
(12) United States Patent
Choi et al.

US008464223B2

US 8,464,223 B2
Jun. 11, 2013

(10) Patent N0.:
(45) Date of Patent:

(54) METHOD AND APPARATUS FOR EFFICIENT (56) References Cited
AND PRECISE DATARACE DETECTION FOR
MULTITHREADED OBJECT-ORIENTED U.S. PATENT DOCUMENTS

PROGRAMS 6,009,269 A * 12/1999 Burrows et a1. 717/130

6,081,783 A 6/2000 Divine et al.
. _ - ~ 6,247,025 B1 6/2001 Bacon

(75) Inventors‘ ‘I623 260k ChmI’JMmSmt Kllscainés _ 6,286,130 B1 9/2001 Poulsen et a1.
()’ e‘mwo‘’ 66’ ea“ 63 (_)’ 6,343,371 B1 * 1/2002 Flanagan et a1. 717/124
Robert W. O’Callahan,Wh1te Plains, 6,335,704 B1 5/2002 Rao et a1.
NY (US); Vivek Sarkar, Stamford, CT 6,553,513 B1 4/2003 SWoboda et al.
(Us); Nlanu sridharan’ Uniomown, pA 6,593,940 B1 7/2003 Petersen et al.
(Us) 6,681,280 B1 1/2004 Miyake et al.

6,817,009 B2 * 11/2004 Flanagan et al. 717/126
6,920,634 B1 7/2005 Tudor

(73) Assignee: International Business Machines 7,316,005 B2 * 1/2008 Qadeer et a1. 717/131

Corporation’ Armonka NY * Berg et 7,469,403 B2 * 12/2008 Choi et al. .. 717/127

7,516,446 B2 * 4/2009 Ch ' t l. 717/128
(*) Notice: Subject‘ to any disclaimer, the term of this 2002/012042g A1 8/2002 chffsfiagns

patent is extended or adjusted under 35 2002/0184444 A1 * 12/2002 Shandony 711/118
U_S_C_ 154(1)) by 766 days_ 2002/0194393 A1* 12/2002 Hrischuk etal. 709/318

2003/0014736 A1 1/2003 Nguyen et al.

(21) App1.No.: 12/366,446 OTHER PUBLICATIONS
Choi et al., Ef?cient and precise datarace detection for multithreaded

(22) Filed: Feb. 5, 2009 object-oriented programs, Jun. 2002, 12 pages, <http://delivery.acm.
org/10.1145/520000/512560/p258-ch0i.pdf>.*

(65) Prior Publication Data Ronsse et al., RecPlay: a fully integrated practical record/replay
system, May 1999, 20 pages, <http://delivery.acm.0rg/10.1145/

US 2009/0199162 A1 Aug. 6, 2009 320000/312214/p133-r0nsse.pdf>.*

(Continued)
Related US. Application Data Primary Examiner * Thuy Dao

(62) Division of application No. 10/178,561, ?led on Jun. (74) Anomey’Agem’ OrFirm *VaZkenAleXaman; MCGmn
25, 2002, noW Pat. NO. 7,516,446. IP Law Group’ PLLC

(57) ABSTRACT
(51) Int. C]. A method of detecting a datarace between memory accesses

G06F 9/44 (2006.01) Within a program includes determining Whether a datarace
(52) us CL exists between a ?rst access event in a ?rst statement and a

USPC __________ __ 717/126; 717/127; 717/128; 717/131 second access event in a second statement. It is then deter

(58) Field of Classi?cation Search mined Whether a third statement is more Weakly protected
None than one of the ?rst statement and the second statement.

See application ?le for complete search history. 17 Claims, 2 Drawing Sheets

200

m4 213
INSTRUMENTED ACCESS EVENTS

STAT'C DATARACE SET EXECUTABLE DYNAMIC DATARACE SET

/ 206 210 l 212 \
|._

PROGRAM (OPTIMIZED) PROGRAM RUNTIME
NSTRUMENTATI EXECUTION ' DETECTOR ~—>

US 8,464,223 B2
Page 2

OTHER PUBLICATIONS

Huang et al., View-based consistency and false sharing effect in
distributed shared memory, Apr. 2001, 10 pages, <http://delivery.
acm.org/l0.l 145/3 80000/377084/p5 l -huang.pdf>.*

Christoph von Praun and Thomas R. Gross, Object Race Detection,
2001, pp. 70-81, 11 pages total.

J -D Choi et al., Static Datarace Analysis for Multithreaded Object
Oriented Programs, Aug. 9, 2001 (19 pages), [Online] [Retrieved at]
<WWW.research.ibm.com/dej avu/rc22 146 .pdf>.
J -D Choi et al., “Deterministic Replay of Java Multithreaded Appli
cations”, Aug. 1998(12 pages). [Online] [Retrieved at] <http://portal.
acm.org/citabon.cfm?id:28l04l>.

* cited by examiner

US. Patent Jun. 11, 2013 Sheet 2 012 US 8,464,223 B2

(START)/ 252

SAME MEMORY? /25‘ / 25°

DIFFERENT THREADS? f2“

COMMON SYNC V258
OBJECT?

EXEC ORDER? f2“

@262

F|G.2B

[300

G)
FIG.3 III

US 8,464,223 B2
1

METHOD AND APPARATUS FOR EFFICIENT
AND PRECISE DATARACE DETECTION FOR
MULTITHREADED OBJECT-ORIENTED

PROGRAMS

The present application is a Divisional Application of US.
patent application Ser. No. 10/178,561, now US. Pat. No.
7,516,446, issued on Apr. 7, 2009, and having ?ling date of
Jun. 25, 2002.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention generally relates to datarace detec

tion for multithreaded object-oriented programs. More par
ticularly, this invention provides a unique combination of
static datarace analysis, optimized instrumentation, runtime
access caching and runtime detection phases.

2. Description of the Related Art
A datarace occurs in a multithreaded program When tWo

threads access the same memory location With no ordering
constraints enforced betWeen the accesses, such that at least
one of the accesses is a Write. In most cases, a datarace is a

programming error. Furthermore, programs containing data
races are notoriously dif?cult to debug because they can
exhibit different functional behaviors even When executed
repeatedly With the same set of inputs and the same execution
order of synchronization operations. Because of the detri
mental effects of dataraces on the reliability and comprehen
sibility of multithreaded softWare, it is Widely recognized that
tools for automatic detection of dataraces can be extremely
valuable. As a result, there has been a substantial amount of
past Work in building tools for analysis and detection of
dataraces.

Most previous dynamic datarace detection techniques have
been relatively precise, in that mo st races reported correspond
to truly unsynchronized accesses to shared memory. HoW
ever, these detectors incur order-of-magnitude overheads in
the range of 3 times to 30 times. Recent approaches reduce the
overhead of datarace detection, but at the cost of decreased
precision. For example, monitoring dataraces at the object
level rather than the memory-location level reduced over
heads for datarace detection to the range of 16% to 129% but
resulted in many spurious race reports.

Past research on datarace detection can be classi?ed as

ahead-of-time, on-the-?y, or post-mortem. These approaches
offer different trade-offs along ease-of-use, precision, e?i
ciency, and coverage dimensions.

Ahead-of-time datarace detection is usually performed in
static datarace analysis tools Which yield high coverage by
considering the space of all possible program executions and
identifying dataraces that might occur in any one of them.
Flanagan and Freund’s datarace detection tool is a static tool
for Java (C. Flanagan and S. N. Freund. Type-based race
detection for java. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Imple
mentation (PLDI), pages 219-232, June 2000) based on type
based equivalence of lock variables. Guava is a dialect of Java
that statically disalloWs dataraces by preventing concurrent
accesses to shared data (D. F. Bacon, R. E. Strom, and A.
Tarafdar. Guava: A dialect of j ava Without data races. In ACM
Conference on Object Oriented Programming Systems, Lan
guages, and Applications, 2000). Only instances of classes
belonging to the class category called monitor can be shared
by multiple threads. By serializing all accesses to ?elds or
methods of the same shared data, Guava can prevent data
races. Boyapati and Rinard propose a system of type annota

20

25

30

35

40

45

50

55

60

65

2
tions for Java that ensures a Well-typed program is datarace
free and alloWs the programmer to Write a generic class and
subclass it With different protection mechanisms (C. Boyapati
and M. Rinard. A parameterized type system for race-free
java programs. In ACM Conference on Obj ect-Oriented Pro
gramming Systems, Languages, and Application, 2001).

Warlock is an annotation-based static datarace detection
tool forANSI C programs (N. Sterling. Warlock: A static data
race analysis tool. In USENIX Winter Technical Conference,
pages 97-106, 1993), Which also supports lock-based syn
chronization. Aiken and Gay’s Work statically detects data
races in SPMD programs (A. Aiken and D. Gay. Barrier
interference. In Proceedings of the 25th Symposium on Prin
ciples of Programming Languages (POPL), pages 342-354,
January 1998). Since SPMD programs employ barrier-style
synchronizations, they need not track locks held at each state
ment.

The key advantage of dynamic analysis approaches such as
on-the-?y and post-mortem datarace detection is the preci
sion of the results (feW or no false positives), but in past Work
this advantage usually came at a high cost in ef?ciency. A
dynamic approach also has more limited coverage than a
static approach because it only reports dataraces observed in
a single dynamic execution. In some cases, dynamic tools can
improve coverage by considering alternate orderings of syn
chronization operations that are consistent With the actual
events observed in the original program execution (S. Savage,
M. BurroWs, G. Nelson, P. Sobalvarro, and T. E. Anderson.
Eraser: A dynamic data race detector for multi-threaded pro
grams. ACM Transactions on Computer Systems, 15(4): 391 -
41 1 , 1997).

Dinning and Schonberg introduced the idea of detecting
dataraces based on a proper locking discipline. Their system
employed a detection approach based on both the happened
before relation and lock sets, Which they called “lock covers.”
Their subtraction optimization uses a notion similar to the
Weaker-than relation described beloW, but they only suggest
using the optimization in the detector itself.

Eraser’s datarace detection algorithm is based on lock
based synchronization (S. Savage, M. BurroWs, G. Nelson, P.
Sobalvarro, and T. E. Anderson. Eraser: A dynamic data race
detector for multi-threaded programs. ACM Transactions on
Computer Systems, 15(4): 391-411, 1997). Eraser enforces
the constraint that each shared memory location is protected
by a unique lock throughout an execution. Eraser Works inde
pendently of the input source language by instrumenting
binary code, but its runtime overhead is in the range of 10
times to 30 times.

Praun and Gross’ s object race detection (C. v. Praun and T.
Gross. Object race detection. In ACM conference on Object
Oriented Programming Systems, Languages, and Applica
tion, 2001) greatly improves on Eraser’s performance by
applying escape analysis to ?lter out non-datarace statements
and by detecting dataraces at the object level instead of at the
level of each memory location (their overhead ranges from
16% to 129% on the same benchmarks the inventors used,
With less than 25% space overhead). HoWever, their coarser
granularity of datarace detection (Which includes treating a
method call on an object as a Write) leads to the reporting of
many dataraces Which are not true dataraces i.e., the reported
races do not indicate unordered concurrent accesses to shared
state.
TRaDe is similar to object race detection in that they both

apply escape analysis (M. Christianens and K. De Bosschere.
TraDE, a topological approach to on-the-?y race detection in
java programs. Proceedings of the Java Virtual Machine
Research and Technology Symposium (JVM’01), April

US 8,464,223 B2
3

2001), although TRaDe does the analysis dynamically.
TraDe’s datarace detection is based on the happens-before
relation. TRaDe adds a runtime overhead ranging from 4
times to 15 times (M. Christianens and K. De Bosschere.
TraDE, a topological approach to on-the-?y race detection in
java programs. Proceedings of the Java Virtual Machine
Research and Technology Symposium (JVM’01), April
2001) compared to an interpreter, With approximately 3 times
space overhead.

Assure] (Kuck & Associates, Inc., 1906 Fox Drive, cham
paign, IL 61820-7345, USA. AsureJ User’s Manual, 2.0 edi
tion, March 1999) and JProbe (KL Group, 260 King Street
East, Toronto, Ontario, Canada. Getting Started With J Probe.)
are commercial products that can dynamically detect data
races in Java programs. Assure] has been observed to have
overhead ranging from 3 times to 30 times, While JProbe’s
memory requirements make its use practically impossible for
any reasonably sized program.
Min and Choi’s hardWare-based scheme uses the cache

coherence protocol, and Richards and Larus’ Work uses the
Distributed Shared-Memory (DSM) computer’s memory
coherence protocol, respectively, in collecting information
for on-the-?y datarace detection.

Most dynamic datarace detection techniques for SPMD
programs Work either as post-mortem tools or as on-the-?y
tools, by collecting information from actual executions With
softWare instrumentation. A post-mortem approach offers the
possibility of improving on-line ef?ciency (by moving the
bulk of the Work to the post-mortem phase) at the cost of
complicating ease-of-use. HoWever, the size of the trace
structure can groW prohibitively large thus making the post
mortem approach infeasible for long-running programs.

Another dimension that can be used to classify past Work
on datarace detection is the underlying concurrency model.
Past Work on datarace detection Was historically targeted to
multithreaded programs. HoWever, those results are not appli
cable to the object-based concurrency models present in mul
tithreaded object-oriented programming languages such as
Java.

Netzer and Miller categorize dynamic dataraces into
actual, apparent, and feasible dataraces (R. H. Netzer and B.
P. Miller. What are race conditions? Some issues and formal
izations. ACM Letters on Programming Languages and Sys
tems, 1(1): 74-88, march 1992.). Choi and Min describe hoW
to identify and reproduce the race frontier, Which is the set of
dataraces not affected by any other dataraces. By repeatedly
reproducing and correcting the dataraces in the race frontier,
one can identify all the dataraces that occur in executions.

Thus, past techniques for on-the-?y datarace detection
either sacri?ced precision for performance, leading to many
false positive datarace reports, or maintained precision but
incurred signi?cant overheads in the range of 3 times to 30
times.

SUMMARY OF THE INVENTION

In vieW of the foregoing and other problems, drawbacks,
and disadvantages of the conventional methods and struc
tures, an object of the present invention is to provide a method
and structure in Which dataraces betWeen tWo memory
accesses Within a program are detected dynamically.

The inventors provide a novel approach to dynamic data
race detection for multithreaded obj ect-oriented programs. In
contrast, the invention results in very feW false positives and
runtime overhead in the 13% to 42% range, making it both
e?icient and precise. This performance improvement is the

20

25

30

35

40

45

50

55

60

65

4
result of a unique combination of complementary static and
dynamic optimization techniques.

In a ?rst aspect of the invention, a method of detecting a
datarace betWeen ?rst and second memory accesses Within a
program, including: determining Whether the ?rst and second
memory accesses are to the same memory location; determin
ing Whether the ?rst and second memory accesses are
executed by different threads in the program; determining
Whether the ?rst and second memory accesses are guarded by
a common synchronization object; and determining Whether
there is an execution ordering enforced betWeen the ?rst and
second memory accesses.

In a second aspect of the invention, a method of detecting
a datarace betWeen memory accesses Within a program,

includes: determining Whether a datarace exists betWeen a
?rst access event in a ?rst statement and a second access event

in a second statement; and determining Whether a third state
ment is more Weakly protected than one of the ?rst statement
and the second statement.

In a third aspect of the invention, a method for detecting a
datarace betWeen tWo memory accesses Within a program,
includes: inserting a pseudo-instruction trace after every
instruction Which accesses one of a ?eld of an object, a static

?eld and an array element; and eliminating said pseudo
instruction trace of a second of the tWo memory accesses
based upon a determination using a static Weaker-than rela
tion.

In a fourth aspect of the invention a program storage
device, readable by a machine, tangibly embodying instruc
tions to perform a method for detecting a datarace, said
method including: determining Whether ?rst and second
memory accesses are to the same memory location; determin
ing Whether the ?rst and second memory accesses are
executed by different threads in the program; determining
Whether the ?rst and second memory accesses are guarded by
a common synchronization object; and determining Whether
there is an execution ordering enforced betWeen the ?rst and
second memory accesses.

In a ?fth aspect of the invention a program storage device,
readable by a machine, tangibly embodying instructions to
perform method steps for detecting a datarace betWeen
memory accesses Within a program, said method including
determining Whether a datarace exists betWeen a ?rst access
event in a ?rst statement and a second access event in a second

statement; and determining Whether a third statement is more
Weakly protected than one of the ?rst statement and the sec
ond statement.

In a sixth aspect of the invention a program storage device,
readable by a machine, tangibly embodying instructions to
perform method steps for detecting a datarace betWeen tWo
memory accesses Within a program, said method including:
inserting a pseudo-instruction trace after every instruction
Which accesses one of a ?eld of an object, a static ?eld and an

array element; identifying a psuedo-instruction trace for an
instruction that contains information Which is subsumed by
another instruction; and eliminating the pseudo-instruction
trace for the instruction.

In a seventh aspect of the invention, a system for detecting
a datarace Within a program, said system including: a ?rst
module for instrumenting the program; and a second module
for detecting the datarace during a runtime operation of the
program, Wherein the ?rst module inserts trace statements
into the program at non-redundant trace points based upon a
determination that each trace for each instruction does not
trace an instruction Which contains information Which is sub
sumed by another instruction.

US 8,464,223 B2
5

In an eighth aspect of the invention a system for dynami
cally detecting a datarace Within a program, said system
including: means for inserting a pseudo-instruction trace after
every instruction Which accesses one of a ?eld of an object, a

static ?eld and an array element and means for identifying a
psuedo-instruction trace for an instruction that contains infor
mation Which is subsumed by another instruction; and means
for eliminating the pseudo-instruction trace for the instruc
tion

The present invention provides a novel approach to
dynamic datarace detection for multithreaded obj ect-oriented
programs Which is both ef?cient and precise. An exemplary
embodiment of the invention uses a Weaker-than relation to
identify memory accesses that are probably redundant from
the vieWpoint of datarace detection. Another source of reduc
tion in overhead is that an exemplary embodiment of the
invention does not report all access pairs that participate in
dataraces, but instead guarantees that at least one access is
reported for each distinct memory location involved in a
datarace. The invention results in runtime overhead ranging
from 13% to 42%, Which is Well beloW the runtime overhead
of previous approaches With comparable precision. This per
formance is obtained through a combination of static and
dynamic optimization techniques Which complement each
other in reducing the overhead of a datarace detector. Further
more, almost all the dataraces reported by an exemplary
embodiment of the invention correspond to actual bugs, and
the precise output of our invention alloWs us to easily ?nd and
understand the problematic source code lines in our test pro
grams.

While Dinning and Schonberg introduced the idea of
detecting dataraces based on a proper locking discipline, their
system employed a detection approach based on both the
happened-before relation and lock sets, Which they called
“lock covers.” Their subtraction optimiZation uses a notion
similar to the Weaker-than relation, but they only suggest
using the optimiZation in the detector itself, While the inven
tors employ the notion in many stages of our detection frame
Work.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other purposes, aspects and advantages
Will be better understood from the folloWing detailed descrip
tion of an exemplary embodiment of the invention With ref
erence to the draWings, in Which:

FIG. 1 illustrates an exemplary computer processing sys
tem 100 on Which an embodiment of the present invention
may be implemented;

FIG. 2A shoWs an overall architecture 200 of one exem

plary embodiment of the invention;
FIG. 2B illustrates a ?owchart of an exemplary method in

accordance With the present invention; and
FIG. 3 illustrates a programmable storage medium 300 for

storing a program of an exemplary method in accordance With
the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS OF THE INVENTION

Referring noW to the draWings, and more particularly to
FIGS. 1-3, there are shoWn exemplary embodiments of the
methods and structures according to the present invention.

FIG. 1 illustrates an exemplary computer processing sys
tem on Which an embodiment of the present invention may be
implemented. The computer system 100 includes one or more
application programs and an operating system 108 that oper

20

25

30

35

40

45

50

55

60

65

6
ates on a computer platform 104. The platform 104 includes
a hardWare unit 112 that includes one or more central pro

cessing units (CPUs) 116 (Which are typically referred to as
CPUs/processors), a random access memory (RAM) 114, and
an input/output interface 118.

Various peripheral components may be connected to the
computer platform 104 including a terminal 126, a data stor
age device 130, and a printing device 134. The operating
system 108 coordinates operation of the various components
or the computer system 100. An example of a computer sys
tem 100 is the IBM RISC System/6000 (RISC System/6000
is a trademark of the IBM Corporation). It is readily under
stood that those skilled in the computer arts Will be familiar
With many equivalent computer systems 100.
The operating system 108 of the present invention provides

multi-threading capabilities Wherein multiple concurrent
threads of control are dispatched Within a single shared
address space. Examples include the built-in thread support
of operating systems supporting the JAVATM Virtual Machine,
Microsoft’s WindoWs NT® operating system, and the POSIX
thread package that is available on many operating systems,
for instance as the pthreads package of IBM’s AIX® operat
ing system.

FIG. 2 shoWs an overall architecture 200 of one exemplary
embodiment of the invention. The ?rst phase is an optional
static datarace analysis 202, Which produces a static datarace
204 set i.e., a (conservative) set of statements that are identi
?ed as potentially participating in dataraces. Any statement
that does not belong to the static datarace set is guaranteed to
never cause a datarace during execution. If this phase is omit
ted, then the static datarace set defaults to all statements that
contain memory accesses.
The static datarace analysis employed as part of the inven

tive datarace detection is based on points-to analysis of ref
erence variables (J.-D. Choi, M. Gupta, M. Serrano, V. C.
Sreedhar, and S. Midkiff. Escape analysis for Java. In ACM
Conference on Object-Oriented Programming systems, Lan
guages, and Applications, pages 1-19, 1999.). The primary
advantage of a static analysis approach is its e?iciency due to
the fact that it incurs no runtime overhead. HoWever, this
advantage is mitigated in practice by severe limitations in
precision (due to false positive reports) and ease-of-use (due
to the requirement of presenting a Whole program to the static
analysis tool, sometimes augmented With annotations to aid
the analysis).
A second phase of an exemplary embodiment of the inven

tion is instrumentation 206, Whose goal is to insert trace
statements at program points identi?ed in the static datarace
set to generate an instrumented executable 208. This insertion
process can be optimiZed, in Which case no instrumentation is
inserted at redundant trace points i.e., program points Whose
access events can be ignored since other (non-redundant)
trace points Will provide su?icient information for datarace
detection. The result of the second phase is an instrumented
executable 208 that is extended With code to generate access
events during program execution.
A third phase in the exemplary embodiment is an optional

runtime optimiZer 210, Which uses a cache (not shoWn) to
identify and discard redundant access events that do not con
tain neW information.

Finally, the runtime detector 212 examines the access
events and detects dataraces during the program execution.
The instrumentation and runtime detector phases guarantee
the precision of the inventive approach, Whereas the optimi
Zation phases deliver the e?iciency that makes the inventive
approach practical. The results from the invention shoW that it
is preferable to combine all the optimization phases (static

US 8,464,223 B2
7

analysis, optimized instrumentation, and runtime optimizer),
thereby to obtain maximum performance. The inventive
approach contrasts With purely ahead-of-time datarace detec
tion, Which attempts to report dataraces that may occur in
some possible program execution. Instead, the inventive
approach detects dataraces on-the-?y, usually the most con
venient mode for the user. If so desired, the inventive
approach could be easily modi?ed to perform post-mortem
datarace detection by creating a log of access events during
program execution and performing the ?nal datarace detec
tion phase off-line.

Even assuming that Eraser’ s approach is someWhat similar
to the present invention in that its datarace detection algo
rithm is based on lock-based synchronization, Eraser
enforces the constraint that each shared memory location is
protected by a unique lock throughout an execution. By con
trast, an exemplary embodiment of the present invention does
not enforce this constraint. Thus, the present invention reports
feWer spurious data races. The oWnership model of an exem
plary embodiment of the invention is based on Eraser’s, but
Eraser has no comparable handling of the join operation.
Eraser Works independently of the input source language by
instrumenting binary code, but its runtime overhead is in the
range of 10 times to 30 times.
As explained above, Praun and Gross’s object race detec

tion greatly improves on Eraser’s performance by applying
escape analysis to ?lter out non-datarace statements and by
detecting dataraces at the object level instead of at the level of
each memory location. HoWever, their coarser granularity of
datarace detection leads to the reporting of many dataraces
Which are not true dataraces. For example, on the hedc pro
gram, the inventors report dataraces on 5 objects, all of Which
are true dataraces, While object race detection reports over
100 dataraces, almost all of Which are not true dataraces. (The
race de?nitions for object race detection and Eraser imply
they alWays report a super set of the races the inventors
report.).

TraDe’s datarace detection differs from the present inven
tion in that it is based on the happens-before relation. TRaDe
adds a runtime overhead ranging from 4 times to 15 times
compared to an interpreter, With approximately 3 times the
space overhead.

2. Datarace Conditions and Problems
2.1 Datarace Conditions
The inventors de?ne a datarace as tWo memory accesses

Which satisfy the folloWing four conditions: (1) the tWo
accesses are to the same memory location (i.e., the same ?eld
in the same object) and at least one of the accesses is a Write
operation (under certain memory models, tWo read accesses
may also generate a datarace. This framework can be easily
applied to such models by dropping the requirement that at
least one of the accesses must be a Write.); (2) the tWo
accesses are executed by different threads; (3) the tWo
accesses are not guarded by a common synchronization
object (lock); and (4) there is no execution ordering enforced
betWeen the tWo accesses, for example by thread start or join
operations. The inventors call these conditions the datarace
conditions, and ob serve that they are different from datarace
conditions assumed in past Work on datarace detection for
fork-join programs. In general, the approach of an exemplary
embodiment of the invention is applicable to any monitor
style synchronization primitives supported by the program
ming language, operating system, or user.

2.2 Example
List 1 beloW shoWs an exemplary program With three

threads main, T1 and T2. Statements are labeled With state
ment numbers such as T01, the ?rst labeled statement in the

20

25

30

35

40

45

50

55

60

65

8
main thread. The inventors Will also use the notation stmt:
expr to denote a ?eld access expression Within a statement.

For convenience, statements that are not relevant to dataraces
have been elided from this example. Note that thread main
performs a Write access on ?eld x.f at statement T01, before
creating and starting threads T1 and T2.

List 1.

// THREAD MAIN
class MainThread {

public static void main(String args[]) {

T02: Thread T1 = neW ChildThread(...);

T03: Thread T2 = neW ChildThread(...);

T04: T1.start();
T05: T2.start();

}
} // class MainThread
// CALLED BY THREAD T1
T10: synchronized void foo(...) {
T11: a.f = 50;

T12: T13: synchronized(p) {
T14: b. g = b.f

}
// CALLED BY THREAD T2

void ba.r(...)
T20: synchronized(q) {
T21: d.f = 10;

Thread T1 calls method foo, Which contains three accesses
to object ?elds: a Write access T11:a.f, a Write access T14:b.g,
and a read access T14:b.f. Thread T2 calls method bar, Which
contains a Write access, T21 :d.f.

Let us ?rst assume that object references a, b, d and x all
point to the same object. All the accesses to the f ?eld in the
example Will be to the same memory location, thus every pair
ofthem except for (T14:b.f, T14:b.g) satis?es the ?rst ofthe
datarace conditions.

In addition, assume that object references T10:this, T13 :p,
and T20:q all point to different objects during that execution.
Then, no tWo statement instances belonging to different
threads are guarded by the same synchronization object, sat
isfying the third of the datarace conditions. T1 and T2 are
different threads Without execution ordering betWeen them
via start or join, satisfying the second and the fourth of the
conditions. Accesses T1 1 :a.f and T14:b.fthus exhibit a data
race With access T21:d.f. Statement T01 does not cause a

datarace With the others in the example because there exists
an ordering via start at T04 and T05, not satisfying the fourth
of the conditions.
The inventive de?nition of dataraces identi?es both actual

and feasible dataraces in a given program execution. This is
different from other datarace de?nitions that model mutual
exclusion using the happened-before relation, and exclude
feasible dataraces from their de?nition. For example, let us
noW assume that T13:p and T20:q point to the same object
(Which is different from the object pointed to by T10:this).

Therefore, the tWo synchronizedblocks in methods foo and
bar are protected by the same lock. If thread T1 acquires the
lock before T2, an approach based on the happened-before
relation Will record the fact that statement T13 must execute
before statement T20. Doing so Will lead it to conclude that

US 8,464,223 B2

there is a happened-before relation from T1 1 to T21 (through
T13), and that there is no datarace betWeen T11:a.f and T21:
d.f. In contrast, the inventive approach reports the feasible
datarace betWeen T11:a.f and T21:d.f since it could have
occurred if thread T2 acquired the lock before thread T1. In
this regard, the inventive de?nition of dataraces is similar to
that of Eraser.

2.3 Thread Start and Join Operations
As the third and the fourth datarace conditions indicate,

there are tWo kinds of inter-thread serialization constructs that
can be used to avoid dataraces: mutual exclusion (synchro
nized methods and blocks) and happened-before relations
(thread start and join operations).

To precisely model a join operation using mutual exclu
sion, the inventors introduce a dummy synchronization object
Sj for each thread Tj. The Sj locks are used solely for the
purpose of datarace detection, and are not visible to the appli
cation. A dummy mon-enter (Sj) operation is performed at the
start of Tj’s execution, and a mon-exit (Sj) operation is per
formed at its end. When thread Tj ’s parent or any other thread
performs a join operation on Tj, a dummy mon-enter (Sj)
operation is performed in that thread after the join completes.
These dummy synchronizations help the datarace detection
system observe that the operations folloWing the join cannot
execute concurrently With operations in Tj.

It is dif?cult to model start constraints the same Way,
because generally one cannot knoW in advance hoW many
threads Will be started by each thread, or Which dummy locks
should be held prior to starting child threads. Instead, the
inventors use an oWnership model to approximate the order
ing constraints that arise from start operations.

The inventors de?ne the oWner of a location to be the ?rst
thread that accesses the location. The inventors only start
recording data accesses and checking for dataraces on a loca
tion When the location is accessed by some thread other than
its oWner. Though approximate, this approach is su?icient to
capture the ordering constraints that arise in the common case
When one thread initializes some data that is later accessed by
a child thread Without explicit locking.

2.4 Datarace Detection
In an exemplary embodiment of the invention the inventors

de?ne datarace detection as folloWs. An access event e is a

5-tuple (m, t, L, a, s) Where: m is the identity of the logical
memory location being accessed; t is the identity of the thread
Which performs the access; L is the set of locks held by t at the
time of the access; a is the access type (one of WRITE,
READ); and s is the source location of the access instruction.
Note that source location information is used only in report
ing and has no bearing on other de?nitions and optimizations.
Given access events (or, simply, accesses) el- and e], the inven
tors de?ne neWline IsRace (ei, e) as folloWs:

IsRace(e,-,ej)<=> (ei.m:ej.m) /\ (ei.t==ej.t)
/\ (eZ-LOeJ-LIQ) /\

(eZ-aIWRITE V eJ-aIWRITE).
Aprogram execution generates a sequence of access events

E. Performing datarace detection on this execution is equiva
lent to computing the value of the condition:

(1)

EIei, ejeElIsRace(e,-, ej).

2.5 Dataraces Reported
Let FullRace:< ei, ej> be the set of all access pairs that

form a datarace during an execution. Given an execution With
N accesses, any algorithm Which attempts to detect all pairs in
FullRace must have Worst-case time and space complexity
O(N2) (since all possible pairs could be in FullRace), costs
that could be prohibitive for a large sequence of accesses. To

(2)

20

25

30

35

40

45

50

55

60

65

10
avoid these costs, the inventive detection algorithm does not
guarantee enumeration of all pairs in FullRace, although it
still performs datarace detection as previously de?ned.

For each memory location In involved in a datarace, an
exemplary detection algorithm in accordance With the inven
tion reports at least one access event participating in a data
race on m. More formally, consider a partitioning of FullRace
by memory location into MemRace sets:

The inventors use boolean predicate IsRaceOn (ei, m) to
indicate Whether the event el- is in a pair in MemRace(m):

The inventors noW de?ne the set of dataraces reported by
the inventive approach minimal-dataraces. For each m With
non-empty MemRace (m), the inventive dynamic datarace
detector detects and reports at least one access event e such

that IsRaceOn (e, m)?rue.
2.6 Debugging Support
An exemplary embodiment of the invention reports a rac

ing access e at the moment it occurs in the program, and,
therefore, the program can be suspended and its current state
examined to aid in debugging the race. The algorithm also
reports, for some previous access f With IsRace(e, f), F s lock
set, and often f‘s thread. Furthermore, an exemplary static
datarace analyzer in accordance With the invention, provides
a (usually small) set of source locations Whose execution
could potentially race With e. In the inventors’ experience,
this information, combined With study of the source code, has
been enough to identify the causes of dataraces.

To obtain full information about rarely occurring data
races, a program record and replay tool such as Dej aVu [1.D.
Choi, et al., A perturbation-free replay platform for cross
optimized multithreaded applications. In Proceedings of the
15th IEEE International Parallel & Distributed Processing
Symposium, April, 2001] can be used, Where the dynamic
detection runs along With Dej aVu recording and the expen
sive reconstruction of FullRace occurs during DejaVu replay.
DejaVu recording incurs approximately 30% time overhead.

3. Runtime Datarace Detection
Since one does not need to report all races in a given

program execution, an exemplary embodiment of the inven
tion uses tWo key techniques to decrease the cost of an exem
plary embodiment of the algorithm. The exemplary embodi
ment’s use of the Weaker-than relation decreases the number
of accesses needed to consider and save, and the representa
tion of the access event history using tries, enables ef?cient
representation and search of past accesses.

3.1 The Weaker-Than Relation
Given tWo past access events el- and e], if for every future

access ek, IsRace (ej, ek) implies IsRace (ei, ek), ej need not be
considered When performing datarace detection on future
accesses. Since el. is more Weakly protected from dataraces
than ej (or protected equally), the inventors say that el- is
Weaker than e]. (or e]. is stronger than ei). Exploiting the
Weaker-than relationship betWeen accesses alloWs us to
greatly reduce the overhead of the inventive datarace detec
tion algorithm.
A suf?cient condition for dynamically determining that

event el. is Weaker-than event e], by using the memory loca
tion, access type, thread, and lock set information contained
in each event is outlined beloW. The inventors add the pseudo
thread ti to the possible values of e.t for a past access event e
stored by the inventive detector. ti means “at least tWo dis
tinct threads,” and the inventors set ei.t to ti When the inven
tors encounter some later event ej such that ei.m:ej.m,

US 8,464,223 B2
11

ei.L:e]-.L, and ei.t#ej.t. The intuition behind ti is that once
tWo different threads access a memory location With the same
lock set, any future access to that memory location With a
non-intersecting lock set Will be a datarace (unless all
accesses are reads), independent of Which threads previously
accessed the location. Utilizing ti is a space optimiZation that
simpli?es implementation of an exemplary embodiment of
the invention, but it is also the reason Why this embodiment
cannot alWays report the speci?c thread for the earlier access
in a datarace.

The inventors de?ne a partial order E betWeen tWo
threads ti and t], and betWeen tWo access types al- and a], as
folloWs:

(6)

Given these orderings, the inventors can noW de?ne the
Weaker-than partial order E for accesses:
PROOF. First, p.m:q.m and q.m:r.m implies p.m:r.m.

Second, p.LCq.L and q.LOr.L:O implies p.LOr.L:O.
Third, pt; qTimplies that pt?i or p.t:q.t. In either case,
p.t#r.t since q.t#r.t. (A neW access r cannot have rt?i.)
Finally, pa; q.a implies p.a:WRITE or p.a:q.a. If
p.a:q.a#WRITE, r.a must be WRITE.

The exemplary race detector ensures that if one detects that
p is Weaker than q, We at most store information about the
Weaker of p and q, decreasing the inventive time and space
overhead. In the rare case that the exemplary embodiment
reports a spurious datarace, an optimiZation based on the
Weaker-than relation could suppress the reporting of a real
datarace While alloWing the false positive report. Using extra
locking inserted by the user to suppress the spurious report
overcomes this de?ciency. In section 4 and section 6, the
inventors shoW hoW the Weaker-than relation can also be used
to ?lter events before they reach the detector.

3.2 Trie-Based Algorithm
In this section, the inventors describe the inventive runtime

datarace detection algorithm and its use of tries to represent
the event history.

3.2.1 Detection Algorithm
For each unique memory location in an access event

observed by the datarace detector of the exemplary embodi
ment, the history of accesses to that location is represented
using an edge-labeled trie. The edges of the trie are labeled
With identi?ers of lock objects, and the nodes hold thread and
access type information for a (possibly empty) set of access
events. The set of locks for an access is represented by the
path from the root of the trie to the node corresponding to that
access.

Nodes in the inventive tries have a thread ?eld t and an
access type ?eld a. Internal nodes Which have no correspond
ing accesses are assigned access type READ and a special
thread value ti (meaning “no threads”). The inventors de?ne
the meet operator H for thread information ti and and access
information al- and aj.

When the exemplary embodiment encounters an access
event e, the system ?rst check if there exists an access ep in the
history such that egg e. This check is performed through a
traversal of the trie corresponding to em, folloWing only
edges labeled With lock identi?ers in e.L (in depth-?rst
order). During this traversal, the system examines each
encountered node’s access type and thread information to see

20

25

30

35

40

45

50

55

60

65

12
if it represents accesses Weaker than e, as de?ned in the
previous section. (The traversal procedure guarantees that the
lockset and memory location Weakness conditions are satis
?ed.) If the system ?nds such a node, then it can safely ignore
e While maintaining the reporting guarantees described in this
disclosure. In practice the vast majority of accesses are ?l
tered by this check.

If the Weakness check fails, the exemplary embodiment
checks e for dataraces by performing another depth-?rst tra
versal of the trie. For each node n encountered, the inventors
have one of three cases:
Case I. The edge Whose destination is n is labeled With lock

identi?er In such that lneeL. In this case, e shares at least
one lock With all the accesses represented by n and its
children. Therefore, there cannot be a datarace With any
access represented by the subtree rooted at n, and one does
not need to search any deeper in this branch of the trie.

Case II. Case I does not hold, e.tU n.t?i, and e.a
U n.a:WRITE. In this case We have a datarace, since e.t
differs from some previous thread Which accessed e.m, the
intersection of their lock sets is empty, and at least one
access Was a Write. We report the race immediately and
terminate the traversal.

Case III. Neither case I nor II holds, in Which case We traverse
all children of n.
3.2.2 Event History Update
After checking for races, an exemplary embodiment of the

system updates the trie With information about e. If there is
already a node n in the trie Whose path to the root is labeled
With the locks e.L, the system updates n Withn.ten.t|_| e.t and
n.aen.a|_| e.a. (Such an n can be ef?ciently found; We main
tain the invariant that the label on an edge leading into a node
n', under some total order on locks, is less than the labels on
the edges leading out of n. This guarantees that We can ?nd the
node for lock set e.L in time O(|e.L|) by folloWing edges in the
order of sorted e.L.) If no such n exists then the system adds
nodes and edges to create such an n, setting n.t to e.t and na
to e.a. Finally, We traverse the trie once more to remove all the

stored accesses Which are stronger than the neWly-added
access.

3.3 Implementation
An exemplary embodiment of the invention has been

implemented in Java, and the code is straight forWard. The
algorithm runs online alongside the program being analyZed.
(The interface betWeen the algorithm and the program is
discussed beloW.)
An exemplary embodiment of the invention uses memory

addresses to identify logical memory locations. Garbage col
lection can move objects to different addresses and reuse the
same addresses for different objects. An exemplary embodi
ment of the invention could respond to garbage collection by
augmenting the object address information stored in data
structures, but for a preferred exemplary implementation
enough memory is used so that garbage collection does not
occur.

4. Runtime Optimization
The algorithm for the exemplary embodiment described

above reads an event stream generated by the running target
program. To reduce the overhead of race detection, the
embodiment reduces the number of access events that need to
be fed into the detector, using a combination of static and
dynamic techniques. This folloWing describes the dynamic
technique of caching to detect redundant accesses.

4.1 OvervieW
The description above describes hoW an access is discarded

if an exemplary embodiment of the invention has already seen
a “Weaker” access. Experiments shoW that in many bench

US 8,464,223 B2
13

marks almost all accesses are discarded this Way. Therefore,
the exemplary embodiment makes the check for a previous
Weaker access as ef?cient as possible, by introducing caches
to record previous accesses. There are tWo caches per thread,
one recording read accesses and one recording Write accesses.
Each cache is indexed by memory location. Whenever the
program performs an access to location m, the exemplary
embodiment looks up In in the appropriate cache. The cache
design guarantees that if an entry is found, there must have
been a Weaker access already recorded by the algorithm, so no
further Work is required. If no entry is found, then the exem
plary embodiment sends information about the neW access to
the runtime detector and also add a corresponding neW entry
to the cache.

4.2 Cache Policy
Recall that access p is Weaker than access q iffp.m:q.m/\

p.Locks C q.Locks /\ pt; q.t/\ pa; q.a. The exemplary
embodinEnt requires that if entry for access p is found in the
cache When neW access q is checked, then p is Weaker than q.

To guarantee that pt; q.t, the inventors observed that q.t is
simply the currently executing thread When q occurs. There
fore, the exemplary embodiment uses separate caches for
each thread. Any p found in thread q.t’s cache must have
p.t:q.t. (This also ensures that cache operations do not require
synchronization.)

Because an exemplary embodiment of the invention may
use separate caches for reads and Writes, if the embodiment
?nds entry p When it looks up the cache then certainly their
access type is the same, i.e., p.a:q.a.

To ensure that p.Locks C 6q.Locks, an exemplary embodi
ment of the invention mor?rs the set of locks currently held
by each thread. Whenever the program executes monitor exit
to release a lock 1, the system evicts from the cache any p such
that lep.Locks. This ensures that at all times, for every p in the
cache, p.Locks is a subset of the currently held locks. Hence,
When q occurs We knoW p.Locks Cq.Locks for all p in the
cache. —

Note that because Java synchronization blocks are reen
trant, a thread might execute monitor exit but not actually
release the lock because the lock had previously been
acquired more than once. An exemplary embodiment of the
invention ignores these “nested” locks and unlocks; only the
last monitor exit on a lock object requires cache entries to be
evicted.

Each cache is indexed by memory location alone. Because
the inventive policy guarantees all entries in the cache are
Weaker than the access being looked up, the embodiment does
not actually have to check the thread ID, access type, or lock
set, and they are not stored in the cache entries.
When a thread releases a lock 1, the system needs to

quickly evict all the cache entries Whose lock sets contain 1.
An exemplary embodiment of the invention exploits the
nested locking discipline imposed by the Java language (al
though not by the byte code languageithe system relies on
the fact that the byte code Was generated by a Java compiler).
The discipline ensures that at the time some access generated
a cache entry p, if lock 1 Was the last lock in p.Locks to be
acquired, then lock 1 Will be the ?rst of p.Locks to be subse
quently released (“last in, ?rst out”). Therefore for each lock
I currently held by the thread, the embodiment keeps a linked
list of the cache entries p Where 1 Was the last lock in p.Locks
to be acquired. When 1 is released the embodiment evicts all
the entries on its list from the cache. The lists are doubly
linked so that individual cache entries can be quickly removed
When they are evicted due to cache con?icts.

20

25

30

35

40

45

50

55

60

65

14
4.3 Implementation
An exemplary embodiment of the invention uses tWo 256

entry direct mapped caches, one for reads and one for Writes,
indexed by memory address. The hash function multiplies the
32-bit memory address by a constant and takes the upper 16
bits of the result. The cache code is entirely Written in Java and
is executed on the Jalapeno virtual machine (B. Aplem, et al.
The Jalapeno virtual machine. IBM Systems Journal, 39(1),
2000.). We ensure that the Jalapeno optimizing compiler
inclines all calls to the cache lookup methods in the user’s
program. The embodiment also use J alapeno speci?c method
calls to ensure that the cache lookup code is compiled into
e?icient machine code (e.g., Without array bounds checks). A
cache lookup Which results in a hit requires ten PoWerPC
instructions in this embodiment.

5. Static Datarace Analysis
An exemplary embodiment of the static datarace analysis

algorithm in accordance With the invention formulates data
race analysis as a conjunction of interthread control How
analysis and points-to analysis of thread objects, synchroni
zation objects, and access objects.
The embodiment uses this formulation to compute the

static datarace set, a set of statement pairs that may cause a
datarace during some execution. Statements that are not part
of any statement pair in the static datarace set are non-data
race statements and need not be instrumented at all.
The inventors next describe a static formulation of the

datarace conditions. The inventors then describe the inter
thread control ?oW graph (ICFG) that may be used to repre
sent sequential and parallel interprocedural control How, and
the ICFG-based points-to analysis that can be used to com
pute the static formulation of the datarace conditions. Finally,
the inventors describe an extension of escape analysis that can
be used to improve the precision of static datarace analysis.

5.1 Datarace Conditions
For tWo statements x and y, the datarace conditions de?ned

in conditions set forth above can be formulated conserva
tively as folloWs for static analysis (For convenience, the
inventors ignore the fourth of the datarace conditions in, and
conservatively assume that it alWays holds.):

IsMayRace(x, y) (I AccessesMayCon?ict(x, y) A

(“I MustSaIneThread(x, y))/\ (_l MustCommon
syndx, y)) (10)

AccessesMayCon?ict (x, y)?rue if executions of x andy may
access the same memory location, so an exemplary embodi
ment may use may points-to information for its computation.
For example in List 1, an exemplary embodiment uses may
points-to information for object references Tl l:a and T21 :d
to statically determine Whether they may access the same
memory location during some execution.
MustSameThread (x, y)?rue if x and y are alWays

executed by the same thread, so the exemplary embodiment
uses must points-to information on thread objects for its com
putation. In List 1 , an exemplary embodiment of the invention
uses must points-to information on the thread objects that can
run T1 1 or T21 to statically determine Whether the tWo state
ments may be executed by different threads.
MustCommonSync (x, y)?rue if x and y are alWays syn

chronized by at least one common lock, so the system uses
must points-to information on synchronization objects for its
computation. In List 1, an exemplary embodiment of the
invention uses must points-to information on the synchroni
zation objects pointed to by Tl0:this and T20:q to statically
determine Whether the tWo statements may be executed under
different synchronization objects.

US 8,464,223 B2
15

It is Worth noting that may-alias approximations of Must
SameThread and MustCommonSync cannot be correctly
used in conservative datarace analysis, because the datarace
conditions refer to the complements of these sets.

5.2 lnterthread Control FloW Graph (lCFGg)
The ICFG is a detailed interprocedural representation of a

multithreaded program in Which nodes represent instructions
(i.e., statements) and edges represent sequential and parallel
control How. Each method and each synchronized block has
distinguished entry and exit nodes in the ICFG.
An ICFG contains four types of control How edges: intra

procedural (The inventors assume that the intraprocedural
edges capture all intraprocedural control How, including con
trol ?oW arising from exceptions), call, return, and start. The
?rst three types are present in a standard interprocedural
control How graph. Start edges are unique to the ICFG, and
represent invocations of the start() method of a Thread object,
Which starts the thread and invokes its run() method. All other
invocations of a run() method execute as part of the calling
thread. (Join edges are not included in the ICFG because they
are not needed for the conservative static datarace analysis.)

Start edges are referred to as interthread edges, While all
other edges in the ICFG are called intrathread edges. The
entry node that is a target of a start edge is called a thread-root
node. An ICFG path Without any interthread edges is an
intrathread path, and an ICFG path With one or more inter
thread edges is an interthread path.

The inventors use the interthread call graph (ICG) as the
interprocedural abstraction of the ICFG, designed for practi
cal and scalable analysis of large programs. An ICG node is
created for each method and each synchronized block in the
ICFG. The inclusion of separate ICG nodes for synchronized
blocks is a notable difference betWeen the ICG and standard
call graphs.

The inventors call a node in the ICG a synchronized node if
it represents either a synchronized method or a synchronized
block.

5.3 Points-To Analysis
The points-to analysis that the inventors employ for a static

datarace analysis is a ?oW-insensitive, Whole program analy
sis. In an exemplary analysis in accordance With the inven
tion, a distinct abstract object is created for each allocation
site in the program. Each abstract object represents all the
concrete objects created at the same site during execution.
The points-to analysis computes for each access in the pro
gram the set of abstract objects it points to along some path.
A precise must points-to analysis is expensive in general.

The inventors have devised a simple and conservative must
points-to analysis based on the notion of single-instance
statements, each of Which executes at most once during an
execution. An object created at a single-instance statement is
called a single-instance object. If an access points to only one
abstract object and that abstract object is a single-instance
object, then the relation betWeen the access and the object is
a must points-to relation. (The inventors use a special “null”
object to represent a null reference.)

Let MustPT (x) and MayPT (x) be the must and may
points-to sets of access x. We compute AccessesMayCon?ict
(x,y) of Equation (1) as folloWs0 using points-to information:

AccessesMayCon?ict(x,y): (11)

(MayPT (x)?MayPT (y)#®)/\ (?eld (x):?eld (y)), Where
?eld (x) refers to the accessed ?eld of the object (or class).

For access u, let ThStart(u) be the set of thread-root nodes
from Who se entry nodes there exists an intrathread ICFG path
to u. We compute MustSameThread(x, y) as folloWs using
points-to information:

20

25

30

35

40

45

50

55

60

65

16
MustThread(u):?veThStart(u)MustPT(v.this) (l2)

MustSameThread(x, y):(MustThread(x)?MustThread
60:9), (13)

Where v.this denotes the this pointer of thread-root node v. For
node nelCG, let Synch (n):true if n is a synchronized method
or block, and let u” be the access of the synchronization object
if Synch (n)?rue. Also, let Pred(n) be the set of intrathread}
predecessor nodes of n on ICG. We compute Must Sync (v) by
the folloWing set of data?oW equations:

Gen(n):MustPT(z4n) if Synch(n) (l4)

Gen (n):@ otherwise

MustSync(v):SO"o, Vven. (l 6)

NoW, We compute MustCommonSync(x, y) as folloWs:

MustCommonSync(x,y):(MustSync(x) f)
MustSync(y)==@). (17)

Finally, We compute lsMayRace in Equation 10 by com
bining Equations ll, 13, and 17.

5.4 Extending Escape Analysis
Past Work on escape analysis normally identi?es objects as

thread-local When they are never reachable from threads other
than the thread that created them. A thread-local object can
never participate in a datarace.

Java code frequently uses objects associated With a thread
T Which does not folloW the above pattern but Which are not
susceptible to data races. In particular, We say an object O is
“thread-speci?c” to T if all accesses to O are performed While
T is being constructed (and before T starts running), or by T
itself.

References to such objects are typically stored in ?elds of
the T object and hence escape to the thread creating T, and are
not thread-local as described above. Because this usage is
common, We extended the inventive static analysis to identify
some thread-speci?c objects.
The inventors have implemented a simple, but effective,

approximation algorithm to compute the thread-speci?c
objects. First, We de?ne the thread-speci?c methods recur
sively as follows:

(1) initiate methods of thread objects, and run methods that
are not invoked explicitly (i.e., invoked only as a result of the
thread being started) and (2) a non-static method all of Whose
direct callers themselves are thread-speci?c non-static meth
ods passing their this references as the this reference of the
call ee.

Second, We de?ne the thread-speci?c ?elds as the ?elds of
a thread that are only accessed via get?eld/put?eld operations
on the this reference of a thread-speci?c method.

Finally, We de?ne an unsafe thread as a thread Whose
execution may start before its initialization completes. A
thread object is conservatively identi?ed as unsafe if its con
structor can transitively call Thread.start or if the this refer
ence escapes from the constructor. (A thread is safe if it is not

unsafe.)
Based on these de?nitions, We say an object is thread

speci?c to T if T is safe and the object is only reachable from
thread-speci?c methods of T or through thread-speci?c ?elds
of T. Accesses to a thread-speci?c object of a safe thread
cannot be involved in a datarace. Moreover, accesses to
thread-speci?c ?elds cannot be involved in a datarace.

6. Compile-Time Optimizations
The static datarace analysis phase of an exemplary embodi

ment of the invention improves the performance of a dynamic

US 8,464,223 B2
17

detector by eliminating from consideration statements that
can never participate in a datarace. Another approach to com
pile-time optimization stems from the weaker-than relation
de?ned above. If the execution of a statement always gener
ates an access that will be discarded because a previous access
is weaker, the statement need not be instrumented. In the
following description, the inventors describe how an exem
plary embodiment of the inventions uses a static form of the
weaker-than relation and a loop peeling transformation to
avoid inserting instrumentation that the inventors can prove
will only produce redundant access events.

6.1 Static Weaker-Than Relation
Let Events (S) denote the set of access events generated by

instrumentation statement S in a given execution. The inven
tors de?ne the static weaker-than relation for statements as
follows:

S1- is weaker than S], written as SE S], iff in all 6 Events (S)
in any given execution, there exists el- in Events (Si) in the
same execution such that (1) e; e], where e; ej as de?ned
above, and (2) there exists no thread start() or join() between
el. and ej.
A sophisticated interprocedural analysis wouldbe required

to determine Si; S]. for arbitrary SI. and Sj. However, the
inventors developed a conservative and effective analysis for
computing Si; Sj when S1- and Sj belong to the same method.

The inventors model the instrumentation which generates
access events using a pseudo-instruction trace (0, f, L, a),
where o is the object being accessed, f is the ?eld of the object
being accessed, L is the lock set held during the access, and a
is the access type (READ or WRITE). All operands are
treated as uses of their values. For accesses to static ?elds, 0

represents the class in which the ?eld is declared, and for
accesses to array elements, f represents the array index.
Thread information is not explicitly modeled in the trace
instruction since we do not attempt to optimize across thread
boundaries (thread information is available to the instrumen
tation code at runtime). We insert a trace pseudo-instruction
after every instruction which accesses a ?eld of an object, a
static ?eld, or an array element (optionally using information
from static datarace analysis to eliminate consideration of
instructions which cannot be involved in dataraces).

After insertion, the inventors attempt to eliminate trace
pseudo-instructions using the static weaker-than relation.
First, we de?ne Exec (Si,S]-) for statements S1- and Sj of the
same method as follows:

Exec (S1, S1) is true iff (1) S1- is on every intraprocedural path
that contains S], and (2) there exists no method invoca
tion on any intraprocedural path between S- and Sj. The
?rst condition indicates that whenever S]. executes in an
execution instance of the method, Sl- also executes.

Two well-known concepts can be used for computing Exec
(S, S): S- dominates Sj, written dom (S, S), and SI- post
dominates Sj, written newline pdom (S, S).

In experiments, the inventors used dom. (It is very dif?cult
to prove that one statement post-dominates another in Java,
because almost any statement can throw an exception, and
therefore we suspect that pdom would not be effective.) The
second condition guarantees that no path between Si and Sj
will contain start() or join().

With Exec, the static weaker-than relation can be decom
posed into the following easily veri?able conditions (notation
to be explained):

To show that a statement Sl?race (oi, fi, Li, a1.) always
generates an event el- weaker than any ej produced by SJ-Itrace

20

25

30

35

40

45

50

55

60

65

18
(0], f], L], a), we must show that eit; ej.t, era; ej.a, el-LQ
e]..L, el..m:ej.m. Intraprocedurally, el..t will always equal ej.t,
and we can directly check a; aj which implies era; ej.a. An
exemplary embodiment of the invention checks that ei.L
Q ej.L using the nesting of Java’s synchronization blocks.
Speci?cally, the embodiment veri?es the condition outer (S,
S), which is true if and only if Sj is at the same nesting level
in synchronization blocks as S1. or at a deeper level within Si’ s
block. Finally, to show that ei.m:ej.m, the embodiment
checks that (valnum (Oi):ValI11lII1 (oj)/\ (fl-:fj), where valnum
(oi) is the value number of the object reference. If all of these
conditions hold, then S; S], and therefore we can safely
eliminate Sj.

6.2 Implementation
In the following description, the inventors brie?y describe

the implementation infrastructure that we use for optimized
instrumentation. The instrumentation and the analysis of the
weaker-than relation is performed during the compilation of
each method by a Jalapeno optimizing compiler. The inven
tors created a new instruction in the high-level intermediate
representation (HIR) of the compiler corresponding to the
inventive trace pseudo-instruction, and these instructions are
inserted as previously described. After the insertion of the
trace statements, conversion to static single assignment
(SSA) form is performed, during which the dominance rela
tion is computed. Elimination of redundant trace statements is
then performed based on the static weaker-than relation, uti
lizing an existing value numbering phase. The remaining
trace statements are marked as having an unknown side effect
to ensure they are not eliminated as dead code by Jalapeno’s
other optimization phases unless they are truly unreachable.

After the completion of some of Jalapeno’s HIR optimiza
tion phases, we expand each trace statement into a call to a
method of the inventive dynamic detector, and we force Jala
per~1o to inline this call, Jalapeno then optimizes the HIR
again. Finally, the HIR representation is converted to lower
level representations (and eventually to machine code) by the
compiler, without further instrumentation-speci?c optimiza
tion.

6.3 Loop Peeling
Loops can be a key source of redundant access events. For

example, in the loop in List 2, consisting of statements S10
through S13, statement S13 will produce redundant access
events after the ?rst iteration of the loop, since the informa
tion is the same as that recorded in the ?rst iteration. However,
two issues make these redundant events dif?cult to statically
eliminate. The inventive redundancy elimination based on the
static weaker-than relation cannot be applied to remove the
instrumentation, since the information produced in the ?rst
iteration of the loop is not redundant. Furthermore, we cannot
perform standard loop-invariant code motion to hoist the
instrumentation outside the loop, because statement S11 is a
potentially excepting instruction (PEI); it may throw an
exception and bypass the remaining instructions of the loop.
Thus statement S13 is not guaranteed to execute even if the
loop condition is initially true. PEIs occur frequently in Java
because of safety checks such as null-pointer and array
bounds checks.

List 2

// Before optimization.
S00: A a;

S10: for(...){
S11: PEI

US 8,464,223 B2
19

-continued

List 2

S12: a.f= ...;
S13: trace (a, f, L,W)
// After optimization.
S20: if(...) {
S21: PEI
S22: a.f= ...;

S23: trace (a, f, L, W);
S24: for {
S25: PEI
S26: a.f= ...;

An exemplary embodiment of the invention reduces the
generation of redundant access events in loops using a loop
peeling program transformation. This transformation creates
a new copy of the body of the loop for the ?rst iteration and
utilizes the original body for the remaining iterations. State
ments S20 through S26 show the result of loop peeling and
the inventive existing redundancy elimination applied to the
loop of S00. The if statement at S20 is needed to guard against
the possibility of the loop not executing at all. The for state
ment at S24 is modi?ed to ensure that the loop will not
execute the ?rst iteration, which is now executed by state
ments S21 through S23. After the loop peeling, the trace
statement in the loop body can be eliminated since statement
S23 is statically weaker. The resulting code traces the write
access to a.f at most once, achieving the goal of eliminating
the instrumentation from the loop.

All of the preceding discussion ignores the effects of the
“ownership model”. Below, the inventors brie?y consider
how the ownership model interacts with other machinery.

The inventors modi?ed the inventive runtime race detector
of an exemplary embodiment of the invention to record for
each memory location an owner thread t0, the ?rst thread to
access the memory location. Every time the location is
accessed the embodiment checks to see if the current thread is
to, and ignore the access in that case. The ?rst time the current
thread is not t0, we say the memory location becomes shared;
we set to t1 and send this access event and all subsequent
events on to the rest of the detector, as described above.
Essentially, the access event stream is ?ltered to only include
accesses to memory locations in the shared state.

The run-time and compile-time optimization phases rely
on the concept of one access event el being “weaker-than”
another event e2, in which case e2 can be suppressed. Unfor
tunately, in the presence of the ownership model, the de?ni
tions of lsRace and weaker-than in section 3.1 are not sul?
cient to guarantee that el weaker-than e2 implies e2 can be
suppressed. The dif?culty arises when an event el is sent to
the detector while e1.m is in the owned state, and then e1.m
changes to the shared state before e2 occurs. In this situation
e2 should not be suppressed.

For run-time optimization (i.e., the cache), an exemplary
embodiment can avoid this problem by forcibly evicting a
location In from each thread’s cache when it becomes shared.

It is harder to avoid this problem in compile-time optimi
zation. Given two statements S 1 and S2, it is generally dif?cult
to prove that the accessed location’s state cannot change from
“owned” to “shared” between S 1 and S2. Introducing a
dynamic check of the ownership state at S l or S2 would
eliminate the bene?t of the optimization. The only truly sound
compile-time approach would be to use the post-dominance
relationship; i.e., when S2 post-dominates S 1 and the access at
S2 is guaranteed to be weaker than S1, remove the instrumen
tation at S1. This is safe because if the object is owned at S2,
and therefore the access is suppressed, then the object must

20

25

30

35

40

45

50

55

60

65

20
also have been owned at S1 and that access can also be sup
pressed. Unfortunately, as previously noted, post-dominance
between S 1 and S2 almost never holds in Java because almost
any byte code instruction can throw an exception. (This might
be less of a problem in other languages such as C or C++.)

An exemplary embodiment of the invention simply ignores
the interaction between weaker-than and the ownership
model, for both static and dynamic optimizations. This means
that in theory this embodiment may inadvertently suppress
accesses and thus fail to report races. However, the inventors
did not observe any such problems in practice; in experiments
the inventors veri?ed that the same races were reported
whether the optimizations using the “unsafe” weaker-than
relation were enabled or disabled.

TABLE 1

Lines Num.
of Dynamic

Example Code Threads Description

mtrt 3751 3 MultiThreaded Ray Tracer from
SPECIV M98

tsp 706 3 Traveling Salesman Problem solver
from ETH [14]

sor2 17742 3 Modi?ed Successive Over-Relaxation
benchmark from ETH [14]

elevator 523 5 A real-time desecrate event simulator
hedc 29948 8 A Web-crawler application kernel

developed at ETH [14], using
a concurrent programming library by
Doug Lea

7. Experimental Results

Here the inventors present evidence showing: that the
inventive de?nition of dataraces captures truly unsynchro
nized accesses with fewer “false alarms” than alternative
de?nitions, and that those dataraces can be detected with
modest overhead, especially compared to other datarace
detection implementations.

7.1 Program Examples
We derived sor2 from the original sorbenchmark by manu

ally hoisting loop invariant array subscript expressions out of
inner loops. This optimization could be performed by a com
piler using only intraprocedural analysis, but it is not imple
mented in Jalapeno, and it has signi?cant impact on the effec
tiveness of the inventive optimizations. The inventors
modi?ed elevator slightly to force it to terminate when the
simulation ?nishes (normally it just hangs).
The elevator and hedc benchmarks are interactive and not

CPU-bound, and, therefore, we do not report performance
results for these benchmarks.

7.2 Performance

Table 2 below shows the runtime performance of an exem
plary embodiment of the invention and some selected variants
to demonstrate the impact of each of the inventive optimiza
tions. “Base” records the performance of each example with
out any instrumentation (and without loop peeling). “Full” is
the inventive complete algorithm with all optimizations
turned on. “NoStatic” is “Full” but with the static datarace
detection turned off, so all access statements are potential
dataraces. “NoDominators” is “Full” with the static weaker
than check disabled; it also disables loop peeling (which is
useless without that check). “NoPeeling” turns off loop peel
ing only. “NoCache” disables the cache.

US 8,464,223 B2

TABLE 2

Exam- No- No- No- No
ple Base Full Static DoMinators Peeling Cache

mtrt 9.0s 10.9s Out of 109$ 109$ 11.4s

(20%) Memory (21%) (21%) (26%)
tsp 10.0 s 14.2 s 27.5 s 15.7 s 15.7 s 381.7 s

(42%) (175%) (57%) (57%) (3722%)
sor2 2.4 s 2.7 s 2.7 s 9.8 s 7.7 s 3.2 s

(13%) (13%) (316%) (226%) (37%)

In mtrt Without static datarace detection, We instrument so
many accesses that Jalapeno runs out of memory before the
program terminates.

For each con?guration, the inventors ran the program ?ve
times in one invocation of the Jalapeno VM and reported the
best-performing run. The inventors enabled full optimization
in Jalapeno but disabled adaptive compilation. Jalapeno Was
con?gured to use a mark-and-sWeep garbage collector, but We
set the heap size to 1 GB of RAM so no GC actually occurred.
The test machine had a single 450 MHZ POWER3 CPU
running AIX.

These overheads are loWer than for any previously reported
dynamic datarace detection algorithm. The bene?ts of each
optimization vary across benchmarks, but each optimization
is vital for some benchmark. Programs such as tsp, With loops
involving many method calls and even recursive method
calls, bene?t greatly from the cache. Programs such as sor2,
Which are dominated by loops over arrays, bene?t most from
dominator analysis and loop peeling.

The inventors did not measure space overhead directly;
I alaper~1o mixes program data With virtual machine data, mak
ing space measurements dif?cult. The instrumentation con
sumed the mo st space for tsp, requiring approximately 16K of
memory per thread (for 3 threads) and 7967 trie nodes holding
history for 6562 memory locations. We estimate the total
amount of memory used by instrumentation for tsp to be
about 500K.

7.3 Accuracy
Table 3 beloW records the number of objects for Which We

report dataraces using the inventive algorithm and some
selected variants. (We normally output each object ?eld on
Which a datarace occurs; for comparison purposes, here We
count only the number of distinct objects mentioned.) “Full”
is the inventive complete, most precise algorithm.

TABLE 3

Example Full FieldsMerged No OWnership

mtrt 2 2 12
tsp 5 20 241
sor2 4 40 1009
elevator 0 0 16
hedc 5 10 29

“FieldsMerged” is another exemplary embodiment of the
inventive algorithm Where We do not distinguish different
?elds of the same object, so one thread accessing o.fl might
appear to datarace With another thread accessing o.f2 if they
do not hold a common lock. (Static ?elds of the same class are
still distinguished.) “NoOWnership” is another variant of
“Full” Which does not Wait for a location to be touched by
multiple threads before starting to monitor its accesses.
We report tWo dataraces in mtrt. Accesses to the ?eld

RayTrace.threadCount are not synchronized, causing its
value to potentially become invalid; fortunately its value is
not actually used. There are also unsynchronized accesses to

20

25

30

35

40

45

50

55

60

65

22
ValidityCheckOutputStream.startOfLine in the SPEC test
harness, Which could result in incorrect output.

tsp has a serious datarace on TspSolver.MinTourLen, neW
line Which can lead to incorrect output. We also report data
races on ?elds of TourElement, Which cannot in fact happen
due to higher-level synchronization.
The dataraces We report in sor2 are not truly unsynchro

nized accesses; the program uses barrier synchronization,
Which is not captured by an exemplary embodiment of the
inventive algorithm.
The dataraces We report in hedc are all true unsynchronized

accesses and have tWo causes. The size of a thread pool is read
and Written Without appropriate locking, Which could cause
the pool size to become invalid. More seriously, there is an
unsynchronized assignment of null to ?eld Task.thread,
Which could cause the program to die With a NullPointerEx
ception if the Task completes just as another thread calls
Task.cancel. This Would be nearly impossible to ?nd during
normal testing and debugging. In fact, previous Work mistak
enly classi?ed this datarace as benign (possibly because they
had to sort through a number of spurious datarace reports).

If We fail to distinguish ?elds, in hedc We produce spurious
race reports in the LinkedQueue class Where some ?elds are
immutable and accessed Without synchronization and others
are not. It also produces spurious Warnings for
MetaSearchRequest objects Where some ?elds are thread
local and others are shared and require synchronization. In tsp
We report additional spurious dataraces on ?elds of TourEle
ment.

In all benchmarks, NoOWnership reports many spurious
dataraces When data is initialized in one thread and passed
into a child thread for processing. Previous Work such as
Eraser and object datarace detection uses a looser de?nition
of dataraces, Where a datarace is deemed to have occurred on
a location In if there is no single common lock held during all
accesses to m. This approach produces spurious datarace
reports in mtrt, Where variables holding I/O statistics are
accessed by tWo child threads holding a common lock syn
cObj ect, but also by a parent thread after it has called join on
the tWo child threads but Without any other synchronization.
The inventive scheme for representing join introduces
pseudolocks S1 and S2; the three threads access the variables
With lock sets {S1, syncobject,} {S2, syncobject} and {S1,
S2}.
We report no datarace because these lock sets are mutually

intersecting, although they have no single common lock. In
summary, for these benchmarks, most of the dataraces We
report are true unsynchronized accesses, and most of those
correspond to real bugs. Using a less strict de?nition induces
signi?cantly more spurious reports.

It is noted that While the JAVATM programming language is
mentioned speci?cally herein, the present invention is not
strictly limited to implementation With the JAVATM program.
Indeed, the present invention can be tailored, as Would be
knoWn by one of ordinary skill in the art in the context of the
present application, to be operable With other concurrent pro
grams.

FIG. 2B details a ?owchart of a control routine in accor
dance With an exemplary embodiment of the invention. The
control routine 250 starts at step 252 and continues to step
254. In step 254, the control routine determines Whether a ?rst
and second memory access is to the same memory location
and continues to step 256. In step 256, the control routine
determines Whether the ?rst and second memory accesses are
executed by different threads in a program and continues to
step 258. In step 258, the control routine determines Whether
the ?rst and second memory access are guarded by a common

US 8,464,223 B2
23

synchronization object and continues to step 260. In step 260,
the control routine determines Whether there is an execution
ordering enforced betWeen the ?rst and second memory
accesses and continues to step 262 Where the control routine
stops. Based, upon these determinations an dataraces may be
detected.
As shoWn in FIG. 3, in addition to the hardWare and process

environment described above, a different aspect of the inven
tion includes a computer-implemented method for datarace
detection, as described above. As an example, this method
may be implemented in the particular hardWare environment
discussed above With reference to FIG. 1.

Such a method may be implemented, for example, by oper
ating the CPU 116 (FIG. 1), to execute a sequence of
machine-readable instructions. These instructions may reside
in various types of signal-bearing media.

Thus, this aspect of the present invention is directed to a
programmed product, including signal-bearing media tangi
bly embodying a program of machine-readable instructions
executable by a digital data processor incorporating the CPU
116 and hardWare above, to perform a method of detecting
dataraces.

This signal-bearing media may include, for example, RAM
114 contained externally or Within the CPU 116, as repre
sented by fast-access storage for example. Alternatively, the
instructions may be contained in another signal-bearing
media, such as data storage 130 (FIG. 1) or a magnetic data
storage diskette 300 (FIG. 3), directly or indirectly accessible
by the CPU 116.

Whether contained in the diskette 300, the computer 100,
or elseWhere, the instructions may be stored on a variety of
machine-readable data storage media, such as DASD storage
(e. g., a conventional “hard drive” or a RAID array), magnetic
tape, electronic read-only memory (e.g., ROM, EPROM, or
EEPROM), an optical tape, etc.), paper “punch” cards, or
other suitable signal-bearing media including transmission
media such as digital and analog and communication links
and Wireless. In an exemplary embodiment of the invention,
the machine-readable instructions may include softWare
object code, compiled from a language such as “C”, etc.

Thus, While the invention has been described in terms of an
exemplary embodiment, those skilled in the art Will recogniZe
that the invention can be practiced With modi?cations.

What is claimed is:
1. A method of detecting a datarace betWeen memory

accesses Within a program, said method comprising:
determining, as executed by a processor on a computer,

Whether a datarace exists betWeen a ?rst access event in
a ?rst statement and a second access event in a second

statement;
if it is determined that a datarace exists betWeen the ?rst

and second statements, adding said ?rst and second
statements to a list;

determining Whether a third statement is more Weakly pro
tected than at least one of the ?rst statement and the
second statement, said determining Whether said third
statement is more Weakly protected comprises determin
ing Whether the third statement has a lockset Which is a
subset of locksets of the corresponding ?rst and second
statements; and

if the third statement is determined to be more Weakly
protected than at least one of the ?rst statement and the
second statement, replacing the corresponding at least
one of said ?rst and second statements in the list With the
third statement.

20

25

30

35

40

45

50

55

60

65

24
2. The method of claim 1, Wherein information is thereby

stored in said list only about the Weaker of said ?rst, second,
and third statements.

3. The method of claim 2, Wherein said determining
Whether said third statement is more Weakly protected com
prises adding a pseudothread to possible values of past access
events being stored.

4. The method of claim 3, Wherein said pseudothread com
prises at least tWo distinct threads.

5. The method of claim 3, further comprising setting said
past stored event to said pseudothread When said second
memory access accesses the same memory location as the

?rst stored event, includes the same lockset as the ?rst stored
event and the ?rst memory access and the second memory
access are from tWo distinct threads.

6. The method of claim 1, further comprising generating a
history of accesses using an edge-labeled trie based upon past
memory accesses including said ?rst memory access.

7. The method of claim 6, Wherein the edge-labeled trie
includes edges labeled With identi?ers of lock objects and
nodes holding thread and access type information.

8. The method of claim 7, Wherein said determining com
prises traversing the edge-labeled trie.

9. The method of claim 8, further comprising conducting a
second traversal of the edge-labeled trie to determine Whether
the second memory access shares at least one lock With the
?rst memory access.

10. The method of claim 9, Wherein if the second memory
access does not share at least one lock With the ?rst memory
access, said method further comprises determining Whether
the second memory access is from a thread source different
from the ?rst memory access and if one of the ?rst memory
access and the second memory access comprises a Write
operation.

1 1. The method of claim 8, further comprising updating the
edge-labeled trie With information based on said second
memory access.

12. The method of claim 11, further comprising traversing
the edge-labeled trie a third time to remove all accesses Which
are stronger than the second memory access.

13. The method of claim 1, Wherein said determining uses
a different cache for each thread.

14. The method of claim 1, Wherein said determining com
prises monitoring a set of locks currently held by each thread.

15. The method of claim 14, Wherein said determining
further comprises evicting all cache entries Whose lockset
contains a lock being released.

16. The method of claim 1, Wherein said datarace is de?ned
as:

the tWo accesses are to a same memory location;

the tWo accesses are executed by different threads;
the tWo accesses are not guarded by a common synchroni

Zation object; and
there is no execution ordering enforced betWeen the tWo

accesses.

17. An apparatus comprising at least one processor execut
ing a computer program, said apparatus additionally execut
ing a method of detecting a datarace betWeen memory
accesses Within said program, said method comprising:

determining Whether a datarace exists betWeen a ?rst
access event in a ?rst statement and a second access

event in a second statement;
if it is determined that a datarace exists betWeen the ?rst

statement and the second statement, generating a list
Which includes said ?rst and second statements;

determining Whether a third statement is more Weakly pro
tected than at least one of the ?rst statement and the

US 8,464,223 B2
25

second statement, said determining Whether said third
statement is more Weakly protected comprises determin
ing Whether the third statement has a lockset Which is a
subset of the lockset of one of the corresponding ?rst
statement and the second statement; and 5

if the third statement is more Weakly protected than a
corresponding one of the ?rst statement and the second
statement, replacing the corresponding at least one of the
?rst and second statements in the list With the third
statement. 10

