

Tr iCore
A pract ical
TC1766 Me
d

Microcontro
Appl icat ion Note, V 1.0, Mar. 2005

AP32085

 introduct ion to the
mory Checker Module
r iver
l lers

N e v e r s
 t o p t h i n k i n g .

TriCore

Revision History: 2005-03 V 1.0
Previous Version: -
Page Subjects (major changes since last revision)

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

mailto:mcdocu.comments@infineon.com

Edition 2005-03

Published by
Infineon Technologies AG
81726 München, Germany

© Infineon Technologies AG 2006.
All Rights Reserved.

LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

AP32085
Practical MCHK driver

Table of Contents

Table of Contents Page

1 Introduction ... 4
2 Build a sample program .. 6
3 Add a MCHK driver to the sample program... 11
4 Add an Alternate Boot Mode (ABM) header to the sample program 15
5 Goodies... 16
5.1 CRC debugger macro ... 16
5.2 CRC command line tool .. 17
6 Example code ... 19
7 Glossary .. 20

Application Note 3 V 1.0, 2005-03

AP32085
Practical MCHK driver

Introduction

1 Introduction
This Application Note explains the usage of the Memory Checker (MCHK) software
driver. It assumes that the reader is already familiar with the Tricore architecture, the
Tasking Compiler and the PLS debugger. The reader should also have read the
chapter 4.1.11 Alternate Boot Mode and chapter 9 Direct Memory Access Controller
(DMA) of the TC1766 User Manual (Table 1). The development environment used to
build the sample program is listed in Table 2.

Table 1 Documents

Title Version
TC1766, System Units, User Manual 2.1
TriBoard TC1766, Hardware Manual, User Manual 1.0

Table 2 Tools

Tools Version Remarks
DAvE 2.1r22 http://www.infineon.com/dave
DAvE TC1766 Plug-in 3.0 available on request
SAG 1.2
Tasking Vx Compiler 2.1r2 http://www.tasking.com
UDE Debugger 1.10.02 http://www.pls-mc.com/
GNU bash 2.05 http://www.cygwin.com
GNU binutils 2.13 http://www.cygwin.com
tricore-readelf 2.13 http://www.hightec-rt.com/tricore.html
TriBoard TC1766 TC1766.102
Windows 2000

The MCHK driver is a thin software layer on top of the MCHK hardware module. For an
architectural overview see Figure 2-1 in the TC1766 User Manual. The MCHK module
allows checking the data consistency of memories and was especially developed to
check the flash memory. The Program Flash and the Data Flash provide error
correction (ECC) of single-bit errors within a 64-bit read double-word, resulting in an
extremely low failure rate. Double-bit errors causes a Flash interrupt (see TC1766
User Manual chapter 7.2.9) but triple or even more-bit errors, which are hardly found
by the hardware, can be detected with MCHK module. For this purpose the MCHK

Application Note 4 V 1.0, 2005-03

http://www.infineon.com/dave
http://www.tasking.com/
http://www.pls-mc.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.hightec-rt.com/tricore.html

AP32085
Practical MCHK driver

Introduction

module implements a fast polynomial checksum calculation. A software
implementation of the algorithm is given by:
unsigned long crc_buffer(unsigned long crc,
 const unsigned long *p,
 unsigned long sz)
{
 const unsigned long poly = 0xEDB88320;
 unsigned long tmp1, tmp2;

 while(sz--)
 {
 tmp1 = 0;
 tmp2 = crc & poly;
 for(int i = 0; i <=31; i++)
 tmp1 ^= ((tmp2 >> i) & 1);

 crc = *p++ ^ ((crc << 1) | tmp1) ;
 }
 return crc;
}

Within three steps this Application Note will guide you through the usage of the MCHK
driver. First a simple program will be created using DAvE. The program will blink the
on-board LED of the TriBoard. Next an MCHK driver will be added to the program. The
driver calculates a checksum over a flash memory range. The Signature Analysis
Generator (SAG) tool, which is distributed with this Application Note, is used to
calculate the checksum in advance directly from the elf file. Finally an Alternate Boot
Mode (ABM) header will be added to the application using SAG.

Application Note 5 V 1.0, 2005-03

AP32085
Practical MCHK driver
Build a sample program

2 Build a sample program
Start DAvE and create a new TC1766 project (). Figure 1

Figure 1 DAvE New Project Dialog

If the TC1766 is not in the list of 32-Bit Microcontrollers the Plug-In has to be installed.
The TC1766 Plug-In is part of this Application Note. Please follow the instructions in
the DAvE manual how to install Plug-Ins.

Application Note 6 V 1.0, 2005-03

AP32085
Practical MCHK driver
Build a sample program

Figure 2 DAvE Project Settings Dialog, Page System Clock

Figure 2
Open the "Project Settings" from the File menu. Keep the default settings on the
"General" page and goto the "System Clock” page (). In general the TC1766
TriBoard is shipped with a 15 MHz external quartz. Set the "External clock frequency
[MHz]” to 15, set the "Feedback divider (NDIV)” to 600 MHz and keep the default
values for the rest of the dialog. This configuration will lead to a CPU and System
Clock of 60 MHz.

Application Note 7 V 1.0, 2005-03

AP32085
Practical MCHK driver
Build a sample program

Figure 3 Configure Port 1 Dialog, Page Channels

Figure 3

Finally pin 0 of port 1, which is connected to the LED of the board, needs to be
configured. For detailed information read the TriBoard Manual. Click on the Port
bubble in DAvE and on the "Ports" page press the "Configure Port 1" button. Configure
the Channel 16, which is port 1 pin 0, to "Output High" ().

Close the Dialog and go to the "Functions" page and check the Initialization Function.
The configuration is done. Close the configuration dialogs and save the project as
'mchk.dav'. Generate the source files by selecting "Generate Code" from the File
menu.

DavE generates the followings source and header files: The project initialization
function 'MAIN.c', 'MAIN.h', the port driver 'LLD_DIO.c', 'LLD_DIO.h', C
Startup code 'cstart.c', CAS data types definition 'LLD.h', 'CAS_DTYP.h' and
the register definition file for the TC1766 'TC1766Regs.h'.

In the next step the elf file will be build using the Tasking compiler and linker. Open
Tasking IDE and create a new project. Open the Project options and go to
Processor->"Processor definitions". Select "TC1766". Go to "Compiler"->Optimization

Application Note 8 V 1.0, 2005-03

AP32085
Practical MCHK driver
Build a sample program

and select "No Optimization" from the dropdown menu. Go to Processor->Startup and
deselect the "Automatic copy and link cstart.asm to your project" checkbox. Go to
Linker->"Script File"-> "Special Areas" and set the values to the following addresses:
RESET start address 0xA0000000
Libraries start address 0xA0000400
Interrupt table start address 0xA0002000
Trap table start address 0xA0003F00

Go to Linker->"Script File"->"Internal Memory" and define the program flash
Name = pflash, Alloc = ON, Type = ROM, Size = 1504k

Close the project options. Open the project properties and add the files 'MAIN.c',
'LLD_DIO.c' and 'cstart.c' to the project.

In 'LLD_DIO.h' add two macros which were part of former plug-ins but did not make
it to the TC1766 plug-in
// USER CODE BEGIN (IO_Header,3)
#define DIO_vTogglePin(PinName) TOGGLE##PinName
#define TOGGLEIO_P1_0 P1_OMR.I = 0x00010001
// USER CODE END

In MAIN.c add a delay function
// USER CODE BEGIN (MAIN_General,9)
void delay(unsigned long n)
{
 n *=0x100000;
 while(n--)
 __nop();
}// USER CODE END

and a forever loop which toggles the TriBoard LED.
// USER CODE BEGIN (Main,9)
while(1)
{
 DIO_vTogglePin(IO_P1_0);
 delay(8);
}
// USER CODE END

Build the elf file. Ensure the HW Boot Configuration DIP-switch is set to
ON-OFF-ON-ON-OFF-ON-OFF-OFF. The ON position of the switch is equal to a
logical LOW, that means HWCFG[3...0] is 0010 (See the TriBoard Manual chap.
5.1.1). The board will start from internal flash at 0xA0000000.

Open the UDE debugger and create a new workspace with a TC1766 target. Install the
UDE memtool, select "Flash programming" from the Tools menu and enable the flash

Application Note 9 V 1.0, 2005-03

AP32085
Practical MCHK driver
Build a sample program

by checking the box "Enable". Erase the Flash by pressing the "Erase…" button and
exit the dialogs. Now you are ready to flash the program. Select "Load Program" from
the File menu and open the 'mchk.elf' file. The UDE memory programming tool
dialog pops up again. Press the "Program" button. Flashing will take up a minute. On
success exit the dialogs. Reset the board and see the LED blinking.

Application Note 10 V 1.0, 2005-03

AP32085
Practical MCHK driver

Add a MCHK driver to the sample program

3 Add a MCHK driver to the sample program
In the following step a MCHK driver will be added to the sample program. The driver
will continuously calculate a checksum over a flash memory range. Open DAvE with
the 'mchk.dav' project again and select the DMA module. The MCHK module is part
of the DMA1. Go to the "block 0" page. Pressing the "DMA Channel 00" button brings
up the configuration dialog. Check "Use channel 00" and set the Reset Request
Control (RROAT) to "Reset DMA Request Only After Transaction" and the Channel
Data Width (CHDW) to "32 Bits (Word)".

Figure 4 Configure DMA Channel 00, Page Address Control

Figure 4
Go to the "Address Control" page of the "Configuration DMA Channel 00" dialog
(). Set the destination address (DADR) to the memory checker input register
MCHK_IR value 0xF010C210 (see Table 19-24 in the TC1766 User Manual). The
circular buffer length source (CBLS) must exceed the memory range that will be
checked. Set it to the maximum of 32kBytes which is the limit of a DMA transaction.

1 The MEMCK bubble on the overview will be deleted in a later version.

Application Note 11 V 1.0, 2005-03

AP32085
Practical MCHK driver

Add a MCHK driver to the sample program

Set the Increment of source Address (INCS) to "Increment". The source address
(SADR) will be set by the driver.

Close the "Configuration DMA Channel 00" dialog and go to the "Memory 0" page of
the "Direct Memory Access (DMA)" dialog. Check the "SCU incl. WDT, MEMCHK" and
"Program Flash Space"

Go to the MEMCHK page and check the "DMA CH0" box.

At last open the "Functions" page and check the functions OCDMA_vInit,
OCCRC_InitSync, OCCRC_ResetSync and OCCRC_CalculateSync. When generating
the code two new files 'DMA.c' and 'DMA.h' will be generated.

Add these files to the Tasking project and modify the 'MAIN.c' file:
// USER CODE BEGIN (Main,9)
const IO_ChannelType chnl = 0;
unsigned int ret;

OCCRC_InitSync(NULL);

while(1)
{
 DIO_vTogglePin(IO_P1_0);

 OCCRC_ResetSync(0xFFFFFFFF, chnl);
 ret = OCCRC_CalculateSync((void*)0xA0000000, 1, chnl);

 if (ret == 0L)
 delay(8);
 else
 delay(1);
}
// USER CODE END

OCCRC_InitSync(NULL) inits the driver, OCCRC_ResetSync(0xFFFFFFFF, chn)
saves the seed value of the channel in a global array. The seed value is the init value
for the checksum calculation which will be passed to the result register MCHK_RR
before the calculation starts. The use of 0xFFFFFFFF is equal to the procedure used
in the ABM checksum calculation, were the checker result register MCHK_RR is
preloaded with 0xFFFFFFFF (see TC1766 User Manual chap. 4.1.11.2).

At that time the parameter values passed by OCCRC_CalculateSync are just
placeholders. The correct values will be determined after a first build procedure. In this
sample program a checksum will be calculated over the libc. After building the
program, the correct values are given by the map file.

Application Note 12 V 1.0, 2005-03

AP32085
Practical MCHK driver

Add a MCHK driver to the sample program

* Section translation:
======================
…
Section | Size (MAU) | Space addr | Chip addr
--
…
.text.libc | 0x000002ac | 0xa0000400 | 0x00000400
…

Section .text.libc starts at 0xA0000400 and has a size of 0x000002AC. 0x2AC is the
size of 171 words. With the correct parameters the function call
OCCRC_CalculateSync is modified to:
ret = OCCRC_CalculateSync((void*)0xA0000400, 171, chnl);

Rebuild the elf file.

When the program is flashed now the LED will blink fast because
OCCRC_CalculateSync will not return zero so that delay(1) will be called.

To calculate the correct checksum in advance the Signature Analysis Tool (SAG)
which is part of the Application Note will be used. Create a text file 'mchk.smd' and
add the following line:
-eav 0 0xA0000400 - 0xA00006A8

The end address 0xA00006A8 is 4 bytes less than the sum of the start address and
the size because the end address is included in the memory range.

Execute the SAG tool and read the result file 'ifxcrc.inf' from the command line
$ifxsag mchk.elf mchk.smd; cat ifxcrc.inf

0xd272b356

Put the result value in the compare condition, so that the code look like:

Application Note 13 V 1.0, 2005-03

AP32085
Practical MCHK driver

Add a MCHK driver to the sample program

// USER CODE BEGIN (Main,9)
const IO_ChannelType chnl = 0;
unsigned int ret;

OCCRC_InitSync(NULL);

while(1)
{
 DIO_vTogglePin(IO_P1_0);

 OCCRC_ResetSync(0xFFFFFFFF, chnl);
 ret = OCCRC_CalculateSync((void*)0xA0000400, 171, chnl);

 if (ret == 0xd272b35)
 delay(8);
 else
 delay(1);
}

Build, flash and run the program. The LED will blink slowly.

Application Note 14 V 1.0, 2005-03

AP32085
Practical MCHK driver

Add an Alternate Boot Mode (ABM) header to the sample program

4 Add an Alternate Boot Mode (ABM) header to the
sample program

With the SAG Tool it is straightforward to add an ABM header to the elf file, so that a
memory range is checked at start-up. Modify the SAG command file to:
-eavw 0 0xa0000400 - 0xa00006A8

Executing the following command
$mchk.elf mchk.smd -write_abm_header -flash_internal -o mchk_abm.elf

will add an ABM header to a copy of the elf file.

Use the e.g. the GNU readelf utility to verify the section changes.
$tricore-read -S mchk_abm.elf
…
Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
…
[27] .abmheader1 PROGBITS a001ffe0 003a4c 000020 00 AX 0 0 1
[28] .abmheader2 PROGBITS a003ffe0 003a6c 000020 00 AX 0 0 1

Flash the program. Switch the Hardware configuration DIP 1 to OFF to select the
Alternate Boot Mode. Reset the TriBoard and see again the LED blinking.

The SAG tool has many more options. To learn more about the complete functionality
read the SAG manual.

Application Note 15 V 1.0, 2005-03

AP32085
Practical MCHK driver

Goodies

5 Goodies
This Application Note comes with two goodies.

5.1 CRC debugger macro

Install the macro file 'ifxcrc.dsm' as an UDE debugger macro. The file contains
the macro ifxcrc. If the "Run” button is pressed in the Macro dialog an input parameter
pops up. The ifxcrc macro needs 3 parameters: the initial crc value, the start and the
end address. Use Visual Basic notation for hexadecimal values.

Figure 5 Input parameter dialog of the ifxcrc macro.
The result is shown in a Message Box dialog and also written to the command view
window.

Application Note 16 V 1.0, 2005-03

AP32085
Practical MCHK driver

Goodies

5.2 CRC command line tool

Use the 'ifxcrc.exe' command line tool to generate an ABM header as a source
file to be linked to your project. 'ifxcrc.exe' comes as source code including a
Makefile for GNU.

Execute
$ ifxcrc -a -sA0000400 -eA00006A8 mchk.elf >abm1.c; cp abm1.c abm2.c

to create two new files 'abm1.c' and 'abm2.c'. Add both to a copy
'mchk_goody.pjt' of the previous project file 'mchk.pjt' and setup two Sections
.rodata.abm1, .rodata.abm2 (). Figure 6

Figure 6 Linker Section Settings

Rebuild the project. Verify the section header with the tricore-readelf utility
$ tricore-readelf -S mchk_goody.elf
…
Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
…
[22] .rodata.abm2 PROGBITS a003ffe0 002c37 000020 00 AT 0 0 4
[23] .rodata.abm1 PROGBITS a001ffe0 002c57 000020 00 AT 0 0 4

Flash the program and reset the TriBoard.

'ifxcrc.exe' has many other options. Type --help to display all options and explore
the source code.

Application Note 17 V 1.0, 2005-03

AP32085
Practical MCHK driver

Goodies

Application Note 18 V 1.0, 2005-03

AP32085
Practical MCHK driver

Example code

Application Note 19 V 1.0, 2005-03

6 Example code
The Application note comes with a code package ap3208510_tc1766_mchk.zip. The
zip file contains the following files.
├───mchk
│ abm1.c // Generated by ifxcrc.exe
│ abm2.c // Generated by ifxcrc.exe
│ CAS_DTYP.h // Generated by DAvE mchk.dav Project
│ cstart.c // Generated by DAvE mchk.dav Project
│ IFXCRC.INF // SAG output file
│ LLD.h // Generated by DAvE mchk.dav Project
│ LLD_DIO.c // Generated by DAvE mchk.dav Project
│ LLD_DIO.h // Generated by DAvE mchk.dav Project
│ LLD_DMA.c // Generated by DAvE mchk.dav Project
│ LLD_DMA.h // Generated by DAvE mchk.dav Project
│ MAIN.c // Generated by DAvE mchk.dav Project
│ MAIN.h // Generated by DAvE mchk.dav Project
│ mchk.dav // DAvE Project file
│ mchk.pjt // Tasking EDE Project file
│ mchk.psp // Tasking EDE Project Workspace
│ mchk.smd // SAG Command file
│ MCHK.WSP // UDE Workspace
│ mchk_goody.pjt // Tasking EDE Project file
│ TC1766Regs.h // Generated by DAvE mchk.dav Project
│
├───SAG
│ TriCore_SAG_Release_V1.2_2004-12-14.zip // SAG Tool package
│
├───Goodies
 ├───ifxcrc
 │ ifxcrc.cpp // ifxcrc source file
 │ makefile // Makefile for ifxcrc.exe
 │
 └───pls
 ifxcrc.dsm // UDE Debugger macro

AP32085
Practical MCHK driver

Glossary

7 Glossary

DAvE Digital Application virtual Engineer.
Code generator and Low level driver configurator Infineon
Microcontroller.
See http://www.infineon.com/dave

UDE Universal Debug Engine from PLS
PLS Company name: Programmierbare Logik & Systeme GmbH

Manufacturer of the UDE Debugger used in this Application
Note.
See http://www.pls-mc.com/

Tasking Company name: Tasking
Manufacture of the Compiler used in this Application Note
See http://www.tasking.com/products/tricore/

SAG Signature Analysis Generator
Tool for calculating the CRC value and attaching an ABM
header to an elf file.

Application Note 20 V 1.0, 2005-03

http://www.infineon.com/dave
http://www.pls-mc.com/
http://www.tasking.com/products/tricore/

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

	Introduction
	Build a sample program
	Add a MCHK driver to the sample program
	Add an Alternate Boot Mode (ABM) header to the sample program
	Goodies
	CRC debugger macro
	CRC command line tool

	Example code
	Glossary

