United States Patent i

Karaev et al.

US005802518A

(111 Patent Number: 5,802,518
451 Date of Patent: Sep. 1, 1998

(73]

21
122]

(51]
[52]

[58]

[56]

INFORMATION DELIVERY SYSTEM AND
METHOD
Inventors: Isaak Karaev. Brooklyn; George
Baird. New York; Pavel Blazek. Forest
Hills; Eduard Kitain. Brooklyn;
Dmitry Prohorov. Forest Hills;
Jacques Leisy. Bridgewater; Yuri
Urazov, Forest Hills, all of N.Y.;
Stephen Zucknovich. Wayne. N.J.
Assignee: Multex Systems, Inc.. New York, N.Y.
Appl. No.: 658,966
Filed: Jun. 4, 1996
Int. CLS GOGF 17130
U.S. CL 707/9; 707/2; 707/10;
707/5; 395/200.59
Field of Searchccceeenrerannan.. 395/6, 200.59;
707/9.2, 10, 5
References Cited
U.S. PATENT DOCUMENTS
5,089,956 2/1992 MacPhailcoeeevereveemreniennns 395/601
5,132,900 7/1992 Gilchrist et al. .. 395/609
5247661 9/1993 Hager et al. ..ccoerrervrevererecennae 395/615
5262942 11/1993 Eaile 3957237
5265242 11/1993 Fujisawa et al. .cverreererrcernnens 395/603

5297,032 3/1994 Trojan etal.
5,301,350 4/1994 Rogan et al.ooervereeeernnnns
5321,750 6/1994 Nadan
3333246 7/1994 Nagasakaceeeeoersesseennns
5339392 8/1994 Risbergetal. .
5,410,693 4/1995 Yuetal. ...
5452460 9/1995 Distelberg et al. .
5,502,637 3/1996 Beaulieu et al.
5511,156 4/1996 Nagasaka

5,513,126 4/1996 Harkins et al.
5,530,852 6/1996 Meske, Jr. et al. .

5,537,586 7/1996 Amram et al. c.cccoreeenrereianeans 395/603
5.539.865 7/1996 Gentile 395/115
5,572,643 11/1996 Judson 395/793
5,600,831 2/1997 Levyetal. .. - 395/602

FOREIGN PATENT DOCUMENTS

0701220 Al 3/1996 European Pat. Off. .
WO 91/01608 2/1991 WIPO .
WO 93/15466 8/1993 WIPO .
WO 95/33236 12/1995 WIPO .

OTHER PUBLICATIONS

“Multex Publisher™”, Multex Systems. Inc.. copyright
1994, 6 pages.

Gupta, Udayan. “From The Inside Qut.” Information Week,
May 22, 1995, 3 pages.

GFI News Release, 2pgs. Jun. 5. 1996, New York.

(List continued on next page.)

Primary Examiner—Wayne Amsbury
Attorney, Agent, or Firm—Kenyon & Kenyon

571 ABSTRACT

The secure electronic distribution of research documents
over the world wide web to investors who are authorized to
receive said research documents. A repository server
receives research documents from contributors. Also
received are corresponding document profiles with informa-
tion relating to each research document including authori-
2ation information specifying who is permitted to access
each research document. The repository server includes a
first database for structured query searches and a second
database for full text searches. A web server is coupled to the
repository server and coupled to the world wide web. The
web server receives requests from investors for research
documents that satisfy a query. The web server determines
whether the first database or the second database should be
searched based upon the type of query. The repository server
transmits to the web server a list of research documents that
satisfy the query and which the investor is authorized to
access according to the authorization information. The web
server formats the list of documents according to a template
form. Optionally, queries can be optimized. The system has
a control mechanism to prevent concurrent unauthorized
access by two people using the same ID/password combi-
nation.

22 Claims, 5 Drawing Sheets

1 7] Centaal Site

5,649,186 7/1997 FeIgUSONcorvernreeveceeresornenanes 395/610
~ox
U~
— 07 \iewar Server A 30
Workstation A
g
B a
Viewar “
:
Warkstation B Viewse Server 8 55 o
Contributar “
Server A
pe
Viewer
c
1470 46 M 18y

Contributer
Server B

10 =i

Contributar Contributor
1A\ i

Contributor

<

User
IComputer]|

[8

5,802,518
Page 2

OTHER PUBLICATIONS

Inside Market Data, The Newsletter of Electronic Financial
Information. 3 pp., Jun. 17, 1996, Waters Information Ser-
vices. Inc.

Multex News Release. Multex Systems, Inc. Doubles Its
Private Capital Financing. 2 pp.. Jun. 5, 1996.

Multex News Release, Multex Systems. Inc. Aligns With
Top Wall Street Information Providers. 2 pp.. Jun. 5. 1996.

SIA Report Market Pulse. Multex Raises Capital; Signs with
Reuters. Bloomberg. GFL, Wall Street & Technology. 1 p..
Aug. 1996.

5,802,518

Sheet 1 of 5

Sep. 1, 1998

U.S. Patent

8

§

l13)nduwion
98

Nu/\

9

{

ias

J8nduwion

SEYVELS

aam

"/ N\

| "Bi4

2 uoneISHIOM
10INqLIU0Y

~s8l

N

g laniag
Joinguiucy

\

mgm?_ww
Zl aa

lantag
aa

5

/:

— 01l

S~

9Ig |esuan

J01NquUIL0n

v 91

N

e

(2 VI ¢

0Z

g UoeISHIOM vy uoneisyiom
10)NqUIU09

ev_.

v lontag
longuiuon

U.S. Patent Sep. 1, 1998 Sheet 2 of 5 5,802,518

Bulletin Board

A20 A22 124 426 128 130
Refresh || || Query || ||[Summary|| ||AM Notes| || View All 148 || |[Long Form]

Latest 100 of 143 Documentsq*32

Submit Company Pgs Size Symbol SYN Headline
10:41AM Equitable Securities 3 Roper Industries
10:39AM Equitable Securities 2 72K Mid States PLC
10:39AM Equitable Securites 3 75K Leqgett & Platt
10:37AM Punk, Ziegel & Kn... 1 HPS Yes HealthPlan Service
10:36AM Merrill Lynch 2 51K ASDOF ASSIDOMAN: Strong
10:35AM Merrill Lynch 2 17K CNG CONSOL NAT GAS: A
10:21AM Merrill Lynch 2 12K Strategy Updates
10:18AM Merrill Lynch 6 55K Daily Optimized, T
10:18AM ING Barings 6 64K SKODA.. Eastern Europe Da
10:14AM Merrill Lynch Test 11 MLNONO CURRENT RESTRICT!
10:14AM Janney Montgomery... 2 35K ADCO Adco Technologies
10:14AM Merrill Lynch Test 1 MLNO2 4 24-Hour Restrictions
10:14AM Janney Montgomery... 7 57K Statistical Pages
10:14AM Janney Monigomery... 86 469K ANST M... Mid-Atlantic Revi
10:04AM Brown Brothers Ha... 15 172K CLHNZ... Colgate-Palmolive

| 10:02AM Merrill Lynch, 2y 52Ky HNKD \ HA_&%Y_LLQEELME

§ P \ _

] é f | ! \
102 104 100 106 108 110 111 112

FIG. 2

U.S. Patent

212

Sep. 1, 1998 Sheet 3 of 5

214 }4 126
/

5,802,518

Document Query

216
pd

218
e

Submit;'l | Gount Only|| |[Summary|| ||AM Notes|| |[Reset [BBoard

Symbol:
202
For Period

Of 204
Keywords:

-206
Contributors:

208

Industries:

10

—_—

|-~

Last 7 Days

Symbol Guide

\220

[All Contributors]

Adams, Harkness & Hill

Alex Brown & Sons

Auerbach Grayson & Co., Inc.
Brown Brothers Harriman & Co.
Chicago Corporation

[All Industries)

ADVERTISING
AEROSPACE
AGRICULTURE

AIR TRANSPORTATION
APPAREL & TEXTILES

\200

FIG. 3

U.S. Patent Sep. 1, 1998 Sheet 4 of 5 5,802,518

Query Results

20 A22 124 /126 128 130
404&1_‘ Refresh || || Query | |[Summary [AM Notes]] [TView AT 115 Long Form |
Lastest 100 of 115 Documents, Sorted by Score, for |[Last 30 Daysj[¥]iand (*strong b

Scr Release Company Pgs Size Symbol SYN Headline

1 Apr22 AlexBrown&Sons 3 132K SUI SUN COMMUNITI
1 Apr22 AlexBrown&Sons 4 89K HRC HEALTHSOUTHC
1T Apr22 AlexBrown&Sons 9 225K |WBK INTERWEST BAN
1 Apr22 AlexBrown&Sons 9 348K MRK MERCK & CO.,

T Apr22 AlexBrown&Sons 93 620K ALTRA. WEEKLY NOTES

1 Apr22 AlexBrown&Sons 7 689K DTOP DESKTOP DATA,

1 Apr23 AlexBrown&Sons 5 126K DELL DELL COMPUTER
1 Apr23 AlexBrown&Sons 5 88K GDT GUIDANT CORPO
1 Apr23 AlexBrown&Sons 4 91K HCR HEALTH CARE &

1 Apr23 AlexBrown&Sons 8 345K JNJ JOHNSON & JOH
1 Apr24 AlexBrown&Sons 4 B1K ATML ATMEL CORPORA
T Apr24 AlexBrown&Sons 6 94K CSCC CASCADE COMMU
1 Apr24 AlexBrown&Sons 9 187K EVGMA.. EVERGREEN MED
1 Apr25 AlexBrown&Sons 10 281K AMRDC... BROADCASTING :
1 Apr25 AlexBrown&Sons 4 82K MCSY MEDIC COMPUTE
1

Apr25 AlexBrown& Sons 4 80K ODRRE __ALEX BROWN

402J

102) 104 106 108 110 111 112

FIG. 4

5,802,518

Sheet 5 of 5

Sep. 1, 1998

U.S. Patent

8

§

Haindwon
198

9
indwon
Jasf
J uoljeysyiopy g UOHBISHIOM vy uonjeysyiopm
Jonqliuo)n 10jnquo Jojnquuon
gL A 9% ~Fi
J uoReIsyiop
/ \ Jamap
Janlag
qam g Jenlag VI T
14 \ / einguuog < ..SMn‘__wh_Mw
(44 (4% g uoneIsyIop
0z :
m \ / ., g JonIag Jamalp 4 Jamaiy
enleg SEINELS E‘:
v 9¢
Zl ga aq
gL N Loy
s jenua) [y b <=o__anMs
0€ VY 13MI9S Jomaly . o0 n
G ‘b4 0t~

5.802.518

1

INFORMATION DELIVERY SYSTEM AND
METHOD

FIELD OF INVENTION

The present invention is directed to a computer-based
system and method for the electronic distribution of
information, and more particularly, for the distribution of
information via the Internet to authorized recipients.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or patent
disclosure as it appears in the Patent and Trademark Office
patent file or records. but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

Current computer technology allows documents and other
information to be distributed electronically, from computer
to computer. Electronic distribution is generally cost effec-
tive when compared with hard copy distribution methods.
Global computer networks. such as the Internet, enable
information to be distributed to a wide range of people at
locations around the world. One of the many advantages of
the Internet, particularly the World Wide Web (“WWW™), is
that the communication protocols used are non-proprietary.
thus enabling end users to access and use the Internet
without the need for customized hardware or software.

Often, an information provider wishes to provide infor-
mation to users on a controlled basis. For example, the
information provider may want to provide information only
to those users who have paid a fee or completed a registra-
tion process, and also may want to restrict access to certain
types of information to certain classes of users. Additionally,
the information provider may require that the format of the
information provided to one user be different from the
format of the same information provided to another user or
class of users.

Further. some users only may be interested in certain
types of information available from a particular information
provider. Users may wish that the information received from
an information provider be output in a format specific to that
user.

Existing technology allows an information provider who
distributes information via the WWW to restrict access to
authorized users by means of. for example, a user identifi-
cation code andfor password. However, current password
authorization methods used on the WWW have a number of
significant problems. When using a browser program, such
as Netscape’s Navigator program or Microsoft’s Internet
Explorer program. to access web pages, a user is simply
making a request to a remote web server (having a unique IP
address) for a file. This file is stored in the user’s computer
local memory and is output by the browser program.
Typically, web pages are in HTML format (HyperText
Markup Language). Each time the user “moves” to a new
web page. the browser program makes a new request to a
web server (which may be the same or another web server)
for a file. Thus, although a user may provide a password fo
obtain a file from a web server. the user typically does not
log-out when the user has finished with this file—the user
simply issues a request for a file on another web server or
closes down his or her browser program.

15

20

25

30

35

45

50

55

65

2

When a user initially accesses a web server. most browser
programs can provide the web server with an identification
code identifying the particular browser as well as the user’s
Internet Protocol (“IP”) address. However, when a user
accesses a web server through a proxy server. many users
may appear to have the same IP address.

To prevent concurrent use of a user’s identification code
and password (e.g.. to prevent the user from distributing the
user’s identification code and password for use by others)
when a user initially accesses a web server. the web server,
using current password technology. can prevent other access
with that identification code for a predetermined period of
time. However. if the user moves to another computer or
browser program. then the authorized user will be prevented
from accessing the web server from the new computer or
browser program.

Thus. a secure sign-on procedure is needed that prevents
multiple users using the same identification code and allows
an authorized user to move to another computer or browser
program and still be permitted to access the secure web
server.

When providing information via the WWW, information
providers can, in a crude way, “customize” the information
for a user. One simple example of customization is providing
the user with the results of a query. Here. the user submits
a query to the web server. e.g.. by completing a form. and,
based on the user’s request. the web server creates a web
page (or form) comprising information satisfying the query
and transfers this web page (or form) to the user’s browser
program for display. In such systems. the program used to
create the web page (or form) is “hard coded”. so that if the
information provider wishes to change the format of the
information. this program must be recoded or replaced.
Recoding or replacing such programs is inefficient and often
time consuming.

Further. every user who submits the same query to the
web server will receive the same results in the same format.
Existing methods of providing information to WWW users
do not enable different users to be automatically provided
with different views of the information. Thus. a procedure is
needed to enable the provision of customized views of
requested information to WWW users.

When a user submits a query to a web server, the web
server will typically format and submit the received query to
a database program or search engine. There can be many
types of queries that a user submits via an information
provider’s web server. For example. some queries may
request information based on categories contained in a
relational database (e.g.. all presidents who were born in
Virginia) while other queries may require full text searches
of textual documents (e.g., all documents containing the
words “sell” and “TBM”). Currently. information providers
maintain one database of information that is used to obtain
the results of all types of queries. However. while a database
search engine may be fast and efficient in obtaining search
results for some types of queries. it may be slow and
inefficient in obtaining search results for other types of
queries.

Moreover, when responding to queries via the WWW, the
web server is accessed by many users. Due to communica-
tion delays over the Internet. it is wasteful to tie-up the
database program or search engine until each user has
received the full results of the user’s query. It would be
desirable in some instances to provide a search mechanism
that allows asynchronous searching of a database by mul-
tiple web users such that the database program or search

5.802.518

3

engine can take advantage of communication delays when
serving multiple users.

Thus. in summary. an Internet information delivery sys-
tem is needed that has a secure but flexible password control
mechanism so that information is provided only to users
who are authorized to receive it, that efficiently retrieves any
requested information. and that customizes the views of
information provided to users in a flexible and robust
manner.

SUMMARY OF THE INVENTION

The present invention provides an electronic information
distribution system that allows remote users to receive.
access and query information that is stored in electronic
form at a central server, called a repository server. Ideally.
users communicate with the repository server via the Inter-
net. The repository server is coupled to the Internet by a web
server. The repository server comprises or is coupled to a
plurality of databases of information stored in electronic
form.

Preferably. the repository server is coupled to one or more
remote contributor workstations. The information that is
stored at the repository server is received from the contribu-
tor workstations in electronic form. According to the repre-
sentative embodiment of the present invention. the informa-
tion received from the contributor workstations are files
comprising one or more documents. These documents typi-
cally would contain text, data. charts, graphs. spreadsheets
and the like. or combinations thereof. and may be in many
formats. It will be appreciated that any information that can
be stored in digital form. such as photographs. videos, sound
recordings, etc. may be stored in the files received from the
contributor workstations. In the representative embodiment,
files received from the contributor workstations are con-
verted at a central site into predetermined format, e.g., for
printable documents, a common viewing format such as, for
example, PDF format. and thereafter provided to the reposi-
tory server. In the representative embodiment, each docu-
ment submitted to the repository server is accompanied by
a document profile comprising information organized
according to predefined fields relating to the document.

The web server includes a web server program. The web
server also includes a web server helper application using
the appropriate API such as. for example. the Common
Gateway Interface (CGI) program. BGL NSAPI or ISAPL

According to the representative embodiment of the
present invention. each user has a user computer, such as, for
example, a personal computer with an Intel Pentium pro-
cessor and a fast modem that the user can use to connect to
the Internet. The user computer has one or more local
storage devices. In the representative embodiment, the user
computer executes Netscape’s Navigator 2.1 browser pro-
gram. However, other browser programs, such the Mosaic
browser or Microsoft’s Internet Explorer 2.0 browser could
also be used. As used herein, the browser programs executed
by the user computer will be termed “Internet browsers.”

When the user initially accesses the web server. the user
is required to provide a user identification code (“ID”) and
a password. The web server submits a login request to the
CGI program to verify that no other user is using the same
ID. According to the present invention. a user is permitted to
access the web server from a different user computer or
using a different Internet browser; however, the present
invention prevents the user (or other users) from “concur-
rently” accessing the web server from more than one com-
puter or Internet browser using the same ID.

10

15

20

25

30

35

4s

50

55

65

4

Once the user has provided the ID and password, the
repository server will determine what information that user
is authorized to receive. According to the present invention,
each user has authorization to access all or a subset of the
information stored at the repository server.

In the representative embodiment. the repository server
can provide the user with a list of new documents that have
been recently received by the repository server and which
that user is authorized to access. The user may also request
a list of documents that fit certain user-specified search
criteria. A list of the documents that match that search
criteria and which the user is authorized to access is pro-
vided to the user computer. The user can then select. request
and view documents from these lists.

Different users may be permitted to access different
subsets of the documents stored at the central repository.

According to the present invention. the web server is
coupled to at least two database search engines in the
repository server. At least one search engine performs at
least full text searching of textual documents. At least one
other search engine performs at least searching om pre-
defined fields of information. When a search is submitted by
the user to the web server, it is determined what type of
search is required. and the appropriate query (e.g.. full text,
search on predefined fields) is formulated and submitted to
the appropriate search engine. The search engine returns a
results set to the web server. Typically. the results set will
comprise a list of documents satisfying the query and that
the user has authorization to access. This architecture
ensures that the most efficient search engine is used to obtain
the search results and allows more than one search to be
conducted in parallel.

In the representative embodiment, the repository server
includes a number of optimizers. An authorization optimizer
builds the least expensive (in terms of execution time)
search selection clause which will restrict the user’s query to
the database subset that the user is authorized to access. A
sorted queries optimizer speedily provides users with the
results set even when the number of elements in the results
set is substantial. The web server sends a query block to
repository server for optimization and the actual database
query is built by a database server.

Communication delays over the Internet are used to make
apparent response time at the web server faster by interleav-
ing server access and response through an asynchronous
protocol to the search engine.

The web server can provide customized views of the
information provided to users. The web server has access to
a number of different template forms. The template forms
are written in a novel computer language. called herein a
“research access language™ (or RAL) that describes how to
format a HTML document and integrate the information
from results set into this format. The web server interprets
the template form and creates a HTML page comprising the
information from the results set. The web server may have
a number of template forms, for each type of query. for each
user or class of user, etc. Thus, each user or class of users
may receive information in a format defined for that user or
class of users. The template forms of the present invention
provide an additional advantage. Whenever the information
provider wishes to change the output format of the infor-
mation provided to users, a new template form is created and
used by the web server. Template forms can easily be created
(without having to “hardcode” any program) and can be
loaded for use without having to take the web server off-line.

The present invention is ideally suited for providing
investment research reports to investors and investor advi-

5.802.518

5

sors. Brokerage and investment banking firms create
mounds of investment research reports on a daily basis
concerning thousands of companies and industries. These
reports are provided to investors in electronic form. At
present. these reports are distributed over proprietary
networks. requiring the installation and maintenance of
expensive hardware, software and communication lines.
Because of this expense, the number of users who have
access to these proprietary networks is limited. In the
representative embodiment. the present invention enables
investment research reports to be securely distributed to
investors over the Internet. The present invention overcomes
the disadvantages of Internet (e.g., slower than proprietary
networks, less secure, user imterface limited to HTML
format) and enables investment research reports to be dis-
tributed to a wider range of investors who are authorized to
receive such reports.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of the overall system architecture of
the present invention.

FIG. 2 is an example bulletin board screen display.

FIG. 3 is an example document query form screen display.

FIG. 4 is an example query results screen display.

FIG. 5 is a system architecture diagram of an enhanced
system according to the present invention.

DETAILED DESCRIPTION

For ease of description, the embodiment of the present
invention described herein is that used for the electronic
distribution of investment research reports and morning
meeting notes (“reports™) to investors via the Internet’s
World Wide Web (“WWW?”). However, the invention is not
so limited, and can be used, where appropriate. for the
electronic distribution of other types of information via other
types of networks.

Brokerage and investment banking firms spend large
sums of money creating, printing and distributing thousands
of graphic-rich research reports to investors (e.g.,
customer’s, remote sales offices, investment advisors,
brokers, portfolio managers. etc.) Brokerage and investment
banking firms distribute their reports only to selected inves-
tors (e.g.. their customers). However, each investor may
receive reports from more than one brokerage or investment
banking firm. Investors require access to these reports on a
timely basis. It is also desirable to search all available
reports for those reports that may be of interest to the
investor. The representative embodiment of the present
invention provides an advanced. secure system to distribute
reports on a timely basis from brokerage and investment
banking firms to investors and that allows investors to access
and query a database of reports located at a remote location.

As used herein, the terms “investor” and “user” include
any end user who is permitted to receive or access infor-
mation via the present invention. such as, for example,
customers of brokerage and investment banking firms,
employees of brokerage and investment banking firms,
investment advisors. brokers, bankers, portfolio and fund
managers, journalists, analysts. economists, university
professors, MBA students, etc.

Referring now to the drawings, and initially FIG. 1, there
is illustrated an overall system architecture according to the
present invention. A central repository server 2 is coupled.
via a central site 1. to one or more remote contributor
workstations 14, 16, 18. The contributor workstations 14,

10

15

20

25

30

35

45

50

55

65

6

16. 18 are used by brokerage and investment banking firms
to submit reports to the repository server 2. Optionally, the
contributor workstations 14. 16. 18 may be coupled to the
repository server 2 via proprietary network comprising a
plurality of contributor servers 20, 22. Alternatively or
additionally. a contributor workstation may provide reports
to the repository server 2 via the Internet.

In the representative embodiment. the contributor work-
stations execute a program called Multex Contributor™,
described in detail in the user manual titled “MX
Contributor-User Guide” available from Multex Systems,
Inc. of New York. N.Y. and expressly incorporated herein by
reference. The Multex Contributor™ program is a real-time
Windows-based document indexing and transfer program
used to disseminate reports to the central site 1. The con-
tributor simply completes a form (a document profile)
displayed on the screen of the contributor workstation 14.
16, 18 and. at the specified time, the Multex Contributor™
program transfers the report. along with the information in
the completed form. to the centrat site 1.

At the contributor workstation 14. 16. 18. the contributor
completes a form relating to the report. First. the contributor
selects a report for distribution. The report is stored. usually
as a file, in electronic form on the contributor workstation
14. 16. 18 or on a server or network drive coupled to the
contributor workstation 14, 16. 18. The report may be in any
standard electronic format. for example. Pagemaker.
Microsoft Word for Windows, Corel WordPerfect. etc. The
form has fields relating to the report, for example. title.
author. subject, date and time of creation, distribution level
(setting distribution to a default group of investors or one of
a set of predefined groups of investors) and expiration time.
Optionally. the contributor can enter additional information
in the form. such as, for example, ticker symbol. industry
group, synopsis, country, region. currency, etc.

Once the report has been selected and the form completed.
the user issues a “contribute” command to the Multex
Contributor™ program and the report and all the informa-
tion in the form is electronically transmitted to the contribu-
tor server 20, 22. In the representative embodiment, the
reports are “pushed up” from the contributor servers 20, 22
to the central site 1.

At the central site 1, the reports are processed. Typically.
the central site comprises a network of computer processors.
At the central site 1, each report is converted in to a
predetermined a predetermined format. In the representative
embodiment. all reports received at the central site 1 are
converted at the central site 1 into a format that can be read
by the Acrobat Exchange program. available from Adobe
Systems. The reports are then provided by the central site 1
to the repository server 2.

Where desired. the repository server 2 can also receive,
store and enable the distribution of other useful information,
such as, for example. news reports received from wire
services, government reports. product reviews, etc.

The repository server 2 comprises or is coupled to at least
two database servers 11, 13. Each database server is coupled
to a database storage device 10, 12. A relational database 10,
11 allows field searching. In the representative embodiment.
the relational database 10, 11 is an SQL database server 11
coupled to a storage device 10. A full text database 12, 13
allows word or text searching. In the representative
embodiment, the full text database 12, 13 is a full text search
database server 13 (for example. a full text search engine
available from Fulcrum of Ottawa, Canada) coupled to a
storage device 12.

5.802.518

7

The information contained in the form is indexed in the
relational database 11 to allow retrieval of the report by
searching on such fields. e.g.. searches by author, date.
industry, etc. Where necessary. information in the form
received from the contributor is mapped into “common”
terminology as used by the relational database 11. For
example, the terms “sports utilities” and “minivans” may be
mapped and stored as the term “automobile.” ASCH text is
extracted from the report and stored in the full text database
12. 13 for full text searching.

The repository server 2 provides investors with lists of
reports received from the contributor workstations 14. 16. 18
and allows investors to request lists of reports that fit certain
criteria. The investor can select reports from these lists to
down-load. view and/or print. Generally, lists of reports can
be generated by the web server 4.

The contributor of a report can be notified that a particular
investor has accessed that report. The repository server 2
maintains for each report a list of those who accessed that
report. The repository server 2 can transmit that list to the
report’s contributor on a regular basis and/or when requested
by the contributor.

The repository server 2 is coupled to a web server 4 which
in turn is coupled to the Internet via, for example. a T1 or
ISDN connection. The web server 4 is a high powered server
computer that runs a web server program. In the represen-
tative embodiment. the web server 4 executes Netscape’s
Commerce Server program. The web server program allows
web pages (in HTML format) to be accessed by investors.
The web server 4 also executes other programs and subrou-
tines as required.

Each investor has a user computer 6. 8. such as. for
example. a personal computer with an Intel Pentium pro-
cessor and a fast modem. In the representative embodiment,
the user computer 6. 8 executes an Internet browser
program. such as. for example, Netscape's Navigator 2.1
browser program. The Internet browser can read files in
HTML format. In the representative embodiment. the Inter-
net browser has access to a plug-in program that can read
files in the predetermined format. In the representative
embodiment, the plug-in is the Acrobat Exchange program,
available from Adobe Systems that can read files in *.pdf”
format. The user computer 6, 8 can connect with the Internet
via, for example. a commercial Internet Service Provider.

The web server 4 includes to a web server helper
application, which in the representative embodiment is the
CGI (common gateway interface) program. that is activated
by investors through web pages provided by the web server
4. CGl is an interface between the web server program and
other programs. CGI lets those other programs process
HTML forms and other data coming from Internet browsers.
and then lets the other programs send a response back the
web server 4 to be delivered to the Internet browser. The
response can be HTML files. GIF files. PDF files or any data
that the Internet browser can view. Thus, generally, when an
Internet browser requests a document from the web server 4.
the web server 4 server program finds the document and
sends it to the Internet browser. However, if the Internet
browser requests a CGI program, the web server 4 server
program acts as a middleman between the Internet browser
and the CGI program. Other web server helper applications.
such as. for example. BGL NSAPI or ISAPI, can be used in
place of CGI within the principles of the present invention.

Access to the web server 4 begins from an investor’s
Internet browser. Initially, the investor can access “public”
web pages generally describing some of the features of the

10

15

20

25

30

35

45

50

55

65

8

document delivery service of the present invention. If the
investor chooses to proceed, the investor selects the “log-in”
option from the initial web page.

User Verification:

The first step the web server 4 takes in handling an
investor request is verifying that the investor is permitted to
access the information stored at the repository server 2. This
is accomplished using the standard verification procedure
built into the communication protocol between Internet
browsers and web servers.

The web server 4 uses Netscape’s Commerce Server’s
ability to call custom verification subroutines when a user
tries to access CGP's and web pages. The web server 4
executes a subroutine and. using Netscape’s NSAPIL
receives the ID and password that the investor is asked to
provide by the server/browser, and then verifies the ID and
password against a database of authorized users (the user
database) maintained at the repository server 2. If the user is
verified, the Internet browser will be given a verification
signature. An investor who is not in the user database, or
enters an incorrect password, is denied access to CGI's and
web pages on the web server 4 by simply having the
subroutine return an “Access Denied” flag to the web server
4. This subroutine maintains an open connection to the user
database to improve performance.

Whenever an investor makes a query for a list of reports,
the investor’s Internet browser sends an HTTP (hypertext
transfer protocol) request that represents what the user wants
to the web server 4. If the request does not have a verifi-
cation signature attached to it. the web server 4 sends a
command back to the Internet browser. causing it to prompt
the user for an ID and password. The Internet browser will
then return this information to the web server 4. which will
verify that the user is entitled to access the reports stored at
the repository server 2. If the user is verified, the Internet
browser will be given a verification signature. If not. the user
will be prompted again for his ID and password. Once
access is verified. the web server 4 will start the CGI
program named in the original HTTP request, along with any
run-time parameters that are specified in the request. The
CGI program first verifies that the user making the request
(whose ID is passed to the CGI program by the web server
4 through an environment variable) is the only one using that
ID at that moment. This is done by the following method:

a. The CGI program gets the value of the Internet browser
“cookie”, and extracts the value for the named pair
“mxauth” from the cookie.

b. If the value is empty, the CGI program indicates that
this user is accessing the web server 4 for the first time since
starting his or her Internet browser. This user then becomes
the designated “current user of this ID”. A new random value
for the “mxauth” part of the browser cookie is generated,
stored on the web server 4 under this user’s ID, and sent
back to the Internet browser. so that the Internet browser can
send it back next time.

c. If the value is not empty, the CGI program indicates that
this user has previously already accessed the web server 4
since starting the browser program, and has been given an
authorizing cookie. If the “mxauth” value of the cookie does
not match the value stored on the web server for this user,
then this user has been superseded by another user using the
same ID. The CGI does not perform the requested task, and
tells the user that access is denied. If the “mxauth” value of
the cookie does match, then this user is authorized to
continue, and the CGI performs the requested task. Each
time the user is authorized to continue, the time of the access
is stored on the web server 4.

5.802.518

9

d. A stored cookie value that is over an hour old is
considered “stale”. A user whose code does not match a stale
cookie is allowed access as if the user was initially signing
on, as per b. above.

Part of the rationale for this method comes from the lack
of a “sign-off” from a user. When a user “leaves” the web
server 4 to browse other parts of the WWW, or closes down
his or her Internet browser, the web server 4 is not informed.

(For reference. it is noted that cookies are a general
mechanism which server side connections. such as CGI
scripts. can use to both store and retrieve information on a
client side of an Internet connection. A web server, when
returning an HTTP object to an Internet browser, may also
send a piece of state information which the Internet browser
will store. Included in the state object is a description of the
range of URLs for which that state is valid. Future HTTP
requests made by the Internet browser which fall within that
range will include a transmittal of the current value of the
state object from the Internet browser to the web server. For
no compelling reason, the state object is known in the art as
a “cookie.”)

Other systems that allow only one instance of an ID to be
active at one time rely on a “sign-off”” notification to tell
when the ID can be used again for “sign-on”. Because the
web server 4 does not receive a “sign-off”, it is assumed that
any new user is allowed to “sign-on” with that ID, but all
others that are currently using that ID will now be denied
further access. until they “sign-on” again (which involves
closing down the browser, then restarting it again).
Furthermore, step d. is included to keep a user from locking
himself out of his own ID if he happens to use browsers from
two different locations. such as home and office.

Thus, the following scenarios apply:

Scenario 1:

User 1 signs on to the web server 4 at his office, The CGI
marks this browser/user ID combination as the current
user.

At 5:00PM. he goes home. without closing down his
browser.

At 5:45PM he signs on from his home computer. The CGI
now marks this browser/user ID as the current user.

At 10:00PM, he goes to bed. without turning off his
browser.

At 8:00AM the next day. he arrives at work, and tries to
access the web server 4 again. Because his 10:00PM
cookie is mow “stale”. the CGI marks the office
browser/user ID as the current user.

Scenario 2:

User 1 signs on to the web server 4 at her office. The CGI
marks this browser/user ID combination as the current
user.

She then goes to the desk of User 2. and shows User 2
“this new web service”, using her own user ID and
password to sign on to the web server 4. The CGI marks
User 2’s browser as the current user of User 1’s ID.

After a few minutes. User 1 returns to her original
computer, to find that the CGI is denying her access.
User 2 has her locked out by using her ID.

This user verification system is particularly well suited in
information delivery systems where a fee is charged per
ID/password.

Web Server:

The web server 4 uses a single CGI program that handles
all the types of requests that a user makes to the web server
4. In the representative embodiment, the types of requests
that the CGI program can handle are:

10

15

20

25

30

35

45

50

55

65

10

Return a list of reports recently received at the repository
server 2.

Reformat the current list of reports.

Present a form that allows the user to specify criteria for
reports the user wants to access.

Return a list of reports matching the criteria in the form
mentioned above.

Return a list of reports summarized by report contributor.

Return a list of reports authored by a specific contributor.

These requests are handled similarly, except for the
request for the form that the user fills in to specify criteria
for reports that the user wants to access.

Except for the third request listed above, a query is
formulated (whose parameters are determined by the run-
time arguments given to the CGI from the original HTTP
request from the investor) by the web server 4 and sent to the
appropriate database 11, 13. A result set (a list of reports) is
returned and stored in memory. The CGI then opens a
HTML template form that comprises RAL (research access
language) elements, fills in each RAL element with data
from the result set and sends the contents of the template to
the Internet browser through the Web Server 4. (In the case
of the reports that are summarized by contributor, the CGI
simply condenses the list of headlines internally to summary
form. before using the template.) When the output from the
CGI is received at the investor’s Internet browser. the
browser forms it into a “page” of information. along with
action buttons that the investor can select to initiate other
requests.

The request to present a “report query form” (the third
request listed above) calls for the CGI to make two queries
from the relational database 11. The first query is for a list
of all contributors whose reports this investor has authori-
zation to access. The result set of this query is used to fill a
list box, from which the investor is expected to pick the
particular contributors whose reports the investor would like
to access. The second query is for a list of all industries. The
result set of this query is used to fill a list box. from which
the investor is expected to pick the particular industries that
the investor is interested in. These list boxes are defined in
the HTML template with RAL elements that are appropriate
to this particular user request.

When a query is made, the web server 2 selects the
appropriate database to which the query is first routed. In
summary, if the query involves text matching (e.g.. a full text
search) within reports, the query is passed to the full text
database 13. ¥ the query does not involve text matching
within reports, the query is passed to the relational database
11.

In the representative embodiment. each database com-
prises a number of database servers networked together. (for
example, database server 13 comprises a network of data-
base servers.) The database servers that are available to the
CGI are listed in the WEBPUBL.INI file on the web server
4. When satisfying a non-text matching query, the CGI will
attempt to use an SQL type server (e.g.. 11) first. If that
database server is not available, the CGI will automatically
switch to the next available SQL database server. (If all SQL
database servers are not available, then the query will be
passed on to full text database server (e.g. 13).) When
satisfying a text matching query, the CGI will attempt to use
an full text database server (e.g. 13). Again, if that server is
not available, then its backup will be tried, and so on, until
either a server can satisfy the query. or all servers have been
found to be down. In addition to this automatic backup
system. the CGI practices semi-random selection of servers

5.802.518

11

in an effort to balance the load on the servers. This means
that the order that servers are tried is not always the same.

The HTML template forms that the CGI uses rely on
forms that are part of HTML. This allows the users to select
buttons on the pages to submit requests. Each page may have
several buttons. and the names of the buttons (the actual
visible text in them) are used in the CGI to identify which
button the user selected. and therefore, which action to
perform. Parameters for a query are taken from other form
constructs. such as text fields, list boxes. and combo boxes.
When a form does not actively show a parameter value. but
it would be convenient for the CGI to maintain its value for
the next user request. the values are stored as “hidden” fields
in the form. (A hidden field is a form construct defined in
HTML for just this purpose.) This allows the parameters of
a query to be stored in a page that shows the results of a
query, so that they can then be used again as starting values
when the user requests the report query form.

Authorization:

In the representative embodiment. each user has authori-
zation to access a subset of the information stored at the
repository server 2. The contributor determines who has
access to each report. For example. an investment bank may
designate that one of its reports can be accessed only by its
employees and certain investors (e.g.. its customers).
Another report may be designated as accessible by employ-
ees only. A third report may be released for general distri-
bution to all who wish to access that report.

Every document contributed by a contributor is identified
by a “contributor ID”. Furthermore the document is assigned
by the contributor to one or many “document groups” owned
by the contributor. (Documents usually belong to one docu-
ment group.)

The authorization information links an investor to a list of
document groups. Each investor may be permitted to access
documents in one. some or all document groups.

The repository server 2 constantly maintains an up to date
list of all the report groups available along with the reports
in the relational database 11. This list is updated in real time
after a report is added. and completely refreshed daily (e.g..
after report removal of expired reports).

To submit a query, an investor must be identified by the
repository server 2. As the investor’s credential are checked
(see above), the authorization information is retrieved by the
repository server 2. This authorization information contains
a list of report groups the investor is permitted to access.

Optimizations: Two types of optimizations are performed
by repository server 2. The first is a simplification of the
authorization restriction. The second is an optional optimi-
zation performed when the result set has to be sorted; it is
aimed at reducing the perceived response time for the first
answers to a query.

One of the characteristics of the architecture of the present
invention is that each query submitted to a database 11, 13
is submitted as a structure description. rather than a fully
formed SQL statement. The actual SQL statement is built by
the database server 11. 13 itself. Thus, the optimizations can
take place on the raw query definition (i.e., a structure
definition) before executing the query. This allows for more
powerful query optimization. and immediate query defini-
tion analysis to select the proper mechanism to execute it.

1. Optimization of the authorization restriction

In query definition. the investor can restrict the query to
a subset of the contributors the investor has access to. This
feature is used to implement queries like “What’s new today
from XYZ" and “All reports relating to automobiles from

PQR.”

10

20

25

30

35

40

45

50

55

60

65

12

The purpose of the authorization optimizer is to build the
least expensive (with respect to execution time) selection
clause, which will restrict the investor’s query to the data-
base subset the investor is allowed to access.

The authorization optimizer uses this database content
information. combined with the investor’s accessible
groups, as well as the contributor restriction in the query., to
build the restriction clause using the following method.

The repository server 2 builds two lists of groups:

a) the list of groups the investor has requested and has

access to.

b) the list of groups the investor has requested but doesn’t

have access to

Based on the number of elements in these two lists the
authorization optimizer will build the proper restriction
clause.

The following pseudo code describes the actual code used
to implement this algorithm:

for (all the groups in the investor’s allowed group list) do
begin
if (group is in the query contributor restriction)
and group is in database)
then add group to the allowed list
end
for (all the groups in the database) do
begin
if (group is in the query’s coniributor restriction)
and group is not in the mvestor’s allowed list)
then add group to the disallowed list
end
if (allowed groups list is empty)
then deny request
else if (disallowed groups list is empty)
then no restriction
else if (decisionFunction (allowed list, disallowed list))
then restrict to groups in allowed list
else restrict to groups not in disallowed list

The “decisionFunction” selects the shorter of the two
lists. namely, allowed list and disallowed list.

This optimization is more efficient when the database’s
content is close from the investor authorization, since it
works by trimming the unnecessary restrictions for groups
without reports in the database.

To improve the efficiency of this optimization when the
number of groups in the database grows, the records could
be dispatched to different tables based on groups and the
same optimization algorithm could be used to select the
appropriate table and generate a different restriction clause
for every table targeted.

2. Optimization of sorted queries

The purpose of the sorted queries optimizer is to provide
the investor with a fast answer even when the number of
elements to sort is substantial.

Unlike other applications used in memory sorting, data-
base sorting can rely on a buffer being swapped in and out
to disk from the main memory. When the number of items
to sort becomes significant, these /O operation can consume
a lot of time. When an investor submits a query via the
Internet, the repository server 2 via the web server 4 returns
the first hundred rows by default, the most recent reports
being displayed first. The actual query result may contain
thousand of reports. Thus. to display the hundred most
recent reports, the database has to sort the whole result set
before returning any answer.

In order to provide the investor with a quick answer. the
sorted queries optimizer will try to run multiple queries,
each for a smaller subset of the query. If the query has to be
sorted by the report’s date, the sorted queries optimizer

5.802.518

13

divides the requested time period of the query definition into
multiple chunks and executes the same query restricted to
every chunk. Accordingly. the sorted queries optimizer does
not disturb the sorting order.

Based upon tests of real data sets, it was found that it was
more efficient to perform only two queries. rather than a lot
of them. The first query is performed on the first 10th of the
time period, the second one on the remainder period. For
some typical queries. the second subquery execution is
unnecessary since the first query had already returned the
number of rows requested by the investor.

For database 13, the retrieving of a count is orders of
magnitude faster than retrieving the full result set. The
present invention takes advantage of this characteristic to
give an immediate feedback to the investor. As soon as a
query is submitted, the present invention performs a count
and sends this information to the web server 4. The web
server 4 can take advantage of this feature to return that
information to the Internet browser by flushing it’s internal
buffers. That way, even when the retrieval of the result set
takes tens of seconds. the investor gets some feedback in
seconds.

Ideally. the sorted queries optimizer is used only for
sorted queries and when the number of rows is above a given
threshold. The present invention uses the result of the count
to trigger the sorted query optimization.

The following pseudo code describes the code used to
implement the sorted queries optimizer:

Retrieve the count
if (Query is sorted by a time) and (count >= threshold) then
begin
if (query definition contains a time range)
then get the time range from the query definition
else use an appropriate default value
add the restriction for 1/10% of the time range
retrieve the first rows
rows_still_to_fetch = rows_requested — rows_already_ fetched
if (rows__still _to_ fetch > 0)
begin
add the restriction for remainder of the time range
retrieve rows__still__to__fetch rows
end
end

This optimization significantly improves the response
time when the time to perform the additional query is
negligible compared to the time necessary to sort the full set.

The communication delay inherent in the connection
between the Internet browser and the web server 4 may also
introduce additional delays hiding some of the optimization
benefits.

Templates:

According to the present invention, the web server 4
executes a research access program. The research access
program provides a mechanism that enables an investor to
access the information in the databases 11, 13. The research
access program also implements an Internet CGIL which
accepts input parameters from HTML forms, and then using
templates forms, generates HTML pages comprising infor-
mation retricved from the databases 11, 13. The template
forms are written in a novel computer language. called
herein a “research access language” (or RAL) that describes
how to integrate the information retrieved from the data-
bases 11, 13 into this form. The template forms include RAL
elements, as discussed in detail below.

The present invention allows investors to submit queries
and receive in response thereto a list of reports that satisfy
the queries. The queries are constructed from one or more

10

15

20

25

30

45

50

55

65

14

search parameters. including: which contributing company
published the report; which stock symbols figure promi-
nently in the report: when the report was published: what
industries are featured in the report; and keyword search
parameters.

An investor may enter search parameters at a user com-
puter 6. 8 via a web page provided by the web server 4.
When the investor selects the “submit” button on the web
page. the search parameters are forwarded by the Internet
browser to the web server 4. The search parameters are used
to form a query. The query is submitted to the appropriate
database 11. 13 and a list of matching documents is gener-
ated. This list is formatted on the web server 4 into HTML
form, and sent to the investor at the user computer 6. 8,
where the investor’s Internet browser displays the list to the
investor.

The input to the research access program of the present
invention comes from HTML forms completed by investors.
The fields that can be searched on for document queries (and
the expected values of such fields) include:
date: A date range from “today” backwards, matching a

document’s official release date. Possible values include:

o Today

1 Last 2 Days
2 ThisWeek

3 Last 7 Days
5 Last 14 Days
7 This Month
8 Last 30 Days
All Dates
Last 60 Days
Last 90 Days

ticker: A field for ticker symbols.

query: A field for “free text” for searches of the document
text. Logical expressions can be used., including the
ampersand (‘&) for alogical ‘and’. and the pipe character
(*) for a logical ‘or’. Parenthesis can be used for group-
ing expressions, and double quotes can be used to group

words into phrases. All free text searches are not case
sensitive.
For example:
microsoft Find documents with *microsoft”
in their text.
ibm & microsoft Find documents with ‘ibm’ and

‘microsoft’ in their text.
Find documents with either ‘ibm”
or ‘microsoft” in their text.

ibm | microsoft

ibm & Find documents with ‘ibm’,
(microsoft and either ‘microsoft’ or
I apple) ‘apple’ in their text.
“garnings report” Find documents with the phrase

‘earnings report’ in their text.

contributors: A field for a comma separated list of contribu-

tor ID’s.
industries: A field for a comma separated list of industry

ID’s.

There are a number of options for displaying information
to an investor. Some of these options are based on technical
limitations (such as line speed), while others are based on
the preferences of the investor (e.g.. tabular output, prose.
etc.). In order to react quickly to changes in display
requirements, the research access program of the present
invention utilizes template forms to format HTML pages
comprising search results. According to the present
invention, information retrieved from the databases 11. 13 is

5.802.518

15

placed in HTML page format according to changeable
template forms for said HTML pages.

Thus. input {included in the HTML forms completed by
investor) to the research access program of the present
invention from an investor can include view mode param-
eters relating to the format in which the investor wishes to
receive the search results and other information. By supply-
ing view mode parameters, the investor can indicate to the
web server 4 the desired format of information. including
how many records of information are displayed. View mode
parameters (and expected values) include:

FT: Form Type. Expected values are ‘L’ for “list format’. *T”
for ‘table format’. and ‘D’ for double line format.

viewmode: This field indicates whether all records that are
returned by a query should be displayed (within reason—
in the representative embodiment. there is a display limit
of 1000 records), or whether the number of records
display should be limited to a predetermined number. If
the ‘viewmode’ value is set to ‘all’, then all records will
be displayed. Otherwise. the number of records displayed
will be limited to the predetermined number.
To submit a query, the user completes the fields discussed
above and then selects a “submit” button. When an investor
submits a query, the name and value of the HTML form
‘submit’ button selected are treated as input. In the repre-
sentative embodiment, if the following strings appear in the
‘name’ of the submit button, they are treated in the following
manner:
submit: Make a query according to the parameters listed
above.
bboard: Same as submit, except that the query formulated
includes the requirement that only documents recently
received at the repository server 2, e.g. since midnight. be
returped.

long: Change the view mode to a double line format.

short: Change the view mode to a list format.

table: Change the view mode to a table format.

summary: Same as submit. but also requests generation of a
summary list, breaking down the number of documents
that match the query by submitting contributor, and the
document type (research document. or morning call note).

In addition, generates stored HTML files for each con-

tributor in the summary. with one listing of the individual

research documents, and another for the individual morn-
ing call notes. In the summary list. generates links to the
stored HTML files.

notes: Same as summary.

all: Change the view mode to view all documents.

last: Change the view mode to view the 100 most recent
documents.

query: Generate a query form for the user.

count only: Display the number of documents that match the
query that matches the current parameters.

company search: Generate a list of companies (named
symbols). and place the list in a form from which the user
can choose a company to perform a search upon.

choose symbol: Generate a query form for the user. pre-

setting the ticker input item to the value selected from a

symbol list.

The program output, of course, depends upon the input
including which ‘submit’ button was selected by the user.

20

25

30

35

45

50

60

16

The user’s choice of a submit button determines which
template will be chosen for output.

Additionally. templates may be preset for a user or a
group of users. Thus. all users from a particular company or
geographic area may be assigned one group of templates and
all users from another company or geographic area may be
assigned another group of templates.

Once a template file is opened. the characters in it are
passed directly through to standard output (the normal CGI
output channel). until an RAL element is encountered. In
that case, the RAL element is processed according to the
rules set forth below, and the output from the RAL element
is also sent to standard output, inserted into the stream of
characters in the template.

The following are examples of templates that may be
used:
resultrl.tpl: List form output for a query.
resultrd.tpl: Double line output for a query.
resultrt.tpl: Table form output for a query.
resultcl.tpl List form output for a query. broken down by

contributor and document type during a summary.
resulted.tpl Double line output for a query. broken down by

contributor and document type during a summary.
resultct.tpl Table form output for a query. broken down by
contributor and document type during a summary.
resultq.tpl Query form.
resultx.tpl Query count.
resulti.tpl Symbol Guide form.
resultt.tpl Standard HTTP header prepended to each of these
templates.
bboardrl.tpl: List form output for a bulletin board.
bboardrd.tpl: Double line output for a bulletin board.
bboardrt.tpl: Table form output for a bulletin board.
bboardcLtpl List form output for a bulletin board, broken
down by contributor and document type during a sum-

mary.
bboardcd.tpl Double line output for a bulletin board, broken
down by contributor and document type during a sum-

mary.

bboardect.tpl Table form output for a bulletin board, broken
down by contributor and document type during a sum-
mary.

If a query is submitted with no parameters filled in, the
query is termed a bulletin board query and requests the most
recently available documents on all subjects.

Research Access Language

The following is a description of the RAL of the present
invention. RAL elements begin with a start token, finish with
an end token, and contain attributes in between. The start
token is followed by a “white space” character. Attributes
are indicated by the name of the attribute, followed by an
equals sign (“="). followed by the value of the attribute. An
attribute name consists of consecutive alphabetic characters.
An attribute value consists of consecutive non-white space
characters. unless it is enclosed by double quotes, in which
case it consists of all characters enclosed in a pair of double
quotes. An end token contained within a non-quoted
attribute value will truncate the attribute value, and the
language element. The following is a syntax description of
an RAL element:

start-token
white-space
end-token

“{mx"” <white-space>
(any ASCTI character value between 1 and 32, inclusive)
=

Wono

5.802.518

17

-continued

attribute ;= <attribute-name> “=" <attribute-value>
attribute-name
| “*match™ | “format™ | “select” | “quotes™
attribute-value
white-characters (except end-token)>
Examples:
{mx name=headline align=left width=50}
{mx start = documents}
{mx name=synopsis maich=1 true=Yes false=*"}

= end” | “name” | “true” | “width™ | “align™ | “start” | “false” | “empty™
g1t p

:= <double-quotes> <any-characters> <double-quotes> | <any-non-

Attribute Names
align
The “align’ attribute specifies the alignment of the output 15
from the current element. within the width indicated by the
‘width’ attribute in the element.
Possible values:
left (default)

center 0
right
See also:
width
empty 25
The ‘empty” attribute specifies what should be displayed
as output for the current element, if the evaluated output for
the element (before padding or alignment) is an empty
string. This attribute is different from others, in that it 34
remains in effect for all following language elements, until
its value is changed.
Possible values:
(Any string. Use “ ” to indicate an empty string.) 35
end
The ‘end’ attribute marks the end of a loop. The attribute
value indicates which type of loop the current element marks
the end of.
Possible values: 40
document
contributorlist
industrylist
symbollist 45
See also:
start
false
The ‘false’ attribute specifies a string value to be dis- s0
played as output for the current element if the evaluated
value for the ‘name’ attribute does NOT match the value of
the ‘match’ attribute. This string may also use the ‘%s’
feature described under ‘format’.
Possible values: 55
(Any string. Use “ ™ to indicate an empty string.)
See also:
match, true. format
format
The ‘format’ attribute specifies simple output formatting
for output of the current element. Its format is the same as
a C language printf() format string, but allows only string
formatting (%s). and only one occurrence of that within the
format string. The evaluated value of the element. as a string, 5

is used as the value to fill the ‘%s’ in the formatting string,
Some examples are:

18
Format string Element Value Output Result
“%s™ “ABC Corp.” “ABC Corp.”
“%p15s” “ABC Corp.” “ABC Corp.”
“0p-155" “ABC Corp.” “ABC Corp.”
“%5.58" “ABC Corp.” “ABC C”
“%s Documents” “ABC Corp.” “ABC Corp. Documents™

Possible values:
(Any valid C printf() formatting string.)
See also:
align, width
match
The ‘match’ attribute specifies a value which the RAL
processor will compare to the evaluated result from the
‘name’ attribute. If the two values match exactly, then the
output from the current element will be the string specified
by the ‘true’ attribute. otherwise the output will be the string
specified by the ‘false’ attribute.
Some examples are:

Match True False Element Value Output
“pm “Synopsis” wn “y s
wpn “Synopsis” wn “pr “Synopsis”

Possible values:
{Any valid string. Use “ ” for an empty string.)
See Also:
true, false, name
name
The ‘name’ attribute specifies a data field to be used as the
output for the current element. The data field name given as
the value for this attribute is the name of a field in a research
document description, a contributor description. an industry
description, or a stock symbol description. A list of data
fields supported is given in the “Data Fields” sections below.
The ficld name can also specify any CGI input field (for CGI
programs using RAL) by prepending an underscore charac-
ter to the input field name, or it can specify any .INI file entry
or environment variable by prepending a dollar sign to the
entry/variable name.
Possible values:
(Any valid data field name. or _cgi-input-name. or
$ini-entry-name. or $environment-variable-name.)
See also:
match, Data Fields
quotes
The ‘quotes’ attribute indicates whether output from the
current element should be surrounded by double quotes. If
this attribute is set to “1”, the ‘width’ and ‘align’ attributes
are ignored.

19

Possible values:
“1” to surround output by quotes
“0” to not surround output by quotes (default)
start
The ‘start’ attribute indicates the beginning point of a
loop. with each iteration of the loop enumerating the data
items specified by the value of this attribute. See the section
“Data Enumeration” below for details.
Possible values:
documents
contributorlist
industrylist
symbollist

w

10

See also: 15
end. Data Enumeration
true
The ‘true’ attribute specifies a string value to be displayed
as output for the current element if the evaluated value for
the ‘name’ attribute matches the value of the ‘match’
attribute. This string may also use the ‘%s’ feature described
under ‘format’.
Possible values:
(Any string. Use “ ™ to indicate an empty string.)
See also:
match. false. format
width
The ‘width’ attribute specifies a number which gives the
desired width, in characters, of the output for the current
element. If the currently evaluated output is shorter than the
‘width’ value. then the output is padded with spaces on the
left. right, or both, according to the value of the ‘align’
attribute. If the output is longer than the ‘width’ attribute, the
output is truncated on the right. and the last three characters 35
are replaced with periods (‘. . ") to indicate a truncated
value.

Possible values:
(Any valid integer.)
See also:
align
Data Enumeration
The RAL attributes ‘start’ and ‘end’ are used to mark
elements that are to be repeated during the enumeration of 43
data objects. For example,

{mx start=documents} {mx name=headline} {mx end=
documents}

would cause RAL to enumerate all documents that match the
current query. outputting the headline of each one. (By
placing the ‘end’ element on the next line, it also causes the
headlines to be separated by an end-of-line character). The
available enumerations are listed below. All enumerations
are filtered so as only to include documents the user that is
making the enumeration is authorized to access. That is. not
all users see the same results when making enumerations,
according to their level of authorization.

documents

The ‘documents’ enumeration loops through the result set
of a query on the database of research documents. In the
current implementation, the input parameters to the query
are taken from CGI input items from an HTML page. They
are:

daterange:

An integer from 0 to 12 specifying a date range for the

release date of a document. The possible values are:

25

30

55

60

65

20

0 Today

1 Last 2 Days
2 ThisWeek

3 Last 7 Days
5 Last 14 Days
7 This Month
8 Last 30 Days
All Dates
Last 60 Days
Last 90 Days

ticker: A field for ticker symbols.

query: A field for “free text” for searches of the document
text. Logical expressions can be used.

contributors: A list of contributor ID numbers which
identify the contributors.
industries: A list of industry ID numbers relating to the
document.

The following fields are available within a ‘documents’
enumeration, listed with the data they output:
Analysts

Names of the analysts that compiled the document.
AnalystIDs

Numeric ID’s of the analysts that compiled the document.
ByteCount

Size of the document (in PDF form) in kilobytes or
megabytes.
Contributor

Name of the company that compiled the document.
ContributorID

Numeric ID of the company that compiled the document.
DocID

The internal system document ID number.

DocType

‘R’ for a research document; ‘M’ for a morning call note;
‘N’ for a news document.
Headline

The headline of the document. The system of the repre-
sentative embodiment also surrounds the output from a
element that displays this field with an HTML “anchor” to
a CGI that downloads the PDF file for the document. or
generates an HTML page for documents with no PDF form.
PageCount

The number of pages in the document.
ReleaseDate

The official release date of the document.
Relevance

A number from 0 to 1000 that indicates the relevance of
the document to the free text that was used in the query. The
higher the number, the more matches on the free text.
SubmitDate

The date the document was submitted by the contributing
company to the repository server 2.
Symbols

A list of ticker symbols that the contributor listed as
relevant in the document.
Synopsis

A “1”/0” flag that indicates whether a synopsis is avail-
able for the document. By default, the value “Yes” is output
if the synopsis is available., and “ ” is output otherwise. The
representative embodiment also surrounds the output from a
element that displays this field with an HTML “anchor” to
a CGI that creates an HTML page with the actual synopsis
text.

The following fields are available outside a ‘documents’
enumeration, since they are summary information or status

5.802.

21

information. Their values depend on the same query used
within a ‘documents” enumeration:
ChangeViewMode

Generates text that can be used within a button to change
the mode used to display documents. When the current view
mode is set to show all documents, this data field generates
“View Last ###”, where ### is equivalent to the “Maxi-
mum” data field. When the current view mode is not set to
show all documents, this data field generates “View All
##H”, where ### is equivalent to the “Total” data field. This
text can be used as the value of a ‘submit’ button in HTML.,
and a CGI can perform the appropriate action to change
display modes.
ContributorFilter

Displays the name of the current contributor being used to
filter documents.
ContributorsText

Displays the names of all contributors whose codes
appear in the _ contributors field.
Count

Displays the total number of documents actually retrieved
by a query. as opposed the number of documents that
actually match the query. When the view mode is set to show
all documents. this field is equivalent to the “Total” data
field. Otherwise, it is equivalent to the “Maximum” data
field.
CountFilter

Displays the number of documents that match the current
document type and contributor filter.
DocsShown

Generates variable text, depending on the view mode (all
documents. or the limited (100) set). If the view mode is set
to return all documents, this data field generates the text
‘4 Entries”. where ### is equivalent to the “Count” data
field. If the view mode is not set to view all entries, the data
field generates the text “Last ### of *** Entries”, where ###
is again equivalent to the “Count” data field, and *** js
equivalent to the “Total” data field.
DocTypeFilter

Generates the text “Research”, “Morning Call Notes”, or
“News”, depending on the current value of the document
type filter.
IndustriesText

Displays the names of all industries whose codes appear
in the _industries field.
Maximum

This data field is the limit on the number of documents to
be retrieved when the view mode is not set to show all
documents. In the representative embodiment, this value is
100 by default, or the value specified in the “MaxRows”
entry in WEBPUBL.INI.
MaxRows

If the view mode is set to show all documents, this data
field is equivalent to the ‘“Total” field. Otherwise, it is
equivalent to the “Maximum” field.
MorningNotes

This data field is the number of morning call notes
attributed to the current contributor specified in the con-
tributor filter.
News

This data field is the number of news stories attributed to
the current contributor specified in the contributor filter,
Research

This data field is the number of research documents
attributed to the current contributor specified in the con-
tributor filter.

10

15

20

25

30

35

45

50

55

65

518

22

Total

This data field is the total number of documents that
match the current query parameters, regardless of view
mode, contributor filter. or document type filter.
ViewMode

This data field generates “all” if the current view mode is
set to view all documents that match a query. This field
generates “last” if the current view mode is set to view only
the last N documents that match a query, where N is
equivalent to the “Maximum” data field,
contributors

The ‘contributors’ enumerations is the same as a *‘docu-
ments’ enumeration, except that the documents are grouped
by their contributors. The only fields that can be displayed
are the contributor names. and the number of documents in
the research and morning notes categories. This enumeration
is used primarily for presenting document summaries by
contributor to the users.

The following fields are available within a ‘documents’
enumeration. listed with the data they output:
Contributor

Names of the contributor in a group.
MorningNotes

The number of morning notes submitted by the contribu-
tor.
Research

The pumber of research documents submitted by the
contributor.
contributorlist

The ‘contributorlist’ enumeration loops through the list of
contributors from whom documents are available. This list is
not based upon any query parameters—if a user is entitled
to see the documents of a particular contributor, the con-
tributor’s name is returned in the result set.

The following data fields are available within a ‘contribu-
torlist’ enumeration:
ContributorID

An integer that identifies a contributor uniquely.
ContributorName, or Contributor

The name of the contributor.

The following data fields are available after a ‘contribu-
torlist’ enumeration.
ContributorCount

The total number of contributors in the ‘contributorlist’
enumeration.
industrylist

The ‘industrylist’ enumeration loops through the list of
industries about which documents may be compiled. There
are no query parameters for the industry list. The following
data fields are available within a ‘industrylist’ enumeration.
IndustryID

An integer that identifies an industry uniquely.
IndustryName

The name of the industry.
symbollist

The ‘symbol list” enumeration loops through all ticker
symbols/company names that match a given input string. In
the representative embodiment. the input string is taken
from the CGI input item named ‘company’. If a company
name contains the input string, the ticker symbol/company
name is included in the result set for enumeration.

The following data fields are available within a *symbol-
list’ enumeration.
SymbollD

The stock ticker symbol recognized for a company on the
stock market exchange where it trades.
SymbolName

The name of the company.

5.802.518

23

Program Control

RAL allows logical control over its output. The -if. -endif.
and -defer allow a template to make decisions about output
based on run time values of CGI input variables. environ-
ment or .INT variables, and the values of data fields from
enumerations, If a -if element evaluates to FALSE., then all
text and elements between the starting -if element and its
terminating -endif element will not be passed through to
output. If a -defer element is used inside a regular RAL
element, then the rest of the element is not evaluated. and is
simply passed through to output. without the -defer element.
This allows a template to evaluate some RAL elements. and
leave others to be evaluated later. if the output is used as a
template itself.

-if and -endif Usage

{mx -if <expression> }

{mx -endif}

where

expression = <value> <operator> <value>

value = <string> | <number> | <variable>

operator ===I<I>!l=l<=1>=

string := <double-quote> [<any-characters>}+ <double-quote>
number = <digit>*

variable := [_| $j<alphabetic character> [<alphanumeric characters>|+

Only one expression is allowed. A variable that does not
evaluate to a known value will be treated as if it were a
string. If a variable is preceded by an underscore (“_"). its
value is taken from a CGI input variable with that name.
minus the underscore. If a variable is preceded by a dollar
sign (“$7). its value is taken from the environment variable
or from the program’s .INI entry which matches the variable
name, minus the dollar sign.

The following example shows how the -if element can be
used to display some text and values only if there are
actually some morning notes in the result of the query.

15

20

25

30

35

24

-continued

them.

{mx -endif}

The following example shows how a CGI input variable
can influence the output. In this example. if the “contribu-
tors” CGI form variable is not empty. then some text will be
output. along with a built-in field that displays the names of
all the contributors whose ID codes are in the “contributors”
CGI form variable.

{mx if_contributors != *"'}
Query on contributors {mx name=contributorstext}
{mx -endif}

-defer Usage

The -defer element is simply a modifier for other ele-
ments. It keeps the RAL from evaluating an element
immediately. and outputs the element as if it were plain text,
except it leaves the -defer out. For example:

<option value=100 {mx -defer name=_ contributors

match=100 true=selected }>Selection Item 100
will output
<option value=100 {mx name=_ contributors match=100
true=selected }>Selection Item 100
the first time it is processed. and will this if that output is
processed:

<option value=100 selected>Selection Item 100
(This may leave the “selected” out, depending on the value
of _ contributors.)

One can have as many -defers as desired in an element—
they do accumulate. That is, having three -defers in an
element will cause it to defer evaluation until the fourth
processing.

An Example Use of RAL

The following is an example of RAL used within an

HTML file. A web CGI program that processes RAL can use

- - 40 this example file as a template, and fill in the RAL elements
mx -if momingnotes !=0 " . N)
"{I'hexe are {mx namnorn}l:ngmtes} - with the derived values of a query. This HTML has been
Click the “AM Notes” button to access simplified for the purpose of explanation, with comments in
italics.
<HTML>
<HEAD>
<TTILE>
Bulletin Board
<TITLE>
</HEAD>
<BODY>
<h2><i>BulletinBoard</h2> </i>

<form method="POST” action="/CGIBINIresuli.exe™>
<input type="submit” name=“subaction” value=“Refresh”>

<input type="submit” name="“subaction”

value="Query”>

<input type="submit” name=“subaction” value="Summary">

<input type=“submit” name="“subaction’

” value="AM Notes™>

Compare the total matching records to the maximum allowed in the display. If there are
more, show the “change viewing mode” button.
{mx -if total > maximum}

<input type=“submit” name=*subaction” value="“{mx name-changeviewmode}">

{mx -endif}

<input type="submit” name="subaction” value=“Long Form’>
<input type="hidden” name="current” value=“bboard”>

Display the total number of documents that matched, and how many will be displayed in this

list,

{mx name=docsshown }

</form>
<PRE>

26

25
-continued
 Submit Company Pgs Size Symbol Syn Headline

<HR>

This part is a document enumeration. The enumeration shows the fields named
‘updatedate’, ‘contributor’, ‘pagecount’, ‘bytecount’, ‘symbols’, *synopsis’, and ‘headline’.
Around the ‘synopsis’ field, there is a use of the -if element, which decides whether to
output a hypertext links to the synopsis. There is no -if element for the , because an

extra one doesn’t hurt most browsers.

(The following lines are split up with newlines to make it easier to read - running this

HIML, it will not give the desired results.)
{mx start=documents }
{mx name=updatedate width=7}
{mx name=contributor width=20}
{mx name—pagecount width=3 align-right}
{mx name=bytecount width=4 align=right}
{mx name=symbols width=10}
{mx -if synopsis = = 1}

{mx -endif}
{mx name=synopsis width=3}

{mx name=headline }

{mx end=documents }</PRE>

Display the final counts.

{mx name=research} Research Documents

{mx name=momingnotes} Moming Notes

{mx -if momingnotes > 0}

— Click the “AM Notes” button to access them.
{mx -endif}

If there were more than a screenful of headlines displayed, create another form and display

control buttons again, just for the user’s convenience.

{mx -if research > 17}

<hr>

<form method=“POST"” action="/CGIBIN/result.exe™>
<input type=“submit™ name="subaction” value="Refresh’>
<imput type="submit” name=“subaction” value=“Query">
<input type="submit” name="subaction” value="Summary™>
<input type="submit” name="subaction” value=“AM Notes™>
{mx -if total > maximum}

<input type="submit” name="subaction” value=“{mx name=changeviewmode}">

{mx -endif}

<input type="submit” name="subaction” value=*Long Form™>
<input type="hidden” name="current” value=“bboard™>
</form>

{mx -endif}

</BODY>

</HTML>

It will be appreciated that the templates and research
access program described above are of general application,
and can easily be modified to be used in many applications
and fields. Accordingly, the templates and research access
language should be understood as applicable to applications
and fields other than for the distribution of research reports.
Step-by-Step Examples

The following are three step-by-step examples illustrating
some of the principles discussed above. The first example
describes what happens when the user first “logs in” from a
non-secure “home pages” on the WWW, and receives a
Bulletin Board display. The second example shows what
happens when the user selects the “Query” button that is on
the Bulletin Board display from the previous example. The
third example illustrates what happens when the user makes
a query.

According to the representative embodiment of the
present invention, there are a number of predetermined types
of information displays available. A bulletin board display
outputs a list of the headlines of reports that have recently
been received by the repository server 2. (In these examples,
“recently received” is defined to mean reports that have been
received that day. e.g.. since midnight on today’s date.). The

45

50

55

65

bulletin board display can include the time of submission of
the report by the contributor, the identity of the contributor,
the number of pages and size of the report, ticket symbols
related to the report, whether a synopsis is available and the
headline, all displayed one line per report. A query results
display comprises the same fields of information, but for
reports that satisfy a user’s query. Each of the above two
types of output can be displayed in other formats. e.g.. in
long form which includes a two or more line output for each
report listing the headline, the time of submission of the
report by the contributor, the identity of the contributor
(company), the name(s) of the authors of the report, the
number of pages and size of the report. ticket symbols
related to the report. whether a synopsis is available. A
summary display outputs a three column table, each row
listing a contributor, the number of research documents at
the repository server 2 available for that user from that
contributor and the number of morning notes at the reposi-
tory server 2 available for that user from that contributor.

EXAMPLE 1
Logging In, and Getting a Bulletin Board

If a user has accessed an initial non-secure home page of
the present invention. the user can select a link to *Log In”.

5.802.518

27

The actual link is to an address “/SCGIBIN/result.exe”,
where “result.exe” is the name of the CGI program that
generates response pages to user actions. The directory
/SCGIBIN is actually mapped on the non-secure web server
to the directory /CGIBIN on the secure web server 4. This
means that home pages are handled by the non-secure server.
but actual access to reports is handled by the secure web
server 4. When the secure web server 4 receives the request
to run “result.exe”. the web server 4 first checks the request
to ensure that the Internet browser making the request is
authorized to access the web server 4. If the Internet browser
is not authorized, the web server 4 prompts the Internet
browser to ask the user. via a dialog box, for a valid user ID
and password.

In this example. the user enters the name “‘george @1984”,
and the password “wombat” and then selects OK. The web
server 4 now verifies that the user is authorized. This is done
by passing control to a subroutine named ‘“mxp_auth()"
which consults the relational database’s 11 list of valid users
and their passwords. (In this example. the relational database
11 is an SQL server.) If the given user ID and password
matches a database entry. the subroutine sets up the envi-
ronment variables HTTP_CID as “1984” to represent the
company ID of the user (taken from the “@1984” part of his
ID). HTTP_UID as “2096” to represent the user’s internal
ID (taken from the SQL sever’s records), and HTTP_MXP
as “wombat” to represent the user’s password. The subrou-
tine then returns a REQ_PROCEED value. and the web
server 4 knows it may then proceed handling the user’s
request to run “result.exe”.

The web server 4 next executes the program “result.exe”,
with no additional arguments, because none were specified
in the hypertext link to it. and because the page that the
request was made from was not an HTML form. which
would have named data fields the user could fill in to modify
the request. First, “result.exe” verifies that the user is not
attempting access with the same ID that another user is
using. So “result.exe” retrieves the value of the environment
variable “HTTP__COOKIE” which is provided by the web
server 4 (from the HTTP “Cookie” value in the request from
the Internet browser). “result.exe” attempts to find a value in
the cookie named “mxauth”. Since. in this example, this is
the first time this user/browser has “logged in”. the
“mxauth” value in the cookie has not been set, so “result-
exe” grants this user access, gemerates an authorization
string for this user, stores the string where it can find it later.
and outputs a cookie value to the web server 4 that the server
will send back to the Internet browser.

The next thing “result.exe” does is to determine what type
of request the user made when calling “result.exe”. Since

10

20

25

0

35

45

28

there are no arguments to “result.exe”. and there are no
HTML form values, “result.exe” defaults to generating a
Bulletin Board. which is a list of all headlines that have
newly arrived at the repository server 2 today. The program
has a choice of which type of database server to query for the
list—the SQL. server 11, and the full-text search server 13.
Since this request does not require any full-text searching for
values in documents, the “results.exe” program chooses to
contact an SQL server 11. If the connection fails for some
reason. the program will attempt to contact each backup
SQL server until there are no more to connect to. The
program will then fall back to attempting to contacting the
full-text search servers 13 until it finds one that is up. Failure
to find any available servers will result in generation of an
error message. and termination of the program.

For the sake of this example, we will assume that “result-
.exe” successfully connected to the SQL server 11. This
particular request would have no parameters. except for
specifying that only documents that have arrived on the SQL
server 11 since midnight are desired. The request for the
document headlines is immediately submitted to the SQL
server 11, which returns its results asynchronously. This
allows the SQL server 11 to begin processing the request.
while “result.exe” moves on to its next step. This next step
is to open an HTML template that is appropriate to the
output requested by the user. In this case, “result.exe” is
generating a simple Bulletin Board, so it is programmed to
select a template named “BBOARDR?.tpl”. The question
mark in the name is filled in by the format that the user
prefers his headlines to be displayed in. Possible formats are
double line output (?=‘D’). list output (?='L’), and table
output (?="T"). The formats that each user prefers are stored
in the same place that the user’s authorization code for the
cookie is stored. The “result.exe” program goes to that
storage area, looks up the preferred format for
“george @ 1984”. discovers it is “L”. and finishes its template
selection by opening the file “BBOARDRL.TPL”. (Of
course, other possible formats could be specified and used.)

The template file is mostly HTML, with some RAL
elements mixed into it. The “result.exe” program will read
through this template, and will immediately output any
straight HTML to standard output. which the web server 4
will then send on to the Internet browser for the Internet
browser to display as a page on the screen of the user’s user
computer 6. 8. However. the RAL elements will cause
“result.exe” to insert various pieces of information into this
stream of output at appropriate places, formatted according
to the contents of the element. Show below is an annotated
“BBOARDRL.TPL", indicating in italics what happens at
certain RAL elements. (Note that, as above, elements begin
with the characters “(mx”.)

<HTML>
<HEAD>
<TTTLE>

Bulletin Board

</TITLE>
</HEAD>

<BODY BGCOLOR="{fffff">

<nobr>

The next line, though has an RAL element that gets its value from the initialization file
that “result.xz”, named “webpubl.ini”. The dollar sign before “webserver” indicates
that “result.exe” should look up the JNI entry named “webserver”, and substitute its
pame here in the HTML.

<h2>

<A> <>

Bulletin Board

29

-continued
</h2> </i>
</nobr>
<form method="POST” action=“/CGIBIN/result.cxe™>
<nobr>

<input type="submit” name="subaction” value="Refresh”>

<input type="submit”” name="subaction” value="Query™>

<input type=“submit” name="subaction” value="Summary™>

<input type=“submit” name="subaction” value=“AM Notes™>
The next lines are conditional, depending on whether the “total” number of headlines
returned from a headline list query is greater than the “maximum”™ number that
“result.exe” has been configured to display. When “result.exe” is confronted with
resolving the value for “total”, it first checks to see if it has that value yet. If not, it
then goes into a waiting mode, while it waits for that value to arrive asynchronously
from the database server 11, 13. Once the total arrives (which it does independently
of the actual headline records), “result.exe* proceeds with evaluating this “if”
condition. If the evaluation is false, then all text until the next “endif” is ignored.

{mx -if total > maximum}
In this example one, the total number of headlines returned is 143, while the value set
for “maximum” is 100. So this condition is true, meaning the next line gets evaluated
and sent out. The element named “changeviewmode™ is intended to generate text for a
button that the user can press to change from viewing only 100 headlines, to view all of
them. So this element’s value will become
“View All 143",

<input type="submit” name="subaction” value=“{mx name=changeviewmode }*>

{mx -endif}

<input type="submit” name="subaction” value="Long Form">

<input type=“hidden™ name="“current” value=“bboard™>
The next line has the element “docsshown™. This evaluates to a phrase that tells the
user what he is being shown. In this case, the element’s value is “Latest 100 of 143
documents”. These values depend on the total number of records, the maximum, and
whether the user presses the “changeviewmode” button later, in which case it would
show “143 documents”.

 {mx name=docsshown)

</nobr>

</form>

<PRE>

Submit Company Pgs Size Symbol Syn Headline

The next line actually does not contain any line breaks until the </PRE>, but it is
wrapped it here for clarity. The first element “[mx start=documents}” marks the
beginning of a loop, causing “result.exe” fo repeat this section through the “{mx
end=documents)” as long as there are headline records in the result from the query.
All the elements in between are involved in displaying fields of the headline records,
and in two cases, they are used to establish hypertext links to “result.exe” with
arguments that display document synopsis and document contents. Of particular
interest here, is that “result.exe” will access the headline records as they arrive
asynchronously from the database server 11, 13, displaying them as soon as they
arrive. The entire result set of the query does not have to be present for display to
start, thus making the display to the user appear faster. In fact, the server is
programmed to break the query to it up into pieces if sorting the results will be a
lengthy process, as discussed above in the section titled “Optimizations”. When a
query is broken up, the most recent headlines are accessed first, which is the order
that they are shown in this list. In addition, “result.exe” makes certain that the data is
being sent to the server (and therefore to the user) by flushing its output queue every 5
headlines.

<HR>{mx start=documents }{mx name=updatedate width=7} {mx

name=contributor width=20} {mx name=pagecount width=3 align=right} {mx

name=bytecount width=4 align=right} {mx name=symbols width=10} {mx -if synopsis

= 1}(mx

-endif)(mx name=synopsis width=3) <A HREF="result.exe?subaction={mx

name=docfile)">{mx name=headline }

{mx end=documents }</PRE>

The next lines display counts of the documents, broken down by report type (e.g.,
here, research documents and morning notes.) Some of the output is conditional,
depending on a zero value.

{mx h} R h Documents

{mx name=momingnotes} Moming Notes

{mx -if moringnotes > 0}

~ Click the “AM Notes” button to access them.

{mx -endif}

<fbr>

It is convenient to have the action buttons also at the end of a long list of documents,
but it looks unprofessional to have two sets of buttons with a short list of documents.
So the next section that displays buttons is identical to the button display section above,
except that it is conditional on how many research documents were actually displayed.

(mx -if research > 17}

<hr>

<form method="POST" action="“/CG1B1N/result exe”>

31

-continued

32

<nobr>

<input type="submit” name="subaction”

<imput type="submit” name="subaction”

<input type="submit” name="subaction”

<input type="submit” name="subaction”

{mx -if total > maximum}

<input type="submit” name="subaction”

{mx -endif}

<input type="submit” name="subaction” value="Refresh™>
value="Query">

value="Summary’™>

value="AM Notes>

value="{nm name=changevieWmode}">

value="Long Form™>

<input type="hidden” name="current” value="bboard”>
</nobr>

</form>

{mx -endif}

</BODY>

</HTML>

The preceding example generates a page 100 for display
on the user’s Internet browser at the user’s user computer 6.
8 as shown in FIG. 2. (The graphic listing the service name
is not shown.)

The page 100. displayed in bulletin board format. includes
a number of action buttons 126-130. and a list of reports.
The action buttons 120-130 are all used as commands to
“result.exe”. Each report is listed on a single line, with
information about the report including the time of submis-
sion of the report by the contributor (102). the identity of the
contributor (104). the number of pages (106) and size of the
report (108), ticket symbols related to the report (110).
whether a synopsis is available (111) and the report’s
headline (112). The user can select (e.g., click on) a headline
and have the complete report transferred from the repository
server 2 to the user computer 6. 8. The user can select an
entry in the synopsis column and have the synopsis dis-
played.

A refresh button 120, if selected. cause this same report to
be regenerated. e.g.. to include any new reports received
since the this page 100 was generated. A query button 122,
if selected, causes a query form to be generated, as explained
in example 2 below. A summary button. if selected. causes
a summary report to be generated. The summary report
comprises a three column table. each row listing a
contributor, the total number of research documents at the
repository server 2 available for that user from that con-
tributor and the total number of morning notes at the
repository server 2 available for that user from that con-
tributor. An AM Notes button 126, if selected, causes only
morning notes to be displayed. A View All button 128, if
selected. causes all headlines to be displayed. regardless of
how many. A long form button 130. if selected. causes a page
to be generated that includes a two lines for each report.
listing the headline, the time of submission of the report by
the contributor, the identity of the contributor (company),
the name(s) of the authors of the report, the number of pages
and size of the report, ticket symbols related to the report,
whether a synopsis is available.

A summary line 132 shows the total number of documents
that satisfy the query (in this case. all documents that arrived
at the repository server 2 since midnight) and the total
number displayed.

20

25

30

35

45

50

55

EXAMPLE 2
Requesting a Query Form

In the preceding example. the user “logged in” and was
presented with a Bulletin Board. If the user wishes to make
a query for documents that match certain criteria, he may
then click the query button 122 on the Bulletin Board. This
causes the Internet browser to form a request to the web
server 4 to run “result.exe” again, but since the button is
inside an HTML form, additional information is included in
the request.

First, when the request arrives at the web server 4. the ID
is verified in the same manner described in the prior
example. except that the dialog box for user mame and
password is not displayed. since the Internet browser pro-
vides that information as part of the request. Once the user
is verified, the web server 4 start running “result.exe”. but
with input that indicates the “Query” button was selected on
the previous form.

The first thing “result.exe™does is to try to verify that the
user is not attempting access with the same ID that another
user is using. The “result.exe” program retrieves the value of
the environment variable “HTTP__COOKIE” which is pro-
vided by the web server 2 (as received from the HTTP
“Cookie” value in the request from the Internet browser).
The “result.exe” program attempts to find a value in the
cookie named “mxauth”. Since this is NOT the first time this
user/browser has logged in, the “mxauth” value in the cookie
is set to the value “result.exe” gave this user last time he was
authorized. The “result.exe” program compares this value to
the current authorization code it has stored for this user, and
if the two do not match. it generates output that tells the user
that access has been denied. If the values do match, then
“result.exe™ proceeds.

By looking at the value for the CGI form variable
“subaction”, the “result.exe” program can determine that the
user selected the query button 122 on his last request. At this
point, the program selects an HTML template appropriate to
this request, which is named “RESULTQ.TPL”. To service
a query form, “result.exe” connects to the appropriate data-
base server 10, 13 as described in example one. Once
connected. it then opens the HTML template, and starts
generating output.

An annotated version of the “RESULTQ.TPL” template is
shown below.

5.802.518
33

<html>

<head>

<title >Document Query</title>

</head>

<body BGCOLOR=-#fitftf">

<nobr>

<h2> <A HREF="“{mx

name=$webserver }/hicyme/imagemap/mxnetlog map*> <IMG

SRC=91/home/gif/mxnetiog.gif” BORDER=0 ALT="Service Name” 1SMAP>

<i>

Document Query

<Mh2> </i>

</nobr>

<nobr>

<form method="POST" action="/CG1B1N/result exe™>
Generate the buttons for commands to be executed from this form.

<input type="submit” name="subaction” value=*Submit*>

<input type=“submit” name="subaction” value=“Count Only”>

<input fype=“submit” name="subaction” value=“Summary™>

<input type="submit” name="subaction” value=“AM Notes™>

<input type=“submit” name="subaction” value=*Reset™

<imput type=“submit” name="subaction” value=“BBoard™>

<input type="hidden” name="current” value=“query”>

</nobr>

<table>

<r valign="top™>

<td width=90> Symbol: <ftd>
The element here is evaluating the value for “-ticker”. Any element name that begins
with an underscore is taken from values that are given to “result.exe” as input from the
last form that started “result.exe”, If the last form had a field (text, list box, hidden, or
otherwise) named “ticker” (no underscore), then the web server 4 would start this
instance of “result.exe” with an input field named “ticker” whose value would be the
value in the ticker” field in the last form. If the last form had a field named “ticker”
with a value of “IBM”, then this element will generate a default value for this input
field of “IBM. This allows “result.exe” to come back to the previous state of this
query form, if other forms remember the value for “ticker” in hidden fields.

<td> <input type="text"” name="ticker” value={mx name=-ticker quotes=1}

> <ftd>

<td width=86>

<td> <input type="submit” name="subaction” value=“Symbol Guide™> </td>

</tr>

</table>

<table>

<tr valign="top™>

<td width=90> For Period Of: </td>
The following list box has one value preselected, due to the “match” and “true” parts
in the elements within it. These elements evaluate the value for the field “date” from
the last form, and if the value matches the value given for the “match” part, then the
displayed value for the element will be contents of the “true™ part of the element, in
this case, the word “selected”. In other words, for each one of these lines, you could
read “If the last form’s date field matches X, then display the word ‘selected”’. The
special case for “Last 7 Days”, where the match value is “,3”, simply means that if the
date value is either empty, or the number three, it is a match.

<td> <select name="date”>

<option value="0" {mx -_date h=0 tr lected} >Today

<option value=“1" {mx name=_date match=1 true=selected} >Last 2 days

<option value=“2" {mx name=_date match=2 true=selected} >This Week

<option value=“3" {mx name-_date match=,3 true=selected} >Last 7 days

<option value="5" {mx name=_date match=5 true=selected} >Last 14 days

<option value=“7" {mx pame=_date match=7 true=selected} >This Month

<option value=“8" {mx name=_date match=8 true=selected} >Last 30 days

<option value="12" {mx name=_date match=12 true=selected} >Last 60 Days

<option value=“13" {mx name=_date match=13 true=selected} >Last 90 Days

<option value=“10" {mx name=_date match=10 true=selected} >All Dates

<option value=“~1">z= == ==z=======z=====

</select> </td>

</r>

</table>

<table>

<tr>

</tr>

</table>

<table> <tr valign=“top™> <id width=00> Keywords: </td>
Here, a default value for this field is based on the “query” field in the last form.

<td> <input type="text” name="query” size=49 value={mx name=_query

quotes=1} > <itd> </tr>

</table>

<table>

<tr valign="top”> <td width=90> Contributors: </td>

<td> <SELECT NAME=contributors SIZE=6 MULTIPLE>

5.802.518
35

-continued

This is a possible default selection, the same as described above for “date.”
<OPTION VALUE="-1" {mx name=-contributors match=,~1 true=selected }>| All
Contributors |

This element marks the beginning of a loop on contributors. When this element is

evaluated, “result.exe” forms a query to the server that will return a list of all

document contributors (companies) that this particular user is entitled to read
documents from. The request is asynchronous, so as each contributor record is
returned from the server, “request.exe” can fill in the inside of this loop. Inside the
loop is an element that displays the ID number of the contributor, optionally followed
by the word “selected” if it should be the default selection on this form, based on prior
values of the form fields “contributors”.

{mx start=contributorlist}

<OPTION VALUE={m name=contributorid match=_ contributors true="%s

selected” false="%s" }>{ mx name=contributorname }

{mx end=contributorlist}

<OPTION

</td> </tr>

<tr valign="top™> <id> Industries: </td>

<td> <SELECT NAMEmindustries SIZE=6 MULTIPLE>

<OPTION VALUE="-1" {mx name=_industries match=—1 true=selected }>{ All

Industries|
This element and the following loop is the same as the contributor loop above, except it
lists the industries that the user may choose as selection criteria for documents, instead

of contributors.
{mx start=industrylist}

<OPTION VALUE={mx name=industryid maich=_industries true="%s selected”

false="%%s" }>{mx name=industryname }
{mx end=industrylist}
<OPTION

</SELECT>
</td> <>
</table>
<hr>

These buttons are duplicates of the ones above —~ we found it was convenient to have

them here too.

<input type="submit”
<imput type="submit”
<input type=“submit”
<ioput type=“submit”

type="submit”
type="submit”
type="hidden™

value=“Submit">
value=“Count Only”>
value=“Summary”>
value="AM Notes™>
value="Reset”>
value="BBoard">
value=“query”>

name—"subaction”
name="subaction”
name="subaction”
name="subaction”
name="subaction”
name="“subaction”
name="current”

The preceding example generates a page 200 for display
on the user’s Internet browser at the user’s user computer 6.
8 as shown in FIG. 3. (The graphic listing the service name
is not shown.)

Using the document query page 200, the user can specify
parameters for a search of reports located at the repository
server 2. The user can specify one or more of the following
parameters: symbol (202), period of time. from a drop down
list box (204), keywords, and logical joins thereof (206).
contributors (208). and industry groups {210). A symbol
guide 220 is available if the user does not know a stocks
ticker symbol, etc.

A partial list of the HTML generated for the contributors
list box (208) is shown below:

<SELECT NAME=contributors SIZE=6 MULTIPLE>
<OPTION VALUE="-1" selected>[All Contributors|
<OPTION VALUE=42>Adams, Harkness & Hill
<OPTION VALUE=47>Alex Brown & Sons

<OPTION VALUE=128>Auerbach Grayson & Co,, Inc.
<OPTION VALUE=53>Brown Brothers Harriman & Co.
<OPTION VALUE=109>Chicago Corporation

45

50

55

65

-continued

<OPTION VALUE=157>Closed End Fund Digest

<OPTION VALUE="-2">
</SELECT>

A submit button 212 allows the user to submit the query,
as discussed in detail in example three below. A count only
button 214 allows the user to request a count of all docu-
ments available to that user that satisfy the query parameters.
A reset button 216, if selected, clears the form. A BBoard
button, if selected causes a bulletin board to be created for
the user, as per the first example above.

EXAMPLE 3

The User Makes a Query

In the preceding example. the user requested a form from
which he could make a query. This example will step
through the user's actions, and the result it produces.

For this example. assume that the user has decided to
select documents from Alex Brown & Sons, released over

5.802.518

37

the last 30 days. that have the phrase “strong buy” in them.
To do this. in the query form., the user selects the “Last 30
Days” item in the period of time combo box 204, enters
“strong buy” (quotes included. to indicate a phrase instead
of two independent words) in the keywords edit window
206. and selects “Alex Brown & Sons” in the contributors
list box 208. To get the list of headlines that match this
request, the user selects the submit button 212.

The request that goes to the web server 4 at this point is
to run “result.exe” again, but there is additional information
about date, keywords, and contributors in the request. Fields
are also defined for industries and ticker symbols, but they
are empty fields because the user did not specify anything
for them. After the web server 4 verifies the user (as
described above). it starts the “request.exe” program with
these form fields as additional input.

The “request.exe” program determines from the input
fields that a specific query is desired. and from the value of
the “subaction” field (button 212) that the user wants a
headline list, as opposed to a simple headline count, or a
headline summary. The “request.exe” program selects the
HTML template “RESULTRL.TPL”". choosing the list for-
mat output (indicated by the “L” at the end of the file name)
for just as it did for the first example. It constructs a headline
query based upon the input fields for date, contributor, and
keywords. It then submits the query to the full-text search
server 13 (since there are keywords specified in the query).
It then opens the HTML template. and fills in the elements
from the result set of the query. in the same manner as for
the Bulletin Board in the first example.

The resulting page 300 generated for display on the user’s
Internet browser at the user’s user computer 6, 8 as shown
in FIG. 4. (The graphic listing the service name is not
shown.) The page is similar in many respects to that shown
in FIG. 2. A score column 402 shows a relevancy score. The
summary line 404 shows the total number of documents that
satisfy the query. the total number displayed and query
search parameters.

The user may then select a document by clicking on the
document’s headline. The document transfer process takes
place as follows: The web server 4 issues a request to the
relational database 11 asking whether the user is permitted
to view the selected document. Assuming that the selected
SQL server is available (if not, the backup procedure
described above takes place), then the SQL server returns
whether the use is so permitted. If the user is not permitted.
then the web server 4 generates a HTML page using an error
template. If the user is permitted, the requested document
file is opened. the web server 4 generates the appropriate
HTTP header and outputs it to STDOUT, and the document
file is read and its contents is output to STDOUT. At the user
computer 6, 8, the Internet browser program launches a
helper application to allow the user to read. print and save
the document.

Although the invention has been described with reference
to a particular embodiment and arrangement of parts, fea-
tures and the like. the above disclosure is not intended to
exhaust or limit all possible embodiment, arrangements or
features, and indeed. many other modifications and varia-
tions will be ascertainable to those skilled in the art.

For example. the central site 1 may distribute reports by
other networks in addition to the Internet. FIG. 5 illustrates
an enhanced system architecture according to the present
invention. In the enhanced system, the central site 1 is also
coupled to one or a number of viewer servers 30, 32.
Typically. the viewer servers 30, 32 are located at a remote

10

15

20

25

30

35

45

50

55

60

65

38

location with respect to the central site 1 and are coupled to
the central site 1 over a proprietary network. Each viewer
server 30. 32 includes a database 40. 42 and is coupled to
one or a number of viewer workstations 34, 36, 38. The
viewer workstations 34. 36 exccute the Acrobat Exchange
program. available from Adobe Systems, and the Multex
Publisher™ Research Viewer program. by Multex Systems.
Inc. The central site 1 maintains a distribution list that lists
which viewer servers 30. 32 are permitted to receive reports
from which contributors. (As a simple example. if viewer
server A 30 is located at company ABC, Inc. and viewer
server B 32 is located at company RST, Inc.. then. for a
particular report, the repository server may distribute the
report to viewer server A 30 but not viewer server B 32.)
When a report is received by the central site 1. the central
site 1 transmits a task to each viewer server 30, 32 that is
permitted to receive that report that a new report has arrived.
and the permitted viewer servers 30, 32 executes the task to
“pull” that report from the central site 1 and store it in their
respective databases 40. 42. The viewer server 30, 32 will
then cause the title of the report to be displayed on viewer
workstations 34. 36. 38 that are used by investors who are
permitted (as determined by the distribution level set by the
contributor). Investors can also issue queries to the viewer
server’s database, which will return titles of relevant reports.
The investor may then request a report. which is “pulled
down” from the viewer server 30. 32 to the requesting
viewer workstation 34, 36, 38.

It is noted that the web server 4 and repository server 2 of
the representative embodiment of the present invention can
be implemented utilizing a logic circuit or a computer
memory comprising encoded computer-readable
instructions. such as a computer program. The functionality
of the logic circuit or computer memory has been described
in detail above. Generally. the present invention has practi-
cal application as it enables reports and other information to
be distributed speedily and searched efficiently by autho-
rized users in remote locations.

Thus, the above described embodiments are merely illus-
trative of the principles of the present invention. Other
embodiments of the present invention will be apparent to
those skilled in the art without departing from the spirit and
scope of the present invention.

What is claimed is:

1. A computer-implemented system for the secure elec-
tronic distribution of research documents over the world
wide web to investors who are authorized to receive said
research documents. comprising:

a repository server receiving from a plurality of contribu-
tors a plurality of research documents in electronic
form and a plurality of comresponding document pro-
files comprising information relating to each research
document including authorization information specify-
ing who is permitted to access each research document,
the repository server including a first database for
structured query searches storing the information from
the plurality of document profiles and a second data-
base for full text searches storing searchable full text of
the plurality of research reports; and

a web server coupled to the repository server and coupled
to the world wide web. the web server receiving a
request from an investor for research documents that
satisfy a query. the web server determining whether the
first database or the second database should be searched
based upon the type of query and thereafter requesting
that the repository server query said determined data-
base and transmit to the web server a list of research

5.802.518

39

documents that satisfy the query and which the investor
is authorized to access according to the authorization
information. the web server thereafter formatting the
list of documents according to a template form and
transmitting the formatted list of documents to the
investor.

2. The system of claim 1 wherein the template form is
selected by the investor.

3. The system of claim 1 wherein the template form is
selected by the web server according to the identity of the
investor.

4. The system of claim 1 further comprising a user
computer used by the investor and executing a browser
program., the user computer coupled to the world wide web.

5. The system of claim 4 wherein the query is formulated
by the investor at the user computer.

6. The system of claim 1 further comprising a plurality of
contributor workstations, each coupled to the repository
server. for transmitting to the repository server the plurality
of research documents and the plurality of corresponding
document profiles.

7. A computer-based system for the secure electronic
distribution of documents over the world wide web to users
who are authorized to receive said documents, comprising:

a plurality of templates. each template specifying an

output format;

means for receiving a plurality of documents in electronic

form from a plurality of contributors;

means for receiving a plurality of document profiles from

the plurality of contributors, each document profile
corresponding to one of the plurality of documents and
comprising information related to said one of the
plurality of documents;

means for receiving authorization information for each

one of the plurality of documents. the authorization
information defining who is authorized to access said
document;

means for converting the plurality of documents into a

common format;

means for storing the plurality of documents in said

common format;

a relational database for storing the plurality of document

profiles and the authorization information;

means for extracting text from the plurality of documents;

a full text database for storing the extracted text;

means for receiving a user identification code from a

browser program of remote user,

means for blocking simultaneous use of the user identi-

fication code with automatic re-emablement after a
predetermined period of inactivity from the user iden-
tification code;

means for submitting an initial query to the relational

database for all documents the remote user is autho-
rized to access and that were received from contributors
during a previous preset time period;

means for transmitting results of queries to the browser

program for display according to the format specified in
one of the plurality of templates;

means for enabling the remote user to submit queries;

means for determining if a submitted query includes a text

search parameter, and if so. routing said query to the
full text database, and if not, routing the query to the
relational database; and

means for executing the submitted queries by selecting all

documents the remote user is authorized to access and
that satisfy the submitted query.

5

15

20

25

30

35

45

50

55

60

65

40

8. A computer-based system for the secure electronic
distribution of research documents over the world wide web
to investors who are authorized to receive said documents,
comprising:

a plurality of templates, each template specifying an

output format,

means for receiving a plurality of research documents in
electronic form from a plurality of contributors;

means for receiving a plurality of research document
profiles from the plurality of contributors. each
research document profile corresponding to one of the
plurality of research documents and comprising infor-
mation related to said one of the plurality of research
documents;

means for receiving authorization information for each
one of the plurality of research documents. the autho-
rization information defining who is authorized to
access said research document;

a relational database for storing the plurality of research
document profiles and the authorization information;

means for extracting text from the plurality of research
documents;

a full text database for storing the extracted text;

means for receiving a user identification code from a
browser program operated by a remote user;

means for submitting an initial query to the relational
database for all research documents the remote user is
authorized to access and that were received from con-
tributors during a previous preset time period;

means for transmitting results of queries to the browser
program for display according to the format specified in
one of the plurality of templates;

means for enabling the remote user to submit queries;

means for determining if a submitted query includes a text
search parameter, and if so, routing said query to the
full text database. and if not, routing the query to the
relational database;

means for optimizing predetermined queries;

means for executing the submitted queries by selecting all
research documents the remote user is authorized to
access and that satisfy the submitted query.

9. The system of claim 8 further comprising means for
blocking simultancous use of the user identification code
with automatic re-enablement after a predetermined period
of inactivity from the user identification code.

10. The system of claim 8 further comprising:

means for converting the plurality of research documents
into a common format; and

means for storing the plurality of research documents in
said common format.

11. The system of claim 8 further comprising:

means for enabling the remote user to select a research
document from the results of queries; and

means for transmitting the selected document to the
remote user’s browser program.

12. A computer-implemented system for the secure elec-
tronic distribution of research documents over the world
wide web to investors who are authorized to receive said
research documents, comprising:

a repository server receiving from a plurality of contribu-
tors a plurality of research documents in electronic
form and a plurality of corresponding document pro-
files comprising information relating to each research
document including authorization information specify-

5.802.518

41

ing who is permitted to access each research document,
the repository server including a first database for
structured query searches storing the information from
the plurality of document profiles and a second data-
base for full text searches storing searchable full text of
the plurality of research reports; and
a web server coupled to the repository server and coupled
to the world wide web, the web server receiving a
request from an investor for research documents that
satisfy a query, the web server determining whether the
first database or the second database should be searched
based upon the type of query and thereafter requesting
that the repository server query said determined data-
base and transmit to the web server a list of research
documents that satisfy the query and which the investor
is authorized to access according to the authorization
information, the web server thereafter transmitting the
list of documents to the investor.
13. A method for optimizing search requests received
from remote computers operated by users, comprising:
storing at a central server a plurality of document profiles,
each document profile corresponding to a document
and comprising information related to the document.
including a set of one or more authorization groups for
the document, each authorization group corresponding
with a contributor of the document;
for each user, storing at the central server a set of
accessible groups specifying which authorization
groups of documents the user is permitted to access;

receiving, at a web server, a search request from a user at
remote computer for documents, the search requesting
including a limitation that the documents are from a
specified contributor;

providing the search request to the central server;

at the central server, creating a first list of groups of

documents stored at the central server listing the user’s
accessible groups that correspond with the specified
contributor;

at the central server, creating a second list of groups of

documents stored at the central server listing the groups
that are not accessible to the user and that correspond
with the specified contributor;

if the first list is empty, denying the search request;

if the second list is empty. then constructing a search for

all documents of the specified contributor that satisfy
the search request; and

otherwise, determining selecting the shorter of the first list

and the second list, and if the shorter list is the first list,
then constructing a search restricted to groups in the
first list, and if the shorter list is the second list, then
constructing a search restricted to groups of the speci-
fied contributor not in the second list.

14. The method of claim 13 further comprising the steps
of:

executing the search at the central server;

providing the search results to the web server;

formatting the search results at the web server; and

providing the formatted search results via the Internet to
the remote computer.

15. The method of claim 14 wherein the search results
comprises a list of documents that satisfy the constructed
search.

16. A computer-implemented method for optimizing a
query that requests a list of documents sorted by time, the
documents stored in a database, comprising:

10

20

25

35

40

45

50

55

65

42

providing a first query requesting a list of documents
sorted by time and a maximum number of documents;

determining a count of the number of documents that
satisfy the first query:

if the count is less than or equal to a predetermined

threshold, then execute the first query and return the
results;

if the count is greater than a predetermined threshold, then

determine if the first query is for documents that are
dated within a time range;

if the first query is not for documents that are dated within

atime range, then select a default time range as the time
range;

create a second query comprising the first query with a

restriction for documents dated within a predetermined
first portion of the time range;

execute the second query and return the results;

if the number of results returned is less than the maximum

number of documents. create a third query comprising

the first query with a restriction for documents dated

within a remaining portion of the time range; and
execute the second query and return the results.

17. The method of claim 16 wherein the maximum
number of documents is set by the user.

18. The method of claim 16 wherein the step of providing
a first query requesting a list of documents sorted by time
further comprises the step of transmitting the first query over
the Internet from a remote user.

19. The method of claim 18 wherein the step of deter-
mining a count further comprises the step of providing the
count over the Internet to the remote user as soon as
determined.

20. The method of claim 18 further comprising the step of
providing results over the Internet to the remote user as soon
as partial results are returned.

21. A method for the secure electronic distribution of
documents over the world wide web to users who are
authorized to receive said documents, comprising:

providing a plurality of templates, each template speci-

fying an output format;
receiving a plurality of documents in electronic form from
a plurality of contributors;

receiving a plurality of document profiles from the plu-
rality of contributors, each document profile corre-
sponding to one of the plurality of documents and
comprising information related to said one of the
plurality of documents;
receiving authorization information for each one of the
plurality of documents, the authorization information
defining who is authorized to access said document;

converting the plurality of documents into a common
format;

storing the plurality of documents in said common format;

storing the plurality of document profiles in a relational

database;

storing the authorization information for each document

in the relational database;

extracting text from the plurality of documents;

storing the extracted text in a full text database;

receiving a user identification code from a browser pro-

gram of remote user;

blocking simultaneous use of the user identification code;

automatically re-enabling use of the user identification

code after a predetermined period of inactivity from the
user identification code;

5.802.518

43

initially, executing a first query to the relational database
for all documents the remote user is authorized to
access and that were received from contributors during
a previous preset time period;

outputting results of the first query according to the
format specified in one of the plurality of templates;

enabling the remote user to submit queries;

for each submitted query. determining if the query
includes a text search parameter, and if so. routing said
query to the full text database. and if not. routing the
query to the relational database;

executing the submitted queries by selecting all docu-
ments the remote user is authorized to access and that
satisfy the submitted query; and
outputting the results of the submitted query according to
the format specified in one of the plurality of templates.
22. A computer-based system for the secure electronic
distribution of documents over the world wide web to users
who are authorized to receive said documents, comprising:
a plurality of templates. each template specifying an
output format;
means for receiving a plurality of documents in electronic
form from a plurality of contributors;

means for receiving a plurality of document profiles from
the plurality of contributors, each document profile
comesponding to one of the plurality of documents and
comprising information related to said one of the
plurality of documents;

means for receiving authorization information for each
one of the plurality of documents. the authorization
information defining who is authorized to access said
document;

10

15

20

25

30

4

means for converting the plurality of documents into a
common format;

means for storing the plurality of documents in said
common format;

a first database for storing the plurality of document
profiles and the authorization information;

means for extracting text from the plurality of documents;
a second database for storing the extracted text;

means for receiving a user identification code from a
browser program of remote user;

means for blocking simultaneous use of the user identi-
fication code with automatic re-enablement after a
predetermined period of inactivity from the user iden-
tification code;

means for submitting an initial query to the relational
database for all documents the remote user is autho-
rized to access and that were received from contributors
during a previous preset time period;

means for transmitting results of queries to the browser
program for display according to the format specified in
one of the plurality of templates;

means for enabling the remote user to submit queries;

means for determining if a submitted query includes a text
search parameter. and if so, routing said query to the
second database. and if not, routing the query to the first
database; and

means for executing the submitted queries by selecting all
documents the remote user is authorized to access and
that satisfy the submitted query.

£ %k Kk x ok

