
 BDM-610020059

 Rev C

ISC629

2-Channel Isolated

DC Servo Motor

Interface Board

User’s Manual

Hardware Revision C

IISSOO99000011 aanndd AASS99110000 CCeerrttiiffiieedd

ISC629 Users Manual 2 RTD Embedded Technologies, Inc.

ISC626 2-CHANNEL DC-SERVO MOTOR

INTERFACE BOARD

USER’S MANUAL

RTD EMBEDDED TECHNOLOGIES, INC.

103 Innovation Blvd

State College, PA 16803-0906

Phone: +1-814-234-8087

FAX: +1-814-234-5218

E-mail

sales@rtd.com

techsupport@rtd.com

Web Site

http://www.rtd.com

ISC629 Users Manual 3 RTD Embedded Technologies, Inc.

Revision History

02/05/2003 Release 1.0
10/31/2006 New Board release and removal of RTD Finland
06/27/2007 Fixed TOC and removed erroneous temperature specification

Published by:

RTD Embedded Technologies, Inc.

103 Innovation Boulevard

State College, PA 16803

Copyright 2005 by RTD Embedded Technologies, Inc.

All rights reserved

utilityModule is a trademark of Real Time Devices.
All other trademarks appearing in this document are the property of their respective owners.

ISC629 Users Manual 4 RTD Embedded Technologies, Inc.

The RTD Embedded Technologies Logo is a registered trademark of RTD Embedded Technologies. dspModule, cpuModule, and utili-

tyModule are trademarks of RTD Embedded Technologies. PC/104, PC/104-Plus, and PCI-104 are registered trademark of PC/104 Con-

sortium. Atheros is a trademark of Atheros Communications. All other trademarks appearing in this document are the property of their

respective owners.

ISC629 Users Manual 5 RTD Embedded Technologies, Inc.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS AND TABLES... 6

CHAPTER 1 - INTRODUCTION .. 7

Features ... 7

Motion Controllers .. 7

Motor drive stage .. 7

Mechanical description ... 8

Connector description ... 8

What comes with your board... 8

Board accessories.. 8

Using this manual.. 8

When you need help.. 9

CHAPTER 2 - BOARD SETTINGS .. 10

Factory-Configured jumper settings.. 11

Base Address jumpers ... 12

Interrupt channels.. 14

Timer/counter settings .. 14

CHAPTER 3 - BOARD INSTALLATION .. 15

Board installation .. 15

External I/O connections... 16

CHAPTER 4 - HARDWARE DESCRIPTION .. 20
The LM629 servo controller chips .. 21

H-bridges for motion control... 21

Incremental encoder inputs .. 22

8255 based digital I/O .. 22

8254 timer/counter ... 23

CHAPTER 5 - BOARD OPERATION AND PROGRAMMING .. 24

Defining the memory map... 25

LM629 Instruction Set ... 28

Interrupts .. 30

What is an interrupt? ... 30

Interrupt request lines.. 30

8259 Programmable interrupt controller ... 30

Interrupt mask register (IMR) ... 30

End-Of-Interrupt (EOI) Command.. 31

What exactly happens when an interrupt occurs?.. 31

Using interrupts in your program .. 31

Writing an interrupt service routine (ISR)... 31

Saving the startup IMR and interrupt vector ... 33

Common Interrupt mistakes .. 34

CHAPTER 6 - ISC629 SPECIFICATIONS ... 35

CHAPTER 7 - LIMITED WARRANTY.. 37

ISC629 Users Manual 6 RTD Embedded Technologies, Inc.

 LIST OF ILLUSTRATIONS AND TABLES

ILLUSTRATIONS

Fig. 2-1: ISC629 Board layout showing jumper locations
Fig. 2-2: Base address jumpers
Fig. 2-3: Interrupt jumpers
Fig. 2-4: Timer/counter jumpers
Fig. 3-1: ISC629 integrated with a PC/104 RTD cpuModule stack
Fig. 3-2: Timer/counter header connector
Fig. 3-3: Incremental encoder terminal blocks
Fig. 4-1: ISC629 Block diagram
Fig. 4-2: Typical motor control scheme
Fig. 5-1: 8255 Control byte bit definition

TABLES

Table 2-1: Factory configured jumper settings
Table 2-2: Base Address jumper settings of ISC629
Table 3-1: Timer/counter connector pinout
Table 3-2: 50-pin connector pinout
Table 5-1: ISC629 I/O map
Table 5-2: LM629 Instruction set

ISC629 Users Manual 7 RTD Embedded Technologies, Inc.

Chapter 1 INTRODUCTION

This user’s manual describes the operation of the ISC629 Embedded Servo Controller board.

Features

Some of the key features of the ISC629 include:

• Two independent Servo Motor controller channels

• Onboard full H-bridges with 10A drive capability with additional cooling,

6A drive capability withot forced airflow or additional heatsink.

• Direct motor interfaces using onboard terminal blocks

• 2 Independent LM629 PWM-output servo motor controllers

• 2 Protected and filtered incremental encoder inputs (selectable pull-up/dn)

• 24 user accessible, programmable TTL-level digital I/O (8255 compatible)

• 3 16-bit timer counter channels (8254 compatible)

• +5V only operation

• Supports direct drive of +12V motors from onboard power supply

• PC/104 compliant

• CE approved design

The following paragraphs briefly describe the major features of the ISC629. A more detailed discus-

sion is included in chapter 4 (Hardware description) and in Chapter 5 (Board operation and program-

ming). The board setup is described in Chapter 2 (Board Settings). A full description of the LM629

servo controllers is included in Chapter 5 (Board operation and programming).

Motion controllers

The ISC629 DC servo motor interface is implemented using two LM629 controller chips. This versa-

tile chip offers powerful features that will enable complex positioning tasks with minimal host interven-

tion. The ISC629 channels can be programmed to operate totally independently offering a complete

subsystem for 2-axis motion control using standard DC motors with encoder feedback (often called

“servo motors”). The LM629 chips include a tunable PID filter, Trajectory control unit and position

counter. These parts perform the intensive real time computational task required in high performance

digital motion control.

Motor drive stage

A powerful onboard H-bridge is used to interface directly to motors. Overvoltage and transient protec-

tion diodes ensure reliable operation in industrial environments. The H-bridges are capable of driving

either 24V or alternatively 48V DC motors. The current drive capability is rated to 10A peak using the

onboard terminal blocks.

Mechanical description

ISC629 Users Manual 8 RTD Embedded Technologies, Inc.

The ISC629 is designed on a PC/104 form factor. An easy mechanical interface to both PC/104 and

EUROCARD systems can be achieved. Stack your ISC629 directly on a PC/104 compatible computer

using the onboard mounting holes.

 Connector description

There are two 4-position terminal blocks on the left side of the module to directly interfacing to DC

motors. The incremental encoders connect to the ISC629 using small screw terminal blocks. The

general-purpose 50-pin digital I/O interface connector is located on the right hand side of the board.

The 10-pin counter/timer I/O port header located near the base address jumper block.

What comes with your board?

 Your ISC629 package contains the following items:

• ISC629 motor interface board

• User's manual

 Note: Software and drivers are available from our website.

If any item is missing or damaged, please call RTD customer service at the following number: +1-

814-234-8087 or E-mail: techsupport@rtd.com.

Board accessories

 In addition to the items included in your ISC629 delivery, several hardware accessories are available.
Contact your local distributor for more information and for advice on selecting the most appropriate
accessories to support your control system. These include the following:

• Software drivers

• Hardware accessories including IDAN solid aluminum frames for PC/104 Computers

For more information on IDAN, please visit our websites at the following internet-addresses:
www.rtd.com.

Using this manual

This manual is intended to help you install your new ISC629 card and get it working quickly, whilst

also providing enough detail about the board and it's functions so that you can obtain maximum use

of it's features even in the most demanding applications. The scope of this manual does not cover

complex motion control programming and system design.

When you need help

This manual and all the example programs will provide you with enough information to fully utilize all

the features on this board. If you have any problems with installation or use of the board, contact our

ISC629 Users Manual 9 RTD Embedded Technologies, Inc.

Technical Support Department 1-814-234-8087. Alternatively, send a FAX to 1-814-234-5218, or

Email to: techsupport@rtd.com. When sending FAX or Email requests please include the follow-

ing information: Your company's name and address, your name, your telephone number, and a brief

description of the problem.

ISC629 Users Manual 10 RTD Embedded Technologies, Inc.

Chapter 2 BOARD SETTINGS

The ISC629 DC servo motor interface board has jumper settings, which can be changed to suit your appli-

cation and host computer memory configuration. The factory settings are listed and shown in the diagram

in the beginning of this chapter.

ISC629 Users Manual 11 RTD Embedded Technologies, Inc.

Factory-Configured Jumper Settings

Table 2-1 below illustrates the factory jumper setting for the ISC629. Figure 2-1 shows the board

layout of the ISC629 and the locations of the jumpers. The following paragraphs explain how to

change the factory jumper settings to suit your specific application.

Table 2-1: Factory configured jumper settings (Please check figure 2-1 below for detailed locations)

JUMPER NAME DESCRIPTION NUMBER OF JUMPERS FACTORY SETTING
ADDR Base Addresses 4 300H
TIMER 8254 clock settings 8 OSC, OT1,OT2
IRQ #1 Host interrupt Ch#1 5 5
IRQ #2 Host interrupt Ch#2 5 11

Figure 2-1: ISC629 Board layout showing jumper locations

ISC629 Users Manual 12 RTD Embedded Technologies, Inc.

Base Address jumpers (Factory setting: 300h)

The most common cause of failure when you are first setting up your module is address contention.

Some of your computer´s I/O-space is already occupied by other internal I/O devices or expansion

boards. When the board attempts to use it's own reserved I/O addresses (which are being already

used by another peripheral device), erratic performance may occur and the data read from the

board may be corrupted.

To avoid this problem make sure you set up the base address first using the eight jumpers marked

"BASE”. It allows you to choose from 16 different I/O addresses in your computer’s I/O map. Should

the factory installed setting of 300h be unusable for your system configuration, you may change this

setting to another using the options illustrated in Table 2-2 (overleaf). The table shows the switch

settings and their corresponding values in hexadecimal values. Ensure that you verify the correct lo-

cation of the base address jumpers. When the jumper is removed it corresponds to a logical "1",

connecting the jumper to a "0". When you set the base address of the module, record the setting in-

side the back cover of this manual (directly after the Appendices).

 BASE ADDRESS JUMPER SETTINGS OF THE ISC629

BASE ADDRESS (HEX) A5 A6 A7 A8

200 0 0 0 0

220 1 0 0 0

240 0 1 0 0

260 1 1 0 0

280 0 0 1 0

2A0 1 0 1 0

2C0 0 1 1 0

2E0 1 1 1 0

300 0 0 0 1

320 1 0 0 1

340 0 1 0 1

360 1 1 0 1

380 0 0 1 1

3A0 1 0 1 1

3C0 0 1 1 1

3E0 1 1 1 1

 1 = JUMPER OFF 0 = JUMPER CLOSED

Table 2-2: Base Address Jumper settings of the ISC629

Fig. 2-2: Base address jumpers set for 300H

ISC629 Users Manual 13 RTD Embedded Technologies, Inc.

Interrupt Channels (Factory setting: IRQ5 / IRQ11)

The header connectors, shown in Figure 2-3 below, lets you connect the LM629 servo controller inter-

rupt outputs to one of the interrupt channels available on the host XT/AT bus. If your board has no AT

extension, interrupts 10-15 are not available. Both servo controllers must use different interrupts and

therefore two headers are available. IRQ1 marks the Channel 1 interrupt and IRQ2 marks the inter-

rupt for Channel 2.

 Fig. 2-3: Interrupt jumpers

Note: The ISC629 does not support interrupt sharing! This is sometimes regarded as a part of the
PC/104 special features. After extensive software and hardware tests we have found that er-
ror-free performance can not be guaranteed when sharing interrupts.

Timer/counter settings (Factory settings: OSC, OT1 and OT2)

The clock sources of the onboard 8254 timer/counter chips can be selected with the left section of the
jumper block shown in figure 2-4 below. Note that the rightmost 4 jumpers are used to select the base
address of the board.

Fig. 2-4: Timer counter jumpers, definitions below from left to right below:

Clock 1 source OSC (Onboard 4MHz oscillator)
 EXT (External source)
Clock 2 source OT1 (Output of timer 1)

OSC (Onboard 4MHz oscillator)
 EXT (External source)
Clock 3 source OT2 (Output of timer 2)

OSC (Onboard 4MHz oscillator)
 EXT (External source)

ISC629 Users Manual 14 RTD Embedded Technologies, Inc.

Chapter 3 BOARD INSTALLATION

The ISC629 DC servo motor interface board is very easy to connect to your industrial distributed con-

trol system. Direct interface to PC/104 as well as EUROCARD installations is possible. This chapter

gives step-by-step instructions on how to install the ISC629 into your system.

After completing the installation it is recommended that you use the diagnostic and test software to

fully verify that your board is working.

Board Installation

Keep your board in the antistatic bag until you are ready to install it into your system! When removing

it from the bag, hold the board at the edges and do not touch the components or connectors. Please

handle the board in an antistatic environment and use a grounded workbench for testing and han-

dling of your hardware. Before installing the board in your computer, check the jumper settings. Chap-

ter 2 reviews the factory settings and how to alter them. If any alterations are needed, please refer to

the appropriate instructions in this chapter. Do however note that incompatible settings can result in

unpredictable board operation and erratic response.

 General installation guidelines:

• Turn OFF the power to your computer and all devices connected to the ISC629.

• Touch the grounded metal housing of your computer to discharge any antistatic build-up and then

remove the board from its antistatic bag.

• Hold the board by the edges and install it in an enclosure or place it on the table on an antistatic sur-

face.

• Connect your motors to the available terminal blocks.

• Connect the incremental encoders to the correct screw terminal blocks

• Connect the 50-pin digital I/O connector flat-ribbon cable to the board. Make sure that the orienta-

tion of the cables is correct.

 Installation integrated with a PC/104 module stack

• Secure the four PC/104 installation holes with standoffs.

• Connect the board to its peripherals using the appropriate connectors.

ISC629 Users Manual 15 RTD Embedded Technologies, Inc.

Fig. 3-1: ISC629 integrated into a PC/104 RTD cpuModule stack

External I/O Connections

Motor interface connectors

The figure 3-1 below illustrates the logical connection of the DC-servo motors to the ISC629. The Motor +

should be connected to the DC motor + terminal for correct loop operation. Connect Motor - to the negative

terminal of the motor. Note that the maximum supply voltage is 60V. It is very important that the nominal

motor voltage is not exceeded.

Fig. 3-1 Motor interface terminal block

Timer counter connector pinout

ISC629 Users Manual 16 RTD Embedded Technologies, Inc.

Connector J14 carries the external clock, gate and output signals of the three timer/counters.

The pinout of this connector (to view) is shown below:

2 4 6 8 10

E_GATE1 E_CLK1 TC2 E_GATE
3

GND

E_CLK1 TC1 E_GATE2 E_CLK2 TC3

1 3 5 7 9

Signal definitions:

E_CLK1 External clock signal counter1 (10K pull-down)

E_GATE1 Extrenal gate counter1 (10K pull-up)

TC1 Output of timer counter1

E_CLK2 External clock signal counter2 (10K pull-down)

E_GATE2 Extrenal gate counter2 (10K pull-up)

TC2 Output of timer counter2

E_CLK3 External clock signal counter3 (10K pull-down)

E_GATE3 Extrenal gate counter3 (10K pull-up)

TC3 Output of timer counter3

Incremental encoder connectors

The figure 3-2 below illustrates the screw terminal blocks used to connect the incremental encoders of the

DC-servo motors to the ISC629. J5 is the connector for Channel #1 and J6 for Channel #2. The +5V is

supplied by the PC/104-bus. Both of these outputs are independently fused with 2A fuses located under

the terminal blocks.

Fig. 3-2 Incremental encoder terminal-blocks

ISC629 Users Manual 17 RTD Embedded Technologies, Inc.

General purpose digital I/O header connector pinout

The table 3-2 below illustrates the pinout of the 50-pin header connector that is used for general-purpose

digital I/O. +5V is available in pin 49.

PIN number Signal Description PIN Number Signal Description

1 PC0 2 N.C

3 PC1 4 GND

5 PC2 6 GND

7 PC3 8 GND

9 PC4 10 GND

11 PC5 12 GND

13 PC6 14 GND

15 PC7 16 GND

17 PB0 18 GND

19 PB1 20 GND

21 PB2 22 GND

23 PB3 24 GND

25 PB4 26 GND

27 PB5 28 GND

29 PB6 30 GND

31 PB7 32 GND

33 PA0 34 GND

35 PA1 36 GND

37 PA2 38 GND

39 PA3 40 GND

41 PA4 42 GND

43 PA5 44 GND

45 PA6 46 GND

47 PA7 48 GND

49 +5V (Fused 2A) 50 GND

Table 3-2 50-pin connector pinout

ISC629 Users Manual 18 RTD Embedded Technologies, Inc.

Chapter 4 HARDWARE DESCRIPTION

This chapter describes in detail the major features of the ISC629:

• The LM629 Servo controller chips

• H-bridges for motor control

• Incremental encoder inputs

• Motor control port

• 8255 based digital I/O

• 8245 counter/timers

• Interrupts

Fig 4-1: ISC629 Block Diagram

ISC629 Users Manual 19 RTD Embedded Technologies, Inc.

The LM629 servo controller chips

The LM629 chips are dedicated motion control processors designated for use with a variety of applica-
tions using DC Servo motors. These parts perform the complete real-time computational tasks of
complex digital motion control. Included in the chips are three following blocks: 1) a 32-bit command
position sequencer, 2) a 32-bit position feedback processor and 3) a 16-bit programmable PID filter.
Figure 4-2 below illustrates the setup for a LM629 based motor control system. The clock frequency of
the controllers is 4MHz. This must be taken into account in all timing calculations. (8MHz ISC629
boards are also available upon special request)

Fig. 4-2 Typical motor control scheme

Main features of the LM629 include:

• 32-bit position, velocity and acceleration registers

• Programmable PID filter with 16-bit coefficients

• Programmable derivative sampling interval

• 8-bit and sign PWM output

• Internal trapezoidal velocity profile generator

• Velocity, target position, and filter parameters may be changed during motion

• Position and velocity modes of operations

• Real-time programmable interrupts

• Quadrature encoder feedback with index pulse

H-bridges for motion control

The ISC629 features two independent H-bridges that are used to drive the motors. The H-bridges are
implemented using 4 high performance N-channel MOSFETs. These MOSFETs are configured in two
full bridges. Each of the two bridges consists of high side and low-side MOSFETs. Special full bridge
driver chips are used to drive the MOSFET bridges. These drivers can tolerate negative voltage tran-
sients as well as voltages up to 600V. The propagation delay for the high and low side is also matched
to ensure precise control of the bridge. The maximum peak current of the H-bridge is 25A, 10A con-
tinuous with a voltage of 60V maximum with additional heat sinking or convection cooling with a fan
unit such as the EFAN104. If you use the standard ISC629 board you should not exceed 6A con-
tinuous current drive.

ISC629 Users Manual 20 RTD Embedded Technologies, Inc.

The onboard bridge drivers are controlled by signals in the table 3-1b, pins 6-10. These signals are
not TTL level, but 0-12V. The signals can be used to drive an external bridge power element through
the motor control port.

Incremental encoder inputs

The feedback from DC-servo motors is usually implemented using TTL level incremental encoders.
The ISC629 has terminal blocks onboard for direct connection to feedback encoders. The incremental
encoders are powered from the board +5V. This output is protected against over voltages with a spe-
cial transient absorber diode.

Encoder inputs CH_A, CH_B and INDEX are protected against positive and negative voltage tran-
sients. The encoder inputs are fed into a Schmidt trigger buffer that ensures reliable operation even
under noisy environments. Input signals are inverted in this stage. This must be taken into account
when making sensor channel connections. The input impedance of the encoder inputs lines are 4,7K.

A header on the board allows you to select either a pull-up or pull-down configuration to suit the en-
coder output circuitry. Factory default is pull-down mode. The illustration below shows the selection
jumper set for 4,7K pull-down on the encoder inputs

Motor control port

The header J4 carries all the necessary signals required to interface to an external power stage. Avail-
able in this connector are power, 8-bit PWM and sign, as well as direct 1/2- bridge control signals. The
power in this connector is selected to be either +12V or +5V. The selection is made using the solder
blob B1 located on the solder side of the board next to the 50-pin connector. This output is protected
with a 2A fuse.

8255 based digital I/O

The 8255 programmable peripheral interface (PPI) is used for digital I/O functions. This high per-

formance TTL/CMOS compatible chip has 24 digital I/O lines divided into two groups of 12 lines each.

All the 24 digital I/O lines are pulled down with 10K Ohm resistor.

Group A: Port A (8) lines and Port C upper (4) lines

Group B: Port B (8) lines and Port C lower (4) lines

Port A, Port B and Port C are available in the 50 pin expansion connector. These Ports can be utilized

using any of the three operating modes as described below:

• Mode 0: Basic I/O, this lets you use simple input/output functions for a port. Data is written to

or read from the specified port

• Mode 1: Strobed input/output. Lets you transfer data I/O from port A in conjunction with

strobed or handshake signals.

• Mode 2: Strobed bi-directional input/output lets you communicate with an external device

 through the port A. Handshaking is similar to mode 1.

ISC629 Users Manual 21 RTD Embedded Technologies, Inc.

Available Port direction definitions: Port A and B are defined to be Inputs or Outputs as ports, the lower

bits in Port C, 0-3 and 4-7 may be set as Inputs or Outputs in groups.

 All these modes are discussed in detail in the 8255 data sheet available from Intel.

8254 timer/counter

An 8254 programmable interval timer provides three 16-bit, 4MHz timer / counters to support a wide range

of timing and counting functions. All of the timer/counters TC1 to TC3 can be cascaded. The timers have dif-

ferent options for clock sources as well as gate signals available at header connector J14 on the board.

Each Timer/Counter has two inputs, CLK in and GATE in, and one output TC. They can be pro-
grammed as binary or BCD down counters by writing the appropriate data to the command word.
The command word also lets you set up the different modes of operation. The six programmable
modes are:

 Mode 0 Event Counter (Interrupt on Terminal Count)

 Mode 1 Hardware-Retriggerable one-shot

 Mode 2 Rate Generator

 Mode 3 Square Wave Mode

 Mode 4 Software-Triggered Strobe

 Mode 5 Hardware Triggered Strobe (Retriggerable)

 All these modes are discussed in detail in the 8254 data sheet available from Intel.

ISC629 Users Manual 22 RTD Embedded Technologies, Inc.

Chapter 5 BOARD OPERATION AND PROGRAMMING

This chapter shows you how to program and use your ISC629.

Included are a complete detailed description of the memory map and a detailed discussion of pro-

gramming operations to aid you in programming. The full functionality of the LM629 is described in

the attached data sheet reprint from National Semiconductor.

ISC629 Users Manual 23 RTD Embedded Technologies, Inc.

Defining the Memory Map

The I/O map of the ISC629 is shown in Table 5-1 below. As shown, the module occupies two ad-

dresses. The Base Address (designated as BA) can be set using the jumpers as described in Chap-

ter 2 (Board settings). The following sections describe the register contents of each address used in

the I/O map.

 Table 5-1: ISC629 I/O Map

Register Description Read Function Write Function Address
in HEX

Servo chip #1 Reads from chip Writes to chip BA+0

Servo chip #2 Reads from chip Writes to chip BA+1

Board control register Read control bits Write control bits BA+2

Reserved Reserved Reserved BA+3

PPI Port A Read digital inputs Write digital outputs BA+4

PPI Port B Read digital inputs Write digital outputs BA+5

PPI Port C Read digital inputs Write digital outputs BA+6

PPI Control Reserved Write to control byte BA+7

8254 TC Counter1 Read Counter1 Write Counter1 BA+8

8254 TC Counter2 Read Counter2 Write Counter2 BA+9

8254 TC Counter3 Read Counter3 Write Counter3 BA+A

8254 Control Reserved Program counter mode BA+B

 BA = Base Address (300h factory default)

BA+0 Servo chip channel #1 1-8 (Read/Write)

This is the address through which all communication is performed to the servo controller chip for chan-

nel #1. Data and commands are selected by one bit in the board control register, bit 3 (BA+2).

BA+1 Servo chip channel #2 1-8 (Read/Write)

 This is the address through which all communication is performed. Data and commands are selected
by one bit in the board control register, bit 3 (BA+2).

BA+2 Board control register 1-4 (Read/Write)

The board control register is used to configure the operation of the ISC629 board. The bit definitions

are listed below:

• Bit 0 (0 after reset) /EN_RST, this bit is used to block the host reset from resetting the servo

control chips. In some cases it may be desirable to inhibit a host reset for example from a

watchdog timer to abort a trajectory.

 0 -> Enables host reset to reset servo chips

 1 -> Disables host reset from resetting servo chips

• Bit 1 (0 after reset) reserved for factory testing only

• Bit 2 (0 after reset) reserved for factory testing only

ISC629 Users Manual 24 RTD Embedded Technologies, Inc.

• Bit 3 (1 after reset) PS, this bit is important for all access to the LM629 chips.

With the PS bit you may select whether you are addressing the

chip with commands or data. This bit must be set before access to

the chip is performed to ensure correct interpretation of the data

written to the addresses BA+1 and BA+2. See the software disk

for more examples on the usage of this bit.

 0 -> DATA

 1 - > COMMAND

 **NOTE: When reading back this bit is inverted (1 -> DATA, 0 -> COMMAND)

BA+3 Reserved for factory testing purposes

BA+4 PPI Port A 1-8 (Read/Write)

This port is used to access the 8255 Port A bits. Instructions on how to access port A is described in

greater detail in the software that is included in the shipment. For an exhaustive explanation of the op-

eration of the 8255 PPI chip please consult the data sheet available from Intel or NEC.

BA+5 PPI Port B 1-8 (Read/Write)

This port is used to access the 8255 Port B bits. Instructions on how to access port A is described in

greater detail in the software that is included in the shipment. For an exhaustive explanation of the

operation of the 8255 PPI chip please consult the data sheet available from Intel or NEC

BA+6 PPI Port C 1-8 (Read/Write)

This port is used to access the 8255 Port C bits. Instructions on how to access port A is described in

greater detail in the software that is included in the shipment. For an exhaustive explanation of the op-

eration of the 8255 PPI chip please consult the data sheet available from Intel or NEC

BA+7 PPI Control byte 1-8 (Read/Write)

This port is used to access the 8255 control byte. The functionality of these bits is described briefly in

the following page in figure 5-1.

BA+8 8254 Counter 1 1-8 (Read/Write)

This port is used to access the 8254 Counter 1 bits. For an exhaustive explanation of the operation of

the 8254 timer chip please consult the data sheet available from Intel or NEC.

BA+9 8254 Counter 2 1-8 (Read/Write)

This port is used to access the 8254 Counter 2 bits. For an exhaustive explanation of the operation of

the 8254 timer chip please consult the data sheet available from Intel or NEC.

BA+A 8254 Counter 3 1-8 (Read/Write)

ISC629 Users Manual 25 RTD Embedded Technologies, Inc.

This port is used to access the 8254 Counter 3 bits. For an exhaustive explanation of the operation of

the 8254 timer chip please consult the data sheet available from Intel or NEC.

BA+B 8254 Control 1-8 (Read/Write)

This port is used to access the 8254 control byte. The functionality of these bits is described in the data

sheet available from Intel or NEC.

Fig. 5-1 8255 Control byte bit definitions

ISC629 Users Manual 26 RTD Embedded Technologies, Inc.

LM629 Instruction set

A complete list of instructions accepted by the LM629 chip is described below in table 5-2.

Instruction Type Description HEX

RESET Initialize Reset LM629 00

DFH -”- Define Home 02

SIP -”- Set Index Position 03

LPEI Interrupt Interrupt on Error 1B

LPES Interrupt Stop on Error 1A

SBPA Interrupt Set Breakpoint , Absolute 20

SBPR Interrupt Set Breakpoint , Relative 21

MSKI Interrupt Mask Interrupts 1C

RSTI Interrupt Reset Interrupts 1D

LFIL Filter Load Filter Parameters 1E

UDF Filter Update Filter 04

LTRJ Trajectory Load Trajectory 1F

STT Trajectory Start Motion 01

RDSTAT Report Read Status Byte None

RDSIGS Report Read Signals Register 0C

RDIP Report Read Index Position 09

RDDP Report Read Desired Position 08

RDRP Report Read Desired Position 0A

RDDV Report Read Desired Velocity 07

RDRV Report Read Real Velocity 0B

RDSUM Report Read Integration Sum 0D

Table 5-2: LM629 Instruction Set

These instructions are loaded to the LM629 chip while the PS-bit is in “COMMAND” mode. See previous

sections for more details. The board status register can be read at all times, remember to set the PS-bit in

“DATA” mode when reading this register.

AN-639, AN-706 Application note and LM628/LM629 Datasheet walk you through all the important func-

tions required to solve most motion control problems. This application note is included on your software

disk and it can be downloaded from www.national.com. The diagnostic program “diag629.exe” has the

same functions described in flow charts in AN-639 as C-functions. This diagnostics program shows you

how to correctly use them together.

ISC629 Users Manual 27 RTD Embedded Technologies, Inc.

 INTERRUPTS

 What is an interrupt?

An interrupt is an event that causes the processor in your computer to temporarily halt its current

process and execute another routine. Upon completion of the new routine, control is returned to the

original routine at the point where its execution was interrupted.

Interrupts are a very flexible way of dealing with asynchronous events. Keyboard activity is a good

example; your computer cannot predict when you might press a key and it would be a waste of proc-

essor time to do nothing whilst waiting for a keystroke to occur. Thus the interrupt scheme is used

and the processor proceeds with other tasks. When a keystroke finally occurs, the keyboard then 'in-

terrupts' the processor so that it can get the keyboard data .It then places it into the memory, and

then returns to what it was doing before the interrupt occurred. Other common devices that use inter-

rupts are A/D boards, network boards, serial ports etc.

Your ISC629 can interrupt the main processor when a trajectory is completed, motor is stopped or an

error occurs in the motor control process. A complete description of all the possible error condition in-

terrupts is included in the documentation of the LM629 chip. By using interrupts you can write power-

ful code to interface to your motion control system.

 Interrupt request lines

To allow different peripheral devices to generate interrupts on the same computer, the PC AT bus
has interrupt request channels (IRQ's). A rising edge transition on one of these lines will be latched
into the interrupt controller. The interrupt controller checks to see if the interrupts are to be acknowl-
edged from that IRQ and, if another interrupt is being processed, it decides if the new request should
supersede the one in progress or if it has to wait until the one in progress has been completed. The
priority level of the interrupt is determined by the number of the IRQ as follows; IRQ0 has the highest
priority whilst IRQ15 has the lowest. Many of the IRQ's are used by the standard system resources,
IRQ0 is dedicated to the internal timer, IRQ1 is dedicated to the keyboard input, IRQ3 for the serial
port COM2, and IRQ4 for the serial port COM1. Often interrupts 5 and 7 are free for the user.

 8259 Programmable Interrupt Controller

The chip responsible for handling interrupt requests in a PC is the 8259 Interrupt Controller. To use

interrupts you will need to know how to read and set the 8259's internal interrupt mask register (IMR)

and how to send the end-of-interrupt (EOI) command to acknowledge the 8259 interrupt controller.

 Interrupt Mask Register (IMR)

Each bit in the interrupt mask register (IMR) contains the mask status of the interrupt line. If a bit is

set (equal to 1), then the corresponding IRQ is masked, and it will not generate an interrupt. If a bit is

cleared (equal to 0), then the corresponding IRQ is not masked, and it can then generate an interrupt.

The interrupt mask register is programmed through port 21h.

 End-of-Interrupt (EOI) Command

ISC629 Users Manual 28 RTD Embedded Technologies, Inc.

After an interrupt service routine is complete, the 8259 Interrupt Controller must be acknowledged by

writing the value 20h to port 20h.

 What exactly happens when an interrupt occurs?

Understanding the sequence of events when an interrupt is triggered is necessary to correctly write

interrupt handlers. When an interrupt request line is driven high by a peripheral device (such as the

ISC629), the interrupt controller checks to see if interrupts are enabled for that IRQ. It then checks to

see if other interrupts are active or requested and determines which interrupt has priority. The inter-

rupt controller then interrupts the processor. The current code segment (CS), instruction pointer (IP),

and flags are pushed onto the system stack, and a new set if CS and IP are loaded from the lowest

1024 bytes of memory.

This table is referred to as the interrupt vector table and each entry to this table is called an interrupt

vector. Once the new CS and IP are loaded from the interrupt vector table, the processor starts to

execute code from the new Code Segment (CS) and from the new Instruction Pointer (IP). When the

interrupt routine is completed the old CS and IP is popped from the system stack and the program

execution continues from the point where interruption occurred.

 Using Interrupts in your Program

Adding interrupt support to your program is not as difficult as it may seem especially when program-

ming under DOS. The following discussion will cover programming under DOS. Note that even the

smallest mistake in your interrupt program may cause the computer to hang up and will only restart

after a reboot. This can be frustrating and time-consuming.

 Writing an Interrupt Service Routine (ISR)

The first step in adding interrupts to your software is to write an interrupt service routine (ISR). This is

the routine that will be executed automatically each time an interrupt request occurs for the specified

IRQ. An ISR is different from other sub-routines or procedures. First, on entrance the processor reg-

isters must be pushed onto the stack before anything else! Second, just before exiting the routine,

you must clear the interrupt on the ISC629 by issuing the RSTI instruction and reading the interrupt

status register, and finally write the EOC command to the interrupt controller. When exiting the inter-

rupt routine the processor registers must be popped from the system stack and you must execute the

IRE assembly instruction. This instruction pops the CS, IP and processor flags from the system stack.

These were pushed onto the stack when entering the ISR.

Most compilers allow you to identify a function as an interrupt type and will automatically add these

instructions to your ISR with one exception: most compilers do not automatically add the EOI com-

mand to the function, you must do it yourself. Other than this and a few exceptions discussed below,

you can write your ISR as any code routine. It can call other functions and procedures in your pro-

gram and it can access global data. If you are writing your first ISR, we recommend you stick to the

basics; just something that enables you to verify you have entered the ISR and executed it success-

fully. For example: set a flag in your ISR and in your main program check for the flag.

 Note: If you choose to write your ISR in in-line Assembly, you must push and pop regis-
ters correctly and exit the routine with the IRET instruction instead of the RET instruction.

There are a few precautions you must consider when writing ISR's. The most important is, do not
use any DOS functions or functions that call DOS functions from an interrupt routine. DOS is

ISC629 Users Manual 29 RTD Embedded Technologies, Inc.

not re-entrant; that is, a DOS function cannot call itself. In typical programming, this will not happen

because of the way DOS is written. But what about using interrupts? Consider then the following

situation in your program: If DOS function X is being executed when an interrupt occurs and the inter-

rupt routine makes a call to the same DOS function X, then function X is essentially being called while

active. Such cases will cause the computer to crash. DOS does not support such operations. The

general rule is that do not call any functions that use the screen, read keyboard input or any file I/O

routines. These should not be used in ISR's.

The same problem of re-entrancy also exists for many floating-point emulators. This effectively

means that you should also avoid floating point mathematical operations in your ISR.

Note that the problem of reentrancy exists, no matter what programming language you use. Even, if

you are writing your ISR in Assembly language, DOS and many floating point emulators are not re-

entrant. Of course there are ways to avoid this problem, such as those which activate when your ISR

is called. Such solutions are, however, beyond the scope of this manual.

The second major concern when writing ISR's is to make them as short as possible in term of execu-

tion time. Spending long times in interrupt service routines may mean that other important interrupts

are not serviced. Also, if you spend too long in your ISR, it may be called again before you have ex-

ited. This will lead to your computer hanging up and will require a reboot.

Your ISR should have the following structure:

• Push any processor registers used in your ISR. Most C compiler do this automatically

• Put the body of your routine here

• Read interrupt status register of the LM629 chip on your ISC629 board

• Clear the interrupt bit by writing the RSTI instruction to the LM629 that caused the inter-

rupt

• Issue the EOI command to the 8259 by writing 20h to address 20h

• Pop all registers. Most C compilers do this automatically

The following C example shows what the shell of your ISR should be like:

/*---

| Function: new_IRQ_handler

| Inputs: Nothing

| Returns: Nothing - Sets the interrupt flag for the EVENT.

|---*/

void interrupt far new_IRQ_handler(void)

{

 IRQ_flag = 1; // Indicate to main process interrupt has occurred

 {

 // Your program code should be here

 }

 // Read interrupt status registers

 // Clear interrupt on ISC629

 outp(0x20, 0x20); /* Acknowledge the interrupt controller. */

}

 Saving the Startup Interrupt Mask Register (IMR) and interrupt vector

ISC629 Users Manual 30 RTD Embedded Technologies, Inc.

The next step after writing the ISR is to save the start up state of the interrupt mask register, and the

original interrupt vector you are using. The IMR is located in address 21h. The interrupt vector you will

be using is located in the interrupt vector table which is an array of pointers (addresses) and it is lo-

cate din the first 1024 bytes of the memory (Segment 0 offset 0). You can read this value directly, but

it is a better practice to use DOS-function 35h (get interrupt vector) to do this. Most C compilers have

a special function available for doing this. The vectors for the hardware interrupts on the XT - bus are

vectors 8-15, where IRQ0 uses vector 8 and IRQ7 uses vector 15. Thus if your ISC629 is using IRQ5

it corresponds to vector number 13.

Before you install your ISR, temporarily mask out the IRQ you will be using. This prevents the IRQ

from requesting an interrupt while you are installing and initializing your ISR. To mask the IRQ, read

the current IMR at I/O port 21h, and set the bit that corresponds to the IRQ. The IMR is arranged so

that bit 0 is for IRQ0 and bit 7 is for IRQ7. See the paragraph entitled Interrupt Mask Register (IMR)

earlier in this discussion for help in determining your IRQ's bit. After setting the bit, write the new

value to I/O port 21h.

With the startup IMR saved and the interrupts temporarily disabled, you can assign the interrupt vec-

tor to point to your ISR. Again you can overwrite the appropriate entry in the vector table with a direct

memory write, but this is not recommended. Instead use the DOS function 25h (Set Interrupt Vector)

or, if your compiler provides it, the library routine for setting up interrupt vectors. Remember that inter-

rupt vector 8 corresponds to IRQ0, vector 9 for IRQ1 etc.

If you need to program the source of your interrupts, do that next. For example, if you are using

transmitted or received messages as interrupt source, program it to do that. Finally, clear the mask

bit for your IRQ in the IMR. This will enable your IRQ.

 Common Interrupt mistakes

Remember hardware interrupts are from 8-15, XT IRQ's are numbered 0-7. Forgetting to clear the

IRQ mask bit in the IMR Forgetting to send the EOI command after ISR code. Disables further inter-

rupts.

 Example on Interrupt vector table setup in C-code:

void far _interrupt new_IRQ1_handler(void); /* ISR function prototype */

#define IRQ1_VECTOR 3 /* Name for IRQ */

void (interrupt far *old_IRQ1_dispatcher)

 (es,ds,di,si,bp,sp,bx,dx,cx,ax,ip,cs,flags); /* Variable to store old IRQ_Vector */

void far _interrupt new_IRQ1_handler(void);

/*--

| Function: init_irq_handlers

| Inputs: Nothing

| Returns: Nothing

| Purpose: Set the pointers in the interrupt table to point to

| our functions i.e. setup for ISR's.

|--*/

void init_irq_handlers(void)

{

ISC629 Users Manual 31 RTD Embedded Technologies, Inc.

 _disable();

 old_IRQ1_handler = _dos_getvect(IRQ1_VECTOR + 8);

 _dos_setvect(IRQ1_VECTOR + 8, new_IRQ1_handler);

 Gi_old_mask = inp(0x21);

 outp(0x21,Gi_old_mask & ~(1 << IRQ1_VECTOR));

 _enable();

}

|/*--

| Function: Restore, do this before exiting program

| Inputs: Nothing

| Returns: Nothing

| Purpose: Restore interrupt vector table.

|--*/

void restore(void)

{

 /* Restore the old vectors */

 _disable();

 _dos_setvect(IRQ1_VECTOR + 8, old_IRQ1_handler);

 outp(0x21,Gi_old_mask);

 _enable();

}

ISC629 Users Manual 32 RTD Embedded Technologies, Inc.

Chapter 6 ISC629 SPECIFICATIONS

 Host Interface

I/O mapped, occupies 16 bytes of space

Jumper-selectable base address with 4 jumpers

8-bit data bus, 16-bit AT bus connector

Jumper selectable interrupts, both XT and AT: 5, 7, 10, 11 and 12

Servo controllers and H-bridge

LM629 servo controllers

• Position range -1,073,741,824 to 1,073,741,823 counts

• Velocity range 0 to 1,073,741,823/2 EXP 16 counts/sample i.e. 0 to

16368 counts per sample with 1/2 EXP16 counts/sample resolution

• Acceleration range 0 to 1,073,741,823/2 EXP 16 counts/sample/sample i.e. 0 to

16368 counts/sample2 with 1/2 EXP16 counts/sample resolution

• Motor drive output 8-bit PWM, sign/magnitude signals

• Operating Modes Position and Velocity

• Feedback Device Quadrature signals , index pulse, TTL level signals

• Control Algorithm PID with programmable integration limit

• Sample Intervals Derivative term programmable from 2048/Fclk to

 2048*2048/Fclk 256 to 65,536us

• Clock Frequency 4 MHz (8MHz also avialable upon request)

H-bridge

• Max. voltage 60V DC

• Max. current 6A

• Peak current 25A

• Output capacitors 220uF / 63V for each channel

• Protection 60V transient absorber diodes 1500W power dissipation

8255 Digital I/O

 TTL/CMOS levels
 Number of lines 24

 Drive capability 2mA

 Pull-up /Pull-down 10K pull-down on all 24 lines

Connectors
 Motors, cable connector Phoenix contact MSTB 2,5/ 4-ST-5,08

 Motors, PCB connector -”- MSTB 2,5/ 4-G-5,08

 Encoder feedback connectors -”- MPT 0,5/ 5-2,54
 Counter/timer I/O port 10-pin header

 TTL digital I/O’s Header connector 50-Pin

 Host bus XT/AT PC/104 bus

ISC629 Users Manual 33 RTD Embedded Technologies, Inc.

Electrical

Operating temperature ranges +0 to +70 C

Supply voltage +5V, +-8%

Power consumption 2,0 W maximum with +12V output unloaded

+12V power supply Max load 1A

Mechanical

PCB size 91 x 96 mm

MAX size 110 x 96 x 17 mm (non stack through connectors)

CE

The ISC629 is CE certified in the IDAN Enclosure System.

ISC629 Users Manual 34 RTD Embedded Technologies, Inc.

Chapter 7 LIMITED WARRANTY

RTD Embedded Technologies, Inc. warrants the hardware and software products it manufactures and produces to be free

from defects in materials and workmanship for one year following the date of shipment from RTD EMBEDDED

TECHNOLOGIES, INC. This warranty is limited to the original purchaser of product and is not transferable.

During the one year warranty period, RTD EMBEDDED TECHNOLOGIES will repair or replace, at its option, any de-

fective products or parts at no additional charge, provided that the product is returned, shipping prepaid, to RTD

EMBEDDED TECHNOLOGIES. All replaced parts and products become the property of RTD EMBEDDED

TECHNOLOGIES. Before returning any product for repair, customers are required to contact the factory for an RMA

number.

THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCTS WHICH HAVE BEEN DAMAGED AS

A RESULT OF ACCIDENT, MISUSE, ABUSE (such as: use of incorrect input voltages, improper or insufficient venti-

lation, failure to follow the operating instructions that are provided by RTD EMBEDDED TECHNOLOGIES, "acts of

God" or other contingencies beyond the control of RTD EMBEDDED TECHNOLOGIES), OR AS A RESULT OF

SERVICE OR MODIFICATION BY ANYONE OTHER THAN RTD EMBEDDED TECHNOLOGIES. EXCEPT AS

EXPRESSLY SET FORTH ABOVE, NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE, AND RTD EMBEDDED TECHNOLOGIES EXPRESSLY DISCLAIMS ALL

WARRANTIES NOT STATED HEREIN. ALL IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES

FOR MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED TO THE DURATION

OF THIS WARRANTY. IN THE EVENT THE PRODUCT IS NOT FREE FROM DEFECTS AS WARRANTED

ABOVE, THE PURCHASER'S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED

ABOVE. UNDER NO CIRCUMSTANCES WILL RTD EMBEDDED TECHNOLOGIES BE LIABLE TO THE

PURCHASER OR ANY USER FOR ANY DAMAGES, INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL

DAMAGES, EXPENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING OUT OF THE USE

OR INABILITY TO USE THE PRODUCT.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS AND SOME STATES DO NOT ALLOW

LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATIONS OR

EXCLUSIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS

WHICH VARY FROM STATE TO STATE.

