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METHOD AND APPARATUS FOR EFFICIENT 
AND PRECISE DATARACE DETECTION FOR 
MULTITHREADED OBJECT-ORIENTED 

PROGRAMS 

The present application is a Divisional Application of US. 
patent application Ser. No. 10/178,561, now US. Pat. No. 
7,516,446, issued on Apr. 7, 2009, and having ?ling date of 
Jun. 25, 2002. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention generally relates to datarace detec 

tion for multithreaded object-oriented programs. More par 
ticularly, this invention provides a unique combination of 
static datarace analysis, optimized instrumentation, runtime 
access caching and runtime detection phases. 

2. Description of the Related Art 
A datarace occurs in a multithreaded program When tWo 

threads access the same memory location With no ordering 
constraints enforced betWeen the accesses, such that at least 
one of the accesses is a Write. In most cases, a datarace is a 

programming error. Furthermore, programs containing data 
races are notoriously dif?cult to debug because they can 
exhibit different functional behaviors even When executed 
repeatedly With the same set of inputs and the same execution 
order of synchronization operations. Because of the detri 
mental effects of dataraces on the reliability and comprehen 
sibility of multithreaded softWare, it is Widely recognized that 
tools for automatic detection of dataraces can be extremely 
valuable. As a result, there has been a substantial amount of 
past Work in building tools for analysis and detection of 
dataraces. 

Most previous dynamic datarace detection techniques have 
been relatively precise, in that mo st races reported correspond 
to truly unsynchronized accesses to shared memory. HoW 
ever, these detectors incur order-of-magnitude overheads in 
the range of 3 times to 30 times. Recent approaches reduce the 
overhead of datarace detection, but at the cost of decreased 
precision. For example, monitoring dataraces at the object 
level rather than the memory-location level reduced over 
heads for datarace detection to the range of 16% to 129% but 
resulted in many spurious race reports. 

Past research on datarace detection can be classi?ed as 

ahead-of-time, on-the-?y, or post-mortem. These approaches 
offer different trade-offs along ease-of-use, precision, e?i 
ciency, and coverage dimensions. 

Ahead-of-time datarace detection is usually performed in 
static datarace analysis tools Which yield high coverage by 
considering the space of all possible program executions and 
identifying dataraces that might occur in any one of them. 
Flanagan and Freund’s datarace detection tool is a static tool 
for Java (C. Flanagan and S. N. Freund. Type-based race 
detection for java. In Proceedings of the ACM SIGPLAN 
Conference on Programming Language Design and Imple 
mentation (PLDI), pages 219-232, June 2000) based on type 
based equivalence of lock variables. Guava is a dialect of Java 
that statically disalloWs dataraces by preventing concurrent 
accesses to shared data (D. F. Bacon, R. E. Strom, and A. 
Tarafdar. Guava: A dialect of j ava Without data races. In ACM 
Conference on Object Oriented Programming Systems, Lan 
guages, and Applications, 2000). Only instances of classes 
belonging to the class category called monitor can be shared 
by multiple threads. By serializing all accesses to ?elds or 
methods of the same shared data, Guava can prevent data 
races. Boyapati and Rinard propose a system of type annota 
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2 
tions for Java that ensures a Well-typed program is datarace 
free and alloWs the programmer to Write a generic class and 
subclass it With different protection mechanisms (C. Boyapati 
and M. Rinard. A parameterized type system for race-free 
java programs. In ACM Conference on Obj ect-Oriented Pro 
gramming Systems, Languages, and Application, 2001). 

Warlock is an annotation-based static datarace detection 
tool forANSI C programs (N. Sterling. Warlock: A static data 
race analysis tool. In USENIX Winter Technical Conference, 
pages 97-106, 1993), Which also supports lock-based syn 
chronization. Aiken and Gay’s Work statically detects data 
races in SPMD programs (A. Aiken and D. Gay. Barrier 
interference. In Proceedings of the 25th Symposium on Prin 
ciples of Programming Languages (POPL), pages 342-354, 
January 1998). Since SPMD programs employ barrier-style 
synchronizations, they need not track locks held at each state 
ment. 

The key advantage of dynamic analysis approaches such as 
on-the-?y and post-mortem datarace detection is the preci 
sion of the results (feW or no false positives), but in past Work 
this advantage usually came at a high cost in ef?ciency. A 
dynamic approach also has more limited coverage than a 
static approach because it only reports dataraces observed in 
a single dynamic execution. In some cases, dynamic tools can 
improve coverage by considering alternate orderings of syn 
chronization operations that are consistent With the actual 
events observed in the original program execution (S. Savage, 
M. BurroWs, G. Nelson, P. Sobalvarro, and T. E. Anderson. 
Eraser: A dynamic data race detector for multi-threaded pro 
grams. ACM Transactions on Computer Systems, 15(4): 391 - 
41 1 , 1997). 

Dinning and Schonberg introduced the idea of detecting 
dataraces based on a proper locking discipline. Their system 
employed a detection approach based on both the happened 
before relation and lock sets, Which they called “lock covers.” 
Their subtraction optimization uses a notion similar to the 
Weaker-than relation described beloW, but they only suggest 
using the optimization in the detector itself. 

Eraser’s datarace detection algorithm is based on lock 
based synchronization (S. Savage, M. BurroWs, G. Nelson, P. 
Sobalvarro, and T. E. Anderson. Eraser: A dynamic data race 
detector for multi-threaded programs. ACM Transactions on 
Computer Systems, 15(4): 391-411, 1997). Eraser enforces 
the constraint that each shared memory location is protected 
by a unique lock throughout an execution. Eraser Works inde 
pendently of the input source language by instrumenting 
binary code, but its runtime overhead is in the range of 10 
times to 30 times. 

Praun and Gross’ s object race detection (C. v. Praun and T. 
Gross. Object race detection. In ACM conference on Object 
Oriented Programming Systems, Languages, and Applica 
tion, 2001) greatly improves on Eraser’s performance by 
applying escape analysis to ?lter out non-datarace statements 
and by detecting dataraces at the object level instead of at the 
level of each memory location (their overhead ranges from 
16% to 129% on the same benchmarks the inventors used, 
With less than 25% space overhead). HoWever, their coarser 
granularity of datarace detection (Which includes treating a 
method call on an object as a Write) leads to the reporting of 
many dataraces Which are not true dataraces i.e., the reported 
races do not indicate unordered concurrent accesses to shared 
state. 
TRaDe is similar to object race detection in that they both 

apply escape analysis (M. Christianens and K. De Bosschere. 
TraDE, a topological approach to on-the-?y race detection in 
java programs. Proceedings of the Java Virtual Machine 
Research and Technology Symposium (JVM’01), April 
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2001), although TRaDe does the analysis dynamically. 
TraDe’s datarace detection is based on the happens-before 
relation. TRaDe adds a runtime overhead ranging from 4 
times to 15 times (M. Christianens and K. De Bosschere. 
TraDE, a topological approach to on-the-?y race detection in 
java programs. Proceedings of the Java Virtual Machine 
Research and Technology Symposium (JVM’01), April 
2001) compared to an interpreter, With approximately 3 times 
space overhead. 

Assure] (Kuck & Associates, Inc., 1906 Fox Drive, cham 
paign, IL 61820-7345, USA. AsureJ User’s Manual, 2.0 edi 
tion, March 1999) and JProbe (KL Group, 260 King Street 
East, Toronto, Ontario, Canada. Getting Started With J Probe.) 
are commercial products that can dynamically detect data 
races in Java programs. Assure] has been observed to have 
overhead ranging from 3 times to 30 times, While JProbe’s 
memory requirements make its use practically impossible for 
any reasonably sized program. 
Min and Choi’s hardWare-based scheme uses the cache 

coherence protocol, and Richards and Larus’ Work uses the 
Distributed Shared-Memory (DSM) computer’s memory 
coherence protocol, respectively, in collecting information 
for on-the-?y datarace detection. 

Most dynamic datarace detection techniques for SPMD 
programs Work either as post-mortem tools or as on-the-?y 
tools, by collecting information from actual executions With 
softWare instrumentation. A post-mortem approach offers the 
possibility of improving on-line ef?ciency (by moving the 
bulk of the Work to the post-mortem phase) at the cost of 
complicating ease-of-use. HoWever, the size of the trace 
structure can groW prohibitively large thus making the post 
mortem approach infeasible for long-running programs. 

Another dimension that can be used to classify past Work 
on datarace detection is the underlying concurrency model. 
Past Work on datarace detection Was historically targeted to 
multithreaded programs. HoWever, those results are not appli 
cable to the object-based concurrency models present in mul 
tithreaded object-oriented programming languages such as 
Java. 

Netzer and Miller categorize dynamic dataraces into 
actual, apparent, and feasible dataraces (R. H. Netzer and B. 
P. Miller. What are race conditions? Some issues and formal 
izations. ACM Letters on Programming Languages and Sys 
tems, 1(1): 74-88, march 1992.). Choi and Min describe hoW 
to identify and reproduce the race frontier, Which is the set of 
dataraces not affected by any other dataraces. By repeatedly 
reproducing and correcting the dataraces in the race frontier, 
one can identify all the dataraces that occur in executions. 

Thus, past techniques for on-the-?y datarace detection 
either sacri?ced precision for performance, leading to many 
false positive datarace reports, or maintained precision but 
incurred signi?cant overheads in the range of 3 times to 30 
times. 

SUMMARY OF THE INVENTION 

In vieW of the foregoing and other problems, drawbacks, 
and disadvantages of the conventional methods and struc 
tures, an object of the present invention is to provide a method 
and structure in Which dataraces betWeen tWo memory 
accesses Within a program are detected dynamically. 

The inventors provide a novel approach to dynamic data 
race detection for multithreaded obj ect-oriented programs. In 
contrast, the invention results in very feW false positives and 
runtime overhead in the 13% to 42% range, making it both 
e?icient and precise. This performance improvement is the 
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4 
result of a unique combination of complementary static and 
dynamic optimization techniques. 

In a ?rst aspect of the invention, a method of detecting a 
datarace betWeen ?rst and second memory accesses Within a 
program, including: determining Whether the ?rst and second 
memory accesses are to the same memory location; determin 
ing Whether the ?rst and second memory accesses are 
executed by different threads in the program; determining 
Whether the ?rst and second memory accesses are guarded by 
a common synchronization object; and determining Whether 
there is an execution ordering enforced betWeen the ?rst and 
second memory accesses. 

In a second aspect of the invention, a method of detecting 
a datarace betWeen memory accesses Within a program, 

includes: determining Whether a datarace exists betWeen a 
?rst access event in a ?rst statement and a second access event 

in a second statement; and determining Whether a third state 
ment is more Weakly protected than one of the ?rst statement 
and the second statement. 

In a third aspect of the invention, a method for detecting a 
datarace betWeen tWo memory accesses Within a program, 
includes: inserting a pseudo-instruction trace after every 
instruction Which accesses one of a ?eld of an object, a static 

?eld and an array element; and eliminating said pseudo 
instruction trace of a second of the tWo memory accesses 
based upon a determination using a static Weaker-than rela 
tion. 

In a fourth aspect of the invention a program storage 
device, readable by a machine, tangibly embodying instruc 
tions to perform a method for detecting a datarace, said 
method including: determining Whether ?rst and second 
memory accesses are to the same memory location; determin 
ing Whether the ?rst and second memory accesses are 
executed by different threads in the program; determining 
Whether the ?rst and second memory accesses are guarded by 
a common synchronization object; and determining Whether 
there is an execution ordering enforced betWeen the ?rst and 
second memory accesses. 

In a ?fth aspect of the invention a program storage device, 
readable by a machine, tangibly embodying instructions to 
perform method steps for detecting a datarace betWeen 
memory accesses Within a program, said method including 
determining Whether a datarace exists betWeen a ?rst access 
event in a ?rst statement and a second access event in a second 

statement; and determining Whether a third statement is more 
Weakly protected than one of the ?rst statement and the sec 
ond statement. 

In a sixth aspect of the invention a program storage device, 
readable by a machine, tangibly embodying instructions to 
perform method steps for detecting a datarace betWeen tWo 
memory accesses Within a program, said method including: 
inserting a pseudo-instruction trace after every instruction 
Which accesses one of a ?eld of an object, a static ?eld and an 

array element; identifying a psuedo-instruction trace for an 
instruction that contains information Which is subsumed by 
another instruction; and eliminating the pseudo-instruction 
trace for the instruction. 

In a seventh aspect of the invention, a system for detecting 
a datarace Within a program, said system including: a ?rst 
module for instrumenting the program; and a second module 
for detecting the datarace during a runtime operation of the 
program, Wherein the ?rst module inserts trace statements 
into the program at non-redundant trace points based upon a 
determination that each trace for each instruction does not 
trace an instruction Which contains information Which is sub 
sumed by another instruction. 
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In an eighth aspect of the invention a system for dynami 
cally detecting a datarace Within a program, said system 
including: means for inserting a pseudo-instruction trace after 
every instruction Which accesses one of a ?eld of an object, a 

static ?eld and an array element and means for identifying a 
psuedo-instruction trace for an instruction that contains infor 
mation Which is subsumed by another instruction; and means 
for eliminating the pseudo-instruction trace for the instruc 
tion 

The present invention provides a novel approach to 
dynamic datarace detection for multithreaded obj ect-oriented 
programs Which is both ef?cient and precise. An exemplary 
embodiment of the invention uses a Weaker-than relation to 
identify memory accesses that are probably redundant from 
the vieWpoint of datarace detection. Another source of reduc 
tion in overhead is that an exemplary embodiment of the 
invention does not report all access pairs that participate in 
dataraces, but instead guarantees that at least one access is 
reported for each distinct memory location involved in a 
datarace. The invention results in runtime overhead ranging 
from 13% to 42%, Which is Well beloW the runtime overhead 
of previous approaches With comparable precision. This per 
formance is obtained through a combination of static and 
dynamic optimization techniques Which complement each 
other in reducing the overhead of a datarace detector. Further 
more, almost all the dataraces reported by an exemplary 
embodiment of the invention correspond to actual bugs, and 
the precise output of our invention alloWs us to easily ?nd and 
understand the problematic source code lines in our test pro 
grams. 

While Dinning and Schonberg introduced the idea of 
detecting dataraces based on a proper locking discipline, their 
system employed a detection approach based on both the 
happened-before relation and lock sets, Which they called 
“lock covers.” Their subtraction optimiZation uses a notion 
similar to the Weaker-than relation, but they only suggest 
using the optimiZation in the detector itself, While the inven 
tors employ the notion in many stages of our detection frame 
Work. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing and other purposes, aspects and advantages 
Will be better understood from the folloWing detailed descrip 
tion of an exemplary embodiment of the invention With ref 
erence to the draWings, in Which: 

FIG. 1 illustrates an exemplary computer processing sys 
tem 100 on Which an embodiment of the present invention 
may be implemented; 

FIG. 2A shoWs an overall architecture 200 of one exem 

plary embodiment of the invention; 
FIG. 2B illustrates a ?owchart of an exemplary method in 

accordance With the present invention; and 
FIG. 3 illustrates a programmable storage medium 300 for 

storing a program of an exemplary method in accordance With 
the present invention. 

DETAILED DESCRIPTION OF EXEMPLARY 
EMBODIMENTS OF THE INVENTION 

Referring noW to the draWings, and more particularly to 
FIGS. 1-3, there are shoWn exemplary embodiments of the 
methods and structures according to the present invention. 

FIG. 1 illustrates an exemplary computer processing sys 
tem on Which an embodiment of the present invention may be 
implemented. The computer system 100 includes one or more 
application programs and an operating system 108 that oper 
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6 
ates on a computer platform 104. The platform 104 includes 
a hardWare unit 112 that includes one or more central pro 

cessing units (CPUs) 116 (Which are typically referred to as 
CPUs/processors), a random access memory (RAM) 114, and 
an input/output interface 118. 

Various peripheral components may be connected to the 
computer platform 104 including a terminal 126, a data stor 
age device 130, and a printing device 134. The operating 
system 108 coordinates operation of the various components 
or the computer system 100. An example of a computer sys 
tem 100 is the IBM RISC System/6000 (RISC System/6000 
is a trademark of the IBM Corporation). It is readily under 
stood that those skilled in the computer arts Will be familiar 
With many equivalent computer systems 100. 
The operating system 108 of the present invention provides 

multi-threading capabilities Wherein multiple concurrent 
threads of control are dispatched Within a single shared 
address space. Examples include the built-in thread support 
of operating systems supporting the JAVATM Virtual Machine, 
Microsoft’s WindoWs NT® operating system, and the POSIX 
thread package that is available on many operating systems, 
for instance as the pthreads package of IBM’s AIX® operat 
ing system. 

FIG. 2 shoWs an overall architecture 200 of one exemplary 
embodiment of the invention. The ?rst phase is an optional 
static datarace analysis 202, Which produces a static datarace 
204 set i.e., a (conservative) set of statements that are identi 
?ed as potentially participating in dataraces. Any statement 
that does not belong to the static datarace set is guaranteed to 
never cause a datarace during execution. If this phase is omit 
ted, then the static datarace set defaults to all statements that 
contain memory accesses. 
The static datarace analysis employed as part of the inven 

tive datarace detection is based on points-to analysis of ref 
erence variables (J.-D. Choi, M. Gupta, M. Serrano, V. C. 
Sreedhar, and S. Midkiff. Escape analysis for Java. In ACM 
Conference on Object-Oriented Programming systems, Lan 
guages, and Applications, pages 1-19, 1999.). The primary 
advantage of a static analysis approach is its e?iciency due to 
the fact that it incurs no runtime overhead. HoWever, this 
advantage is mitigated in practice by severe limitations in 
precision (due to false positive reports) and ease-of-use (due 
to the requirement of presenting a Whole program to the static 
analysis tool, sometimes augmented With annotations to aid 
the analysis). 
A second phase of an exemplary embodiment of the inven 

tion is instrumentation 206, Whose goal is to insert trace 
statements at program points identi?ed in the static datarace 
set to generate an instrumented executable 208. This insertion 
process can be optimiZed, in Which case no instrumentation is 
inserted at redundant trace points i.e., program points Whose 
access events can be ignored since other (non-redundant) 
trace points Will provide su?icient information for datarace 
detection. The result of the second phase is an instrumented 
executable 208 that is extended With code to generate access 
events during program execution. 
A third phase in the exemplary embodiment is an optional 

runtime optimiZer 210, Which uses a cache (not shoWn) to 
identify and discard redundant access events that do not con 
tain neW information. 

Finally, the runtime detector 212 examines the access 
events and detects dataraces during the program execution. 
The instrumentation and runtime detector phases guarantee 
the precision of the inventive approach, Whereas the optimi 
Zation phases deliver the e?iciency that makes the inventive 
approach practical. The results from the invention shoW that it 
is preferable to combine all the optimization phases (static 
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analysis, optimized instrumentation, and runtime optimizer), 
thereby to obtain maximum performance. The inventive 
approach contrasts With purely ahead-of-time datarace detec 
tion, Which attempts to report dataraces that may occur in 
some possible program execution. Instead, the inventive 
approach detects dataraces on-the-?y, usually the most con 
venient mode for the user. If so desired, the inventive 
approach could be easily modi?ed to perform post-mortem 
datarace detection by creating a log of access events during 
program execution and performing the ?nal datarace detec 
tion phase off-line. 

Even assuming that Eraser’ s approach is someWhat similar 
to the present invention in that its datarace detection algo 
rithm is based on lock-based synchronization, Eraser 
enforces the constraint that each shared memory location is 
protected by a unique lock throughout an execution. By con 
trast, an exemplary embodiment of the present invention does 
not enforce this constraint. Thus, the present invention reports 
feWer spurious data races. The oWnership model of an exem 
plary embodiment of the invention is based on Eraser’s, but 
Eraser has no comparable handling of the join operation. 
Eraser Works independently of the input source language by 
instrumenting binary code, but its runtime overhead is in the 
range of 10 times to 30 times. 
As explained above, Praun and Gross’s object race detec 

tion greatly improves on Eraser’s performance by applying 
escape analysis to ?lter out non-datarace statements and by 
detecting dataraces at the object level instead of at the level of 
each memory location. HoWever, their coarser granularity of 
datarace detection leads to the reporting of many dataraces 
Which are not true dataraces. For example, on the hedc pro 
gram, the inventors report dataraces on 5 objects, all of Which 
are true dataraces, While object race detection reports over 
100 dataraces, almost all of Which are not true dataraces. (The 
race de?nitions for object race detection and Eraser imply 
they alWays report a super set of the races the inventors 
report.). 

TraDe’s datarace detection differs from the present inven 
tion in that it is based on the happens-before relation. TRaDe 
adds a runtime overhead ranging from 4 times to 15 times 
compared to an interpreter, With approximately 3 times the 
space overhead. 

2. Datarace Conditions and Problems 
2.1 Datarace Conditions 
The inventors de?ne a datarace as tWo memory accesses 

Which satisfy the folloWing four conditions: (1) the tWo 
accesses are to the same memory location (i.e., the same ?eld 
in the same object) and at least one of the accesses is a Write 
operation (under certain memory models, tWo read accesses 
may also generate a datarace. This framework can be easily 
applied to such models by dropping the requirement that at 
least one of the accesses must be a Write.); (2) the tWo 
accesses are executed by different threads; (3) the tWo 
accesses are not guarded by a common synchronization 
object (lock); and (4) there is no execution ordering enforced 
betWeen the tWo accesses, for example by thread start or join 
operations. The inventors call these conditions the datarace 
conditions, and ob serve that they are different from datarace 
conditions assumed in past Work on datarace detection for 
fork-join programs. In general, the approach of an exemplary 
embodiment of the invention is applicable to any monitor 
style synchronization primitives supported by the program 
ming language, operating system, or user. 

2.2 Example 
List 1 beloW shoWs an exemplary program With three 

threads main, T1 and T2. Statements are labeled With state 
ment numbers such as T01, the ?rst labeled statement in the 
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8 
main thread. The inventors Will also use the notation stmt: 
expr to denote a ?eld access expression Within a statement. 

For convenience, statements that are not relevant to dataraces 
have been elided from this example. Note that thread main 
performs a Write access on ?eld x.f at statement T01, before 
creating and starting threads T1 and T2. 

List 1. 

// THREAD MAIN 
class MainThread { 

public static void main(String args[ ]) { 

T02: Thread T1 = neW ChildThread(...); 

T03: Thread T2 = neW ChildThread(...); 

T04: T1.start( ); 
T05: T2.start( ); 

} 
} // class MainThread 
// CALLED BY THREAD T1 
T10: synchronized void foo(...) { 
T11: a.f = 50; 

T12: T13: synchronized(p) { 
T14: b. g = b.f 

} 
// CALLED BY THREAD T2 

void ba.r(...) 
T20: synchronized(q) { 
T21: d.f = 10; 

Thread T1 calls method foo, Which contains three accesses 
to object ?elds: a Write access T11:a.f, a Write access T14:b.g, 
and a read access T14:b.f. Thread T2 calls method bar, Which 
contains a Write access, T21 :d.f. 

Let us ?rst assume that object references a, b, d and x all 
point to the same object. All the accesses to the f ?eld in the 
example Will be to the same memory location, thus every pair 
ofthem except for (T14:b.f, T14:b.g) satis?es the ?rst ofthe 
datarace conditions. 

In addition, assume that object references T10:this, T13 :p, 
and T20:q all point to different objects during that execution. 
Then, no tWo statement instances belonging to different 
threads are guarded by the same synchronization object, sat 
isfying the third of the datarace conditions. T1 and T2 are 
different threads Without execution ordering betWeen them 
via start or join, satisfying the second and the fourth of the 
conditions. Accesses T1 1 :a.f and T14:b.fthus exhibit a data 
race With access T21:d.f. Statement T01 does not cause a 

datarace With the others in the example because there exists 
an ordering via start at T04 and T05, not satisfying the fourth 
of the conditions. 
The inventive de?nition of dataraces identi?es both actual 

and feasible dataraces in a given program execution. This is 
different from other datarace de?nitions that model mutual 
exclusion using the happened-before relation, and exclude 
feasible dataraces from their de?nition. For example, let us 
noW assume that T13:p and T20:q point to the same object 
(Which is different from the object pointed to by T10:this). 

Therefore, the tWo synchronizedblocks in methods foo and 
bar are protected by the same lock. If thread T1 acquires the 
lock before T2, an approach based on the happened-before 
relation Will record the fact that statement T13 must execute 
before statement T20. Doing so Will lead it to conclude that 
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there is a happened-before relation from T1 1 to T21 (through 
T13), and that there is no datarace betWeen T11:a.f and T21: 
d.f. In contrast, the inventive approach reports the feasible 
datarace betWeen T11:a.f and T21:d.f since it could have 
occurred if thread T2 acquired the lock before thread T1. In 
this regard, the inventive de?nition of dataraces is similar to 
that of Eraser. 

2.3 Thread Start and Join Operations 
As the third and the fourth datarace conditions indicate, 

there are tWo kinds of inter-thread serialization constructs that 
can be used to avoid dataraces: mutual exclusion (synchro 
nized methods and blocks) and happened-before relations 
(thread start and join operations). 

To precisely model a join operation using mutual exclu 
sion, the inventors introduce a dummy synchronization object 
Sj for each thread Tj. The Sj locks are used solely for the 
purpose of datarace detection, and are not visible to the appli 
cation. A dummy mon-enter (Sj) operation is performed at the 
start of Tj’s execution, and a mon-exit (Sj) operation is per 
formed at its end. When thread Tj ’s parent or any other thread 
performs a join operation on Tj, a dummy mon-enter (Sj) 
operation is performed in that thread after the join completes. 
These dummy synchronizations help the datarace detection 
system observe that the operations folloWing the join cannot 
execute concurrently With operations in Tj. 

It is dif?cult to model start constraints the same Way, 
because generally one cannot knoW in advance hoW many 
threads Will be started by each thread, or Which dummy locks 
should be held prior to starting child threads. Instead, the 
inventors use an oWnership model to approximate the order 
ing constraints that arise from start operations. 

The inventors de?ne the oWner of a location to be the ?rst 
thread that accesses the location. The inventors only start 
recording data accesses and checking for dataraces on a loca 
tion When the location is accessed by some thread other than 
its oWner. Though approximate, this approach is su?icient to 
capture the ordering constraints that arise in the common case 
When one thread initializes some data that is later accessed by 
a child thread Without explicit locking. 

2.4 Datarace Detection 
In an exemplary embodiment of the invention the inventors 

de?ne datarace detection as folloWs. An access event e is a 

5-tuple (m, t, L, a, s) Where: m is the identity of the logical 
memory location being accessed; t is the identity of the thread 
Which performs the access; L is the set of locks held by t at the 
time of the access; a is the access type (one of WRITE, 
READ); and s is the source location of the access instruction. 
Note that source location information is used only in report 
ing and has no bearing on other de?nitions and optimizations. 
Given access events (or, simply, accesses) el- and e], the inven 
tors de?ne neWline IsRace (ei, e) as folloWs: 

IsRace(e,-,ej)<=> (ei.m:ej.m) /\ (ei.t==ej.t) 
/\ (eZ-LOeJ-LIQ) /\ 

(eZ-aIWRITE V eJ-aIWRITE). 
Aprogram execution generates a sequence of access events 

E. Performing datarace detection on this execution is equiva 
lent to computing the value of the condition: 

(1) 

EIei, ejeElIsRace(e,-, ej). 

2.5 Dataraces Reported 
Let FullRace:< ei, ej> be the set of all access pairs that 

form a datarace during an execution. Given an execution With 
N accesses, any algorithm Which attempts to detect all pairs in 
FullRace must have Worst-case time and space complexity 
O(N2) (since all possible pairs could be in FullRace), costs 
that could be prohibitive for a large sequence of accesses. To 
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avoid these costs, the inventive detection algorithm does not 
guarantee enumeration of all pairs in FullRace, although it 
still performs datarace detection as previously de?ned. 

For each memory location In involved in a datarace, an 
exemplary detection algorithm in accordance With the inven 
tion reports at least one access event participating in a data 
race on m. More formally, consider a partitioning of FullRace 
by memory location into MemRace sets: 

The inventors use boolean predicate IsRaceOn (ei, m) to 
indicate Whether the event el- is in a pair in MemRace(m): 

The inventors noW de?ne the set of dataraces reported by 
the inventive approach minimal-dataraces. For each m With 
non-empty MemRace (m), the inventive dynamic datarace 
detector detects and reports at least one access event e such 

that IsRaceOn (e, m)?rue. 
2.6 Debugging Support 
An exemplary embodiment of the invention reports a rac 

ing access e at the moment it occurs in the program, and, 
therefore, the program can be suspended and its current state 
examined to aid in debugging the race. The algorithm also 
reports, for some previous access f With IsRace(e, f), F s lock 
set, and often f‘s thread. Furthermore, an exemplary static 
datarace analyzer in accordance With the invention, provides 
a (usually small) set of source locations Whose execution 
could potentially race With e. In the inventors’ experience, 
this information, combined With study of the source code, has 
been enough to identify the causes of dataraces. 

To obtain full information about rarely occurring data 
races, a program record and replay tool such as Dej aVu [1.D. 
Choi, et al., A perturbation-free replay platform for cross 
optimized multithreaded applications. In Proceedings of the 
15th IEEE International Parallel & Distributed Processing 
Symposium, April, 2001] can be used, Where the dynamic 
detection runs along With Dej aVu recording and the expen 
sive reconstruction of FullRace occurs during DejaVu replay. 
DejaVu recording incurs approximately 30% time overhead. 

3. Runtime Datarace Detection 
Since one does not need to report all races in a given 

program execution, an exemplary embodiment of the inven 
tion uses tWo key techniques to decrease the cost of an exem 
plary embodiment of the algorithm. The exemplary embodi 
ment’s use of the Weaker-than relation decreases the number 
of accesses needed to consider and save, and the representa 
tion of the access event history using tries, enables ef?cient 
representation and search of past accesses. 

3.1 The Weaker-Than Relation 
Given tWo past access events el- and e], if for every future 

access ek, IsRace (ej, ek) implies IsRace (ei, ek), ej need not be 
considered When performing datarace detection on future 
accesses. Since el. is more Weakly protected from dataraces 
than ej (or protected equally), the inventors say that el- is 
Weaker than e]. (or e]. is stronger than ei). Exploiting the 
Weaker-than relationship betWeen accesses alloWs us to 
greatly reduce the overhead of the inventive datarace detec 
tion algorithm. 
A suf?cient condition for dynamically determining that 

event el. is Weaker-than event e], by using the memory loca 
tion, access type, thread, and lock set information contained 
in each event is outlined beloW. The inventors add the pseudo 
thread ti to the possible values of e.t for a past access event e 
stored by the inventive detector. ti means “at least tWo dis 
tinct threads,” and the inventors set ei.t to ti When the inven 
tors encounter some later event ej such that ei.m:ej.m, 
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ei.L:e]-.L, and ei.t#ej.t. The intuition behind ti is that once 
tWo different threads access a memory location With the same 
lock set, any future access to that memory location With a 
non-intersecting lock set Will be a datarace (unless all 
accesses are reads), independent of Which threads previously 
accessed the location. Utilizing ti is a space optimiZation that 
simpli?es implementation of an exemplary embodiment of 
the invention, but it is also the reason Why this embodiment 
cannot alWays report the speci?c thread for the earlier access 
in a datarace. 

The inventors de?ne a partial order E betWeen tWo 
threads ti and t], and betWeen tWo access types al- and a], as 
folloWs: 

(6) 

Given these orderings, the inventors can noW de?ne the 
Weaker-than partial order E for accesses: 
PROOF. First, p.m:q.m and q.m:r.m implies p.m:r.m. 

Second, p.LCq.L and q.LOr.L:O implies p.LOr.L:O. 
Third, pt; qTimplies that pt?i or p.t:q.t. In either case, 
p.t#r.t since q.t#r.t. (A neW access r cannot have rt?i.) 
Finally, pa; q.a implies p.a:WRITE or p.a:q.a. If 
p.a:q.a#WRITE, r.a must be WRITE. 

The exemplary race detector ensures that if one detects that 
p is Weaker than q, We at most store information about the 
Weaker of p and q, decreasing the inventive time and space 
overhead. In the rare case that the exemplary embodiment 
reports a spurious datarace, an optimiZation based on the 
Weaker-than relation could suppress the reporting of a real 
datarace While alloWing the false positive report. Using extra 
locking inserted by the user to suppress the spurious report 
overcomes this de?ciency. In section 4 and section 6, the 
inventors shoW hoW the Weaker-than relation can also be used 
to ?lter events before they reach the detector. 

3.2 Trie-Based Algorithm 
In this section, the inventors describe the inventive runtime 

datarace detection algorithm and its use of tries to represent 
the event history. 

3.2.1 Detection Algorithm 
For each unique memory location in an access event 

observed by the datarace detector of the exemplary embodi 
ment, the history of accesses to that location is represented 
using an edge-labeled trie. The edges of the trie are labeled 
With identi?ers of lock objects, and the nodes hold thread and 
access type information for a (possibly empty) set of access 
events. The set of locks for an access is represented by the 
path from the root of the trie to the node corresponding to that 
access. 

Nodes in the inventive tries have a thread ?eld t and an 
access type ?eld a. Internal nodes Which have no correspond 
ing accesses are assigned access type READ and a special 
thread value ti (meaning “no threads”). The inventors de?ne 
the meet operator H for thread information ti and and access 
information al- and aj. 

When the exemplary embodiment encounters an access 
event e, the system ?rst check if there exists an access ep in the 
history such that egg e. This check is performed through a 
traversal of the trie corresponding to em, folloWing only 
edges labeled With lock identi?ers in e.L (in depth-?rst 
order). During this traversal, the system examines each 
encountered node’s access type and thread information to see 
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if it represents accesses Weaker than e, as de?ned in the 
previous section. (The traversal procedure guarantees that the 
lockset and memory location Weakness conditions are satis 
?ed.) If the system ?nds such a node, then it can safely ignore 
e While maintaining the reporting guarantees described in this 
disclosure. In practice the vast majority of accesses are ?l 
tered by this check. 

If the Weakness check fails, the exemplary embodiment 
checks e for dataraces by performing another depth-?rst tra 
versal of the trie. For each node n encountered, the inventors 
have one of three cases: 
Case I. The edge Whose destination is n is labeled With lock 

identi?er In such that lneeL. In this case, e shares at least 
one lock With all the accesses represented by n and its 
children. Therefore, there cannot be a datarace With any 
access represented by the subtree rooted at n, and one does 
not need to search any deeper in this branch of the trie. 

Case II. Case I does not hold, e.tU n.t?i, and e.a 
U n.a:WRITE. In this case We have a datarace, since e.t 
differs from some previous thread Which accessed e.m, the 
intersection of their lock sets is empty, and at least one 
access Was a Write. We report the race immediately and 
terminate the traversal. 

Case III. Neither case I nor II holds, in Which case We traverse 
all children of n. 
3.2.2 Event History Update 
After checking for races, an exemplary embodiment of the 

system updates the trie With information about e. If there is 
already a node n in the trie Whose path to the root is labeled 
With the locks e.L, the system updates n Withn.ten.t|_| e.t and 
n.aen.a|_| e.a. (Such an n can be ef?ciently found; We main 
tain the invariant that the label on an edge leading into a node 
n', under some total order on locks, is less than the labels on 
the edges leading out of n. This guarantees that We can ?nd the 
node for lock set e.L in time O(|e.L|) by folloWing edges in the 
order of sorted e.L.) If no such n exists then the system adds 
nodes and edges to create such an n, setting n.t to e.t and na 
to e.a. Finally, We traverse the trie once more to remove all the 

stored accesses Which are stronger than the neWly-added 
access. 

3.3 Implementation 
An exemplary embodiment of the invention has been 

implemented in Java, and the code is straight forWard. The 
algorithm runs online alongside the program being analyZed. 
(The interface betWeen the algorithm and the program is 
discussed beloW.) 
An exemplary embodiment of the invention uses memory 

addresses to identify logical memory locations. Garbage col 
lection can move objects to different addresses and reuse the 
same addresses for different objects. An exemplary embodi 
ment of the invention could respond to garbage collection by 
augmenting the object address information stored in data 
structures, but for a preferred exemplary implementation 
enough memory is used so that garbage collection does not 
occur. 

4. Runtime Optimization 
The algorithm for the exemplary embodiment described 

above reads an event stream generated by the running target 
program. To reduce the overhead of race detection, the 
embodiment reduces the number of access events that need to 
be fed into the detector, using a combination of static and 
dynamic techniques. This folloWing describes the dynamic 
technique of caching to detect redundant accesses. 

4.1 OvervieW 
The description above describes hoW an access is discarded 

if an exemplary embodiment of the invention has already seen 
a “Weaker” access. Experiments shoW that in many bench 
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marks almost all accesses are discarded this Way. Therefore, 
the exemplary embodiment makes the check for a previous 
Weaker access as ef?cient as possible, by introducing caches 
to record previous accesses. There are tWo caches per thread, 
one recording read accesses and one recording Write accesses. 
Each cache is indexed by memory location. Whenever the 
program performs an access to location m, the exemplary 
embodiment looks up In in the appropriate cache. The cache 
design guarantees that if an entry is found, there must have 
been a Weaker access already recorded by the algorithm, so no 
further Work is required. If no entry is found, then the exem 
plary embodiment sends information about the neW access to 
the runtime detector and also add a corresponding neW entry 
to the cache. 

4.2 Cache Policy 
Recall that access p is Weaker than access q iffp.m:q.m/\ 

p.Locks C q.Locks /\ pt; q.t/\ pa; q.a. The exemplary 
embodinEnt requires that if entry for access p is found in the 
cache When neW access q is checked, then p is Weaker than q. 

To guarantee that pt; q.t, the inventors observed that q.t is 
simply the currently executing thread When q occurs. There 
fore, the exemplary embodiment uses separate caches for 
each thread. Any p found in thread q.t’s cache must have 
p.t:q.t. (This also ensures that cache operations do not require 
synchronization.) 

Because an exemplary embodiment of the invention may 
use separate caches for reads and Writes, if the embodiment 
?nds entry p When it looks up the cache then certainly their 
access type is the same, i.e., p.a:q.a. 

To ensure that p.Locks C 6q.Locks, an exemplary embodi 
ment of the invention mor?rs the set of locks currently held 
by each thread. Whenever the program executes monitor exit 
to release a lock 1, the system evicts from the cache any p such 
that lep.Locks. This ensures that at all times, for every p in the 
cache, p.Locks is a subset of the currently held locks. Hence, 
When q occurs We knoW p.Locks Cq.Locks for all p in the 
cache. — 

Note that because Java synchronization blocks are reen 
trant, a thread might execute monitor exit but not actually 
release the lock because the lock had previously been 
acquired more than once. An exemplary embodiment of the 
invention ignores these “nested” locks and unlocks; only the 
last monitor exit on a lock object requires cache entries to be 
evicted. 

Each cache is indexed by memory location alone. Because 
the inventive policy guarantees all entries in the cache are 
Weaker than the access being looked up, the embodiment does 
not actually have to check the thread ID, access type, or lock 
set, and they are not stored in the cache entries. 
When a thread releases a lock 1, the system needs to 

quickly evict all the cache entries Whose lock sets contain 1. 
An exemplary embodiment of the invention exploits the 
nested locking discipline imposed by the Java language (al 
though not by the byte code languageithe system relies on 
the fact that the byte code Was generated by a Java compiler). 
The discipline ensures that at the time some access generated 
a cache entry p, if lock 1 Was the last lock in p.Locks to be 
acquired, then lock 1 Will be the ?rst of p.Locks to be subse 
quently released (“last in, ?rst out”). Therefore for each lock 
I currently held by the thread, the embodiment keeps a linked 
list of the cache entries p Where 1 Was the last lock in p.Locks 
to be acquired. When 1 is released the embodiment evicts all 
the entries on its list from the cache. The lists are doubly 
linked so that individual cache entries can be quickly removed 
When they are evicted due to cache con?icts. 
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4.3 Implementation 
An exemplary embodiment of the invention uses tWo 256 

entry direct mapped caches, one for reads and one for Writes, 
indexed by memory address. The hash function multiplies the 
32-bit memory address by a constant and takes the upper 16 
bits of the result. The cache code is entirely Written in Java and 
is executed on the Jalapeno virtual machine (B. Aplem, et al. 
The Jalapeno virtual machine. IBM Systems Journal, 39(1), 
2000.). We ensure that the Jalapeno optimizing compiler 
inclines all calls to the cache lookup methods in the user’s 
program. The embodiment also use J alapeno speci?c method 
calls to ensure that the cache lookup code is compiled into 
e?icient machine code (e.g., Without array bounds checks). A 
cache lookup Which results in a hit requires ten PoWerPC 
instructions in this embodiment. 

5. Static Datarace Analysis 
An exemplary embodiment of the static datarace analysis 

algorithm in accordance With the invention formulates data 
race analysis as a conjunction of interthread control How 
analysis and points-to analysis of thread objects, synchroni 
zation objects, and access objects. 
The embodiment uses this formulation to compute the 

static datarace set, a set of statement pairs that may cause a 
datarace during some execution. Statements that are not part 
of any statement pair in the static datarace set are non-data 
race statements and need not be instrumented at all. 
The inventors next describe a static formulation of the 

datarace conditions. The inventors then describe the inter 
thread control ?oW graph (ICFG) that may be used to repre 
sent sequential and parallel interprocedural control How, and 
the ICFG-based points-to analysis that can be used to com 
pute the static formulation of the datarace conditions. Finally, 
the inventors describe an extension of escape analysis that can 
be used to improve the precision of static datarace analysis. 

5.1 Datarace Conditions 
For tWo statements x and y, the datarace conditions de?ned 

in conditions set forth above can be formulated conserva 
tively as folloWs for static analysis (For convenience, the 
inventors ignore the fourth of the datarace conditions in, and 
conservatively assume that it alWays holds.): 

IsMayRace(x, y) (I AccessesMayCon?ict(x, y) A 

(“I MustSaIneThread(x, y))/\ (_l MustCommon 
syndx, y)) (10) 

AccessesMayCon?ict (x, y)?rue if executions of x andy may 
access the same memory location, so an exemplary embodi 
ment may use may points-to information for its computation. 
For example in List 1, an exemplary embodiment uses may 
points-to information for object references Tl l:a and T21 :d 
to statically determine Whether they may access the same 
memory location during some execution. 
MustSameThread (x, y)?rue if x and y are alWays 

executed by the same thread, so the exemplary embodiment 
uses must points-to information on thread objects for its com 
putation. In List 1 , an exemplary embodiment of the invention 
uses must points-to information on the thread objects that can 
run T1 1 or T21 to statically determine Whether the tWo state 
ments may be executed by different threads. 
MustCommonSync (x, y)?rue if x and y are alWays syn 

chronized by at least one common lock, so the system uses 
must points-to information on synchronization objects for its 
computation. In List 1, an exemplary embodiment of the 
invention uses must points-to information on the synchroni 
zation objects pointed to by Tl0:this and T20:q to statically 
determine Whether the tWo statements may be executed under 
different synchronization objects. 
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It is Worth noting that may-alias approximations of Must 
SameThread and MustCommonSync cannot be correctly 
used in conservative datarace analysis, because the datarace 
conditions refer to the complements of these sets. 

5.2 lnterthread Control FloW Graph (lCFGg) 
The ICFG is a detailed interprocedural representation of a 

multithreaded program in Which nodes represent instructions 
(i.e., statements) and edges represent sequential and parallel 
control How. Each method and each synchronized block has 
distinguished entry and exit nodes in the ICFG. 
An ICFG contains four types of control How edges: intra 

procedural (The inventors assume that the intraprocedural 
edges capture all intraprocedural control How, including con 
trol ?oW arising from exceptions), call, return, and start. The 
?rst three types are present in a standard interprocedural 
control How graph. Start edges are unique to the ICFG, and 
represent invocations of the start( ) method of a Thread object, 
Which starts the thread and invokes its run( ) method. All other 
invocations of a run( ) method execute as part of the calling 
thread. (Join edges are not included in the ICFG because they 
are not needed for the conservative static datarace analysis.) 

Start edges are referred to as interthread edges, While all 
other edges in the ICFG are called intrathread edges. The 
entry node that is a target of a start edge is called a thread-root 
node. An ICFG path Without any interthread edges is an 
intrathread path, and an ICFG path With one or more inter 
thread edges is an interthread path. 

The inventors use the interthread call graph (ICG) as the 
interprocedural abstraction of the ICFG, designed for practi 
cal and scalable analysis of large programs. An ICG node is 
created for each method and each synchronized block in the 
ICFG. The inclusion of separate ICG nodes for synchronized 
blocks is a notable difference betWeen the ICG and standard 
call graphs. 

The inventors call a node in the ICG a synchronized node if 
it represents either a synchronized method or a synchronized 
block. 

5.3 Points-To Analysis 
The points-to analysis that the inventors employ for a static 

datarace analysis is a ?oW-insensitive, Whole program analy 
sis. In an exemplary analysis in accordance With the inven 
tion, a distinct abstract object is created for each allocation 
site in the program. Each abstract object represents all the 
concrete objects created at the same site during execution. 
The points-to analysis computes for each access in the pro 
gram the set of abstract objects it points to along some path. 
A precise must points-to analysis is expensive in general. 

The inventors have devised a simple and conservative must 
points-to analysis based on the notion of single-instance 
statements, each of Which executes at most once during an 
execution. An object created at a single-instance statement is 
called a single-instance object. If an access points to only one 
abstract object and that abstract object is a single-instance 
object, then the relation betWeen the access and the object is 
a must points-to relation. (The inventors use a special “null” 
object to represent a null reference.) 

Let MustPT (x) and MayPT (x) be the must and may 
points-to sets of access x. We compute AccessesMayCon?ict 
(x,y) of Equation (1) as folloWs0 using points-to information: 

AccessesMayCon?ict(x,y): (11) 

(MayPT (x)?MayPT (y)#®)/\ (?eld (x):?eld (y)), Where 
?eld (x) refers to the accessed ?eld of the object (or class). 

For access u, let ThStart(u) be the set of thread-root nodes 
from Who se entry nodes there exists an intrathread ICFG path 
to u. We compute MustSameThread(x, y) as folloWs using 
points-to information: 
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MustThread(u):?veThStart(u)MustPT(v.this) (l2) 

MustSameThread(x, y):(MustThread(x)?MustThread 
60:9), (13) 

Where v.this denotes the this pointer of thread-root node v. For 
node nelCG, let Synch (n):true if n is a synchronized method 
or block, and let u” be the access of the synchronization object 
if Synch (n)?rue. Also, let Pred(n) be the set of intrathread} 
predecessor nodes of n on ICG. We compute Must Sync (v) by 
the folloWing set of data?oW equations: 

Gen(n):MustPT(z4n) if Synch(n) (l4) 

Gen (n):@ otherwise 

MustSync(v):SO"o, Vven. (l 6) 

NoW, We compute MustCommonSync(x, y) as folloWs: 

MustCommonSync(x,y):(MustSync(x) f) 
MustSync(y)==@). (17) 

Finally, We compute lsMayRace in Equation 10 by com 
bining Equations ll, 13, and 17. 

5.4 Extending Escape Analysis 
Past Work on escape analysis normally identi?es objects as 

thread-local When they are never reachable from threads other 
than the thread that created them. A thread-local object can 
never participate in a datarace. 

Java code frequently uses objects associated With a thread 
T Which does not folloW the above pattern but Which are not 
susceptible to data races. In particular, We say an object O is 
“thread-speci?c” to T if all accesses to O are performed While 
T is being constructed (and before T starts running), or by T 
itself. 

References to such objects are typically stored in ?elds of 
the T object and hence escape to the thread creating T, and are 
not thread-local as described above. Because this usage is 
common, We extended the inventive static analysis to identify 
some thread-speci?c objects. 
The inventors have implemented a simple, but effective, 

approximation algorithm to compute the thread-speci?c 
objects. First, We de?ne the thread-speci?c methods recur 
sively as follows: 

(1) initiate methods of thread objects, and run methods that 
are not invoked explicitly (i.e., invoked only as a result of the 
thread being started) and (2) a non-static method all of Whose 
direct callers themselves are thread-speci?c non-static meth 
ods passing their this references as the this reference of the 
call ee. 

Second, We de?ne the thread-speci?c ?elds as the ?elds of 
a thread that are only accessed via get?eld/put?eld operations 
on the this reference of a thread-speci?c method. 

Finally, We de?ne an unsafe thread as a thread Whose 
execution may start before its initialization completes. A 
thread object is conservatively identi?ed as unsafe if its con 
structor can transitively call Thread.start or if the this refer 
ence escapes from the constructor. (A thread is safe if it is not 

unsafe.) 
Based on these de?nitions, We say an object is thread 

speci?c to T if T is safe and the object is only reachable from 
thread-speci?c methods of T or through thread-speci?c ?elds 
of T. Accesses to a thread-speci?c object of a safe thread 
cannot be involved in a datarace. Moreover, accesses to 
thread-speci?c ?elds cannot be involved in a datarace. 

6. Compile-Time Optimizations 
The static datarace analysis phase of an exemplary embodi 

ment of the invention improves the performance of a dynamic 
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detector by eliminating from consideration statements that 
can never participate in a datarace. Another approach to com 
pile-time optimization stems from the weaker-than relation 
de?ned above. If the execution of a statement always gener 
ates an access that will be discarded because a previous access 
is weaker, the statement need not be instrumented. In the 
following description, the inventors describe how an exem 
plary embodiment of the inventions uses a static form of the 
weaker-than relation and a loop peeling transformation to 
avoid inserting instrumentation that the inventors can prove 
will only produce redundant access events. 

6.1 Static Weaker-Than Relation 
Let Events (S) denote the set of access events generated by 

instrumentation statement S in a given execution. The inven 
tors de?ne the static weaker-than relation for statements as 
follows: 

S1- is weaker than S], written as SE S], iff in all 6 Events (S) 
in any given execution, there exists el- in Events (Si) in the 
same execution such that (1) e; e], where e; ej as de?ned 
above, and (2) there exists no thread start( ) or join( ) between 
el. and ej. 
A sophisticated interprocedural analysis wouldbe required 

to determine Si; S]. for arbitrary SI. and Sj. However, the 
inventors developed a conservative and effective analysis for 
computing Si; Sj when S1- and Sj belong to the same method. 

The inventors model the instrumentation which generates 
access events using a pseudo-instruction trace (0, f, L, a), 
where o is the object being accessed, f is the ?eld of the object 
being accessed, L is the lock set held during the access, and a 
is the access type (READ or WRITE). All operands are 
treated as uses of their values. For accesses to static ?elds, 0 

represents the class in which the ?eld is declared, and for 
accesses to array elements, f represents the array index. 
Thread information is not explicitly modeled in the trace 
instruction since we do not attempt to optimize across thread 
boundaries (thread information is available to the instrumen 
tation code at runtime). We insert a trace pseudo-instruction 
after every instruction which accesses a ?eld of an object, a 
static ?eld, or an array element (optionally using information 
from static datarace analysis to eliminate consideration of 
instructions which cannot be involved in dataraces). 

After insertion, the inventors attempt to eliminate trace 
pseudo-instructions using the static weaker-than relation. 
First, we de?ne Exec (Si,S]-) for statements S1- and Sj of the 
same method as follows: 

Exec (S1, S1) is true iff (1) S1- is on every intraprocedural path 
that contains S], and (2) there exists no method invoca 
tion on any intraprocedural path between S- and Sj. The 
?rst condition indicates that whenever S]. executes in an 
execution instance of the method, Sl- also executes. 

Two well-known concepts can be used for computing Exec 
(S, S): S- dominates Sj, written dom (S, S), and SI- post 
dominates Sj, written newline pdom (S, S). 

In experiments, the inventors used dom. (It is very dif?cult 
to prove that one statement post-dominates another in Java, 
because almost any statement can throw an exception, and 
therefore we suspect that pdom would not be effective.) The 
second condition guarantees that no path between Si and Sj 
will contain start( ) or join( ). 

With Exec, the static weaker-than relation can be decom 
posed into the following easily veri?able conditions (notation 
to be explained): 

To show that a statement Sl?race (oi, fi, Li, a1.) always 
generates an event el- weaker than any ej produced by SJ-Itrace 
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(0], f], L], a), we must show that eit; ej.t, era; ej.a, el-LQ 
e]..L, el..m:ej.m. Intraprocedurally, el..t will always equal ej.t, 
and we can directly check a; aj which implies era; ej.a. An 
exemplary embodiment of the invention checks that ei.L 
Q ej.L using the nesting of Java’s synchronization blocks. 
Speci?cally, the embodiment veri?es the condition outer (S, 
S), which is true if and only if Sj is at the same nesting level 
in synchronization blocks as S1. or at a deeper level within Si’ s 
block. Finally, to show that ei.m:ej.m, the embodiment 
checks that (valnum (Oi):ValI11lII1 (oj)/\ (fl-:fj), where valnum 
(oi) is the value number of the object reference. If all of these 
conditions hold, then S; S], and therefore we can safely 
eliminate Sj. 

6.2 Implementation 
In the following description, the inventors brie?y describe 

the implementation infrastructure that we use for optimized 
instrumentation. The instrumentation and the analysis of the 
weaker-than relation is performed during the compilation of 
each method by a Jalapeno optimizing compiler. The inven 
tors created a new instruction in the high-level intermediate 
representation (HIR) of the compiler corresponding to the 
inventive trace pseudo-instruction, and these instructions are 
inserted as previously described. After the insertion of the 
trace statements, conversion to static single assignment 
(SSA) form is performed, during which the dominance rela 
tion is computed. Elimination of redundant trace statements is 
then performed based on the static weaker-than relation, uti 
lizing an existing value numbering phase. The remaining 
trace statements are marked as having an unknown side effect 
to ensure they are not eliminated as dead code by Jalapeno’s 
other optimization phases unless they are truly unreachable. 

After the completion of some of Jalapeno’s HIR optimiza 
tion phases, we expand each trace statement into a call to a 
method of the inventive dynamic detector, and we force Jala 
per~1o to inline this call, Jalapeno then optimizes the HIR 
again. Finally, the HIR representation is converted to lower 
level representations (and eventually to machine code) by the 
compiler, without further instrumentation-speci?c optimiza 
tion. 

6.3 Loop Peeling 
Loops can be a key source of redundant access events. For 

example, in the loop in List 2, consisting of statements S10 
through S13, statement S13 will produce redundant access 
events after the ?rst iteration of the loop, since the informa 
tion is the same as that recorded in the ?rst iteration. However, 
two issues make these redundant events dif?cult to statically 
eliminate. The inventive redundancy elimination based on the 
static weaker-than relation cannot be applied to remove the 
instrumentation, since the information produced in the ?rst 
iteration of the loop is not redundant. Furthermore, we cannot 
perform standard loop-invariant code motion to hoist the 
instrumentation outside the loop, because statement S11 is a 
potentially excepting instruction (PEI); it may throw an 
exception and bypass the remaining instructions of the loop. 
Thus statement S13 is not guaranteed to execute even if the 
loop condition is initially true. PEIs occur frequently in Java 
because of safety checks such as null-pointer and array 
bounds checks. 

List 2 

// Before optimization. 
S00: A a; 

S10: for(...){ 
S11: PEI 
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-continued 

List 2 

S12: a.f= ...; 
S13: trace (a, f, L,W) 
// After optimization. 
S20: if(...) { 
S21: PEI 
S22: a.f= ...; 

S23: trace (a, f, L, W); 
S24: for { 
S25: PEI 
S26: a.f= ...; 

An exemplary embodiment of the invention reduces the 
generation of redundant access events in loops using a loop 
peeling program transformation. This transformation creates 
a new copy of the body of the loop for the ?rst iteration and 
utilizes the original body for the remaining iterations. State 
ments S20 through S26 show the result of loop peeling and 
the inventive existing redundancy elimination applied to the 
loop of S00. The if statement at S20 is needed to guard against 
the possibility of the loop not executing at all. The for state 
ment at S24 is modi?ed to ensure that the loop will not 
execute the ?rst iteration, which is now executed by state 
ments S21 through S23. After the loop peeling, the trace 
statement in the loop body can be eliminated since statement 
S23 is statically weaker. The resulting code traces the write 
access to a.f at most once, achieving the goal of eliminating 
the instrumentation from the loop. 

All of the preceding discussion ignores the effects of the 
“ownership model”. Below, the inventors brie?y consider 
how the ownership model interacts with other machinery. 

The inventors modi?ed the inventive runtime race detector 
of an exemplary embodiment of the invention to record for 
each memory location an owner thread t0, the ?rst thread to 
access the memory location. Every time the location is 
accessed the embodiment checks to see if the current thread is 
to, and ignore the access in that case. The ?rst time the current 
thread is not t0, we say the memory location becomes shared; 
we set to t1 and send this access event and all subsequent 
events on to the rest of the detector, as described above. 
Essentially, the access event stream is ?ltered to only include 
accesses to memory locations in the shared state. 

The run-time and compile-time optimization phases rely 
on the concept of one access event el being “weaker-than” 
another event e2, in which case e2 can be suppressed. Unfor 
tunately, in the presence of the ownership model, the de?ni 
tions of lsRace and weaker-than in section 3.1 are not sul? 
cient to guarantee that el weaker-than e2 implies e2 can be 
suppressed. The dif?culty arises when an event el is sent to 
the detector while e1.m is in the owned state, and then e1.m 
changes to the shared state before e2 occurs. In this situation 
e2 should not be suppressed. 

For run-time optimization (i.e., the cache), an exemplary 
embodiment can avoid this problem by forcibly evicting a 
location In from each thread’s cache when it becomes shared. 

It is harder to avoid this problem in compile-time optimi 
zation. Given two statements S 1 and S2, it is generally dif?cult 
to prove that the accessed location’s state cannot change from 
“owned” to “shared” between S 1 and S2. Introducing a 
dynamic check of the ownership state at S l or S2 would 
eliminate the bene?t of the optimization. The only truly sound 
compile-time approach would be to use the post-dominance 
relationship; i.e., when S2 post-dominates S 1 and the access at 
S2 is guaranteed to be weaker than S1, remove the instrumen 
tation at S1. This is safe because if the object is owned at S2, 
and therefore the access is suppressed, then the object must 
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also have been owned at S1 and that access can also be sup 
pressed. Unfortunately, as previously noted, post-dominance 
between S 1 and S2 almost never holds in Java because almost 
any byte code instruction can throw an exception. (This might 
be less of a problem in other languages such as C or C++.) 

An exemplary embodiment of the invention simply ignores 
the interaction between weaker-than and the ownership 
model, for both static and dynamic optimizations. This means 
that in theory this embodiment may inadvertently suppress 
accesses and thus fail to report races. However, the inventors 
did not observe any such problems in practice; in experiments 
the inventors veri?ed that the same races were reported 
whether the optimizations using the “unsafe” weaker-than 
relation were enabled or disabled. 

TABLE 1 

Lines Num. 
of Dynamic 

Example Code Threads Description 

mtrt 3751 3 MultiThreaded Ray Tracer from 
SPECIV M98 

tsp 706 3 Traveling Salesman Problem solver 
from ETH [14] 

sor2 17742 3 Modi?ed Successive Over-Relaxation 
benchmark from ETH [14] 

elevator 523 5 A real-time desecrate event simulator 
hedc 29948 8 A Web-crawler application kernel 

developed at ETH [14], using 
a concurrent programming library by 
Doug Lea 

7. Experimental Results 

Here the inventors present evidence showing: that the 
inventive de?nition of dataraces captures truly unsynchro 
nized accesses with fewer “false alarms” than alternative 
de?nitions, and that those dataraces can be detected with 
modest overhead, especially compared to other datarace 
detection implementations. 

7.1 Program Examples 
We derived sor2 from the original sorbenchmark by manu 

ally hoisting loop invariant array subscript expressions out of 
inner loops. This optimization could be performed by a com 
piler using only intraprocedural analysis, but it is not imple 
mented in Jalapeno, and it has signi?cant impact on the effec 
tiveness of the inventive optimizations. The inventors 
modi?ed elevator slightly to force it to terminate when the 
simulation ?nishes (normally it just hangs). 
The elevator and hedc benchmarks are interactive and not 

CPU-bound, and, therefore, we do not report performance 
results for these benchmarks. 

7.2 Performance 

Table 2 below shows the runtime performance of an exem 
plary embodiment of the invention and some selected variants 
to demonstrate the impact of each of the inventive optimiza 
tions. “Base” records the performance of each example with 
out any instrumentation (and without loop peeling). “Full” is 
the inventive complete algorithm with all optimizations 
turned on. “NoStatic” is “Full” but with the static datarace 
detection turned off, so all access statements are potential 
dataraces. “NoDominators” is “Full” with the static weaker 
than check disabled; it also disables loop peeling (which is 
useless without that check). “NoPeeling” turns off loop peel 
ing only. “NoCache” disables the cache. 
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TABLE 2 

Exam- No- No- No- No 
ple Base Full Static DoMinators Peeling Cache 

mtrt 9.0s 10.9s Out of 109$ 109$ 11.4s 

(20%) Memory (21%) (21%) (26%) 
tsp 10.0 s 14.2 s 27.5 s 15.7 s 15.7 s 381.7 s 

(42%) (175%) (57%) (57%) (3722%) 
sor2 2.4 s 2.7 s 2.7 s 9.8 s 7.7 s 3.2 s 

(13%) (13%) (316%) (226%) (37%) 

In mtrt Without static datarace detection, We instrument so 
many accesses that Jalapeno runs out of memory before the 
program terminates. 

For each con?guration, the inventors ran the program ?ve 
times in one invocation of the Jalapeno VM and reported the 
best-performing run. The inventors enabled full optimization 
in Jalapeno but disabled adaptive compilation. Jalapeno Was 
con?gured to use a mark-and-sWeep garbage collector, but We 
set the heap size to 1 GB of RAM so no GC actually occurred. 
The test machine had a single 450 MHZ POWER3 CPU 
running AIX. 

These overheads are loWer than for any previously reported 
dynamic datarace detection algorithm. The bene?ts of each 
optimization vary across benchmarks, but each optimization 
is vital for some benchmark. Programs such as tsp, With loops 
involving many method calls and even recursive method 
calls, bene?t greatly from the cache. Programs such as sor2, 
Which are dominated by loops over arrays, bene?t most from 
dominator analysis and loop peeling. 

The inventors did not measure space overhead directly; 
I alaper~1o mixes program data With virtual machine data, mak 
ing space measurements dif?cult. The instrumentation con 
sumed the mo st space for tsp, requiring approximately 16K of 
memory per thread (for 3 threads) and 7967 trie nodes holding 
history for 6562 memory locations. We estimate the total 
amount of memory used by instrumentation for tsp to be 
about 500K. 

7.3 Accuracy 
Table 3 beloW records the number of objects for Which We 

report dataraces using the inventive algorithm and some 
selected variants. (We normally output each object ?eld on 
Which a datarace occurs; for comparison purposes, here We 
count only the number of distinct objects mentioned.) “Full” 
is the inventive complete, most precise algorithm. 

TABLE 3 

Example Full FieldsMerged No OWnership 

mtrt 2 2 12 
tsp 5 20 241 
sor2 4 40 1009 
elevator 0 0 16 
hedc 5 10 29 

“FieldsMerged” is another exemplary embodiment of the 
inventive algorithm Where We do not distinguish different 
?elds of the same object, so one thread accessing o.fl might 
appear to datarace With another thread accessing o.f2 if they 
do not hold a common lock. (Static ?elds of the same class are 
still distinguished.) “NoOWnership” is another variant of 
“Full” Which does not Wait for a location to be touched by 
multiple threads before starting to monitor its accesses. 
We report tWo dataraces in mtrt. Accesses to the ?eld 

RayTrace.threadCount are not synchronized, causing its 
value to potentially become invalid; fortunately its value is 
not actually used. There are also unsynchronized accesses to 
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22 
ValidityCheckOutputStream.startOfLine in the SPEC test 
harness, Which could result in incorrect output. 

tsp has a serious datarace on TspSolver.MinTourLen, neW 
line Which can lead to incorrect output. We also report data 
races on ?elds of TourElement, Which cannot in fact happen 
due to higher-level synchronization. 
The dataraces We report in sor2 are not truly unsynchro 

nized accesses; the program uses barrier synchronization, 
Which is not captured by an exemplary embodiment of the 
inventive algorithm. 
The dataraces We report in hedc are all true unsynchronized 

accesses and have tWo causes. The size of a thread pool is read 
and Written Without appropriate locking, Which could cause 
the pool size to become invalid. More seriously, there is an 
unsynchronized assignment of null to ?eld Task.thread, 
Which could cause the program to die With a NullPointerEx 
ception if the Task completes just as another thread calls 
Task.cancel. This Would be nearly impossible to ?nd during 
normal testing and debugging. In fact, previous Work mistak 
enly classi?ed this datarace as benign (possibly because they 
had to sort through a number of spurious datarace reports). 

If We fail to distinguish ?elds, in hedc We produce spurious 
race reports in the LinkedQueue class Where some ?elds are 
immutable and accessed Without synchronization and others 
are not. It also produces spurious Warnings for 
MetaSearchRequest objects Where some ?elds are thread 
local and others are shared and require synchronization. In tsp 
We report additional spurious dataraces on ?elds of TourEle 
ment. 

In all benchmarks, NoOWnership reports many spurious 
dataraces When data is initialized in one thread and passed 
into a child thread for processing. Previous Work such as 
Eraser and object datarace detection uses a looser de?nition 
of dataraces, Where a datarace is deemed to have occurred on 
a location In if there is no single common lock held during all 
accesses to m. This approach produces spurious datarace 
reports in mtrt, Where variables holding I/O statistics are 
accessed by tWo child threads holding a common lock syn 
cObj ect, but also by a parent thread after it has called join on 
the tWo child threads but Without any other synchronization. 
The inventive scheme for representing join introduces 
pseudolocks S1 and S2; the three threads access the variables 
With lock sets {S1, syncobject,} {S2, syncobject} and {S1, 
S2}. 
We report no datarace because these lock sets are mutually 

intersecting, although they have no single common lock. In 
summary, for these benchmarks, most of the dataraces We 
report are true unsynchronized accesses, and most of those 
correspond to real bugs. Using a less strict de?nition induces 
signi?cantly more spurious reports. 

It is noted that While the JAVATM programming language is 
mentioned speci?cally herein, the present invention is not 
strictly limited to implementation With the JAVATM program. 
Indeed, the present invention can be tailored, as Would be 
knoWn by one of ordinary skill in the art in the context of the 
present application, to be operable With other concurrent pro 
grams. 

FIG. 2B details a ?owchart of a control routine in accor 
dance With an exemplary embodiment of the invention. The 
control routine 250 starts at step 252 and continues to step 
254. In step 254, the control routine determines Whether a ?rst 
and second memory access is to the same memory location 
and continues to step 256. In step 256, the control routine 
determines Whether the ?rst and second memory accesses are 
executed by different threads in a program and continues to 
step 258. In step 258, the control routine determines Whether 
the ?rst and second memory access are guarded by a common 
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synchronization object and continues to step 260. In step 260, 
the control routine determines Whether there is an execution 
ordering enforced betWeen the ?rst and second memory 
accesses and continues to step 262 Where the control routine 
stops. Based, upon these determinations an dataraces may be 
detected. 
As shoWn in FIG. 3, in addition to the hardWare and process 

environment described above, a different aspect of the inven 
tion includes a computer-implemented method for datarace 
detection, as described above. As an example, this method 
may be implemented in the particular hardWare environment 
discussed above With reference to FIG. 1. 

Such a method may be implemented, for example, by oper 
ating the CPU 116 (FIG. 1), to execute a sequence of 
machine-readable instructions. These instructions may reside 
in various types of signal-bearing media. 

Thus, this aspect of the present invention is directed to a 
programmed product, including signal-bearing media tangi 
bly embodying a program of machine-readable instructions 
executable by a digital data processor incorporating the CPU 
116 and hardWare above, to perform a method of detecting 
dataraces. 

This signal-bearing media may include, for example, RAM 
114 contained externally or Within the CPU 116, as repre 
sented by fast-access storage for example. Alternatively, the 
instructions may be contained in another signal-bearing 
media, such as data storage 130 (FIG. 1) or a magnetic data 
storage diskette 300 (FIG. 3), directly or indirectly accessible 
by the CPU 116. 

Whether contained in the diskette 300, the computer 100, 
or elseWhere, the instructions may be stored on a variety of 
machine-readable data storage media, such as DASD storage 
(e. g., a conventional “hard drive” or a RAID array), magnetic 
tape, electronic read-only memory (e.g., ROM, EPROM, or 
EEPROM), an optical tape, etc.), paper “punch” cards, or 
other suitable signal-bearing media including transmission 
media such as digital and analog and communication links 
and Wireless. In an exemplary embodiment of the invention, 
the machine-readable instructions may include softWare 
object code, compiled from a language such as “C”, etc. 

Thus, While the invention has been described in terms of an 
exemplary embodiment, those skilled in the art Will recogniZe 
that the invention can be practiced With modi?cations. 

What is claimed is: 
1. A method of detecting a datarace betWeen memory 

accesses Within a program, said method comprising: 
determining, as executed by a processor on a computer, 

Whether a datarace exists betWeen a ?rst access event in 
a ?rst statement and a second access event in a second 

statement; 
if it is determined that a datarace exists betWeen the ?rst 

and second statements, adding said ?rst and second 
statements to a list; 

determining Whether a third statement is more Weakly pro 
tected than at least one of the ?rst statement and the 
second statement, said determining Whether said third 
statement is more Weakly protected comprises determin 
ing Whether the third statement has a lockset Which is a 
subset of locksets of the corresponding ?rst and second 
statements; and 

if the third statement is determined to be more Weakly 
protected than at least one of the ?rst statement and the 
second statement, replacing the corresponding at least 
one of said ?rst and second statements in the list With the 
third statement. 
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2. The method of claim 1, Wherein information is thereby 

stored in said list only about the Weaker of said ?rst, second, 
and third statements. 

3. The method of claim 2, Wherein said determining 
Whether said third statement is more Weakly protected com 
prises adding a pseudothread to possible values of past access 
events being stored. 

4. The method of claim 3, Wherein said pseudothread com 
prises at least tWo distinct threads. 

5. The method of claim 3, further comprising setting said 
past stored event to said pseudothread When said second 
memory access accesses the same memory location as the 

?rst stored event, includes the same lockset as the ?rst stored 
event and the ?rst memory access and the second memory 
access are from tWo distinct threads. 

6. The method of claim 1, further comprising generating a 
history of accesses using an edge-labeled trie based upon past 
memory accesses including said ?rst memory access. 

7. The method of claim 6, Wherein the edge-labeled trie 
includes edges labeled With identi?ers of lock objects and 
nodes holding thread and access type information. 

8. The method of claim 7, Wherein said determining com 
prises traversing the edge-labeled trie. 

9. The method of claim 8, further comprising conducting a 
second traversal of the edge-labeled trie to determine Whether 
the second memory access shares at least one lock With the 
?rst memory access. 

10. The method of claim 9, Wherein if the second memory 
access does not share at least one lock With the ?rst memory 
access, said method further comprises determining Whether 
the second memory access is from a thread source different 
from the ?rst memory access and if one of the ?rst memory 
access and the second memory access comprises a Write 
operation. 

1 1. The method of claim 8, further comprising updating the 
edge-labeled trie With information based on said second 
memory access. 

12. The method of claim 11, further comprising traversing 
the edge-labeled trie a third time to remove all accesses Which 
are stronger than the second memory access. 

13. The method of claim 1, Wherein said determining uses 
a different cache for each thread. 

14. The method of claim 1, Wherein said determining com 
prises monitoring a set of locks currently held by each thread. 

15. The method of claim 14, Wherein said determining 
further comprises evicting all cache entries Whose lockset 
contains a lock being released. 

16. The method of claim 1, Wherein said datarace is de?ned 
as: 

the tWo accesses are to a same memory location; 

the tWo accesses are executed by different threads; 
the tWo accesses are not guarded by a common synchroni 

Zation object; and 
there is no execution ordering enforced betWeen the tWo 

accesses. 

17. An apparatus comprising at least one processor execut 
ing a computer program, said apparatus additionally execut 
ing a method of detecting a datarace betWeen memory 
accesses Within said program, said method comprising: 

determining Whether a datarace exists betWeen a ?rst 
access event in a ?rst statement and a second access 

event in a second statement; 
if it is determined that a datarace exists betWeen the ?rst 

statement and the second statement, generating a list 
Which includes said ?rst and second statements; 

determining Whether a third statement is more Weakly pro 
tected than at least one of the ?rst statement and the 
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second statement, said determining Whether said third 
statement is more Weakly protected comprises determin 
ing Whether the third statement has a lockset Which is a 
subset of the lockset of one of the corresponding ?rst 
statement and the second statement; and 5 

if the third statement is more Weakly protected than a 
corresponding one of the ?rst statement and the second 
statement, replacing the corresponding at least one of the 
?rst and second statements in the list With the third 
statement. 10 


