
APPLIED AI SYSTEMS INC.
Intelligent Robotics & Artificial Intelligence

Education Guide for Hemisson

Intelligent Robot & Software

Volume

1

 i

I N T E L L I G E N T R O B O T I C S A N D A R T I F I C I A L I N T E L L I G E N C E

Education Guide for Hemisson Intelligent
Robot & Software

 Applied AI Systems Inc.

3232 Carp Road
Ottawa, Ontario

K0A 1L0
CANADA

Phone +1.613.839.6161 • Fax +1.613.839.6616
Email info@AAI.ca • URL http://www.AAI.ca

 ii

Table of Contents
BACKGROUND AND INTRODUCTION...1

BACKGROUND/GOALS OF APPLIED AI SYSTEMS INC. (AAI) ..1
BACKGROUND OF K-TEAM, MAKER OF HEMISSON ROBOT..2
BACKGROUND OF CYBERBOTICS, MAKER OF WEBOTS -HEMISSON, 3D SOFTWARE SIMULATION

PACKAGE (USED WITH HEMISSON ROBOT) ..2
INTRODUCTION TO HEMISSON ROBOT...3

CHAPTER 1: ARTIFICIAL INTELLIGENCE ..4

WHAT IS ARTIFICIAL INTELLIGENCE?...4
EXAMPLE FIELDS IN AI ...5
TYPES OF AI – NEW AI VS. GOFAI..6

GOFAI...7
New AI – The biological perspective...8

REAL WORLD USES OF AI ...10

CHAPTER 2: COMMON ROBOTIC SENSORS/DEVICES...17

PROPRIOCEPTIVE SENSORS ...17
Rotational Sensors...18
Limit Switch Sensors ...18
Inertial Measurement Units (IMU) and Gyroscopic sensors ..18

EXTEROCEPTIVE SENSORS..18
Light Sensors ...19
Ultrasonic Sensors ..20
Touch Sensors ...20
Laser Range Finder...20
Vision Sensors ...21

 iii

Millimetre Wave Radar ...21
ROBOTIC DEVICES..22

GPS – Global Positioning System ...22

CHAPTER 3: HEMISSON ROBOT...23

HEMISSON OPERATION ...23
Two Operational Switches (On/Off and Pgm/Exec) ..24
Four mode switches (Avoid, Line Follow, Dance, Run and download User Program)24

SERIAL PORT AND TV REMOTE COMMAND MODE ...28
Hemisson Serial Port Commands..31
TV remote controller commands ...33

CHAPTER 4: HEMISSON SOFTWARE ..35

BOTSTUDIO SOFTWARE..35
States - What the robot is doing ..36
Transitions – What the robot is seeing ..41
IR Light Level Detection..44

WEBOTS-HEMISSON AND BOTSTUDIO TOGETHER ..49
Changing Webots-Hemisson world view...51
Opening your user program in BotStudio for simulation in Webots-Hemisson51
Simulating the BotStudio file in Webots-Hemisson ...51
Moving objects in Webots-Hemisson...53
Webots-Hemisson World and Robot view..55

DOWNLOADING TO THE REAL ROBOT..56
HEMISSON UPLOADER ..59

CHAPTER 5: BOTSTUDIO LESSONS AND SOLUTIONS ...63

LESSON 1: OBSTACLE AVOIDANCE WITH STUCK TIMER...63
LESSON 2: LINE FOLLOWING WITH OBSTACLE AVOID ..69
LESSON 3: LIGHT FOLLOW WITH LINE FOLLOW PROGRAM - APPLYING IT TO THE REAL ROBOT.....80
LESSON 4: WALL FOLLOWING HEMISSON...86
LESSON 5: MAJOR AI PROJECT ...102

APPENDIX..105

SOME AVAILABLE HEMISSON MODULES..105
B/W Linear Camera...105
Ultrasonic Sensor ..106

 iv

BasicStamp2© Interface..106
External Programmer Interface ..107
Text to Speech..107
Wireless Color Camera ...108
General I/O Turret ..108
Infra-red (IrDA) Connection - Wireless communication...109
Radio Connection - Wireless communication..109
LCD Display..109
In-Circuit-Debug Interface..110

SPECS AND DIMENSIONS FOR HEMISSON ARENA AND PERIPHERALS ..111
Black Foam blocks ..111
Hemisson Arena – Version 1 ...114
Hemisson Arena - Version 2..117
Arena Floor ...120

SUPPORT – KNOWN PROBLEMS AND SOLUTIONS...122

 v

Table of Figures

Figure 1: Hemisson robot with felt pen and TV remote... 3
Figure 2: COG Robot.. 10
Figure 3: COG robot with display screens and toys... 11
Figure 4: COG Playing the drums and sawing .. 11
Figure 5: Kizmet gazing at Dr. Breazeal... 12
Figure 6: Different Kizmet faces ... 13
Figure 7: Detailed description of Kizmet feautures ... 13
Figure 8: PEARL robot and PEARL robot in retirement home ... 14
Figure 9: MINERVA robotic tourguide... 15
Figure 10: Automated Spraying Vehicle ... 15
Figure 11: Automated Golf Course mower ... 16
Figure 12: Demeter harvesting a field ... 16
Figure 13: Hemisson IR (infra-red) sensors, two pointing down to do line following .. 19
Figure 14: Ultrasonic sensor for Hemisson ... 20
Figure 15: SICK laser range finder with panning ability and attached digital camera .. 21
Figure 16: Small CCD camera module for the Hemisson robot.. 21
Figure 17: On/Off and Pgm/Exec switch on the side of the Hemisson robot.. 24
Figure 18: Obstacle Avoid mode switch setting.. 25
Figure 19: Line-Follow mode switch setting.. 26
Figure 20: Hole location for the felt pen that comes with each Hemisson.. 26
Figure 21: Dance mode switch setting.. 27
Figure 22: Run and Download user program mode switch setting ... 27
Figure 23: Serial port and TV remote mode switch settings... 28
Figure 24: Serial port of Hemisson robot and included serial port cable ... 28
Figure 25: Serial Port on the back of the computer ... 29
Figure 26: USB to Serial port Adapter and USB port shown on back of Notebook computer ... 29
Figure 27: Serial port setup to communicate with Hemisson... 30
Figure 28: TV remote direction commands... 33
Figure 29: Location of IR receiver for TV remote and Hemisson being controlled by TV remote.. 34
Figure 30: Initial BotStudio start-up screen ... 36
Figure 31: BotStudio button desciptions.. 36
Figure 32: BotStudio new state .. 37
Figure 33: BotStudio State name change.. 38
Figure 34: BotStudio Forward state .. 39
Figure 35: BotStudio Right state with right LED turned on .. 40
Figure 36: BotStudio saved example program... 41
Figure 37: BotStudio first ‘new’ transition between states .. 42
Figure 38: BotStudio ‘Near left’ transition ... 44
Figure 39: BotStudio ‘Near right’ transition .. 45
Figure 40: BotStudio two added ‘Far right’ transitions .. 46
Figure 41: Hemisson robot stuck due to sensor blind spot .. 47
Figure 42: BotStudio Clock Timer location ... 48
Figure 43: Webots-Hemisson simulation package.. 49
Figure 44: Webots-Hemisson Lady Bug icon.. 49
Figure 45: Desktop with Webots-Hemisson and BotStudio... 50
Figure 46: Logitech Laser scroll mouse .. 51
Figure 47: BotStudio running simulated robot in Webots-Hemisson... 52
Figure 48: Running Webots-Hemisson simulation... 53
Figure 49: Moving objects along the ground plane .. 54

 vi

Figure 50: Moving object to other ground planes .. 55
Figure 51: Webots-Hemisson World and Robot view ... 56
Figure 52: Propped up Hemisson robot so wheels aren’t touching the ground.. 57
Figure 53: Settings of mode switches for BotStudio download ... 57
Figure 54: BotStudio uploading user program to real robot ... 58
Figure 55: BotStudio display when running the real robot .. 59
Figure 56: Mode switch settings for the Hemisson Uploader .. 60
Figure 57: Hemisson Firmware uploader v1.5 .. 61
Figure 58: Red and Green LED are solidly lit up when in Pgm mode ... 61
Figure 59: Hemisson Uploader success screen.. 62
Figure 60: Obstacle Avoidance Hemisson... 63
Figure 61: Unfinished Obstacle Avoidance program... 64
Figure 62: Return forward transition added... 65
Figure 63: Added Stuck state with timer .. 66
Figure 64: Stuck state wheel speed settings.. 67
Figure 65: Final Transition timer out of the Stuck state .. 68
Figure 66: Line following Hemisson... 69
Figure 67: Four states added to Avoid program ... 70
Figure 68: Shift Left state in the line follow program .. 71
Figure 69: Detect Obstacle state in line follow program... 72
Figure 70: no obstacle transition to line following ... 73
Figure 71: Sense line left transition in line follow program... 74
Figure 72: Return to Hunt line transition in line follow program.. 75
Figure 73: lost line transition in line following program.. 76
Figure 74: Obstacle detection transitions in line follow program.. 77
Figure 75: All sensor transitions in the line following program ... 78
Figure 76: Final Line follow program ... 79
Figure 77: Light Following Hemisson .. 80
Figure 78: First transition in the light following program ... 82
Figure 79: Near right sensor settings in light follow program .. 83
Figure 80: Modified lost line transition in light following program... 84
Figure 81: New value setting for Proximity IR Sensors... 85
Figure 82: Wall following Hemisson... 86
Figure 83: Wall follow arena to test the Hemisson... 87
Figure 84: Initial forward state in wall follow program ... 89
Figure 85: Regular forward state in wall follow program .. 89
Figure 86: Three front transitions between two forward states ... 90
Figure 87: Front sensor value for the transitions between forward states .. 90
Figure 88: Spin Right state in the wall following program .. 91
Figure 89: Pivot Left state in the wall following program... 91
Figure 90: Curve Left state in the wall following program.. 92
Figure 91: Lost Wall Transition between Forward and Pivot Left state... 93
Figure 92: Near left transition between two turning states ... 94
Figure 93: Lost Wall transition between the left turning states .. 95
Figure 94: See wall front transition between left turn and forward state.. 96
Figure 95: Detect corner near right transition ... 97
Figure 96: Track wall transition back to the forward state .. 97
Figure 97: Robot path based on Keep off wall transition sensor value .. 98
Figure 98: Keep off wall transition in wall following program... 99
Figure 99: Stuck transitions in the wall following program...100
Figure 100: Final Lost wall timer transition in wall follow program ...101
Figure 101: Cleaning robot arena...102
Figure 102: Arena after cleaning ..103
Figure 103: Black and White foam blocks for the Hemisson ...104
Figure 104: Light source and light wall...104
Figure 105: Black and White Linear camera for Hemisson...105
Figure 106: Ultrasonic Sensor Module ...106
Figure 107: BasicStamp2© Interface module ..106
Figure 108: External Programmer module...107
Figure 109: Text to Speech module ..107
Figure 110: Wireless Video Camera module..108
Figure 111: General I/O module ..108
Figure 112: Hemisson Wireless communication modules...109
Figure 113: Hemisson LCD Display module ..109
Figure 114: In-Circuit-Debug Interface..110
Figure 115: Black Foam cut-out for Hemisson...111
Figure 116: Foam cut-out with two sides...112
Figure 117: Foam cut-out shape designed to turn with robot ..112

 vii

Figure 118: Foam cut-out under robot body foam layer ...113
Figure 119: Hemisson Arena with dimensions..114
Figure 120: Actual Arena with foam blocks on the corners ...115
Figure 121: Foam block under the arena wall with Hemisson IR detecting the wall ...115
Figure 122: Used Velcro to attach walls in the corners ...116
Figure 123: Long wall of the arena..117
Figure 124: Short wall of the arena..118
Figure 125: Four arena walls together...119
Figure 126: Cardboard slot arena...119
Figure 127: 3x5 paper floor arena with line following lines ..120
Figure 128: Arena floor – 15 pieces of white paper taped together ..120
Figure 129: Arena floor inside arena ...121
Figure 130: Line following floor in the arena ..121
Figure 131: Noise Check for light saturation...126
Figure 132: Noise Check state set same as Straight State ..126
Figure 133: RNC transition back to the Straight state ...127
Figure 134: Transition that detects an actual object to avoid ...127

B A C K G R O U N D A N D I N T R O D U C T I O N

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

1

Background and
Introduction
Background of AAI and K-Team companies and Hemisson
robot

Background/Goals of Applied AI Systems Inc. (AAI)
pplied AI Systems, Inc. was established in 1983, and is the longest standing

Artificial Intelligence (AI) speciality company in Canada. We develop artificial

intelligence systems with real world applications. Applied AI Systems' long-term

commitment to the development of AI technology, based on the "paying respect to

science" approach, is now reaching its predicted potential.

Applied AI Systems Inc. has an international scope, and is in close contact with

members of the Artificial Intelligence community. Our system developers constantly

travel the globe to meet other researchers and practitioners, and we also participate in

AI conferences, workshops, and symposia.

We have written this document to not only discuss and use the Hemisson robot but

also to introduce the field of AI along with real world applications and common

robotic sensors and devices used in the mobile robotics field. It is our hope that the

reader will gain an increased understanding of the sometimes complicated AI field of

study which increases in popularity, necessity and importance every day.

A

B A C K G R O U N D A N D I N T R O D U C T I O N

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

2

Background of K-Team, maker of Hemisson robot
K-Team S.A. is a Swiss company that develops, manufactures and markets the

Khepera Linecard, high-quality mobile minirobots for use in advanced education and

research and the Hemisson Linecard, small robots for teachers and hobbyists.

K-Team S.A. was the first to manufacture autonomous miniature mobile robot. The

company's experience in the field of autonomous mobile robotics applications allows it

to provide best of breed solutions to the most demanding academic and commercial

research laboratories in the world. The Khepera Linecard is the choice of over 500

universities and industrial research centers.

K-Team S.A. aims to consolidate its position as leader in the fields of research and

education.

Web Address: http://www.k-team.com/

Background of Cyberbotics, maker of Webots -
Hemisson, 3D software simulation package (used
with Hemisson robot)
Cyberbotics was founded in 1998 by Olivier Michel as a spin off company from the

MicroComputing and Interface Lab (LAMI) of the Swiss Federal Institute of

Technology, Lausanne (EPFL). Cyberbotics is developing Webots, a 3D mobile robot

simulator for research and education. Cyberbotics is also developing custom 3D

mobile robot simulators for a number of companies and universities.

Web Adress: http://www.cyberbotics.com/

B A C K G R O U N D A N D I N T R O D U C T I O N

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

3

Introduction to Hemisson robot
Hemisson belongs to a new robot line for teachers and hobbyists. Hemisson is the first

ready-to-use programmable robot offered in this lower price range: plug it in your PC,

program its behaviour with BotStudio, simulate it with Webots-Hemisson and apply it

on the real robot.

Figure 1: Hemisson robot with felt pen and TV remote

Detailed information regarding Hemisson can be found in the Hemisson User Manual

which should be read by the educator planning on teaching with this robot. A short

description of the robot will be given here.

Hemisson is a two wheel robot with zero turning-radius. It has 8 light sensors, six of

which are for obstacle avoidance and the other two are pointed down for line

following. It runs on a standard 9V battery and has a serial port through which the user

can program the robot. The robot also has two LEDs located at the front and a buzzer

both of which the user will be able to control when programming the robot with

BotStudio. There are many more functions available on Hemisson, which will either be

discussed in later chapters and/or can be found in the Hemisson User Manual.

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

4

Artificial Intelligence
Artificial Intelligence (AI) description, examples and uses

What is Artificial Intelligence?
here is no one industry standard definition for AI, because to attempt to define it

is a very complicated undertaking, to say the least. Even after years of research

and study, AI continues to change and evolve, and as our understanding of both

artificial and natural intelligence increases, our definition of what AI is or isn’t also

must evolve, causing innumerable disagreements and discussion between AI

researchers all over the world. “Simply stated, Artificial Intelligence is the study of the

abilities for computers to perform tasks which currently are better done by humans. AI

is an interdisciplinary field where computer science intersects with philosophy,

psychology, linguistics, engineering and other fields. Humans make decisions based on

experience and intuition. The essence of AI is the integration of computers to mimic

this learning process.” 1. Indeed, the field of AI has grown to be so much more than

attempts to simulate (human) intelligence so it is better to not initially focus on the

definition but instead on the different fields in AI itself. In fact once you’ve

implemented an AI concept into a computer or robot and therefore you know (or can

predict) what is happening within that computer it ceases to be AI and just becomes

software. The same would be said for human intelligence if one could discover exactly

how we work and predict future evolution of our intelligence.

Chapter

1

T

1. Text taken from http://www.cwrl.utexas.edu/~tonya/cyberpunk/projects/ai/definition.html

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

5

Example fields in AI
Pattern Recognition involves determining the characteristics in specific samples and

sorting them into classes; a process called classification. This is usually done with

Machine Learning techniques such as Artificial Neural Networks or just Neural

Networks (NN) which are based on the neurons in the human brain. These allow the

system to adapt to the data given to it. It can be applied to detecting single words in

speech, recognizing voices, sorting scanned objects by type and filtering out unwanted

pictures (among many others).

Natural Language Processing is the task of extracting meaning from text or speech.

This allows a computer to not just listen and record what you are saying, but because

the computer begins to understand the meaning behind what you are saying it can then

begin to predict what you’ll say next and recognize errors in what it heard. If a word

doesn’t fit in a sentence because it has no relation to the rest of the sentence, then it

can be detected and corrected and not just blindly recorded.

Another popular aspect of AI is Artificial Life which involves modelling and

mimicking living systems or the Animat approach, i.e., to the synthesis of simulated

animals or real robots, whose inner workings are as much inspired from biology as

possible. This approach offers one of the most promising techniques of controlling

robots whose primary task is mobility. Robots must navigate around unstructured

(changing) cluttered environments filled with moving and fixed obstacles (chairs,

tables, people, rocks and trees) but continue to follow a desired path and reach a

destination without getting lost. This is something animals (including people of course)

and insects do very well and is best shown when navigating an environment where one

has never been and has heard nothing about. Animals and insects apply the lessons

previously learned (or through instincts) to the new environment and are able to

quickly and seamlessly adapt to changing conditions all the while looking for landmarks

to remember where they have been and how to return. This is only simplified

somewhat when given some information about the new environment such as a map

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

6

because then localization (knowing where you are) on the map and where you want to

go is also extremely difficult due to imperfect sensors and an ever changing

environment in the real world. It is through studying these ‘simple’ creatures and their

‘simple’ rules and trying to apply them to robots do we expect the greatest

advancement in mobile robotics so this is where the lessons in this unit will be focused.

This field is called Biologically Inspired AI or New AI, which will be discussed

more in the next sections.

Another branch of Biologically Inspired AI is Swarm Intelligence. This relates to

multiple robots or systems working together to solve a given problem. As an

independent entity each of the robots shows none or very little intelligence and could

not hope to solve a problem on its own. When a number of these robots are placed

together, however, their interactions between one another and with the environment

evolve to form a problem solving intelligence seemingly by accident, which results with

benefits for all. An example of this in nature is the interaction between ants and bees in

their nests, which is why they are often used as models for AI researchers.

Only a small part of the AI field has been mentioned here, mostly relating to robotics,

but there are many more branches that are equally interesting and for more details on

these and those mentioned, the internet is the easiest place to find information.

Types of AI – New AI vs. GOFAI
There are two main fields that you can fit AI research and researchers into. These are

called “New AI” (Biological AI or Behaviour-based AI) as mentioned before and

“GOFAI” (Classical AI, Symbol Handling AI or Traditional AI). John Haugeland

coined the phrase “GOFAI” which stands for Good Old Fashioned AI. There is

continuous on going debate, as to which of the two types is better. It would appear

that New AI is winning out.

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

7

GOFAI

For a field which has only been around since 1956, GOFAI has achieved a great deal.

It has been used to attempt to solve such problems as reasoning, planning, natural

language processing, vision and robotics. One of the more well known

accomplishments was when the chess playing IBM supercomputer, Deep Blue, beat

Gary Kasparov the Chess Grand Master. GOFAI is certainly not biological; it uses a

rule based system, sometimes called Symbol handling, which requires the designer to

develop a computer that uses a rule book to know what action to perform based on a

certain input (symbol). The idea is that as more rules are created for a given

environment, the computer starts to simulate intelligence as it interacts with this

environment. As an example, a system (computer) will only know that bears are

dangerous if it has been explicitly told this and a rule has been made. The rule book

would then say if bears are around then it should climb trees. This simple example

shows one of the faults of GOFAI. It requires knowledge of in which environment it

will be operating and all possible things that can happen when it is operating there. For

things like planning or natural language processing it becomes exponentially more

difficult to predict what it will see and thus requires too much computation. GOFAI

researchers believe there is no point in looking at the way nature has produced

intelligence because computers are just different from brains. This is true in that

computers are superior to brains in the way that they can remember huge amounts of

data that they can search many times over. They can for example plan a large number

of chess moves ahead, whereas people can only really best plan 3 moves ahead.

Computers are also inferior to brains in that if their programs have even the slightest

error, they will come to a halting stop. The details are not important, just that

computers and brains solve problems differently. A common analogy for GOFAI is

flight. We have built machines that fly but don’t flap their wings, in other words we

have solved flight without copying nature and in fact copying nature would have been

a mistake. Another famous argument was put forward by a philosopher called John

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

8

Searle in "Minds, Brains and Programs" in the journal Behavioral and Brain Sciences in

1980, called the ‘Chinese Room Argument’.

The Argument

(from http:// www.cit.gu.edu.au/~terryd/subjects/intro.to.ai/lecture9.html)

Searle is seated at a mahogany desk with a nice inlaid leather top. On the desk are pens,

pencils, a desk lamp and a cup of coffee with three lumps of sugar. In front of the desk

are two windows. Pieces of paper covered in squiggles plop in through one of the

windows. Searle examines the squiggles and looks them up in a rulebook (which is next

to his cup of coffee). The rulebook is in English, and it tells Searle what to do with the

squiggles: he can reproduce them, modify them, destroy them, and/or create new ones,

and sometimes he passes the results back through the other window.

Now unbeknownst to Searle, there are Chinese computer programmers outside the

room, feeding Chinese sentences into it, and, from their point of view, getting Chinese

sentences back in reply. The rule book is so sophisticated, and Searle so adept at using

it, that the room appears to understand Chinese and this is certainly what the

programmers believe. But, says Searle, the room understands nothing, for he does not

understand Chinese, nor does the room, or anything else in it, and nor do the room

and its contents as a whole.

From this, he says, it follows that computers do not understand their input, for they

too manipulate input squiggles according to formal rules, or as he puts it, "perform

computational operations on formally specified elements". (Searle, 1980.)

The conclusion to this is that promoters of GOFAI believe that if one can develop a

system that simulates understanding so well that, from an observers point of view, it

appears intelligent then they have achieved intelligence, Searle however disagrees.

New AI – The biological perspective

By the mid 1980s, researchers began realizing that the current way of doing AI was full

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

9

of problems. As was already mentioned, writing a ‘top-down’ program, i.e. putting a

number of rules in a robot’s ‘head’ easily becomes very complicated and sometimes

impossible. From a biological point of view this is backwards to nature. Nature takes a

very long time to evolve its abilities and it isn’t until much later do rules emerge based

on what it has learned. Researchers believe that our brains have evolved in order to

control our behaviour and ensure our survival. It is now agreed that intelligence always

manifests itself in behaviour, so it is behaviour that we must understand. A book was

written which characterized this method of AI called, Understanding Intelligence – by

Rolf Pfeifer and Christian Scheier. It consists of three components:

(1) Modelling certain aspects of biological systems

(2) Abstracting general principles of intelligent behaviour, and

(3) Applying these principles to the design of intelligent systems.

What this means is that our AI robot would be allowed to move in an environment

with only the most basic rules initially programmed. Then as interactions take place,

different behaviours are caused which either improves the current situation or make

things worse (like in nature where the animal might get killed). After enough time

performing different behaviours the robot would generalize on what it has seen and a

rule would be created for that situation. The rule however would not be written in

stone, and could change at a later date if a new situation warranted it. Although the

New AI robot might not perform as well as the GOFAI robot in the beginning, it

would be much better at adapting to unexpected changes, which are guaranteed to

come up in the real world. For example, a New AI system that is always climbing trees,

even when not necessary, would avoid both bears (as would the GOFAI system) and

wolves (which the GOFAI system would not) possibly by accident but then later on

purpose. Using a biological model is quite possibly the only hope one has in trying to

develop a system that will function in the unstructured, changing and sometimes

dangerous environment of the real world. The GOFAI model on the other hand,

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

10

would only excel in a structured, lab style, restricted indoor environment.

Real world uses of AI
This section will show a few of the more interesting AI applications, but is only a very

short list of the vast amount of projects being done.

MIT – Massachusetts Institute of Technology – AI Lab – Humanoid Robotics Group

http://www.ai.mit.edu/projects/humanoid-robotics-group/

COG Robot

COG is potentially the most advanced intelligent humanoid machine to date. Its

mimicry of human motion, and learning abilities provide his makers and researchers

with a fascinating and unique learning environment upon which to expand general

knowledge about AI, as well as specific knowledge about the human condition.

Figure 2: COG Robot

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

11

Figure 3: COG robot with display screens and toys

Figure 4: COG Playing the drums and sawing

Kizmet Robot

Kizmet is an expressive anthropomorphic robot designed to engage people in natural

and expressive face-to-face interaction. Inspired by infant social development,

psychology, ethology, and evolution, this work integrates theories and concepts from

these diverse viewpoints to enable Kismet to enter into natural and intuitive social

interaction with a human caregiver and to learn from them, reminiscent of parent-

infant exchanges. To do this, Kismet perceives a variety of natural social cues from

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

12

visual and auditory channels, and delivers social signals to the human caregiver through

gaze direction, facial expression, body posture, and vocal babbles. The robot has been

designed to support several social cues and skills that could ultimately play an

important role in socially situated learning with a human instructor. These capabilities

are evaluated with respect to the ability of naive subjects to read and interpret the

robot's social cues and the robot's ability to perceive and appropriately respond to

human social cues.

Figure 5: Kizmet gazing at Dr. Breazeal

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

13

Figure 6: Different Kizmet faces

Figure 7: Detailed description of Kizmet feautures

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

14

CMU – Carnegie Mellon University

The Robot Learning Laboratory

http://www-2.cs.cmu.edu/~rll/robots/

PEARL (PERSONAL ROBOTIC ASSISTANTS FOR THE ELDERLY) Robot

The goal of this project is to develop mobile, personal service robots that assist elderly

people suffering from chronic disorders in their everyday life. They are currently

developing an autonomous mobile robot that "lives" in a private home of a chronically

ill elderly person.

Figure 8: PEARL robot and PEARL robot in retirement home

Minerva robotic tour guide

Minerva is a talking robot designed to accommodate people in public spaces. She

perceives her environment through her sensors (cameras, laser range finders, ultrasonic

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

15

sensors), and decides what to do using her computers. Minerva actively approaches

people, offers tours, and then leads them from exhibit to exhibit. When Minerva is

happy, she sings and smiles at nearby people. But don't block her way too often--

otherwise, she'll become frustrated and might frown at you and honk her horn!

Figure 9: MINERVA robotic tourguide

National Robotics Engineering Consortium – NREC

http://www.rec.ri.cmu.edu/

Automating Spraying Vehicles

The Consortium for Agricultural Spraying is automating vehicles so that one worker

can remotely oversee four spraying vehicles running at night.

Figure 10: Automated Spraying Vehicle

A R T I F I C I A L I N T E L L I G E N C E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

16

Automated Golf Course Mowing

The mowing project is automating a mower so that it can mow a golf course safely and

precisely, and sense small obstacles (like golf balls) reliably.

Figure 11: Automated Golf Course mower

Demeter

Teamed with New Holland, NREC is developing three levels of harvester automation.

The first two enable fewer, lesser-skilled operators to provide above-average

performance. The last will enable a machine to harvest a field by itself.

Figure 12: Demeter harvesting a field

C O M M O N R O B O T I C S E N S O R S / D E V I C E S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

17

Common Robotic
Sensors/Devices
Most common robotic sensors and devices used in the robotic industry

utonomous mobile robots or unmanned aerial vehicles are often equipped with

sensors and devices that can track position and provide information about the

environment that one navigates in. These sensors/devices generally provide proximity

detection, odometry and localization for a robot. A variety of different types of sensors

can and should be found throughout and around a robot in order to have a robust

robotic system. There are two main categories of sensors, proprioceptive and

exteroceptive.

Proprioceptive Sensors
These are sensors which are either used to measure some kinetic quantity (such as

velocity or acceleration) or sense something that is not related to the external

environment. These measurements are still needed in order to manoeuvre in the

external environment but are more related to what the robot senses about itself. Some

examples follow.

Chapter

2

A

C O M M O N R O B O T I C S E N S O R S / D E V I C E S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

18

Rotational Sensors

These are used to measure the rotation of a shaft or axis or the angle of a robotic arm.

For example, as the shaft spins to turn the wheels of the robot, a number of electrical

pulses are transmitted by the rotational sensor (also called an encoder) as the shaft does

each revolution. The greater the number of pulses per revolution, the more precise the

sensor can be on exactly how far the robot has travelled. This of course assumes one

knows the circumference of the wheel. There will of course be error in this calculation

because although the number of pulses can be counted exactly, it is possible, due to

wheel slippage or uneven terrain, that the estimated distance travelled by the robot will

become increasingly different than the actual distance travelled as time goes on. These

sensory are also used to measure acceleration and velocity of a robot as well as perform

odometry. Odometry means to determine the robot’s relative change in position based

on an initially known position.

Limit Switch Sensors

These touch sensors are used in moving parts like a gripper arm so as to know when

they have reached their movement threshold. They can also sometimes be found in the

steering control of robots so that the movement can be halted once the wheels have

turned to the maximum range.

Inertial Measurement Units (IMU) and Gyroscopic sensors

These find more use in aerial or marine robots (where rotational sensors would be less

effective) and can be used to detect angular velocity, linear acceleration and other

sensing needs required for non-ground and therefore non-wheeled robots.

Exteroceptive Sensors
These sensors are used to determine a representation of the external environment such

as proximity of objects to the robot or visible physical features that the robot might

need to know (like cliffs or stairs). This sensor category can be further divided into

passive and active sensors. Passive sensors are those that use ambient radiation (uses

C O M M O N R O B O T I C S E N S O R S / D E V I C E S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

19

the light or radiation that is already around us). Active sensors illuminate objects with

some form of radiation in order to sense or measure. Some examples follow.

Light Sensors

Light sensors are used to differentiate light levels reflected from bright or dark surfaces,

they can be used to determine approximate distances to objects as well as follow a dark

(or bright) line on a bright (or dark) floor. This will be shown while using Hemisson.

The Hemisson robot uses IR (infra-red) sensors for both proximity detection and line

following as shown in the following figure. The IR sensors are used to detect obstacles

at very close range (0.1-3cm), like in Hemisson, but IR’s are available which can detect

up to approximately 1m range. They are best suited for detecting bright coloured, hard

and shiny surfaces.

Figure 13: Hemisson IR (infra-red) sensors, two pointing down to do line following

C O M M O N R O B O T I C S E N S O R S / D E V I C E S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

20

Ultrasonic Sensors

These are also proximity sensors like the light sensors, but they offer a longer range of

detection. However they cannot detect obstacles at very close range. Detection ranges

in Ultrasonic sensors between 3cm and 6m. The operation of these sensors are similar

to how bats detect obstacles by sending out a high frequency (40kHz which means we

can’t hear it) pulse that is reflected off of an obstacle and returns to the robot. The

pulse is timed so as to give distance information. Ultrasonic sensors work best with

hard flat surfaces to give good pulse reflection, whereas soft round surfaces (like

people) tend to absorb or scatter the pulses resulting in decreased range.

Figure 14: Ultrasonic sensor for Hemisson

Touch Sensors

These sensors are simple switches that require a little pressure in order to be activated

and are often referred to as bumpers or whiskers on a robot. They are used to detect

contact between walls, other robots or any other moving or fixed obstacles. They can

also be designed to keep contact with the ground so as the robot will halt before it falls

off of a ledge or a table.

Laser Range Finder

This is a high accuracy (+/- 1mm) proximity sensor that detects in a pencil width beam

all obstacles up to 50m away and at 180 degrees. This sensor is often used to build very

detailed high accuracy maps of an area and can be further modified by adding a tilting

system (to scan in a vertical motion) to allow 3-d map building or obstacle detection.

C O M M O N R O B O T I C S E N S O R S / D E V I C E S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

21

Figure 15: SICK laser range finder with panning ability and attached digital camera

Vision Sensors

These sensors are often but not always CCD cameras that take images of scenery for

processing either onboard (done on the robot) or are transmitted to a host computer

for processing. These images are used for any number of things from, obstacle

detection, face acquisition, landmark detection, map building and localization of the

robot.

Figure 16: Small CCD camera module for the Hemisson robot

Millimetre Wave Radar

Some sensors such as laser range finders or vision sensors can degrade in non ideal

C O M M O N R O B O T I C S E N S O R S / D E V I C E S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

22

conditions such as flying ice and snow, changing light condition and lack of contrast. A

millimetre wave radar is not as vulnerable to these harsh conditions and therefore is

preferable in the construction, mining and agricultural industries. It is also used by

NASA in planetary-exploration environments and was used on the Nomad robot in

Patriot Hills, West Antarctica. It functions by transmitting electromagnetic radiation

through an antenna. As the signal is sent out, objects reflect, refract and absorb it. The

radiation that returns is converted to an amplitude, the larger the amplitude the larger

the object that reflects it. Radar also has the added benefit of measuring the range of

more than one object downrange.

Robotic Devices

GPS – Global Positioning System

The Global Positioning System is a worldwide radio-navigation system formed from a

constellation of 24 satellites and their ground stations. GPS uses these "man-made

stars" as reference points to calculate positions accurate to a matter of meters. With

advanced forms such as DGPS, you can make measurements with accuracy to within

one centimetre. This is quite costly however.

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

23

Hemisson Robot
Hemisson robot operation, functions and usage

Hemisson Operation
ome of the different operational modes and functions of Hemisson will now be

described, however this is not meant to replace the Hemisson user manual, but is

meant to supplement the manual. Everything that is described here is also in the

manual.

For more information about Hemisson and available modules, please refer to the K-

Team Hemisson website at http://www.hemisson.com/English/ . This is also a good

place to go if any serious problems are encountered and you need technical support.

Short of installing the standard 9V battery into Hemisson, the robot should be ready

for operation right out of the box. To begin by seeing what the robot can do, a short

description of the six available switches is necessary.

Chapter

3

S

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

24

Two Operational Switches (On/Off and Pgm/Exec)

The first two switches, as shown in the following figures, are the On/Off switch and

Pgm/Exec (Program/Execute) switch.

Figure 17: On/Off and Pgm/Exec switch on the side of the Hemisson robot

The Pgm/Exec switch should almost always be set in the Execute mode for

practically all robot operations. The only time you will need to put it in Program

mode, is when you need to re-install the firmware (Operating system) of the robot

because it has been corrupted. This is discussed in the Hemisson Software chapter that

follows this chapter. You will know it has been corrupted when the LEDs on the

robot flash sporadically and the robots various installed functions like Avoid, Line

follow, etc. stop functioning.

Four mode switches (Avoid, Line Follow, Dance, Run and download User

Program)

These switches are pre-written functions each Hemisson comes with that can be easily

set and run to demonstrate the robots different abilities. Remember that the

operational switch ‘Pgm/Exec’ should be set on ‘Exec’.

Note: The mode switches must first be set while the robot is turned off
and then turned on for it to have any effect. This is because the mode
switches are only checked on start-up.

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

25

The first switch is an Obstacle Avoidance mode that demonstrates the robot’s ability

to avoid different obstacles with the six outwardly looking IR (infra-red) sensors. The

following figure shows the switch settings for this.

Figure 18: Obstacle Avoid mode switch setting

The next switch is the Line-Following mode, which will cause the robot to follow a

dark line on a white surface using the two front IR sensors that are pointed towards

the ground. The CD that accompanies Hemisson has some printable white papers

with good sized lines that can be printed and used to create a long trail for the robot to

follow. If the Line-Follow mode is chosen, the robot should only be turned on while

the robot is on the surface where it will be using the line-follow. The robot does a

calibration for lighting conditions and surface conditions during start-up and won’t be

able to follow the line if it is being held in midair while it is being turned on.

Note: When the robot is in Line-Follow mode there is no Avoidance running
so care must be taken to make sure the robot does not lose the line and hit
something.

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

26

Figure 19: Line-Follow mode switch setting

The following mode switch is the Dance mode. This mode causes the robot to move

backwards and forwards while turning. This mode was created to be used with the felt

pen inserted into the hole located in the middle of the robot, shown in the following

figure. The forward-backward motion will draw a star on paper to demonstrate the

ability of the robot to trace different shapes or the path that the robot is taking while it

moves around.

Note: As before, when the robot is in Dance mode there is no Avoidance
running so it is possible for the robot to drive into any obstacles that are in
close proximity.

Figure 20: Hole location for the felt pen that comes with each Hemisson

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

27

Figure 21: Dance mode switch setting

The final mode is the Run and Download user program mode. This switch is used

to prepare the robot to first receive the program that the user will write in BotStudio,

and then run it after it has been downloaded. More details will be given about this in

the next chapter. As for now, it should be enough to know if there had been user code

downloaded to the robot, placing the mode switch, as in the following figure, with the

operation switch set to ‘Exec’ and then turning on the robot would run the user code.

Figure 22: Run and Download user program mode switch setting

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

28

Serial port and TV remote command mode
When the four mode switches are set, as in the following figure, and the ‘Pgm/Exec’

switch is still set to ‘Exec’, the robot can be commanded either through the serial port

or with certain (RC5 standard) Television remotes.

Figure 23: Serial port and TV remote mode switch settings

The serial port on the robot can be connected to the serial port on your computer

using the included serial port cable.

Figure 24: Serial port of Hemisson robot and included serial port cable

The serial port cable is then connected to the back of the computer where there is also

a serial port as shown in the following figure. Sometimes computers or Notebook

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

29

computers do not come with a serial port, but only come with USB ports, at which

point you will need to get a USB to Serial port adapter. This can be found at most

computer stores, but make sure it is compatible with your version of windows.

Figure 25: Serial Port on the back of the computer

Figure 26: USB to Serial port Adapter and USB port shown on back of Notebook computer

In order to be able to command the robot through the serial port, you will need to use

a terminal program such as HyperTerminal which comes with all versions of

windows after Windows 95. HyperTerminal can be found by going to Start --> (All)

Programs --> Accessories --> Communications --> HyperTerminal.

Another good free terminal program is called TeraTerm. It can be downloaded and

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

30

used for free at: http://hp.vector.co.jp/authors/VA002416/teraterm.html

Now that the Hemisson robot is connected through the serial port and the terminal

program is running, you will need to use the following serial port setup in order to

communicate with the robot.

Note: Leave the robot turned off until it is connected through the serial
port, then once the serial port setup has been done, turn the robot on. You
should see displayed two lines of text on the terminal screen after the
robot is switched on, if you only see a few nonsense characters, it means
you have set the Baud rate incorrectly.

As always you need the ‘Pgm/Exec’ switch set to ‘Exec’ and mode switches as shown

in Figure 27. It is a good idea to prop the robot up so that the wheels are not

touching the ground, just in case one of the programs begins to run or you want to test

the wheel speeds.

Figure 27: Serial port setup to communicate with Hemisson

The Com port setting is COM1 in the above figure but is whatever COM you put the

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

31

serial port cable in.

Hemisson Serial Port Commands

These commands can be used to test the sensors, motors, switch readers, TV remote

sensor, check the Hemisson OS software versions and more. All commands are typed

using UPPER CASE (caps lock on) and robot responses are given with lower case

letters.

C O M M A N D R E S P O N S E

Check version number

B b, HemiOS_V_1.#

 # is the version of firmware loaded on
 the Hemisson robot

Set wheel speeds

D,left_speed,right_speed d,left_speed,right_speed

The motor speeds can range from ‘-9’ for full reverse to ‘9’ for full forward and stop is
‘0’. If you set speed higher than 9 the robot will spin in a circle

Turn on and off the buzzer

H,# h

The # can be either 1 or 0, 1 will turn on the buzzer and 0 will turn it off.

Check mode switch positions

I i,#,#,#,#

 The # can be 1 or 0 where 1 means the
 Switch is moved towards the robot’s left
 Handside, and 0 means towards the
 Robot’s right hand side.

Turn 4 LEDs on or off

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

32

L,#,#,#,# l,#,#,#,#

The # can be 1 or 0, where 1 will turn on the LED at that location and 0 will turn it off.
Note: the flashing green On/Off LED cannot be turned on or off with this command.

Check IR proximity sensor readings

N n,#,#,#,#,#,#,#,#

The #’s will range between approx. 4 to 255, where 255 represents an object that is
very close. The order of sensors: n, front, front right, front left, right, left, rear,
ground looking right, ground looking left.

Check IR light readings

O o,#,#,#,#,#,#,#,#

The #’s will range between approx. 4 and 255, where 255 means that no IR light was
detected by that sensor, and conversely a low number means detected IR light. IR
light can be found in practically any light source, just try shining a desk lamp or
flashlight on the robot and it should detect it.

Display last received TV remote control data

T t,#

The # will be the last received data from the television remote.

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

33

TV remote controller commands

The RC5 standard remote control like Philips, Daewoo, Goldstar, Hitachi,

Loewe, Mitsubishi, Samsung, and many others can be used to control the

Hemisson robot. It is important if using a remote control with a ‘VCR’ and ‘TV’

button, to make sure you press the ‘TV’ button before trying to command the

Hemisson. The directional commands are as shown in the following figure.

Figure 28: TV remote direction commands

The robot receives these commands through an IR receiver located on top of the

robot, shown in the following figure. The user should make sure to point the TV

remote in the direction of the IR receiver when commanding the robot. As before the

robot needs to be in the proper mode (same as that of the serial port command mode)

and the ‘Pgm/Exec’ switch should be set to ‘Exec’.

H E M I S S O N R O B O T

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

34

Figure 29: Location of IR receiver for TV remote and Hemisson being controlled by TV remote

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

35

Hemisson Software
BotStudio, Webots-Hemisson and Hemisson Uploader

BotStudio Software
he BotStudio Software is what you will use to program both your simulated

robot in Webots-Hemisson and the real one through the serial port. It is

designed to be a simple visual programming method that is much easier than using a

text based programming language like C or C++. This program allows any user to

create simple programs that are logical to follow and can be debugged by simply

watching the graphical program as it runs on the robot, either real or simulated. The

following figure shows the initial BotStudio screen. It consists of a white space where

the user will put the graphical program and a picture of a Hemisson robot on the right.

To open this program double-click Webots-Hemisson (lady bug) icon or open it from

the ‘Programs’ menu. Both programs should open up together.

Chapter

4

T

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

36

Figure 30: Initial BotStudio start-up screen

Figure 31: BotStudio button desciptions

States - What the robot is doing

This program uses two types of building blocks; the first one is called a ‘State’. A state

reflects what the robot is doing, for example if it is driving forward. Other possible

states could be if it was turning left or turning right or even stopped. States can also

include combinations of things such as turning around while sounding the buzzer and

turning on the two front LEDs. To begin let us first create a state, this is done by

clicking the ‘New State’ button in the menu bar.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

37

Figure 32: BotStudio new state

The state, named ‘new’, is highlighted in yellow and appears on the white space. It can

be moved around the white space by clicking and holding the mouse button while on

top of it, and dragging it to another location. While the state is highlighted, notice how

the wheels, buzzer and two LEDs (two black dots at the front) are darkened and the

wheels have zeros beside them. This means that those features, which can now be

modified within that state, are showing a halted state by default, with no buzzer or

LEDs turned on. Let’s begin by naming the state, this is done by erasing the ‘new’ in

the text box above the robot and typing in whatever name you want to give it.

“Erasing” means using the keyboard backspace or delete key and NOT clicking the

‘Delete’ button in BotStudio. This ‘Delete’ button will erase the entire state. You can

then type some new name in, for example “Forward”. You should see the name

change from ‘new’ to ‘Forward’ as you type into the text box.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

38

Figure 33: BotStudio State name change

Next we will modify the state to reflect the desire to go forward. This is achieved by

clicking on the zeros beside the wheels which will change them to most likely ‘+10’

and will show an arrow on top of the wheel indicating the direction the wheel will spin.

Both wheel values will be set to ‘+10’ so that the robot will move forward in a straight

line at the speed of 10. To change the wheel speeds to other values, just click on either

of the digits and they will cycle through the possible values for each of the units up to a

maximum of 16, the arrow length changes accordingly. You can also change the

direction by clicking on the ‘+’ which will change to ‘-‘ and the wheel will spin

backwards. The arrow again changes accordingly.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

39

Figure 34: BotStudio Forward state

Two more states will be created called ‘Left’ and ‘Right’, the wheel speeds will be

chosen to cause the robot to spin in place either left or right by using: For Left state,

‘-10’ for left wheel and ‘+10’ for the right wheel and the opposite for the Right state.

The left and right LED will also be turned on to indicate the turn the robot makes.

Make new states by clicking the new state button, renaming the state from “new” then

clicking it again for the third state.

Note: Before clicking the ‘new state’ button, move the last state to a new

position or multiple states will be created right on top of one another and

you might not see them there.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

40

Figure 35: BotStudio Right state with right LED turned on

The ‘on state’ of each of the LEDs is indicated by placing a red dot on top of the

black circle of the LED. Clicking this red dot will remove it and indicate that the LED

will be off for this state. The ‘Left’ state was not shown above but it is the opposite

settings as in the Right state. We have not used the buzzer (little speaker in the middle

of the robot) so far in this chapter, but it operates in the same manner as the LEDs, by

clicking on it you will see sound waves emanating from it and clicking again will

remove the sound waves indicating that the buzzer is off. Perhaps it seemed strange

that the Right and Left states were placed on the Left and Right of the screen.

The reason will become apparent later in this chapter.

Since the shape of the robot is somewhat round and the turning can be done in place

(with a zero turning radius since there are only two wheels) these are enough states to

do an obstacle avoidance program so you won’t need a Reverse state. Save what you

have done before moving on by clicking the ‘Save as…’ button at the top of

BotStudio, a standard window comes up asking for a name and location of where to

save your file. Choose your location and name and click OK. The window closes and

the name of your program is displayed in the name text box in BotStudio along with an

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

41

extension ‘.bsg’. To Open a file just click the ‘Open…’ button in the menu bar in

BotStudio and to create a new file click the ‘New graph’ button, also in the menu bar

of BotStudio. The reason its called ‘New graph’ is because this simple graphical

programming system is based on a system called “Graphcets”, which uses states and

transitions in this way.

Figure 36: BotStudio saved example program

Now that there are a number of states, there needs to be a way to move between them,

otherwise you would just drive forward forever. Like in nature this is achieved by

seeing something that will make us stop or turn before we hit it.

Transitions – What the robot is seeing

The second building block for this program is called a ‘Transition’, which is used to

move between different states. Whereas for a state, which is what the robot is doing,

the transition is what the robot sees while it’s doing whatever it’s doing. What it sees

can and should affect what state it goes to next, for example if it senses a wall on the

left side as it drives forward, then it should turn right then continuing to drive forward.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

42

 To create a transition, click on the ‘New transition’ button in the menu bar. The

mouse pointer changes to cross hairs. To connect two states with this transition, it is

just a matter of clicking on the first state and then dragging the attached line and

mouse pointer over to the desired state for connection. A line appears as you do this

with the word “new” attached to it that connects two states.

Figure 37: BotStudio first ‘new’ transition between states

Once joined, the transition name ‘new’ should be highlighted in yellow, if it is not then

click on the ‘new’ name to do so. Once highlighted, you should notice that everything

that was darkened when you clicked on a state is now greyed, and everything else is

now dark. This includes six dark rectangles which are the IR sensors looking outward,

and two dark circles representing the ground (line following sensors) sensors. There is

also a dark clock close to the back of the robot, this is a timer that counts up

continuously until a new state is reached, then it is reset and counting begins again. The

clock value can be set by clicking on the clock to cause a transition based on an

amount of time passing within a state. This will be discussed more in detail later in this

document. For now we will continue with the obstacle avoidance program.

Click on the IR ‘near left’ sensor, black rectangle, (not the one close to the left

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

43

wheel, but the one on the left of the front center sensor), the value of 128 appears with

a greater than symbol (>128) all in black. Take note that the numbers are coloured

in black. As before with the wheel speeds, clicking on any of the units will cause the

numbers to cycle up to maximum value of 254 and minimum value of 000. The larger

the value, the closer an object is to the sensor. You can also click on the greater than

symbol and change it to a less than symbol (<128). The >/< symbol with the sensors

indicates, for example >128, that if the sensor detects an object a distance away greater

than the value of 128, then the condition is true and the transition will take place. The

more sensors you give a condition to such as this one, will mean that all those

conditions have to occur before the transition will take place.

For our example the value of >010 will be chosen. This number was chosen somewhat

at random, the only desire was that the robot transition to a turn state very soon after it

detects a wall. Why not choose then the value of >000 you might wonder? As is always

the case in real life, sensors always detect some obstacle even when there isn’t any one

there causing what is referred to as ‘a noisy sensor’. The sensor values will hover

around a value of 3 to 4 (in simulation) while nothing is there but should increase

linearly once a wall is detected and the robot begins moving towards it. Since the value

is being set for the near left sensor, the transition will be named ‘Near left’, which is

accomplished the same way as with the states, by erasing the name ‘new’ and typing in

the name text box and hitting the ‘Enter’ (Return) key afterwards. Notice that the

‘Near left’ transition went to the ‘Right’ state, this is because an object detected

by the near left sensor needs to cause a right turn (a turn away from the object).

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

44

Figure 38: BotStudio ‘Near left’ transition

IR Light Level Detection

As was mentioned in chapter 3, IR sensors can detect obstacles and IR light levels

which emanate from different light sources. To switch to the IR light detecting

function, click again on the same near left black rectangle. It will display a >128 value,

but this time coloured in red. The value and sign (>,<) can be changed just like before

except that the maximum value of 254 represents no IR light detected whereas a low

value represents lots of or direct IR light. To go back to IR proximity value >010 on

that sensor just click again on the sensor black rectangle, the red value should disappear

then click again and the old value of >010 coloured in black should be shown.

The rest of this example will continue by only using the IR proximity detection. Next

we need to create a ‘Near right’ transition. This is done just as before by clicking on the

new transition button and then on the ‘Forward’ state and dragging the line to the

‘Left’ state. The same value of >010 is chosen for symmetry and the name ‘new’ is

changed to ‘Near right’.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

45

Figure 39: BotStudio ‘Near right’ transition

Notice how the transition lines coming from the ‘Forward’ state start from the bottom

of the state and branch out to the other two states where they enter in the top. This

represents that the transitions are out of the ‘Forward’ state and into the turn states.

Two more transitions will need to be created for the other two side sensors causing the

turning states. They will be named ‘Far left’ and ‘Far right’. The same values of >010

will be again used just for simplicity, but a better obstacle avoid program would use

different values (or weights) for each the ‘near sensor’ and ‘far sensor’ transition

because more or less sensitivity might be needed. This is something that can be

determined with simulation and real world testing. The following figure shows the two

new transitions, notice how by placing them well it makes the control program look

like the robot, and makes it simple to follow.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

46

Figure 40: BotStudio two added ‘Far right’ transitions

This obstacle avoidance program is coming along, but it is missing some very

important features. Namely transitions back to the ‘Forward’ state, because at the

moment once you get to the turn states, you will stay there forever and the robot won’t

stop turning. Creating a transition back to the starting state is done just as before by

dragging the transition line from the turn states up to the forward state.

Finishing this avoid program will be left as lesson 1 for the reader including the

following feature.

Another important feature this program will need is a way to avoid being stuck. With

any robot there is always a (good) chance an object can come up right in the “blind

spot”, shown in the following figure.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

47

Figure 41: Hemisson robot stuck due to sensor blind spot

Since the robot does not ‘see’ the object it won’t avoid it and will try to drive through it

and will get stuck. If left long enough in this stuck state, the motors would probably

burn out due to the stress of trying to move the robot. Robots with rotational sensors

(unlike the Hemisson robot) on the motor shafts can be linked with motor controllers

to recognize this over-stressing and shutdown before any permanent damage occurs.

With Hemisson a simpler solution is needed, namely a timer. The theory is if too much

time is spent in, let’s say, the ‘Forward’ state without a transition to a turn state then the

robot is assumed to be stuck and will force a turn or maybe a little reverse and then

turn. The problem lies in how long to wait before you assume that you’re stuck. Since

time is constant, but motor speed and room sizes are not, the timing will need to be

increased or decreased depending on how big the arena is that the robot is travelling in

or how fast the robot travels across the arena before it should expect a turn state to

happen. You of course don’t want to turn for no reason so setting a very short

transition time would not be a good idea either. These factors can be approximated

based on simulation and best guess techniques. The timer is set in transitions by

clicking on the clock and increasing or decreasing the time as needed.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

48

Figure 42: BotStudio Clock Timer location

Once the counter time is reached the transition will take place and whatever

manoeuvres to get out of trouble can be made. Again you will need a return transition

back to the forward state.

In order to test the avoid program, a simulation with Webots-Hemisson will be needed

and will be discussed in the following section.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

49

Webots-Hemisson and BotStudio together
This program is the simulated virtual world where you will be able to run and test your

BotStudio programs before you apply them to the real robot.

Figure 43: Webots-Hemisson simulation package

This program should already be running when you are using BotStudio, if it is not then

the best thing to do is close BotStudio (save whatever it is you are doing) and then

open Webots-Hemisson either from the Programs menu or by double-clicking the

Lady Bug icon.

Figure 44: Webots-Hemisson Lady Bug icon

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

50

Both Webots-Hemisson and BotStudio should open one after another. This needs to

be done like this because Webots-Hemisson and BotStudio are linked through a Java

environment so if one is closed then you cannot (most of the time) simply open it up

again. They must be opened together! This is also true when changing worlds in

Webots-Hemisson but this will be discussed at a later time.

After Webots-Hemisson is open, the ‘Botstudio line’ world, botstudio_line.wbt, will be

opened and you will see the Hemisson robot waiting patiently on the black line as

shown in Figure 45. There are a number of other worlds available for Hemisson

to run in, called: botstudio_maze, botstudio_pen and botstudio_obstacle. Just

go to ‘File’ and ‘Open’ in the Webots-Hemisson menu bar.

To simulate your obstacle avoidance program, the best thing to do is first position your

two windows of Webots-Hemisson and BotStudio so that you can see both of them

easily.

Figure 45: Desktop with Webots-Hemisson and BotStudio

When you look at Webots-Hemisson you might find that the Hemisson world is

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

51

zoomed in too much for you to see the entire arena that Hemisson is in. To zoom out

you will need a three button mouse or a mouse with a scroll wheel between the two

buttons.

Figure 46: Logitech Laser scroll mouse

Changing Webots-Hemisson world view

To zoom out, either roll the scroll wheel forward or hold the middle mouse button

of a three button mouse and drag the mouse forward. The opposite will zoom in. The

other mouse buttons also can make view changes within Webots-Hemisson. The left

mouse button rotates the view around a point by holding the left mouse button

and dragging the mouse in whichever direction you wish to rotate. By holding the

right mouse button and dragging, you can shift the entire view without rotating it.

Opening your user program in BotStudio for simulation in Webots-Hemisson

Now that you have your preferred view, and BotStudio positioned beside it, you can

open your user program (.bsg file) into BotStudio, if it is not yet loaded. Do this by

clicking the ‘Open…’ button at the top of the BotStudio screen. A common Windows

window should open. It is just a matter of locating your .bsg file and selecting it and

clicking ‘Open’.

Simulating the BotStudio file in Webots-Hemisson

You can now click the ‘Simulate’ button in BotStudio, you will see the robot will begin

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

52

to move in Webots-Hemisson.

In the figure above, the incomplete obstacle avoidance program was used, even though

it will not avoid properly, just as a demonstration. While the simulation is running you

will notice that as you switch between states, they are highlighted in yellow to indicate

which one you are in. Also because the monitoring command (the Monitor check box

is checked in BotStudio) is enabled, the sensor readings, wheel speeds, active LEDs,

buzzer and timer information are all being displayed. This allows the user to monitor

and debug any problems as the robot manoeuvres around the arena.

Figure 47: BotStudio running simulated robot in Webots-Hemisson

The figure above shows the running Webots-Hemisson simulator, notice how as the

robot traverses the black line on the ground, one of the ground sensors (Two greyed

circles just below the front greyed rectangle) detects this and shows an increase in

value to 185 as compared to the other ground sensor at a value of 37 shown in the

above figure. This is how the robot would go about following a line on a surface which

it is running on. To stop the Webots-Hemisson simulation, you must click the

‘Simulate’ button in BotStudio again. Do not stop the simulation in Webots-

Hemisson with the square stop button this will cause instability between the

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

53

programs.

Note: If there are any problems simulating the robot, the easiest solution is
to close both Webots-Hemisson and BotStudio, and then re-open them by
opening Webots-Hemisson which will open BotStudio for you. If this does
not solve the problem, then re-booting windows and then opening Webots-
Hemisson, should fix any problems.

Figure 48: Running Webots-Hemisson simulation

Moving objects in Webots-Hemisson

It was recently shown how to change the view of the Webots-Hemisson world using

the mouse. Objects within the world can also be moved around, but care must be

taken when doing this because, any object can be put either through another object or

left floating in midair. These moves are done by using the mouse buttons and holding

down on the Left Shift key.

Rotate an object but stay on the ground plane by holding down the Right mouse

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

54

button and holding down the Left Shift key.

The mouse pointer changes from a hand to two rotating arrows. Anything you click on

will rotate in place on the ground plane.

Move an object but keep it on the ground plane it is currently on, by holding

down the Left mouse button and holding down the Left Shift key. The mouse

pointer changes from a hand, to a four way arrow. Again, anything you click and hold

the left mouse button on can be shifted, along the ground plane, to anywhere else. Use

this to move the blocks around the ‘botstudio_obstacle’ world.

Figure 49: Moving objects along the ground plane

Moving an object to other ground planes (i.e. Up or down) can be done by using

the wheel on a wheel mouse or holding down the middle button on a three-button

mouse and moving the mouse forwards and backwards along with holding down the

Left Shift key. The mouse pointer changes from a hand to an up-down arrow.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

55

Figure 50: Moving object to other ground planes

This change of ground planes as well as the other moves could possibly put the robot

inside other objects where it would be forever stuck, or floating in space where it

would never see any walls and would run in any direction without changing directions.

You will need to look at the world form different angles and zoom in or out to

be sure of which ground plane the robot is on so that it is running right on top

of the surface like it would in real life.

Webots-Hemisson World and Robot view

Another useful feature in Webots-Hemisson is the view you use. The default view is

called a World View which means you can put yourself anywhere in the world and

look in any direction. Another view is called Robot view which will follow along with

the robot moving in whatever direction it takes. This can be changed by clicking on

‘Simulation’ in the menu of Webots-Hemisson and choosing either Robot view or

World view which ever is at the bottom of the pull down menu.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

56

Figure 51: Webots-Hemisson World and Robot view

Downloading to the real robot
Once the user is happy with the user code, it can then be downloaded to the real robot

through the serial port. This is the function of the ‘Upload’ button in BotStudio. To

setup the robot for download follow these steps:

- Open up BotStudio and load your user program.

- Prop up the robot so the wheels are not touching the ground. This is a good

idea because after you upload to the robot the program is activated right away

and wheels start moving.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

57

Figure 52: Propped up Hemisson robot so wheels aren’t touching the ground

- The next step is to set the mode switches for user code download and

execute shown in the following figure and set the Pgm/Exec switch for

Exec. Plug the robot serial cable into any of the COM ports.

Figure 53: Settings of mode switches for BotStudio download

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

58

- Turn on the robot and click the ‘Upload’ button in BotStudio. BotStudio

begins by going through all the COM ports till it detects the robot and then

begins uploading, shown in bottom left corner of program.

Figure 54: BotStudio uploading user program to real robot

- While the program is running, the robot will go through its states and show

this in BotStudio as in simulation. All the sensor values can be checked and

tested. The sensor value will be slightly different in the real robot than in the

simulation.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

59

Figure 55: BotStudio display when running the real robot

- The program can be stopped by clicking the ‘Upload’ button in BotStudio

again. Although this should stop the program running on the robot,

sometimes it does not and to stop it you will need to upload again and try to

stop it again otherwise just turn off the robot.

- If you want to keep the user program on the robot, just turn off the robot after

uploading. As long as the mode switches are put back the same way as when

you uploaded the program, turning on the robot later should cause the user

program to run again, even while not connected to the serial port.

Hemisson Uploader
This program is used to upgrade your robot as new firmware (Operating system)

becomes available or if the firmware on your robot gets damaged for whatever reason.

- To download the firmware to the Hemisson robot, you will need to connect

the robot to the computer with the serial cable, set the mode switches as in the

following figure and finally put the Pgm/Exec switch in Pgm, the only time

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

60

you will do this.

Figure 56: Mode switch settings for the Hemisson Uploader

- Open up the Hemisson Uploader v1.5 or v1.7 program, shown in the

following figure, and use the settings shown. The COM port is whatever COM

port you plugged the serial cable into.

- The Hex file needs to be downloaded from the Hemisson Website,

http://www.hemisson.com/English/support.html, where you will find the

most updated version. It is important to use Hemisson Uploader v1.5 (or

v1.7), not v1.6, because v1.5 (or v1.7) can use a transmission rate slow enough,

just in case the robot firmware has had the fast transmission rate part of the

firmware code corrupted also.

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

61

Figure 57: Hemisson Firmware uploader v1.5

- Turn on the robot now, and if all the switches are set properly you should see

both the red and green LED on the back of the robot solidly lit up, indicating

that the robot is ready for transfer.

Figure 58: Red and Green LED are solidly lit up when in Pgm mode

H E M I S S O N S O F T W A R E

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

62

- Now click the ‘Download’ button in the Hemisson Uploader and transmission

will begin and when finished will say in the ‘Status’ text box “Not Connected”

and in the ‘Infos:’ text box “Download Success”. The robot can be turned off

and disconnected from the serial port.

Figure 59: Hemisson Uploader success screen

- Problems?: If any problems are encountered trying to download the

firmware, the usual mistakes consists of using a Baudrate below 56000, using

the wrong COM port setting or not setting the Pgm/Exec switch in Pgm

mode. If all these are right, then make sure that no other Terminal programs

are currently running on the same computer. These can affect the

communication between the Uploader and Hemisson. The final solution is to

restart the Uploader program and try again or reboot windows and try again.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

63

BotStudio Lessons and
Solutions
This chapter will discuss the solutions to the various BotStudio programming
tasks including pictures and step by step instructions. This section is for the
instructor only. The actual software files are included with this guide.

Lesson 1: Obstacle Avoidance with Stuck Timer

Figure 60: Obstacle Avoidance Hemisson

Chapter

5

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

64

his guide finished the obstacle avoidance program at the following point.

Figure 61: Unfinished Obstacle Avoidance program

Please finish the obstacle avoidance program as your first lesson.

T

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

65

Solution

The next step is to add the return transitions to each of the turning states (Right and
Left).

Figure 62: Return forward transition added

The transition lines are each made by dragging from the turning state boxes to the

Forward state box (This order is important). The transitions were each named “Ret

Forw” to indicate a return to the forward state. The figure above shows the values used

for the transitions to occur from the Left state to the forward state. The ‘<10’ says that

if the robot’s ‘Near right’ and ‘Far right’ sensors are detecting obstacles at a distance

smaller than 10, then begin going forward again. Remember that obstacles that are near

result in sensor readings that are very high (up to 254). Similarly for the transition out

of the Right state, the same values are used but on the ‘Far left’ and ‘Near left’ sensors.

The ‘Return forward’ transition encompasses both of the side sensors even though it

only takes one of the side sensors detecting an obstacle to transition into a turning

state. This is done because the robot should continue turning until BOTH sensors (not

just the sensor that started the turn state) see no obstacles. If just one sensor was used

in each ‘Return forward’ transition, the Avoid program would still work, but a slight

jitter would occur as the robot transitioned back and forth between the Forward state

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

66

and turn state very quickly.

The next step of the program is to add the ‘Stuck state’. This will occur after the

robot remains in the forward state for to long. Once that occurs another timer in a

transition is used to make the robot turn away from its original path, assuming that it is

stuck.

Figure 63: Added Stuck state with timer

The transition timer was set by clicking on the black clock on the picture of the robot.

As before the timer values can be set by clicking on each of the units to make the

values cycle up to a maximum of 255. A value of >251 was chosen somewhat at

random, any high value around that would have been sufficient.

The Stuck state was set to make the robot turn in place (turn right, but left would be

fine also). Both LEDs were turned on to indicate that there was a problem.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

67

Figure 64: Stuck state wheel speed settings

The last thing to do was make a transition out of the ‘Stuck state’. Again a timer is

used, and a value is chosen to make the robot turn more than 90 degrees away from its

original path. Again the value was chosen somewhat at random, a number more or less

the same would still be fine as long as the robot turns more than 90 degrees. This is

important because you don’t want the robot to turn so little that it will still be caught

on the obstacle.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

68

Figure 65: Final Transition timer out of the Stuck state

A transition timer value of >21 was chosen to finish the ‘Stuck state’ right turn and go

back to the Forward state.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

69

Lesson 2: Line following with Obstacle Avoid

Figure 66: Line following Hemisson

Create a program that will both track a line on a surface and avoid any obstacles along

the way. The line tracking will use the two front IR sensors that look down at the

ground. If at any time an obstacle comes close to the robot, it should stop tracking the

line and turn away from the obstacle. Once the obstacle is gone, the robot should

begin looking for the line again. To decide on the values to use for the two front IR

sensors you will need to monitor the simulated robot as it moves around in Webots-

Hemisson. As it passes over the black line notice how the IR readings drop. This

should help the user decide what thresholds to set for the program.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

70

Solution

This program was written to encompass the line following with the obstacle avoidance

program, previously written, with the avoid taking priority over the line following

function.

In simulation it was found that when the robot passes over the black line, the IR

readings drop to 37, and up to 185 when on the white surface. The first step in this

solution is to put four more states in the avoid program as shown in the following

figure.

Figure 67: Four states added to Avoid program

The first state is called ‘Hunt line’, this will be the state where the robot drives straight

either while it is on top of the black line or if it loses the line. Wheel speeds were

chosen to be 10 on each wheel, and the two LEDs were turned on.

The next states are the Shifting Left/Right states. In these states, the robot will turn

towards the line. These will not be ‘spin on the spot’ turns like in the obstacle

avoidance part of the program but will simply shift the robot in the direction of the

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

71

line. For the ‘Shift Left’ state, wheel speeds were chosen to be +01 for the left wheel

and +10 for the right wheel. The left LED was turned on (the right LED stayed off) to

indicate the robot shifting left. For the ‘Shift Right’ state, the opposite was done, with

wheel speeds being +10 for the left wheel +01 for the right wheel and the right LED

turned on this time.

Figure 68: Shift Left state in the line follow program

The last state was called ‘Detect Obstacle’, the purpose of this state will become clear

later. The values for the wheel speeds in this state were set at +10 for both wheels and

the LEDs were both left off.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

72

Figure 69: Detect Obstacle state in line follow program

The next step is to add the transitions between the states. The first transition is to the

‘Hunt line’ state. This should occur when the robot is moving forward (in the ‘Forward

state’ and detects no obstacles). A transition is made between the Forward and Hunt

line state and called “no obstacles”, shown in the following figure. The transition will

occur if the front and side IRs are reading values less than 10 (<10).

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

73

Figure 70: no obstacle transition to line following

Once the robot is “hunting” for the line, it should shift towards it when the two

downward looking IRs detect the edge of the line.

For the transition to the ‘Shift left’ state, the left downward looking IR will have a low

value (around 37 as the black line passes under it) while the right downward looking IR

will have a high value (around 188 since the line won’t yet be under it). Therefore

values of <058 are used for the left IR and >058 are used for the right IR sensor

shown in the following figure. The transition was called “Sense line left”.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

74

Figure 71: Sense line left transition in line follow program

The ‘Sense line right’ transition will have the opposite settings with the left downward

looking IR set to >058 and the right set to <058. This indicates that the black line will

have passed under the right IR but not under the left IR.

The next transition to place is after the robot has turned for the line and ends up

directly on top of it. At this point the two downward looking IR sensors will be both

displaying low values. When this occurs we want the robot to transition back to the

‘Hunt line’ state so that it will drive forward until another turn is needed. The values

that will be used are <058 for both downward looking IR sensors.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

75

Figure 72: Return to Hunt line transition in line follow program

Under the same thinking as the Return to Hunt line transition, there needs to be a

transition out of the Shift states, if the robot doesn’t turn fast enough and looses the

line completely. At this point we would still want the robot to go forward until it finds

another line to follow. To accomplish this, the ‘lost line’ transition will go back towards

the ‘Hunt line’ state.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

76

Figure 73: lost line transition in line following program

The transition will occur when both the two downwardly looking IR sensors do not

detect a black line, in other words, when both sensors display values >058. These are

the same values for both ‘lost line’ transitions. A timer is also used in this transition.

The timer is in case the robot doesn’t turn as fast as necessary to stay on top of the

line, it would think that it has lost the line and start to go straight even though the line

is just slightly over to one side where the sensors cannot detect it. This can happen

when the robot is turning at a 90 degree angle. We use a time value of 20 so that the

robot will continue turning even though it has lost the line hoping that it will find the

line soon after it lost it. This is often not a problem in simulation but when applied to

the real robot it is much easier for the robot to lose the line due to noisy sensors.

Now that we have a good line following section of our program we need to develop a

way to check for obstacles while line following and react to them when they are

detected. To detect for obstacles a number of transitions must be used, because each

sensor must be checked individually for obstacle detection. There are 5 sensors that are

important on the robot, the two side sensors and three front sensors. Each one will

have a transition to the ‘Detect Obstacle’ state, and will be set to transition when the

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

77

sensor reading is >10. No timer value will be needed here of course.

Figure 74: Obstacle detection transitions in line follow program

The figure above shows the five sensor transitions and are labelled with short names to

save. FL (Far left), NL (Near left), Fr (Front), NR (Near right) and FR (Far right) were

used. The same five sensor transitions are still needed for the ‘Hunt line’ and ‘Shift

Right’ states, so we can connect all of them now. Hopefully you can now see why it

was a better idea to have these transitions go towards the ‘Detect Obstacle’ state at the

bottom of the screen, because otherwise you would have fifteen lines going up into the

‘Forward’ state and that would be much harder to follow and debug.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

78

Figure 75: All sensor transitions in the line following program

The final step is to join all the sensor transitions back up to the ‘Forward’ state so that

the robot actually avoids. This can now be done with one transition, called ‘immediate’

which will have no sensor values set and no timer used so that as soon as the ‘Detect

Obstacle’ state is reached there is a transition immediately up to the ‘Forward’ state of

the obstacle avoidance part of the program. This is shown in the following figure.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

79

Figure 76: Final Line follow program

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

80

Lesson 3: Light follow with Line follow program -
applying it to the real robot

Figure 77: Light Following Hemisson

For this lesson we will modify the previous line follow program to incorporate a light

(flash light or sunlight) following ability into the robot. This will require using the IR

sensors and the ‘red’ value settings described in this guide. The robot will sense a light

source (other than the ceiling lights) and will turn and move towards it. This can be

done using the states in the previous program by just adding a few new transitions.

Obstacle avoid should take priority over everything as before. It is difficult to truly test

the light following program in simulation, so this final program will be tested on the

real robot.

Note: When shinning a light at the IR sensor, it will detect the light, but
also read a proximity value of around 10. The detect obstacle part of the
program should be modified to take this into consideration by setting the
values up to 15 instead of 10 as was used in the guide.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

81

Programming the real robot

This will be the hard part of this lesson. You are about to discover that all the

programs that worked perfectly in simulation are going to almost undoubtedly fail. The

simulated robot returned near perfect readings from the sensors, but this will not be

the case in real life. On the real robot, sensors which are technically all the same will be

slightly more or less sensitive than other sensors and different values will be needed.

Also, in simulation the line to follow was perfectly black and reflected very little light. If

you print a black line on paper you will see that it is actually quite shiny (because the

paper is shiny) and harder to follow than the simulated one. The goal here is to

demonstrate that although simulation is great for proving the concept of a program, it

cannot compare to the real world. Try not to get to frustrated.

Sensor saturation and software filtering

Sometimes when shining different lights at the Hemisson, the robot’s sensors can

become saturated and believe that it is seeing obstacles and very close range, displaying

values of greater than 215. This hardware problem is common when using imperfect

sensors in real world environments and can be fixed using software filtering. This

means incorporating a filtering stage in your program to check to see if the robot is

really detecting what it thinks it is detecting. This problem is discussed in the

Appendix, under Known Problems and Solutions and an example of software filtering

is shown. This problem might not occur at all depending on light type, intensity and

direction it is shinning. Generally if the light is not shined directly at the sensors

of the robot then no filtering will be necessary.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

82

Solution

The solution to the light follow part will be shown here. Light following is easy to do

and will easily work on the real robot. Most time will be spent on the Line follow in the

real world which will take a lot of time to choose the right values for the individual

robot. Since all robots are slightly different describing a solution would be pointless

since it will be just a matter of testing the real robot and monitoring what it sees then

adjusting the program accordingly. A program that worked on a real robot will be

given along with this guide none the less as an example even though it won’t be

described in this guide.

For the light follow program, the first transition to add is called ‘SLFL’. This stands for

Sense Light Far Left, but was shortened to save space in the program window. It uses

the red values on the IR sensors by clicking twice on the IR rectangle and setting it to

<50 (coloured in red). This value indicates that the transition to ‘Shifting left’ state will

occur if a light is shined at the far left sensor.

Figure 78: First transition in the light following program

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

83

This will be similar to the transition on the other side called ‘SLFR’, Sense Line Far

right, except the far right IR sensor will have the <50 value coloured in red. The

downwardly looking IR sensors will be the same.

We also want the near left and right sensors to cause the same transitions. These will

be called ‘SLNR’ and ‘SLNL’ for Sense Line Near Right and Near Left shown in the

following figure.

Figure 79: Near right sensor settings in light follow program

Now we want to the robot to go back to going straight once the light is not shinning at

the side IR sensors. This is achieved by modifying the ‘lost line’ transition from the

previous program. To each of the ‘lost line’ transitions from each of the ‘Shift’ states,

we add the >50 value, coloured in red, to the two side IR sensors.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

84

Figure 80: Modified lost line transition in light following program

This allows for the chance that the robot could lose the line after it was following it but

continue to turn to find the light source. There is one problem with the timer in this

transition. It will cause the turn for the light to last slightly longer causing it to continue

turning after the light is removed. A good Timer value will need to be chosen to find a

balance with wanting to track a line after the robot has lost it and not wanting to over

turn past the light. The similar settings will be needed for the other ‘lost line’ transition

on the other side.

Now with this program, the user can download to the real robot and begin extensive

testing to achieve proper operation on the robot. Remember that the FL, NL, Fr,

NR and FR transitions will need to be changed from >10 to >15 since shinning

a light at the robot makes the IR sensors detect with the proximity function an

object at value 10 away from the robot.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

85

Figure 81: New value setting for Proximity IR Sensors

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

86

Lesson 4: Wall following Hemisson

Figure 82: Wall following Hemisson

The wall following Hemisson program will be implemented in simulation only in this

lesson. There are many different ways to make a robot follow a wall , some are better

than others and some are better at different scenarios like angled (non perpendicular)

walls, curving surfaces and corners. An arena will be used in Webots-Hemisson to test

the wall follow program and should look like the figure below. It was built using the

blocks in the botstudio_obstacle.wbt world in Webots-Hemisson. Again just to to File

-> Open in the menu bar of Webots-Hemisson. It does not need to be exactly as

shown, but all attempts should be made to make it as close as possible. To make it you

will need to use the Webots move object commands (holding down the Left Shift key

and using the mouse buttons 1 and 2, not the wheel button). Make the robot run

clockwise around the arena, in other words follow walls right.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

87

Figure 83: Wall follow arena to test the Hemisson

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

88

Solution

Needed wall follow actions (states):

Pivot Left: In the arena as the robot travels around in a clockwise pattern, it will have

to contend with angled blocks jutting out of the walls and once the robot reaches the

end of these blocks it will have to turn back and follow the block back along the other

side and return to the wall. To accomplish this, the robot will need to be able to ‘Pivot

Left’ which means fix the left wheel and rotate the right to cause the robot to pivot

about the left wheel. This motion will be used keep the robot close to the wall end of

the block as it turns around it and hopefully turn wide enough to avoid getting stuck

on the corners. If a spin left was used instead of pivot the robot would be more likely

to make the turn to sharply and get stuck on the end of the block.

Curve Left: This is a much less sharp type of turn used to keep the robot close to a

wall it is following. It is necessary to continuously turn the robot towards and away

from a wall as it follows it because it is unlikely that the robot will be able to find a

perfectly straight line to follow right beside the wall. Using the ‘curve left’ with ‘spin

right’ in combination will result in a wall following line that approaches a straight line.

Spin Right: This action will generally be used to turn the robot once it reaches a

corner in the arena as well as when the robot gets to close to the wall on the left side.

Spinning right will be useful for getting the robot through the tight angled corners

between the angled blocks and the walls in the arena.

Using these actions as well as two others we can begin building the wall follow

program. The first step will be to put a state called ‘Initial Forward’, shown in the

following figure. This state will be used to make the robot drive straight initially until it

finds a wall then begin its wall follow manoeuvres. The wheel speeds are set to “+10”

on both wheels.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

89

Figure 84: Initial forward state in wall follow program

The next state in the program is the ‘Forward’ state, this will also cause the robot to

drive straight and will be the state that the rest of the states return to when they have

finished turning the robot either right or left. Again, as before, the wheel speeds will be

set as “+10” on both wheels.

Figure 85: Regular forward state in wall follow program

The ‘Initial Forward’ state should begin the straight movement but the robot should

transition to the ‘Forward’ state when either the Front, Near Left or Near Right

sensor’s detects a wall. Three transitions will be used between the two states each called

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

90

‘Front’, ‘Near Left’ and ‘Near Right’ as shown in the following figure.

Figure 86: Three front transitions between two forward states

Each of these transitions will occur when the sensor value is ‘>014’ to indicate that a

wall has been detected closer than a distance value of 14 on anyone of the three front

sensors. The ‘Near Right’ transition will have the opposite sensor on the other side as

the one shown above with the ‘>014’ value as does the front sensor highlighted below.

Figure 87: Front sensor value for the transitions between forward states

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

91

Now that the robot can find a wall, it will need to turn to track it using the needed

actions, discussed at the beginning of this solution. Start with the ‘Spin Right’ state

used to turn the robot in corners and away from walls. The wheel speeds are set to

“+10” on the left wheel and “-10” on the right wheel.

Figure 88: Spin Right state in the wall following program

 The next state to place is ‘Pivot Left’, which will have wheel speeds of “0” for the left

wheel and “+10” for the right wheel causing the robot to pivot on the left wheel as it

turns, shown in the following figure.

Figure 89: Pivot Left state in the wall following program

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

92

The last state needed will be the ‘Curve Left’ state which will have wheels speeds of

“+04” on the left wheel and “+10” on the right wheel causing the robot to slowly

curve left as it drives. This is shown in the following figure.

Figure 90: Curve Left state in the wall following program

All the states have been placed now, so only transitions remain.

As the robot drives forward it detects a wall and begins to turn to track it. If the robot

moves away from the wall it will loose sight of it so will need to turn back towards it.

This transition will be called ‘Lost Wall’ and is highlighted in the following figure. The

distance of “<014” were used for the sensors.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

93

Figure 91: Lost Wall Transition between Forward and Pivot Left state

This transition goes to the ‘Pivot Left’ state first so that the most drastic measures are

taken first in order to keep the robot near the wall. Once in the ‘Pivot Left’ state, the

transition to the ‘Curve Left’ state can occur if the wall is found to be close to the

robot. It was decided, somewhat by random to have the robot transition to the ‘Curve

Left’ state if the wall is detected closer than a distance value of 10, so three transitions

are used between the two left turning states called ‘See wall FL’ for the far left sensor,

‘See wall NL’ for the near left sensor and ‘See wall Fr’ for the front sensor. Each of

these transitions occur when the sensor has a reading that is “>010”. The near left

sensor transition will be highlighted in the following figure, the others are similar.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

94

Figure 92: Near left transition between two turning states

These transitions combined with the previous ‘Lost Wall’ transitions mean that the

robot will curve left if the wall is a distance value of 10 to 14 from the robot and less

than 10, which means farther away, it will pivot left to find the wall.

While in the ‘Curve Left’ state, if the robot does not track fast enough and the distance

value falls below 10, the robot should return to the ‘Pivot Left’ state to catch up to the

wall. This is shown in the following figure with a transition called ‘Lost Wall’ going

back to the ‘Pivot Left’ state. It will use values of “<010” on the far left and near left

sensors.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

95

Figure 93: Lost Wall transition between the left turning states

What is more likely to occur is that the robot finds the wall and then can begin going

forward beside the wall as it follows it. This means three more transitions are needed

back to the ‘Forward’ state from the ‘Curve Left’ state. The transitions are called ‘See

wall FL’ (far left), ‘See wall NL’ (near left) and ‘See wall Fr’ (front) with the same

meanings as before but different conditional values. Just as values “<014” were needed

to transition into the left turning states, values “>014” on all of the three sensors, will

be used to return to the forward state. Only the front sensor transition will be

highlighted in the following figure, but the other two are similar.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

96

Figure 94: See wall front transition between left turn and forward state

Now the transitions to make the robot spin in the corners or away from the wall will

be placed in the program. The transitions from the ‘Forward’ state to the ‘Spin Right’

state will be called ‘DC NL’ for detect corner near left sensor, ‘DC Fr’ for detect corner

front sensor and ‘DC NR’ for detect corner near right sensor. All three of these

sensors were used to detect the corners (or walls) and not just the front sensor so that

the corner would be detected even in narrow angle corners like in the arena. Each of

the transitions will have the condition of “>014” for each sensor. In the following

figure only the near right transition will be highlighted, but the others are similar.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

97

Figure 95: Detect corner near right transition

The ‘Spin Right’ state is transitioned to if any of the front sensors detects a wall at

distance value “>014”. The robot should stop spinning when all those front sensors

stop detecting the wall, so when their values are “<014”, shown in the following figure

in a transition back to ‘Forward’ called ‘Track wall’.

Figure 96: Track wall transition back to the forward state

Another very important transition is needed to keep the robot moving slightly away

from the wall whenever it gets to close, do to a left turn. This transition is called ‘Keep

off wall’ and is between the ‘Forward’ and ‘Spin Right’ states. It is only based on the far

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

98

left sensor of the robot and based on the value given it will cause the robot to try and

stay at that distance away from the wall. For this solution, based on the other values

used, the ‘Keep off wall’ transition can be between “>010” up to “>020” with

different, possibly desirable outcomes, depending on the environment the robot will be

in. As the robot tracks the wall it will have a curvy path for the “>010” and as the value

is increased the path will straighten out and be very close to a straight line at the

“>020” value. The following figure will demonstrate this.

Figure 97: Robot path based on Keep off wall transition sensor value

This sensor value will be set at “>020” in this solution because the straight path looks

the nicest, but if the robot needed to avoid small objects along the wall and not get

stuck on them or make turns around pointed ends of blocks, putting a sensor value of

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

99

“>010” would make the robot more robust to this type of feature. This transition will

be shown in the following figure.

Figure 98: Keep off wall transition in wall following program

Now all that is needed in this program is some stuck timer transitions in case the robot

gets stuck on the corners of the blocks as it moves around them. The best way to

move off of a corner is to spin away from it, so the ‘Stuck’ transitions will all go

towards the ‘Spin Right’ state. The stuck transitions will come from the ‘Curve Left’,

‘Forward’ and ‘Initial Forward’ states. A timer value of >100 was chosen to wait before

transition. Just one of the stuck states will be highlighted in the following figure.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

100

Figure 99: Stuck transitions in the wall following program

Notice that no ‘Stuck’ transition was made between the ‘Pivot Left’ state and

the ‘Spin Right’ state. This is because the ‘Pivot Left’ state will transition there

indirectly. Instead another timer transition will be used off of the ‘Pivot Left’ state. The

idea is that if the robot while pivoting left does a whole revolution of a circle and finds

no wall it should just drive straight to find the wall again. This is accomplished putting

a timer transition called ‘Lost wall’ with a timer value of >100, going from the ‘Pivot

Left’ state to the ‘Initial Forward’ state. This will cause the robot to drive forward after

enough time has been given to find the wall while turning. This is also how even if the

‘Pivot Left’ state is stuck on a corner, it will time out, try driving forward, still be stuck,

time out and then spin to get off the corner. The following figure highlights this

transition.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

101

Figure 100: Final Lost wall timer transition in wall follow program

This is the final step in this program. The next thing to think about is applying this

program to the real robot.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

102

Lesson 5: Major AI project
This project will be chosen by the student. The desire is for the student to develop

their own AI project using the Hemisson robot. A good project will incorporate

multiple Hemisson robots each performing a task to achieve the goal or useful

function. The robot should use lots of peripherals (foam blocks) or operate in a

relatively complex arena, the more imaginative the project the better. Using the

previously learned skills of past lessons, one should be able develop a relatively

complex AI project. The arena and Black Foam blocks can and should of course be

used and are described in the Appendix section of the Education Guide. An example

project will be described below.

Cleaning Robot example project

Figure 101: Cleaning robot arena

The concept of this project is that the Hemisson moves around the arena and when it

picks up one of the Black Foam blocks it then turns towards the light and pushes the

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

103

block towards the lighted side of the arena. Once it brings the block to that side it

reaches the wall and spin turns to avoid the wall and leaves the block behind and

moves away to find another block to repeat its task. The following figure shows the

arena at a later time once most of the blocks have been retrieved.

Figure 102: Arena after cleaning

This project uses obstacles avoidance, light following and line detection (or rather

block detection) to accomplish its task. For this project the robot just moved around

randomly until it found a block, but wall following could also be used, perhaps in

another robot and they could work as a team.

As far as the robot was concerned a black block looks just like a black line to the IR

sensors which face the floor. The blocks can also be flipped if they have white paper

on one side and then the robot will be able to differentiate between black blocks and

white blocks. In case you’re wondering the white floor and white blocks DO NOT

look the same to the robot so don’t worry.

B O T S T U D I O L E S S O N S A N D S O L U T I O N S

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

104

Figure 103: Black and White foam blocks for the Hemisson

Another way to use the arena with a light source is to use a point light source or light

wall. This can be used to make the robot follow the light beam back to a flashlight or

to keep the robot within a certain area using the light as a wall so the robot will detect

the beam and turn away from it.

Figure 104: Light source and light wall

Hopefully this shows that there are a great number of things that can be done with the

Hemisson robot, applying them to the real robot will be difficult due to noisy sensors

and unpredictable environments. You will find projects where robots work together

can be in fact easier to do depending on the project. Use your imagination to come

up with your own ideas for this project or use those shown.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

105

Appendix
This section of the document lists extra modules that can also be purchased for use with Hemisson, and specs
and dimensions for making Hemisson arena and peripherals.

Some Available Hemisson Modules
All information taken from the Hemisson website: http://www.hemisson.com/English/modules.html check

there for most up to date information on available modules.

B/W Linear Camera

This module allows Hemisson to perceive its environment. The camera reads one line of 102 pixels in 256

levels of grey. The optic block is a standard one (M12x0.5), so that you can change it to fit to your specific

needs. As all the intelligent Hemisson modules, there is an on board processor (PIC16F876), dedicated to visual

processing. Like Hemisson, the source code of the visual processing is under LGPL license and you can as a

result write your own visual routine. To download your own code on this module, you can use the same tools

as for Hemisson (Hemisson Uploader, or the External Programmer).

Figure 105: Black and White Linear camera for Hemisson

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

106

Ultrasonic Sensor

When you want a higher range than the IR sensors, this module is able to measure distances to obstacles from

3cm to 6m with a 1cm precision.

Figure 106: Ultrasonic Sensor Module

BasicStamp2© Interface

With this module, you can plug in BasicStamp2© modules, not provided, and control Hemisson from the Basic

development environment. You can also connect all the existing BasicStamp2© extension modules into the

robot.

Figure 107: BasicStamp2© Interface module

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

107

External Programmer Interface

This module is intended for the users who wish to completely re-flash the memory of their Hemisson. It is

attached to a standard PIC programmer that can program PIC16F877 chips. The HEX code is provided on the

Hemisson Website.

Figure 108: External Programmer module

Text to Speech

This interface makes your Hemisson speak English. The on-board speaker will pronounce every word

transferred in ASCII code on the Hemisson I2C bus.

Figure 109: Text to Speech module

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

108

Wireless Color Camera

This module wirelessly transmits video to your TV set (Cinch output). You can then watch your robot's trip.

Figure 110: Wireless Video Camera module

General I/O Turret

The General I/O turret gives you the platform to add your own electronics. It is the perfect tool to implement

your own modules. A board area allows you to add components (2.54mm/.1" spacing). The documentation

explains how to access your own peripherals from the central processor (12 digital I/O, 5 analog 8-bit inputs

and I2C bus).

Figure 111: General I/O module

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

109

Infra-red (IrDA) Connection - Wireless communication

The IrDA module allows a PC to communicate wirelessly with Hemisson, and reversely. The Communication

IrDA contains two modules (1 for the PC, 1 for Hemisson). A possible application is to use the powerful

Hemisson command line to control the robot.

Radio Connection - Wireless communication

The radio module allows a PC to communicate wirelessly with several Hemisson robots, and reversely, at a long

distance (10m).

Figure 112: Hemisson Wireless communication modules

LCD Display

This LCD screen and keypad provides a user interface to build interactive control program with your robot

without PC. You can display messages and manage small menus.

Figure 113: Hemisson LCD Display module

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

110

In-Circuit-Debug Interface

Thanks to this RJ45 adapter, you will be able to connect to your In-Circuit Debugger from CCS and
then, to reflash Hemisson memory (like HemFlexExtProg) and to debug your CCS C program step by
step.

Figure 114: In-Circuit-Debug Interface

Beware: the In-Circuit Debugger (ICD-S 20) is not provided, you can buy it from CCS.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

111

Specs and Dimensions for Hemisson Arena and peripherals
Black Foam blocks

These foam pieces have been designed to be easily detectable and moveable by Hemisson. Material that was

used is Black-Plain Neoprene Closed Cell sponge (no adhesive), but any black foam would work.

Figure 115: Black Foam cut-out for Hemisson

The dimensions do not need to be precise for this block, but should be similar. The height should be ¾” as

shown in the above figure.

One side of the foam block should be left uncovered, but the other side should have a white piece of paper

glued or taped to the foam cut-out as shown in the following figure. This is so the robot can have two different

foam cut-outs by just flipping it over to the other side.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

112

Figure 116: Foam cut-out with two sides

The shape of the foam block will allow the Hemisson to be able to turn and move the block with it as long as a

spin in place turn is not used but rather a gradual turn. The following figures will demonstrate this.

Figure 117: Foam cut-out shape designed to turn with robot

The height of the block will allow it to fit under both the upper foam body wall of the robot and under the wall

of the arena, which will be discussed next, which is 1 inch in height.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

113

Figure 118: Foam cut-out under robot body foam layer

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

114

Hemisson Arena – Version 1

The arena was made from scrap Styrofoam (anything white would do) material, and was made to have raised

walls, leaving 1 inch of space between the walls and the ground. The following figure shows a model with

dimensions of the arena.

Figure 119: Hemisson Arena with dimensions

As stated in the above figure, the thickness and height of the walls is not important, the only necessary

dimensions are the length and width of the arena which should result in a length of 3 feet 6 inches and a width

of 2 feet 9 inches. Another important requirement is for the blocks on the corners to raise the arena up 1 inch

so that the Black Foam blocks will fit underneath the walls, but the walls are still low enough for the IR sensors

on the Hemisson to detect the walls. Notice how the blocks are put in a place where even the inside corners of

the arena have space below them. The following figure shows the actual arena made out of Styrofoam with

blocks of 1 inch of height holding the whole arena up.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

115

Figure 120: Actual Arena with foam blocks on the corners

The following figure shows how the foam blocks fit under the wall and how the IRs are still high enough to

detect the wall.

Figure 121: Foam block under the arena wall with Hemisson IR detecting the wall

The arena was put together using hot glue for permanent Styrofoam attachment and using Velcro in the

corners so that the arena could be dismantled and reassembled easily.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

116

Figure 122: Used Velcro to attach walls in the corners

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

117

Hemisson Arena - Version 2

An even simpler arena can be made using cardboard or a material called Hardboard found at stores like Home

Depot. Hardboard is like a harder, denser version of cardboard with one side painted white. The nice thing

about using either of these materials is that it will make an arena that is very simple to put together and take a

part. The pieces are joined using cut slots on the ends of each of the pieces. The following figure shows the

dimensions for one of the two pieces. You will need two of the following.

Figure 123: Long wall of the arena

The slots should be the width of the thickness of the material, so for both cardboard and Hardboard it should

be 1/8” thick. If using cardboard, the slots can be made with a sharp knife, and if using Hardboard, the slots

can be made with a circular saw since the saw blade should be about 1/8” thick. The next figure shows the

second of the two pieces for which you will need two for the arena.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

118

Figure 124: Short wall of the arena

When the pieces are made they should be put together in the following manner, 1” height blocks will still be

needed to raise the arena up, and can be put on the end walls that stick out. The slots should be oriented in the

following figure also with the end wall slots pointing up.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

119

Figure 125: Four arena walls together

The following figure shows a cardboard version of the above arena.

Figure 126: Cardboard slot arena

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

120

Arena Floor

The arena floor is made using 15 scrap pieces of white letter sized paper taped together using packing tape as

shown in the following figures, in a 3x5 pattern. The printable pages with line following lines which are located

on the Hemisson CD can be connected to form for arena floor on the right.

Figure 127: 3x5 paper floor arena with line following lines

The following figure shows the real letter sized paper taped together for the floor.

Figure 128: Arena floor – 15 pieces of white paper taped together

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

121

The floor should fit nicely inside the arena as shown in the following figure.

Figure 129: Arena floor inside arena

The floor need not be fixed to the table surface and won’t move around with the robot running on top of it.

Other floors can be made and put inside of the arena depending on the desires of the user.

Figure 130: Line following floor in the arena

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

122

Support – Known problems and solutions

For questions, concerns and problems while using the Hemisson robot there are two places where you can get

help if your problem is not solved in the following problems-solutions section. The first is to use the official

Hemisson website forum where you can post your problems or questions and the engineers at K-Team, who

make Hemisson, will answer them usually within 1 or 2 days. The forum is located at http://www.k-

team.com/cgi-bin/spt/K-Forum/KtForum/comments.cgi?op=topicslist&sid=hemisson

You can also go to the Hemisson website under the support section and click ‘KForum’, located at

http://www.hemisson.com/English/support.html

The second place where you can get help is from Applied AI Systems, Inc. either email us at info@aai.ca or call

613-839-6161. We are based in Ottawa, Canada and can hopefully solve your problem on the phone, by email

or in person.

Problem: Why Webots or Botstudio doesn’t work with Windows 2000 or even at all

Solution:

For Windows 2000 Professional you can use Java Runtime Environment 1.4.0, but you may need to upgrade

your Windows 2000 Professional up to Service Pack 2 off of the Microsoft Website.

Location for Java Runtime Environment

http://java.sun.com/j2se/downloads.html

For Windows 2000 (NOT professional), try using the Java Runtime Environment 1.3.1, also located at the

above link, its older, been around longer and probably works with every operating system including Windows

2000 and Windows 2000 professional.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

123

Special Notes:

- DON’T use Java Runtime Environment 1.4.1, it absolutely needs Windows 2000 professional that is

upgraded to Service pack 2.

- TO REMOVE The Java Runtime Environment that you have already installed, follow the instructions on the

Java Sun Website at http://java.sun.com/j2se/1.4/install-windows.html#troubleshooting

- REMEMBER: Before installing a new version of Java Runtime Environment, UNINSTALL the old version

first!

Problem: Botstudio simulation problems with Webots

Sometimes Webots will not respond to BotStudio when you are trying to simulate your program.

Solution: The first step would be to try closing down both Webots and Botstudio and restarting them and

trying again. If this does not solve the problem then restarting windows and then restarting Webots and

BotStudio fixes any Java Environment problems that are probably causing Botstudio to not function properly

with Webots.

Problem: Hemisson Firmware code has been corrupted or observing

unpredictable/strange operation (like avoid, dance, line follow don’t work)

It is possible that the robots memory has been corrupted causing the robot to not function properly. This can

be caused by turning on and off the robot to quickly (When the robot is switched off wait 2 second before

turning it on again). This can also be cause by unplugging the robot from the serial cable while BotStudio

is running a program on the robot and the user is viewing the sensor readings and seeing the States transition

around. Before unplugging the robot from the serial cable for un-tethered operation, click the ‘Stop’ button in

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

124

BotStudio. Sometimes this will not actually stop the robot’s operation, but it will stop BotStudio from

communicating with the robot which will keep the memory from being corrupted.

Solution: You will need to upload the latest version of firmware from the Hemisson website at

http://www.hemisson.com/English/support.html. The rest of this solution is already described in this Guide

in Chapter 4: Hemisson Software, under the Hemisson Uploader section, just check the Table of Contents.

Problem: The robot doesn’t follow the line when I use the switch settings for line

follow on the robot.

Even though you are using the proper switch settings, you are turning on the robot and putting it on the table

to follow the line but it doesn’t even detect the line and just drives straight.

Solution: Line following protocol uses a lighting calibration, so initiate it only when the robot is on the

surface where it will be used and not being held in midair. For example, start the line following protocol while

the robot is on the paper surface with the line to follow. This is because the robot does some sort of calibration

when it begins line following and if it is being held in midair it will calibrate improperly and won’t be able to

follow the line or even detect it.

Problem: Low Battery and Dance protocol causes unpredictable operation

When doing the dance protocol, if the battery is low the robot might not function properly and either spin

around or drive in any random direction at full the speed.

Solution: This ‘crazy’ state the robot is in is caused by the motors drawing too much current so that the

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

125

processor doesn’t receive enough and functions sporadically. The Battery should be re-charged or using a new

battery will fix this problem.

Problem: Shinning direct light at the Hemisson can cause it to detect an obstacle

initiating the avoidance part of a user written BotStudio program.

As was discussed previously in this guide, the Hemisson IR sensors can be used to detect proximity to objects

and light sources. If the light source is intense or shinning directly into the sensors this can cause saturation in

the IR sensor causing the robot to read a proximity value that is very high, above 215. This high reading might

even occur on a sensor that is facing away from the light source and can occur on multiple IR sensors at once.

This noise caused by the light source will cause a robot which was happily following a light to immediately turn

away like an obstacle has just appeared and can effect the proper operation of the user BotStudio programs.

Solution: Noisy sensors are a common problem with all robots and most of the time cannot be avoided by

just improving or changing hardware filtering and sensors. Noise filtering can and must also be done in

software so that the robot differentiates between real sensor readings and noise caused by the external

environment or imperfect sensors. To solve this problem, it requires observing what happens when the sensors

become saturated. As the light shines directly on the IR sensors, one or more will display a high proximity

value. This value is always more than 215, but when an actual object is close to the sensor the proximity value

will return to normal and show the distance to the object. This means to filter this high value out, you will need

an extra stage between in your program. This stage will look at the IR value and if it is higher than 215 then it

should be ignored and return to the previous state. Generally an object is detected by having a transition in a

state that checks to see if the IR value is >015 as shown in the following figure.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

126

Figure 131: Noise Check for light saturation

The next step is to have a state called NC (Noise Check) which has wheel speeds set the same as the previous

state before the noise check for each of the IR sensors used in the program.

Figure 132: Noise Check state set same as Straight State

It is now in this state that the sensor value is checked for saturation. Two transitions will come from this NC

state. One called RNC (Return Noise Check) will return to the Straight state if the IR sensor value is >215 as

shown in the following figure.

A P P E N D I X

Property of Applied AI Systems, Inc.
Duplication or unauthorized distribution

of this document is illegal

127

Figure 133: RNC transition back to the Straight state

The other transition called Far Right will transition to the Left state assuming that the IR value is <215 meaning

that the robot is detecting an actual object and is not just saturated by light.

Figure 134: Transition that detects an actual object to avoid

This series of steps should be followed for all the IRs used in the program which means it could take a long

time to noise filter your programs. The rest of the program is the same as the regular obstacle avoidance with

Left state transitioning back to Straight state when either of the right sensors no longer detects obstacles.

