be used, as shown in Figure 7.13.
There are two possible sets of frequencies based on whether the FRQSEL3 bit of option
byte 000C2H is set to 1 or 0.

HOCODIV2 HOCODIV1 HOCODIV0

SELECTION OF HIGH-SPEED ON-CHIP OSCILLATOR LOCK FREQUENCY

FRQSEL4 � 0 FRQSEL4 � 1

FRQSEL3 � 0 FRQSEL3 � 1 FRQSEL3 � 0 FRQSEL3 � 1

0 0 0 fIH � 24 MHz fIH � 32 MHz fIH � 24 MHz
fHOCO � 48 MHz

fIH � 32 MHz
fHOCO � 64 MHz

0 0 1 fIH � 12 MHz fIH � 16 MHz fIH � 12 MHz
fHOCO � 24 MHz

fIH � 16 MHz
fHOCO � 32 MHz

0 1 0 fIH � 6 MHz fIH � 8 MHz fIH � 6 MHz
fHOCO � 12 MHz

fIH � 8 MHz
fHOCO � 16 MHz

0 1 1 fIH � 3 MHz fIH � 4 MHz fIH � 3 MHz
fHOCO � 6 MHz

fIH � 4 MHz
fHOCO � 8 MHz

1 0 0 Setting
prohibited

fIH � 2 MHz Setting
prohibited

fIH � 2 MHz
fHOCO � 4 MHz

1 0 1 Setting
prohibited

fIH � 1 MHz Setting
prohibited

fIH � 1 MHz
fHOCO � 2 MHz

Other than above Setting prohibited

Figure 7.13 Oscillator speed selection with HOCODIV register.

7.9 RL78 STANDBY MODES

In addition to the normal operating mode of executing instructions, the RL78 offers several
standby modes in which the processor cannot execute instructions but other portions of the
MCU continue to operate. Figure 7.14 presents a state diagram showing the halt, stop, and
snooze states and possible transitions among them.3 Note that the peripherals are function-
ing in the Halt and Operating states, while most are off in the Stop and Snooze modes.
Turning off the peripherals dramatically reduces power consumption.

3 Note that this is a simplification of the complete state diagram presented in the RL78G14 hardware manual.

154 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

A circuit’s current consumption can be cut significantly by using the standby states:
starting at 5.4 mA when executing instructions at 32 MHz, current falls to 620 �A when
halted but with clocks running at 32 MHz, and falls further to 0.25 �A when stopped with
only the 32.768 kHz subsystem clock running.

Table 7.4 shows which portions operate in the different standby modes. Note that
which clock source is used affects which subsystems can operate in HALT mode.

Let’s examine each of the available standby states next.

7.9.1 Halt

A program executes the HALT instruction to enter the halt mode. The CPU stops executing
instructions, but some or all peripherals continue to operate. The CPU clock continues to

HSOCO
HSCO/XT
SSCO/XT1

Off
Off
On

Peripherals

CPU

Off

Off

Stop
HSOCO

HSCO/XT
SSCO/XT1

On
On
On

Peripherals

CPU

On

Off

Halt
HSOCO

HSCO/XT
SSCO/XT1

On
On
On

Peripherals

CPU

On

On

Operating

HSOCO
HSCO/XT
SSCO/XT1

On
Off
On

Peripherals

CPU

Off

Off

Snooze

620 mA @ 32 MHz
0.34 mA @ 32 kHz

5.4 mA @ 32 MHz
5.0 mA @ 32 kHz 0.25 mA

HALT
Instruction

Unmasked
Interrupt or Reset

STOP
Instruction

Interrupt or Reset
Unmasked

Conversion completes
generating interrupt

Hardware
Trigger
Event

Conversion
completes

without
generating
interrupt

Figure 7.14 MCU operating and standby state transitions with snooze mode.

CHAPTER 7 / POWER AND ENERGY ANALYSIS 155

TABLE 7.4 MCU Subsystem Operation in Standby Modes

SUBSYSTEM

HALT

STOP SNOOZE

MAIN SYSTEM
CLOCK

SUBSYSTEM
CLOCK

Port y y y y

Power On Reset y y y y

Voltage Detection Circuit y y y y

External Interrupt y y y y

Key Interrupt y y y y

Real-Time Clock y y y y

Interval Timer y y y y

Clock/Buzzer y partial partial partial

Watchdog Timer config. config. config. config.

Serial Array Unit y config. wake to snooze partial

Analog to Digital Converter y n wake to snooze y

Digital to Analog Converter y config. y y

Comparator y config. partial partial

I2C Array y n adx. match wake
to operating

n

Data Transfer Controller y config. n y

Event Link Controller y y y y

Timer Array Units y config. n n

Timers RJ, RD, RG y config. partial n

General Purpose CRC n n n n

High-Speed CRC y y n n

Illegal Memory Access
Detection

DTC only DTC only n DTC
only

156 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

run. If the main system clock is used then all peripherals will be able to operate, while if
the subsystem clock is used some peripherals will be unavailable.

TheMCU exits the halt mode if it receives an unmasked interrupt request or a reset signal.

7.9.2 Stop

A program executes the STOP instruction to enter the stop mode, which shuts down most
peripherals in order to save additional power. The stop mode shuts down the main oscilla-
tor (X1 pin).

The MCU exits the stop mode if it receives an unmasked interrupt request or a reset sig-
nal.When exiting stop mode, the oscillator must start up again so it incurs the stabilization
delay described earlier.

7.9.3 Snooze

In order to use the Snooze mode the program must configure the peripheral accordingly,
and then the MCU enters the Snooze mode with a STOP instruction. The following pe-
ripherals can be configured to move the processor from STOP to SNOOZE mode when an
appropriate trigger condition occurs:

� A/D converter: upon receiving a conversion request from INTRTC, INTIT, or ELC
� Serial array unit when configured for CSI or UART mode: upon receiving data
� Data transfer controller: upon activation event occurring

For example, the ADC can be triggered by the real-time clock or the interval timer, as
shown in Figure 7.15. When triggered, the ADC will assert a signal starting up the high-
speed on-chip oscillator clock. The clock starts up (and stabilizes for the specified delay)
and is fed to the ADC, which uses it to perform the specified conversion(s). After the con-
version(s) complete there are two possible actions. If the conversion result is within a spec-
ified range, then no interrupt is generated. Otherwise an interrupt is generated.

� If no interrupt is generated, the clock stops running and the system goes back into
snooze mode.

Hardware trigger
input

Clock request signal
(internal signal)Real-time clock (RTC),

Interval timer

High-speed on-chip
oscillator clock

A/D conversion end
interrupt request

signal (INTAD)

A/D converter Clock generator

Figure 7.15 Example of snooze mode operation with ADC.

CHAPTER 7 / POWER AND ENERGY ANALYSIS 157

� If an interrupt is generated, the clock continues running. The interrupt signal
wakes up the MCU from STOP mode so it can execute instructions.

Further details are available in a white paper (Renesas Electronics America Inc., 2011b).

7.10 RECAP

In this chapter we have seen how voltage and switching frequency determine the amount of
power used by a digital circuit. We have also examined the relationship between power and
energy. We have investigated the RL78 MCU family’s design features which can reduce
power and energy use.

7.11 REFERENCES

Renesas Electronics Corporation. (2011a). RL78/G13 16-Bit Single-Chip Microcontrollers User’s Manual:

Hardware.

Renesas Electronics America Inc. (2011b). White Paper—RL78 Microcontroller Family: Using the Snooze

Mode Feature to Dramatically Reduce Power Consumption.

Chapter 8

159

8.1 LEARNING OBJECTIVES

This chapter begins with a discussion of how to create power and energy models of an em-
bedded system. We present models for both loads (such as the MCU and external devices)
and power supply subsystems. We continue by examining optimization methods. We first
survey techniques for peripherals and then examine MCU techniques in more detail in or-
der to leverage voltage scaling, frequency scaling and standby modes.

8.2 MODELING SYSTEM POWER

It is extremely helpful to build mathematical models of a system’s power and energy use be-
cause these models help us identify which components or subsystems dominate the overall
behavior. By examining those first we can improve the performance quickly and effectively.

8.2.1 Basic Power Models

A component may have more than one operating mode. For example, an LED may be on
or off. We need to create a power model for each mode. We can then select the appropriate
model based on the component’s operating mode.

8.2.1.1 Modeling Passive Components

The power dissipation of a resistor with resistance R can be expressed as a function of the
voltage across it (VR) or the current through it (IR):

PR �
V2
R

R
� I2RR

Power and Energy Optimization

160 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Ideal capacitors and inductors store energy perfectly and therefore do not dissipate
power. However, real devices have parasitic resistances which lead to power loss. A
capacitor has a parasitic resistance in series (equivalent series resistance) and in paral-
lel. Inductors have parasitic resistances in series (equivalent series resistance).

8.2.1.2 Modeling Semiconductors

8.2.1.2.1 Diodes: The power which diodes (including light-emitting diodes (LEDs)) dissi-
pate when they are forward biased is nonlinear because the current depends upon the voltage
across it. We can calculate power (using a simplification of Shockley’s ideal diode law) as:

Here IS is the reverse bias saturation current, VT is the thermal voltage (about 25.85 mV at
room temperature, 23° C), and n is the ideality factor (often approximated as 1).

For simplicity, we can determine the forward voltage for a given current by inspecting
the component datasheet. Figure 8.1 shows the characteristics of a diode on the RDK used
for power supply protection (D5 is Schottky diode, part number SBR2U30P1). This plot
shows we should expect a forward voltage of about 120 mV when 10 mA of current is
flowing through the diode when operating with an ambient temperature TA � 25° C.

PD � VFID � VFISe
(VF>(nVT))

10,000

1,000

100

10

1

0.1
0 0.2 0.4 0.6 0.8

I F
,I

ns
ta

nt
an

eo
us

Fo
rw

ar
d

C
ur

re
nt

(m
A

)

VF, Instantaneous Forward Voltage (V)

TA 5 100°C

TA 5 25°C

TA 5 265°C
TA 5 150°C

Figure 8.1 Current as a function of voltage for a Schottky diode.

CHAPTER 8 / POWER AND ENERGY OPTIMIZATION 161

We can also measure an actual component to find these values. Note that the forward
voltage for a given current can vary significantly with different types of diodes, ranging
from low (e.g., 0.1 V for a Schottky diode), to moderate (e.g., 0.7 V for a PN junction
diode) to high (e.g., 1.6 V to 2 V for a red LED, 2.5 V to 3.7 V for a blue LED).

8.2.1.2.2 Transistors Used as Switches: Often transistors are used as switches to en-
able or disable power to other components. We consider bipolar and field-effect transistors.
We assume that the transistors are either fully on or fully off, and spend negligible time in
any intermediate states.

A bipolar transistor operating as a switch will either be on (in the saturation mode) or
off (cutoff). When the transistor is saturated we can calculate the power loss as the product
of voltage VCE and collector current IC.

For simplicity we can derive these values from the component datasheet. Figure 8.2 shows
the characteristics of an NPN transistor on the RDK (Q1 is an NPN transistor, part number
MBT2222A). For collector currents of less than 20 mA we can approximate the VCE as
about 50 mV, simplifying the power model significantly.

A field-effect transistor (e.g., a MOSFET) will either be on (in the active mode) or off
(cutoff). When the transistor is on, the drain-to-source current IDS depends mainly on the

PQ � VCEIC

0.4

0.3

0.2

0.1

V
C

E
S

AT
-C

ol
le

ct
or

-E
m

itt
er

Vo
lta

ge
(V

)

IC - Collector Current (mA)

1 10 100 500

Collector-Emitter Saturation
Voltage vs Collector Current

b 5 10

125°C

25°C

240°C

Figure 8.2 Voltage drop of saturated BJT as a function of collector current.

162 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

square of the overdrive voltage VOV (equal to gate-to-source voltage VGS minus the thresh-
old voltage Vth). This means that the drain-to-source channel can be modeled as a resistor
of value RDS given a fixed overdrive voltage. The power loss of a FET in the active mode
can be modeled using that resistance:

The value of RDS can be found in the datasheet for the device. For example, Figure 8.3
shows RDS for a MOSFET on the RDK (Q2 is an N-channel device, part number
RQK0609CQDQS). With VGS � 2.5 V, the channel resistance RDS is 90 m�.

PQ � I2DSRDS

1000

100

10D
ra

in
to

S
ou

rc
e

on
S

ta
te

R
es

is
ta

nc
e

R
D

S
(o

n)
(m

V
)

Drain Current ID (A)

0.1

Static Drain to Source on State Resistance
vs. Drain Current

1 10 100

10 V

VGS 5 2.5 V

Pulse Test
TA 5 25°C

4.5 V

Figure 8.3 Drain to source resistance of MOSFET in active mode is approximately linear for
low to moderate drain currents.

8.2.1.3 Modeling Digital Circuits

As shown in the previous chapter, we can model the power of a digital circuit as the sum of
two components—the static and dynamic power.

P � SPV
2
DD � CPV

2
DDƒCLK

CHAPTER 8 / POWER AND ENERGY OPTIMIZATION 163

Sp and Cp are proportionality constants representing conductance (the inverse of resistance)
and capacitance. These constants can be calculated by fitting curves to data derived exper-
imentally or from the device datasheet.

We model the MCU and peripherals with the digital circuit model. Typical MCUs of-
fer a variety of operating modes possible with different clock sources, so there may be a
slightly different model for each mode.

8.2.2 Modeling the Power System

The power system may include protection diodes, transistor switches, and voltage regu-
lators. Diodes and transistors can be modeled as described above. Voltage regulators re-
quire more discussion. There are two types of voltage regulators to consider: linear and
switching.

A linear regulator uses a transistor as a variable resistor to drop the voltage to the out-
put voltage level, dissipating some power. Power is also lost because a quiescent current Iq
(or ground current) flows from the input pin to the ground pin. The resulting power loss is
the sum of these terms:

The power loss of a switching regulator depends greatly on the internal components and
design parameters and operating modes. Extensive information is available in power elec-
tronics texts (Erickson & Maksimovic, 2001). Vendors of switching regulator modules typ-
ically provide plots showing efficiency as a function of load current.

8.2.3 Example: RDK Power System

Let’s examine the RDK power system, shown in Figure 8.4. Further details were presented
in the previous chapter.

Consider a 10 mA load on the 3V3 rail. It will dissipate its own power Pload � 10 mA *
3.3 V � 33 mW. It will also lead to additional power dissipation in the linear voltage regu-
lator and either D5 or D7. The linear voltage regulator’s power loss will be the sum of two
terms: power loss due to the voltage drop ((5.0 V - 3.3 V)*10 mA � 17 mW) and the quies-
cent current (1.8 mA * 5.0 V � 8 mW). The total loss in the regulator is 25 mW. The loss in
the diode (per Figure 8.1) is about 70 mV * 10 mA � 0.7 mW. In order to provide 33 mW
of power to the load at 3.3 V, the power system uses an additional 25.7 mW, so the total
power use is 58.7 mW. For an application with limited power or energy, the voltage regula-
tor would be an excellent starting point for optimization.

Ploss � Iout*(Vout � Vin) � Iq*Vin

164 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

Now consider a larger 20 mA load being driven by the 5V0 rail. It will dissipate its
own power (Pload � 20 mA * 5V � 100 mW). It will also lead to additional power loss due
to a voltage drop across the diode D5 or D7, depending on which power source is used.
These diodes will have a forward voltage drop of about 80 mV (per Figure 8.1), leading to
an additional power loss of 80 mV * 20 mA � 1.6 mW. This is a smaller loss due to the
lack of use of a voltage regulator. Circuits which can operate without voltage regulators
can save power.

8.2.4 Example: RDK Power Model

In some projects we may be given a clean slate and will be able to design the system hard-
ware from scratch, selecting from a wide range of components and selecting the best. How-
ever, it is quite common to work with existing (legacy) hardware designs, where only mi-
nor hardware changes are feasible. In either case it is quite helpful to have a power model
so we can focus our optimization efforts.

J16

J19

J17

5VIN

VUSB

D5

D7

JP7

5V0

3V3

3V3_MCU

3V3_MCUE

VBATT

3V3A

WIFIVIN

L1

D6

Q7

Linear
V. Reg.

JP9

Figure 8.4 Overview of the RDK power system.

CHAPTER 8 / POWER AND ENERGY OPTIMIZATION 165

Gree
n LE

Ds &
res

ist
ors

Deb
ug

ge
r MCU

Red
LE

DS
&

res
ist

ors

SV
po

wer
sy

ste
m

LC
D

ba
ck

lig
ht

LE
D

&

IR
LE

D
TSKSS40

0S

W
iFi M

od
ule

GS10
11

MIP
S

3.3
V

po
wer

sy
ste

m

700

600

500

400

300

200

100

0

A
ct

iv
e

P
o

w
er

(m
W

)

Figure 8.5 Estimated power consumption (mW) for RDK components using more than
20 mW when active.

Let’s consider how power is used in the RDK. We can apply the modeling methods
listed above to determine how much power is used by each component when operating (ac-
tive) and then order them by greatest power first. Figure 8.5 shows the RDK components
which use more than 20 mW each. The power system which supplies 3.3 V uses the most
power (603 mW) primarily because of the linear regulator's low efficiency. The WiFi mod-
ule is next, using nearly 500 mW when transmitting or receiving. Next comes the infrared-
emitting LED and the white LED backlight for the LCD, and then the 5 V power system
(protection diodes D5 and D7), the debugger and the green LEDs. This type of analysis
shows where to start when seeking to reduce power or energy consumption.

Figure 8.6 shows the RDK components which use between 2 and 20 mW when active.
Notice that the RL78/G14 MCU is running at full speed (32 MHz) at 3.3 V, but it only uses
slightly more power than the 5 V power indicator LED (with current limiting resistor).
These power models are for active components: LEDs which are lit, a WiFi module which
is transmitting or receiving, or an an EEPROM which is being written. This models the
RDK's maximum power use and assumes all peripherals are used simultaneously. We
would like to enable only the peripherals which are needed for an application. The RDK

166 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

IR
de

tec
tor

TSOP98
23

8

Switc
h pu

ll-u
p res

ist
or

LC
D

Mod
ule

RS23
2 tra

ns
ce

ive
r ADM31

01
EAROZ

Aud
io

am
p SSM23

77
ACBZ

Oran
ge

LE
D

&
res

ist
or

Mic
am

p SSM21
67

-1E
MZ

3.3
V

po
wer

ind
ica

tor
&

res
ist

or

Seri
al

EEPROM
R1E

X24
51

2A
SAASOA

5V
po

wer
ind

ica
tor

&
res

ist
or

RL7
8G

14

Hea
dp

ho
ne

am
p NCP28

11
ADTB

20

18

16

14

12

10

8

6

4

2

0

A
ct

iv
e

P
o

w
er

(m
W

)

Figure 8.6 Estimated power consumption (mW) for RDK components using less than
20 mW when active.

TABLE 8.1 Control Signals for Disabling Peripherals on RDK

CONTROL SIGNAL GPIO PORT AND BIT MCU PIN
LCD Backlight Enable P00 97

LCD Reset P130 91

LCD SPI Chip Select P145 98

Headphone Amplifier Enable P04 93

Speaker Amplifier Enable P06 41

Microphone Amplifier Enable P05 42

MicroSD Card SPI Chip Select P142 1

allows the WiFi module to be disabled through hardware control using switch SW4. The
RDK supports disabling some of its peripherals under software control using the GPIO
control signal outputs listed in Table 8.1. Peripherals on the SPI or I2C bus can typically be
disabled by sending a specific command on the bus. When disabled, these peripherals en-
ter a very low-power standby mode. Similarly, it is possible to hold the debugger MCU in
reset mode, reducing its power significantly.

CHAPTER 8 / POWER AND ENERGY OPTIMIZATION 167

8.2.5 Modeling System Energy

We compute energy by integrating power over time. To create a precise and time-accurate
energy model, we need to know when and for how much time each component in the
power model is active. Often it is sufficient to estimate the duty cycle for each compo-
nent—what fraction of time it is active. This allows for the use of weighted averages, and
is the approach we will use.

8.3 REDUCING POWER AND ENERGY FOR PERIPHERALS

Let’s see how we can reduce an embedded system’s peripheral device power and energy
consumption. The power equations previously presented give us some insight into how to
reduce the power consumption for the system.

� Selecting more efficient components can reduce power. For example, using high-
brightness LEDs will reduce the current required, reducing total power use. Alter-
natively, using a display such as the Eink display will consume no power until the
image needs to change.

� Lowering the supply voltage will reduce power quadratically for both terms. For ex-
ample, cutting VDD to 80% of its original value will reduce power to (80%)2 � 64%
of its original value.

� Some devices offer a standby mode with very low power requirements. This may
be controlled through a logic level input (for example, as in Table 8.1), or through
a command on a communication port such as SPI or I2C.

� Devices without standby modes can have their supply voltage shut off, eliminating
all of their power. Transistors or dedicated switch ICs can be used to perform this
switching. LEDs can be pulse-width modulated to control brightness.

� Disabling the clock (“clock gating”) for unused circuits will eliminate their dy-
namic power. This is the approach used for the RL78�s internal peripherals.

� Reducing the switching frequency for circuits which are used will reduce their dy-
namic power proportionately.

Energy for peripherals can be reduced with the methods above, as well as by limiting the
time for which the circuits are active.

� There may be built-in low-energy modes available for use (e.g., in the accelerometer).
� Faster communications can reduce the amount of time that a peripheral or the MCU

needs to be active.A serial protocol such as SPI can be run at very high speeds (tens
of MHz) when communicating with some devices (e.g., microSD memory cards).
Data may be compressed before transmission, reducing active time.

� Peripheral devices may allow configuration of parameters which affect the active
time, such as conversion rate, conversion resolution, settling times, noise filtering,
time-outs, message size, etc.

8.4 REDUCING POWER AND ENERGY FOR THE MCU

Minimizing the power or energy used by an MCU is an interesting challenge which re-
quires balancing various factors to reach the design goal.

Consider reducing the supply voltage to a digital circuit. This will clearly reduce
power consumption. However, the transistors will take longer to switch because they are
operating closer to the threshold voltage Vth, so they will not turn on as strongly. Looking
at this from the point of view of a CPU core, lowering the clock frequency means that the
processor has to be active longer to complete the same amount of processing work.

Optimizing energy thus requires us to balance multiple factors. Slowing the clock ƒCLK
lets us lower VDD and therefore both static and dynamic power. Slowing the clock also
raises the computation time, so that power is integrated over a longer time, potentially rais-
ing total energy used.

We will see later that if there is a low-power standby mode available, the best approach
might be to run the processor as fast as possible (at the minimum VDD possible for that fre-
quency) when there is work to do, and put the processor into the standby mode otherwise.

One of the most important properties of the program the MCU will run is how many
CPU instruction execution cycles it requires to do its work. For non-real-time systems we
model the program as requiring C execution cycles every second to complete its work. The
resulting utilization U of the processor is C/ƒCLK given a clock frequency of ƒCLK. For real-
time systems the situation is more complicated, and the subject of extensive ongoing re-
search. In some cases, the model defined above is applicable. We leave further discussion
of these concepts to future work.

8.4.1 Optimization Approaches

In this section we measure the power and other characteristics of the RL78/G14 MCU on
the RDK using an adjustable power supply and other test equipment. This allows us to
evaluate many more operating conditions than are covered in the datasheet. The previous
chapter used values from the datasheet, so there will be slight differences in values be-
tween these two chapters.

Given that our program requires C CPU execution cycles per second, how can we im-
prove power or energy? We have several methods available: scaling (adjusting) the operating
voltage, scaling the CPU clock frequency, and using standby modes such as stop and halt.

Scaling decisions can be made at design time and then be static (fixed) during program
run-time. Alternatively, they may be made dynamically at run-time, assuming proper

168 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

CHAPTER 8 / POWER AND ENERGY OPTIMIZATION 169

hardware and software support. The scaling may be applied to the entire system or to parts
of it. There may be some domains with no scaling, and other individual domains within the
system which can be scaled independently. For example, a multi-tasking system may scale
MCU voltage and frequency differently on a per-task basis. Or the MCU voltage may be
scaled while the LCD voltage is not scaled.

8.4.2 Voltage Scaling

One straightforward approach to reducing power and energy use is to reduce the supply
voltage. The amount of reduction is constrained by the minimum voltage constraints of the
MCU and any other circuitry on that supply rail. The minimum supply voltage for digital
logic is related to the target operating frequency. Table 8.2 shows these specifications for
the RL78G14 family MCUs.

TABLE 8.2 Minimum Supply Voltages Required for Different MCU Clock Frequencies

OPERATING FREQUENCY (ƒCLK) MINIMUM SUPPLY VOLTAGE VDD

4 MHz 1.6 V

8 MHz 1.8 V

16 MHz 2.4 V

32 MHz 2.7 V

Let’s assume we’ve developed a functioning prototype of embedded system on the RDK
with the MCU running at 8 MHz. The RDK uses a 3.3V supply rail to power the MCU. We
can run the MCU at 1.8 V instead, since that is the minimum supply voltage needed for
8 MHz. Reducing the supply voltage from 3.3 V to 1.8 V would reduce MCU power and
energy to (1.8 V/3.3 V)2 � 0.298 of their original RDK-based values. This is a major
improvement—eliminating 70.2% of the power and energy required by the MCU.

Peripheral logic will also benefit from such voltage scaling, assuming that it can oper-
ate at the lower voltage. If not, the peripherals must be powered at an adequate voltage
(based on their requirements) and level-shifting circuitry may be needed to convert signals
safely between the voltage domains.

Remember that we will need to generate the new supply voltage rail. As discussed
previously, voltage converters and regulators are not 100% efficient, so some power
will be lost in the conversion. This loss needs to be balanced against the gain from re-
ducing MCU (and peripheral) power in order to determine whether this optimization is
worthwhile.

8.4.3 MCU Clock Frequency Scaling

One approach to improving power or energy consumption is to scale the clock frequency at
which the MCU processor core runs. The RL78G14 family of MCUs supports both inter-
nal and external clock sources. The internal high speed oscillator (HOCO) can generate an
MCU clock signal ƒCLK at speeds of 1, 4, 8, 12, 16, 24, and 32 MHz. An external oscillator
running at a different frequency is also possible. There is also a subsystem oscillator avail-
able which runs at 32.768 kHz, offering exceptionally low power consumption. In this dis-
cussion we will only examine using the HOCO due to time and space constraints.

8.4.3.1 Power Analysis

Figure 8.7 shows the power consumption of the MCU at 3.3 V running at these speeds (us-
ing the HOCO). It also shows a linear approximation of power based on frequency. The to-
tal power (for VDD � 3.3 V) can be modeled using this linear approximation as:

PMCU � 2.893 mW � aƒCLK*0.4187
mW

MHz
b

170 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

18

16

14

12

10

8

6

4

2

0
0 8 16 24 32

Power (mW)

Linear (Power (mW))

M
C

U
Po

w
er

U
se

(m
W

)

MCU Clock Frequency (MHz)

y 5 0.4187x 1 2.893

Figure 8.7 RL78G14 MCU power consumption at 3.3V (R5F014PJAFB).

CHAPTER 8 / POWER AND ENERGY OPTIMIZATION 171

4000

3500

3000

2500

2000

1500

1000

500

0

0 8 16 24 32

M
C

U
En

er
gy

pe
rC

lo
ck

C
yc

le
(p

J)

MCU Clock Frequency (MHz)

Figure 8.8 RL78G14 MCU energy consumption per clock cycle at 3.3V (R5F014PJAFB).

We can model the energy per clock cycle based on the MCU power model and the clock
frequency:

This equation clearly shows the impact of the static power component (2.893 mW) being
reduced as it is spread over more and more clock cycles (ƒCLK). It also shows the dynamic

EMCU_per_cycle �

2.893 mW � afCLK * 0.4187
mW

MHz
b

ƒCLK
�

2893 pJ * MHz

ƒCLK
� 418.7 pJ

This equation shows the static power term (2.893 mW), which is not affected by the clock
rate. It also shows the dynamic power term which depends linearly on the clock rate. We
see that the lowest power is used by running the MCU at the lowest frequency.

8.4.3.2 Energy Analysis

We can use this power model to determine the amount of energy needed for the MCU to
perform one clock cycle of instruction processing by dividing the power required by the
clock frequency, as shown in Figure 8.8.

power component of 0.4187 mW/MHz (equal to nJ) per clock cycle. We see that the low-
est energy results from running the MCU at the highest frequency.

8.4.3.3 Selecting the Operating Frequency

In order to reduce power we reduce the frequency ƒCLK of the CPU as much as possible, but
no lower than C. Recall that C is the maximum number of execution cycles the program re-
quires each second to complete its work. This ensures the resulting utilization does not ex-
ceed 1, and all work is completed.

This approach reduces power and energy. Given the power model of the RL78G14, we
can see that dynamic power will be reduced based on the number of compute cycles C re-
quired per second:

When using the HOCO we are limited to selecting the smallest HOCO frequency fHOCO
which is not less than C. If we use an external oscillator instead, then we can select a de-
vice which produces the desired frequency exactly.

8.4.4 MCU Voltage and Clock Frequency Scaling

The previous section evaluates power and energy at a fixed supply voltage of VDD � 3.3 V.
If we can run the MCU at a lower voltage, we can reduce both static and dynamic power
since they depend quadratically on the voltage. We can therefore also reduce energy.

8.4.4.1 Power Analysis

Table 8.3 shows MCU characteristics for four different operating frequencies. The second
column shows the minimum supply voltage VDDmin for each of these frequencies as spec-

PMCU � 2.893 mW � aC * 0.4187
mW

Hz
b

172 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

TABLE 8.3 RL78G14 Power and Energy Measured at Various Operating Points.

OPERATING
FREQUENCY (ƒCLK)

MINIMUM SUPPLY
VOLTAGE VDDMIN (V)

POWER
(mW)

ENERGY PER
CYCLE (pJ)

REDUCTION FROM
VDD � 3.3V

4 MHz 1.6 V 1.09 272.6 76.48%

8 MHz 1.8 V 2.167 270.9 65.23%

16 MHz 2.4 V 6.308 394.3 34.29%

32 MHz 2.7 V 12.812 400.4 22.26%

CHAPTER 8 / POWER AND ENERGY OPTIMIZATION 173

18

16

14

12

10

8

6

4

2

0
0 8 16 24 32

M
C

U
Po

w
er

U
se

(m
W

)

MCU Clock Frequency (MHz)

y 5 0.4187x 1 2.893

Power at 3.3 V (mW)
Power at VDDmin (mW)
Linear (Power at 3.3 V (mW))
Linear (Power at VDDmin (mW)

y 5 0.4282x 2 0.8279

Figure 8.9 RL78G14 MCU power consumption with supply voltage scaled down to VDDmin

(R5F014PJAFB).

ified by the MCU documentation. Each frequency/voltage pair (operating point) results in
the lowest MCU power and energy dissipation for that frequency.

The third column shows the power used by the MCU at each power point, while the
fourth shows the energy per clock cycle. Because the minimum voltages are all less
than the 3.3 V used above, we reduce power and energy use. Notice that the lowest en-
ergy operating point is no longer the highest frequency. This is because we have re-
duced the supply voltage to the minimum possible for the clock frequency. This results
in much greater energy savings for the lower clock frequencies, as they can run at lower
voltages.

Figure 8.9 shows the improvement in power consumption achieved with the use of
voltage scaling. We can model the MCU power for these frequencies as:

PMCU � �0.8279 mW � aƒCLK*0.4282
mW

MHz
b

174 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

4000

3500

3000

2500

2000

1500

1000

500

0
0 8 16 24 32

M
C

U
En

er
gy

pe
rC

lo
ck

C
yc

le
(p

J)

MCU Clock Frequency (MHz)

Energy/cycle at 3.3 V (pJ)
Energy/cycle at VDDmin (pJ)

Figure 8.10 RL78G14 MCU energy consumption per clock cycle with supply voltage scaled
down to VDDmin (R5F014PJAFB).

Note that the clock frequencies of 1, 4, 12, and 24 MHz are not included because the min-
imum supply voltages for those frequencies are not specified. We would need to run the
processor at the minimum voltage for the next higher specified frequency. For example, to
run at 12 MHz we would need to use the supply voltage requirement for 16 MHz (2.4 V).
The resulting power use would fall somewhere between the 3.3 V value and the trend line
for power using VDDmin.

8.4.4.2 Energy Analysis

Figure 8.10 shows the improvement in energy required per compute cycle when voltage
scaling is used. Note that the energy per cycle at 4 and 8 MHz is almost equal, and sim-
ilarly the energy per cycle at 16 and 32 MHz is almost equal. The 4 and 8 MHz operat-
ing points are much more energy efficient than the 16 and 32 MHz points, using about
32% less energy. For some applications this may be very useful.

CHAPTER 8 / POWER AND ENERGY OPTIMIZATION 175

We can update our energy model based on the power model:

This equation is only valid at the four operating points in Table 8.3. Using other frequen-
cies will require operating at the minimum voltage of the next highest frequency, increas-
ing power and energy.

By combining both voltage and frequency scaling we see significant improvements in
the power and energy required for computation.

8.4.4.3 Selecting the Operating Point

We select the operating point with the following steps. First we determine the minimum
clock frequency based on C, as in Section 8.4.3.3.When using the HOCO, if f is not a valid
HOCO frequency, then we will use the smallest HOCO frequency fHOCO which is not less
than C. Next, we find the operating point in Table 8.3 with the minimum power or energy
that supports operating at fHOCO, depending on which parameter we are trying to optimize.
We then select that operating voltage.

8.4.5 MCU Standby Mode

As described in the previous chapter, the RL78 family of MCUs offers several standby modes
(halt, stop, and snooze) in which the processor cannot execute instructions but other portions of
the MCU continue to operate.All of the peripherals can function in the Halt mode, while most
are off in the Stop and Snooze modes. Turning off the peripherals and oscillators dramatically
reduces power consumption but reduces device functionality and increases wake-up times.

Switching between modes takes a certain amount of time. Figure 8.11 shows the times
when the MCU uses the HOCO as its clock in operating, halt, and snooze modes. Some de-
lays result from powering up an oscillator and allowing it to stabilize while others are from
reset processing. These delays may be ignored if the total transition time is small compared
with the computational time required (C/ƒCLK).

We place the MCU into a low-power standby mode when it is idle. When active, the
MCU runs at a fixed frequency (e.g., 16 MHz). We can calculate the average power used by
the MCU as a weighted average.

PMCU �
C

ƒCLK
PActive � a1 �

C

ƒCLK
bPStandby

EMCUpercycle �

�0.8279 mW � aƒCLK * 0.4282
mW

MHz
b

ƒCLK
�

�827.9 pJ * MHz

ƒCLK
� 428.2 pJ

176 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

The standby modes can be used with the voltage and frequency scaling methods described,
but we leave this discussion as future work.

8.5 RECAP

We have examined how to create power and energy models for an embedded system. We
have used them to evaluate the impact of various possible changes for peripherals and the
MCU. We then examined how voltage and frequency can be scaled down to reduce an
MCU’s active power dramatically. Finally we investigated the power savings possible us-
ing the MCU’s standby mode.

8.6 REFERENCES

Erickson, R. W., & Maksimovic, D. (2001). Fundamentals of Power Electronics (2nd ed.). Norwell, Massa-

chusetts, USA: Kluwer Academic Publishers.

HSOCO
HSCO/XT
SSCO/XT1

Off
Off
On

Peripherals

CPU

Off

Off

Stop
HSOCO

HSCO/XT
SSCO/XT1

On
On
On

Peripherals

CPU

On

Off

Halt
HSOCO

HSCO/XT
SSCO/XT1

On
On
On

Peripherals

CPU

On

On

Operating

HSOCO
HSCO/XT
SSCO/XT1

On
Off
On

Peripherals

CPU

Off

Off

Snooze

HALT: Instruction
3 cycles

Reset:

Unmasked Interrupt, IE 5 1:

Unmasked Interrupt, IE 5 0:

387-720 ms (LVD on)
155-407 ms (LVD off)

13-15 cycles

8-9 cycles

STOP
3 cycles

387-720 ms (LVD on)
155-407 ms (LVD off)

19.1-31.98 ms

Reset

Unmasked Interrupt:

Conversion completes
generating interrupt

Hardware
Trigger
Event

Conversion
completes

without
generating
interrupt

Figure 8.11 Transition delays when using standby modes and high-speed on-chip oscillator (HOCO)
as CPU clock.

Chapter 9

177

9.1 LEARNING OBJECTIVES

This chapter focuses on analyzing a program’s memory use (for code and data) and then
presents methods for reducing it. We begin by examining which types of memory are re-
quired by different components of the program. We then examine tool support for measur-
ing these requirements in order to determine where to start optimizing. We then examine
how to improve data memory use followed by code memory use, using language features,
toolchain support, and better coding styles. Finally we examine how to reduce memory re-
quirements for multitasking systems.

9.2 DETERMINING MEMORY REQUIREMENTS

9.2.1 Why? Cost

Amicrocontroller includes both RAM and ROM (typically flash ROM). RAM size often is
the main factor in determining the relative cost of an MCU. For most MCUs in cost-
sensitive markets it is impossible to add fast memory externally due to pin count con-
straints. Supporting single-cycle access would require bringing out the address bus
(e.g., 20 bits), the data bus (e.g., 16 bits) and the control signals (e.g., 3 bits). The only way
to add memory is to replace the MCU with one with more memory. This constraint makes
it important to ensure that the program fits within the available memory.

9.2.2 A Program’s Memory Use

Table 9.1 shows where the different portions of a program are stored in an MCU’s memory.
The compiler and linker use memory segments to hold program information. These are
identified with bold borders in the table. There are three basic types of memory segment:

� CODE: used for executable code
� CONST: used for data which is placed in ROM
� DATA: used for data which is placed in RAM

Memory Size Optimization

178 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

One complication with determining a program’s memory requirements is that some are dif-
ficult or impossible to compute before running the program. The light gray entries in the
table indicate memory sections with fixed sizes that are easily computed statically (i.e., at
compile and link time, without running the program). The dark gray entries show memory
sections which are difficult or impossible to compute statically. For example, the total
amount of call stack space needed depends on the subroutine called nesting behavior,
which may be data-dependent (e.g., a recursive function to compute the Fibonacci series,
or a call to sprintf). For these sections, we must estimate the worst-case values in order to
allocate enough space. A program with an overflowing stack is challenging to debug and
should be avoided.

There is some overlap between the optimizations for program speed and those for
memory size. A program which executes faster because the work is done with fewer in-
structions uses less code memory. A program which operates on less data (whether smaller
items, or fewer items, or both) will be faster and uses data memory. It may also use less
code memory. As a result, many of the optimizations used for speed can also benefit pro-
gram size. However, there are also other optimizations which primarily benefit the size and
have less effect on speed.

9.2.3 Linker Map File

The linker can generate a map file which provides information on how much memory
of each type is used. With IAR Embedded Workbench, set the project options to gener-
ate a linker listing which includes a module summary and a segment map, as shown in

TABLE 9.1 Diagram Showing Where Different Parts of Program are Stored in Memory.

RAM

DATA

D
A

TA
se

gm
en

t

Globals and Statics

Function Call
Stack

PC, etc.

Arguments

Callee-Saved Registers

Local Variables

Temporary Storage

Heap

CODE

ROM

C
O

N
ST

se
gm

en
t

Initialization Data

Const Data

C
O

D
E

se
gm

en
t Instructions

CHAPTER 9 / MEMORY SIZE OPTIMIZATION 179

Figure 9.1. Each time the project is linked the map file will be generated. We can now
examine the different portions of the map file.

Options for node “LCDDemo”

Config Output Extra Output List #define Diagnostics Check

Category:

General Options
C/C++ Compiler
Assembler
Custom Build
Build Actions
Linker
Debugger

E1
E20
IECUBE
Simulator
TK

Generate linker listing

Segment map
Symbols

None

Symbol listing

Module map

Module summary

Include suppressed entries

Static overlay map

OK Cancel

Factory Settings

File format
Text

HTML

Lines/page: 80

Figure 9.1 Linker Options for generating the map file.

9.2.3.1 Memory Summary

Figure 9.2 Linker memory summary in the map file.

Figure 9.2 shows the high-level information memory summary. This includes the size of
each segment type. We can calculate the total RAM segment size: 909 bytes are needed for
data. The MCU’s special-function registers are also listed (1089 bytes) but can be ignored.
The total amount of ROM needed is the sum of the CODE and CONST segment sizes, or
15,034 bytes.

11 634 bytes of CODE memory
909 bytes of DATA memory (+1 089 absolute)

3 400 bytes of CONST memory
Errors: none Warnings: none

180 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

9.2.3.2 Module Summary

The module summary shows how much memory each module (C or assembly language
source file, or library function) requires in each of the three types of segment. To generate
this summary, be sure the “module summary” box is checked in project options.

Figure 9.3 shows an example of the beginning of the module summary for a program. All
of these modules are library functions which use only code memory. Note that Rel indi-
cates that a segment is relocatable (can be moved to a different address), while Abs indi-
cates the segment must be located at a fixed, absolute address.

If we look farther down in the module list (see Figure 9.4) we find modules which also
use the DATA and CONST segments. For example, r_main uses 80 bytes in the relocatable
DATA segment, 1024 bytes in the absolute DATA segment, and 66 bytes in the CONST
segment.

9.2.3.3 Analyzing the Map File

We now see that the map file gives us the raw information needed to identify the largest
modules. We can optimize most effectively if we start with the largest module and then
work our way down to smaller modules until we meet our goals. To target RAM use, we
sort based on the relocatable DATA segment size. To target ROM use we sort based on the
sum of the CODE and CONST segment sizes, as the ROM holds both of those segments.

It is helpful to use automation to sort the modules, starting with the one using the most
of the segment of interest. The linker can generate the map file in either text or HTML for-
mats. The text format is helpful when using text-based processing tools to process the map
file. The HTML is useful for human interpretation as well as copying into a spreadsheet for
program processing.

Module CODE DATA CONST

(Re1) (Re1) (Abs) (Re1)

?CHAR_SSWITCH_L10 23

?CSTARTUP
+ common

47
2

?FCMP_GE 72

?FCMP_LT 77

?FLOAT_2_SIGNED_LONG 107

?FLOAT_ADD_SUB 604

?FLOAT_DIV 376

?FLOAT_MUL 341

Figure 9.3 Start of module summary.

CHAPTER 9 / MEMORY SIZE OPTIMIZATION 181

9.3 OPTIMIZING DATA MEMORY

How can we reduce or otherwise improve a task’s use of data memory? The obvious cod-
ing practice of using the smallest adequate data type improves data size, code speed, and
code size, so it is worth following. In this section we explore additional methods.

9.3.1 Using Toolchain Support

Be sure to select the smallest memory models into which the program will fit. Typically
code and data memory models can be specified separately. Using a larger memory model
will force the compiler to generate longer and slower code in order to handle longer ad-
dresses (e.g., when accessing static variables, using pointers, and calling subroutines).

Compilers typically allow the user to specify the optimization effort level (e.g., level 3)
as well as the goal of the optimization (e.g., speed, size, or possibly a balanced approach to
both). These options should be used as appropriate.

Note that it is often possible to use different optimization settings for a specific mod-
ule. With EW, we can override the default project settings for a module. This allows us to
use a finer-grain approach to optimization. For example, we could optimize the large mod-
ules for size, and optimize the rest for speed.

Figure 9.4 End of module summary.

Module CODE DATA CONST

(Re1) (Re1) (Abs) (Re1)

led 779 4 90

r_cg_cgc 42 4

r_cg_it
+ shared

26 10
1

r_cg_it_user
+ common

2
58

r_cg_port
+ shared

44 13
1

r_cg_serial
+ shared

158 6 23
4

r_cg_serial_user
+ common

69
24

2 2

r_main 35 80 1 024 66

r_systeminit 41 5

N/A (command line) 768

N/A (alignment) 2

Total:
+ common

11 576
58

909 1 089 3 400

182 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

The compiler aligns the elements of a structure based on the target architecture’s word
size and/or the size of the largest element. Space for padding is added to align shorter ele-
ments, wasting RAM. This padding can be eliminated by packing the data structure
(e.g. with the directive #pragma packed). The resulting code uses less RAM but requires
additional instructions to perform packing and unpacking. This concept can be applied to
integer elements of non-standard sizes by using C’s bitfield width specifier to indicate the
number of bits required to store an element.

9.3.2 Leveraging Read-Only Data

Some data in a program is only read and never written. This data can be stored in the ROM
in order to free up the RAM. The const type modifier for a variable directs the compiler to
place the variable in read-only memory rather than RAM.

For example, consider the Glyph graphics code, which contains font bitmaps for ren-
dering text on a graphical LCD. The bitmaps are declared as initialized arrays, and there-
fore are allocated space in two places in memory. The DATA segment in RAM holds the
values which the program accesses. The CONST segment in ROM holds the initial array
data values; the C start-up code copies these values into the DATA segment in RAM to ini-
tialize them. These bitmaps are read-only, and do not need to be stored in RAM. Instead
only need to be stored in ROM. Figure 9.5 shows that moving a bitmap (font_8x8) into
ROM from RAM freed up 3072 bytes of valuable RAM.

Figure 9.5 Memory requirements from map file.

9.3.3 Improving Stack Memory Size Estimation

We may be able to reduce the amount of space allocated for the stack if we have amore
accurate estimate of the worst-case size. The call stack is a dynamic structure which
grows and shrinks as the program executes. We need to allocate enough space to handle its
worst-case (largest) size. We added a margin of error to our initial stack space allocation
because we were not confident of its accuracy.We can reduce that margin by improving the
accuracy of the estimate.

Module CODE DATA CONST

(Re1) (Re1) (Abs) (Re1)

__HWSDIV_16_16_16 65

font_8x8 3 072

glyph 346

glyph_register 100

lcd 779 4 90

CHAPTER 9 / MEMORY SIZE OPTIMIZATION 183

1 In a call graph, a leaf node does not call any subroutines.

IAR EmbeddedWorkbench provides some help. Each module’s assembly listing shows the
maximum stack use per function. Note that these figures do not include the return ad-
dress (four bytes) which is pushed onto the stack by the call instruction. Those four bytes
will need to be added. Figure 9.7 shows various examples:

� The function Delay uses two bytes and does not call any other functions (it is a leaf
function).

R_DAC0_StartDelay

DAC_Test

R_DAC1_Start

main

R_MAIN_UserInit

R_DAC1_Set_ConversionValue

Init_SineTable

sin

?F_UL2F __

__INIT_WRKSEG ?WRKSEG_START __iar_norm_arg

?F_MUL ?F_F2SL

?F_ADD ?F_NEG_L04 __iar_

Figure 9.6 Detail of call graph with function Init_SineTable.

The amount of space allocated for the stack is defined in Project Options -� General
Options -� Stack. The default size (e.g., 128 bytes) is likely to be too small for many pro-
grams and will need to be increased.

9.3.3.1 Analytical Stack Size Bounding

Because the call graph shows the nesting of function calls it is a good starting point to eval-
uate the maximum stack size.We can calculate space required by examining the stack depth
at each leaf node.1 The stack space required at a given node N in the call graph is the sum of
the size of each activation record on a path beginning at graph’s root node (main) and end-
ing at node N, including both nodes. Note that the activation record size within a function
can vary. For example, a function may push arguments onto the stack before calling a sub-
routine, which will increase the activation record size. Because of this reason we need to
consider the activation record size for a function at each point with a subroutine call.

184 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

� The function Main uses zero bytes of stack space and calls three functions as sub-
routines (DAC_Test, Init_SineTable and R_MAIN_UserInit).

� Init_SineTable uses a maximum of 20 bytes, but when it calls sin it is only using
12 bytes.

� The activation record size listed when calling a function will include the space
used for any parameters which have been pushed onto the stack.

Maximum stack usage in bytes:

CSTACK Function
------ --------

12 DAC_Test
10 -> Delay
10 -> R_DAC0_Start
10 -> R_DAC1_Set_ConversionValue
10 -> R_DAC1_Start

2 Delay
20 Init_SineTable

12 -> sin
0 R_MAIN_UserInit
0 main

0 -> DAC_Test
0 -> Init_SineTable
0 -> R_MAIN_UserInit

Figure 9.7 Example of stack usage information included in each assembly language listing
file generated by compiler.

We can start to evaluate the total stack use at each node (representing a function) on the call
graph shown in Figure 9.6. The total stack use at function f is the sum of the stack use of
each function on the path starting with the root (main) and ending with the node represent-
ing function f.

� Main uses zero bytes. It was called as a subroutine by the reset ISR, so stack depth
is four bytes here (due to the return address).

� DAC _Test uses a maximum of 12 bytes. The maximum stack depth at this point in
the call graph is the sum of the stack depth at the calling function (four bytes at
main), DAC_Test’s activation record (12 bytes), and the return address (four
bytes), for a total of 20 bytes.

� Delay uses a maximum of two bytes. The maximum stack depth at this point is
20 bytes � two bytes � four bytes � 26 bytes.

We now continue this process for the remainder of the call graph. However, soon we reach
a problem: how much stack space is needed by the library functions, such as ?F_UL2F,
_INIT_WRKSEG, ?F_MUL, _WRKSEG_START, and ?F_ADD? We need to analyze the
code for these libraries to determine the stack space required. Source code would be easi-
est to analyze, but it is possible (though tedious) to use the disassembler to examine the ob-

CHAPTER 9 / MEMORY SIZE OPTIMIZATION 185

ject code. Some vendors may include information on stack space requirements for library
functions in order to simplify stack depth analysis.

9.3.3.2 Experimental Measurement

One approach to estimating the maximum stack size is to execute the code and measure
how much stack space has been used. Before program execution the stack space should be
initialized with a known pattern. The program is then run for some time with realistic test
input data and conditions. The stack space can then be examined to determine how much
of the initial pattern has been overwritten. This is sometimes called examining the “high-
water mark.” Some debuggers (including C-Spy) provide a graphical indication of current
stack use.

This approach tells us only how much stack space was used for one specific run of the
program. It does not indicate the maximum possible stack use. As a result, this is an em-
pirical estimate with limited confidence. To improve the confidence in the estimate we
should repeat the test with a wide range of input data and conditions, monitoring the vari-
ation and limits of observed stack use. We may also want to evaluate the code coverage of
our test cases to ensure that most or all of the code is being executed.

After running enough experiments the maximum observed stack space should settle
down to a fixed value. We add a margin of safety (e.g., 20%) to this observed value in or-
der to determine the amount of stack space to allocate.

It is also possible to build this type of measurement mechanism into software which
executes as the program runs, allowing live monitoring of stack use and potentially detect-
ing a stack overflow condition. A lighter-weight approach is to sample the stack pointer
value periodically to record its maximum value, or to confirm that the current stack pointer
value is within a valid range of stack addresses.

9.3.4 Reducing the Size of Activation Records

Functions require stack space for several purposes, but there are two in particular to look
out for when trying to reduce stack space use.

First, automatic variables are allocated memory space in the stack frame of the de-
claring function. Automatic variables are more space-efficient than static variables because
their memory space can be reused after the function exits. Static variables occupy memory
space for the entire duration of the program.

Sometimes the compiler can reuse stack space for automatic variables within a function
if their live ranges do not overlap. The compiler may even promote automatic variables to
registers and eliminate their use of the stack. However, some variables are not promoted to
registers. The most important from the point of view of stack space optimization is variables
which are simply too large to be promoted to registers.

186 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

We see in Figure 9.8 that the function LCDPrintf (from the Glyph graphics library in-
cluded with the RL78G14) uses 108 bytes on the stack. If we examine the source code
(shown below) we see that an automatic variable called buffer is declared as an array of
100 characters, so it is placed on the stack. Does the buffer really need to be 100 characters
long? Can we even fit 100 characters onto the LCD, given its dimensions of 96 by 64 pix-
els? It helps to determine how large an array really needs to be, and then add a small safety
margin. In addition, add bounds-checking code to detect errors.

Maximum stack usage in bytes:

CSTACK Function
------ --------

2 LCDCenter
4 LCDChar

4 -> GlyphChar
4 -> GlyphSetXY

4 LCDCharPos
4 -> GlyphChar
4 -> GlyphSetXY

0 LCDClear
0 -> GlyphClearScreen

8 LCDClearLine
8 -> GlyphEraseBlock

2 LCDFont
2 -> GlyphSetFont

2 LCDInit
2 -> GlyphClearScreen
2 -> GlyphNormalScreen
2 -> GlyphOpen

0 LCDInvert
0 -> GlyphInvertScreen

108 LCDPrintf
108 -> LCDStringPos
108 -> vsprintf

Figure 9.8 Stack usage for functions in object module LCD.

1. void LCDPrintf(uint8_t aLine, uint8_t aPos, char *aFormat, ...)
2. {
3. uint8_t y;
4. char buffer[100];
5. va_list marker;
6.
7. ... (deleted)
8. }

Second, arguments and return values are passed on the stack if they cannot be passed in
registers (which would be faster and use less memory).

CHAPTER 9 / MEMORY SIZE OPTIMIZATION 187

The compiler allocates arguments to registers (shown in Table 9.2) by traversing the ar-
gument list in the source code from left to right. When it runs out of registers it starts pass-
ing arguments on the stack. The stack pointer points to the first stack argument and the re-
maining arguments are at higher addresses. All objects on the stack are word-aligned (the
address is a multiple of two), so single byte objects will take up two bytes. Some argu-
ments are always passed on the stack:

� Objects larger than 32 bits
� Structures, unions and classes (except for those 1, 2 or 4 bytes long)
� Functions with unnamed arguments

Return values up to 32 bits long are returned in registers (A, AX, A:HL, or BC:AX), while
longer values are returned on the stack.

Consider the following code which generates a formatted string using sprintf:

1. sprintf(buffer, "$APRMC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,"
2. "W,%05.1f,%04.1f,%06ld,%05.1f,W*", hr, min, sec, lat_deg, lat_min,
3. lon_deg, lon_min, speed, track, date, var);

Let’s examine the object code listing generated by the compiler. We select maximum opti-
mization (level 3) for code size.

1. CMP0 N:DifferentTalker
2. BZ ??sim_motion_14
3. PUSH BC
4. PUSH AX
5. MOVW AX, [SP + 0x2E]
6. MOVW BC, AX
7. MOVW AX, [SP + 0x2C]
8. PUSH BC
9. PUSH AX

TABLE 9.2 Locations of Function Arguments.

ARGUMENT SIZE REGISTERS USED FOR PASSING

8 bits A, B, C, X, D, E

16 bits AX, BC, DE

24 bits stack

32 bits BC:AX

Larger stack

188 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

10. MOVW AX, [SP + 0x2E]
11. MOVW BC, AX
12. MOVW AX, [SP + 0x2C]
13. PUSH BC
14. PUSH AX
15. MOVW AX, [SP + 0x2E]
16. MOVW BC, AX
17. MOVW AX, [SP + 0x2C]
18. PUSH BC
19. PUSH AX
20. MOVW AX, [SP + 0x28]
21. MOVW BC, AX
22. MOVW AX, [SP + 0x26]
23. PUSH BC
24. PUSH AX
25. MOVW AX, [SP + 0x1C]
26. PUSH AX
27. MOVW AX, [SP + 0x2A]
28. MOVW BC, AX
29. MOVW AX, [SP + 0x28]
30. PUSH BC
31. PUSH AX
32. MOVW AX, [SP + 0x24]
33. PUSH AX
34. PUSH DE
35. MOVW AX, [SP + 0x3A]
36. PUSH AX
37. MOVW AX, [SP + 0x3A]
38. PUSH AX
39. MOVW BC, #`?<Constant "$APRMC,%02d%02d%02d,A ...">`
40. MOVW AX, [SP + 0x2E]
41. CALL sprintf
42. ADDW SP,#0x22

The object code listed above uses 58 bytes of code space. The reason so much code is gen-
erated is that numerous parameters (13) are being passed to sprintf. At first the compiler
uses registers for parameter passing: the buffer pointer is in AX, and the format string
pointer is in BC. However, after that point it runs out of registers, so each remaining pa-
rameter must be passed on the stack. The parameter’s value must first be loaded from the
variable in the stack frame (e.g., instructions 5 through 7) and then it can be pushed onto
the stack (e.g., instructions 8 and 9).

CHAPTER 9 / MEMORY SIZE OPTIMIZATION 189

9.3.5 Use Stack-Friendly Functions

Some functions such as printf and scanf use large amounts of stack space in order to sup-
port a rich range of formatting options. It is often possible to use functions which are less
powerful but less stack-hungry, such as ftoa, itoa, atof, and atoi.

9.4 REDUCING CODE MEMORY

9.4.1 Language Support

We can help the compiler delete code for functions which will never be called. Using the
static keyword to modify a function declaration (e.g., in file.c) will indicate to the compiler
and linker that the function will not be called by any function outside of file. c. As a result,
if no function inside file.c calls the function either, then the linker can delete that function’s
object code from the module.

9.4.2 Compiler and Toolchain Configuration

The compiler should be configured to generate code for the particular type of MCU rather
than a more generic target which might lack some instructions or hardware accelerators.
For example, the RL78G14 family of MCUs uses a core with support for various multiply,
divide, and multiply/accumulate instructions operating on several data lengths. The
RL78G13 family of MCUs uses an older core which supports only a multiply instruction
(8 bit * 8 bit). Programs compiled for the older core will call run-time library functions to
perform the operations which are not supported directly as instructions.

Some toolchains (including IAR EW) offer multiple versions of library functions
which reduce code size by eliminating features which are not needed. There may be vari-
ous versions of libraries based on desired features or accuracy.

� Different versions of the studio functions printf and scanf may offer subsets of all
possible formatting options (excluding formatting floating-point values, eliminat-
ing field width specifiers, etc.).

� Different versions of the floating-point math library may allow the user to re-
duce the size of the code at the expense of less precision and a smaller input range.

� The C run-time library may allow omission of features such as multibyte sup-
port, locale, and file descriptors.

� Some libraries may support the use of hardware accelerators (e.g., multiply/divide
unit).

190 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

9.4.3 Removing Similar or Identical Code

If large amounts of source code are duplicated, or are very similar, then there may be an
opportunity for size optimization. There are various compilers optimizations which try
to remove common code from a program. One approach is to create a subroutine out of
the common code and then replace the duplicated code with calls to the subroutine. This
is called function “out-lining” (as opposed to “in-lining”), or procedural abstraction. A
related approach is to move the common code within the function and remove the
duplicates.

Sometimes the compiler is not able to apply this type of optimization, but the pro-
grammer may be able to do so and improve code size.

9.4.3.1 Cut-and-Paste Source Code

Consider the code in the listing below.2 It is used to generate test messages in the NMEA-
0183 format but with various errors. It is an excerpt from a larger section of code with 17
test cases.

1. if(DifferentTalker) // Error in talker ID - not GPS
2. sprintf(buffer, "$APRMC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,"
3. "W,%05.1f,%04.1f,%06ld,%05.1f,W*", hr, min, sec, lat_deg, lat_min,
4. lon_deg, lon_min, speed, track, date, var);
5. else if(DifferentSenType) // Error in sentence type - not GLL
6. sprintf(buffer, "$GPGLC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,"
7. "W,%05.1f,%04.1f,%06ld,%05.1f,W*", hr, min, sec, lat_deg, lat_min,
8. lon_deg, lon_min, speed, track, date, var);
9. else if(IllegalInField) // letter in field
10. sprintf(buffer, "$GPRMC,%02d%02d%02d,A,%02d%06.3fa,N, %03d%06.3f,"
11. "W,%05.1f,%04.1f,%06ld,%05.1f,W*", hr, min, sec, lat_deg, lat_min,
12. lon_deg, lon_min, speed, track, date, var);
13. else if(IllegalAsField) // Illegal separator
14. sprintf(buffer, "$GPRMC;%02d%02d%02d;A;%02d%06.3f;N;%03d%06.3f;"
15. "W;%05.1f;%04.1f;%06ld;%05.1f;W*", hr, min, sec, lat_deg, lat_min,
16. lon_deg, lon_min, speed, track, date, var);

2 Note that the C compiler concatenates sequential string literals: “abc” “def” is processed as “abcdef” allow-
ing long string literals to be broken across multiple lines of source code.

CHAPTER 9 / MEMORY SIZE OPTIMIZATION 191

Yes, it looks like lazy coding, but is that so bad? Writing the code was fast—cut and paste,
and then modify the format string for each test case.

There are two major drawbacks to this approach. First, code maintenance will be
more difficult if we need to modify each case to fix a common issue. Second, the code size
will be much larger than necessary. Each test case uses about 58 bytes of object code, as
discussed previously. There are a total of 17 test cases consuming about 986 bytes. This
copy-and-paste coding style does indeed have a negative impact on memory requirements.

9.4.3.2 Improving the Source Code with an Array

It is often possible to identify common code and remove duplicates. The compiler was able
to identify that certain operations (e.g., CALL sprintf) appear in each test case, and moved
that code out into a common basic block, saving a little space (about seven bytes per case).

We can take this idea further by identifying the common cases and then using code-
space efficient mechanisms such as arrays and loops built for the parameterized solution
shown below:

1. char Formats[17][] = {
2. "$APRMC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,W,%05.1f,%04.1f,"
3. "%06ld,%05.1f,W*",
4. "$GPGLC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,W,%05.1f,%04.1f,"
5. "%06ld,%05.1f,W*",
6. "$GPRMC,%02d%02d%02d,A,%02d%06.3fa,N,%03d%06.3f,W,%05.1f,%04.1f,"
7. "%06ld,%05.1f,W*",
8. "$GPRMC;%02d%02d%02d;A;%02d%06.3f;N;%03d%06.3f;W;%05.1f;%04.1f;"
9. "%06ld;%05.1f;W*", ... (deleted) ...
10. };
11.
12. if(DifferentTalker)
13. format_num = 0; //error in talker id - not gps
14. else if(DifferentSenType)
15. format_num = 1; //error in sentence type - not gll
16. else if(IllegalInField)
17. format_num = 2; //letter in field
18. else if(IllegalAsField)
19. format_num = 3; //illegal separator
20. ...
21. sprintf(buffer, Formats[format_num], hr, min, sec, lat_deg,
22. lat_min, lon_deg, lon_min, speed, track, date, var);
23. ...

192 EMBEDDED SYSTEM OPTIMIZATION USING RENESAS RL78 MICROCONTROLLERS

We could even improve this code further by deleting the if/else chain. One approach would
be to compute the index into the array based on the conditions which are tested. Another
would be to merge these error codes into one integer variable in order to allow direct
indexing.

9.4.3.3 Tables of Function Pointers

Arrays can hold more than just data. An array of function pointers is effective for quickly
selecting which code to execute in response to an input value. Embedded software may
need to process received messages based upon their type. Rather than perform a sequence
of comparisons, or use a switch statement, it may be more practical to use a function
pointer table to execute the correct processing code.

9.5 OPTIMIZATION FOR MULTITASKING SYSTEMS

As discussed previously, supporting task-level preemption usually requires one call stack
per task.3 The function call stack holds a function’s state information such as return ad-
dress and limited lifetime variables (e.g., automatic variables, which only last for the dura-
tion of a function). Without task preemption, task execution does not overlap in time, so all
tasks can share the same stack. Preemption allows tasks to preempt each other at essen-
tially any point in time. Trying to reuse the same stack space for different tasks would lead
to corruption of this information on the stack and system failure.

9.5.1 Use a Non-Preemptive Scheduler

For some systems, it may be possible to use a non-preemptive scheduler rather than one
which is preemptive. A non-preemptive scheduler requires only one call stack, and shares
this stack space over time with the different tasks as they execute sequentially. Only the
largest task stack needs to fit into RAM. However, a preemptive scheduler requires one
call stack for each task because preemptions could occur at any point in a task’s execution
(i.e., any point within that task’s call graph).4 Much of the task’s state is stored on the stack,
so that must be preserved and not used by other tasks. As a result, a preemptive system
needs enough RAM to hold all task stacks simultaneously, with each potentially at its
largest.

3 There are several ways to reduce the number of stacks needed for preemptive scheduling. For example, see
the description of the Stack Resource Policy in Chapter 3.
4 If the tasks are all written to run to completion and never block, it may be possible to use a single stack with
a preemptive scheduler.

CHAPTER 9 / MEMORY SIZE OPTIMIZATION 193

9.5.2 Improve the Accuracy of Stack Depth Estimates

A system with preemptive scheduling is more sensitive to the effects of stack size overesti-
mation because of the larger number of call stacks. For these systems it may be worth in-
vesting the time in developing support for bounding maximum stack depth more accurately.

9.5.3 Combining Tasks to Reduce Stack Count

In some systems it may be possible to reduce the number of task stacks required by merg-
ing tasks. If there are multiple independent tasks which run to completion and do not have
tight timing requirements, they may be combined into a single task consisting of the origi-
nal tasks as subtasks. The task acts as a state machine controller or non-preemptive sched-
uler and runs one of the subtasks each time it executes. Note that if any of the subtasks
blocks, all other subtasks will block as well, impacting system responsiveness and perhaps
even introducing deadlock. This approach can reduce stack space use significantly in some
systems.

9.6 RECAP

This chapter focused on analyzing a program’s memory use (for code and data) and then
presented methods for reducing it. We examined methods to determine a program's mem-
ory requirements with the goal of targeting the largest modules first. We then examined
how to improve data memory use and code memory use. For both we discussed language
features, toolchain support, and better coding styles. Finally we discussed methods to re-
duce stack memory requirements for multitasking systems.

195

Index

A
A register, 187
Abs, 180
Abstraction, 3–4
Abstractions, 81
Activation record
analytical stack size

bounding, 183
automatic variable, location

of, 88
size, reduction of, 185–88

ADC, snooze mode, ex, 156
Addition, 123
Add_Task function, 27
A:HL register, 187
Algorithm(s)
binary search, 118
data, sort by frequency of use,

117–18
data structure review, 116
early exits, 112–15
faster searches, 116–18
fixed point math (see fixed

point math)
lazy execution, 112–15
optimization 1, ex, 113
optimization 2, ex, 114
profiler address search, 116–17

ANSI C, 101, 124
Aperiodic task(s), 59, 60
Approximation(s), 129–34
accuracy of, 131–32
coefficients, determination of,

130–31
description of, 129
periodic and symmetric

functions, 133
polynomials, 129–30
speed, evaluation of, 133–34

App_TaskCreate, 29

App_TaskStart, 29
Arc cosine, optimization, ex, 114
Argument(s), 186–87
Array(s)
activation records, reduction of

size of, 186
data structure review, 116
of function pointers, 192
profiler address search, 117
source code, improvement of,

191–92
Assembly language
control flow, understanding of,

88–91
divide instruction, 124
fixed point math, 124–25
mixed mode viewing, support

of, 82
multithreaded systems, 40–41

Associativity, of operator, 102
Atomic code, 38
Automatic type promotion,

100–102
Automatic variable, 88, 185
AX register, 125–27, 187, 188

B
Basic block, 88–89
BC register, 188
BC:AX register, 187
Bearing, of two locations,

95–96
Bessel functions, 131
Binary search, 118
Binary semaphore, 43
Bitmap, moving of, 182
Body, of function, 87
Boost converter, 145
Bound, 60
Branch target buffer (BTB), 61

Breakpoints, and program
profiling, 73

BST, 118
BTB, 61
Buck converter, 145
Build process, modifications to,

ex, 78–79
Buses, shared, 60
Busy waiting, 31, 32

C
C integer division operation, 123
Cache memories, 61
Calc_Bearing
compile-time expression

evaluation, 103
data, reuse of, 106–7
functions, needed for, 96
recalculation before

compilation, 104–6
Calc_Distance
compile-time expression

evaluation, 103–4
functions, needed for, 96
optimization, high-level,

113, 114
recalculation before

compilation, 104–6
Call graph, 84–85, 86
Call stack
multitasking systems,

optimization of,
192, 193

multithreaded systems, 14
non-preemptive scheduler, 192
space requirements of,

85–87
Ceiling, 56, 59
Chebyshev polynomials, 131
CKC, 151

196 INDEX

Clock
frequency scaling, 170–72,

172–75
gating, 167
high-speed on-chip oscillator

frequency selection,
152–53

oscillation stabilization,
151–52

source configuration, 150–51
Clock operation mode control

register (CMC), 150
Clock operation status control

register (CSC), 151
CMAN_coords.c, 105
CMC, 150
CODE, 76, 177, 179
Code
coverage, 63
cutting-and-pasting of, 190
fixed point math, 124–25
maintainability of, 112
memory, reduction of (see

code memory,
reduction of)

multithreaded systems, 40–41
quality, improvement of (see

compiler, effective
use of)

source code, modification of,
107–10

Code memory, reduction of
compiler configuration, 189
function pointers, tables

of, 192
language support and, 189
similar or identical code,

removal of, 190–92
source code,

cutting-and-pasting
of, 190

source code, improvement with
an array, 191–92

toolchain configuration, 189

Common sub-expression
elimination, 106–10

Compiler, effective use of
automatic processes of, 99
automatic type promotion,

100–102
code memory, reduction

of, 189
concepts of, 93–97
data issues and, 99
data, reuse of, 106–10
floating point math, 98
memory model, 98
optimization and fixed point

math, 125
optimization process,

considerations of, 94–95
optimizations, enabling of,

97–98
program optimization, ex,

95–97
run-time invariant data,

precomputation of, 103–6
software development, stages

of, 93–94
toolchain, configuration of,

97–99
variable scope, excessive, 100

Compile-time expression
evaluation, 103–4

CONST, 177, 179, 180
Context switching, 18
Control flow
in assembly language, 88–91
graph, 88–89, 89–91
oddities of, 91

Cosp2LatRad, 109
Cost, of embedded systems
description of, 3
memory size optimization, 177
optimization, high-level, 112

Counting semaphore, 43
Crenshaw, 129
CSC, 151

C-Spy debugger, PC-sampling
profiler, ex, 74–81

Cumulative profile, 74

D
DAC_Test, 183, 184
DATA, 177, 180
Data
activation records, reducing

size of, 185–88
alignment, 99
read-only, 182
read-only data, leveraging

of, 182
reuse of, 106–10
run-time invariant,

precomputation of, 103–6
signed vs. unsigned, 99, 101
size, 99
sort, by frequency of use,

117–18
stack memory size estimation,

improvement of (see stack
memory)

structure review, 116
toolchain support, use of,

181–82
Data memory, optimization of
activation records, reducing

size of, 185–88
read-only data, leveraging

of, 182
stack memory size estimation,

improvement of (see stack
memory)

toolchain support, use of,
181–82

Data Transfer Controllers
(DTC), 60

Deadline monotonic priority
assignment (DMPA), 52,
54, 68–69

Debugging code, and
mixed-mode viewing, 82

INDEX 197

Deferred execution, 112
Deferred post, 67
Delay function, 183, 184
Delay, of response. see response

latency
Digital circuit, modeling of,

162–63
Digital circuit power

consumption, 136–37
Digital inverter circuit, 136
Diode(s)
power and energy, analysis

of, 146
power system, modeling of, 163
power and energy,

optimization of, 160–61
Directed acyclic graph, 14
Direct-Memory Access

Controllers (DMAC), 60
Disabled interrupt(s). see

interrupt(s)
Distance, of two locations, 95–96
DIVHU, 126
Division, 123–24, 126–28
DIVST, 128
DIVWU, 126
DMAC, 60
DMPA, 52, 54, 68–69
Double-precision floating point

math, 98, 102
DRAM, execution time

variability, 61
DTC, 60
Dynamic deadline

modification, 59
Dynamic power component, 137
Dynamic priority assignment,

52, 56
Dynamic priority ceiling, 59
Dynamic priority inheritance, 59
Dynamic schedule
multithreaded systems, 10–11
multithreaded systems, ex,

20–25

response time, 13
run-to-completion, fig, 21

E
Earliest deadline first (EDF), 52
Early exits, 112–15
Energy, analysis of. see power

and energy, analysis of
Epilog, of function, 87
Equation(s)
average power used by MCU

in standby mode, 175
bearing, of two locations on

surface of earth, 95
coefficients, determination

of, 131
distance, of two locations on

surface of earth, 95
energy, 135
energy of MCU for operating

frequencies, 175
energy reducing, 138
energy use of MCU per clock

cycle, 171
energy used, 142
feasibility test, for periodic and

sporadic tasks, 59
least upper bound, 53
operating frequency, for

selecting, 172
polynomial approximation, 130
power, 135
power, average of, 142
power consumption of

MCU, 170
power dissipated, total, 137
power dissipation of a

resistor, 159
power loss, due to quiescent

current, 145
power loss, from a

transistor, 146
power loss, in a diode, 146
power loss, of a FET, 162

power loss, of a linear
regulator, 163

power loss, when transistor is
saturated, 161

power of a digital circuit, 162
power, of circuit, 140
power of diode, 160
power of MCU for operating

frequencies, 173
Total Bandwidth Server

deadlines, 60
worst case response time, 56

Event flag(s), synchronization
with, 35

EW, 181–82
Execution time variability, 61

F
Far memory model, 98
Feasibility test, 49
F_F2SL, 84
Field-effect transistor, 161
Find_Nearest_Point, 96,

105, 114
5V0, 148
5V0 domain, 147
5VIN domain, 147
Fixed point math
basic instructions, from RL78,

125–26
language, high or low, 124–25
multiply and divide

instructions, extended, 126
multiply/divide/accumulate

unit, 126–28
notations, 122
operations, mathematical,

123–24
operations, support, 122–23
optimization, high-level,

119–25
precision floating point math,

reduced, 128–29
representation, 120–21

198 INDEX

Fixed point math—cont’d
support for, 125–27
unsigned and signed values,

121–22
Fixed priority assignment(s)
response latency, 68–69
response time analysis, 55–56
schedulability tests, 53–54
task assignment, 52

Flat profile, 74
Floating point math
to avoid, 118–19
code memory, reduction

of, 189
precision, description of,

98–102
reduced precision, 128–29

For loop, 89
FRQSEL, 152–53
Function out/in-lining, 190
Function pointers, and reduction

of code memory, 192
Function(s). see also individual

types of
activation record of, 88
analytical stack size

bounding, 183
basics of, 87–88
calls, in Calc_Distance, 104
calls, relationship between, 82
code segment, types of, 76
object code, examination of,

82–84
periodic, 133
scheduler, common types

of, 26
symmetric, 133

Fx3.16, 122

G
Global variables, 100
GPU, 128
Graphics processing units

(GPU), 128

H
Halt mode, 154–56, 175
Hard real-time jobs, 50
Harmonic period, 52, 54
High-speed on-chip oscillator,

150, 152–53
High-speed system clock

oscillator, 150
High-water mark, 185
HIOSTOP, 151
HOCO, 170, 171
HOCODIV, 153
Horner’s Rule, 130

I
ID stage, 61
IEEE Standard for Floating Point

Arithmetic (IEEE-754),
128, 129

IF stage, 61
Infinite loop(s), 27, 30
Init_SineTable, 82–87, 183
Instruction address trace, 74
Instruction decode stage (ID), 61
Instruction fetch stage (IF), 61
Interrupt service routine (ISR),

64, 66–68
Interrupt(s)
description of, 64–66
disabled, response latency

and, 68
multithreaded systems, 15, 42

K
Kernel
description of, 9
long tasks, handling of, 32
messages and, 35, 46
mutexes and, 43–46
non-preemptive system, 16
periodic task scheduling, 30
preemptive system, 17, 18
real-time, 20, 25

Knuth, Donald, 72

L
Latency, of response. see

response latency
Lazy execution, 112
LCDPrintf, 185
LDO, 147
Leading-edge wedge, 2
Least significant bit (LSB),

120–21
Least upper bound test (LUB),

53–54
Linear converter, 144
Linear regulator, 163
Linker map file
analyzing the, 180–81
description of, 178–79
generating map file, options

for, 179
memory summary, 179
module summary, 180

Lists, as data structure, 116
Lock variable, 43
Loop test, control flow graph

analysis, 89
Low-dropout (LDO) linear

voltage regulator, 147
Low-speed on-chip oscillator, 150
LSB, 120–21
LUB, 53–54

M
MACH, 126
MACHU, 126
Maclaurin series, 130, 131
Main, 183, 184
Mantissa, 119–20, 122
Map file. see linker map file
Market segments, of embedded

systems, 1–2
MD, 126–28
MDAH, 127, 128
MDAL, 127, 128
MDBH, 127
MDBL, 127

INDEX 199

MDCH, 127
MD_INTTM00, 76
MDUC, 127
Memory access stage (MEM), 62
Memory model, 98
Memory segment, 177
Memory size optimization
code memory, reduction of

(see code memory,
reduction of)

cost, 177
data memory, optimization of

(see data memory,
optimization of)

linker map file (see linker
map file)

memory requirements,
determination of, 177–81

memory use, of a program,
177–78

multitasking systems,
optimization for, 192–93

program parts, storage location
of, 178

speed and memory size,
overlap of, 178

stack depth estimates, accuracy
improvement of, 193

tasks, combining to reduce
stack count, 193

Message(s)
kernel, 35, 46
preemptive scheduler, 36–37
RTOS-provided, 46
tasks, passing among, 35–37

Method of approximation
(Newton), 124

Micrium, 28
Minimax optimization, 131
Mixed-mode viewing, debugging

code and, 82
Module summary, of linker map

file, 180
MSTOP bit, 151

MULH, 126
MULHU, 126
Multimeter, 138
Multiplication, 123, 124,

126–28
Multiply instruction

(MULU), 125
Multiply/divide/accumulate unit

(MD), 126–28
Multithreaded system(s)
application, creation of, 25–46
assembly language, 40–41
atomic code, 38, 40–41
context switching, 18
designing of, 7–48
dynamic schedule, 10–11
event flags, 35
function reentrancy, 39–40
interrupts, 15, 42
lock variable, 43
message queues, 46
responsiveness of, 7–8, 12–14
scheduling, 9–15, 20–25
semaphore, 43–45
shared objects, 37–46
shared objects, corruption

of, 38
shared objects

solutions/protection,
42–46

stack memory, 14
static schedule, 10
task dispatcher, 21
task, long, 31–32
task management, 15–20
task ordering, 10–11
task preemption, 11–12
task prioritization, 12
task states, 15–17, 17–18
task switching, 46
task synchronization, 32–35
task table, 21, 22–23
tick interrupt service routine,

21, 22

MULU, 125
Mutex, 43–46

N
National Oceanographic and

Atmospheric
Administration
(NOAA), 95

Native device integer math,
118–19

Near memory model, 98
Nesting behavior, 178
Newton, Isaac, 124
Newton-Raphson division, 124
NOAA, 95
Non-preemptive scheduler
call stack space

requirement, 85
memory optimization for

multitasking systems, 192
multithread application,

creation of, 27–28
scheduling approaches for,

57–58
synchronization of tasks,

32–33
task, long, 31–32
task scheduling, 12–14, 20–25
vs. preemptive, 18

Normalized, fixed point
values, 122

Notation(s), 122
NPN transistor, 161

O
Object code
concepts of, 71–73
control flow in assembly

language, 88–91
debugging of, 82
examination of, 81–91
function calling relationship,

82–87
functions, basics of, 87–88

200 INDEX

Object code—cont’d
mixed-mode viewing, 82
optimization and examination

of code, 81
optimization vs. abstraction, 3
profiling of (see profiling, of a

program)
program, optimization of (see

compiler, effective use of)
Operator precedence, 102
Optimization
algorithms (see algorithms)
approximations (see

approximation(s))
of code performance, 81
concepts of, 111–12
data memory (see data

memory, optimization of)
enabling of, 97–98
memory size (see memory size

optimization)
native device integer math,

118–19
power and energy (see power

and energy,
optimization of)

of power and energy (see
power and energy,
optimization of)

vs. abstraction, 3
Oscillation stabilization time

counter status register
(OSTC), 152

Oscillation stabilization time select
register (OSTS), 152

Oscillator
clock frequency scaling

and, 170
clock sources and, 150
internal high speed (HOCO),

170, 171
stabilization of, 151–52

OSIntDisTimeMax, 67
OSMutexPend, 44

OSMutexPost, 44
OSQCreate, 36
OSQPost, 36
OSSchedLockTimeMax, 67
OSSchedLockTimeMaxCur, 68
OSStatTaskCPUUsage, 68
OSTaskCreate, 29
OSTaskQPost, 36
OSTC, 152
OSTimeDly, 30, 32
OSTS, 152
Out-lining, 190
Overflow, 122

P
PC-sampling profiler, ex, 74–81
PER0, 151
Periodic function(s), 133
Peripheral enable register 0

(PER0), 151
Peripheral(s), 166, 167–68
PI/180, calculation of, 103–4
Pipeline, 61–62
Polynomial approximation(s),

129–30
Power and energy, analysis of
characteristics of RL78,

148–50
clock control, 150–53
digital circuit power

consumption, 136–37
energy, measuring of, 141–44
frequency, requirements of,

148–50
input voltage protection,

143–44
power domains of RDK,

146–48
power, measuring of, 138–41
power supply, considerations

of, 144–46
standby modes (see standby

mode(s))
ultracapacitor, use of, 142–43

voltage converters, 144–46
voltage, requirements of,

148–50
Power and energy, optimization of
digital circuits, modeling of,

162–63
diodes, 160–61
optimization, basic methods

for, 137–38
passive components, modeling

of, 159–60
peripheral, reduction of power

and energy, 167–68
power models, 159–63
RDK power model, example

of, 164–66
RDK power system, example

of, 163–0164
reduction of power and energy

(see power and energy,
reduction of)

semiconductors, modeling of,
160–62

system energy, modeling of,
167–68

transistors used as switches,
161–62

Power and energy, reduction of
clock frequency scaling,

170–72
clock frequency scaling,

energy analysis, 171–72
clock frequency scaling,

operating frequency, 172
clock frequency scaling, power

analysis, 170–71
description of, 168
energy analysis, of operating

frequencies, 174–75
operating point, selection

of, 175
optimization approaches to,

168–69
standby mode, 175, 176

INDEX 201

voltage and clock frequency
scaling, 172–75

voltage scaling, 169
Power gating device(s), 146
Power measuring of MCU,

138–40
Precedence, of operator, 102
Preemptive scheduler
call stack space requirement, 87
memory optimization for

multitasking systems,
192, 193

message passing, 36–37
multithreaded application,

creation of, 28–30
response time analysis for,

55–56
schedulability tests for,

53–55
synchronization of tasks,

33–35
task priority assignment for,

51–52
task scheduling, 11–12,

12–14
tasks, long, 32
vs. non-preemptive, 18

Pressure-based water depth
alarm, 119

Printf, 189
Priority assignments
dynamic, 52, 55, 56
fixed, 52, 53–54, 55–56, 68

Priority ceiling protocol, 59
Priority inversion, from shared

resources, 68
Profiler address search, 116–17
Profiling, of a program
breakpoints, insertion of, 73
build process, modifications to,

ex, 78–79
code region, finding of, ex,

76–78
examination of, ex, 80–81

instruction address trace,
extraction of, 74

mechanisms to, 73–74
PC-sampling, 74–76, 74–81
profiles, types of, 74
program counter, sampling

of, 73
program, running of, ex, 79

Program counter, 18, 73
Program, optimization of. see

compiler, effective
use of

Program status word register, 18
Prolog, of function, 87
Promotion, of fixed point

math, 122

Q
Q3.12, 122
Q12, 122
Qi.f, 122
Quotient, of assembly language

divide instruction, 124

R
Radix point, 120–21, 123
RAM
cost of, 177
map file, analyzing the, 180
read-only data, leveraging

of, 182
stack space requirements, 85

Rate monotonic priority
assignment (RMPA), 52,
53–54, 68

RCODE, 76
RDK power model, example of,

163–66
Read-only data, leveraging

of, 182
Real-time method(s)
assumptions of, 50–51
design space partitions, fig, 51
foundations for, 49–51

response latency (see response
latency)

response time analysis, 55–56
schedulability analysis, 49–51
schedulability tests, 53–55
scheduling approaches, 57–58
scheduling theory, 49
task interactions, support

of, 59
task model, 50
task priority assignment,

51–52
tasks, aperiodic, 59
worst-case execution time,

60–63
REGION_T, 77
Register(s). see also individual

types
arguments and, 186
clock source configuration,

150–51
of MD, 127
multithreaded systems, 18
for oscillation stabilization, 152
return values and, 187

Rel, 180
Remainder, of assembly language

divide instruction, 124
Response latency
deadlines and priorities, 68–69
evaluation and optimization of,

63–69
interrupt service routine, 64
interrupts, disabled, 68
measurement, methods of, 64
priority inversion from shared

resources, 68
types of, 63
worst-case interrupt response

time, 65
Return value(s), 187–88
R_MAIN_UserInit, 183
RMPA, 52, 53–54, 68
ROM, 180, 182

202 INDEX

Rounding, 122
RTC scheduler, 17
RTOS, response latency, 66–68
Run-time invariant data,

precomputation
compile-time expression

evaluation, 103–4
description of, 103
recalculation before

compilation, 104–6
reuse of data, 106–10

Run-to-completion scheduler
(RTC), example of, 20–25

S
Sampling, of PC, ex, 74–76
Saturation, 123
Scaling
clock frequency, 170–72
in fixed point math, 122
as optimization approach,

168–69
voltage, 169

Scanf, 189
Schedulable system, 49
Scheduler. see non-preemptive

scheduler; preemptive
scheduler

Scheduler lock method, 67
Schottky diode, 161
Segments, of embedded systems

market, 1–2
Semaphore(s)
mutexes, difference

between, 44
synchronization with, 33–35

Semiconductors, modeling of,
160–62

Shared bus(es), 60
Shared object(s)
assembly language, 40–41
atomic code, 40–41
data corruption, 38
function reentrancy, 39–40

interrupts, disabling of, 42
lock variable, 43
message queue, 46
multithreaded system, 37–46
semaphore, 43–45
solutions/protection, 42–46

Shockley’s ideal diode law, 160
Signed vs. unsigned data, 99, 101
Single-precision floating point

math, 98
Snooze mode, 154, 156, 175
Soft real-time jobs, 50
Software development, 93–94,

111–12
Speed, memory size and, 178
Sprintf, 187
SRP, 59
Stack memory
analytical stack size bounding,

182–84
experimental measurement,

184–85
library functions, space need

by, 184
live monitoring of, 185
multithreaded system, 14
return address, addition of, 183
size estimation, improvement

of, 182–85
stack-friendly functions, use

of, 189
Stack resource policy (SRP), 59
Stack resource protocol, 59
Standby mode
description of, 153–54
halt mode, 154–56
MCU subsystem operation, 155
peripherals, reduction of power

and energy, 167
power and energy, reduction

of, 174, 176
snooze mode, 154, 156
stop mode, 156

Static power component, 137

Static schedule, 10
Static variable(s), 100, 185
Stop mode, 156, 175
Subsystem clock oscillator, 150
Subtraction, 123
Switching regulator, 163
Switch-mode power converter,

145–46
Symmetric function(s), 133
System clock control register

(CKC), 151

T
Task control block (TCB), 29
Task dispatcher, 21
TaskQ, 36
Task(s)
aperiodic, real-time methods

support of, 59, 60
combining to reduce stack

count, 193
context switching, 18
dispatcher, 21
feasibility test, 59
fundamentals of, 9–15
interactions, real-time methods

support of, 59
long, handling of, 31–32
management of, 15–20
non-preemptive, 12–14, 20–25
ordering of, 10–11
preemptive, 11–12, 12–14
prioritization, 12
real-time model, 50
response time, 9
state transitions, 17–18
states, 15–17
switching, disabled, 45
synchronization, with other

tasks, 32–35
table, 21, 22–23

Taylor series, 130–32
TBS, 60
3V3, 148

INDEX 203

3V3A, 148
3V3_MCU, 143, 147, 148
3V3_MCUE, 147, 148
Tick interrupt service routine,

21, 22
Tick timer, 24
Toolchain
code memory, reduction of, 189
configuration of, 97–99
data memory optimization,

181–82
library functions, multiple

versions of, 189
Top-test loop, 89
Total Bandwidth Server (TBS), 60
Transistor(s), 146, 161–62, 163
Tredennick, Nick, 1–2
Trees, as data structure, 116

U
U22, type UPC29M33A, 147
Ultracapacitor, 142–43

Upper bound, 60
Utilization U, 51

V
Variable scope, excessive, 100
VBATT, 148
Voltage
clock frequency scaling,

172–75
converter, 144–46
peripheral, reduction of power

and energy, 167
regulator, 163
requirements of, 148–50
scaling, 169

VUSB domain, 146, 147

W
WCET. see worst-case execution

time (WCET)

WiFi module, energy use of,
144, 148

WIFIVIN, 148
Wilson, Daniel, 81
Worst-case execution time

(WCET)
description of, 60
determination of, 63
execution time variability,

sources of, 61
pipeline, stages of, 61–62

Worst-case interrupt response
time, fig, 65

Worst-case response time, 54–55

X
XCODE, 76
XTSTOP bit, 151

	00.ES_Dean_RL78_Advanced_FM.qxd
	01.ES_Dean_RL78_Advanced_CH01.qxd
	02.ES_Dean_RL78_Advanced_CH02.qxd
	03.ES_Dean_RL78_Advanced_CH03.qxd
	04.ES_Dean_RL78_Advanced_CH04.qxd
	05.ES_Dean_RL78_Advanced_CH05.qxd
	06.ES_Dean_RL78_Advanced_CH06.qxd
	07.ES_Dean_RL78_Advanced_CH07.qxd
	08.ES_Dean_RL78_Advanced_CH08.qxd
	09.ES_Dean_RL78_Advanced_CH09.qxd
	10.ES_Dean_RL78_Advanced_Index.qxd

