SCADAPack 300 & 4203 C++
Tools

User and Reference Manual

5/19/2011

Schpeider

The information provided in this documentation contains general descriptions
and/or technical characteristics of the performance of the products contained
herein. This documentation is not intended as a substitute for and is not to be
used for determining suitability or reliability of these products for specific user
applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products
with respect to the relevant specific application or use thereof. Neither Schneider
Electric nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. If you have any suggestions for
improvements or amendments or have found errors in this publication, please
notify us.

No part of this document may be reproduced in any form or by any means,
electronic or mechanical, including photocopying, without express written
permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when
installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform
repairs to components.

When devices are used for applications with technical safety requirements, the
relevant instructions must be followed. Failure to use Schneider Electric software
or approved software with our hardware products may result in injury, harm, or
improper operating results.

Failure to observe this information can result in injury or equipment damage.
© 2010 Schneider Electric. All rights reserved.

Document (Version 1.61) 5/19/2011

Table of Contents

Safety INfOrmationeeeeiiiiiiiiiii s 14
ADOUL ThE BOOK .ceviiiiiiie e e 17
AL A GIANCE ... 17
(@ 17T YY1 P 18
Getting Started.........ooovvviiiiiiie e 19
SCADAPack C++ Tools INStallation ... 19
Program Development TULOMAlcvvvviiiiiiiiiiiieiieeeieeeeieeeeeeeeeeeeseseeesesesesenenenene 20
C++ Program Development.......ccccovvvviiiiiiiiiiiiiiiieeeeeeeeeee 32
Program AFChItECIUIEoouiiii it 32
GNU COmMPIlEr OPLIONSeeieiiiiiieiiiiee ettt 43
Application Development ... 44
Real Time Operating SyStem ..., 45
TaSK MANAGEIMENTccoiiiiiiiiiiiie ettt et e e 45
Resource ManagemENT.............uueiiierieieeieeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeneenennnnnnnnnes 46
Inter-task ComMmMUNICAtION ... 49
EVENt NOtIfICALION ...eeviiiiiiiiiieiiieeeeeeeeeeeeeee ettt e e eeereeeeeeeseseseeseeseeeeerenes 49
S o] gl 2y=ToTo] ¢ 1] o TSP UTP PRI 50
RTOS Example Application Program...............eueeeeeeeieieieeieeieieeeeeeeeereessersseseeeeenen. 51
Overview of Programming FUNCLIONSuuviiiiiiiiiiiiiiiiiiiiiinnes 59
(07e] a1 0] | (<T@ o =T = 11 o] o PSS 59
Controller 1/O HArdWAIEuuueuei s 61
Serial CoOMMUNICALIONuuuiiiii e ananan 70
Serial Communication ProtOCOIS.........ccvvuiiiiieeee e 72
DNP Communication ProtOCOIeviiiiiiiiiiiiiieiiiieieieeeeeeeeeseeeeesereseressseserenennnes 74
DF1 Communication ProtOCOLuvviiiiiiiiiiiiiiiiieeieieeeeeeeeeeeeseeseeeeeseresssessrenenenes 78
TCP/IP COMMUNICALIONS.......ccceeeieeee e 78
Y CoTo | oW ESN | = =] (Yoo H PPN 78
Data LOQ 10 Fleeeeeiiieiiieeee e 79
SOCKELS AP s 80
MOADUS I/O DAtADASEuvviiiieeeieiiiiiii e e e s e e e e e s rer e e e e e e e nnenes 81
REQIStEr ASSIGNMENT ..ottt e e s e e nnaeae s 83
IEC 61131-1 Variable AcCeSS FUNCLONSccvviveiiiiiiiiiiiec e 84

Document (Version 1.61) 5/19/2011

HART COMMUNICALION ...cciiiiveiiieee ettt e ettt e e e e e s e ee b s e e e s e s ssaba s e eeessenerans 84

File Management APlt 86
Function Specifications ..., 87
Functions Supported by Telepace ONly..........cccoviiiieiiiiiieiiie e 87
Functions Supported by IEC 61131-1 ONIYccvvviieeeeiiiiiiieeeee e cceiiveee e e 87
= (o1 0] =] o] S PP PPPPTRPTTRR 89
=T (o | 2q=To VNI o] 0] 0= o | S5 SRS 91
AddREGASSIGNMENTEX ...eceiiiiiiieiiie et e et e e e e e s e e e e e e st reeeeeeeeean 96
1= g0 01 1 PRSP 102
o1 (0Tt (Y =T 1Y/ (o] o = SRS 103
AlIOCAIEMEIMONY ...t e 104
0] T PRSPPI 105
CRECK _BITON .. 106
(o] 0 T=Tod &1 o o R 107
CheCKkSFTranslationTablecovvieiiiiiic e e 108
ClEATAIIFOICING oottt e e e 109
ClearBreakCoONAItION..........oiueiiiiieie et e e e e e e 110
ClEAI_BITOIS ...t s 111
Clear_protOCOl_STAtUSuuuuueiii s 112
ClearLoginCredentials ... 113
ClearREQASSIGNMENT s 114
clearSFTranslationTableoovii i 115
ClEArStALUSBIL ieiiiiie e e a e e 116
(ol [1= T g o GO PP U P PP PPP PR 117
o301 SRS 118
configuratioNREiStErMAaPPINGvvveeiiiiiee it 119
configurationSetAPPHCAtIONIDcooiiiiiiiii e 120
COMMEBCE . s 124
LoT0] o)Y PP 126
Lo (o (23] (=T S SUPPTPPRTR 127
Lo (== 1 (= = 1] 128
databasSEREAM.........e i 130
AtADASEWIILE ... 131
AtAIOGCIEALE. ...t 132
AtAIOGDEIELE ... s 134
AtAIOGPUITE ...t 136
atalOgREAANEXLeeeiiiiiiee e e 138
atalOgREAUSTANTccoi it 140
datalOgRECOIASIZE ... 142
AtAlOgSEIINGS .. .eeeeeeiiiee e a e a e e 143
ALAIOGWWIILE ..ttt e e e e e eeeaaaeeas 144
ODASE . a e 145
Dbase Handler FUNCLION ...t 147
deallocate_ENVEIOPEcooiieeieeee e 148
(0] [oTo [@1 1= 1 L= SRR 149
AIOGDEIETE ... 151
AIOGDEIELEAIN ...t 152
IOGFIUSI ...t 153

Document (Version 1.61) 5/19/2011

(0| [oTo 1<) £ r= L (1 SRS 154

(0| To o | 1 0 2 SRS 155
AIOGNEWHIIE ... e e e e e e e e st raeeeeaee s 156
AIOGRESUMIE ... e 157
AIOGSPACE ... et 158
IOGSUSPENGeoeiiiiiee e 159
AIOGWVIIEE ..ttt e et e e e e e e 160
ANPCIEAIEVENTLOGS. ...ttt ettt e 161
ANPCONNECHONEVENT.......eiiiiiiiiie ittt 162
dnpCreateAddressMappingTablec..eoveveiiiiiii e 163
dnpCreateMasterPoIlTaDIEcooveei i 164
dnpCreateRoutiNgTabIeouvviiiei i 165
dnpGenerateChangeEVENTuuii 166
ANPGENErAtEEVENTLOQ ... uuuiiiiiiiii s 167
ANPGELAILBCONTIG. . et s 168
ANPGELAIS2CONTIG....eeeiieieeee it 169
ANPGELAISFCONTIG ..etee ittt e 170
ANPGELAOLOCONTIG . .eeeiiveieeiiiiiie ettt e 171
ANPGELAOS2CONTIG . .eeeiiteeeeeiitiie ettt 172
ANPGELAOSFCONTIG .ottt 173
ANPGELBICONTIG. ...ttt e 174
ANPGEIBICONTIGEX ..uuiriiiiiiiii s 175
ANPGEIBOCONTIG ettt s 176
ANPGELCILOCONTIG ©uuvrriiininiii s 177
ANPGELCIB2CONTIG wuvviriiiiiiii s 178
ANPGELCONTIGUIALIONueiiiiii s 179
ANPGELCONTIGUIALIONEXcciiiiiiiiiiiiiie ettt 183
ANPGELRUNIIMESTALIUSeiiiiiiiie it 184
dnpGetUnsolicitedBackoffTIMe.........cooiiiiiii e 185
dnpinstallConnectioNHANIETcooiiiiiiii e 186
ANPMASEEICIASSPOIL ... e 191
ANPMASEEICIOCKSYNCeeeieiiiie e 192
ANPPOMSTALUS ...uviiiiiiii s 193
dnpReadAddressMappingTableENtry ... 194
dnpReadAddressMappingTableSizZe ..o 195
dnpReadMasterPolITabIEENTIYuueri e 196
dnpReadMasterPolITabIEENTIYEX..........uu e 197
dnpReadMasterPolITabIESIZEuuueiiii e 198
dnpReadRoutingTableEntry_DialStringsccoovuiiieiiiiieeiiiee e 199
dNPReadROUtINGTADIEENTIYccoiiiiiieiiiiie et 200
dnNpReadRoUtINGTADIEENIIYEXveviiiiiiiieeiite et 201
dNpReadRoUtINGTADIESIZEcoiiiiiiie e 202
ANPSAVEAILBCONTIG ..eeeivieeee it 203
ANPSAVEAIB2CONTIG .eeiiiieeiieiteiie e a e 204
ANPSAVEAISFCONTIG. ..tiiiiiieiitiii et e e e e 205
ANPSAVEAOLECONTIG «eeveeiiiiiiiiiieie et a e e e e e e e 206
ANPSAVEAOB2CONTIG +errieiiiiiiiiiite ettt a e e e e e e 207
ANPSAVEAOSFCONTIG . ceiiiiiiiiiiiiie et a e e e e e e e 208
ANPSAVEBICONTIQ -..tvtteiteeeie ittt e e e e e e 209
ANPSAVEBICONTIGEX ... itiiieiiiiiie ettt e 210

Document (Version 1.61) 5/19/2011

ANPSAVEBOCONTIG .vvvvriieeeieiiiiiie e s e e e e e e e s e e e e e s eaae e 211

ANPSAVECILBCONTIG .eeriieeeie it e e e r e e e e e et rrreeaeee s 212
ANPSAVECIB2CONTIG .triiiieeii it e e e e a e e 213
dNPSAVECONTIGUIALIONoiiiiiiiie it 214
dNPSaVECONTIGUIALIONEXvviiiiiiiie ettt 216
dnpSaveUnsolicitedBackoffTiImeccuviiiiiiiiii e 217
dNPSendUNSOlICItEARESPONSEevvieiiiiieeiieee ettt 218
dNpSearchROUtINGTADIEuiiiii e 219
ANPSTAtIONSIATUSeeeeiiiieiee it e e e e e 220
dnpWriteAddressMappingTablEENTIYcoceeeiiiiiiiieeee e 221
dnpWriteMasterApplicationLayerConfig.........cccovcuiviereiee i ccvieeee e 222
dnpWriteMasterPolITabIEENTIYoociiiiieec e 223
dnpWriteMasterPolITabIEENTIYEXuuuiiii e 224
dnpWriteRoutingTableEntry_DialStringcccccoeooiiiiiiiiiiiiiiic e 225
dnpWriteROUtINGTABIEENTIYuueei s 226
dnpWriteRoutingTableENTIYEX.........cooiiiiiiii e 227
ENA_APPLICALION ... 228
<0 Lo o (o 10T o BT PP TP PP PPP 229
BN _LASK .. eee ittt 230
ENATIMEAEVENTeiiiiiie e e e e s er e e e e e st reeeeeee e s 231
enroninstallCommandHaNAIErccuviiiiiii e 232
EINEINELIGELIP ... 236
ethernetGEetMACAAAIESSoovi i 237
EINEINELSELIP ..o 238
flashSettingsLoad............cooooiiiii 239
flashSettingSSave ... 240
(0] (o= =T o S 241
FIEEIMEBIMOIY ...ttt e sbe e e e 242
OEtABCONTIGUIALION ...t 243
GEECIOCK .. 244
EECIOCKAIRI ...ttt ettt e e 245
(o1 (04 [oTod g 11 1= PP TP PPOTPRP 246
JELCONIIONEIIDeiiiiieei s 247
JELFOICEFIAQ ...t 248
JELFOICELEM ... et s 250
JEtFIPSEIVEISIALE ... 251
getHardwarelNfOrmMation ... 252
QEtIOETOrINAICALION ... s 253
gEtOULPULSINSIOPMOUEeiiiiiii et 254
0etLOgINCredentialScooiiiiiieiie s 255
JELPEEIMAIME ...t s 256
QEtPOMCNArACIEIISHICS ... ueeie ittt e 257
0 T I 0 o 258
OEIPOWEIMOME ...t a e 259
JELPTOGIraAMSTALUSuueiiiiiiiiie s 260
(o< o] (0] (o Tole] ENU PP PPPPRP 261
OEIPIOtOCOISEIINGS ...eeiiieeie it e e e e e 262
OEtPIOtOCOISEIINGSEXci ittt a e 264
(o< o] o] (oTole] IES] = L (1 LS SO PT P OPPPPPTP 266
QELSFTTANSIAIONeiiiiiiiee e 267

Document (Version 1.61) 5/19/2011

OEISFTIANSIAIONEX . .ciiieiii e e s e e e e s e e e e e e s et rreeeaeee s 268

JEESOCKNAME et s e e e e e s e e e e e et et e e e e e e e e santnraneeaaeeeas 269
(o< Y0103 (o] o PSPPSR 270
OB STATUS ...t 274
QEESTALUSBIL......eeeieeee et 275
GEETASKINTO .. 276
(o T<IAY =T £ o] o B TP PP TP PP OPPPPPP 277
JEIWAKESOUICE.eeiiiiiiiee ettt et 278
HaNAIEr FUNCHONoooiiiie et e e e eees 279
= 13 £ 2 PP 282
hartCOMMEANTeveiiiiiiee e bbb 283
hartComMmMAaNOcoiuiiiieiiie e 285
NArtCOMMEANTLoiiiiiiie et e e e s e e e e e e anees 286
NArtCOMMEANTZ ...t e e e e e e e e anees 287
NArtCOMMEANTS ...t e e e e s e e e e e e e anees 288
T T (00 4T 1 4= T o i S OUTPURRRP 290
hartCommaNU33coo e e e e r e e e e anee 291
AN STALUS ... e a e e st r e e e e e e e anne 293
hartGetCoNfiQUIALION..........ocuiiii e 295
hartSetConfiGUIAtiONocueiiiiiiiii e 296
NAMPACKSIIING ...ttt 297
[T (0] 0 = 1o] {11V PPNt 298
010 o | TSP TT TR PUTPPPPPPPPR 299
01 70] 1S TP TT PR PUPPPPPPPPPR 300
1= A= 1o (o | PP PPNt 301
153 = 11 = U T 1= P PPPPPPRt 302
INSLAICIOCKHANAIET ... e e e e e e 303
INStallDDASEHANAIET e 304
installSetdbaseHANAIETcoov i 305
INSTAIIEXITHANAIET ..o e e eer e e e e e e nnnees 307
INStAlIMOADUSHANIET.........eeiiiiie e a e e enees 308
INSTAIIRTCHANAIET ..o e e e r e e e e e e ennes 309
RTCHAaNAIEr FUNCHON ...t 310
(o104 (=7 TP UUT T UUOPPUPPPPRRN 311
I0DALADASERESEL. ...cci i it 312
[[o]C =] (@] a1 i{e [N =Y i o] o PP PPPPPPPRt 314
o]\ [o] 11 o= 1110] o FUN TP UT T UUUPPUPPPPRRN 315
IOREAUA203DRINPULSevviiiieieiiieieiieeeeeeeeereeeeasesesesaaesesesesesaeesereresererrrerarerarara——. 316
IOREAUA203DSINPULSeeieiitiiie ittt eneas 318
IOREAAS2L0INPULS ...ttt ettt e e e e e e 320
IOREAAS210OULPULS ...ttt ettt ettt e et e e et e e e e nneas 322
IOREAASALAINDULS ...ttt ettt sttt e e et e e e e e e e e neeas 323
o] RN=T=To o7 N oY [o] o 10 PP PRP 325
IOREAASATSOULPULS ...ttt e et e e e e e e s e abb e e e e e e e e e e aanees 327
IOREAASS50S5INPULS ..cei ittt e e et e e e e e e s e sebb e e e e e e e e e e e aannes 328
IOREAASS5050ULPULS ...ttt e e e e et e e e e e e s et e e e e e e e e e aanees 331
IOREAASS506INPULS .. ettt e e et e e e e e s e abb e e e e e e e e e aanees 333
IOREAAS50BOULPULS ...t e ettt e e e e et e e e e e e s e abbeeeeeae e e e aanees 335
IOREAASB06BINPULS ...ceeeiiiiee ettt e e e e e et e e e e e e s e anb e ee e e e e e e aaanees 337
IOREAASB06OULPULSeeeeeieiiiiee ittt ettt sttt e e st e et e e e et e e e e nneas 339

Document (Version 1.61) 5/19/2011

(o] R LET= Vo Lo S 04 Vg o1 U1 £ PSSR 341

(o] R LET= 1o Lo S U4 @ 11 1 11| PSRRI 343
IOREAAIN ...t e e nee s 345
(o] R T= To VY] g1 F PR UUTTPUPRRPRR 346
(o] R T= To VYo 11 | w2 PR TTPUPRRPR 347
(o] R T= To VYo 11 | 2 S PR UUTTPURRRPR 348
o] R CT= To VX o 11 | (310 X S PR PURRPPR 349
(o] R CT: To [OX o 10 o1 (=] 2 N PR UUTTPURRRPR 350
IOREAACOUNIEISP2 ...t e e e e et eee e e e e e e annees 351
IOREAADINDGeeveiiiieiiee ettt st 352
IOREAADINSG2 ...ttt 353
IOREAADINGiiieiiiieiee et 355
IOREAADOULLEeeiieiiiiieiieeee ettt s e s 356
IOREAADOULBZoeiieiiieii ettt 357
IOREAADOULB ...ttt 358
IOREAASP2INPULSeiiiiiiii e e 359
IOREAASP2OULPULS ...ttt e 361
TOREGUEST ...ttt et e e 363
I0SELCONTIGUIALION.citiiiieiie et 365
(03] = LU S UPERPR 366
IOSYSIEMRESEL ...t 368
([0 =T €] (o] o PP PP 369
IOWTItE4203DROULPULSevvveeieeeeieeieeeeieeeeeeeeeeeeeeeeeeeeeeeeesesesasssesesssssssesesssssssesnnnnes 370
IOWTItE4203DSOULPULS ..evvveveeieeeeeeeiieeeieeeeeeeeeeeessaseseessesesssesssssesesssssssssesssssssnsnnnnes 372
IOWTItE52LOOULPULS ..eevveeeeeieeeieeeeeeeeeeeeeeeeseeeeeeaeseeeesaeesasesesesssssesesesssssssssssssssnnnnnnes 374
L)Y 1 TS 3 L@ T 1 11 | £ PP PPRPPRt 376
IOWIEESALEOULPULS ...ttt ettt s e e 377
IOWEESB0S5OULPULSeeieieieiieee ettt ettt ettt et e e 379
IOWEESB0BOULPULS ...ttt ettt sttt et 381
IOWEESB0BOULPULS ...ttt ettt ettt e et e e 383
IOWIEESB07OULPULS ...ttt ettt ettt st s e et e e e e 386
FOWWITEEADULZ.......eeeeeeee e et e ettt e e e e e st e e e e e e s e et e e e e e e s s asnbeneneaeeesaannne 389
TOWTTEEAOULA ...ttt s e e e e e e e 390
IOWTTEAOUIS303. ...ttt ettt 391
TOWTIEEDIOULLE ...ttt ettt 392
TIOWTIEEDIOUL3Z ...ttt 393
TOWTIEEDIOULS ...ttt 394
IOWIEESP2OULPULS......ceeieiiiieeeieeieeeeeeeeteeeeseeeeeeeeeeseesaaesasesssesasssssesssssssssssssssssnssnnnes 395
IPFINAFTIENdIYIPAAArESS ... e 397
IPGELCONNECHONSUMMIEIYeeiiiiiiiiie ittt e e 398
ol CT= T g1 C=] g r= Lol Y o 1= T PR PRP 399
iPReadFriendlyLiStCONTIOL.........ciiiiie it 400
IPReadFriendIyIPLISTENTIYcooiiiiieiiiiee it 401
IPREAAFTENAIYIPLISISIZEcciiiiiiiiiieiie et 402
IPWrite FriendlyLiStCONLIOL.......cooiiiiiieiie e 403
IPWIite FriendIYIPLISTENTIYcooiiiiiiiiiiii et 404
IPWIIteFHENdIYIPLISISIZEcoiiiiiiiiiieiii et 405
[E€AGEIDETAUILeeeeieeei et e e e e e e e e e e nnes 406
[EAPOWET ...ttt ettt e e e et e et e e e s e e bbb e e e e e e e e e aannes 407
[EAPOWETISWILCReeiieeiiiceieie e e e e e s e e e e e e s e ennbeaeneeeeesnnnnes 408

Document (Version 1.61) 5/19/2011

[R5 (=] o PP URR PP 410
(00 S LT O TS T [P P PP UPPPPPPPPINN 411
MEMOIYPOOIUSAGE.......eeiiieiiiiiie ittt 413
MEMOIYPOOISIZEooiiiiii e 414
MOUDUSEXCEPHONSIALUSeveiieiiiiiie ittt 415
MOADUSSIAVEIDcoiiiiiiiiitiiii ettt e e e e s et e e e e e e e e ennees 416
MOAEIMADOIT. ...ttt e e et e e e e e s e st r e e e e e s e sanbeeeeaaeeesaanne 417
MOAEMADOITAIL ... et e e e e s e e e e e e e e s e ennnes 418
MOAEMDIAL ... e 420
MOAEMDIAIENG.oeiiiii e 422
MOAEMDIAISTAIUScvvieieiee it 423
MOAEMINIT ... e s e e 424
MOAEMINIEENG ... e e 426
MOAEMINIESTALUSeiiiiiiiieiee e 427
MOAEMNOLIICALIONeeeiieiiiiiiee e e e e e e e neees 428
MTCPGEICONTIG ..ttt et 429
MTCPGEUNTEITACE ...oiiiiiiii e e 430
MTCPGEUNTEITACEEXeiiiiiiiiii ettt 431
MTCPGEIPTOIOCOeiiiiiiiieiieie e e 432
MTCPSEICONTIG .t 433
I 0=] (= = o = PPt 434
MTCPSELINtEITACEEX.iiiiiiiiiiiieiieieeeeeeee e e e e e eeereeenes 435
I 01T 1 (0] (o o 0| PPNt 436
I 011 =] (=T O [0 1 - PPNt 437
MTCPMASIEIDISCONNECTcvvviiiiiiieieeeieee ettt eeeeeeeeeeeeaeeeeeeeeessesesessresssesennnes 438
MTCPMASIENMESSAGE.eeeeeeeeieiieeeeeeeeeeee ettt eeeeeeeennnees 439
MTCPMABSIEIOPEN ..ottt e e e e e e e e nannee 441
MTCPMABSTEISTALUS ...ttt e e e e e e e e nennee 443
MTCPRUNSEIVEN ...ttt e e e e e e e s e nannes 444
110 o | USSR 445
110 1 USSR 446
OVEITIAEDDASE ...t 447
PIAEXECULE ...oeeeeieeeeeeeeeeeeee ettt e et e e e aeee e e e e aeesasesesesasssesasasssasesasnnnnnsnnnnnnes 449
010 | a1 T= 72 PPNt 451
POHABSIAVEceeieiieieeeeieeeeee ettt e eeaeataeasasasasesasasesasssssasssassssssnnsnnnnes 452
001 =NV Z= o | P PPPRPPPRt 453
[0 L0 | =TT T Vo L= P PPPRPPRt 455
(o102 o 10 o T PP OTPRP 456
(o1] 1] a o = PP OTPRP 457
[010] (AT 1 (=T 11 £ TP PP PUPPPPPRPPPP 458
QUETYSTACK ...t 459
(o DTSR 4o o =TT PR PR 460
readBoOoIVaAriabIe.........oooiii e 461
FEAUBALIEIY ettt e e e e e et e e e e e e s e e b e e e e e e e e e e anne 463
FEAAINPUIVOIAGEcci i ittt e e e e e e eaees 464
FEAAINTVANADIEeeiiiii e 465
readMsSgVariable ... 467
readRealVariable ... 469
FEAASTOPWALCK ... e 471

Document (Version 1.61) 5/19/2011

readTIMErVariable..........ooiiiiiii e 473
FECEIVE MESSAQE .ueiiieeeiiiuetirieeeee e it ittreeeeeesssssstateereeaeessastrraeeeaeesaasssbsnneeeeessannsnes 475
< 03 PSPPSR 476
[£T01 1 (o] 2 1 PP PRPPPPRPPPRt 478
regiSterBUIKDEVOPEIAtIONcoiuiiiieiiiiiee ittt 480
FEIEASE PrOCESSON...cceutiiiieiiiete ettt e ettt ettt e ettt e et e s abb et e s et e e anb e e e eaneas 482
FEIEASE _TESOUICE ..eeiieeiiiiieiiieite e e ettt e e e e e ettt e e e e e e s nnbe e e e e e e e e s e ansbeaeeeaeeesaannees 483
removeMOodBUSHANAIEToooo e 484
(=] Lo T4 A =T 1 o] PP PPUPPPPPPPRNN 485
FEOUEST_TESOUICE ..uvuuiieieieieeeiitiae s e e e e et ettt e e e e et ee et r e s e e et e e e bbb s e e e e e e eesbbaeseeeeeesrnes 486
FESELAIABSIAVES.....coi ittt e e e e neeas 487
FESEICIOCKAIRIMN ...t e e e e e nees 488
(01U 1 (PP P P PP P PP PPPPPPPPPPPPPRt 489
(0] = 7= 103 (o [{0 11 T |1 PP PPPRRt 491
FUNTOSYSTEIM ...ttt e e et e e e s e e e e e e e e nannnes 492
(0] a1 PP PPPPPPPPPPPRPPPRt 493
FUNMASTEITPSTANTTASK.eeiiiiiiiie it 494
(0101 1= 10 [PP P PP P PO PP PP PP PP PPPPPPPPPPPPPPPPRt 495
ST =T o) SRR 496
SENA .o 498
SENA_MESSAGEccc i e i e et 501
ST 0o | (o T TP TP PP PPPPPRRTPPTP 503
SEHAIMOADUSMASTETeeiiiiiiii ittt 505
Set DF1 Protocol Configuration ... 507
SEtBreakCoNditioNcoiii i 508
LS (o o o3 G 509
L5113 [0 Tod 19 AN = U o o S 510
ES1] (0 | 0 F= = S 511
Setdbase Handler FUNCHONoooiiiiiiiiiiice e 513
ST 1D I S 514
SEIFPSEIVEISTALEvieiiiieeii e 515
SEtFOrCEFIag ..o 516
111 [@] = g o] g 1 To [Tor=11To] o H TSP TP PPTRR PP 518
SetOUtPULSINSTIOPMOAE ... 519
ST oL S PSP 520
setLoginCredentials ... 522
SEIPOWEIMOUE ...t 523
SEIPIOGramMSIALUSouviiiieiiii e 524
L1 Al o (0] (oo | P PP OUPPRPPPPPPPN 525
SEtPIOtOCOISELINGS ...eeiiiiiiiiie ittt et e e be e e 526
SEtPIOtOCOISEINGSEX ...iveiieiiiiiiee ettt e e 528
LTS 5] I =0 5 = U T SRS 530
SEtSFTranslationNEX..........coooooiiii 533
1] (10 1od (o] o | TP PPTR TR 536
SetStatuSBIt ... 540
SEtStatUSMOAE ... 541
SEIWAKESOUICE ... 542
SHULAOWN ... 543
SIGNAI EVENT ...ttt e e e e aae 544

Document (Version 1.61) 5/19/2011

£ (21T 01 1Y o o = SRS 547
K0 10] (= TP PR PSR 548
SEAIMT_PIOTOCOI ...ttt e e sbr e e e e eaes 550
SEAIMTUP_TASK .. 551
SEAMTIMEAEVENT ... e 552
SYSSENAISEtRXTIMEOUL......ceiiiiiiiiiiiiie ettt ee e 553
uNregisterBUIKDEVOPETAtION...........vieiiiiieiiiiee ettt 556
(V= VLA Y= o | AR PP PPRRUPT 558
1T o - U o SRS PPRUR: 559
WO_ENADIEAeeeiiiie e 560
AT o I £ =T T - | PSPPI 561
WO _PUISE . 562
WIItEBOOIVANIADIE ... 563
WIEINEVANADIE ...ocoiii e 564
WItEREAIVANADIE ... e 565
WIEEMSGVANTADIE. ... 566
WIETIMErVariableveiiiiie e 568
b (o]0 0) 569
D0 (]] (SRR 570
Macro DefinitioNS ..., 571
P 571
PSR 571
K e e e e e e e e e e e e e e e — e e e a e e e a e e e aaaras 572
I 573
E e e e e e e a e e et aeea e 574
P 575
PRSP 575
o PRSP RP 575
RSP 575
L ettt ettt e et — et e e R b e e e e e b b e e e e e R be e e e e s be e e e anreeeeannres 575
PRSP 576
PRSP 578
L TSRS 578
P e e e e e e e e r et aeaa e 578
R e e e e e e e e ea e e et a e e 579
S e e e e e e e e e e e e —— e e e e e e e e e t—e e e e e taaeeaaraeaeaarraaeaanres 580
X S 581
N ettt e e ot e e e e et ——— e e et —— e e e e ——— e e e ———eeaaa———eeaa——eeeaaatrreeaanraaen 582
L RS UUURPSPPPRRN 582
StrUCtUIreS and TYPES ..uvvvuiiiiiiiiiiiiiiiiiiiiiieieereeriibiebebbeeeeanaeeeaeeaeee 584
ADDRESS _MODKE ... 584
ALARM_SETTING ...t 584
COM_INTERFAQCE ... s 584
COMM_ENDPOINT ..o s 585
CONNECTION_TYPE... .ottt ittt ettt sntae e e sntae e e entaea e ennneas 585

Document (Version 1.61) 5/19/2011

10

DATALOG_CONFIGURATION.......ctitiiiiiiiiiiiii s 585

DATALOG_STATUS ...ttt 586
DATALOG_VARIABLEooiiiiiiiee ettt 586
[T 1y o] S PR UUUTPUPRRPR 586
DIAISTALE ...ttt e e e e s a e e e e e e e e e anee 587
dIogCONFIGUIALION TYPE ...eeieiiiiiee ittt ettt 588
AIOGCMITIME TY P ittt e e e e 589
dIOgMEdIASTAIUS TYPE ...eeeieiiiiiie ettt et 589
dIOgReCOrdEIEMENE TYPE ...ttt 589
(o] [oTo 1S3 2= L (U S I8 o - SRS 591
AIOgTranSfErStatUS TYPE....cuuiiiieei e e e e e e e e e s e e e e e aee s 591
DNP_ADDRESS_MAP_TABLE ...ttt 592
ANPANGIOGINPUL ... s 592
DNpANalogINpUtSOMFIOAL............ccvviiiiieiiiiieiieeeeeeeeeeeeeeeee e eenaees 593
ANPANGIOGOULPUL ... s 593
ANPBINAIYINDUL ...t 593
ANPBINAIYINPUEEXccoiiiiiieiiiiie ettt ettt 593
ANPBINAIYOULPULeeiiiiiieee ittt e e aneas 594
ANPCONNECHONEVENITYPE ...ttt ettt 594
ANPCONTIGUIALIONeieiiiiiie e e 595
ANPCONTIGUIALTIONEX......utiiieiiiiiie ettt 599
ANPCOUNTEIINPUL ...t s 604
ANPMASTIEIPOIL ... s 605
DNP Master Poll table Extended ENtry.............oovvviiiiiiiiiiiiiiiiiiiiieieeeeeeeeveveeevenenns 605
ANPPOINTTYPE e 606
ANPPIrOtOCOISTALUSuiiiiiiiii s 607
ANPROULINGTADIEEX. ... teiieiiiiiie et 607
DNP_RUNTIME_STATUS ...ttt ettt aee e 608
L2017 o] o 1= PP PP PR 608
HART_COMMAND ..ottt etee ettt e s e seeeeameeeesneeesneeeanteeesnneeenneens 609
HART_DEVICEottt ettt e sneeesnee e tee e s e e nneeas 609
HART_RESPONSE ..ottt ettt sneeesnae e tee e snaeeenneeas 610
HART _RESULT ...ttt bttt 610
HART_SETTINGS ...ttt ettt 611
HART_VARIABLE ...ttt 611
[O_CONFIG SHUCLUMeeiieiie ittt ettt ettt 611
[O_STATUS SIIUCIUIE.....eeiiiiieiiee ettt ettt ettt et snne e 612
IP_ADDRESS ...ttt 612
IP_CONNECTION_SUMMARYoiiitiiiiiiiiiiieiiiiee ettt 612
IP_CONFIG_MODE ENUMETALIONevviiiiiiiieeiiiiie ettt 613
IP_PROTOCOL_SETTINGS ..ottt 613
IP_PROTOCOL_TYPE ...ttt ettt tee e snee e nneeenneeeens 614
[P _SETTINGS ...ttt sttt et e e s e et e e snee e st e e sn e e eteeesseeeanseeeaneeeans 614
[=To (@] o 1 o] I =T PP UUUPPUPRPPR 615
MASTER_MESSAGEoiiiiiiie it 615
MODBUS_CMD_STATUS ...ttt 616
MOAEIMINIE .t e e e e e s e e e e e e e e e e annes 618
[[o o [T 0 0 1ST= (U] o P UT T UUTTPUPRPPT 618
MTCP_CONFIGURATIONcciiiiiiitie ettt sttt sttt 619
MTCP_IF_SETTINGS.....eiiiiiie it eee e stee et et e e st e e sneeesnee e e eeeesnneeenneeas 620

Document (Version 1.61) 5/19/2011

11

MTCP_IF_SETTINGS_EX ..ottt 620

1o g 1o SRR 621
PID D AT A ettt 621
PROTOCOL_SETTINGS ...ttt ettt bbb e naee s 623
PROTOCOL_SETTINGS_EX TYPE .eeiitiieiiiieiiieesitie ettt e 623
O] 0] BT 11 0o LT O PO U PP PTPRPPP 624
PIOT_STATUSoeiiiiiiiiiiiiie ettt e e e e e e ae s e e e e s e s e e eaessesseesaesaanee 624
PORT_CHARACTERISTICS ...ttt ettt 625
15122 1L £ PP P PP P TP PP PPPPPPPPPPPPPPPPPPPPPRt 626
READSTATUS ...ttt nee s 626
(01011 o 1 1= o - USSR 627
SF_TRANSLATION ..ttt n e 627
SF_TRANSLATION_EX .. ettt 628
SFETIaNSIAtioNSIALUS........oveiiiriiee e 629
TASKINFO ...ttt st et e r e 629
TASKINTO_TAG. .. ettt 630
T E e e e e e e s 630
HIMEI_INTO Lot e e rr e 631
L TSN | SRR 631
VERSION ... 631
WRITESTATUS L. 631
Example Programs ... 633
Connecting with a Remote Controller ExXampleccocceiiiiiiiniieeenniieee e, 633
Create Task EXamPIE... ... 634
Datalog EXAMPIE......couuiiieiiiiii ettt 636
Get Program Status EXampPIlec.ooooiiiiiiiiii e 645
Get Task Status EXAMPIEveiiiii e 646
Handler FUNCLION EXAMPIE........ouvviiiiiiieiiiiiiieiieeieeeeeeeseseeeeeeeveeeaeseeeeeeesesaresssenennnes 647
Install Serial Port Handler Example ... 650
Install Clock Handler Example ..., 651
Install Database Handler EXample...........ccccooiiiii 653
Memory Allocation EXAMPIEvviiiiiiieieiiiieeiieeieeeseeeeeeeeeeeeeveeeeeeeeeeeeesesereseeereaane 658
Master Message Example Using Modbus Protocoleevvevvvvvvevevevevnnennns 659
Master Message Example Using serialModbusMaster.............ccoocccvveveveeninnnns 661
Master Message Example Using mTcpMasterMessagecoovvvveeeviiveeeeenne. 665
Modem Initialization EXampleoooiiiiiii e 668
Real Time Clock Program EXample ... 669
Start Timed Event EXamPIe ..o 670
Porting Existing C Tools ApplicationS.........cccceeeeeviiiiieeeeinnnnnn, 672
Porting SCADAPack 32 C++ Applications to the SCADAPack 350 and 4203 ..672
Partially Supported C++ T0OIS FUNCLONSccooiiiiiiiiiiiieiiiiee e 674
Unsupported C++ TOOIS FUNCLONSeiiiiiiiiiiiiiiee e 677
Porting SCADAPack C Applications to the SCADAPack 350 and 4203 679

Document (Version 1.61) 5/19/2011

12

Index of Figures

Figure 1: Queue Status before Execution of main Task............ccccoeeeeeeiiiviiiinnnnn. 55
Figure 2: Queue Status at Start of main Task..........ccccoeeeeeiiiiiiiiiieecen, 55
Figure 3: Queue Status after Creation of echoData Taskcccceeeevvvvviiiinnnnn. 56
Figure 4: Queue Status After echoData Task Waits for Event 56
Figure 5: Queue Status after Creation of auxiliary Task............cccccccvvvvmiiiinninnnnns 56
Figure 6: Queue Status After main Task Releases Processorcccccuvvennne 57
Figure 7: Queue Status at Start of auxiliary Task...........ccccccvuuiimiiiiiiiiiiiiiiiiies 57
Figure 8: Queue Status after Character Receivedccccceevveiiiiiiiiiiiinnnnn. 58
Figure 9: Queue Status after echoData Waits for Eventccccoviiiiiinnnnnn. 58

Document (Version 1.61) 5/19/2011

Safety Information

Read these instructions carefully, and look at the equipment to become familiar
with the device before trying to install, operate, or maintain it. The following
special messages may appear throughout this documentation or on the
equipment to warn of potential hazards or to call attention to information that
clarifies or simplifies a procedure.

The addition of this
symbol to a
Danger or Warning
safety label

indicates that an
electrical hazard
exists, which will

result in personal
injury if the
instructions are not
followed.

This is the safety
alert symbol. It is
used to alert you to

potential personal
injury hazards.
Obey all safety
messages that
follow this symbol

to avoid possible
injury or death.

DANGER indicates an imminently hazardous situation
which, if not avoided, will result in death or serious
injury.

AWARNING

WARNING indicates a potentially hazardous situation
which, if not avoided, can result in death or serious
injury.

Document (Version 1.61) 5/19/2011 14

ACAUTION

CAUTION indicates a potentially hazardous situation
which, if not avoided, can result in minor or moderate.

CAUTION

CAUTION used without the safety alert symbol,
indicates a potentially hazardous situation which, if not
avoided, can result in equipment damage..

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only
by qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the
construction and operation of electrical equipment and the installation, and has
received safety training to recognize and avoid the hazards involved.

BEFORE YOU BEGIN

Do not use this product on machinery lacking effective point-of-operation
guarding. Lack of effective point-of-operation guarding on a machine can result in
serious injury to the operator of that machine.

A\ CAUTION

UNINTENDED EQUIPMENT OPERATION
o Verify that all installation and set up procedures have been completed.

o Before operational tests are performed, remove all blocks or other
temporary holding means used for shipment from all component devices.

e Remove tools, meters, and debris from equipment

Failure to follow these instructions can result in death,
serious injury or equipment damage.

Follow all start-up tests recommended in the equipment documentation. Store all
equipment documentation for future references.

Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and grounds,
except those grounds installed according to local regulations (according to the
National Electrical Code in the U.S.A, for instance). If high-potential voltage
testing is necessary, follow recommendations in equipment documentation to
prevent accidental equipment damage.

Document (Version 1.61) 5/19/2011 15

Before energizing equipment:

e Remove tools, meters, and debris from equipment.

e Close the equipment enclosure door.

e Remove ground from incoming power lines.

e Perform all start-up tests recommended by the manufacturer.
OPERATION AND ADJUSTMENTS

The following precautions are from the NEMA Standards Publication ICS 7.1-
1995 (English version prevails):

e Regardless of the care exercised in the design and manufacture of
equipment or in the selection and ratings of components, there are hazards
that can be encountered if such equipment is improperly operated.

e Itis sometimes possible to misadjust the equipment and thus produce
unsatisfactory or unsafe operation. Always use the manufacturer’s
instructions as a guide for functional adjustments. Personnel who have
access to these adjustments should be familiar with the equipment
manufacturer’s instructions and the machinery used with the electrical
equipment.

e Only those operational adjustments actually required by the operator should
be accessible to the operator. Access to other controls should be restricted to
prevent unauthorized changes in operating characteristics.

Document (Version 1.61) 5/19/2011 16

About The Book

About The Book

At a Glance

Document Scope
This manual describes C++ Tools for SCADAPack 300 and 4203 controllers.

Validity Notes

This document is valid for all SCADAPack 300 and 4203 firmware versions.

Product Related Information

AWARNING

UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and
programming of control systems. Only persons with such expertise should be
allowed to program, install, alter and apply this product.

Follow all local and national safety codes and standards.

Failure to follow these instructions can result in death, serious injury or
equipment damage.

User Comments

We welcome your comments about this document. You can reach us by e-mail at
technicalsupport@controlmicrosystems.com.

Document (Version 1.61) 5/19/2011 17

Overview

Overview

The SCADAPack C++ Tools are ideal for engineers and programmers who
require advanced programming tools for SCADA applications and process
control. The SCADAPack controllers execute Telepace Ladder Logic or IEC
61131-1 and up to 32 C++ application programs simultaneously, providing you
with maximum flexibility in implementing your control strategy.

This manual provides documentation on SCADAPack C++ programming and the
library of C++ language process control and SCADA functions.

We sincerely hope that the reliability and flexibility afforded by this fully
programmable controller enable you and your company to solve your automation
projects in a cost effective and efficient manner.

Technical Support

Support related to any part of this documentation can be directed to one of the
following support centers.

Technical Support: The Americas
Available Monday to Friday 8:00am — 6:30pm Eastern Standard Time
Toll free within North America 1-888-226-6876
Direct Worldwide +1 (613) 591-1943

Email TechnicalSupport@controlmicrosystems.com

Technical Support: Europe, Africa, Middle East
Available Monday to Friday 8:30am — 5:30pm Central European Standard Time
Direct Worldwide +31 (71) 597-1655

Email euro-support@controlmicrosystems.com

Technical Support: Asia Pacific
Available Monday to Friday 8:30am — 5:30pm Australian Eastern Standard Time
Toll free within North America 1-888-226-6876
Direct Worldwide +61 3 9249 9580

Email au-support@controlmicrosystems.com

Document (Version 1.61) 5/19/2011 18

mailto:TechnicalSupport@controlmicrosystems.com
mailto:euro-support@controlmicrosystems.com
mailto:au-support@controlmicrosystems.com

Getting Started

Getting Started

This section of the C++ Tools User Manual describes the installation of C++
Tools and includes a Program Development Tutorial. The Program Development
Tutorial leads the user through the steps involved in writing, compiling, linking
and loading a C++ application program.

SCADAPack C++ Tools Installation

The SCADAPack C++ Tools install a gnu C++ compiler and controller header
and support files. Framework applications for Telepace and IEC 61131-1
firmware are provided.

Any standard Editor may be used to create C++ applications.

Telepace, IEC 61131-1, or Realflo applications are used to load applications into
the SCADAPack controllers.

These installations are described in the following sections.

Installing SCADAPack C++ Tools
To install the SCADAPack C++ Tools:

e Insert the SCADAPack C++ Tools CD into your CD drive and follow the on-
screen instructions.

The C++ Tools is a command line compiler. Two system properties need to be
set for the compiler to work.

To modify system properties:

e From the Start menu or the Desktop, right click on My Computer.

e Select the Advanced tab.

e Click Environment Variables.

e Inthe System Variables section (at the bottom) add a variable as follows:
o Click New.
o InVariable Name type CTOOLS_PATH.

o In Variable Value type C:\program files\Control Microsystems\CTools
(if you installed to a different path, then substitute the correct path
here)

o Click OK.

e Inthe System Variables section (at the bottom) modify the PATH variable as
follows:

o Locate the PATH variable.

Document (Version 1.61) 5/19/2011 19

Getting Started

Installing Telepace

o Click Edit.

o InVariable Value add the following at the start of the text, including
the semi-colon at the end of the string:
C:\Program Files\Control Microsystems\CTools\Arm7\host\x86-

win32\bin;
(if you installed to a different path, then substitute the correct path
here)
o Click OK.
Click OK.

Install Telepace as described on the jewel case liner of the Telepace Installation

CD.

Some virus checking software may interfere with Setup. If you experience
difficulties with the Setup, disable your virus checker and run Setup again.

Installing IEC 61131-1 Workbench

Install IEC 61131-1 as described on the jewel case liner of the IEC 61131-1
Installation CD.

Some virus checking software may interfere with Setup. If you experience
difficulties with the Setup, disable your virus checker and run Setup again.

Viewing Installed Components

The C++ Tools installs the following components. All files are installed by default
to C:\program files\Control Microsystems\CTools.

gnu C++ compiler for Arm7 processor is installed in the ARM7 folder
C++ Tools header and support files are installed in:
o Controller/IEC 61131-1 for IEC 61131-1 firmware applications
o Controller/Telepace for Telepace firmware applications

Framework applications are installed in Controller/Framework Applications.
These are described further in the product development tutorial.

Documentation shortcuts are on the Start menu. You need to have found
them if you're reading this so we won’t say any more.

Program Development Tutorial

Program development consists of three stages: writing and editing; compiling and
linking; and loading the program into the target controller. Each step uses
separate tools. To demonstrate these steps a sample program will be prepared.

Traditionally, the first program that is run on a new C compiler is the hello, world
program. It prints the message “hello, world”. Hey, who are we to be different?

Document (Version 1.61) 5/19/2011 20

Getting Started

Create a New C++ Application Framework

Any editor may be used to write and edit the application program for the
SCADAPack controllers.

Copy C++ Application Framework

Review appstart.cpp

Edit main.cpp

Begin by making a copy of the C++ application framework using the IEC 61131-1
sample application or the Telepace sample application. By default the samples
are installed at C:\program files\Control
Microsystems\CTools\Controller\Framework Applications. Make a copy of either
the IEC 61131-1 or Telepace folder for your application.

For example:

e Copy files from C:\program files\Control
Microsystems\CTools\Controller\Framework Applications\IEC 61131-1.

o Copy files to C:\projects\SP350\hello

The appstart.cpp file defines the basic settings for the application, such as stack
size, and main task priority. Applications typically can use the settings in this file
without modification.

Open appstart.cpp to review these application settings:

// Priority of the task main().

// Priority 100 is recommended for a continuously running task.
// A task with priority > 100 will never be given the CPU.

// See manual for details.

UINT32 mainPriority = 100;

// Stack space allocated to the task main().

// Note that at least 10 stack blocks are needed when calling
fprintf ().

UINT32 mainStack = 10;

// Application group assigned to the task main().

// A unique value is assigned by the system to the
applicationGroup

// for this application. Use this variable in calls to
create task()

// by this application. See manual for details.

UINT32 applicationGroup = 0;

For this tutorial the C code to print “hello world” to serial port 2 will be added to
the main task. The “hello, world” message will be output to the com2 serial port of
the controller. A terminal connected to the port will display the message.

The fprintf function prints the message to the com2 serial port.

Document (Version 1.61) 5/19/2011 21

Getting Started

Edit the main.cpp text and add the text shown in bold in the following section.

int main (void)
{

// add program initialization here

// Print the message
fprintf (com2, "hello, world\r\n");

// main loop
while (TRUE)
{
// add remainder of program here

}

Compiling the C++ Application

Once the editing of the project is completed the application needs to be compiled
and linked. This produces an executable file that can be loaded into the
SCADAPack 350 or 4203 controller.

Review makefile

The C++ tools use the gnu make utility to build applications. Application builds
are managed by a make file. For the simplest applications, no modifications of
the makefile are needed. This section may be skimmed the first time through, but
contains information that will be usefull for building more sophisticated
applications.

The makefile is designed to build a application for both the SCADAPack 350 and
4203 controllers. Command line options allow the application to be targeted for a
specific controller, if the application code contains functions that are specific to
the controller.

Open the file makefile in the application folder. The file shown below is from the
IEC 61131-1 application framework.

4=

makefile

#
#
Make file for SCADAPack 350 / 4203 C Tools application for
IEC 61131-1 firmware

Copyright 2007 Control Microsystems Inc.

#

#

#

c

usage:

make - makes application for all
ontrollers
make TARGET=SCADAPack350 - makes application for SCADAPack
350 controller
make TARGET=4203 - makes application for 4203
controller
make clean - deletes all output files
B oo

Document (Version 1.61) 5/19/2011 22

Getting Started

The first section of the file sets the name of the output file.
The default name is myApp. You should modify this for you
application.

APPLICATION NAME = myApp

The next section lists all the object files in the application.
There is one object file corresponding to each C or CPP source
file. The framework has two files. You should add additional files

here.

__
list all object files here

__
objects = appstart.o main.o

The next section sets the default list of controllers for which the application is
made. The targets in this list are used when make is typed on the command line
without arguments. The default list can be overridded by specifying targets on the
command line. The application is linked against symbol files for the firmware for
these target controllers.

TARGET = SCADAPack350 4203

The C Tools and include paths are set in the next section. The paths are taken
from the environment variable you set during installation. If the variable is not
present, they default to the standard paths. You don’t need to do anything to this
section.

take the C Tools path from the environment, or set default if
it's not there (default may not be correct for all installations)
ifeq ($(strip $(CTOOLS PATH)),)

CTOOLS_PATH = C:\Program Files\Control Microsystems\CTools

endif

INCLUDE PATH = $(CTOOLS_PATH) \Controller\IEC 61131-1

Document (Version 1.61) 5/19/2011 23

Getting Started

The next section sets the default compiler flags. You can add to or modify these
flags. Change the default options with care, as many are required for correct
operation. The flags are described in the gnu C++ compiler manual.

__
compiler flags

__
CFLAGS = -03 -mapcs-32 -mlittle-endian -march=armv4 -ansi -fno-

builtin -DARMEL -I"S$ (INCLUDE PATH)" -DCPU=ARMARCH4 -
DTOOL FAMILY=gnu -DTOOL=gnu -std=c99

The next section lists the suffixes used in this make file. Generally you will not
have to modify this section. Consult the gnu make documentation if you add files
with new suffixes to your application.

.SUFFIXES:
.SUFFIXES: .cpp .c .0 .out

The next section determines the targets that will be linked to check if symbols will
be resolved in firmware.

determine intermediate link target(s) used to check
if all symbols can be resolved in firmware

stripTarget = $(strip $(TARGET))

ifeq ($(stripTarget),SCADAPack350 4203)

intermediate objects = imLink SCADAPack350.0 imLink 4203.0
endif

ifeq ($(stripTarget), SCADAPack350)
intermediate objects = imLink SCADAPack350.0
endif

ifeq ($(stripTarget),4203)
intermediate objects = imLink 4203.0
endif

The next section describes how to make the .out file which is loaded into the
controller. Generally no changes will ever be required in this section. The
compiler options affecting this that should be changed are defined in the
CFLAGS setting above.

$ (APPLICATION NAME) .out : imImage.o $(intermediate objects)
Process CPP constructors and destructors

Document (Version 1.61) 5/19/2011 24

Getting Started

@echo

@echo -—--=--——-————-————-

@echo Building output file

@echo —-—--=---——-————-———-—-

nmarm imImage.o | "$(CTOOLS PATH)\Arm7\tcl\bin\tclsh84.exe"

"$ (CTOOLS PATH) \Arm7\host\x86-win32\bin\munch.tcl" -c arm > ctdt.c
ccarm $ (CFLAGS) -c -fdollars-in-identifiers ctdt.c -o
ctdt.o

Link downloadable application.

ccarm -I. -r -nostdlib -Wl,-X -Wl,-EL -T
"$ (CTOOLS PATH) \Arm7\target\h\tool\gnu\ldscripts\link.OUT"
imImage.o ctdt.o -o S(APPLICATION_NAME).out

Clean up temporary files
del ctdt.c ctdt.o

The next sections describe how to make the intermediate objects and check that
symbols will be resolved when the application is loaded into the controller.
Generally no changes will ever be required in this section.

imImage.o: $(objects)
Merge all object files into one

ccarm -I. -r -nostdlib -Wl,-X -Wl,-EL -Wl $(objects) -o
imImage.o

link with controller specific CTools library to check for
unresolved externals

__
imLink SCADAPack350.0: imImage.o

@echo

@echo -—-—-—=-—--—--—-————————— -

@echo Checking for unresolved externals with SCADAPack 350
CTools library

@echo ---=-======--—--——— -

ldarm -e0 imImage.o "$ (INCLUDE PATH)\SCADAPack 350 IEC
61131-1 Firmware Image" -o imLink SCADAPack350.0

imLink 4203.0: imImage.o
@echo
@echo ---——===—=--—"-———-
@echo Checking for unresolved externals with 4203 library
@echo - --——=====--—"-——— -
ldarm -e0 imImage.o "$ (INCLUDE PATH)\SCADASense 4203 IEC
61131-1 Firmware Image" -o imLink 4203.0

Document (Version 1.61) 5/19/2011 25

Getting Started

The next section lists the dependencies of the object files on header and source
files. Add additional header files and source files here. The ctools.h file is not
added to the list of dependencies.

appstart.o: appstart.cpp nvMemory.h
main.o: main.cpp nvMemory.h

The next section contains the rules for compiling files. Generally no changes will
ever be required in this section. The compiler options affecting this that should be
changed are defined in the CFLAGS setting above

__
rules for making files

%$.0 : %.cC

ccarm $(CFLAGS) -c $< -o $@
.0 @ $.cpp

ccarm $ (CFLAGS) -c $< -o $@

The next section contains the rules for cleaning out output files from a folder. Use
make clean to start over from a clean slate and compile files again. If you add
additional types of output files, you will need to modify this section.

.PHONY: clean
clean:
del *.o
del *.out

Build the Application
The gnu C++ compiler is a command line compiler. To build the application:
e Open a command prompt from a shortcut or use this procedure:
o Click Start > Run.
o In Open type cmd and click OK.
e Switch to the folder containing the project.
o For example type cd c:\projects\sp350\hello
e Type make and press Enter

Make will compile the two cpp files, then link them into a single output file named
myApp.out. If errors occur, they will be displayed on the command line.

Document (Version 1.61) 5/19/2011 26

Getting Started

Loading and Executing the C++ Application Using Telepace

Controller Initialization

Connect to Controller

The Telepace C\C++ Program Loader transfers executable files from a PC to the
controller and controls execution of programs in the controller.

The controller should be initialized when beginning a new programming project or
when it is desired to start from default conditions. It is not necessary to initialize
the controller before every program load.

To completely initialize the controller, perform a Cold Boot.
When the controller starts in the cold boot mode:

e The default serial communication parameters are used.

e The Telepace Ladder Logic application program is erased.
e The C/C++ program is erased.

e The controller is unlocked.

To perform a Cold Boot use the following procedure:

o Remove power from the controller.

e Hold down the LED POWER button.

o Apply power to the controller.

e Continue holding the LED POWER button for 25 seconds until the STAT LED
begins to flash on and off continuously.

¢ Release the LED POWER button.

If the LED POWER button is released before the STAT LED begins to flash the
controller will start in service mode, not the cold boot mode.

To connect to a controller using Telepace firmware:

e Connect the cable to a serial port on the PC.

e Connect the cable to the com3 serial port on the controller.
e Open the Telepace program.

To configure the PC serial port select PC Communication Settings from the
Telepace Communications menu. The PC Communications Settings dialog will
appear. The default settings shown in this dialog are the same as the default
serial port settings for the controller.

Document (Version 1.61) 5/19/2011 27

Getting Started

Modbus RTU Configuration

General I Advanced I Infarmation I

Communication Companent - Modbus BT
Control Microsystems Inc.

—Modbuz Communication S ettings

Addrezzing I Standard j

Station |1

Tirmeout |3 zeconds
Attempts |3

—Senal Port Settings

Port | com1 =l
Baud | 3500 =]
Parity INu:une j
Stap Bits [1 bi =]
LConnection Type IDireu:t Connection j

] 4 | Cancel

Use the drop down selector for the Port box to select the PC serial port being
used.

Once the desired serial communication parameters have been set click on the
OK button.

The serial ports are set to their default parameters when a Cold Boot is done.
These settings are 9600-baud, 8 data bits, no parity, 1 stop bit, Modbus RTU
protocol, and station address 1.

Loading the Application
To load the Hello C++ application into the controller:
e Select Controller > C/C++ Program Loader.
e Click Add.
e Click Browse.

e Locate the application file built earlier. For example
C:\Applications\Telepace\Hello\myApp.out and click OK. You need to use a
file built using a Telepace framework with Telepace firmware.

Document (Version 1.61) 5/19/2011 28

Getting Started

Executing the Program

Click Write to write the file to the controller.

Connect a terminal to com2 on the controller. It will display the output of the
program. Set the communication parameters to 9600 baud, 8 data bits, 1
stop bit, and no parity.

From the C/C++ Program Loader dialog, click on the Run button to execute
the program.

The “hello, world” message will be displayed on the terminal.

When multiple C++ Applications are loaded and the controller is power
cycled, the C++ Applications are restarted in the order they were first loaded
to the controller.

Loading and Executing the C++ Application Using IEC 61131-1

The IEC 61131-1 C\C++ Program Loader transfers executable files from a PC to
the controller and controls execution of programs in the controller.

Controller Initialization

The controller should be initialized when beginning a new programming project or
when it is desired to start from default conditions. It is not necessary to initialize
the controller before every program load.

To completely initialize the controller, perform a Cold Boot.

When the controller starts in the cold boot mode:

The default serial communication parameters are used.
The IEC 61131-1 application program is erased.
The C program is erased.

The controller is unlocked.

To perform a Cold Boot use the following procedure:

Remove power from the controller.
Hold down the LED POWER button.
Apply power to the controller.

Continue holding the LED POWER button for 25 seconds until the STAT LED
begins to flash on and off continuously.

Release the LED POWER button.

If the LED POWER button is released before the STAT LED begins to flash the
controller will start in service mode, not the cold boot mode.

Document (Version 1.61) 5/19/2011 29

Getting Started

Connect to Controller

Before the project can be loaded to the controller a connection, or link, needs to
be made between the PC and the controller.

The serial ports are set to their default parameters when a Cold Boot is done.
These settings are 9600-baud, 8 data bits, no parity, 1 stop bit, Modbus RTU
protocol, and station address 1.

The IEC 61131-1 PC-PLC Link parameters define how the communication link
between the PC and the target controller functions. These parameters are set to
match the serial port parameters.

To open the PC_PLC link parameters dialog:
e Select Link Setup from the Debug menu.
When selected the PC-PLC Link Parameters dialog is displayed.

PC-PLC link parameters

Target Slave Number: |ﬂ | 0K |
Communication port: |TeIeBUS Driver j| Cancel |

Control
Setup |
Time out (seconds): l:l

The Target Slave Number: entry is ignored when the TeleBUS Driver is selected.
The TeleBUS Driver sets the target slave number. Ignore the value in this field.

e From the Communication port: dropdown list-box select TeleBUS Driver.

If the TeleBUS Driver is not selectable from the Communication port: drop down
menu then the Control Microsystems Extensions have not been installed. Refer
to the installation CD jacket for installation information.

The Time out (seconds): edit-box sets the length of time, in seconds, to wait for a
response to a command. It is an integer in the range 1 to 255 seconds. The
default value is 3.

The Retries: edit-box sets the number of communication attempts before a
message is aborted. It is an integer in the range 1 to 20. The default value is 3.

e Select the Setup button.
When selected the PC Communication Settings dialog is displayed.

e Click the Default button. This will ensure the serial parameters for the PC are
the same as the parameters on each of the serial ports.

e Inthe Port dropdown selection select the serial port you are using on your
PC to communicate with the controller.

Document (Version 1.61) 5/19/2011 30

Getting Started

e Connect com3 to the PC serial port using an RS-232 serial communication
cable. This cable is a null modem or computer-to-computer cable.

Loading the Application
To load the Hello C++ application into the controller:
e From the Controller menu, select the C/C++ Program Loader command.

e Select the Add button and use the Browse button to locate the application. It
is found at: C:\Applications\IEC 61131-1\Hello\myApp.out.

Add C/C++ Program

File: Mame Erowse

II::'xS P2 Applicationstl 5 aGRAFWHellohmyspp, out j Write

LCancel

i

e Select the Write button to download to the file to the controller.

Executing the Program

¢ Connect a terminal to com2 on the controller. It will display the output of the
program. Set the communication parameters to 9600 baud, 8 data bits, 1
stop bit, and no parity.

¢ From the C/C++ Program Loader dialog, click on the Run button to execute
the program.

The “hello, world” message will be displayed on the terminal.

e When multiple C++ Applications are loaded and the controller is power
cycled, the C++ Applications are restarted in the order they were first loaded
to the controller.

Document (Version 1.61) 5/19/2011 31

C++ Program Development

C++ Program Development

Program Architecture

Application Startup

This section of the manual describes the process for developing end-user
applications in C++ for the SCADAPack 350 and 4203 controllers. The
SCADAPack C++ Tools are based on the GNU Compiler Collection (GCC) for
the Arm7 processor. Users will be able to create, compile and debug applications
using these tools.

There are two files associated with the startup structure: appstart.cpp and
nvMemory.h. Each is described below.

Application Startup Function (appstart.cpp)

The start-up code has the following major functions:
e initialize application program variables;
e execute the main() function

Source code for the appstart function is supplied with the C++ Tools sample
application in the file appstart.cpp. The following discussion refers to statements
found in this file. At the top of appstart.cpp are initialized global variables used to
configure settings for the main task.

// These parameters are used when the task main() is created.

// Priority of the task main().

// Priority 100 is recommended for a continuously running task.
// A task with priority > 100 will never be given the CPU.

// See manual for details.

UINT32 mainPriority = 100;

// Stack space allocated to the task main().

// Note that at least 5 stack blocks are needed when calling
fprintf ().

UINT32 mainStack = 5;

// Application group assigned to the task main().

// A unique value is assigned by the system to the
applicationGroup

// for this application. Use this variable in all calls to
create task()

// by this application. See manual for details.

Document (Version 1.61) 5/19/2011 32

C++ Program Development

mainPRiority

UINT32 applicationGroup = 0;

// Pointer to static non-volatile data.
// Define the structure NV _MEMORY in nvMemory.h
NV_MEMORY * pNvMemory = NULL;

// Size of structure in static non-volatile memory
UINT32 nvMemorySize = sizeof (NV_MEMORY) ;

// applicationType and applicationTypelLimit may be used to limit
// the number of executable instances of this application.

// Valid values for applicationType are 0 to 65535. Default type
is 0.

// Valid values for applicationTypeLimit are 0 to 32.

// Default limit is 0 which = no limit

UINT32 applicationType = 0; // valid types : 0 to 65535
UCHAR applicationTypelLimit 0; // valid limits: 0 to 32; 0 = no
limit

The variable mainPriority selects the priority for the task main. The task main is
declared in the file main.cpp. There are 255 priority levels, and the highest
priority task has a priority of 0. The table below lists the recommended priority
values to use with the SCADAPack 350 and 4203. The logic application executes
in a continuous loop at priority 100. This means that a task selected with priority
> 100 will not be given the CPU. Priority 100 is suitable for C++ Applications.

Document (Version 1.61) 5/19/2011 33

C++ Program Development

Recomme
nded Use

Not
recomme
nded

Document (Version 1.61) 5/19/2011 34

C++ Program Development

Recomme
nded Use

Document (Version 1.61) 5/19/2011 35

C++ Program Development

Recomme
nded Use

Serial
protocol
tasks

IP
protocol
tasks or
other

Document (Version 1.61) 5/19/2011 36

C++ Program Development

Recomme
nded Use

blocking
task (e.g.
wait_even
t called
each

loop)

Any

Document (Version 1.61) 5/19/2011

37

C++ Program Development

Recomme
nded Use

continuou

sly
running
loop (e.g.
I/0
processin

)

Document (Version 1.61) 5/19/2011 38

C++ Program Development

Recomme
nded Use

Document (Version 1.61) 5/19/2011 39

C++ Program Development

mainStack

applicationGroup

The variable mainStack selects the stack space for the task main. At least 5
stack blocks are needed when the main task calls the function fprintf. The heap
size is not configurable. The C++ application has access to the entire system
heap.

The variable applicationGroup is assigned with a unique value by the operating
system to identify each user-defined C++ application. The variable
applicationGroup should be used for the parameter type when calling the function
create_task. When an application is stopped or deleted, tasks created by the
same application group will be stopped.

pNvMemory and nvMemorySize

The variables pNvMemory and nvMemorySize are declared next and changes
are not required. The structure NV_MEMORY is defined in the file nvMemory.h
and is discussed in the next section.

applicationType and applicationTypeLimit

appstart

The variables applicationType and applicationTypeLimit may be used to limit the
number of instances of a C++ Application that may be executed on the same
SCADAPack 350 and 4203. For example, to load another instance of a C++
Application, simply rename the application file before loading it to the controller.
By default, there is no instance limit set. To limit the number of instances to one,
for example, select a unique value for applicationType and set
applicationTypeLimit = 1.

The appstart function is the entry point for the C++ Application. This function
begins by initializing the global pointer to static non-volatile data. The main task
is called next. If the main task returns, the application including tasks created by
main is ended.

Non-Volatile Memory (nvMemory.h)

Version 1

C++ Applications may declare variables as non-volatile by locating them in
SRAM. There is 8 KB of SRAM available for static non-volatile variables. And if
this is not enough, up to 1 MB of SRAM is available for dynamic non-volatile
memory allocation. For more details see the function allocateMemory.

Only non-initialized variables are defined as non-volatile. Initialized variables are
not need to be non-volatile, since they are initialized to the same value on
application startup.

The following example describes the procedure for declaring non-volatile
variables. Consider the following C++ Application defined in the two files:
main.cpp and file2.cpp.

The first version of these files defines which non-volatile variables are required
for each file. Local and module variables would normally exist as well.

Document (Version 1.61) 5/19/2011 40

C++ Program Development

main.cpp:

#include "ctools.h"

// Non-volatile variables required by main.cpp
static UINT32 variablel;

static UCHAR arrayl[20];

static struct sample table[10];

void main (void)
{
variablel = arrayl[0] * table[0].index;

}

file2.cpp:

#include "ctools.h"

// Non-volatile variables required by file2.cpp
static UINT32 variable2;

void functionl (void)

{

variable2++;

}
Version 2

This second version of these files shows how to declare these variables as non-
volatile. To do this the declarations have been moved to the header file
nvMemory.h and are shown in bold below. A template for nvMemory.h is
provided in the sample C++ Application. This header file needs to be included in
each file that accesses the non-volatile variables.

The only undesirable effect of making certain variables non-volatile is that these
variables need to become global variables. To access the non-volatile variables
in code use the pointer, pNvMemory, to the NV_MEMORY structure as shown
below.

main.cpp:

#include "ctools.h"
#include "nvMemory.h"

void main (void)
{
pNvMemory->variablel = pNvMemory->arrayl[0] *
pNvMemory->table[0] .index;
}

file2.cpp:

#include "ctools.h"
#include "nvMemory.h"

void functionl (void)

Document (Version 1.61) 5/19/2011 41

C++ Program Development

{
pNvMemory->variable2++;

}

nvMemory.h:

nvMemory.h

Global definitions for user variables that need to be non-
volatile.

Copyright 2006, Control Microsystems Inc.

*/

/* Prevent multiple inclusions */
#ifndef NVMEMORY H
#define NVMEMORY H

#ifdef cplusplus
extern "C"

{

#endif

[/ mmm e
// Include-files
[/ mmm e

#include "ctools.h"

*/

// Add fields to this global structure for variables used in your
// application file(s) that need to be non-volatile. Include

// nvMemory.h in all files that use the variable pNvMemory to
access

// NV memory.

typedef struct s nvMemory

{
UCHAR dummyVariable;

// Add fields here for variables used in your application
// file(s) that need to be non-volatile.

// Non-volatile variables required by main.cpp
UINT32 variablel;

UCHAR arrayl[20];

struct sample table[10];

// Non-volatile variables required by file2.cpp
float variable2;

}NV_MEMORY;

// Pointer to static non-volatile data

Document (Version 1.61) 5/19/2011 42

C++ Program Development

extern NV_MEMORY * pNvMemory;

#ifdef cplusplus
}
#endif

#endif // NVMEMORY H

GNU Compiler Options

The GNU C++ compiler is installed with the C++ Tools. The build.bat file included
in the sample C++ application uses the following command line for compiling:

ccarm -03 -mapcs-32 -mlittle-endian -march=armv4 -ansi
-fno-builtin -DARMEL -I"%CTOOLS PATH%" -DCPU=ARMARCH4
-DTOOL FAMILY=gnu -DTOOL=gnu -std=c99 -c main.cpp

These compiler options are described in the table below. The complete list of
compiler options is may be found in the document Using the GNU Compiler
Collection (GCC) which is installed with the compiler at C:\Program Files\Control
Microsystems\CTools\Arm7\gcc.pdf.

Option Description
-03 Level 3 optimization
-mapcs-32 Generate code for a processor running with a 32-bit

program counter, and conforming to the function
calling standards for the APCS 32-bit option.

-mlittle-endian Generate code for a processor running in little-
endian mode.

-march=armv4 Specifies the name of the target ARM architecture
as armv4.

-ansi -std=c99 ISO C99 language standard for C++

-fno-builtin Don’t recognize built-in functions not begining with
‘ _builtin_’ as prefix.

-Dname Predefine name as a macro with the definition 1.

-Dname=definition Predefine name as a macro with definition.

-C Compile or assemble the source files, but not link
them.

-dir Add the directory dir to the head of the list of

directories to be searched for header files. If you
use more than one ‘-I’ option, the directories are
scanned in left-to-right order; the standard system
directories come after.

-fdollars-in-identifiers Accept ‘$’ in identifiers.

-ofile Specifies the name of the output file.

Document (Version 1.61) 5/19/2011 43

C++ Program Development

Application Development

Please refer to the Program Development Tutorial for details on how to build,
load and execute a C++ Application.

Document (Version 1.61) 5/19/2011 44

Real Time Operating System

Real Time Operating System

The real time operating system (RTOS) provides the programmer with tools for
building sophisticated applications. The RTOS allows pre-emptive scheduling of
event driven tasks to provide quick response to real-world events. Tasks multi-
task cooperatively. Inter-task communication and event notification functions
pass information between tasks. Resource functions facilitate management of
non-sharable resources.

Task Management

The task management functions provide for the creation and termination of tasks.
Tasks are independently executing routines. The RTOS uses a cooperative
multi-tasking scheme, with pre-emptive scheduling of event driven tasks.

The initial task (the main function) may create additional tasks. The maximum
number of tasks is limited only by available memory. There are 256 task priority
levels to aid in scheduling of task execution.

Task Execution

SCADAPack 350 and 4203 controllers can execute one task at a time. The
RTOS switches between the tasks to provide parallel execution of multiple tasks.
The application program can be event driven, or tasks can execute round-robin
(one after another).

Task execution is based upon the priority of tasks. There are 256 priority levels.
Application programs can use levels 100 to 0. The main task is created at priority
level 100. Task level O is the highest priority task.

Tasks that are not running are held in queues. The Ready Queue holds tasks
that are ready to run. Event queues hold tasks that are waiting for events.
Message queues hold tasks waiting for messages. Resource queues hold tasks
that are waiting for resources. The envelope queue holds tasks that are waiting
for envelopes.

Priority Inversion Prevention

When a higher priority task, Task H, requests a resource, which is already
obtained by a lower priority task, Task L, the higher priority task, is blocked until
Task L releases the resource. If Task L is unable to execute to the point where its
releases the resource, Task H will remain blocked. This is called a Priority
Inversion.

To keep this from occurring, the prevention method known as Priority Inheritance
has been implemented. In the example already described, the lower priority task,
Task L, is promoted to the priority of Task H until it releases the needed
resource. At this point Task L is returned to its original priority. Task H will obtain
the resource now that it is available.

Document (Version 1.61) 5/19/2011 45

Real Time Operating System

This does not stop deadlocks that occur when each task requests a resource that
the other has already obtained. This “deadly embrace” is a design error in the
application program.

Operating System Scheduling

The operating system supports a round-robin scheduling algorithm combined
with pre-emptive priority scheduling. It shares the CPU fairly among ready tasks
of the same priority. Round-robin scheduling uses time slicing to achieve fair
allocation of the CPU to tasks with the same priority. Each task, in a group of
tasks with the same priority, executes for a defined interval or time slice.

Because the time slicing is performed by the kernel of the operating system, it is
not necessary anymore for the tasks to call explicitely release_processor to
release CPU time to other tasks of the same priority. In contrary it can harm.
When a task expects a fair share of the CPU, calling release_processor before
the end of the time slice puts it immediately at the end of round-robin-queue.
Therefore the CPU time share can be significantly reduced. The function
release_processor still makes sense if the calling task does not have anything to
do for the moment.

A new function sleep_processor is introduced to release CPU for a certain time.

Task Management Functions

There are five RTOS functions for task management. Refer to the Function
Specification section for details on each function listed.

create_task Create a task and make it ready to execute.

end_task Terminate a task and free the resources and envelopes
allocated to it.

end_application Terminate application program type tasks. This function
is used by communication protocols to stop the
application program prior to loading new code.

installExitHandler Specify a function that is called when a task is ended
with the end_task or end_application functions.

getTasklInfo Return information about a task.

Task Management Structures

The ctools.h file defines the structure Task Information Structure for task
management information. Refer to the C Tools Structures and Types section for
complete information on structures and enumeration types.

Resource Management

The resource management functions arbitrate access to non-sharable resources.
These resources include physical devices such as serial ports, and software that
is not re-entrant.

Document (Version 1.61) 5/19/2011 46

Real Time Operating System

The RTOS defines nine system resources, which are used by components of the
I/O drivers, memory allocation functions and communication protocols.

An application program may define other resources as required. Take care not to
duplicate any of the resource numbers declared in ctools.h as system resources.

Resource Management Functions

There are three RTOS functions for resource management. Refer to the Function
Specification section for details on each function listed.

request_resource Request access to a resource and wait if the resource is
not available.
poll_resource Request access to a resource. Continue execution if the

resource is not available

release_resource Free a resource for use by other tasks.

IO_SYSTEM Resource

The IO_SYSTEM resource regulates access to functions using the I/O system. C
application programs, ladder logic programs, communication protocols and
background I/O operations share the 1/0O system. It is imperative the resource is
obtained to avoid a conflict, as protocols and background operations are interrupt
driven. Retaining control of the resource for more that 0.1 seconds will cause
background operations to not execute properly.

The IO_SYSTEM resource needs to be obtained before using any of the
following functions.

readRegAssignment read the register assignment

readRegAssignmentEx read the register assignment

alarmin configure the alarm in parameters
clearAllForcing clear all forcing flags
clear_errors clear serial port error counters

clear_protocol_status clear protocol status
clearRegAssignment clear register assignment

clearSFTranslationTable clear the Store and Forward translation table

databaseRead read a value from the database
databaseWrite write a value to the database
dbase read a value from the database
getclock read the system clock
getClockAlarm read the clock alarm settings
getClockTime read the system clock time
ioClear clear the 1/0

Document (Version 1.61) 5/19/2011 47

Real Time Operating System

ioDatabaseReset reset the database
ledSetDefault set the default LED state
master_message send a master message poll

mTcpSetinterfaceEx configure the Modbus/TCP interface

mTcpSetProtocol configure the Modbus/TCP protocol
mTcpMasterMessage send a Modbus/TCP master message
overrideDbase force the database value
readIntVariable read an integer variable
readMsgVariable read a message variable
readRealVariable read a real variable

readTimerVariable read a timer variable

resetClockAlarm reset the clock alarm

setclock set the system clock
setClockAlarm set the clock alarm

setdbase set a database register
setForceFlag set the forcing flag

set_port set the serial port
set_protocol set the protocol for an interface

setProtocolSettings set the protocol settings
setProtocolSettingsEx set the protocol settings
setSFTranslation configure Store and Forward translation

setSFTranslationEx configure Store and Forward translation

writeBoolVariable write a Boolean variable
writelntVariable write an Integer variable
writeRealVariable write a Real variable
writeMsgVariable write a Message variable

writeTimerVariable write a Timer variable

DYNAMIC_MEMORY Resource

The DYNAMIC_MEMORY resource regulates access to memory allocation
functions. These functions allocate memory from the system heap. The heap is
shared amongst tasks. The allocation functions are non-reentrant.

The DYNAMIC_MEMORY resource needs to be obtained before using any of the

following functions.

Document (Version 1.61) 5/19/2011

48

Real Time Operating System

calloc
free
malloc

realloc

Inter-task Communication

allocates data space dynamically
frees dynamically allocated memory
allocates data space dynamically

changes the size of dynamically allocated space

The inter-task communication functions pass information between tasks. These
functions can be used for data exchange and task synchronization. Messages
are queued by the RTOS until the receiving task is ready to process the data.

Inter-task Communication Functions

There are five RTOS functions for inter-task communication. Refer to the
Function Specification section for details on each function listed.

send_message

receive_message

poll_message

allocate_envelope

deallocate_envelope

Inter-task Communication Structures

Send a message envelope to another task.

Read a received message from the task's message
gueue or wait if the queue is empty.

Read a received message from the task's message
gueue. Continue execution of the task if the queue is
empty.

Obtain a message envelope from free pool maintained
by the RTOS, or wait if none is available.

Return a message envelope to the free pool maintained
by the RTOS.

The ctools.h file defines the structure Message Envelope Structure for inter-task
communication information. Refer to the C Tools Structures and Types section
for complete information on structures and enumeration types.

Event Notification

The event notification functions provide a mechanism for communicating the
occurrence of events without specifying the task that will act upon the event. This
is different from inter-task communication, which communicates to a specific

task.

Multiple occurrences of a single type of event are queued by the RTOS until a
task waits for or polls the event.

Event Notification Functions

There are four RTOS functions for event notification. Refer to the Function
Specification section for details on each function listed.

wait_event

Wait for an event to occur.

Document (Version 1.61) 5/19/2011

49

Real Time Operating System

poll_event Check if an event has occurred. Continue execution if
one has not occurred.

signal_event Signal that an event has occurred.

interrupt_signal_eventSignal that an event has occurred from an interrupt
handler. This function should only be called from within
an interrupt handler.

There are two support functions, which are not part of the RTOS that may be
used with events.

startTimedEvent Enables signaling of an event at regular intervals.

endTimedEvent Terminates signaling of a regular event.

System Events

The RTOS defines events for communication port management and background
I/O operations. An application program may define other events as required.
Care needs to be taken not to duplicate any of the event numbers declared in
ctools.h as system events.

BACKGROUND This event triggers execution of the background 1/0
routines. An application program cannot use it.

COM1_RCVR This event is used by communication protocols to signal
a character or message received on coml. It can be
used in a custom character handler (see install_handler).

COM2_RCVR This event is used by communication protocols to signal
a character or message received on com2. It can be
used in a custom character handler (see install_handler).

COM3_RCVR This event is used by communication protocols to signal
a character or message received on coma3. It can be
used in a custom character handler (see install_handler).

COM4_RCVR This event is used by communication protocols to signal
a character or message received on com4. It can be
used in a custom character handler (see install_handler).

NEVER This event will never occur. It can be used to disable a
task by waiting for it to occur. However, to end a task it is
better to use end_task. This frees all resources and
stack space allocated to the task.

Error Reporting

Sharable I/O drivers to return error information to the calling task use the error
reporting functions. These functions provide that an error code generated by one
task is not reported in another task. The errno global variable used by some
functions may be modified by another task, before the current task can read it.

Document (Version 1.61) 5/19/2011 50

Real Time Operating System

Error Reporting Functions

There are two RTOS functions for error reporting. Refer to the Function
Specification section for details on each function listed.

check_error Check the error code for the current task.

report_error Set the error code for the current task.

RTOS Example Application Program

The following program is used in the explanation of the RTOS functions. It
creates several simple tasks that demonstrate how tasks execute. A task isa C
language function that has as its body an infinite loop so it continues to execute
forever.

The main task creates two tasks. The echoData task is higher priority than main.
The auxiliary task is the same priority as main. The main task then executes
round robin with other tasks of the same priority.

The auxiliary task is a simple task that executes round robin with the other tasks
of its priority. Only the code necessary for task switching is shown to simplify the
example.

The echoData task waits for a character to be received on a serial port, then
echoes it back out the port. It waits for the event of the character being received
to allow lower priority tasks to execute. It installs a character handler function —
signalCharacter — that signals an event each time a character is received. This
function is hooked into the receiver interrupt handler for the serial port.

The execution of this program is explained in the Explanation of Task Execution
section.

Real Time Operating System Sample
Copyright (c) 2006, Control Microsystems Inc.

This program creates several simple tasks for demonstration of
the
functionality of the real time operation system.

*/

#include <stdio.h>
#include <ctools.h>

*/

signalCharacter

Document (Version 1.61) 5/19/2011 51

Real Time Operating System

The signalCharacter function signals an event when a character is
received. This function must be called from an interrupt handler.

*/

void signalCharacter (UINT16 character, UINT16 error)
{

/* If there was no error, signal that a character was
received */

if (error == 0)

{

interrupt signal event (CHARACTER RECEIVED) ;
}

/* Prevent compiler unused variables warning (generates no

code) */
character;
}
2
echoData

The echoData function is a task that waits for a character

to be received on coml and echoes the character back. It
installs

a character handler for coml to generate events on the
reception

of characters.

void echoData (void)

{
struct prot settings protocolSettings;
struct pconfig portSettings;
int character;

/* Disable communication protocol */
get protocol (coml, é&protocolSettings);
protocolSettings.type = NO_PROTOCOL;
set protocol (coml, &protocolSettings);

/* Set serial communication parameters */

portSettings.baud = BAUD9600;
portSettings.duplex = FULL;
portSettings.parity = NONE;

portSettings.data bits = DATAS;
portSettings.stop bits = STOP1;

portSettings.flow rx = RFC_MODBUS RTU;
portSettings.flow tx = TFC_NONE;
portSettings.type = RS232;
portSettings.timeout = 600;

set port(coml, &portSettings);

Document (Version 1.61) 5/19/2011 52

Real Time Operating System

/* Install handler for received character */
install handler(coml, signalCharacter);

while (TRUE)
{

/* Wait for a character to be received */

<—4,a

wait event (CHARACTER RECEIVED) ;

«— 8

/* Echo the character back */

character = fgetc(coml) ;

if (character == EOF)

{
// clear overflow error flag to re-enable coml
clearerr (coml) ;

}

fputc (character, coml);

auxiliary

The auxiliary function is a task that performs some action
required by the program. It does not have specific function so
that the real time operating system features are clearer.

*/

void auxiliary(void)

i
{

while (TRUE)
{

/* ... add application specific code here ... */

/* Allow other tasks of this priority to run */
release processor();

This function creates two tasks: one at priority three and one at
priority 1 to demonstrate the functions of the RTOS.

*/
«— 1

volid main (void)

Document (Version 1.61) 5/19/2011 53

Real Time Operating System

2

/* Create serial communication task */
create task(echoData, 3, applicationGroup, 3);

/* Create a task - same priority as main() task */
create task(auxiliary, 1, applicationGroup, 2);

«—— 5

while (TRUE)
{

/* ... add application specific code here ... */

/* Allow other tasks of this priority to execute */

«— 6

release processor();

}

Explanation of Task Execution

Execution Point 1

SCADAPack 350 and 4203 controllers can execute one task at a time. The Real
Time Operating System (RTOS) switches between the tasks to provide parallel
execution of multiple tasks. The application program can be event driven, or
tasks can execute round-robin (one after another). This program illustrates both
types of execution.

Task execution is based upon the priority of tasks. There are 256 priority levels.
Level 255 is reserved for the null task. This task runs when there are no other
tasks available for execution. Application programs can use levels 100 to 0. The
main task is created at priority level 100.

Tasks that are not running are held in queues. The Ready Queue holds tasks
that are ready to run. Event queues hold tasks that are waiting for events.
Message queues hold tasks waiting for messages. Resource queues hold tasks
that are waiting for resources. The envelope queue holds tasks that are waiting
for envelopes.

The execution of the tasks is illustrated by examining the state of the queues at
various points in the program. These points are indicated on the program listing
above. The examples show only the Ready queue, the Event 10 queue and the
executing task. These are the only queues relevant to the example.

This point occurs just before the main task begins. The main task has not been
created by the RTOS. The null task has been created, but is not running. No task
is executing.

Document (Version 1.61) 5/19/2011 54

Real Time Operating System

\Ready Queue

Nl | I al N
gl |lo|l |0 | O v,
g | o

[Event 10 Queue

\ \Running Task \

0

~N || a N
ﬁHHH

N
[é1]
(&

Figure 1: Queue Status before Execution of main Task

Execution Point 2

This point occurs just after the creation of the main task. It is the running task. On

the next instruction it will create the echoData task.

‘Ready Queue

5

0

5

ENNENE]

100

‘Event 10 Queue

‘ \Running Task \

50

~ N
ENNENE]

N
a1
a1

Figure 2: Queue Status at Start of main Task

Execution Point 3

This point occurs just after the echoData task is created. The echoData task is
higher priority than the main task so it is made the running task. The main task is
placed into the ready queue. It will execute when it becomes the highest priority

task.

The echoData task initializes the serial port and installs the serial port handler
function signalCharacter. It will then wait for an event. This will suspend the task

until the event occurs.

The signalCharacter function will generate an event each time a character is

received without an error.

‘Ready Queue

‘Event 10 Queue

‘ ‘R,mning Task ‘

25

50

5

=
HIEREIE]
(=]

N
ol
1

Document (Version 1.61) 5/19/2011

55

Real Time Operating System

Execution Point 4

Execution Point 5

Execution Point 6

Figure 3: Queue Status after Creation of echoData Task

This point occurs just after the echoData task waits for event 10. It has been
placed on the event queue for event 10.

The highest priority task on the ready queue was the main task. It is now running.
On the next instruction it will create another task at the same priority as main.

Ready Queue \ Event 10 Queue \ Running Task

:
50 echoData()

5

2

5

7

L3 [8]]
BB

[
o
S
=
o
S

255 null(

)
a1
al

Figure 4: Queue Status After echoData Task Waits for Event

This point occurs just after the creation of the auxiliary task. This task is the same
priority as the main task. Therefore the main task remains the running task. The
auxiliary task is ready to run and it is placed on the Ready queue.

Ready Queue ‘ ‘Event 10 Queue ‘ ‘Running Task

2

50 echoData()

~ a1

EFH
~ N
Eiﬁ

255 null 255

Figure 5: Queue Status after Creation of auxiliary Task

This point occurs just after the main task releases the processor, but before the
next task is selected to run. The main task is added to the end of the priority 1 list
in the Ready queue.

On the next instruction the RTOS will select the highest priority task in the Ready
queue.

Document (Version 1.61) 5/19/2011 56

Real Time Operating System

Execution Point 7

Execution Point 8

[Ready Queue | [Event 10 Queue | [Running Task |

auxiliary() H main() } 100

Figure 6: Queue Status After main Task Releases Processor

This point is just after the auxiliary task has started to run. The main and auxiliary
tasks will continue to alternate execution, as each task releases the processor to
the other.

&
8
<
o
c
@
c
@

‘Event 10 Queue ‘ ‘RunningTask ‘
2
”

5

i
255 nullTask()

Figure 7: Queue Status at Start of auxiliary Task

25

50

5

H

SIERENE]

o
ENERE

(=}

N
ol
a1

This point occurs just after a character has been received. The signalCharacter
function executes and signals an event. The RTOS checks the event queue for
the event, and makes the highest priority task ready to execute. In this case the
echoData task is made ready.

The RTOS then determines if the new task is higher priority than the executing
task. Since the echoData task is higher priority than the auxiliary task, a task
switch occurs. The auxiliary task is placed on the Ready queue. The echoData
task executes.

Observe the position of auxiliary in the Ready queue. The main task will execute
before it at the next task switch.

Document (Version 1.61) 5/19/2011 57

Real Time Operating System

Execution Point 9

@
>3
=
=
o
Q
c
@
c
®

‘Ready Queue ‘ \Running Task \

=
50
5
main() H auxiliary() } 10

ENERE

o

N
[$2)
al

Figure 8: Queue Status after Character Received

This point occurs just after the echoData task waits for the character-received
event. It is placed on the event 10 queue. The highest priority task on the ready
gueue — main — is given the processor and executes.

|Ready Queue | [Event 10 Queue | [Running Task |

=
o
(=}

Figure 9: Queue Status after echoData Waits for Event

N
[62)
[

Document (Version 1.61) 5/19/2011

58

Overview of Programming Functions

Overview of Programming Functions

This section of the User Manual provides an overview of the Functions, Macros,
Structure and Types available to the user. The Functions, Macros, Structure and
Types overview is separated into sections of related functions. Refer to the
Function Specification, C Tools Macros and C Tools Structures and Types
sections of this manual for detailed explanations of the Functions, Macros,
Structure and Types described here.

Controller Operation

Start Up Functions

Start Up Macros

This section of the manual provides an overview of the functions relating to
controller operation.

The following functions are called by the application startup function appstart.
They are for use only in the context of appstart. Refer to the Function
Specification section for details on each function listed.

startup_task Returns the address of the system start up routine.
runBackgroundlO Starts or stops the Background 1/O task.
runTarget Starts or stops the run-time engine task.

initializeApplicationVariables Initializes user application variables.

runlOSystem Starts or stops the I/O system.
start_protocol Starts serial protocol according to stored parameters.
mTcpRunServer Starts or stops the Modbus/TCP Server task.

runMasterlpStartTask Starts or stops the Modbus/TCP Master support task.

runBackgroundlO Starts or stops background 1/O task (e.g. Dialup support,
pushbutton LED power control).

runTarget Starts or stops the run-time engine (Ladder Logic or IEC
61131-1)

executeConstructors Execute user-created global class object constructors.

executeDestructors Execute user-created global class object destructors.

The ctools.h file defines the following macros for use with the start up task. Refer
to the C Tools Macros section for details on each macro listed.

STARTUP_APPLICATION Specifies the application start up task.
STARTUP_SYSTEM Specifies the system start up task.

Document (Version 1.61) 5/19/2011 59

Overview of Programming Functions

Start Up Task Info Structure

The ctools.h file defines the structure TASKINFO for use with the startup_task
function. Refer to the C Tools Structures and Types section for complete
information on structures and enumeration types.

Program Status Information Functions

There are two library functions related to controller program status information.
Refer to the Function Specification section for details on each function listed.

getProgramsStatus Returns the application program execution status.

setProgramStatus Sets the application program execution status.

Controller Information Functions

There are no functions related to controller information. Refer to the Function
Specification section for details.

getControlleriD Get the controller ID code.

Firmware Version Information Functions

There is one function related to the controller firmware version. Refer to the
Function Specification section for details.

getVersion Returns controller firmware version information.

Firmware Version Information Structure

The ctools.h file defines the structure Version Information Structure for controller
firmware version information. Refer to the C Tools Structures and Types section
for complete information on structures and enumeration types.

Configuration Data Flash Memory Functions

SCADAPack 350 and 4203 controllers use flash memory to store controller
settings. The flash memory functions have one parameter: flags indicating which
areas to store into flash. A sum of more than one area may be selected. Valid
flags are listed below and defined in ctools.h.

Area Flag Loaded on Reset Controller Settings in this
Area
CS_ETHERNET always Ethernet MAC address
CS_OPTIONS always Controller factory options.
CS_PERMANENT | Saved settings loaded | Controller type, IP address,
on Service and Run Gateway, Network mask, IP
Boot. Configuration mode, Lock state
Replaced with default | and password, I/O System
settings on Cold Boot. | settings, I/O error indication
setting
Telepace Firmware only:

Document (Version 1.61) 5/19/2011 60

Overview of Programming Functions

Area Flag Loaded on Reset Controller Settings in this
Area

Register assignment, Outputs
on stop settings

CS_RUN Saved settings loaded | Serial port settings, Serial
on Run Boot. protocol settings, Modbus/TCP
Default settings settings, HART /O settings,
loaded on Service LED power settings, Store and
Boot. forward table

Replaced with default
settings on Cold Boot.

There are two library functions related to the configuration data flash memory.
Refer to the Function Specification section for details on each function listed.

flashSettingsLoad This function stores the controller settings in the
indicated area or areas to flash memory.

flashSettingsSave This function loads the controller settings in the indicated
area or areas from flash memory.

System Functions

The ctools.h file defines the following functions for system initialization and for
retrieving system information. Some of these functions are primarily used in the
appstart.c routine, having limited use in an application program.

Refer to the Function Specification section for details on each function listed.

ioClear Clears I/0O points

ioDatabaseReset Resets the controller to default settings.
ioRefresh Refresh outputs with internal data
ioReset Reset I/O modules

Controller I/O Hardware

This section of the manual provides an overview of the C Tools functions relating
to controller signal input and output (I/O).

Analog Input Functions

The controller supports internal analog inputs and external analog input modules.
Refer to the SCADAPack 350 System Hardware Manual or the SCADAPack
4203 Hardware Manual for further information on controller analog inputs and
analog input modules.

There are several library functions related to internal analog inputs and analog
input modules. Refer to the Function Specification section for details on each
function listed.

readBattery Read the controller RAM battery voltage.

Document (Version 1.61) 5/19/2011 61

Overview of Programming Functions

readThermistor
ioRead4Ain
ioRead8Ain
ioRead5505Inputs

ioRead55050utputs
ioRead5506Inputs

ioRead55060utputs
ioWrite55050utputs
ioWrite55060utputs
ioRead5601Inputs

ioRead5604Inputs

ioRead5606Inputs

ioRead56060utputs

ioRead5607Inputs

ioRead56070utputs

ioRead4203DRInputs
ioRead4203DSInputs

Analog Output Functions

Read the controller ambient temperature sensor.
Read 4 analog inputs into I/O database.
Read 8 analog inputs into I/O database.

Read the digital and analog inputs from a 5505 I/O
Module.

Read the configuration data from a 5505 1/0O Module.

Read the digital and analog inputs from a 5506 1/0
Module.

Read the configuration data from a 5506 /0O Module.
Write the configuration data to a 5505 I/O Module.
Write the configuration data to a 5506 I/O Module.

Read the digital and analog inputs from a SCADAPack
5601 I/O Module.

Read the digital and analog inputs from a SCADAPack
5604 I/O Module.

Read the digital and analog inputs from a 5606
I/O Module.

Read the digital and analog outputs from a 5606
I/O Module.

Read the digital and analog inputs from a 5607 1/0O
Module.

Read the digital and analog outputs from a 5607 /O
Module.

Read the inputs from a 4203 DR controller
Read the inputs from a 4203 DS controller

The controller supports external analog output modules. Refer to the
SCADAPack 350 System Hardware Manual or the SCADAPack 4203 Hardware
Manual for further information on these modules.

There are three library functions related to analog output modules. Refer to the
Function Specification section for details on each function listed.

ioReadAout2
ioReadAout4
ioRead Aout5303
ioRead56060utputs

Read buffered data for 2 point analog output module
Read buffered data for 4 point analog output module
Read buffered data for 5303 analog output module

Read the digital and analog outputs from a 5606 /O
Module.

Document (Version 1.61) 5/19/2011

62

Overview of Programming Functions

ioRead56070utputs

ioWriteAout2
ioWriteAout4
ioWriteAout5303
ioWrite4203DRInputs
iowrite4203DSInputs
ioWrite56060utputs

ioWrite56070utputs

Digital Input Functions

Read the digital and analog outputs from a 5607 1/0
Module.

Write buffered data for 2 point analog output module
Write buffered data for 4 point analog output module
Write buffered data for 5303 analog output module
Write to the outputs of a 4203 DR controller

Write to the outputs of a 4203 DS controller

Write to the digital and analog outputs of a 5606 1/0O
Module.

Write to the digital and analog outputs of a 5607 1/0
Module.

The controller supports internal digital inputs and external digital input modules.
Refer to the SCADAPack 350 System Hardware Manual for further information
on controller digital inputs and digital input modules.

There are several library functions related to digital inputs and external digital
input modules. Refer to the Function Specification section for details on each

function listed.
ioRead5606Inputs

ioReadDin5232
ioReadCounter5232
ioRead5414Inputs
ioWrite54140utputs
ioReadDin16

ioReadDin32

ioRead5601Inputs

ioRead5604Inputs

ioRead56060utputs

ioRead56070utputs

ioReadDin8

Read the digital and analog inputs from a 5606 1/0
Module.

Read buffered data from the 5232 digital inputs

Read buffered data from the 5232 counter inputs.
Read buffered data from the 5414 Digital input module.
Write 5414 module configuration parameters.

Read buffered data from any 16 point Digital input
module.

Read buffered data from any 32 point Digital input
module.

Read buffered data from the digital and analog inputs of
a 5601 I/0O module.

Read the digital and analog inputs from a SCADAPack
5604 1/0 Module.

Read the digital and analog outputs from a 5606 I/O
Module.

Read the digital and analog outputs from a 5607 /O
Module.

Read buffered data from any 8 point Digital input
module.

Document (Version 1.61) 5/19/2011

63

Overview of Programming Functions

Digital Output Functions

The controller supports external digital output modules. Refer to the SCADAPack
350 System Hardware Manual for further information on controller digital output

modules.

There are several library functions related to digital output modules. Refer to the
Function Specification section for details on each function listed.

ioRead5606Inputs

ioReadDoutl16

ioReadDout32

ioRead5415Inputs
ioRead54150utputs
ioRead56010utputs
ioRead56040utputs
ioReadDout8

ioWriteDout16

ioWriteDout32

ioWrite54150utputs

ioWrite56010utputs

ioWrite56040utputs

ioWrite56060utputs

ioWrite56070utputs

ioWriteDout8

Counter Input Functions

Read the digital and analog outputs from a 5606 I/O
Module.

Read buffered data from any 16 point Digital output
module.

Read buffered data from any 32 point Digital output
module.

Read buffered data from the 5415 digital output module.
Read buffered data from the 5415 digital output module.
Read buffered data from any 5601 1/0O Module.
Read buffered data from any 5604 1/0 Module.

Read buffered data from any 8 point Digital output
module.

Write data to the I/O tables for any 16 point Digital output
module.

Write data to the 1/O tables for any 32 point Digital output
module.

Write data to the 1/O table for the digital outputs of a
5415 I/O Module.

Write data to the 1/O table for the digital outputs of a
5601 I/0O Module.

Write to the digital and analog outputs of SCADAPack
5604 1/0 Module.

Write to the digital and analog outputs of a 5606 1/0O
Module

Write to the digital and analog outputs of a 5606 1/0O
Module.

Write data to the 1/O tables for any 8 point Digital output
module.

The controller supports internal counters and external counter modules. The
counter registers are 32 bits, for a maximum count of 4,294,967,295. They roll
over to 0 on the next count. The counter inputs measure the number of rising

Document (Version 1.61) 5/19/2011

64

Overview of Programming Functions

inputs. Refer to the SCADAPack 350 System Hardware Manual for further
information on controller counter inputs and counter input modules.

There are three library functions related to counters. Refer to the Function
Specification section for details on each function listed.

ioReadCounter5232 Read buffered data from the 5232 counter inputs.

ioReadCounter4 Read buffered data from any 4 point Counter input
module.

Status LED and Output Functions

The status LED and output indicate alarm conditions. The STAT LED blinks and
the STATUS output opens when an alarm occurs. The STAT LED turns off and
the STATUS output closes when alarms clear.

The STAT LED blinks a binary sequence indicating alarm codes. The sequences
consist of long and short flashes, followed by an off delay of 1 second. The
sequence then repeats. The sequence may be read as the Controller Status
Code.

Refer to the SCADAPack 350 System Hardware Manual or the SCADAPack
4203 Hardware Manual for further information on the status LED and digital
output.

There are three library functions related to the status LED and digital output.
Refer to the Function Specification section for details on each function listed.

clearStatusBit Clears bits in controller status code.
getStatusBit Gets the bits in controller status code.
setStatusBit Sets the bits in controller status code.

I/0 Forcing Functions

There are six library functions related to 1/O forcing. Refer to the Function
Specification section for details on each function listed. These functions are
supported by Telepace firmware only.

setOutputsinStopMode Sets the doutsinStopMode and
aoutsinStopMode control flags to the specified state.

getOutputsinStopMode Copies the values of the output control flags into
the integers pointed to by doutsinStopMode and
aoutsIinStopMode

clearAllForcing Removes forcing conditions from I/O database registers.

setForceFlag Sets the force flag(s) for the specified database
register(s)

getForceFlag Copies the value of the force flag for the specified
database register.

overrideDbase Writes a value to the I/O database even if the database
register is currently forced

Document (Version 1.61) 5/19/2011 65

Overview of Programming Functions

Status LED and Output Macros

The ctools.h file defines the following macros for use with the status LED and
digital output. Refer to the C Tools Macros section for details on each macro

listed.
S MODULE_FAILURE Status LED code for I/O module communication failure
S NORMAL Status LED code for normal status

LED Indicators Functions
An application program can control three LED indicators.

The RUN LED (green) indicates the execution status of the program. The LED
can be on or off. It remains in the last state until changed.

The STAT LED (yellow) indicates error conditions. It outputs an error code as a
binary sequence. The sequence repeats until a new error code is output. If the
error code is zero, the status LED turns off.

The FORCE LED (yellow) indicates locked 1/O variables. Use this function with
care in application programs.

There are two library functions related to the LED indicators. Refer to the
Function Specification section for details on each function listed.

runLed Controls the RUN LED status.

forceLed Sets state of the force LED.

LED Power Control Functions

The controller board can disable the LEDs on the controller board and I/O
modules to conserve power. This is particularly useful in solar powered or
unattended installations. Refer to the hardware manual for further information on
LED power control.

There are four library functions related to LED power control. Refer to the
Function Specification section for details on each function listed.

ledGetDefault Get default LED power state
ledPower Set LED power state
ledPowerSwitch Read LED power switch
ledSetDefault Set default LED power state

LED Power Control Structure

The ctools.h file defines the structure LED Power Control Structure for LED
power control information. Refer to the C Tools Structures and Types section for
complete information on structures and enumeration types.

Document (Version 1.61) 5/19/2011 66

Overview of Programming Functions

Software Timer Functions

The controller provides 32 powerful software timers, which greatly simplify the
task of programming time-related functions. Uses include:

e generation of time delays

e timing of process events such as tank fill times

e generation of time-based interrupts to schedule regular activities
e control of digital outputs by time periods

The 32 timers are individually programmable for tick rates from ten per second to
once every 25.5 seconds. Time periods from 0.1 second to greater than nineteen
days can be measured and controlled.

Timer functions require an initialization step before they are used. This
initialization step creates the timer support task. The function, runTimers, starts
the timer task and needs to be called first in order to provide timer functionality.

There are four library functions related to timers. Refer to the Function
Specification section for details on each function listed.

interval Set timer tick interval in tenths of seconds.

settimer Set a timer. Timers count down from the set value to
zero.

timer Read the time period remaining in a timer.

read_timer_info Read information about a software timer.

Timer Information Structure

The ctools.h file defines the structure Timer Information for timer information.
Refer to the C Tools Structures and Types section for complete information on
structures and enumeration types.

Alternative Methods for Timing

If the overhead of the timer task is undesired, two alternative methods supported
by the firmware exist for user timing: See the functions timedEvents and
readStopwatch.

Real Time Clock Functions

The controller is provided with a hardware based real time clock that
independently maintains the time and date for the operating system. The time
and date remain accurate during power-off. This allows the controller to be
synchronized to time of day for such functions as shift production reports,
automatic instrument calibration, energy logging, etc. The calendar can be used
to automatically take the controller off-line during weekends and holidays. The
calendar automatically handles leap years.

There are eight library functions, which access the real-time clock. Refer to the
Function Specification section for details on each function listed.

Document (Version 1.61) 5/19/2011 67

Overview of Programming Functions

alarmin Returns absolute time of alarm given elapsed time
getclock Read the real time clock.

getClockAlarm Reads the real time clock alarm settings.
getClockTime Read the real time clock.

installClockHandler Installs a handler for real time clock alarms.

resetClockAlarm Resets the real time clock alarm so it will recur at the
same time next day.

setclock Set the real time clock.

setClockAlarm Sets real time clock alarm.

Real Time Clock Structures

The ctools.h file defines the structures Real Time Clock Structure and Alarm
Settings Structure for real time clock information. Refer to the C Tools Structures
and Types section for complete information on structures and enumeration types.

Stopwatch Timer Functions

The stopwatch is a counter that increments every 10 ms. The stopwatch is useful
for measuring execution times or generating delays where a fine time base is
required. The stopwatch time rolls over to 0 when it reaches the maximum value
for an unsigned long integer: 4,294,967,295 ms (or about 49.7 days).

There is one library function to access the stopwatch time. Refer to the Function
Specification section for details.

readStopwatch reads the stopwatch timer.

Watchdog Timer Functions

A watchdog timer is a hardware device, which enables rapid detection of
computer hardware or software problems. In the event of a major problem, the
CPU resets and the application program restarts.

The controller provides an integral watchdog timer to ensure reliable operation.
The watchdog timer resets the CPU if it detects a problem in either the hardware
or system firmware. A user program can take control of the watchdog timer, so it
will detect abnormal execution of the program.

A watchdog timer is a retriggerable, time delay timer. It begins a timing sequence
every time it receives a reset pulse. The time delay is adjusted so that regular
reset pulses stops the timer from expiring. If the reset pulses cease, the
watchdog timer expires and turns on its output, signifying a malfunction. The
timer output in the controller resets the CPU and turns off outputs at the I/O
system.

The watchdog timer is normally reset by the operating system. This is
transparent to the application program. Operating in such a fashion, the
watchdog timer detects any hardware or firmware problems.

Document (Version 1.61) 5/19/2011 68

Overview of Programming Functions

The watchdog timer can detect failure of an application program. The program
takes control of the timer, and resets it regularly. If unexpected operation of the
program occurs, the reset pulses cease, and the watchdog timer resets the CPU.
The program restarts from the beginning.

There are three library functions related to the watchdog timer. Refer to the
Function Specification section for details on each function listed.

wd_auto Gives control of the watchdog timer to the operating
system (default).

wd_manual Gives control of the watchdog timer to an application
program.

wd_pulse Generates a watchdog reset pulse.

A watchdog reset pulse needs to be generated at least every 500 ms. The CPU
resets, and program execution starts from the beginning of the program, if the
watchdog timer is not reset.

Watchdog Timer Program Example

The following program segment shows how the watchdog timer could be used to
detect the failure of a section of a program.

wd manual(); /* take control of watchdog timer */
do {

/* program code */

wd pulse(); /* reset the watchdog timer */
}

while (condition)
wd_auto(); /* return control to 0S */

Pass control of the watchdog timer back to the operating system before stopping
a program, or switching to another task that expects the operating system to
reset the timer.

Checksum Functions

To simplify the implementation of self-checking communication algorithms, the C
Tools provide four types of checksums: additive, CRC-16, CRC-CCITT, and byte-
wise exclusive-OR. The CRC algorithms are particularly reliable, employing
various polynomial methods to detect communication errors. Additional types of
checksums are easily implemented using library functions.

There are two library functions related to checksums. Refer to the Function
Specification section for details on each function listed.

checksum Calculates additive, CRC-16, CRC-CCITT and
exclusive-OR type checksums

crc_reverse Calculates custom CRC type checksum using reverse
CRC algorithm.

Document (Version 1.61) 5/19/2011 69

Overview of Programming Functions

Serial Communication

SCADAPack 350 controllers offer three RS-232 serial ports. 4203 controllers
have two serial ports, configurable for RS-232 or RS-485. The ports are
configurable for baud rate, data bits, stop bits, parity and communication
protocol.

Default Serial Parameters

Ports are configured at reset with default parameters when the controller is
powered up in SERVICE mode. The ports use stored parameters when the
controller is reset in the RUN mode. The default parameters are listed below.

Parameter coml com2 Com3

Baud rate 9600 9600 9600

Parity none none None

Data bits 8 8 8

Stop bits 1 1 1

Duplex full full Half

Protocol Modbus RTU Modbus RTU | Modbus RTU
Addressing Mode | Standard Standard Standard
Station 1 1 1

Rx flow control Modbus RTU Modbus RTU | Modbus RTU
Tx flow control none none none

Debugging Serial Communication

Serial communication can be difficult to debug. This section describes common
causes of communication failures.

To communicate, the controller and an external device need to use the same
communication parameters. Check the parameters in both units.

If some but not all characters transmit properly, you probably have a parity or
stop bit mismatch between the devices.

The connection between two RS-232 Data Terminal Equipment (DTE) devices is
made with a null-modem cable. This cable connects the transmit data output of
one device to the receive data input of the other device — and vice versa. The
controller is a DTE device. This cable is described in the System Hardware
Manual for your controller.

The connection between a DTE device and a Data Communication Equipment
(DCE) device is made with a straight cable. The transmit data output of the DTE
device is connected to the transmit data input of the DCE device. The receive
data input of the DTE device is connected to the receive data output of the DCE
device. Modems are usually DCE devices. This cable is described in the System
Hardware Manual for your controller.

Many RS-232 devices require specific signal levels on certain pins.
Communication is not possible unless the required signals are present. In the

Document (Version 1.61) 5/19/2011 70

Overview of Programming Functions

controller the CTS line needs to be at the proper level. The controller will not
transmit if CTS is OFF. If the CTS line is not connected, the controller will force it
to the proper value. If an external device controls this line, it needs to turn it ON
for the controller to transmit.

Serial Communication Functions

The ctools.h file defines the following serial communication related functions.
Refer to the Function Specification section for details on each function listed.

clear_errors Clear serial port error counters.

clear_tx Clear serial port transmit buffer.

get_port Read serial port communication parameters.

getPortCharacteristics Read information about features supported by a serial
port.

get_status Read serial port status and error counters.

install_handler Install serial port character received handler.

portindex Get array index for serial port

portStream Get serial port corresponding to index

gueue_mode Set serial port transmitter mode.

route Redirect standard I/O streams.

setDTR Control RS232 port DTR signal.

set_port Set serial port communication parameters.

Serial Communication Structures

The ctools.h file defines the structures Serial Port Configuration, Serial Port
Status and Serial Port Characteristics for serial port configuration and
information. Refer to the C Tools Structures and Types section for complete
information on structures and enumeration types.

Dial-Up Modem Functions

These library functions provide control of dial-up modems. They are used with
external modems connected to a serial port. An external modem normally
connects to the RS-232 port with a DTE to DCE cable. Consult the System
Hardware Manual for your controller for details. Refer to the Function
Specification section for details on each function listed.

The dial-up modem functions apply to the SCADAPack 350 controllers RS-232

ports.

modemlnit send initialization string to dial-up modem.
modemInitStatus read status of modem initialization operation.
modemInitEnd terminate modem initialization operation.

Document (Version 1.61) 5/19/2011 71

Overview of Programming Functions

modembDial connect with an external device using a dial-up
modem.

modemDialStatus read status of connection with external device using a
dial-up modem.

modemDialEnd terminate connection with external device using a dial-up
modem.

modemAbort unconditionally terminate connection with external
device or modem initialization (used in task exit handler).

modemAbortAll unconditionally terminate connections with external
device or modem initializations (used in task exit
handler).

modemNotification notify the dial-up modem handler that an interesting
event has occurred. This function is usually called
whenever a message is received by a protocol.

Dial-Up Modem Macros

The ctools.h file defines the following macros of interest to a C application
program. Refer to the C Tools Macros section for details on each macro listed.

MODEM_CMD_MAX_LEN Maximum length of the modem initialization
command string

PHONE_NUM_MAX_LEN Maximum length of the phone number string

Dial-Up Modem Enumeration Types

The ctools.h file defines the enumerated types DialError and DialState. Refer to
the C Tools Structures and Types section for complete information on structures
and enumeration types.

Dial-up Modem Structures

The ctools.h file defines the structures Modeminit and ModemSetup. Refer to the
C Tools Structures and Types section for complete information on structures and
enumeration types.

Serial Communication Protocols

The TeleBUS protocols are compatible with the widely used Modbus RTU and
ASCII protocols. The TeleBUS communication protocols provide a standard
communication interface to SCADAPack controllers. Additional TeleBUS
commands provide remote programming and diagnostics capability.

The TeleBUS protocols provide access to the I/O database in the controller. The
I/O database contains user-assigned registers and general purpose registers.
Assigned registers map directly to the I/O hardware or system parameter in the
controller. General purpose registers can be used by ladder logic and C
application programs to store processed information, and to receive information
from a remote device.

Document (Version 1.61) 5/19/2011 72

Overview of Programming Functions

The TeleBUS protocols operate on a wide variety of serial data links. These
include RS-232 serial ports, RS-485 serial ports, radios, leased line modems,
and dial up modems. The protocols are generally independent of the
communication parameters of the link, with a few exceptions.

Application programs can initiate communication with remote devices. A multiple
port controller can be a data concentrator for remote devices, by polling remote
devices on one port(s) and responding as a slave on another port(s).

The protocol type, communication parameters and station address are
configured separately for each serial port on a controller. One controller can
appear as different stations on different communication networks. The port
configuration can be set from an application program, from the IEC 61131-1
programming software, or from another Modbus or DF1 compatible device.

Protocol Type

The protocol type may be set to emulate the Modbus ASCII and Modbus RTU
protocols, or it may be disabled. When the protocol is disabled, the port functions
as a normal serial port.

Station Number

The TeleBUS protocol allows up to 254 devices on a network using standard
addressing and up to 65534 devices using extended addressing. Station
numbers identify each device. A device responds to commands addressed to it,
or to commands broadcast to every station.

The station number is in the range 1 to 254 for standard addressing and 1 to
65534 for extended addressing. Address 0 indicates a command broadcast to
every station, and cannot be used as a station number. Each serial port may
have a unique station number.

Store and Forward Messaging

Store and forward messaging allows the re-transmission of messages received
by a controller communication interface. Messages may be re-transmitted on any
communication interface, with or without station address translation. A user-
defined translation table determines actions performed for each message. Store
and forward messaging may be enabled or disabled on each port. It is disabled
by default.

Serial Communication Protocol Functions

There are several library functions related to TeleBUS communication protocol.
Refer to the Function Specification section for details on each function listed.

checkSFTranslationTable Check translation table for invalid entries.
clear_protocol_status Clears protocol message and error counters.
clearSFTranslationTable Clear store and forward translation table entries.
get_protocol Reads protocol parameters.

Document (Version 1.61) 5/19/2011 73

Overview of Programming Functions

getProtocolSettings Reads extended addressing protocol parameters for a
serial port.

get_protocol_status Reads protocol message and error counters.
getSFTranslation Read store and forward translation table entry.

installModbusHandler This function allows user-defined extensions to standard
Modbus protocol.

master_message Sends a protocol message to another device.

modbusExceptionStatus Sets response for the read exception status
function.

modbusSlavelD Sets response for the read slave ID function.

set_protocol Sets protocol parameters and starts protocol.

setProtocolSettings Sets extended addressing protocol parameters for a
serial port.

setSFTranslation Write store and forward translation table entry.

start_protocol Starts protocol execution based on stored parameters.

Communication Protocols Enumeration Types

The ctools.h file defines the enumeration type ADDRESS_MODE. Refer to the C
Tools Structures and Types section for complete information on structures and
enumeration types.

Communication Protocols Structures

The ctools.h file defines the structures Protocol Status Information, Protocol
Settings, Extended Protocol Settings, Store and Forward Message and Store and
Forward Status. Refer to the C Tools Structures and Types section for complete
information on structures and enumeration types.

DNP Communication Protocol

DNP, the Distributed Network Protocol, is a standards-based communications
protocol developed to achieve interoperability among systems in the electric
utility, oil & gas and water/waste water industries. This robust, flexible non-
proprietary protocol is based on existing open standards to work within a variety
of networks. The IEEE has recommended DNP for remote terminal unit to
intelligent electronic device messaging. DNP can also be implemented in any
SCADA system for efficient and robust communications between substation
computers, RTUs, IEDs and master stations; over serial or LAN-based systems.

DNP offers flexibility and functionality that go far beyond conventional
communications protocols. Among its robust and flexible features DNP 3.0
includes:

e OQutput options

e Addressing for over 65,000 devices on a single link

Document (Version 1.61) 5/19/2011 74

Overview of Programming Functions

e Time synchronization and time-stamped events
e Broadcast messages
e Data link and application layer confirmation

DNP 3.0 was originally designed based on three layers of the OSI seven-layer
model: application layer, data link layer and physical layer. The application layer
is object-based with objects provided for generic data formats. The data link layer
provides for several methods of retrieving data such as polling for classes and
object variations. The physical layer defines commonly a simple RS-232 or RS-
485 interface.

DNP Communication Protocol Functions

There are several library functions related to DNP communication protocol. Refer
to the Function Specification section for details on each function listed.

dnpClearEventLogs Deletes change events from the DNP change event
buffers.

dnpConnectionEvent Report a DNP connection event

dnpCreateAddressMappingTable Allocates memory for a new address
mapping table according to the ‘size’ parameter.

dnpCreateMasterPollTable Allocates memory for a new table according to
the ‘size’ parameter.

dnpCreateRoutingTable Allocates memory for a new routing table
according to the ‘size’ parameter.

dnpGenerateChangeEvent Generates a change event for the DNP point.
dnpGenerateEventLog Generates a change event for the DNP point.

dnpGetAll6Config Reads the configuration of a DNP 16-bit analog input
point.

dnpGetAI32Config Reads the configuration of a DNP 32-bit analog input
point.

dnpGetAISFConfig Reads the configuration of a DNP 32-bit short floating
analog input point.

dnpGetAO16Config Reads the configuration of a DNP 16-bit analog output
point.

dnpGetAO32Config Reads the configuration of a DNP 32-bit analog output
point.

dnpGetAOSFConfig Sets the configuration of a DNP 32-bit short floating
analog output point.

dnpGetCl16Config Reads the configuration of a DNP 16-bit counter input
point.

dnpGetCI32Config Reads the configuration of a DNP 32-bit counter input
point.

Document (Version 1.61) 5/19/2011 75

Overview of Programming Functions

dnpGetBIConfig Reads the configuration of a DNP binary input point.

dnpGetBIConfigEx Reads the configuration of an extended DNP Binary
Input point.

dnpGetBOConfig Reads the configuration of a DNP binary output point.

dnpGetCl16Config Reads the configuration of a DNP 16-bit counter input
point.

dnpGetCI32Config Reads the configuration of a DNP 32-bit counter input
point.

dnpGetConfiguration Reads the DNP protocol configuration.

dnpGetConfigurationEx Reads the extended DNP configuration
parameters.

dnpGetRuntimeStatus Reads the current status of DNP change event buffers.
dnplinstallConnectionHandler Configures the connection handler for DNP.

dnpMasterClassPoll Sends a Class Poll message in DNP, to request the
specified data classes from a DNP slave.

DnpMasterClockSync sends a Clock Synchronization message in DNP, to a
DNP slave.

dnpPortStatus Returns the DNP message statistics for the specified
communication port.

dnpReadAddressMappingTableEntry Reads an entry from the DNP address
mapping table.

dnpReadAddressMappingTableSize Reads the total number of entries in the
DNP address mapping table.

dnpReadMasterPollTableEntry Reads an entry from the DNP master
poll table.

dnpReadMasterPollTableEntryEx Reads an extended entry from the DNP
master poll table.

dnpReadPMasterPollTableSize Reads the total number of entries in the
DNP master poll table.

dnpReadRoutingTableEntry Reads an entry from the routing table.

dnpReadRoutingTableEntryEx Reads an extended entry from the DNP
routing table.

dnpReadRoutingTableEntry_DialString Reads a primary and secondary
dial string from an entry in the DNP routing table.

dnpReadRoutingTableSize Reads the total number of entries in the routing
table.

dnpSaveAll6Config Sets the configuration of a DNP 16-bit analog input
point.

Document (Version 1.61) 5/19/2011 76

Overview of Programming Functions

dnpSaveAl32Config Sets the configuration of a DNP 32-bit analog input
point.

dnpSaveAISFConfig Sets the configuration of a DNP 32-bit short floating
analog input point

dnpSaveA016Config Sets the configuration of a DNP 32-bit analog output
point.

dnpSaveA032Config Sets the configuration of a DNP 32-bit analog output
point.

dnpSaveAOSFConfig Sets the configuration of a DNP 32-bit short floating
analog output point.

dnpSaveBIConfig Sets the configuration of a DNP binary input point.
dnpSaveBOConfig Sets the configuration of a DNP binary output point.
dnpSaveCl16Config Sets the configuration of a DNP 16-bit counter input

point.

dnpSaveCl32Config Sets the configuration of a DNP 32-bit counter input
point.

dnpSaveConfiguration Defines DNP protocol configuration parameters.

dnpSaveConfigurationEx Writes the extended DNP configuration
parameters

dnpSendUnsolicitedResponse Sends an ‘Unsolicited Response’
message in DNP protocol.

dnpSearchRoutingTable Searches the routing table for a specific DNP
address.

dnpStationStatus Returns the DNP message statistics for a remote DNP
station.

dnpWriteAddressMappingTableEntry Writes an entry in the DNP address
mapping table.

dnpWriteMasterApplicationLayerConfig Writes DNP Master application
layer configuration.

dnpWriteMasterPollTableEntry Writes an entry in the DNP master poll
table.

dnpWriteRoutingTableEntry Writes an entry in the DNP routing table.

dnpWriteRoutingTableEntryEx Writes an extended entry in the DNP
routing table.

dnpWriteRoutingTableEntry_DialString Writes a primary and secondary
dial string into an entry in the DNP routin

Document (Version 1.61) 5/19/2011 77

Overview of Programming Functions

DNP Communication Protocol Structures and Types

The ctools.h file defines the structures DNP Configuration, Binary Input Point,
Binary Output Point, Analog Input Point, Analog Output Point and Counter Input
Point. Refer to the C Tools Structures and Types section for complete
information on structures and enumeration types.

DF1 Communication Protocol

The TeleBUS DF1 protocol supports the DF1 Basic Command Set in the Half
Duplex and Full Duplex DF1 protocols.

DF1 Communication Protocol Functions

There are several library functions related to DF1 communication protocol. Refer
to the Function Specification section for details on each function listed.

getABConfiguration Reads DF1 protocol configuration parameters.

pollABSlave Requests a response from a slave controller using the
half-duplex version of the protocol.

resetAllABSlaves Clears responses from the response buffers of half-
duplex slave controllers.

setABConfiguration Defines DF1 protocol configuration parameters.

TCP/IP Communications

TCP/IP Functions

The SCADAPack 350 and SCADAPack 357 controllers have one 10/100BaseT
Ethernet port.

The ctools.h file defines the following TCP/IP related functions. Refer to the
Function Specification section for details on each function listed.

ethernetGetIP Get the Ethernet controller TCP/IP settings.
ethernetSetIP Set the Ethernet controller TCP/IP settings.
ethernetGetMACAddress Returns Ethernet controller MAC address.

ipGetConnectionSummary Returns the number of connections: master,
slave or unused.

ipGetinterfaceType Returns the interface that is configured to the specified
local IP address.

Modbus IP Protocol

Modbus IP is an extension of serial Modbus, which defines how Modbus
messages are encoded within and transported over TCP/IP-based networks.
Modbus IP protocols are just as simple to implement and flexible to apply as
serial Modbus. Complete information for Modbus IP and serial Modbus may be
found on-line at www.modbus.org/.

Document (Version 1.61) 5/19/2011 78

http://www.modbus.org/

Overview of Programming Functions

These functions are supported on the SCADAPack 350 controllers.

Modbus IP Functions

The ctools.h file defines the following Modbus IP related functions. Refer to the
Function Specification section for details on each function listed.

mTcpSetConfig
mTcpGetConfig
mTcpSetinterface
mTcpGetinterface

mTcpSetinterfaceEx

mTcpGetinterfaceEx

Set Modbus IP protocol settings.
Get Modbus IP protocol settings.
Set interface settings used by the Modbus IP protocols.
Get interface settings used by the Modbus IP protocols.

Set interface settings used by the Modbus IP protocols
including Enron Modbus settings.

Get interface settings used by the Modbus IP protocols
including Enron Modbus settings.

mTcpSetProtocol Get interface settings used by the Modbus IP protocols.

mTcpGetProtocol Get interface settings used by the Modbus IP protocols.

mTcpMasterOpen Allocates a connection ID and creates a task to service a
Modbus IP master messaging connection.

mTcpMasterMessage Builds the Modbus command and sends a message to
the mastering task to tell it to send the command.

mTcpMasterStatus Returns the master command status for the specified
connection.

mTcpMasterDisconnect Tells a Modbus IP master task to disconnect and

mTcpMasterClose

Data Log to File

end the task.

Returns a master connection ID to the connection pool.

The SCADAPack 330 and SCADAPack 350 controllers 4203 support data
logging to the internal file system and data logging to a mass storage device
connected via the USB host port.

Data Log Functions
dlogCreate
dlogDelete

dlogDeleteAll

dlogID
dlogWrite
dlogSpace

Create a data log using the specified configuration.

Delete a data log and associated resources except log
files.

Delete data logs and associated resources except log
files.

Return the ID of an existing data log.
Write to a data log.

Return the space available in the data log buffer.

Document (Version 1.61) 5/19/2011

79

Overview of Programming Functions

dlogFlush Flush data log buffer contents to log file.

dlogNewFile Create a new data log file.

dlogSuspend Suspend writing to the data log file from the data log
buffer.

dlogResume Resume writing to a suspended data log file.

dlogGetStatus Return the auto transfer and media status information of
a data log.

Data Log Enumeration Types

Sockets API

The ctools.h file defines the following enumeration types:
dlogStatus Type

dlogTransferStatus Type

dlogConfiguration Type

dlogRecordElement Type

dlogCMITime Type

Refer to the C Tools Structures and Types section for complete information on
structures and enumeration types.

These functions provide support for the BSD 4.4 Socket API. Additional Socket
Extension functions are also provided. These apply specifically to the
SCADAPack 350 TCP/IP Stack.

Refer to the Function Specification section for details on each function listed.

accept listen
bind ntohl
connect ntohs

getpeername readv

getsockname recv

getsockopt recvfrom
htonl rresvport
htons select
inet_addr send
inet_aton sendto
setsockopt shutdown
socket

Document (Version 1.61) 5/19/2011 80

Overview of Programming Functions

Modbus I/O Database

The Modbus database is a user-defined database that allows data to be shared
between Telepace or IEC 61131-1 programs, C++ programs and communication
protocols.

Telepace and IEC 61131-1 firmware support different ranges of Modbus
Database registers. The following table shows the register ranges for these
firmware types.

Telepace IEC 61131-1 Data Type

Modbus Modbus

Addresses Addresses

00001 to 00001 to Coil Register

04096 09999 1 returned if variable is non-zero;
0 returned if variable is O

10001 to 10001 to Status Register

14096 19999 1 returned if variable is non-zero;
0 returned if variable is O

30001 to 30001 to Input Register

39999 39999 word (16 bits)

40001 to 40001 to Holding Register

49999 49999 word (16 bits)

Modbus I/0O Database Register Types

The I/O database is divided into four types of I/O registers. Each of these types is
initially configured as general purpose registers by the controller.

Coil Registers

Coil, or digital output, database registers may be assigned to 5000 digital output
modules or SCADAPack 1/0 modules through the Register Assignment. Coil
registers may also be assigned to controller on-board digital outputs and to
system configuration modules.

Status Registers

Status, or digital input, database registers may be assigned to 5000 digital input
modules or SCADAPack 1/0 modules through the Register Assignment. Status
registers may also be assigned to controller on-board digital inputs and to system
diagnostic modules.

Input Registers

Input, or analog input, database registers may be assigned to 5000 analog input
modules or SCADAPack I/0O modules through the Register Assignment. Input
registers may also be assigned to controller internal analog inputs and to system
diagnostic modules.

Holding Registers

Document (Version 1.61) 5/19/2011 81

Overview of Programming Functions

Holding, or analog output, database registers may be assigned to 5000 analog
output modules or SCADAPack analog output modules through the Register
Assignment. Holding registers may also be assigned to system diagnostic and
configuration modules.

Modbus I/O Database Functions

There are several library functions related to the Modbus database. Refer to the

Function Specification section for details on each function listed.

dbase

installDbaseHandler

installSetdbaseHandler

Dbase Handler Function

setdbase

Reads a value from the database.
Allows an extension to be defined for the dbase function.

Allows an extension to be defined for the
setdbase function.

User-defined function that handles reading of
Modbus addresses not assigned in the IEC 61131-1
Dictionary.

Writes a value to the database.

Setdbase Handler Function User-defined function that handles writing to

Modbus I/O Database Macros

Modbus addresses not assigned in the IEC 61131-1
Dictionary.

The ctools.h file defines library functions for the I/O database. Refer to the C
Tools Macros section for details on each macro listed.

AB Specifies Allan-Bradley database addressing.

DB_BADSIZE Error code: out of range address specified

DB_BADTYPE Error code: bad database addressing type specified

DB_OK Error code: no error occurred

LINEAR Specifies linear database addressing.

MODBUS Specifies Modbus database addressing.

NUMAB Number of registers in the Allan-Bradley database.

NUMCOIL Number of registers in the Modbus coil section.

NUMHOLDING Number of registers in the Modbus holding register
section.

NUMINPUT Number of registers in the Modbus input registers
section.

NUMLINEAR Number of registers in the linear database.

NUMSTATUS Number of registers in the Modbus status section.

START_COIL Start of the coil section in the linear database.

Document (Version 1.61) 5/19/2011

82

Overview of Programming Functions

START_HOLDING Start of the holding registers section in the linear

database.
START_INPUT Start of the input register section in the linear database.
START_STATUS Start of the status section in the linear database.

Register Assignment

I/O hardware that is used by the controller needs to be assigned to I/0O database
registers in order for these 1/0 points to be scanned continuously. I/O data may
then be accessed through the 1/0 database within the C program. C programs
may read data from, or write data to the 1/0 hardware through user- assigned
registers in the 1/0 database.

The Register Assignment assigns I/O database registers to user-assigned
registers using 1/0 modules. An I/O Module can refer to an actual I/0 hardware
module (e.g. 5401 Digital Input Module) or it may refer to a set of controller
parameters, such as serial port settings.

The chapter Register Assignment Reference of the Telepace Ladder Logic
Reference and User Manual contains a description of what each module is used
for and the register assignment requirements for the I/O module.

Register assignments configured using the Telepace Register Assignment dialog
may be stored in the Telepace program file or downloaded directly to the
controller. To obtain error checking that stops invalid register assignments, use
the Telepace Register Assignment dialog to initially build the Register
Assignment. The Register Assignment can then be saved in a Ladder Logic file
(e.g. filename.lad) and downloaded with the C program.

Register Assignment Functions

There are several library functions related to register assignment. Refer to the
Function Specification section for details on each function listed.

clearRegAssignment Erases the current Register Assignment.

addRegAssignment Adds one I/O module to the current Register
Assignment.

getlOErrorindication Gets the control flag for the 1/O module error indication

getOutputsinStopMode Gets the control flags for state of Outputs in
Ladders Stop Mode

setlOErrorindication Sets the control flag for the 1/O module error indication
setOutputsinStopMode Sets the control flags for state of Outputs in
Ladders Stop Mode
Register Assignment Enumeration Types

The ctools.h file defines one enumeration type. The ioModules enumeration type
defines a list of results of sending a command. Refer to the C Tools Structures
and Types section for complete information on structures and enumeration types.

Document (Version 1.61) 5/19/2011 83

Overview of Programming Functions

Register Assignment Structure

The ctools.h file defines the structure RegAssign. Refer to the C Tools Structures
and Types section for complete information on structures and enumeration types.

IEC 61131-1 Variable Access Functions

Variables declared in an IEC 61131-1 application are accessed from a C
application using the IEC 61131-1 variable access functions listed below. Refer
to the Function Specification section for details on each function listed.

readBoolVariable Returns the current value of the specified boolean
variable.

readIntVariable Returns the current value of the specified integer
variable.

readRealVariable Returns the current value of the specified real variable.

readMsgVariable Returns the current value of the specified message
variable.

readTimerVariable Returns the current value of the specified timer variable.

writeBoolVariable Writes to the specified boolean variable.
writelntVariable Writes to the specified integer variable.
writeRealVariable Writes to the specified real variable.
writeMsgVariable Writes to the specified message variable.

writeTimerVariable Writes to the specified timer variable.

HART Communication

The HART ® protocol is a field bus protocol for communication with smart
transmitters.

The HART protocol driver provides communication between SCADAPack
controllers and HART devices. The protocol driver uses the model 5904 HART
modem for communication. Four HART modem modules are supported per
controller.

The driver allows HART transmitters to be used with C application programs and
with Realflo. The driver can read data from HART devices.

HART Command Functions

The ctools.h file defines the following HART command related functions. Refer to
the Function Specification section for details on each function listed.

hartlO Reads data from the 5904 interface module, processes
HART responses, processes HART commands, and
writes commands and configuration data to the 5904
interface module.

Document (Version 1.61) 5/19/2011 84

Overview of Programming Functions

hartCommand

hartCommand0
hartCommand1
hartCommand2
hartCommand3
hartCommand11
hartCommand33
hartStatus
hartGetConfiguration
hartSetConfiguration
hartPackString
hartUnpackString

HART Command Macros

send a HART command string and specify a function to
handle the response

read unique identifier using short-address algorithm
read primary variable

read primary variable current and percent of span
read primary variable current and dynamic variables
read unique identifier associated with tag

read specified transmitter variables

return status of last HART command sent

read HART module settings

write HART module settings

convert string to HART packed string

convert HART packed string to string

The ctools.h file defines the following macro of interest to a C application

DATA_SIZE

HART Command Enumeration Types

program. Refer to the C Tools Macros section for details.

Maximum length of the HART command or response
field.

The ctools.h file defines one enumeration type. The HART_RESULT
enumeration type defines a list of results of sending a command. Refer to the C
Tools Structures and Types section for complete information on structures and

enumeration types.

HART Command Structures

The ctools.h file defines five structures. Refer to the C Tools Structures and
Types section for complete information on structures and enumeration types.

HART_DEVICE

HART_VARIABLE

HART_SETTINGS

HART_COMMAND

HART_RESPONSE

type is a structure containing information about the
HART device.

type is a structure containing a variable read from a
HART device.

type is a structure containing the configuration for the
HART modem module.

type is a structure containing a command to be sent to a
HART slave device.

type is a structure containing a response from a HART
slave device.

Document (Version 1.61) 5/19/2011

85

Overview of Programming Functions

File Management API

File management library functions are provided by the GNU libraries that are
installed with C++ Tools. Documentation of these functions is included in the
installed document “GNU Documentation”.

The functions listed below are recommended for file access:
clearerr
closedir
fclose
feof
fflush
fgetc
fgets
fopen
fprintf
fputc
fputs
fread
fseek
ftell
fwrite
getc
gets
mkdir
opendir
putc
puts
readdir
remove

rmdir

Document (Version 1.61) 5/19/2011 86

Function Specifications

Function Specifications

This section of the user manual contains specifications for using each of the
available functions. The functions in the sections that follow are available for use
in C++ programs. These functions are available for use with both Telepace and
IEC 61131-1 firmware unless otherwise noted.

Functions Supported by Telepace Only

The following functions are only supported by C++ Tools running on Telepace
firmware:

¢ addRegAssignment

clearRegAssignment

e getForceFlag

e getOutputsinStopMode
e overrideDbase

e setForceFlag

e setOutputsinStopMode

Functions Supported by IEC 61131-1 Only

The following functions are only supported by C++ Tools running on IEC 61131-1
firmware:

e Dbase Handler Function
¢ installDbaseHandler

¢ installSetdbaseHandler
e readBoolVariable

e readIntVariable

e readMsgVariable

o readRealVariable

e readTimerVariable

e read_timer_info

e Setdbase Handler Function
e writeBoolVariable

e writeIntVariable

Document (Version 1.61) 5/19/2011 87

Function Specifications

e writeMsgVariable
o writeRealVariable

e writeTimerVariable

Document (Version 1.61) 5/19/2011 88

Function Specifications

accept

Syntax

include <ctools.h>

int accept

(

int socketDescriptor,

struct sockaddr * addressPtr,
int * addressLengthPtr

);

Description

The argument socketDescriptor is a socket that has been created with socket,
bound to an address with bind, and that is listening for connections after a call to
listen. accept extracts the first connection on the queue of pending connections,
creates a new socket with the properties of socketDescriptor, and allocates a
new socket descriptor for the socket. If no pending connections are present on
the queue and the socket is not marked as non-blocking, accept blocks the caller
until a connection is present. If the socket is marked as non-blocking and no
pending connections are present on the queue, accept returns an error as
described below. The accepted socket is used to send and recv data to and from
the socket that it is connected to. It is not used to accept more connections. The
original socket remains open for accepting further connections. accept is used
with connection-based socket types, currently with SOCK_STREAM.

Using select (prior to calling accept):

It is possible to select a listening socket for the purpose of an accept by selecting
it for a read. However, this will only indicate when a connect indication is
pending; it is still necessary to call accept.

Parameters

socketDescriptor The socket descriptor that was created with socket and
bound to with bind and is listening for connections with listen.

addressPtr The structure to write the incoming address into.
addressLengthPtr Initially, it contains the amount of space pointed to by
addressPtr. On return it contains the length in bytes of the address returned.
Returns

New Socket Descriptor or —1 on error.

If accept fails, the errorCode can be retrieved with
getErrorCode(socketDescriptor) which will return one of the following error
codes:

EBADF The socket descriptor is invalid.
EINVALaddressPtr was a null pointer.

Document (Version 1.61) 5/19/2011 89

Function Specifications

EINVAL addressLengthPtr was a null pointer.

EINVAL The value of addressLengthPtr was too small.

ENOBUFS There was insufficient user memory available to complete the
operation.

EPERM Cannot call accept without calling listen first.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.
EPROTO A protocol error has occurred; for example, the connection has
already been released.

EWOULDBLOCK The socket is marked as non-blocking and no

connections are present to be accepted.

Document (Version 1.61) 5/19/2011

90

Function Specifications

addRegAssignment

Add Register Assignment (Telepace firmware only)

Syntax

#include <ctools.h>

BOOLEAN addRegAssignment (
UINT16 moduleType,
INT16 moduleAddress,
UINT16 startingRegisterl,
UINT16 startingRegister2,
UINT16 startingRegister3,
UINT16 startingRegister4);

Description

The addRegAssignment function adds one I/O module to the current Register
Assignment of type moduleType. The following symbolic constants are valid
values for moduleType:

AIN_520xT CNTR_
emperature 5410
AIN_520xR DIAG ¢
AMBattery ommSt
atus
AIN_5501 DIAG ¢
ontrolle
rStatus
AIN_5502 DIAG_f
orceLE
D
AIN_5503 DIAG_|
PConn
ections
AIN_5504 DIAG_
Modbus
Status
AIN_5505 DIAG p
rotocol
Status
AIN_5506 DIN_54
01
AIN_5521 DIN_54
02
AIN_generi DIN_54
c8 03

Document (Version 1.61) 5/19/2011 91

Function Specifications

AOUT_530
1

AOUT_530
2

AOUT_530
4

AOUT_gen
eric2

AOUT_gen
eric4

CNFG_590
4Modem

CNFG_clea
rPortCounte
rs

CNFG_clea
rProtocolCo
unters

CNFG_IPS
ettings

CNFG_LED
Power

CNFG_mod
buslpProtoc
ol

CNFG_MT
CPIfSetting
s

CNFG_MT
CPSettings

CNFG_PID
Block

CNFG_port
Settings

CNFG_prot
ocolExtend
ed

CNFG_prot
ocolExtend
edEx

DIN_54
04

DIN_54
05

DIN_54
14

DIN_54
21

DIN_ge
nericl6

DIN_ge
neric8

DOUT_
5401

DOUT _
5402

DOUT _
5406

DOUT _
5407

DOUT_
5408

DOUT_
5409

DOUT _
5411

DOUT _
5415

DOUT_
generic
16

DOUT_
generic
8

SCADA
Pack_A
ouT

Document (Version 1.61) 5/19/2011

92

Function Specifications

CNFG_prot SCADA
ocolSetting Pack_lo
S werlO
CNFG _real SCADA
TimeClock Pack u
pperlO
CNFG_sav SCADA
eToEEPRO Pack_L
M PIO
CNFG_setS SCADA
erialPortDT Pack_2
R 10
CNFG_stor SCADA
eAndForwa Pack_1
rd 0010
SCADASE SCADA
NSE_4203_ Pack 5
DR 60610
CNTR_520 SCADA
xCounterln SENSE
puts _4203_
DS
SCADAPac
k_33xI0

moduleAddress specifies a unique address for the module. For the valid range
for moduleAddress refer to the list of modules in the chapter Register
Assignment Reference of the Telepace Ladder Logic Reference and User
Manual. For module addresses com1, com2, com3 or com4 specify 0, 1, 2 or 3
respectively for moduleAddress. For module address Ethernetl specify 4 for
moduleAddress. For module types that have no module address (e.g.
CNFG_LEDPower) specify -1 for moduleAddress. For SCADAPack module types
that have a module address fixed at 0, specify 0 for moduleAddress.

startingRegisterl specifies the first register of any unused block of consecutive
registers. Refer to the list of modules in the Register Assignment Reference for
the type and number of registers required for this block. Data read from or written
to the module is stored in this block of registers.

If the module type specified has more than one type of I/O, use startingRegister2,
startingRegister3, and startingRegister4 as applicable. Each start register
specifies the first register of an unused block of consecutive registers for each
type of input or output on the module. Refer to the list of modules in the Register
Assignment Reference for the module 1/O types. Specify 0 for startingRegister2,
startingRegister3, or startingRegister4 if not applicable.

Document (Version 1.61) 5/19/2011 93

Function Specifications

Notes

Up to 150 modules may be added to the Register Assignment. If the Register
Assignment is full or if an incorrect value is specified for any argument this
function returns FALSE; otherwise TRUE is returned.

Output registers specified for certain CNFG type modules are initialized with the
current parameter values when the module is added to the Register Assignment
(e.g. CNFG_realTimeClock).

Call clearRegAssignment first before using the addRegAssignment function
when creating a new Register Assignment.

Duplicate or overlapping register assignments are not checked for by this
function. Overlapping register assignments may result in unpredictable 1/O
activity.

To obtain error checking that avoids invalid register assignments such as these,
use the Telepace Register Assignment dialog to build the Register Assignment.
Then save the Register Assignment in a Ladder Logic file (e.g. filename.lad) and
download it with the C program, or transfer the Register Assignment to the C
program using the clearRegAssignment and addRegAssignment functions.

To save the Register Assignment with the controller settings in flash memory so
that it is loaded on controller reset, call flashSettingsSave as shown in the
example below.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

clearRegAssignment

Example
#include <ctools.h>
int main (void)

{
request resource (IO SYSTEM) ;

/* Create the Register Assignment */
clearRegAssignment () ;

addRegAssignment (SCADAPack 2I0, 0, 1,

10001, 30001, 40001);
addRegAssignment (AOUT 5302, 1, 40003, 0, 0, 0);
addRegAssignment (DIAG forcelED, -1, 10017, 0, 0, 0);
addRegAssignment (DIAG controllerStatus, -1, 30009, 0, O,
addRegAssignment (DIAG protocolStatus, 2, 30010, 0, 0, 0);

release resource (IO SYSTEM) ;

// save register assignment with controller settings

Document (Version 1.61) 5/19/2011 94

Function Specifications

request resource (FLASH MEMORY) ;
flashSettingsSave (CS_PERMANENT) ;
release resource (FLASH MEMORY)

’

Document (Version 1.61) 5/19/2011 95

Function Specifications

addRegAssignmentEx

Add Register Assignment (Telepace firmware only)

Syntax

#include <ctools.h>

BOOLEAN addRegAssignmentEx (

UINT16 moduleType,

INT16 moduleAddress,
UINT16 startingRegisterl,
UINT16 startingRegister2,
UINT16 startingRegister3,
UINT16 startingRegister4,
UINT16 parameters[16]

)

Description

The addRegAssignmentEx function adds one I/O module to the current Register
Assignment of type moduleType. The following symbolic constants are valid

values for moduleType:

AIN_520xTemperature
AIN_520xRAMBattery
AIN_5501

AIN_5502

AIN_5503

AIN_5504

AIN_5505

AIN_5506

AIN_5521

AIN_generic8
AOUT_5301

AOUT_5302

AOUT_5304
AOUT_generic2
AOUT_generic4
CNFG_5904Modem
CNFG_clearPortCounters
CNFG_clearProtocolCounters
CNFG_IPSettings
CNFG_LEDPower
CNFG_maodbuslpProtocol
CNFG_MTCPIfSettings
CNFG_MTCPSettings
CNFG_PIDBIlock

CNTR_5410
DIAG_commStatus
DIAG_controllerStatus
DIAG_forceLED
DIAG_IPConnections
DIAG_ModbusStatus
DIAG_protocolStatus
DIN_5401

DIN_5402

DIN_5403

DIN_5404

DIN_5405

DIN_5414

DIN_5421
DIN_genericl6
DIN_generic8
DOUT_5401
DOUT_5402
DOUT_5406
DOUT_5407
DOUT_5408
DOUT_5409
DOUT_5411
DOUT_5415

Document (Version 1.61) 5/19/2011

96

Function Specifications

CNFG_portSettings
CNFG_ protocolExtended
CNFG_protocolExtendedEx
CNFG_protocolSettings
CNFG_realTimeClock
CNFG_saveToOEEPROM
CNFG_setSerialPortDTR
CNFG_storeAndForward
SCADASENSE_4203_DR
CNTR_520xCounterinputs
SCADAPack_560710
SCADAPack_35010

DOUT_genericl6
DOUT_generic8
SCADAPack_AOUT
SCADAPack_lowerlO
SCADAPack_upperlO
SCADAPack_LPIO
SCADAPack_2I10
SCADAPack_100I0
SCADAPack_560610
SCADASENSE_4203_DS
SCADAPack_33xI10

moduleAddress specifies a unique address for the module. For the valid range
for moduleAddress refer to the list of modules in the chapter Register
Assignment Reference of the Telepace Ladder Logic Reference and User
Manual. For module addresses com1, com2, com3 or com4 specify 0, 1, 2 or 3
respectively for moduleAddress. For module address Ethernetl specify 4 for
moduleAddress. For module types that have no module address (e.g.
CNFG_LEDPower) specify -1 for moduleAddress. For SCADAPack module types
that have a module address fixed at 0, specify 0 for moduleAddress.

startingRegisterl specifies the first register of any unused block of consecutive
registers. Refer to the list of modules in the Register Assignment Reference for
the type and number of registers required for this block. Data read from or written
to the module is stored in this block of registers.

If the module type specified has more than one type of I/O, use startingRegister2,
startingRegister3, and startingRegister4 as applicable. Each start register
specifies the first register of an unused block of consecutive registers for each
type of input or output on the module. Refer to the list of modules in the Register
Assignment Reference for the module 1/O types. Specify 0 for startingRegister2,
startingRegister3, or startingRegister4 if not applicable.

parameters is an array of configuration parameters for the register assignment
module. Many modules do not use the parameters and a 0 needs to be specified
for the parameters. Use the addRegAssignment function to configure these
modules. Use parameters with the following modules.

5414 1/0 Module: parameter [0] defines the input type. Valid values are:

5414 1/0 Module: parameter [1] defines the scan frequency for AC inputs. Valid

e 0=DC
e 1=AC
values are:
e 0=60Hz
e 1=50Hz

Document (Version 1.61) 5/19/2011

97

Function Specifications

5505 I/O Module:; parameters[0] to [3] define the analog input type for the
corresponding input. Valid values are:

e 0=RTD in deg Celsius

e 1=RTD in deg Fahrenheit

e 2 =RTD in deg Kelvin

e 3 =resistance measurement in ohms.

5505 I/O Module: parameters[4] defines the analog input filter. Valid values are:

e 0=05s
e 1=1s
e 2=2s
e 3=4s

5506 I/0O Module: parameters[0] to [7] define the analog input type for the
corresponding input. Valid values are:

e 0=0to5Vinput

e 1=1to5Vinput

e 2=0to 20 mA input

e 3 =410 20 mA input

5506 I/O Module: parameters[8]defines the analog input filter. Valid values are:
e 0 =<3 Hz (maximum filter)

e 1=6Hz

e 2=11Hz

e 3 =30 Hz (minimum filter)

5506 I/O Module: parameters[9]defines the scan frequency. Valid values are:
e 0=60Hz

e 1=50Hz

5606 I/O Module: parameters[0] to [7] define the analog input type for the
corresponding input. Valid values are:

e 0=0to5Vinput

e 1=1to5Vinput

e 2=0to 20 mA input

e 3 =410 20 mA input

5606 I/0O Module: parameters[8]defines the analog input filter. Valid values are:

e 0 =<3 Hz (maximum filter)

Document (Version 1.61) 5/19/2011 98

Function Specifications

e 1=6Hz

e 2=11Hz

e 3 =30 Hz (minimum filter)

5606 I/O Module: parameters[9]defines the scan frequency. Valid values are:
e 0=60Hz

e 1=50Hz

5606 I/O Module: parameters[10]defines the analog output type. Valid values
are:

e 0=0to 20 mA output
e 1=41to0 20 mA output

5607 1/0O Module: parameters[0] to [7] define the analog input type for the
corresponding input. The remaining parameters are not used. Valid values are:

e 0=0to5Vinput

e 1=0to 10V input

e 2=0to 20 mA input

e 3=410 20 mA input

5607 I/O Module: parameters[8] defines the analog input filter. Valid values are:
e 0 =<3 Hz (maximum filter)

e 1=6Hz

e 2=11Hz

e 3 =30 Hz (minimum filter)

5607 I/O Module: parameters[9] defines the scan frequency. Valid values are:
e 0=60Hz

e 1=50Hz

5607 I/0O Module: parameters[10] defines the analog output type. Valid values
are:

e 0=0to 20 mA output
e 1=410 20 mA output

Notes

Up to 150 modules may be added to the Register Assignment. If the Register
Assignment is full or if an incorrect value is specified for any argument this
function returns FALSE; otherwise TRUE is returned.

Document (Version 1.61) 5/19/2011 99

Function Specifications

Output registers specified for certain CNFG type modules are initialized with the
current parameter values when the module is added to the Register Assignment
(e.g. CNFG_realTimeClock).

Call clearRegAssignment first before using the addRegAssignmentEx function
when creating a new Register Assignment.

Duplicate or overlapping register assignments are not checked for by this
function. Overlapping register assignments may result in unpredictable 1/O
activity.

To obtain error checking that avoids invalid register assignments such as these,
use the Telepace Register Assignment dialog to build the Register Assignment.
Then save the Register Assignment in a Ladder Logic file (e.g. filename.lad) and
download it with the C program, or transfer the Register Assignment to the C
program using the clearRegAssignment and addRegAssignmentEx functions.

To save the Register Assignment with the controller settings in flash memory so
that it is loaded on controller reset, call flashSettingsSave as shown in the
example below.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

addRegAssignment, clearRegAssignment

Example

#include <ctools.h>

int main (void)

{ UINT16 parameters[1l6];
request resource (IO SYSTEM) ;

/* Create the Register Assignment */
clearRegAssignment () ;

/* add a 5606 module */

parameters([0] = 0; // 0 to 5V
parameters[1] = 0; // 0 to 5V
parameters([2] = 0; // 0 to 5V
parameters([3] = 0; // 0 to 5V
parameters[4] = 3; // 4 to 20 mA
parameters([5] = 3; // 4 to 20 mA
parameters[6] = 3; // 4 to 20 mA
parameters[7] = 3; // 4 to 20 mA
parameters[8] = 0; // 3 Hz input filter
parameters[9] = 0; // 60 Hz scan frequency
parameters[10] = 1; // 4 to 20 mA outputs

addRegAssignmentEx (SCADAPack 5606I0, 0, 1, 10001, 30001,
40001, parameters);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 100

Function Specifications

// save register assignment with controller settings
request resource (FLASH MEMORY) ;

flashSettingsSave (CS_PERMANENT) ;

release resource (FLASH MEMORY) ;

Document (Version 1.61) 5/19/2011 101

Function Specifications

alarmin

Determine Alarm Time from Elapsed Time

Syntax

#include <ctools.h>

ALARM SETTING alarmIn (UINT16 hours, UINT16 minutes, UINT16
seconds) ;

Description

The alarmin function calculates the alarm settings to configure a real time clock
alarm to occur in hours, minutes and seconds from the current time.

The function returns an ALARM_SETTING structure suitable for passing to the
setClockAlarm function. The structure specifies an absolute time alarm at the
time offset specified by the call to alarmin. Refer to the Structures and Types
section for a description of the fields in the ALARM_SETTING structure.

Notes

If second is greater than 60 seconds, the additional time is rolled into the
minutes. If minute is greater than 60 minutes, the additional time is rolled into the
hours.

If the offset time is greater that one day, then the alarm time will roll over within
the current day.

The IO_SYSTEM resource needs to to be requested before calling this function.

See Also

setClockAlarm

Document (Version 1.61) 5/19/2011 102

Function Specifications

allocate_envelope
Obtain an Envelope from the RTOS

Syntax
#include <ctools.h>

envelope *allocate_envelope(void);

Description

The allocate_envelope function obtains an envelope from the operating system.
If no envelope is available, the task is blocked until one becomes available.

The allocate_envelope function returns a pointer to the envelope.

Notes

Envelopes are used to send messages between tasks. The RTOS allocates
envelopes from a pool of free envelopes. It returns envelopes to the pool when
they are de-allocated.

An application program needs to check that unneeded envelopes are de-
allocated. Envelopes may be reused.

See Also

deallocate_envelope

Example

#include <ctools.h>
extern UINT32 other task id;

void taskl (void)
{

envelope *letter;

/* send a message to another task */
/* assume it will deallocate the envelope */

letter = allocate envelope();
letter->destination = other task id;
letter->type = MSG DATA;
letter->data = 5;

send message (letter);

/* receive a message from any other task */
letter = receive message();
/* ... process the data here */

deallocate envelope (letter);

/* ... the rest of the task */

Document (Version 1.61) 5/19/2011 103

Function Specifications

allocateMemory

Allocate Non-Volatile Dynamic Memory

Syntax
#include <ctools.h>
BOOLEAN allocateMemory(void **ppMemory, UINT32 size)

Description

The allocateMemory function allocates the requested memory from the system
memory pool. The pool is a separate area of memory from the system heap.
Memory in the system pool is preserved when the controller is reset.

The function has two arguments: ppMemory, a pointer to a pointer to the memory
allocated; and size, the number of bytes of memory to be allocated.

The function returns TRUE if the memory was allocated and FALSE if the
memory is not available.

Use the freeMemory function to free non-volatile memory.

Notes

The DYNAMIC_MEMORY resource needs to be requested before calling this
function.

The allocation of memory and the allocated memory are non-volatile.

Pointers to non-volatile dynamic memory need to be statically allocated in a non-
volatile data section. Otherwise they will be initialised at reset and the non-
volatile dynamic memory will be lost. The example below demonstrates how to
create a non-volatile data section to save pointers to non-volatile dynamic
memory.

See Also

freeMemory

Example

See the Memory Allocation Example in the Examples section.

Document (Version 1.61) 5/19/2011 104

Function Specifications

bind

Bind an address to an unnamed socket

Syntax

#include <ctools.h>

int bind(

int socketDescriptor,

const struct sockaddr * addressPtr,

int addressLength);

Description

bind assigns an address to an unnamed socket. When a socket is created with
socket, it exists in an address family space but has no address assigned. bind
requests that the address pointed to by addressPtr be assigned to the socket.
Clients do not normally require that an address be assigned to a socket.
However, servers usually require that the socket be bound to a “well known”
address. The port number may be any port number between 0 and 65535.
Multiple sockets cannot bind to the same port with different IP addresses (as
might be allowed in UNIX)

Parameters

socketDescriptor The socket descriptor to assign an IP address and port
number to.

addressPtr The pointer to the structure containing the address to assign.

addressLength The length of the address structure.

Returns
0 Success
-1 An error occurred

bind can fail for any of the following reasons:
EADDRINUSE The specified address is already in use.

EBADF socketDescriptor is not a valid descriptor.

EINVAL One of the passed parameters is invalid, or socket is already
bound.

EINPROGRESS bind is already running.

Document (Version 1.61) 5/19/2011 105

Function Specifications

check_error

Get Error Code for Current Task

Syntax
#include <ctools.h>
UINT32 check_error(void);

Description

The check_error function returns the error code for the current task. The error
code is set by various I/O routines, when errors occur. A separate error code is
maintained for each task.

Notes

Some routines in the standard C library, return errors in the global variable errno.
This variable is not unique to a task, and may be modified by another task,
before it can be read.

Document (Version 1.61) 5/19/2011 106

Function Specifications

checksum

Calculate a Checksum

Syntax

#include <ctools.h>
UINT16 checksum (UCHAR *start, UCHAR *end, UINT16 algorithm);

Description

The checksum function calculates a checksum on memory. The memory starts at
the byte pointed to by start, and ends with the byte pointed to by end. The
algorithm may be one of:

ADDITIVE 16 bit byte-wise sum

CRC_16 CRC-16 polynomial checksum
CRC_CCITT CRC-CCITT polynomial checksum
BYTE_EOR 8 bit byte-wise exclusive OR

The CRC checksums use the crc_reverse function.

Example

This function displays two types of checksums.

#include <ctools.h>

void checksumExample (void)

{
char str[] = "This is a test";
UINT16 sum;

/* Display additive checksum */
sum = checksum(str, str+strlen(str), ADDITIVE);
fprintf (coml, "Additive checksum: %ul\r\n", sum);

/* Display CRC-16 checksum */
sum = checksum(str, str+strlen(str), CRC_16);
fprintf (coml, "CRC-16 checksum: %ul\r\n", sum);

Document (Version 1.61) 5/19/2011 107

Function Specifications

checkSFTranslationTable

Test for Store and Forward Configuration Errors

Syntax

#include <ctools.h>

struct SFTranslationStatus checkSFTranslationTable(void);

Description

The checkSFTranslationTable function checks all entries in the address
translation table for validity. It detects the following errors:

The function returns a SFTranslationStatus structure. Refer to the Structures and
Types section for a description of the fields in the SFTranslationStatus structure.

The code field of the structure is set to one of the following. If there is an error,

the index field is set to the location of the translation that is not valid.

Result code

Meaning

SF_VALID

All translations are valid

SF_NO_TRANSLATION

The entry defines re-transmission of the
same message on the same port

SF_PORT_OUT_OF RANG
E

One or both of the interfaces is not valid

SF_STATION_OUT_OF R
ANGE

One or both of the stations is not valid

SF_ALREADY_DEFINED

The translation already exists in the table

SF_INVALID_FORWARDIN
G_IP

The forwarding IP address is invalid.

Notes

The TeleBUS Protocols User Manual describes store and forward messaging

mode.

See Also

clearSFTranslationTable

Example

See the example for the setSFTranslationEx function.

Document (Version 1.61) 5/19/2011

108

Function Specifications

clearAllForcing

Clear All Forcing (Telepace firmware only)

Syntax

#include <ctools.h>

void clearAllForcing(void);
Description

The clearAllForcing function removes all forcing conditions from all /0O database
registers.

The IO_SYSTEM resource must be requested before calling this function.

See Also

setForceFlag, getForceFlag, overrideDbase

Document (Version 1.61) 5/19/2011 109

Function Specifications

clearBreakCondition

Clear a break condition on a serial port.

Syntax
#include <ctools.h>
void clearBreakCondition (
FILE *stream
)
Parameters
stream is a pointer to a serial port; valid serial ports are com1, com2, com3, and
com4.
Description
The clearBreakCondition function clears a break condition on the communication
port specified by stream. The communication port will return to idle status.
Notes
This function is only relevant for RS232 ports. The function will have no effect on
other port types.
See Also

setBreakCondition

Document (Version 1.61) 5/19/2011 110

Function Specifications

clear_errors

Clear Serial Port Error Counters

Syntax

#include <ctools.h>

void clear errors (UCHAR port);
Description

The clear_errors function clears the serial port error counters for the serial port
specified by port. If port is not a valid serial port the function has no effect.

The I0_SYSTEM resource needs to be requested before calling this function.

Document (Version 1.61) 5/19/2011 111

Function Specifications

clear_protocol_status

Clear Protocol Counters

Syntax

#include <ctools.h>

void clear protocol status(FILE *stream);
Description

The clear_protocol_status function clears the error and message counters for the
serial port specified by port. If port is not a valid serial port the function has no
effect.

The IO_SYSTEM resource needs to be requested before calling this function.

Document (Version 1.61) 5/19/2011 112

Function Specifications

clearLoginCredentials

Clears all configured usernames and passwords for the specified service

Syntax

#include <ctools.h>

BOOLEAN clearLoginCredentials (
UINT32 service

)

Parameters

service specifies the service for which the credentials are being cleared.

Description

The clearLoginCredentials function removes all configured usernames and
passwords from the specified service. True is returned if the usernames and
passwords were removed. False is returned if the usernames and passwords
could not be removed.

Notes

Valid services are:

0=FTP

See Also

setLoginCredentials, getLoginCredentials

Document (Version 1.61) 5/19/2011 113

Function Specifications

clearRegAssignment

Clear Register Assignment (Telepace firmware only)

Syntax

#include <ctools.h>

void clearRegAssignment (void) ;
Description

The clearRegAssignment function erases the current Register Assignment. Call
this function first before using the addRegAssignment function to create a new
Register Assignment.

To save the Register Assignment with the controller settings in flash memory so
that it is loaded on controller reset, call flashSettingsSave as shown in the
example for addRegAssignment.

The IO_SYSTEM resource must be requested before calling this function.

See Also

addRegAssignment

Example

See example for addRegAssignment.

Document (Version 1.61) 5/19/2011 114

Function Specifications

clearSFTranslationTable

Clear Store and Forward Translation Configuration

Syntax

#include <ctools.h>

void clearSFTranslationTable (void) ;
Description

The clearSFTranslationTable function clears all entries in the store and forward
translation table.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request_resource(FLASH_MEMORY);
flashSettingsSave(CS_RUN);
release_resource(FLASH_MEMORY);

Notes

The TeleBUS Protocols User Manual describes store and forward messaging
mode.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

checkSFTranslationTable

Document (Version 1.61) 5/19/2011 115

Function Specifications

clearStatusBit

Clear Bits in Controller Status Code

Syntax

#include <ctools.h>

UINT16 clearStatusBit (UINT16 bitMask);
Description

The clearStatusBit function clears the bits indicated by bitMask in the controller
status code. When the status code is non-zero, the STAT LED blinks a binary
sequence corresponding to the code. If code is zero, the STAT LED turns off.

The function returns the value of the status register.

Notes

The status output opens if code is non-zero. Refer to the System Hardware
Manual for more information.

The binary sequence consists of short and long flashes of the error LED. A short
flash of 1/10th of a second indicates a binary zero. A longer flash of
approximately 1/2 of a second indicates a binary one. The least significant digit is
output first. As few bits as possible are displayed — all leading zeros are ignored.
There is a two-second delay between repetitions.

The STAT LED is located on the top left hand corner of the controller board.

Bits 0, 1 and 2 of the status code are used by the controller firmware. Attempting
to control these bits will result in indeterminate operation.

See Also

setStatusBit, getStatusBit

Document (Version 1.61) 5/19/2011 116

Function Specifications

clear_tx

Clear Serial Port Transmit Buffer

Syntax
#include <ctools.h>
void clear tx(FILE *stream);

Description

The clear_tx function clears the transmit buffer for the serial port specified by
port. If port is not a valid serial port the function has no effect.

Document (Version 1.61) 5/19/2011 117

Function Specifications

close

Syntax

#include <ctools.h>
int close

(

int socketDescriptor
)7
Description
This function is used to close a socket.
Parameters

socketDescriptor The socket descriptor to close

Returns

0 Operation completed successfully

-1 An error occurred

close can fail for the following reasons:
TM_EBADF The socket descriptor is invalid.

TM_ESHUTDOWN A write shutdown has already been performed on the
socket (TCP socket only).

TM_EALREAY A previous close call is already in progress.

TM_ECONNABORTED The TCP connection was reset because the linger option
was on with a timeout value of 0 (TCP socket only).

TM_ETIMEDOUT The linger option was on with a non-zero timeout value,
and the linger timeout expired before the TCP close handshake with the remote
host could complete (blocking TCP socket only).

Document (Version 1.61) 5/19/2011 118

Function Specifications

configurationRegisterMapping

Enable or disable mapping of device configuration registers.

Syntax

#include <ctools.h>

void configurationRegisterMapping (
BOOLEAN enabled

) i

Description

This function enables or disables mapping of device configuration registers.
These registers are located at a fixed location in the input register area.

enabled selects if the registers are mapped. Valid values are TRUE and FALSE.
Selecting FALSE hide the configuration data but does not change it.
See Also

configurationSetApplicationID

Document (Version 1.61) 5/19/2011 119

Function Specifications

configurationSetApplicationID

Set an application ID.

Syntax

#include <ctools.h>
BOOLEAN configurationSetApplicationID (
UINT16 applicationType,
UINT16 action,
UINT16 companyID,
UINT16 application,
UINT16 version
) i

Description

This function stores or removes an application ID in the device configuration
data. The device configuration appears in Modbus registers if the register
mapping is enabled.

applicationType specifies the type of application. It is one of DCAT_LOGIC1,
DCAT_LOGIC2, or DCAT_C.

o DCAT_LOGIC1: Device configuration application type is the first logic
application.

o DCAT_LOGIC2: Device configuration application type is the second logic
application.

o DCAT_C: Device configuration application type is a C application.

If DCAT_C is used, the application ID is added to the table of C applications. The
applications don’t appear in any fixed order in the C application table.

action specifies if the ID is to be added or removed. Valid values are DCA_ADD
and DCA_REMOVE.

e DCA_ADD: attempting to add a duplicate value (matching companyID,
application, and version) will result in only one entry in the table. The function
will return TRUE (indicating the data is in the table).

¢ DCA_REMOVE: For logic applications the ID will be removed
unconditionally. For C applications, the ID will be removed if it is found in the
table (matching companylD, application, and version).

companylD specifies your company. Contact Control Microsystems to obtain a
company ID. 0 indicates an unused entry.

application specifies your application. Valid values are 0 to 65535. You need to
maintain unigue values for your company.

version is the version of your application in the format major * 100 + minor. Valid
values are 0 to 65535.

The function returns TRUE if the action was successful, and FALSE if an error
occurred.

Document (Version 1.61) 5/19/2011 120

Function Specifications

Register Mapping

The Device configuration is stored in Modbus input (3xxxx) registers as shown
below. The registers are read with standard Modbus commands. These registers
cannot be written to. Device configuration registers used fixed addresses. This
facilitates identifying the applications in a standard manner.

The Device configuration registers can be enabled or disabled by entering a 0 or
1 in the Start Register. They are disabled until enabled by a logic application.
This provides compatibility with controllers that have already used these registers
for other purposes.

The application IDs are cleared on every controller reset. Applications need to
run and set the application ID for it to be valid.

These data types are used.

Data Type

Description

uint

Unsigned 16-bit integer

uchar

Unsigned 8-bit character

type[n]

n—element array of specified data type

The following information is stored in the device configuration. 2 logic application
identifiers are provided for compatibility with SCADAPack ES/ER controllers that
provide 2 IEC 61131-1 applications. The second logic application identifier is not
used with other controllers. 32 application identifiers are provided to
accommodate C applications in SCADAPack 330/350 controllers.

These registers cannot be used for other purposes in logic or C/C++ application.
This includes the following uses:

e masterMessage function that uses 39800 to 39999 as destination registers.

e setForceFlag function that use 39800 to 39999 as destination registers.

e Any registerAssignment that uses registers 39800 to 39999.

Register Data Type Description

39800 uchar[8] Controller ID (padded with nulls = 0), first byte in
lowest register, one byte per register.

39808 uint Firmware version (major*100 + minor)

39809 uint Firmware version build number (if applicable)

39810 uint[3] Logic application 1 identifier (see format below)

39813 uint[3] Logic application 2 identifier (see format below)

39816 uint Number of applications identifiers used (0 to 32)
Identifiers are listed sequentially starting with
identifier 1. Unused identifiers will return 0.

39817 uint[3] Application identifier 1 (see format below)

39820 uint[3] Application identifier 2 (see format below)

Document (Version 1.61) 5/19/2011

121

Function Specifications

Register Data Type Description

39823 uint[3] Application identifier 3 (see format below)
39826 uint[3] Application identifier 4 (see format below)
39829 uint[3] Application identifier 5 (see format below)
39832 uint[3] Application identifier 6 (see format below)
39835 uint[3] Application identifier 7 (see format below)
39838 uint[3] Application identifier 8 (see format below)
39841 uint[3] Application identifier 9 (see format below)
39844 uint[3] Application identifier 10 (see format below)
39847 uint[3] Application identifier 11 (see format below)
39850 uint[3] Application identifier 12 (see format below)
39853 uint[3] Application identifier 13 (see format below)
39856 uint[3] Application identifier 14 (see format below)
39859 uint[3] Application identifier 15 (see format below)
39862 uint[3] Application identifier 16 (see format below)
39865 uint[3] Application identifier 17 (see format below)
39868 uint[3] Application identifier 18 (see format below)
39871 uint[3] Application identifier 19 (see format below)
39874 uint[3] Application identifier 20 (see format below)
39877 uint[3] Application identifier 21 (see format below)
39880 uint[3] Application identifier 22 (see format below)
39883 uint[3] Application identifier 23 (see format below)
39886 uint[3] Application identifier 24 (see format below)
39889 uint[3] Application identifier 25 (see format below)
39892 uint[3] Application identifier 26 (see format below)
39895 uint[3] Application identifier 27 (see format below)
39898 uint[3] Application identifier 28 (see format below)
39901 uint[3] Application identifier 29 (see format below)
39904 uint[3] Application identifier 30 (see format below)
39907 uint[3] Application identifier 31 (see format below)
39910 uint[3] Application identifier 32 (see format below)
39913 to Reserved for future expansion

39999

Application Identifier

The application identifier is formatted as follows.

Data Type

Description

uint

Company ID (see below)

uint

Application number (0 to 65535)

Document (Version 1.61) 5/19/2011

122

Function Specifications

uint Application version (major*100 + minor)

Company Identifier

Control Microsystems will maintain a list of company identifiers to keep the
company IDs is unique. Contact the technical support department.

Company ID 0 indicates an identifier is unused.

See Also
configurationRegisterMapping

Notes

Application IDs for C programs are not automatically removed. A task exit
handler can be used to remove the ID when the C application is ended.

Application IDs are cleared when the controller is reset.

Document (Version 1.61) 5/19/2011 123

Function Specifications

connect

Syntax

#include <ctools.h>

int connect

(

int socketDescriptor,

const struct sockaddr * addressPtr,
int addressLength

);

Description

The parameter socketDescriptor is a socket. If it is of type SOCK_DGRAM,
connect specifies the peer with which the socket is to be associated; this address
is the address to which datagrams are to be sent if a receiver is not explicitly
designated; it is the only address from which datagrams are to be received. If the
socket socketDescriptor is of type SOCK_STREAM, connect attempts to make a
connection to another socket (either local or remote). The other socket is
specified by addressPtr. addressPtr is a pointer to the IP address and port
number of the remote or local socket. If socketDescriptor is not bound, then it will
be bound to an address selected by the underlying transport provider. Generally,
stream sockets may successfully connect only once; datagram sockets may use
connect multiple times to change their association. Datagram sockets may
dissolve the association by connecting to a null address.

Aa non —blocking connect is allowed. In this case, if the connection has not been
established, the connect call will fail with a EINPROGRESS error code.
Additional calls to connect will fail with EALREADY error code, as long as the
connection has not completed. When the connection has completed, additional
calls to connect will return with no error to indicate that the connection is now
established.

Parameters
socketDescriptor The socket descriptor to assign a name (port number) to.
addressPtr The pointer to the structure containing the address to

connect to for TCP. For UDP it is the default address to
send to and the only address to receive from.

addressLength The length of the address structure.

Returns
0 Success
-1 An error occurred.

connect can fail for any of the following reasons:

EADDRINUSE The socket address is already in use. The calling
program should close the socket descriptor, and issue

Document (Version 1.61) 5/19/2011 124

Function Specifications

EADDRNOTAVAIL

EAFNOSUPPORT

EINPROGRESS

EALREADY

EBADF
ECONNREFUSED

EPERM
EINVAL
EISCONN

EHOSTUNREACH
EPROTOTYPE

ETIMEDOUT

another socket call to obtain a new descriptor before
attempting another connect call.

The specified address is not available on the remote /
local machine.

Addresses in the specified address family cannot be
used with this socket.

The socket is non-blocking and the current connection
attempt has not yet been completed.

The socket is non-blocking and a previous connection
attempt has not yet been completed.

socketDescriptor is not a valid descriptor.

The attempt to connect was forcefully rejected. The
calling program should close the socket descriptor, and
issue another socket call to obtain a new descriptor
before attempting another connect call.

Cannot call connect after listen call.
One of the parameters is invalid

The socket is already connected. The calling program
should close the socket descriptor, and issue another
socket call to obtain a new descriptor before attempting
another connect call.

No route to the host we want to connect to.

The socket referred to by addressPtr is a socket of a
type other than type socketDescriptor (for example,
socketDescriptor is a SOCK_DGRAM socket, while
addressPtr refers to a SOCK_STREAM socket).

Connection establishment timed out, without establishing
a connection. The calling program should close the

socket descriptor, and issue another socket call to obtain
a new descriptor before attempting another connect call.

Document (Version 1.61) 5/19/2011

125

Function Specifications

copy
Copy aFile

Syntax

#include <ctools.h>
STATUS copy (const char* source, const char* destination);

Description

The copy function copies the file source to the path qualified file name
destination.

If the copy operation failed then ERROR is returned. OK is returned if the copy
operation completed successfully.
See Also

xcopy, xdelete

Document (Version 1.61) 5/19/2011 126

Function Specifications

crc_reverse
Calculate a CRC Checksum

Syntax

#include <ctools.h>
UINT16 crc reverse (UCHAR *start, UCHAR *end, UINT16 poly, UINT16
initial);

Description

The crc_reverse function calculates a CRC type checksum on memory using the
reverse algorithm. The memory starts at the byte pointed to by start, and ends
with the byte pointed to by end. The generator polynomial is specified by poly.
poly may be any value, but needs to be carefully chosen to ensure good error
detection. The checksum accumulator is set to initial before the calculation is
started.

Notes

The reverse algorithm is named for the direction bits are shifted. In the reverse
algorithm, bits are shifted towards the least significant bit. This produces different
checksums than the classical, or forward algorithm, using the same polynomials.
See Also

checksum

Document (Version 1.61) 5/19/2011 127

Function Specifications

create_task

Create a New Task

Syntax
#include <ctools.h>
INT32 create_task(void *function, UINT32 priority, UINT32 type, UINT32 stack);

Description

The create_task function allocates stack space for a task and places the task on
the ready queue. function specifies the start address of the routine to be
executed. The task will execute immediately if its priority is lower than the current
executing task.

priority is an execution priority between 0 and 254 for the created task. The
lowest priority is 254, and the highest priority is 0. The 255 task priority levels aid
in scheduling task execution. See the notes below for recommended priority
values.

type specifies if the task is ended when an application program is stopped. Valid
values for type are:

SYSTEM System tasks do not terminate when the program stops.

applicationGroup Application tasks terminate when the program stops.
Use this global variable for all calls to create_task by the
same application. The operating system assigns a
unique value to applicationGroup when it is defined in
appstart.cpp.

It is recommended that only application type tasks be created.

The stack parameter specifies how many stack blocks are allocated for the task.
Each stack block is 512 bytes.

The create_task function returns the task ID (TID) of the task created. If an error
occurs, -1 is returned.

Notes
Refer to the Real Time Operating System section for more information on tasks.

The main task and the Ladder Logic and I/O scanning task have a priority of 100.
If the created task is continuously running processing code, create the task with a
priority of 100. The scheduling algorithm of the operating system will give each
task of the same priority time slices to share the CPU.

For tasks such as a protocol handler, that wait for an event using the wait_event
or receive_message function, a priority higher than 100 (e.g. 75) may be selected
without blocking other lower priority tasks.

The number of stack blocks required depends on the functions called within the
task, and the size of local variables created. Tasks usually require 2 stack blocks.

Document (Version 1.61) 5/19/2011 128

Function Specifications

If the fprintf function is used, then at least 5 stack blocks are required. Add local
variable usage to these limits, if large local arrays or structures are created.
Large structures and arrays are usually handled as static global variables within
the task source file. (The variables are global to all functions in the task, but
cannot be seen by functions in other files.)

Additional stack space may be made available by disabling unused protocol
tasks. See the section Program Development or the set_protocol function for
more information.

See Also

end_task

Example

See the Create Task Example in the Examples section.

Document (Version 1.61) 5/19/2011 129

Function Specifications

databaseRead

Read Value from I/O Database

Syntax

#include <ctools.h>
BOOLEAN databaseRead (UINT16 addrMode, UINT16 address, INT1l6 *
value) ;

Description

The databaseRead function reads a value from the database. addrMode
specifies the method of addressing the database. address specifies the location
in the database. The table below shows the valid address modes and ranges

Type Address Ranges Register
Size
MODBUS | 00001 to NUMCOIL 1 bit
10001 to 10000 + NUMSTATUS 1 bit
30001 to 30000 + NUMINPUT 16 bit
40001 to 40000 + NUMHOLDING 16 bit
LINEAR 0 to NUMLINEAR-1 16 bit
Notes

The function databaseRead returns TRUE if the requested database value was
read. FALSE is returned if the requested database entry could not be read. If
the specified reqister is currently forced, databaseRead reads the forced register
value into the memory pointed to by value.

The 1/O database is not modified when the controller is reset. It is a permanent
storage area, which is maintained during power outages.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

databaseWrite

Document (Version 1.61) 5/19/2011 130

Function Specifications

databaseWrite
Write Value to I/O Database

Syntax

#include <ctools.h>
BOOLEAN databaseWrite (UINT16 addrMode, UINT16 address, INT16
value) ;

Description

The databaseWrite function writes a value to the database. addrMode specifies
the method of addressing the database. address specifies the location in the
database. The table below shows the valid address modes and ranges

Type Address Ranges Register
Size
MODBUS | 00001 to NUMCOIL 1 bit
10001 to 10000 + NUMSTATUS 1 bit
30001 to 30000 + NUMINPUT 16 bit
40001 to 40000 + NUMHOLDING 16 bit
LINEAR 0 to NUMLINEAR-1 16 bit
Notes

The function databaseWrite returns TRUE if the requested database value was
written. FALSE is returned if the requested database entry could not be written.

The 1/O database is not modified when the controller is reset. It is a permanent
storage area, which is maintained during power outages.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

databaseRead

Document (Version 1.61) 5/19/2011 131

Function Specifications

datalogCreate

Create Data Log Function

Syntax
#include <ctools.h>
DATALOG_STATUS datalogCreate(
UINT16 logID,
DATALOG_CONFIGURATION * pLogConfiguration);

Description

This function creates a data log with the specified configuration. The data log is
created in the data log memory space.

The function has two parameters. logID specifies the data log to be created. The
valid range is 0 to 15. pLogConfiguration points to a structure with the
configuration for the data log.

The function returns the status of the operation.

Notes

The configuration of an existing data log cannot be changed. The log needs to be
deleted and recreated to change the configuration.

All data logs are stored in memory from a pool for all data logs. If there is
insufficient memory the creation operation fails. The function returns
DLS_NOMEMORY.

If the data log already exists the creation operation fails. The function returns
DLS_EXISTS.

If the log ID is not valid the creation operation fails. The function returns
DLS_BADID.

If the configuration is not valid the creation operation fails. The function returns
DLS_BADCONFIG.

See Also

See example Datalog program in the Example Programs section.

datalogDelete, datalogSettings

Example

This program creates a data log and writes one record to it.
#include <ctools.h>
/* Structure used to copy one record into data log */

struct dataRecord

{

Document (Version 1.61) 5/19/2011 132

Function Specifications

UINT1l6 valuel;
INT32 wvalue2;
double value3;
float wvalued;
float wvalue5;

}i

int main (void)
{
UINT16 logID;
DATALOG_CONFIGURATION dLogConfig; /* log configuration */
struct dataRecord data; /* sample
record */

/* Assign a number to the data log */
logID = 10;

/* Fill in the log configuration structure */
dLogConfig.records = 200;
dLogConfig.fields = 5;

dLogConfig.typesOfFields[0] = DLV UINT16;
dLogConfig.typesOfFields[1] = DLV _INT32;
dLogConfig.typesOfFields[2] = DLV DOUBLE;
dLogConfig.typesOfFields([3] = DLV_FLOAT;
dLogConfig.typesOfFields[4] = DLV FLOAT;

/* Assign some data for the log */
data.valuel = 100;

data.value2 = 200;

data.value3 30000;

data.valued 40;

data.valueb5 = 50;

if (datalogCreate (logID, &dLogConfig) == DLS CREATED)
{

/* Start writing records in log */

if (datalogWrite (logID, (UINTl6 *)&data))

{
/* one record was written in data log */

}

}

Document (Version 1.61) 5/19/2011 133

Function Specifications

datalogDelete

Delete Data Log Function

Syntax
#include <ctools.h>
BOOLEAN datalogDelete(UINT16 logID);

Description

This function destroys the specified data log. The memory used by the data log is
returned to the freed.

The function has one parameter. logID specifies the data log to be deleted. The
valid range is O to 15.

The function returns TRUE if the data log was deleted. The function returns
FALSE if the log ID is not valid or if the log had not been created.

Example
See example Datalog program in the Example Programs section.

This program shows the only way to change the configuration of an existing log,
which is to delete the log and recreate the data log.

#include <ctools.h>

int main (void)
{
UINT16 logID;
DATALOG CONFIGURATION dLogConfig;

/* Select logID #10 */
logID = 10;

/* Read the configuration of logID #10 */

if (datalogSettings (logID, &dLogConfig))

{
if (dLogConfig.typesOfFields[0] == DLV INT16)
{

/* Wrong type. Delete log and create new one

*/
if (datalogDelete (logID))
{
/* Re-enter the log configuration */
dLogConfig.records = 200;
dLogConfig.fields = 5;
dLogConfig.typesOfFields[0] =
DLV _UINT16;
dLogConfig.typesOfFields[1l] =
DLV_INT32;
dLogConfig.typesOfFields[2] =
DLV_DOUBLE;

Document (Version 1.61) 5/19/2011 134

Function Specifications

dLogConfig.typesOfFields[3] =

DLV _FLOAT;
dLogConfig.typesOfFields[4] =
DLV _FLOAT;
datalogCreate (logID, &dLogConfig);
}
else
{
/* could not delete log */
}
}
}
else

/* Could not read settings */

Document (Version 1.61) 5/19/2011 135

Function Specifications

datalogPurge

Purge Data Log Function

Syntax

#include <ctools.h>

BOOLEAN datalogPurge(
UINT16 logID,
BOOLEAN purgeAll,
UINT32 sequenceNumber);

Description

This function removes records from a data log. The function can remove all the
records, or a group of records starting with the oldest in the log.

The function has three parameters. loglD specifies the data log. The valid range
is 0 to 15. If purgeAll is TRUE, all records are removed, otherwise the oldest
records are removed. sequenceNumber specifies the sequence number of the
most recent record to remove. All records up to and including this record are
removed. This parameter is ignored if purgeAll is TRUE.

The function returns TRUE if the operation succeeds. The function returns
FALSE if the log ID is invalid, if the log has not been created, or if the sequence
number cannot be found in the log.

Notes

Purging the oldest records in the log is usually done after reading the log. The
sequence number used is that of the last record read from the log. This removes
the records that have been read and leaves any records added since the records
were read.

If the sequence number specifies a record that is not in the log, no records are
removed.

See Also
See example Datalog program in the Example Programs section.

datalogReadStart, datalogReadNext, datalogWrite

Example

#include <ctools.h>

int main (void)

{
UINT16 logID;
UINT32 sequenceNumber;
BOOLEAN purgeAll;

Document (Version 1.61) 5/19/2011 136

Function Specifications

/* select data log to be purged */
logID = 10;

/* set flag to purge only part of data log */
purgeAll = FALSE;

/* purge the oldest 150 records */
sequenceNumber = 150;

if (datalogPurge (logID, purgeAll, sequenceNumber))
{
/* Successful at purging the first 150 records of
log. */
/* Start writing records again. */

}

/* To purge the entire data log, set flag to TRUE */
purgeAll = TRUE;

/* call function with same parameters */

if (datalogPurge (logID, purgeAll, sequenceNumber))

{
/* Successful at purging the entire data log. */
/* Start writing records again. */

Document (Version 1.61) 5/19/2011 137

Function Specifications

datalogReadNext
Read Data Log Next Function

This function returns the next record in the data log.

Syntax

#include <ctools.h>

BOOLEAN datalogReadNext (
UINT16 logID,
UINT32 sequenceNumber,
UINT32 * pSequenceNumber,
UINT32 * pNextSequenceNumber,
UINT16 * pData);

Description

This function reads the next record from the data log starting at the specified
sequence number. The function returns the record with the specified sequence
number if it is present in the log. If the record no longer exists it returns the next
record in the log.

The function has five parameters. logID specifies the data log. The valid range is
0 to 15. sequenceNumber is sequence number of the record to be read.
pSequenceNumber is a pointer to a variable to hold the sequence number of the
record read. pNextSequenceNumber is a pointer to a variable to hold the
sequence number of the next record in the log. This is hormally used for the next
call to this function. pData is a pointer to memory to hold the data read from the
log.

The function returns TRUE if a record is read from the log. The function returns
FALSE if the log ID is not valid, if the log has not been created or if there are no
more records in the log.

Notes

Use the datalogReadStart function to obtain the sequence number of the oldest
record in the data log.

The pData parameter needs to point to memory of sufficient size to hold all the
data in a record.

It is normally necessary to call this function until it returns FALSE in order to read
all the data from the log. This accommodates cases where data is added to the
log while it is being read.

If data is read from the log at a slower rate than it is logged, it is possible that the
sequence numbers of the records read will not be sequential. This indicates that
records were overwritten between calls to read data.

The sequence number rolls over after reaching its maximum value.

Document (Version 1.61) 5/19/2011 138

Function Specifications

See Also
See example DatalLog program in the Example Programs section.

datalogReadStart, datalogPurge, datalogWrite

Example

See the example for datalogReadStart.

Document (Version 1.61) 5/19/2011 139

Function Specifications

datalogReadStart
Read Data Log Start Function

Syntax
#include <ctools.h>
BOOLEAN datalogReadStart(
UINT16 logID,
UINT32 * pSequenceNumber);

Description

This function returns the sequence number of the record at the start of the data
log. This is the oldest record in the log.

The function has two parameters. logID specifies the data log. The valid range is
0 to 15. pSequenceNumber is a pointer to a variable to hold the sequence
number.

The function returns TRUE if the operation succeeded. The function returns
FALSE if the log ID is not valid or if the log has not been created.

Notes

Use the datalogReadNext function to read records from the log.

The function will return a sequence number even if the log is empty. In this case
the next call to datalogReadNext will return no data.

See Also
See example Datalog program in the Example Programs section.

datalogReadNext, datalogPurge, datalogWrite

Example

#include <ctools.h>
#include <stdlib.h>

int main (void)
{
UINT16 logID, recordSize, *pData;
UINT32 sequenceNumber, segNumRead, nextSegNum;

/* Select data log #10 */
logID = 10;

/* Find first record in data log #10 and store
its sequence number in sequenceNumber */

if (datalogReadStart (logID, &sequenceNumber))

{

/* Get the size of this record */

Document (Version 1.61) 5/19/2011 140

Function Specifications

if (datalogRecordSize (logID, &recordSize))

{
/* allocate memory of size recordSize */
pData = (UINT1l6 *)malloc (recordSize);

/* read this record */
if (datalogReadNext (logID, sequenceNumber,
&segNumRead, &nextSegNum, pData))
{
/* use pData to access record contents

*/

Document (Version 1.61) 5/19/2011 141

Function Specifications

datalogRecordSize

Data Log Record Size Function

Syntax

#include <ctools.h>
BOOLEAN datalogRecordSize (
UINT16 logID,
UINT16 * pRecordSize);
Description

This function returns the size of a record for the specified data log. The log needs
to have been previously created with the datalogCreate function.

The function has two parameters. logID specifies the data log. The valid range is
0 to 15. pRecordSize points to a variable that will hold the size in bytes of each
record in the log.

The function returns TRUE if the operation succeeded. The function returns
FALSE if the log ID is invalid or if the data log does not exist.

Notes

This function is useful in determining how much memory needs to be allocated
for a call to datalogReadNext or datalogWrite.

See Also

See example Datalog program in the Example Programs section.

datalogSettings

Example

See the example for datalogReadStart.

Document (Version 1.61) 5/19/2011 142

Function Specifications

datalogSettings

Data Log Settings Function

Syntax

#include <ctools.h>
BOOLEAN datalogSettings (

UINT16 logID,

DATALOG CONFIGURATION * pLogConfiguration);
Description

This function reads the configuration of the specified data log. The log needs to
have been previously created with the datalogCreate function.

The function has two parameters. logID specifies the data log. The valid range is
0 to 15. pLogConfiguration points to a structure that will hold the data log
configuration.

The function returns TRUE if the operation succeeded. The function returns
FALSE if the log ID is invalid or if the data log does not exist.

Notes

The configuration of an existing data log cannot be changed. The log needs to be
deleted and recreated to change the configuration.

See Also

See example Datalog program in the Example Programs section.

datalogRecordSize

Example

See example for datalogDelete.

Document (Version 1.61) 5/19/2011 143

Function Specifications

datalogWrite
Write Data Log Function

Syntax

#include <ctools.h>
BOOLEAN datalogWrite (
UINT16 logID,
UINT16 * pData);
Description

This function writes a record to the specified data log. The log needs to have
been previously created with the datalogCreate function.

The function has two parameters. logID specifies the data log. The valid range is
0 to 15. pData is a pointer to the data to be written to the log. The amount of data
copied using the pointer is determined by the configuration of the data log.

The function returns TRUE if the data is added to the log. The function returns
FALSE if the log ID is not valid or if the log does not exist.
Notes

Refer to the datalogCreate function for details on the configuration of the data
log.
If the data log is full, then the oldest record in the log is replaced with this record.

See Also
See example Datalog program in the Example Programs section.

datalogReadStart, datalogReadNext, datalogPurge

Example

See the example for datalogReadStart.

Document (Version 1.61) 5/19/2011 144

Function Specifications

dbase

Read Value from I/O Database

Syntax

#include <ctools.h>

INT16 dbase (UINT1l6 type, UINT16 address);
Description

The dbase function reads a value from the database. type specifies the method
of addressing the database. address specifies the location in the database. The
table below shows the valid address types and ranges

Type Address Ranges Register
Size
MODBUS | 00001 to NUMCOIL 1 bit
10001 to 10000 + NUMSTATUS 1 bit
30001 to 30000 + NUMINPUT 16 bit
40001 to 40000 + NUMHOLDING 16 bit
LINEAR 0 to NUMLINEAR-1 16 bit
Notes

If the specified register is currently forced, dbase returns the forced value for the
register.

The I/0O database is not modified when the controller is reset. It is a permanent
storage area, which is maintained during power outages.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

setdbase

Example

#include <ctools.h>
int main (void)
{
int a;
request resource (IO SYSTEM) ;

/* Read Modbus status input point */
a = dbase (MODBUS, 10001);

/* Read 16 bit register */
a = dbase (LINEAR, 3020);

/* Read 16 bit register beginning at first
status register */

Document (Version 1.61) 5/19/2011 145

Function Specifications

a = dbase (LINEAR, START STATUS);

/* Read 6th input register */
a = dbase (LINEAR, START INPUT + 5);

release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 146

Function Specifications

Dbase Handler Function
User Defined Dbase Handler Function

The dbase handler function is a user-defined function that handles reading of
Modbus addresses not assigned in the IEC 61131-1 Dictionary. The function can
have any name; dbaseHandler is used in the description below.

Syntax

#include <ctools.h>

BOOLEAN dbaseHandler (
UINT16 address,
INT * value
)

Description

This function is called by the dbase function when one of the following conditions
apply:

e Thereis no IEC 61131-1 application downloaded, or

e Thereis no IEC 61131-1 variable assigned to the specified Modbus address.
The function has two parameters:

e The address parameter is the Modbus address to be read.

e The value parameter is a pointer to an integer containing the current value at
address.

If the address is to be handled, the handler function needs to return TRUE and
the value pointed to by value needs to be set to the current value for the
specified Modbus address.

If the address is not to be handled, the function needs to return FALSE and the
value pointed to by value needs to be left unchanged.
Notes

The IO_SYSTEM resource must be requested before calling dbase, which calls
this handler. Requesting the IO_SYSTEM resource allows that only one task may
call the handler at a time. Therefore, the function does not have to be re-entrant.

An array may be defined to store the current values for all Modbus addresses
handled by this function. See the section Data Storage if a non-initialized data
array is required.

See Also

installDbaseHandler

Document (Version 1.61) 5/19/2011 147

Function Specifications

deallocate_envelope
Return Envelope to the RTOS

Syntax

#include <ctools.h>
void deallocate envelope (envelope *penv);

Description

The deallocate_envelope function returns the envelope pointed to by penv to the
pool of free envelopes maintained by the operating system.

See Also

allocate_envelope

Example

See the example for the allocate_envelope function.

Document (Version 1.61) 5/19/2011 148

Function Specifications

dlogCreate

Create a data log using the specified configuration.

Syntax

#include <ctools.h>
dlogStatus dlogCreate (
dlogConfiguration *pConfiguration,

)

UINT32 *dlogID

Parameters

The function has these parameters:

pConfiguration is a pointer to a data log configuration structure containing the
data log configuration. See the description of the configuration structure for
details on the parameters that can be configured in the data log.

dlogID is a pointer to a variable where the data log ID will be written if the
function is successful. If the pointer is NULL, the creation of the data log will
fail and the function will return DLOGS_FAILURE.

The function returns:

DLOGS_SUCCESS if the log could be created. Valid dlogID returned as
output parameter.

DLOGS_EXISTS if a log exists with same configuration parameters. Valid
dlogID returned as output parameter.

DLOGS_DIFFERENT if a log with the same name exists with different
parameters. The dlogID is not valid.

DLOGS_NOMEMORY if the log could not be created due to lack of memory.
The dlogID is not valid.

DLOGS_INVALID if the configuration data is not valid. The dlogID is not
valid.

DLOGS_FAILURE if an error occurred during creation of the log. The dlogID
is not valid.

DLOGS_WRONGPARAM if an error occurred due to a wrong parameter.

Description

A data log has to be created before any client can log data records. The
configuration structure contains a data log name. It is a string which is used to
build the log file names. Each data log name has to be unique; a data log
creation will fail if one already exists with the same name. A data log name can
also contain a path. Therefore it is possible to have log files with the same prefix
naming but in different directories (e.g. “DIR1/LOG1” and “DIR2/LOG1”). The

Document (Version 1.61) 5/19/2011 149

Function Specifications

relative data log name will be combined with the drive name depending on the
configuration.

The dlogCreate call creates a data log instance. The data log specific buffer,
configuration and run time data are allocated in dynamic non-volatile memory.
Data log files are not created — these are created as needed by the data log
server.

If dlogCreate is called for an existing data log, the configuration parameters are
compared. If they are the same, the function returns a valid dlogID with a warning
return value (DLOGS_EXISTS). If they are different, the function returns with the
error DLOGS_DIFFERENT.

Data Log data is stored in hon-volatile memory. If this memory cannot be
allocated dlogCreate returns DLOGS_NOMEMORY.

dlogCreate returns in an output parameter a data log ID which is used for further
operations on the data log. A newly created data log won’t reuse a recently
deleted ID, although the ID will eventually recycle if enough logs are created.

Document (Version 1.61) 5/19/2011 150

Function Specifications

dlogDelete

Delete a data log and all associated resources except log files

Syntax

#include <ctools.h>
dlogStatus dlogDelete (UINT32 dlogID)

Parameters
The function has these parameters:

o dloglD is the ID of the data log to be deleted.

The function returns:

e DLOGS_SUCCESS if the data log was deleted

e DLOGS_BADID if the data log ID is not valid.

e DLOGS_FAILURE if the data log could not be deleted.

Description

This function deletes a data log. The memory for the log is freed. The data log ID
is marked as invalid. The data log server will not collect further records for this
log ID. The directory file is deleted if it is accessible. This might be not the case if
data log files were written to removable media. The data log name is removed
from the master log file.

Data Log files are not deleted. If the log was created with a path, the created
directory still exists after the log is deleted.

Document (Version 1.61) 5/19/2011 151

Function Specifications

dlogDeleteAll

Delete all data logs and all associated resources except log files

Syntax

#include <ctools.h>

dlogStatus dlogDeleteAll ()

Parameters

The function has no parameters.

The function returns:

e DLOGS_SUCCESS if all data logs were deleted

e DLOGS_FAILURE if all data logs could not be deleted

Description

This function deletes all data logs. The memory for the logs is freed. The data log
IDs are marked as invalid. The data log server will not collect further records.
Directory files are deleted if they are accessible. This might be not the case if
data log files were written to removable media. The data log names are removed
from the master log files.

Data Log files are not deleted. If a log was created with a path, the created
directory still exists after the log is deleted.

Document (Version 1.61) 5/19/2011 152

Function Specifications

dlogFlush

Flush data log buffer contents to log file

Syntax

#include <ctools.h>
dlogStatus dlogFlush (UINT32 dlogID)

Parameters
The function has these parameters:

e dloglD is the ID of the data log.

The function returns:

e DLOGS_SUCCESS if the data log was flushed. This indicates that as much
data was flushed as was possible to be flushed under current conditions.

e DLOGS_BADID if the data log ID is invalid.
o DLOGS_FAILURE if existing data cannot be flushed

Description

A dlogWrite call writes a data log record to a data log buffer. This buffer is written
regularly to the log file by the data log server. The dlogFlush function explicitly
flushes data log buffer contents to the log file.

The function flushes all or part of the buffer to the file, depending on the current
file conditions and buffer contents. If files are full, logging is suspended, or
external media is removed, the flush might not remove any records from the
buffer. If this is the case, the function returns DLOGS_FAILURE.

The file remains open after flushing. To close a file in preparation for moving it or
removing external media, use the dlogSuspend function.

See Also

dlogSuspend

Document (Version 1.61) 5/19/2011 153

Function Specifications

dlogGetStatus

Return the auto transfer and media status information of a data log

Syntax

#include <ctools.h>

dlogStatus dlogGetStatus (UINT32 dlogID, dlogTransferStatus
*transferStatus, dlogMediaStatus *mediaStatus, BOOLEAN
*extMediaInUse

)

Parameters

The function has these parameters:

e dloglD is the ID of the data log.

e transferStatus is a pointer to memory where the transfer status is written to.

e mediaStatus is a pointer to memory where the media status is written to.

. _ex_tMediaInUse is a pointer to memory where it is written if the external media
is in use or not.

The function returns:

o DLOGS_SUCCESS if status information was retrieved.

e DLOGS_BADID if the data log ID is invalid.

Description

This function returns the transfer status, media status, and “external media in
use” information of a particular data log. The transfer status indicates the result
or the progress of a recent triggered auto-transfer to a removable mass storage
device. The media status indicates the presence of log media and if it provides
space for dlog operations. The “external media in use® Boolean value shows
TRUE if the external media is in use, FALSE otherwise. Please refer to the
chapters dlogTransferStatus Type and dlogMediaStatus Type for the status
values.

DLOGS_SUCCESS is returned if the status information could be retrieved. The
only reason not be able to do this is because the input parameter dlogID is
wrong, which would result in the return value DLOGS_BADID.

Document (Version 1.61) 5/19/2011 154

Function Specifications

dlogID

Return the ID of an existing data log

Syntax

#include <ctools.h>
dlogStatus dlogID(
UCHAR * dlogName,
UINT32 * dlogID

)

Parameters
The function has these parameters:
o dlogName is a null-terminated string containing the name of the data log.

e dlogID is a pointer to a variable where the data log ID will be written if the
function is successful.

The function returns:

e DLOGS_SUCCESS if the data log ID was retrieved

o DLOGS_FAILURE if an error during data log ID retrieval occurred
e DLOGS_WRONGPARAM if an error due to wrong parameter

Description

This function maps a data log name to an ID which is used for further operations
to the data log. To obtain the data log ID the data log under the specified name

has to exist.

Document (Version 1.61) 5/19/2011

155

Function Specifications

dlogNewFile

Create a new data log file

Syntax

#include <ctools.h>

dlogStatus dlogNewFile (UINT32 dlogID)
Parameters

The function has these parameters:

e dloglD is the ID of the data log.

The function returns:
e DLOGS_SUCCESS if the new data log was created.
e DLOGS_BADID if the data log ID is invalid.

Description

This function creates a new data log file which becomes the active data log
output file. The former active file is closed and won’t be used for any further
output.

This function is useful to give the data log client the opportunity to create a new
data file by its own definition, not just when the defined log file size is exceeded.
A data log client could create daily files, for example.

Notes

The new file is not created immediately but when the first data log record is
written from the data log buffer by the data log server task. Records that remain
in the data log buffer when this function is called are not flushed automatically.
To start the new file with a specific record, call dlogFlush before calling this
function.

The oldest file will be deleted if fileRingBuffer mode is enabled and the maximum
number of files is reached. If fileRingBuffer mode is disabled no new file will be
created until older log files are deleted manually. This may cause logging to stop
(although the space in the log buffer may still be available).

See Also

dlogFlush, dlogWrite

Document (Version 1.61) 5/19/2011 156

Function Specifications

dlogResume

Resume writing to a suspended data log file

Syntax

#include <ctools.h>
dlogStatus dlogResume (UINT32 dlogID)

Parameters
The function has these parameters:

e dloglD is the ID of the data log.

The function returns:
e DLOGS_ SUCCESS if logging was resumed.
e DLOGS_BADID if the data log ID is invalid.

Description
This function resumes writing to a previously suspended data log.

If external media is configured for the data log the first connected drive name is
retrieved. If data log configuration files are not present they are created
immediately. The data log file is created when the first data log record is written
from the log buffer.

A dlogResume call on an already active data log has no impact.

See Also

dlogSuspend

Document (Version 1.61) 5/19/2011 157

Function Specifications

dlogSpace

Return the space available in the data log buffer

Syntax

#include <ctools.h>
dlogStatus dlogSpace (
UINT32 dlogID,

UINT32 * pBufferRecords
)

Parameters
The function has these parameters:
e dloglD is the ID of the data log.

o pBufferRecords is a pointer a variable to hold the number of records in the
buffer.

The function returns:

e DLOGS_SUCCESS if the number of records was returned.

e DLOGS_BADID if the data log ID is invalid.

o DLOGS_WRONGPARAM if an error due to wrong parameter happened
e DLOGS_FAILURE if an unexpected error happened.

Description

This function returns the number of records remaining in the data log buffer for
the log. This determines how many records the data log server can be written to
the log without data loss.

Document (Version 1.61) 5/19/2011 158

Function Specifications

dlogSuspend

Suspend writing to the data log file from the data log buffer

Syntax

#include <ctools.h>

dlogStatus dlogSuspend (UINT32 dlogID)
Parameters

The function has these parameters:

e dloglD is the ID of the data log.

The function returns:

e DLOGS_ SUCCESS if logging was suspended.
e DLOGS_BADID if the data log ID is invalid.

e Description

This function suspends the writing to data log files and closes any open files.
After successful suspension removal or exchange of an external drive is safe, as
is moving files to another device. Nevertheless further calls to dlogWrite are still
allowed and will succeed as long as records fit in the buffer.

dlogSuspend calls dlogFlush to move data log buffer records as possible to file
before the output is suspended.

A repeated call to dlogSuspend has no effect.

See Also

dlogResume

Document (Version 1.61) 5/19/2011 159

Function Specifications

dlogWrite
Write to a data log

Syntax

#include <ctools.h>
dlogStatus dlogWrite (

UINT32 dlogID,

UCHAR * pRecord

)

Parameters

The function has these parameters:
e dloglD is the ID of the data log.

e pRecord is a pointer to a data record to write to the log.

The function returns:
e DLOGS_SUCCESS if the write was successful.

e DLOGS_BUFFERFULL if the record could not be written because of a full
buffer

e DLOGS_BADID if the data log ID is not valid.

¢ DLOGS_FAILURE if the record could not be written due to a run-time error.

Description

This function writes a record to the data log specified by dlogID. Memory is
copied from the pointer address to the data log buffer. The data is packed as it is
written to the buffer. Gaps due to structure alignments are not written. Packing is
performed using the size and offset information specified during data log
creation.

dlogWrite stores a record sequence number at the start of the record in the
buffer. A CRC16 value is computed for the data including the heading sequence
number and stored at the end of the record.

The data log buffer is flushed regularly to data log files by the data log server
task.

See Also

dlogFlush

Document (Version 1.61) 5/19/2011 160

Function Specifications

dnpClearEventLogs
Clear DNP Event Log

Syntax

#include <ctools.h>

BOOLEAN dnpClearEventLogs (void) ;
Description

The dnpClearEventLogs function deletes all change events from the DNP
change event buffers, for all point types.

Document (Version 1.61) 5/19/2011 161

Function Specifications

dnpConnectionEvent

Report a DNP connection event

Syntax

#include <ctools.h>

void dnpConnectionEvent (
UINT16 dnpAddress,

DNP CONNECTION EVENT event);
Description

The dnpConnectionEvent function is used to report a change in connection
status to DNP. This function is only used if a custom DNP connection handler
has been installed.

dnpAddress is the address of the remote DNP station.

event is current connection status. The valid connection status settings are
DNP_CONNECTED, and DNP_DISCONNECTED.

See Also

dnplnstallConnectionHandler

Example

See the dnplinstallConnectionHandler example.

Document (Version 1.61) 5/19/2011 162

Function Specifications

dnpCreateAddressMappingTable
Create DNP Address Mapping Table

Syntax

#include <ctools.h>

BOOLEAN dnpCreateAddressMappingTable (
UINT16 size,
CHAR enableMapChangeEvents) ;

Description

The dnpCreateAddressMappingTable function destroys any existing DNP
address mapping table, and allocates memory for a new address mapping table
according to the ‘size’ parameter.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns TRUE if successful, FALSE otherwise.

Document (Version 1.61) 5/19/2011 163

Function Specifications

dnpCreateMasterPollTable
Create DNP Master Poll Table

Syntax

#include <ctools.h>
BOOLEAN dnpCreateMasterPollTable (
UINT1l6 size);

Description

This function destroys any existing DNP master poll table, and allocates memory
for a new table according to the ‘size’ parameter. The poll interval is set (in
seconds).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns TRUE if successful, FALSE otherwise.

Document (Version 1.61) 5/19/2011 164

Function Specifications

dnpCreateRoutingTable
Create Routing Table

Syntax
#include <ctools.h>
BOOLEAN dnpCreateRoutingTable (
UINT1l6 size);
Description
This function destroys any existing DNP routing table, and allocates memory for
a new routing table according to the ‘size’ parameter.
Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns TRUE if successful, FALSE otherwise.

Example

See the example in the dnpGetConfiguration section.

Document (Version 1.61) 5/19/2011 165

Function Specifications

dnpGenerateChangeEvent
Generate DNP Change Event

Syntax

BOOLEAN dnpGenerateChangeEvent (
DNP_POINT TYPE pointType,
UINT16 pointAddress

) ;i

Description

The dnpGenerateChangeEvent function generates a change event for the DNP
point specified by pointType and pointAddress.

pointType specifies the type of DNP point. Allowed values are:

Bl_POINT binary input
Al16_POINT 16 bit analog input
Al32_POINT 32 bit analog input
AISF_POINT short float analog input
Cl16_POINT 16 bit counter output
CI32_POINT 32 bit counter output

pointAddress specifies the DNP address of the point.

A change event is generated for the specified point (with the current time and
current value), and stored in the DNP event buffer.

The format of the event will depend on the Event Reporting Method and Class of
Event Object that have been configured for the point.

The function returns TRUE if the event was generated. It returns FALSE if the
DNP point is invalid, or if the DNP configuration has not been created.
Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 166

Function Specifications

dnpGenerateEventLog

Generates a change event for the DNP point

Syntax

#include <ctools.h>

BOOLEAN dnpGenerateEventLog (
UINT16 pointType,
UINT16 pointAddress);

Description

The dnpGenerateEventLog function generates a change event for the DNP point.

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 167

Function Specifications

dnpGetAl16Config
Get DNP 16-bit Analog Input Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpGetAIl6Config(

UINT16 point,

dnpAnalogInput * pAnalogInput);
Description

The dnpGetAl16Config function reads the configuration of a DNP 16-bit analog
input point.

The function has two parameters: the point number; and a pointer to an analog
input point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 168

Function Specifications

dnpGetAl32Config
Get DNP 32-bit Analog Input Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpGetAI32Config(

UINT32 point,

dnpAnalogInput * pAnalogInput);
Description

The dnpGetAl32Config function reads the configuration of a DNP 32-bit analog
input point.

The function has two parameters: the point number; and a pointer to an analog
input point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveAl32Config

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 169

Function Specifications

dnpGetAlISFConfig

Get Short Floating Point Analog Input Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpGetAISFConfig (
UINT16 point,
dnpAnalogInput *pAnalogInput) ;

Description

The dnpGetAISFConfig function reads the configuration of a DNP short floating
point analog input point.

The function has two parameters: the point number, and a pointer to a
configuration structure.

The function returns TRUE if the configuration was successfully read, or FALSE
otherwise (if the point number is not valid, or pointer is NULL, or if the DNP
configuration has not been created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 170

Function Specifications

dnpGetAO16Config
Get DNP 16-bit Analog Output Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpGetAOl6Config (

UINT16 point,

dnpAnalogOutput * pAnalogOutput) ;
Description

The dnpGetAO16Config function reads the configuration of a DNP 16-bit analog
output point.

The function has two parameters: the point number; and a pointer to an analog
output point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveAO16Config

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 171

Function Specifications

dnpGetAO32Config
Get DNP 32-bit Analog Output Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpGetAO32Config(

UINT32 point,

dnpAnalogOutput * pAnalogOutput) ;
Description

The dnpGetAO32Config function reads the configuration of a DNP 32-bit analog
output point.

The function has two parameters: the point number; and a pointer to an analog
output point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveAO32Config

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 172

Function Specifications

dnpGetAOSFConfig
Get Short Floating Point Analog Output Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpGetAOSFConfig (
UINT16 point,
dnpAnalogOutput *pAnalogOutput) ;

Description

The dnpGetAOSFConfig function reads the configuration of a DNP short floating
point analog output point.

The function has two parameters: the point number, and a pointer to a
configuration structure.

The function returns TRUE if the configuration was successfully read, or FALSE
otherwise (if the point number is not valid, or pointer is NULL, or if the DNP
configuration has not been created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 173

Function Specifications

dnpGetBIConfig

Get DNP Binary Input Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpGetBIConfig(
UINT16 point,
dnpBinaryInput * pBinaryInput);
Description
The dnpGetBIConfig function reads the configuration of a DNP binary input point.

The function has two parameters: the point number; and a pointer to a binary
input point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveBIConfig

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 174

Function Specifications

dnpGetBIConfigEx
Read DNP Binary Input Extended Point

Syntax

BOOLEAN dnpGetBIConfigEx (

UINT16 point,

dnpBinaryInputEx *pBinaryInput
) ;i

Description

This function reads the configuration of an extended DNP Binary Input point.

The function has two parameters: the point number, and a pointer to an extended
binary input point configuration structure.

The function returns TRUE if the configuration was successfully read. It returns
FALSE if the point number is not valid, if the configuration is not valid, or if the
DNP configuration has not been created.

This function supersedes dnpGetBIConfig.

Document (Version 1.61) 5/19/2011 175

Function Specifications

dnpGetBOConfig
Get DNP Binary Output Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpGetBOConfig (

UINT16 point,

dnpBinaryOutput * pBinaryOutput) ;
Description

The dnpGetBOConfig function reads the configuration of a DNP binary output
point.

The function has two parameters: the point number; and a pointer to a binary
output point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveBOConfig

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 176

Function Specifications

dnpGetCl16Config

Get DNP 16-bit Counter Input Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpGetCIl6Config (

UINT16 point,

dnpCounterInput * pCounterInput);
Description

The dnpGetCI16Config function reads the configuration of a DNP 16-bit counter
input point.

The function has two parameters: the point number; and a pointer to a counter
input point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveCl16Config

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 177

Function Specifications

dnpGetCl32Config

Get DNP 32-bit Counter Input Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpGetCI32Config(

UINT32 point,

dnpCounterInput * pCounterInput);
Description

The dnpGetCI32Config function reads the configuration of a DNP 32-bit counter
input point.

The function has two parameters: the point number; and a pointer to a counter
input point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveCI32Config

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 178

Function Specifications

dnpGetConfiguration
Get DNP Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpGetConfiguration (
dnpConfiguration * pConfiguration);
Description
The dnpGetConfiguration function reads the DNP configuration.
The function has one parameter: a pointer to a DNP configuration structure.
The function returns TRUE if the configuration was read and FALSE if an error
occurred.
Notes

This function does not return the configuration for the Unsolicited Back Off Time.
Use the function dnpGetUnsolicitedBackoffTime to get the Unsolicited Back Off
Time configuration.

See Also

dnpSaveConfiguration

Example

The following program demonstrates how to configure DNP for operation on
com2. To illustrate creation of points it uses a sequential mapping of Modbus
registers to points. This is not required. Any mapping may be used.

int main (void)

{

UINT16 index; /* loop index */

struct prot settings settings; /* protocol settings */

dnpConfiguration configuration; /* configuration settings
*/

dnpBinaryInput binaryInput; /* binary input settings
*/

dnpBinaryOutput binaryOutput; /* binary output settings
*/

dnpAnalogInput analogInput; /* analog input settings
*/

dnpAnalogOutput analogOutput; /* analog output settings
*/

dnpCounterInput counterInput; /* counter input settings
*/

/* Stop any protocol currently active on com port 2 */
get protocol (com2, &settings);
settings.type = NO_PROTOCOL;
set protocol (com2, &ésettings);

Document (Version 1.61) 5/19/2011 179

Function Specifications

/* Load the Configuration Parameters */

configuration.
configuration.
configuration.
configuration.

masterAddress
rtuAddress
datalinkConfirm
datalinkRetries

DEFAULT DLINK RETRIES;

configuration.

datalinkTimeout

DEFAULT DLINK TIMEOUT;

configuration.

operateTimeout

DEFAULT OPERATE TIMEOUT;

configuration.
configuration.

applicationConfirm
maximumResponse

DEFAULT MAX RESP LENGTH;

configuration.
configuration.
configuration.

configuration.
configuration.
configuration.
configuration.
configuration.
configuration.
configuration.
configuration.
.AIl6 number

.ATI16 reportingMethod
.AIl6 _bufferSize
.AI32 number

.AI32 reportingMethod
.AI32 bufferSize
.A0l6 number

.A032 number

configuration
configuration
configuration
configuration
configuration
configuration
configuration
configuration

configuration.

configuration.
configuration.

applicationRetries
applicationTimeout
timeSynchronization

BI number

BI cosBufferSize
BI soeBufferSize
BO number

CI16 number

CIl6 bufferSize
CI32 number

CI32 bufferSize

unsolicited

holdTime
holdCount

dnpSaveConfiguration (&configuration);

/* Start DNP protocol on com port 2 */

get protocol (com2, &settings);

settings.type

= DNP;

set protocol (com2, &settings);

DEFAULT DNP MASTER;
DEFAULT DNP RTU;
TRUE;

TRUE;

DEFAULT APPL RETRIES;
DEFAULT APPL TIMEOUT;
TIME SYNC;

8;
DEFAULT COS BUFF;
DEFAULT SOE BUFF;
8;

24;

48;

12;

24;

24;
CURRENT_VALUE;
24;

12;

CURRENT_ VALUE;
12;

8;

8;

TRUE;

DEFAULT HOLD TIME;
DEFAULT HOLD_ COUNT;

/* Save port settings so DNP protocol will automatically

start */

request resource (IO SYSTEM) ;
save (EEPROM_RUN) ;
release resource (IO SYSTEM) ;

/* Configure Binary Output Points */
index < configuration.BO number; index++)

for (index =

0;

Document (Version 1.61) 5/19/2011

180

Function Specifications

binaryOutput.modbusAddressl 1 + index;
binaryOutput.modbusAddress2 = 1 + index;
binaryOutput.controlType = NOT_ PAIRED;

dnpSaveBOConfig (index, &binaryOutput);
}

/* Configure Binary Input Points */
for (index = 0;index < configuration.BI number; index++)

{

binaryInput.modbusAddress 10001 + index;
binaryInput.class CLASS 1;
binaryInput.eventType = COS;

dnpSaveBIConfig(index, &binaryInput);
}

/* Configure 16 Bit Analog Input Points */

for (index = 0; index < configuration.AIl6 number; index++)
{
analogInput.modbusAddress = 30001 + index;
analogInput.class = CLASS 2;
analogInput.deadband =1;

dnpSaveAIloConfig(index, &analogInput);
}

/* Configure32 Bit Analog Input Points */
for (index = 0; index < configuration.AI32 number; index++)

{

analogInput.modbusAddress 30001 + index * 2;
analogInput.class CLASS 2;
analogInput.deadband =1;

dnpSaveAI32Config(index, &analoglnput) ;
}

/* Configure 16 Bit Analog Output Points */
for (index = 0;index < configuration.A0l16 number; index++)

{
analogOutput.modbusAddress = 40001 + index;

dnpSaveAOlo6Config (index, &analogOutput);
}

/* Configure 32 Bit Analog Output Points */
for (index = 0; index < configuration.A032 number; index++)

{
analogOutput.modbusAddress = 40101 + index * 2;

dnpSaveA032Config(index, &analogOutput);
}

/* Configure 16 Bit Counter Input Points */
for (index = 0; index < configuration.CI16 number; index++)

Document (Version 1.61) 5/19/2011 181

Function Specifications

counterInput.modbusAddress = 30001 + index;
counterInput.class = CLASS_ 3;
counterInput.threshold =1;

dnpSaveCIloConfig(index, &counterInput);
}

/* Configure 32 bit Counter Input Points */
for (index = 0; index < configuration.CI32 number; index++)

{

counterInput.modbusAddress 30001 + index * 2;
counterInput.class CLASS 3;
counterInput.threshold = 1;

dnpSaveCI32Config(index, &counterInput);
}

/* add additional initialization code for your application
here ... */

/* loop forever */
while (TRUE)
{

/* add additional code for your application here

*/

/* allow other tasks of this priority to execute */
release processor();

}

return;

Document (Version 1.61) 5/19/2011 182

Function Specifications

dnpGetConfigurationEx
Read DNP Extended Configuration

Syntax
BOOLEAN dnpGetConfigurationEx (
dnpConfigurationEx *pDnpConfigurationEx
);
Description
This function reads the extended DNP configuration parameters.

The function has one parameter: a pointer to the DNP extended configuration
structure.

The function returns TRUE if the configuration was successfully read, or FALSE
otherwise (if the pointer is NULL, or if the DNP configuration has not been
created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

This function supersedes the dnpGetConfiguration function.

This function does not return the configuration for the Unsolicited Back Off Time.
Use the function dnpGetUnsolicitedBackoffTime to get the Unsolicited Back Off
Time configuration.

Document (Version 1.61) 5/19/2011 183

Function Specifications

dnpGetRuntimeStatus
Get DNP Runtime Status

Syntax
#include <ctools.h>
BOOLEAN dnpGetRuntimeStatus (
DNP RUNTIME STATUS *status);
Description

The dnpGetRuntimeStatus function reads the current status of all DNP change
event buffers, and returns information in the status structure.

DNP needs to be enabled before calling this function in order to create the DNP
configuration.
Example

See the example in the dnpGetConfiguration section

Document (Version 1.61) 5/19/2011 184

Function Specifications

dnpGetUnsolicitedBackoffTime

Read the DNP unsolicited resend time.

Syntax

UINT16 dnpGetUnsolicitedBackoffTime ()

Description

The dnpGetUnsolicitedBackoffTime function reads the unsolicited resend time
from the controller.

The time is in seconds; and the allowed range is 0-65535 seconds. A value of
zero indicates that the unsolicited resend timer is disabled.

Document (Version 1.61) 5/19/2011 185

Function Specifications

dnpinstallConnectionHandler

Configures the connection handler for DNP

Syntax

#include <ctools.h>
void dnpInstallConnectionHandler (
void (* handler) (
UINT16 dnpAddress,
DNP CONNECTION EVENT event)) ;

Description

This function installs a handler that will permit user-defined actions to occur when
DNP requires a connection, message confirmation is received, or a timeout
occurs.

handler is a pointer to the handler function. If function is NULL the handler is
disabled.

The function has no return value.

Notes

The handler function needs to process the event and return immediately. If the
required action involves waiting this needs to be done outside of the handler
function. See the example below for one possible implementation.

The application needs to disable the handler when the application ends. This
prevents the protocol driver from calling the handler while the application is
stopped. Call the dnplnstallConnectionHandler with a NULL pointer. The usual
method is to create a task exit handler function to do this. See the example below
for detalils.

The handler function has one parameter.

e eventis DNP event that has occurred. It may be one of
DNP_CONNECTION_REQUIRED, DNP_MESSAGE_COMPLETE, or
DNP_MESSAGE_TIMEOUT. See the structure definition for the meaning of
these events.

The handler function has no return value.

By default no connection handler is installed and no special steps are taken
when DNP requires a connection, receives a message confirmation, or a timeout
occurs.

See Also

dnpConnectionEvent

Document (Version 1.61) 5/19/2011 186

Function Specifications

Example

This example shows how a C application can handle the events and inform a
logic application of the events. The logic application is responsible for making
and ending the dial-up connection.

The program uses the following registers.

e 10001 turns on when a connection is requested by DNP for unsolicited
reporting.

e 10002 turns on when the unsolicited report is complete.
e 10003 turns on when the unsolicited report is fails.

e The ladder logic program turns on register 1 when the connection is
complete and turns off the register when the connection is broken.

2
dnp.c
Demonstration program for using the DNP connection handler.

Copyright 2001, Control Microsystems Inc.

*/

2 -
Include Files

*/

#include <ctools.h>

2
Constants

*/

#define CONNECTION REQUIRED 10001 /* register for signaling

connection required */

#define MESSAGE COMPLETE 10002 /* register for signaling

unsolicited message is complete */

#define MESSAGE FAILED 10003 /* register for signaling

unsolicited message failed */

#define CONNECTION STATUS 1 /* connection status register */

2
Private Functions

*/

/* ___
sampleDNPHandler

This function is the user defined DNP connection handler. It will

be called by internal DNP routines when a connection is required,
when confirmation of a message is received, and when a
communication timeout occurs.

Document (Version 1.61) 5/19/2011 187

Function Specifications

The function takes a variable of type DNP CONNECTION EVENT as an
input. This input instructs the handler as to what functionality
is required.The valid choices are connection required
(DNP_CONNECTION REQUIRED), message confirmation received
(DNP_MESSAGE COMPLETE), and timeout occurred

(DNP_MESSAGE TIMEOUT) .

The function does not return any values.
*/
static void sampleDNPHandler (DNP CONNECTION EVENT event)
{
/* Determine what connection event is required or just
occurred */
switch (event)
{
case DNP_CONNECTION_REQUIRED:
/* indicate connection is needed and clear
other bits */
request resource (IO SYSTEM) ;
setdbase (MODBUS, CONNECTION_REQUIRED, 1),
setdbase (MODBUS, MESSAGE COMPLETE, 0);
setdbase (MODBUS, MESSAGE FAILED, O0);
release resource (IO SYSTEM) ;
break;

case DNP MESSAGE COMPLETE:

/* indicate message sent and clear other bits
*/

request resource (IO SYSTEM) ;

setdbase (MODBUS, CONNECTION REQUIRED, O0);

setdbase (MODBUS, MESSAGE COMPLETE, 1);

setdbase (MODBUS, MESSAGE FAILED, O0);

release resource (IO SYSTEM) ;

break;

case DNP MESSAGE TIMEOUT:

/* indicate message failed and clear other
bits */

request_resource(IO_SYSTEM);

setdbase (MODBUS, CONNECTION REQUIRED, 0);

setdbase (MODBUS, MESSAGE COMPLETE, 0);

setdbase (MODBUS, MESSAGE FAILED, 1);

release resource (IO SYSTEM) ;

break;

default:
/* ignore invalid requests */
break;

*/

Document (Version 1.61) 5/19/2011 188

Function Specifications

This function is the main task of a user application. It
monitors a register from the ladder logic application. When the
register value changes, the function signals DNP events.

The function has no parameters.

The function does not return.

*/
int main (void)
{
int lastConnectionState; /* last state of connection
register */
int currentConnectionState; /* current state of

connection register */

/* install DNP connection handler */
dnpInstallConnectionHandler (sampleDNPHandler) ;

/* get the current connection state */
lastConnectionState = dbase (MODBUS, CONNECTION STATUS);

/* loop forever */
while (TRUE)

{
request resource (IO SYSTEM) ;

/* get the current connection state */
currentConnectionState = dbase (MODBUS,
CONNECTION STATUS) ;

/* if the state has changed */
if (currentConnectionState != lastConnectionState)
{

/* if the connection is active */

if (currentConnectionState)

{

/* Inform DNP that a connection exists

*/

dnpConnectionEvent (DNP_CONNECTED) ;

/* clear the request flag */

setdbase (MODBUS, CONNECTION REQUIRED,
0);

else
/* Inform DNP that the connection is
closed */
dnpConnectionEvent (DNP_DISCONNECTED) ;

/* clear the message flags */

Document (Version 1.61) 5/19/2011 189

Function Specifications

setdbase (MODBUS, MESSAGE COMPLETE, 0);
setdbase (MODBUS, MESSAGE FAILED, O0);

}

/* save the new state */

lastConnectionState = currentConnectionState;

}
/* release the processor so other tasks can run */

release resource (IO SYSTEM) ;
release processor();

190

Document (Version 1.61) 5/19/2011

Function Specifications

dnpMasterClassPoll
Send DNP Class Poll

Syntax

BOOLEAN dnpMasterClassPoll (
UINT16 slaveAddress,
UINT16 classFlags

)

Description

The dnpMasterClassPoll function sends a Class Poll message in DNP, to request
the specified data classes from a DNP slave.

slaveAddress specifies the DNP station address of the slave.

classFlags specifies the classes of data to request. It can contain any
combination of the following values; if multiple values are used they should be
ORed together:

CLASSO_FLAG, /* request Class 0 Data */
CLASS1 _FLAG, /* request Class 1 Data */
CLASS2_FLAG, /* request Class 2 Data */
CLASS3_FLAG /* request Class 3 Data */

The DNP slave (slaveAddress) needs to be configured in the DNP Master Poll
Table prior to calling this function.

The function returns TRUE if the DNP class poll message was successfully
triggered. It returns FALSE if the specified slave address has not been
configured in the DNP Routing Table, or the DNP configuration has not been
created.

Notes

This function is only available on the SCADAPack 32, SCADAPack 350 and
42083.

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 191

Function Specifications

dnpMasterClockSync
Send DNP Clock Synchronization

Syntax

BOOLEAN dnpMasterClockSync (
UINT1l6 slaveAddress
);

Description

The dnpMasterClockSync function sends a Clock Synchronization message in
DNP, to a DNP slave.

slaveAddress specifies the DNP station address of the slave.

The DNP slave (slaveAddress) needs to be configured in the DNP Master Poll
Table prior to calling this function.

The function returns TRUE if the DNP clock sync message was successfully
triggered. It returns FALSE if the specified slave address has not been
configured in the DNP Routing Table, or the DNP configuration has not been
created.

Notes

This function is only available on the SCADAPack 32, SCADAPack 350 and
4203.

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 192

Function Specifications

dnpPortStatus

Get communication status for a port

Syntax

#include <ctools.h>

DNP PROTOCOL STATUS dnpPortStatus(
COM_INTERFACE ifType,

BOOLEAN clear

)i
Description

The dnpPortStatus function returns the DNP message statistics for the specified
communication port.

IfType specifies the communication interface. Valid values are CIF_Com1,
CIF_Com2, CIF_Com3, CIF_Com4, and CIF_Lanl. If ifType does not point to a
valid communications interface the function has no effect.

If clear is TRUE, the DNP message counters are reset to zero after they are
read.

Document (Version 1.61) 5/19/2011 193

Function Specifications

dnpReadAddressMappingTableEntry
Read DNP Address Mapping Table entry

Syntax

#include <ctools.h>

BOOLEAN dnpReadAddressMappingTableEntry (
UINT16 index,
dnpAddressMap_ type *pAddressMap

);

Description

The dnpReadAddressMappingTableEntry function reads an entry from the DNP
address mapping table.

pRoute is a pointer to a table entry; it is written by this function.

The return value is TRUE if pAddressMap was successfully written or FALSE
otherwise.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 194

Function Specifications

dnpReadAddressMappingTableSize
Read DNP Address Mapping Table size

Syntax

#include <ctools.h>

UINT16 dnpReadAddressMappingTableSize (void);
Description

The dnpReadAddressMappingTableSize function reads the total number of
entries in the DNP address mapping table.

The function returns the total number of entries in the DNP address mapping
table.
Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 195

Function Specifications

dnpReadMasterPollTableEntry
Read DNP Master Poll Table entry

Syntax
#include <ctools.h>
BOOLEAN dnpReadMasterPollTableEntry (
UINT16 index,
dnpMasterPoll type *pMasterPoll
);
Description
This function reads an entry from the DNP master poll table.
pMasterPoll is a pointer to a table entry; it is written by this function.
The return value is TRUE if pMasterPoll was successfully written or FALSE
otherwise.
Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns the total number of entries in the DNP routing table.

Document (Version 1.61) 5/19/2011 196

Function Specifications

dnpReadMasterPollTableEntryEx
Read DNP Master Poll Table Extended Entry

Syntax

BOOLEAN dnpReadMasterPollTableEntryEx (
UINT16 index,
DnpMasterPollEx type *pMasterPoll

) i

Description

This function is only available on the SCADAPack 32, SCADAPack 350 and
4203.

This function reads an extended entry from the DNP master poll table.
pMasterPoll is a pointer to an extended table entry; it is written by this function.
The return value is TRUE if pMasterPoll was successfully written or FALSE
otherwise.

Notes

This function is only available on the SCADAPack 32, SCADAPack 350 and
4203.

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

This function supersedes the dnpReadMasterPollTableEntry function.

Document (Version 1.61) 5/19/2011 197

Function Specifications

dnpReadMasterPollTableSize
Read DNP Master Poll Table size

Syntax

#include <ctools.h>
UINT16 dnpReadPMasterPollTableSize (void);

Description

This function reads the total number of entries in the DNP master poll table.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns the total number of entries in the DNP master poll table.

Document (Version 1.61) 5/19/2011 198

Function Specifications

dnpReadRoutingTableEntry_DialStrings
Read DNP Routing Table Entry Dial Strings

Syntax

BOOLEAN dnpReadRoutingTableEntry DialStrings(
UINT16 index,
UINT16 maxPrimaryDialStringLength,
CHAR *primaryDialString,
UINT16 maxSecondaryDialStringLength,
CHAR *secondaryDialString

);

Description

This function reads a primary and secondary dial string from an entry in the DNP
routing table.

index specifies the index of an entry in the DNP routing table.

maxPrimaryDialStringLength specifies the maximum length of primaryDialString
excluding the null-terminator character. The function uses this to limit the size of
the returned string to keeps from overflowing the storage passed to the function.

primaryDialString returns the primary dial string of the target station. It needs to
point to an array of size maxPrimaryDialStringLength.

maxSecondaryDialStringLength specifies the maximum length of
secondaryDialString excluding the null-terminator character. The function uses
this to limit the size of the returned string to keep from overflowing the storage
passed to the function.

secondaryDialString returns the secondary dial string of the target station. It
needs to point to an array of size maxSecondaryDialStringLength.

The function returns TRUE if the configuration was read and FALSE if an error
occurred.
Notes

This function needs to be used in conjunction with the
dnpReadRoutingTableEntry function to read a complete entry in the DNP routing
table.

Document (Version 1.61) 5/19/2011 199

Function Specifications

dnpReadRoutingTableEntry
Read Routing Table entry

Syntax

#include <ctools.h>

BOOLEAN dnpReadRoutingTableEntry (

UINT16 index,

routingTable *pRoute

);

Description

This function reads an entry from the routing table.

pRoute is a pointer to a table entry; it is written by this function.

The return value is TRUE if pRoute was successfully written or FALSE otherwise.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpWriteRoutingTableEntry

Document (Version 1.61) 5/19/2011 200

Function Specifications

dnpReadRoutingTableEntryEx
Read Routing Table entry

Syntax

#include <ctools.h>
BOOLEAN dnpReadRoutingTableEntryEx (
UINT16 index,
dnpRoutingTableEx entry
)
Description
This function reads an extended entry from the DNP routing table.

index specifies the index of the entry in the table. Valid values are 0 to the size of
the table minus 1.

pEntry is a pointer to an extended DNP routing table entry structure. The entry is
written to this structure.

The function returns TRUE if the entry was added and FALSE if the index is not
valid.
Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration. Use the dnpCreateRoutingTable function to create the routing
table and specify its size.

See Also

dnpCreateRoutingTable, dnpWriteRoutingTableEntryEx

Document (Version 1.61) 5/19/2011 201

Function Specifications

dnpReadRoutingTableSize

Read Routing Table size

Syntax

#include <ctools.h>

UINT16 dnpReadRoutingTableSize (void);
Description

This function reads the total number of entries in the routing table.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 202

Function Specifications

dnpSaveAll16Config
Save DNP 16-Bit Analog Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveAIl6Config (
UINT16 point,
dnpAnalogInput * pAnalogInput
)

Description

The dnpSaveAl16Config function sets the configuration of a DNP 16-bit analog
input point.

The function has two parameters: the point number; and a pointer to an analog
input point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 203

Function Specifications

dnpSaveAl32Config
Save DNP 32-Bit Analog Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveAI32Config(
UINT32 point,
dnpAnalogInput * pAnalogInput
)

Description

The dnpSaveAl32Config function sets the configuration of a DNP 32-bit analog
input point.

The function has two parameters: the point number; and a pointer to an analog
input point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetAl32Config

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 204

Function Specifications

dnpSaveAlSFConfig

Save Short Floating Point Analog Input Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpSaveAISFConfig (

UINT16 point,

dnpAnalogInput *pAnalogInput;
);

Description

The dnpSaveAlSFConfig function sets the configuration of a DNP short floating
point analog input point.

The function has two parameters: the point number, and a pointer to a
configuration structure.

The function returns TRUE if the configuration was successfully written, or
FALSE otherwise (if the point number is not valid, or the configuration is not
valid, or if the DNP configuration has not been created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 205

Function Specifications

dnpSaveAO16Config
Save DNP 16-Bit Analog Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveAOl6Config (
UINT16 point,
dnpAnalogOutput * pAnalogOutput
)

Description

The dnpSaveAO16Config function sets the configuration of a DNP 16-bit analog
output point.

The function has two parameters: the point number; and a pointer to an analog
output point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetAO16Config

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 206

Function Specifications

dnpSaveAO32Config
Save DNP 32-Bit Analog Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveA032Config (
UINT32 point,
dnpAnalogOutput * pAnalogOutput
)

Description

The dnpSaveAO32Config function sets the configuration of a DNP 32-bit analog
output point.

The function has two parameters: the point number; and a pointer to an analog
output point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetAO32Config

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 207

Function Specifications

dnpSaveAOSFConfig
Save Short Floating Point Analog Output Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpSaveAOSFConfig (

UINT16 point,

dnpAnalogOutput *pAnalogOutput;
);

Description

The dnpSaveAOSFConfig function sets the configuration of a DNP short floating
point analog output point.

The function has two parameters: the point number, and a pointer to a
configuration structure.

The function returns TRUE if the configuration was successfully written, or
FALSE otherwise (if the point number is not valid, or the configuration is not
valid, or if the DNP configuration has not been created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP

Document (Version 1.61) 5/19/2011 208

Function Specifications

dnpSaveBIConfig
Save DNP Binary Input Configuration

Syntax

#include <ctools.h>
BOOLEAN dnpSaveBIConfig (
UINT16 point,
dnpBinaryInput * pBinaryInput
)
Description
The dnpSaveBIConfig function sets the configuration of a DNP binary input point.

The function has two parameters: the point number; and a pointer to a binary
input point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetBIConfig

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 209

Function Specifications

dnpSaveBIConfigEx
Write DNP Binary Input Extended Point

Syntax

BOOLEAN dnpSaveBIConfigEx (

UINT16 point,

dnpBinaryInputEx *pBinaryInput
) ;i

Description

This function writes the configuration of an extended DNP Binary Input point.

The function has two parameters: the point number, and a pointer to an extended
binary input point configuration structure.

The function returns TRUE if the configuration was successfully written. It returns
FALSE if the point number is not valid, if the configuration is not valid, or if the
DNP configuration has not been created.

This function supersedes dnpSaveBIConfig.

Document (Version 1.61) 5/19/2011 210

Function Specifications

dnpSaveBOConfig
Save DNP Binary Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveBOConfig (
UINT16 point,
dnpBinaryOutput * pBinaryOutput
)

Description

The dnpSaveBOConfig function sets the configuration of a DNP binary output
point.

The function has two parameters: the point number; and a pointer to a binary
output point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetBOConfig

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 211

Function Specifications

dnpSaveCl16Config
Save DNP 16-Bit Counter Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveCIl6Config(
UINT16 point,
dnpCounterInput * pCounterInput
)

Description

The dnpSaveCl16Config function sets the configuration of a DNP 16-bit counter
input point.

The function has two parameters: the point number; and a pointer to a counter
input point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetCIl16Config

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 212

Function Specifications

dnpSaveCl32Config
Save DNP 32-Bit Counter Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveCI32Config (
UINT32 point,
dnpCounterInput * pCounterInput
)

Description

The dnpSaveCl32Config function sets the configuration of a DNP 32-bit counter
input point.

The function has two parameters: the point number; and a pointer to a counter
input point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetCI32Config

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011 213

Function Specifications

dnpSaveConfiguration

Save DNP Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpSaveConfiguration (
dnpConfiguration * pConfiguration
)
Description
The dnpSaveConfiguration function sets the DNP configuration.
The function has one parameter, a pointer to a DNP configuration structure.
The function returns TRUE if the configuration was updated and FALSE if an
error occurred. No changes are made to any parameters if an error occurs.
Notes
This function needs to be called before enabling DNP.

This function does not write the configuration for the Unsolicited Back Off Time.
Use the function dnpSaveUnsolicitedBackoffTime to save the Unsolicited Back
Off Time configuration.

The following parameters cannot be changed if DNP is enabled. The function will
not make any changes and will return FALSE if this is attempted. The protocol
needs to be disabled in order to make a change involving these parameters.

e Bl _number

e BI_cosBufferSize

o Bl _soeBufferSize

e BO_number

e CIl16_number

e Cl16_bufferSize

e CI32_number

o CI32_bufferSize

e AIl16_number

e All16_reportingMethod
e All6_bufferSize

e AI32_number

e AI32_reportingMethod
e AI32_bufferSize

Document (Version 1.61) 5/19/2011 214

Function Specifications

The following parameters can be changed when DNP is enabled.

AO16_number
AO32_number

masterAddress;
rtuAddress;
datalinkConfirm;
datalinkRetries;
datalinkTimeout;
operateTimeout
applicationConfirm
maximumResponse
applicationRetries
applicationTimeout
timeSynchronization
unsolicited
holdTime
holdCount

See Also

dnpGetConfiguration

Example

See example in the dnpGetConfiguration function section.

Document (Version 1.61) 5/19/2011

215

Function Specifications

dnpSaveConfigurationEx
Write DNP Extended Configuration

Syntax
BOOLEAN dnpSaveConfigurationEx (
dnpConfigurationEx *pDnpConfigurationEx
);
Description
This function writes the extended DNP configuration parameters.

The function has one parameter: a pointer to the DNP extended configuration
structure.

The function returns TRUE if the configuration was successfully written, or
FALSE otherwise (if the pointer is NULL, or if the DNP configuration has not
been created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

This function does not write the configuration for the Unsolicited Back Off Time.
Use the function dnpSaveUnsolicitedBackoffTime to save the Unsolicited Back
Off Time configuration.

This function supersedes the dnpSaveConfiguration function.

Document (Version 1.61) 5/19/2011 216

Function Specifications

dnpSaveUnsolicitedBackoffTime

Set the DNP unsolicited resend time.

Syntax

BOOLEAN dnpSaveUnsolicitedBackoffTime (
UINT16 backoffTime
);

Description

The dnpSaveUnsolicitedBackoffTime function writes the unsolicited resend time
to the controller.

The time is in seconds; and the allowed range is 0-65535 seconds. A value of
zero indicates that the unsolicited resend timer is disabled.

The function returns TRUE if the function was successful. It returns FALSE if the
DNP configuration has not been created.

Document (Version 1.61) 5/19/2011 217

Function Specifications

dnpSendUnsolicitedResponse
Send DNP Unsolicited Response

Syntax

BOOLEAN dnpSendUnsolicitedResponse (
UINT16 classFlags
);

Description

The dnpSendUnsolicitedResponse function sends an Unsolicited Response
message in DNP, with data from the specified classes.

classFlags specifies the class or classes of event data to include in the message.
It can contain any combination of the following values; if multiple values are used
they should be ORed together:

CLASSO_FLAG enables Class 0 Unsolicited Responses
CLASS1 FLAG enables Class 1 Unsolicited Responses
CLASS2_FLAG enables Class 2 Unsolicited Responses
CLASS3_FLAG enables Class 3 Unsolicited Responses

The function returns TRUE if the DNP unsolicited response message was
successfully triggered. It returns FALSE if any of the configured master
addresses has not been configured in the DNP Routing Table, or the DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

If no events are pending an empty unsolicited message will be sent.

Example

See the example program DNP Configuration.

Document (Version 1.61) 5/19/2011 218

Function Specifications

dnpSearchRoutingTable

Search Routing Table

Syntax

#include <ctools.h>
BOOLEAN dnpSearchRoutingTable (
UINT16 Address
routingTable *pRoute
);
Description
This function searches the routing table for a specific DNP address.
pRoute is a pointer to a table entry; it is written by this function.

The return value is TRUE if pRoute was successfully written or FALSE otherwise.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 219

Function Specifications

dnpStationStatus

Get communication status for a remote DNP station

Syntax

#include <ctools.h>

DNP_PROTOCOL STATUS dnpStationStatus(
UINT16 dnpAddress,
BOOLEAN clear
)

Description

The dnpStationStatus function returns the DNP message statistics for a remote
DNP station.

dnpAddress is the address of the remote DNP station. Valid values are any DNP
station number in the range 1 to 65532.

If clear is TRUE, the DNP message counters are reset to zero after they are
read.

Document (Version 1.61) 5/19/2011 220

Function Specifications

dnpWriteAddressMappingTableEntry
Write DNP Address Mapping Table Entry

Syntax

#include <ctools.h>

BOOLEAN dnpWriteAddressMappingTableEntry (
UINT16 index,

UINT16 dnpRemoteStationAddress;

CHAR dnpObjectType;

UINT16 dnpRemoteObjectStart;

UINT16 numberOfPoints;

UINT16 dnpLocalModbusAddress;

)

Description

The dnpWriteAddressMappingTableEntry function writes an entry in the DNP
address mapping table.

The function returns TRUE if successful, FALSE otherwise.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Document (Version 1.61) 5/19/2011 221

Function Specifications

dnpWriteMasterApplicationLayerConfig
Write DNP Master Application Layer Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpWriteMasterApplicationLayerConfig(
UINT16 basePollInterval,

UINT16 mimicMode

);

Description

This function writes DNP Master application layer configuration.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns TRUE if successful, FALSE otherwise.

Document (Version 1.61) 5/19/2011 222

Function Specifications

dnpWriteMasterPollTableEntry
Write DNP Master Poll Table Entry

Syntax

#include <ctools.h>

BOOLEAN dnpWriteMasterPollTableEntry (
UINT16 index,
UINT16 dnpAddress,

UINT16 classOPollRate;

UINT16 classlPollRate;

UINT16 class2PollRate;

UINT16 class3PollRate;

UINT16 timeSyncRate;

UINT16 unsolicitedResponseFlags;

)

Description

This function writes an entry in the DNP master poll table.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns TRUE if successful, FALSE otherwise.

Document (Version 1.61) 5/19/2011 223

Function Specifications

dnpWriteMasterPollTableEntryEx
Write DNP Master Poll Table Extended Entry

Syntax
BOOLEAN dnpWriteMasterPollTableEntryEx (
UINT16 index,
DnpMasterPollEx type *pMasterPoll
)
Description
This function writes an extended entry in the DNP master poll table.

The function returns TRUE if successful, FALSE otherwise.

Notes

This function is only available on the SCADAPack 32, SCADAPack 350 and
4203.

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

This function supersedes the dnpWriteMasterPollTableEntry function.

Document (Version 1.61) 5/19/2011 224

Function Specifications

dnpWriteRoutingTableEntry_DialString
Write DNP Routing Table Entry Dial Strings

Syntax

BOOLEAN dnpWriteRoutingTableEntry DialStrings (
UINT16 index,
UINT16 primaryDialStringLength,
CHAR *primaryDialString,
UINT16 secondaryDialStringlLength,
CHAR *secondaryDialString
);

Description

This function writes a primary and secondary dial string into an entry in the DNP
routing table.

index specifies the index of an entry in the DNP routing table.

primaryDialStringLength specifies the length of primaryDialString excluding the
null-terminator character.

primaryDialString specifies the dial string used when dialing the target station.
This string is used on the first attempt.

secondaryDialStringLength specifies the length of secondaryDialString excluding
the null-terminator character.

secondaryDialString specifies the dial string to be used when dialing the target
station. It is used for the next attempt if the first attempt fails.

The function returns TRUE if the configuration was written and FALSE if an error
occurred.
Notes

This function needs to be used in conjunction with the
dnpWriteRoutingTableEntry function to write a complete entry in the DNP routing
table.

Document (Version 1.61) 5/19/2011 225

Function Specifications

dnpWriteRoutingTableEntry
Write Routing Table Entry

Syntax

#include <ctools.h>
BOOLEAN dnpWriteRoutingTableEntry (
UINT16 index,
UINT16 address,
UINT16 comPort,
UINT16 retries,
UINT16 timeout

) i
Description

This function writes an entry in the DNP routing table. This function is used to
write entries without IP addresses. To create an entry with an IP address, use the
dnpWriteRoutingTableEntryEx function.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration. Use the dnpCreateRoutingTable function to create the routing
table and specify its size.

The function returns TRUE if successful, FALSE otherwise.

Example

See the example in the dnpGetConfiguration section.

Document (Version 1.61) 5/19/2011 226

Function Specifications

dnpWriteRoutingTableEntryEx
Write Routing Table Entry with Extended Information

Syntax

#include <ctools.h>
BOOLEAN dnpWriteRoutingTableEntryEx (
UINT16 index,
UINT16 address,
UINT16 comPort,
UINT16 retries,
UINT16 timeout,
IP ADDRESS ipaddress
)

Description

dnpWriteRoutingTableEntryEx writes an entry in the DNP routing table. This
function is used to write entries with IP addresses. To create an entry without an
IP address, use the dnpWriteRoutingTableEntry function.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration. Use the dnpCreateRoutingTable function to create the routing
table and specify its size.

The function returns TRUE if successful, FALSE otherwise.
Example

See the Example in the dnpGetConfiguration section.

Document (Version 1.61) 5/19/2011 227

Function Specifications

end_application

Terminates all Application Tasks

Syntax

#include <ctools.h>

void end application(void);

Description

The end_application function terminates all APPLICATION type tasks created
with the create_task function. Stack space and resources used by the tasks are
freed.

Notes

This function is used normally by communication protocols to stop an executing
application program, prior to loading a new program into memory.

See Also

end_group, end_task

Document (Version 1.61) 5/19/2011 228

Function Specifications

end_group

Terminates all Tasks in a Task Group

Syntax

#include <ctools.h>

void end group (UINT16 taskGroup);
Description

The end_group function terminates all tasks of the specified type. This function
should only be used with taskGroups of APPLICATION_GROUP_0 —
APPLICATION_GROUP_9. Stack space and resources used by the tasks are
freed.

Notes

This function is used normally by communication protocols to stop an executing
application program.

See Also

end_application, end_task

Document (Version 1.61) 5/19/2011 229

Function Specifications

end_task

Terminate a Task

Syntax

#include <ctools.h>

void end task(UINT16 task ID);
Description

The end_task function terminates the task specified by task_ID. Stack space and
resources used by the task are freed. The end_task function terminates any type
task.

See Also

end_application, end_group

Document (Version 1.61) 5/19/2011 230

Function Specifications

endTimedEvent

Terminate Signaling of a Regular Event

Syntax

#include <ctools.h>
UINT16 endTimedEvent (UINT16 event);

Description

This endTimedEvent function cancels signaling of a timed event, initialized by the
startTimedEvent function.

The function returns TRUE if the event signaling was canceled.

The function returns FALSE if the event number is not valid, or if the event was
not previously initiated with the startTimedEvent function. The function has no
effect in these cases.

Notes

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
ctools.h are not valid events for use in an application program.

Example
See the Examples for startTimedEvent.

See Also

startTimedEvent

Document (Version 1.61) 5/19/2011 231

Function Specifications

enroninstallCommandHandler

Installs handler for Enron Modbus commands

Syntax

#include <ctools.h>
void enronInstallCommandHandler (
UINT1l6 (* function) (
UINT16 length,
UCHAR * pCommand,
UINT16 responseSize,
UINT16 * pResponselength,
UCHAR * pResponse
)
)

Description

This function installs a handler function for Enron Modbus commands. The
protocol driver calls this handler function each time a command is received for
the Enron Modbus station.

function is a pointer to the handler function. If function is NULL the handler is
disabled.

The function has no return value.

Notes

The application needs to disable the handler when the application ends. This
stops the protocol driver from calling the handler while the application is stopped.
Call the enroninstallCommmandHandler with a NULL pointer. The usual method
is to create a task exit handler function to do this. See the Example below for
details.

The handler function has five parameters.
¢ length is the number of characters in the command message.

¢ pCommand is a pointer to the command message. The first byte in the
message is the function code, followed by the Enron Modbus message. See
the Enron Modbus protocol specification for details on the message formats.

e responseSize is the size of the response buffer in characters.

¢ pResponseLength is a pointer to a variable that will hold the number of
characters in the response. If the handler returns TRUE, it needs to set this
variable.

e pResponse is a pointer to a buffer that will hold the response message. The
buffer size is responseSize characters. The handler must not write beyond
the end of the buffer. If the handler returns TRUE, it needs to set this
variable. The data needs to start with the function code and end with the last

Document (Version 1.61) 5/19/2011 232

Function Specifications

data byte. The protocol driver will add the station address, checksum, and
message framing to the response.

The handler function returns the following values.

Value

Description

NORMAL

Indicates protocol handler should send a
normal response message. Data are returned
using pResponse and pResponselLength.

ILLEGAL_FUNCTION

Indicates protocol handler should send an
lllegal Function exception response message.
This response should be used when the
function code in the command is not
recognized.

ILLEGAL_DATA_ADDRESS

Indicates protocol handler should send an
lllegal Data Address exception response
message. This response should be used when
the data address in the command is not
recognized.

ILLEGAL_DATA_VALUE

Indicates protocol handler should send an
lllegal Data Value exception response
message. This response should be used when
invalid data is found in the command.

If the function returns NORMAL then the protocol driver sends the response
message in the buffer pointed to by pResponse. If the function returns an
exception response protocol driver returns the exception response to the caller.
The buffer pointed to by pResponse is not used.

Example

This program installs a simple handler function.

#include <ctools.h>

UINT16 commandHandler (
UINT16 length,
UCHAR * pCommand,

UINT16
UINT16 *

UCHAR * pResponse

)

UCHAR command;
UINT16 result;

responseSize,
pResponselength,

/* if a command byte was received */

if
{

(length >= 1)

/* get the command byte */

Document (Version 1.61) 5/19/2011

233

Function Specifications

command = pCommand([0];
switch (command)
{
/* read unit status command */
case 7:
/* 1if the response buffer is large enough */
if (responseSize > 2)
{
/* build the response header */
pResponse[0] = pCommand[0];

/* set the unit status */
pResponse[1l] = 17;

/* set response length */
*pResponselength = 2;

/* indicate the command worked */
result = NORMAL;

else

/* buffer is to small to respond */
result = ILLEGAL FUNCTION;
}

break;
/* add cases for other commands here */

default:
/* command is invalid */
result = ILLEGAL FUNCTION;

else

/* command is too short so return error */
result = ILLEGAL FUNCTION;
}

return result;

This function unhooks the protocol handler when the
main task ends.

void mainExitHandler (void)
{
/* unhook the handler function */
enronInstallCommandHandler (NULL) ;
}

int main (void)
{
TASKINFO thisTask;

Document (Version 1.61) 5/19/2011 234

Function Specifications

/* install handler to execute when this task ends */
thisTask = getTaskInfo(0);

installExitHandler (thisTask.taskID, (FUNCPTR)
mainExitHandler) ;

/* install handler for Enron Modbus */
enronInstallCommandHandler (commandHandler) ;

/* infinite loop of main task */
while (TRUE)
{

/* add application code here */

}

Document (Version 1.61) 5/19/2011 235

Function Specifications

ethernetGetIP
Get Ethernet Controller TCP/IP Settings

Syntax

#include <ctools.h>

void ethernetGetIP(IP_SETTINGS * pIPSettings);
Description

The ethernetGetlP function copies the Ethernet controller TCP/IP settings into
the structure pointed to by plIPSettings. The structure IP_SETTINGS is described
in the Structures and Types section.

See Also

ethernetSetlIP

Document (Version 1.61) 5/19/2011 236

Function Specifications

ethernetGetMACAddress
Get Ethernet Controller MAC address

Syntax

#include <ctools.h>
void ethernetGetMACAddress (CHAR * pMAC);

Description

The ethernetGetMACAddress function copies the Ethernet controller MAC
address to the array pointed to by pMAC. pMAC must point to an array of 6
bytes.

Document (Version 1.61) 5/19/2011 237

Function Specifications

ethernetSetIP
Set Ethernet Controller TCP/IP Setting

Syntax

#include <ctools.h>
BOOLEAN ethernetSetIP(IP_SETTINGS * pIPSettings);

Description

The ethernetSetIP function copies the settings pointed to by plPSettings to the
Ethernet controller settings. If the settings are different from the current settings,
the Ethernet interface is closed and re-opened with the new settings. When the
Ethernet interface is closed all active connections through this interface are
closed.

The structure IP_SETTINGS is described in the Structures and Types section. If
there is an invalid setting, FALSE is returned and the settings are not saved,
otherwise TRUE is returned.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request resource (FLASH MEMORY) ;
flashSettingsSave (CS_PERMANENT) ;
release resource (FLASH MEMORY) ;

Document (Version 1.61) 5/19/2011 238

Function Specifications

flashSettingsLoad

Load Controller Settings from Flash

Syntax

#include <ctools.h>

BOOLEAN flashSettingsLoad (UINT32 areaFlags);
Description

This function loads the controller settings in the indicated area or areas from
flash memory. Settings in other areas are not affected.

The function has one parameter, areaFlags, indicating which areas to read from
flash. A sum of more than one area may be selected.

If an unsupported flag is set, the flag has no effect. If there is no supported flag
set (e.g. areaFlags=0), nothing is done.

The function has no return value.

See the function flashSettingsSave for a list of valid flags.

Notes

The FLASH_MEMORY resource needs to be requested before calling this
function.

Document (Version 1.61) 5/19/2011 239

Function Specifications

flashSettingsSave

Save Controller Settings to Flash

Syntax

#include <ctools.h>

BOOLEAN flashSettingsSave (UINT32 areaFlags);
Description

This function stores the controller settings in the indicated area or areas to flash
memory. Settings in other areas are not affected.

The function has one parameter, areaFlags, indicating which areas to store into
flash. A sum of more than one area may be selected.

The function returns TRUE if all the settings were stored and FALSE if there was
an error writing to flash.

If an unsupported flag is set, the flag has no effect. If there is no supported flag
set (e.g. areaFlags=0), all current settings are saved again.

Valid flags are listed below and defined in ctools.h.

Area Flag Loaded on Reset Controller Settings in this

Area

Ethernet MAC address
Controller factory options.

Controller type, IP address,
Gateway, Network mask, IP
Configuration mode, Lock
state and password, I/0
System settings

CS_ETHERNET
CS_OPTIONS
CS_PERMANENT

always
always

Saved settings loaded
on Service and Run
Boot.

Replaced with default
settings on Cold Boot.

CS_RUN Saved settings loaded | Serial port settings, Serial
on Run Boot. protocol settings,
Modbus/TCP settings, HART
Default settings loaded | /O Settings, LED power
on Service Boot. settings,
Replaced with default
settings on Cold Boot.
Notes

The FLASH_MEMORY resource needs to be requested before calling this
function.

Document (Version 1.61) 5/19/2011

240

Function Specifications

forcelLed
Set State of Force LED

Syntax

#include <ctools.h>

void forcelLed (UINT16 state);

Description

The forceLed function sets the state of the FORCE LED. state may be either
LED_ON or LED_OFF.

Notes

The FORCE LED is used to indicate forced I/0O. Use this function with care in
application programs.

Document (Version 1.61) 5/19/2011 241

Function Specifications

freeMemory

Free Non-Volatile Dynamic Memory

Syntax

#include <ctools.h>

void freeMemory (void *pMemory) ;
Description

The freeMemory function returns the specified memory to the system memory
pool. The specified memory to be returned or freed must have been allocated by
a previous call to the function allocateMemory.

The function has one argument: a pointer to the memory to be freed.

Notes

The DYNAMIC_MEMORY resource needs to be requested before calling this
function.

The allocation of memory and the allocated memory are non-volatile.

Pointers to non-volatile dynamic memory need to be statically allocated in a non-
volatile data section. Otherwise they will be initialised at reset and the non-
volatile dynamic memory will be lost. See the Example for the function
allocateMemory which demonstrates how to create a nhon-volatile data section to
save pointers to non-volatile dynamic memory.

See Also

allocateMemory

Document (Version 1.61) 5/19/2011 242

Function Specifications

getABConfiguration
Get DF1 Protocol Configuration

Syntax

#include <ctools.h>
struct ABConfiguration *getABConfiguration(FILE *stream, struct
ABConfiguration *ABConfig);

Description

The getABConfiguration function gets the DF1 protocol configuration parameters
for the stream. If stream does not point to a valid serial port the function has no
effect. ABConfig must point to a DF1 protocol configuration structure.

The getABConfiguration function copies the DF1 configuration parameters into
the ABConfig structure and returns a pointer to it.

See Also

setABConfiguration

Example
This program displays the DF1 configuration parameters for com1.

#include <ctools.h>

int main (void)
{
struct ABConfiguration ABConfig;

getABConfiguration (coml, &ABConfig);

fprintf (coml, "Min protected address: gu\r\n",
ABConfig.min protected address);
fprintf (coml, "Max protected address: gu\r\n",

ABConfig.max protected address);

Document (Version 1.61) 5/19/2011 243

Function Specifications

getclock
Read the Real Time Clock

Syntax

#include <ctools.h>

void getclock (TIME * time);

Description

The getclock function reads the time and date from the real time clock hardware.
The getclock function copies the time and date information to the TIME structure
pointed to by time.

Notes

The time format returned by the getclock function is not compatible with the
standard UNIX style functions.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

getClockTime, setclock

Example

This program displays the current date and time.

#include <ctools.h>
main (void)
{

TIME now;

request resource (IO SYSTEM) ;

getclock (&now) ; /* read the clock */
release resource (IO SYSTEM) ;

fprintf (coml, "%$2d/%2d/%2d", now.day, now.month, now.year);
fprintf (coml, "$2d:%2d\r\n",now.hour, now.minute);

Document (Version 1.61) 5/19/2011 244

Function Specifications

getClockAlarm
Read the Real Time Clock Alarm Settings

Syntax

#include <ctools.h>
ALARM SETTING getClockAlarm(void) ;

Description

The getClockAlarm function returns the alarm setting in the real time clock.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

setClockAlarm

Document (Version 1.61) 5/19/2011 245

Function Specifications

getClockTime

Read the Real Time Clock

Syntax

#include <ctools.h>

void getClockTime (INT32 * pDays, INT32 * pHundredths);
Description

The getClockTime function reads the real time clock and returns the value as the
number of whole days since 01/01/1997 and the number of hundredths of a
second since the start of the current day. The function works for years from
01/01/1997 to 12/31/2099 then rolls over.

The function has two parameters: a pointer to the variable to hold the days and a
pointer to a variable to hold the hundredths of a second.

The function has no return value.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

getclock

Document (Version 1.61) 5/19/2011 246

Function Specifications

getControllerID
Get Controller ID

Syntax

#include <ctools.h>
void getControllerID(CHAR * pID)

Description

This function writes the Controller ID to the string pointed to by pID. The
Controller ID is a unique ID for the controller set at the factory. The pointer pID
must point to a character string of length CONTROLLER_ID_LEN.

Example

This program displays the Controller ID.

#include <ctools.h>

int main (void)

{
char CtlrID[CONTROLLER_ID_LEN];
UINT1l6 index;

getControllerID(ctlrID);

fprintf (coml, "\r\nController ID : ");
for (index=0; indeX<CONTROLLER_ID_LEN; index++)
{
fputc(ctlrID[index], coml);
}

Document (Version 1.61) 5/19/2011 247

Function Specifications

getForceFlag

Get Force Flag State for a Register (Telepace firmware only)

Syntax

#include <ctools.h>
BOOLEAN getForceFlag (UINT16 type, UINT16 address, UINT1l6 *value);

Description

The getForceFlag function copies the value of the force flag for the specified
database register into the integer pointed to by value. The valid range for
address is determined by the database addressing type.

The force flag value is either 1 or 0, or a 16-bit mask for LINEAR digital
addresses.

If the address or addressing type is not valid, FALSE is returned and the integer
pointed to by value is 0; otherwise TRUE is returned. The table below shows the
valid address types and ranges.

Type Address Ranges Registe
r Size
MODBUS | 00001 to NUMCOIL 1 bit
10001 to 10000 + NUMSTATUS 1 bit
30001 to 30000 + NUMINPUT 16 bit
40001 to 40000 + NUMHOLDING 16 bit
LINEAR 0 to NUMLINEAR-1 16 bit
Notes

Force Flags are not modified when the controller is reset. Force Flags are in a
permanent storage area, which is maintained during power outages.

Refer to the I/O Database and Register Assignment chapter for more information.

See Also

setForceFlag, clearAllForcing, overrideDbase

Example

This program obtains the force flag state for register 40001, for the 16 status
registers at linear address 302 (i.e. registers 10737 to 10752), and for the holding
register at linear address 1540 (i.e. register 40005).

#include <ctools.h>
int main (void)

{
UINT 16 flag, bitmask;

Document (Version 1.61) 5/19/2011 248

Function Specifications

getForceFlag (MODBUS, 40001, &flag);
getForceFlag (LINEAR, 302, &bitmask);
getForceFlag (LINEAR, 1540, &flag);

Document (Version 1.61) 5/19/2011 249

Function Specifications

getForcelLed
Get status of Force LED

Syntax

#include <ctools.h>
UINT16 getForcelLed(void)

Description

The getForceLed function returns the status of the Force LED. It returns TRUE if
the LED is ON and FALSE if the LED is OFF.

See Also

forcelLed

Document (Version 1.61) 5/19/2011 250

Function Specifications

getFtpServerState

Gets the state of the FTP server.

Syntax

#include <ctools.h>
BOOLEAN getFtpServerState (
UINT32* state

)

Parameters

state specifies the parameter that the current operational state of the FTP server
will be placed in. The following values for state are defined:

e 0 =FTP server disabled
e 1 =FTP server enabled, anonymous login permitted

e 2 =FTP server enabled, username and password required

Description

The getFtpServerState function gets the state of the FTP server. TRUE is
returned if the current state was placed in the parameter state. FALSE is
returned if the current state was not placed in the parameter state.

Notes

This function is only relevant for Ethernet enabled controllers.

See Also

setFtpServerState

Document (Version 1.61) 5/19/2011 251

Function Specifications

getHardwarelnformation

Obtains the hardware type and version

Syntax

#include <ctools.h>
BOOLEAN getHardwareInformation (UCHAR* majorVersion, UCHAR*
minorVersion, UCHAR* hardwareType) ;

Description

The getHardwarelnformation function will place the major version of the
hardware into the memory pointed to by majorVersion, the minor version of the
hardware into the minorVersion, and the hardware type in the memory pointed to
by hardwareType. Refer to the macros starting with HT_ for the various hardware
types.

The function returns TRUE if the hardware version and type was placed in the
passed variables. Otherwise FALSE is returned.

Notes

This function is currently only supported on the SCADAPack 350 and 4203

Document (Version 1.61) 5/19/2011 252

Function Specifications

getlOErrorindication
Get I/0O Module Error Indication

Syntax

#include <ctools.h>

BOOLEAN getIOErrorIndication (void);
Description

The getlOErrorindication function returns the state of the 1/O module error
indication. TRUE is returned if the /O module communication status is currently
reported in the controller status register and Status LED. FALSE is returned if the
I/0 module communication status is not reported.

Notes

Refer to the 5203/4 System Manual, SCADAPack 32 System Manual, or the
SCADAPack 350 System Manual for further information on the Status LED and
Status Output.

See Also

setlOErrorindication

Document (Version 1.61) 5/19/2011 253

Function Specifications

getOutputsinStopMode

Get Outputs In Stop Mode (Telepace firmware only)

Syntax

#include <ctools.h>

void getOutputsInStopMode (
BOOLEAN *holdDoutsOnStop,
BOOLEAN *holdAoutsOnStop
)

Description

The getOutputsinStopMode function copies the values of the output control flags
into the integers pointed to by doutsinStopMode and aoutsinStopMode.

If the value pointed to by holdDoutsOnStop is TRUE, then digital outputs are held
at their last state when the Ladder Logic program is stopped.

If the value pointed to by holdDoutsOnStop is FALSE, then digital outputs are
turned OFF when the Ladder Logic program is stopped.

If the value pointed to by holdAoutsOnStop is TRUE, then analog outputs are
held at their last value when the Ladder Logic program is stopped.

If the value pointed to by holdAoutsOnStop is FALSE, then analog outputs go to
zero when the Ladder Logic program is stopped.

See Also

setOutputsinStopMode
Example

See the Example for setOutputsinStopMode function.

Document (Version 1.61) 5/19/2011 254

Function Specifications

getLoginCredentials

Gets login credentials for a service

Syntax

#include <ctools.h>
BOOLEAN getLoginCredentials (
UINT32 service,
UINT32 index,
UCHAR* username,
UINT32 maxUsernamelLength
);

Parameters

service specifies the service for which the credentials are being retrieved.
index specifies the index for the credentials. Indices are service specific.
username specifies the username to grant access to.
maxUsernameLength specifies the maximum length username that can be
returned.

Description

The getLoginCredentials function retrieves the username at the specified index
for the specified service.

Valid services are:

0 = FTP. Maximum username and password length is 16 bytes. Only index O is
supported.

The valid values of index are service specific. The username returned will be
NULL terminated and placed in the buffer pointed to by username.

True is returned if the credentials were retrieved. False is returned if the service
rejected the request, if the service was unrecognized, or if the username could
not fit in the specified sized buffer.

See Also

setLoginCredentials, clearLoginCredentials

Document (Version 1.61) 5/19/2011 255

Function Specifications

getpeername

Syntax

#include <ctools.h>

int getpeername

(

int socketDescriptor,

Struct sockaddr * fromAddressPtr,
int * addressLengthPtr

);

Description

This function returns to the caller the IP address / Port number of the remote
system that the socket is connected to.

Parameter Description

socketDescriptor The socket descriptor that we wish to obtain this
information about.

fromAddressPtr A pointer to the address structure that we wish to store
this information into.

addressLengthPtr The length of the address structure.

Returns

0 Success

-1 An error occurred

getpeername can fail for any of the following reasons:

EBADF socketDescriptor is not a valid descriptor.
ENOTCONN The socket is not connected.
EINVAL One of the passed parameters is not valid.

Document (Version 1.61) 5/19/2011 256

Function Specifications

getPortCharacteristics

Get Serial Port Characteristics

Syntax

#include <ctools.h>

BOOLEAN getPortCharacteristics (FILE *stream, PORT CHARACTERISTICS

*pCharacteristics);

Description

The getPortCharacteristics function gets information about features supported by
the serial port pointed to by stream. If stream does not point to a valid serial port
the function has no effect and FALSE is returned; otherwise TRUE is returned.

The getPortCharacteristics function copies the serial port characteristics into the

structure pointed to by pCharacteristics.

Notes

Refer to the Overview of Functions section for detailed information on serial

ports.

Refer to the Structures and Types section for a Description of the fields in

the PORT_CHARACTERISTICS structure.

See Also

get_port

Example

#include <ctools.h>
int main (void)
{
PORT CHARACTERISTICS options;

getPortCharacteristics (com3, &options);

fprintf (coml, "Dataflow options: %d\r\n",
options.dataflow) ;

fprintf (coml, "Protocol options: %d\r\n",
options.protocol) ;

}

Document (Version 1.61) 5/19/2011

257

Function Specifications

get_port

Get Serial Port Configuration

Syntax

#include <ctools.h>
struct pconfig *get port (FILE *stream, struct pconfig *settings);

Description

The get_port function gets the serial port configuration for the port. If port is not a
valid serial port the function has no effect.

The get_port function copies the serial port settings into the structure pointed to
by settings and returns a pointer to the structure.

Notes

Refer to the Overview of Functions section for detailed information on serial
ports.

Refer to the Structure and Types section for a Description of the fields in
the pconfig structure.
See Also

set_port

Example

#include <ctools.h>

int main (void)
{

struct pconfig settings;

get port(coml, &settings);
fprintf (coml, "Baud rate: %d\r\n", settings.baud);
fprintf (coml, "Duplex: %d\r\n", settings.duplex);

Document (Version 1.61) 5/19/2011 258

Function Specifications

getPowerMode

Get Current Power Mode

Syntax

#include <ctools.h>
BOOLEAN getPowerMode (UCHAR* cpuPower, UCHAR* lan, UCHAR* usbHost);

Description

The getPowerMode function places the current state of the CPU, LAN, USB
peripheral port, and USB host port in the passed parameters. The following table
lists the possible return values and their meaning.

Macro Meaning

PM_CPU_FULL The CPU is set to run at full speed
PM_CPU_REDUCED The CPU is set to run at a reduced speed
PM_CPU_SLEEP The CPU is set to sleep mode
PM_LAN_ENABLED The LAN is enabled

PM_LAN_DISABLED The LAN is disabled
PM_USB_HOST_ENABLED The USB host port is enabled
PM_USB_HOST_DISABLED The USB host port is disabled
PM_UNAVAILABLE The status of the device could not be read.

The function always returns TRUE.

The application program may set the current power mode with the
setPowerMode function.

See Also

setPowerMode, setWakeSource, getWakeSource

Document (Version 1.61) 5/19/2011 259

Function Specifications

getProgramStatus

Get Program Status Flag

Syntax

#include <ctools.h>

UINT16 getProgramStatus (FUNCPTR entryPoint);
Description

The getProgramStatus function returns the application program status flag of the
program specified by entryPoint. The passed parameter should always be in the
function main. The status flag is set to NEW_PROGRAM when the C program
downloaded to the controller from the program loader. The status flag is set to
PROGRAM_NOT_LOADED when the C program is erased.

The application program may modify the status flag with the setProgramStatus
function.

See Also

setProgramStatus
Example

See the Get Program Status Example in the Examples section.

Document (Version 1.61) 5/19/2011 260

Function Specifications

get_protocol

Get Protocol Configuration

Syntax

#include <ctools.h>
struct prot settings *get protocol (FILE *stream, struct
prot settings *settings);

Description

The get_protocol function gets the communication protocol configuration for the
port. If port does not point to a valid serial port the function has no effect. settings
must point to a protocol configuration structure, prot_settings.

The get_protocol function copies the protocol settings into the structure pointed
to by settings and returns a pointer to that structure.

Refer to the ctools.h file for a Description of the fields in the prot_settings
structure.

Refer to the Overview of Functions section for detailed information on
communication protocols.

See Also

set_protocol

Example

This program displays the protocol configuration for com1.

#include <ctools.h>

int main (void)
{

struct prot settings settings;

get protocol (coml, &settings);

fprintf (coml, "Type: %d\r\n", settings.type);
fprintf (coml, "Station: %d\r\n", settings.station);
fprintf (coml, "Priority: %d\r\n", settings.priority);

Document (Version 1.61) 5/19/2011 261

Function Specifications

getProtocolSettings

Get Protocol Extended Addressing Configuration

Syntax

#include <ctools.h>

BOOLEAN getProtocolSettings (
FILE *stream,

PROTOCOL SETTINGS * settings
);

Description

The getProtocolSettings function reads the protocol parameters for a serial port.
This function supports extended addressing.

The function has two parameters: port is one of com1, com2 or com3; and
settings, a pointer to a PROTOCOL_SETTINGS structure. Refer to the
Description of the structure for an explanation of the parameters.

The function returns TRUE if the structure was changed. It returns FALSE if the
stream is not valid.
Notes

Extended addressing is available on the Modbus RTU and Modbus ASCII
protocols only. See the TeleBUS Protocols User Manual for details.

Refer to the TeleBUS Protocols User Manual section for detailed information on
communication protocols.
See Also

setProtocolSettings, get_protocol

Example

This program displays the protocol configuration for com1.

#include <ctools.h>

int main (void)
{
PROTOCOL_SETTINGS settings;

if (getProtocolSettings(coml, &settings)
{
fprintf
fprintf

coml, "Type: %d\r\n", settings.type);
coml,"Station: %$d\r\n", settings.station);
fprintf (coml, "Address Mode: %d\r\n", settings.mode);
fprintf (coml, "SF Messaging: %d\r\n",
settings.SFMessaging) ;
fprintf (coml, "Priority: %d\r\n", settings.priority);

}

else

Document (Version 1.61) 5/19/2011 262

Function Specifications

fprintf (coml, “Serial port is not valid\r\n”);

Document (Version 1.61) 5/19/2011 263

Function Specifications

getProtocolSettingsEx

Reads extended protocol settings for a serial port

Syntax

#include <ctools.h>

BOOLEAN getProtocolSettingsEx (
FILE *stream,
PROTOCOL SETTINGS EX * pSettings
)

Description

The setProtocolSettingsEx function sets protocol parameters for a serial port.
This function supports extended addressing and Enron Modbus parameters.

The function has two arguments:
e port specifies the serial port. It is one of com1, com2 or com3.

e pSettings is a pointer to a PROTOCOL_SETTINGS_EX structure. Refer to
the description of the structure for an explanation of the parameters.

The function returns TRUE if the settings were retrieved. It returns FALSE if the
stream is not valid.

Notes

Extended addressing and the Enron Modbus station are available on the Modbus
RTU and Modbus ASCII protocols only. See the TeleBUS Protocols User Manual
for detalils.

See Also

setProtocolSettingsEx, setProtocolSettings, start_protocol, get_protocol,
get_protocol_status, set_protocol, modemNotification

Example

This program displays the protocol configuration for com1.

#include <ctools.h>

int main (void)

{
PROTOCOL_SETTINGS EX settings;
if (getProtocolSettingsEx(coml,
{

&settings)

fprintf (coml, "Type:
fprintf (coml, "Station:

(%d\r\n", settings.type);

(%d\r\n", settings.station);
fprintf (coml, "Address Mode: %d\r\n", settings.mode);
fprintf (coml, "SF: %d\r\n", settings.SFMessaging);
fprintf (coml, "Priority: %d\r\n", settings.priority);
fprintf (coml, "Enron: %d\r\n", settings.enronEnabled);
fprintf (coml, "Enron station: %d\r\n",

Document (Version 1.61) 5/19/2011

264

Function Specifications

settings.enronStation);

fprintf (coml, “Serial port is not valid\r\n”);

Document (Version 1.61) 5/19/2011 265

Function Specifications

get_protocol_status

Get Protocol Information

Syntax

#include <ctools.h>
struct prot status get protocol status (FILE *stream);

Description

The get_protocol_status function returns the protocol error and message
counters for stream. If stream does not point to a valid serial port the function has
no effect.

Refer to the Overview of Functions section for detailed information on
communication protocols.
See Also

clear_protocol_status

Example

This program displays the checksum error counter for com2.
#include <ctools.h>
int main (void)

{

struct prot status status;

status = get_protocol_status(com2);
fprintf (coml, "Checksum: %d\r\n", status.checksum errors);

Document (Version 1.61) 5/19/2011 266

Function Specifications

getSFTranslation

Read Store and Forward Translation

Syntax

#include <ctools.h>

void getSFTranslation(UINT16 index, SF TRANSLATION *
pTranslation) ;

Description

Instead of using the getSFTranslation function use the getSFTranslationEx
function, which supports translations with a timeout and authentication.

The getSFTranslation function copies the entry from the store and forward
translation table at index to the structure pointed to by pTranslation. If index is
invalid, a disabled table entry is copied. The disabled table entry has both station
fields set to 65535.

The SF_TRANSLATION structure is described in the Structures and Types
section. manual.

Notes

The TeleBUS Protocols User Manual describes store and forward messaging
mode.

See Also

setSFTranslation, clearSFTranslationTable, checkSFTranslationTable

Document (Version 1.61) 5/19/2011 267

Function Specifications

getSFTranslationEx

Read Store and Forward Translation Method 2

Syntax

#include <ctools.h>
void getSFTranslationEx (UINT16 index, SF TRANSLATION EX *
pTranslation) ;

Description

The getSFTranslationEx function copies the entry from the store and forward
translation table at index to the structure pointed to by pTranslation. If index is
invalid, a disabled table entry is copied. The disabled table entry has both station
fields set to 65535. If the userName parameter is non-NULL then the user name
used for authentication purposes will be copied into the array pointed to by
userName. userName must point to an array of 16 unsigned characters.

The SF_TRANSLATION_EX structure supports a timeout and is described in the
Structures and Types section.

Notes

The TeleBUS Protocols User Manual describes the store and forward messaging
mode.

See Also

setSFTranslationEx, clearSFTranslationTable, checkSFTranslationTable

Document (Version 1.61) 5/19/2011 268

Function Specifications

getsockname

Syntax

#include <ctools.h>

int getsockname

(

int socketDescriptor,

struct sockaddr * myAddressPtr,
int * addressLengthPtr

);

Description

This function returns to the caller the Local IP Address / Port Number that we are
using on a given socket.

Parameters

socketDescriptor The socket descriptor that we wish to inquire about.

myAddressPtr The pointer to the address structure where the address
information will be stored.

addressLengthPtr The length of the address structure.

Returns

0 Success

-1 An error occurred

getsockname can fail for any of the following reasons:
EBADF socketDescriptor is not a valid descriptor.

EINVAL One of the passed parameters is not valid.

Document (Version 1.61) 5/19/2011 269

Function Specifications

getsockopt

Syntax

#include <ctools.h>
int getsockopt

(

int socketDescriptor,
int protocollevel,

int optionName,

char * optionValuePtr,
int * optionLengthPtr
);

Description

getsockopt is used retrieve options associated with a socket. Options may exist
at multiple protocol levels; they are always present at the uppermost “socket”
level. When manipulating socket options, the level at which the option resides
and the name of the option must be specified. To manipulate options at the
“socket” level, protocolLevel is specified as SOL_SOCKET. To manipulate
options at any other level, protocolLevel is the protocol number of the protocol
that controls the option. For Example, to indicate that an option is to be
interpreted by the TCP protocol, protocolLevel is set to the TCP protocol number.
For getsockopt, the parameters optionValuePtr and optionLengthPtr identify a
buffer in which the value(s) for the requested option(s) are to be returned. For
getsockopt, optionLengthPtr is a value-result parameter, initially containing the
size of the buffer pointed to by optionValuePtr, and modified on return to indicate
the actual size of the value returned. optionName and any specified options are
passed un-interpreted to the appropriate protocol module for interpretation. The
include file <ctools.h> contains definitions for the options described below.
Options vary in format and name. Most socket-level options take an int for
optionValuePtr. SO_LINGER uses a struct linger parameter that specifies the
desired state of the option and the linger interval (see below). struct linger is
defined in <ctools.h>. struct linger contains the following members:

|_onoff on=1/0ff=0

|_linger linger time, in seconds.

The following options are recognized at the socket level:
SOL_SOCKET protocolLevel options

SO_ACCEPTCONN Enable/disable listening for connections. listen turns on
this option.

SO_DONTROUTE Enable/disable routing bypass for outgoing messages.
Default O.

SO_KEEPALIVE Enable/disable keep connections alive. Default 0
(disable)

SO_OOBINLINE Enable/disable reception of out-of-band data in band.
Default is 0.

Document (Version 1.61) 5/19/2011 270

Function Specifications

SO_REUSEADDR Enable/disable local address reuse. Default O (disable).

SO_RCVLOWAT The low water mark for receiving.
SO_SNDLOWAT The low water mark for sending.

SO_RCVBUF The buffer size for input. Default is 8192 bytes.
SO_SNDBUF The buffer size for output. Default is 8192 bytes.

SO_REUSEADDR indicates that the rules used in validating addresses supplied
in a bind call should allow reuse of local addresses. SO_KEEPALIVE enables the
periodic transmission of messages (every 2 hours) on a connected socket. If the
connected party fails to respond to these messages, the connection is
considered broken. SO_DONTROUTE indicates that outgoing messages should
bypass the standard routing facilities. Instead, messages are directed to the
appropriate network interface according to the network portion of the destination
address. SO_LINGER controls the action taken when unsent messages are
queued on a socket and a close on the socket is performed. If the socket
promises reliable delivery of data and SO_LINGER is set, the system will block
the process on the close of the socket attempt until it is able to transmit the data
or until it decides it is unable to deliver the information (a timeout period, termed
the linger interval, is specified in the setsockopt call when SO_LINGER is
requested). If SO_LINGER is disabled and a close on the socket is issued, the
system will process the close of the socket in a manner that allows the process to
continue as quickly as possible. The option SO_BROADCAST requests
permission to send broadcast datagrams on the socket. With protocols that
support out-of-band data, the SO_OOBINLINE option requests that out-of-band
data be placed in the normal data input queue as received; it will then be
accessible with recv call without the MSG_OOB flag. SO_SNDBUF and
SO_RCVBUF are options that adjust the normal buffer sizes allocated for output
and input buffers, respectively. The buffer size may be increased for high-volume
connections or may be decreased to limit the possible backlog of incoming data.
The Internet protocols place an absolute limit of 64 Kbytes on these values for
UDP and TCP sockets (in the default mode of operation).

The following options are recognized at the IP level.
IP_PROTOIP protocolLevel options

IP_MULTICAST_IF Get the configured IP address that uniquely identifies the
outgoing interface for multicast datagrams sent on this
socket. A zero IP address parameter indicates that we
want to reset a previously set outgoing interface for
multicast packets sent on that socket.

IP_MULTICAST_TTL Get the default IP TTL for outgoing multicast datagrams.
IP_TOS IP type of service. Default 0

IP_TTL IP Time To Live in seconds. Default 64.

The following options are recognized at the TCP level.

IP_PROTOTCP protocolLevel options

Document (Version 1.61) 5/19/2011 271

Function Specifications

TCP_MAXSEG

TCP_NODELAY

Parameters
socketDescriptor
protocolLevel
optionName

optionValuePtr

optionLengthPtr

SOL_SOCKET
IP_PROTOIP
IP_PROTOTCP

Protocol Level

SOL_SOCKET

IP_PROTOIP

Get the maximum TCP segment size sent on the
network. The TCP_MAXSEG value is the maximum
amount of data (including TCP options, but not the TCP
header) that can be sent per segment to the peer. i.e.
the amount of user data sent per segment is the value
given by the TCP_MAXSEG option minus any enabled
TCP option (for example 12 bytes for a TCP time stamp
option) . Default is IP MTU minus 40 bytes.

If this option value is non-zero, the Nagle algorithm that
buffers the sent data inside the TCP is disabled. Useful
to allow client’s TCP to send small packets as soon as

possible (like mouse clicks). Default 0.

The socket descriptor to get the option from.

The protocol to get the option from. See below.

The option to get. See above and below.

The pointer to a user variable into which the option value
is returned. User variable is of data type described

below.

Pointer to the size of the user variable, which is the size
of the option data type, described below. It is a value-
result parameter, and the user should set the size prior

to the call.

Socket level protocol

IP level protocol

TCP level protocol.

Option Name

SO_ACCEPTCONN
SO_DONTROUTE
SO_KEEPALIVE
SO_LINGER
SO_OOBINLINE
SO_RCVBUF
SO_RCVLOWAT
SO_REUSEADDR
SO_SNDBUF
SO_SNDLOWAT
IP_MULTICAST_IF
IP_MULTICAST TTL
IP_TOS

Option data
type

int

int

int

struct linger
int

unsigned long
unsigned long
int

unsigned long
unsigned long
struct in_addr
unsigned char
unsigned char

Option value
Oorl
Oorl
Oorl

Oor1l

Oor1l

Document (Version 1.61) 5/19/2011

272

Function Specifications

Protocol Level Option Name Option data Option value
type
IP_TTL unsigned char
IP_PROTOTCP TCP_MAXSEG int
TCP_NODELAY int Oorl
Returns
Value Meaning
0 Successful set of option
-1 An error occurred

getsockopt will fail if:

EBADF The socket descriptor is invalid
EINVAL One of the parameters is invalid
ENOPROTOOPT The option is unknown at the level indicated.

Document (Version 1.61) 5/19/2011 273

Function Specifications

get_status
Get Serial Port Status

Syntax

#include <ctools.h>

struct pstatus *get status (FILE *stream, struct pstatus *status);
Description

The get_status function returns serial port error counters, I/O lines status and I/O
driver buffer information for stream. If port is not a valid serial port the function
has no effect. status must point to a valid serial port status structure, pstatus.

The get_status function copies the serial port status into the structure pointed to
by status and returns a pointer to the structure settings.

Refer to the Overview of Functions section for detailed information on serial
ports.
See Also

clear_errors

Example

This program displays the framing and parity errors for com1.

#include <ctools.h>

int main (void)
{

struct pstatus status;

get status(coml, &status);
fprintf (coml, "Framing: %d\r\n", status.framing);

fprintf(com1,"Parity: %d\r\n", status.parity);

Document (Version 1.61) 5/19/2011 274

Function Specifications

getStatusBit

Read Bits in Controller Status Code

Syntax

#include <ctools.h>
UINT16 getStatusBit (UINT1l6 bitMask) ;

Description

The getStatusBit function returns the values of the bits indicated by bitMask in
the controller status code.

See Also

setStatusBit, clearStatusBit

Document (Version 1.61) 5/19/2011 275

Function Specifications

getTaskInfo

Get Information on a Task

Syntax

#include <ctools.h>

BOOLEAN getTaskInfo (INT32 taskID, TASKINFO *pTaskInfo);
Description

The getTaskinfo function returns information about the task specified by taskiD. If
taskID is 0 the function returns information about the current task. The function
copies task information to the TASKINFO structure pointed to by pTaskinfo.

FALSE is returned if the task specified by taskID doesn’t exist; otherwise TRUE
is returned and the data is copied.

Refer to the Structures and Types section for a Description of the fields in the
TASKINFO structure.

Example

See the Get Task Status Example in the Examples section.

Document (Version 1.61) 5/19/2011 276

Function Specifications

getVersion

Get Firmware Version Information

Syntax

#include <ctools.h>
VERSION getVersion (void);

Description

The getVersion function obtains firmware version information. It returns a
VERSION structure. Refer to the Structures and Types section for a
Description of the fields in the VERSION structure.

Notes

The version information can be used to adapt a program to a specific type
of controller or version of firmware. For Example, a bug work-around could
be executed only if older firmware is detected.

Example

This program displays the version information.

#include <ctools.h>

int main (void)

{
struct prot settings settings;
VERSION versionInfo;

/* Disable the protocol on serial port 1 */

settings.type = NO PROTOCOL;
settings.station = 1;
settings.priority = 250;

settings.SFMessaging = FALSE;
request resource (IO SYSTEM) ;
set protocol (coml, &settings) ;
release resource (IO SYSTEM) ;

/* Display the ROM version information */
versionInfo = getVersion();

fprintf (coml, "\r\nFirmware Information\r\n");

fprintf (coml, " Controller type: %d\r\n",
versionInfo.controller);

fprintf (coml, " Firmware version: %d\r\n",
versionInfo.version);

fprintf (coml, " Creation date: %s\r\n",
versionInfo.date);

fprintf (coml, " Copyright: $s\r\n",

versionInfo.copyright);

Document (Version 1.61) 5/19/2011 277

Function Specifications

getWakeSource

Gets Conditions for Waking from Sleep Mode

Syntax

#include <ctools.h>
UINT32 getWakeSource (void) ;

Description

The getWakeSource function returns a bit mask of the active wake up sources.

Valid wake up sources are listed below.
e WS RTC_ALARM

e WS_COUNTER_1_OVERFLOW

e WS_COUNTER_2_OVERFLOW

e WS_COUNTER_3_OVERFLOW

e WS LED POWER_SWITCH

e WS DIN_1_CHANGE

e WS_COM3_VISION

See Also

setPowerMode

Example

The following code fragment displays the enabled wake up sources.

unsigned enabled;

enabled = getWakeSource();

fputs ("Enabled wake up sources:\r\n", coml);
if (enabled & WS_RTC_ ALARM)

fputs ("™ Real Time Clock\r\n", coml);
if (enabled & WS _LED POWER SWITCH)

fputs ("™ LED Power Switch\r\n", coml);

if (enabled & WS_COUNTER 1 OVERFLOW)

fputs (" Counter 1 Overflow\r\n", coml);

if (enabled & WS _COUNTER 1 OVERFLOW)

fputs (" Counter 2 Overflow\r\n", coml);

if (enabled & WS _COUNTER 1 OVERFLOW)

fputs ("™ Counter 3 Overflow\r\n", coml);

Document (Version 1.61) 5/19/2011

278

Function Specifications

Handler Function
User Specified Handler Function

The handler function is a user-specified function that handles processing of
Modbus messages not recognized by the protocol. The function can have any
name; handler is used in the Description below.

Syntax

#include <ctools.h>

UINT16 handler(
UCHAR * message,
UINT16 messagelength,
UCHAR * response,
UINT16 * responselLength
) i

Description

This function handler is a user-defined handler for processing Modbus
messages. The function is called for each Modbus message with a function code
that is not recognized by the standard Modbus protocol.

The handler function should process the message string and create a response
string. If the message is not understood, one of the error codes should be
returned.

The function has four parameters.

e The message parameter is a pointer to the first character of the received
message. The first character of the message is the function code. The format
of the data after the function code is defined by the function code.

e The messagelLength parameter is the number of characters in the message.

e The response parameter is a pointer to the first character of a buffer to hold
the response. The function should write the response into this buffer. The
buffer is 253 characters long. The first character of the buffer is the function
code of the message. The format of the data after the function code is
defined by the function code.

e The responseLength parameter is a pointer to the length of the response.
The function should set the length of the response using this pointer. The
length is the number of characters placed into the response buffer.

The function returns one of four values. The first causes a normal response to be
sent. The others cause an exception response to be sent.

e NORMAL indicates the response and responselLength have been set to valid
values. The Modbus protocol will add the station address and checksum to
this string and transmit the reply to the master station.

e |LLEGAL_FUNCTION indicates the function code in the message was
understood, but the function was deemed illegal.

Document (Version 1.61) 5/19/2011 279

Function Specifications

e |LLEGAL DATA_ADDRESS indicates the function code in the message was
understood, but that the command referenced an address that is not valid.
The Modbus protocol will return an lllegal Data Address exception response.

o |LLEGAL_DATA_VALUE indicates the function code in the message was
understood, but that the command included data that is not valid. The
Modbus protocol will return an lllegal Data Address exception response.

e FUNCTION_NOT_HANDLED must be returned by the function handler if the
function was not handled. If no installed handler can process the function
then an ILLEGAL_FUNCTION exception response will be sent.

Function Codes Used

The following function codes are currently used by the TeleBUS Modbus-
compatible protocol. All other function codes are available for use. For maximum
compatibility with other Modbus and Modbus-compatible devices it is
recommended that codes in the user-defined function code range be used first.

Code | Type Description

1 Modbus standard Read coil registers from 1/0O database

2 Modbus standard Read status registers from 1/0O database
3 Modbus standard Read holding registers from I/O database
4 Modbus standard Read input registers from 1/0O database
5

6

7

Modbus standard Write a single coil register
Modbus standard Write a single holding register
Modbus standard Read exception status

15 Modbus standard Write multiple coil registers
16 Modbus standard Write multiple holding registers
17 Modbus standard Report slave identification string
65 TeleBUS extension | Used by Telepace
66 TeleBUS extension | Used by Telepace
67 TeleBUS extension | Used by Telepace
68 TeleBUS extension | Used by Telepace
69 TeleBUS extension | Used by Telepace
70 TeleBUS extension | Used by Telepace
71 TeleBUS extension | Used by Telepace
Notes

One handler function is used for all serial ports. Only one port will be active at
any time. Therefore, the function does not have to be re-entrant.

The handler function is called from the Modbus protocol task. This task may pre-
empt the execution of another task. If there are shared resources, the handler
function must request and release the appropriate resources for proper
operation.

Document (Version 1.61) 5/19/2011 280

Function Specifications

The station address is not included in the message or response string. It will be
added to the response string before sending the reply.

The checksum is not included in the message or the response string. It will be
added to the response string before sending the reply.

The maximum size of the response string is 253 bytes. If a longer response
length is returned, the Modbus protocol will report an ILLEGAL_DATA_VALUE
exception. The response will not be returned.

See Also

installModbusHandler

Document (Version 1.61) 5/19/2011 281

Function Specifications

hartlO
Read and Write 5904 HART Interface Module

Syntax

#include <ctools.h>

BOOLEAN hartIO(UINT16 module)
Description

This function reads the specified 5904 interface module. It checks if a response
has been received and if a corresponding command has been sent. If so, the
response to the command is processed.

This function writes the specified 5904 interface module. It checks if there is a
new command to send. If so, this command is written to the 5904 interface.

The function has one parameter: the module number of the 5904 interface (0 to
3).

The I/0O read and write operations are added to the I/O System queue.

The function returns TRUE if the 5904 interface responded to the previous I/O
request and FALSE if it did not or if the module number is not valid.

Notification of the completion of I/O requests made by this function may be
obtained using the ioNatification function.
See Also

hartSetConfiguration, hartGetConfiguration, hartCommand, ioNotification

Document (Version 1.61) 5/19/2011 282

Function Specifications

hartCommand

Send Command using HART Interface Module

Syntax

#include <ctools.h>

BOOLEAN hartCommand (
UINT16 module,
HART DEVICE * const device,
HART COMMAND * const command,
void (* processResponse) (UINT16,
HART RESPONSE)
)

Description

This function sends a command to a HART slave device using a HART interface
module. This function can be used to implement HART commands not provided
by the Network Layer API.

The function has four parameters. The first is the module number of the 5904
interface (0 to 3). The second is the device to which the command is to be sent.

The third parameter is a structure describing the command to send. This contains
the command number, and the data field of the HART message. See the HART
protocol documentation for your device for details.

The fourth parameter is a pointer to a function that will process the response.
This function is called when a response to the command is received by the HART
interface. The function is defined as follows:

void function name (HART RESPONSE response)
The single parameter is a structure containing the response code and the data
field from the message.

The function returns TRUE if the 5904 interface responded and FALSE if it did
not or if the module number is not valid or there is an error in the command.

Notes

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

A program needs to initialize the link before executing any other commands.

The function determines if long or short addressing is to be used by the
command number. Long addressing is used for all commands except commands
0 and 11.

The functions hartCommand0, hartCommand1, etc. are used to send commands
provided by the Network Layer.

Document (Version 1.61) 5/19/2011 283

Function Specifications

See Also

hartStatus, hartSetConfiguration, hartCommandO0, hartCommandl1

Document (Version 1.61) 5/19/2011 284

Function Specifications

hartCommandO

Read Unique Identifier

Syntax

#include <ctools.h>

BOOLEAN hartCommandO (UINT16 module, UINT16 address, HART DEVICE *
const device);

Description

This function reads the unique identifier of a HART device using command 0 with
a short-form address. This is a link initialization function.

The function has three parameters: the module-number of the 5904 module (0 to
3); the short-form address of the HART device (0 to 15); and a pointer to a
HART_DEVICE structure. The information read by command 0 is written into the
HART_DEVICE structure when the response is received by the 5904 interface.

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid, or if the device address is invalid.
Notes

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

A program needs to initialize the link before executing any other commands.

See Also

hartCommand11, hartStatus, hartSetConfiguration

Document (Version 1.61) 5/19/2011 285

Function Specifications

hartCommand1

Read Primary Variable

Syntax

#include <ctools.h>
BOOLEAN hartCommandl (UINT16 module, HART DEVICE * const device,
HART VARIABLE * primaryVariable);

Description
This function reads the primary variable of a HART device using command 1.

The function has three parameters: the module-number of the 5904 module (0 to
3); the device to be read; and a pointer to the primary variable. The variable
pointed to by primaryVariable is updated when the response is received by the
5904 interface.

The primaryVariable must be a static modular or global variable. A
primaryVariable should be declared for each HART I/O module in use. A local
variable or dynamically allocated variable may not be used because a late
command response received after the variable is freed will write data over the
freed variable space.

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid.
Notes

The HART_DEVICE structure needs to be initialized using hartCommandO or
hartCommand11.

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

The code field of the HART_VARIABLE structure not changed. Command 1 does
not return a variable code.
See Also

hartCommand2, hartStatus, hartSetConfiguration

Document (Version 1.61) 5/19/2011 286

Function Specifications

hartCommand?2

Read Primary Variable Current and Percent of Range

Syntax

#include <ctools.h>
BOOLEAN hartCommand2 (UINT16 module, HART DEVICE * const device,
HART VARIABLE * pvCurrent, HART VARIABLE * pvPercent);

Description

This function reads the primary variable (PV), as current and percent of range, of
a HART device using command 2.

The function has four parameters: the module-number of the 5904 module (0 to
3); the device to be read; a pointer to the PV current variable; and a pointer to the
PV percent variable. The pvCurrent and pvPercent variables are updated when
the response is received by the 5904 interface.

The pvCurrent and pvPercent variables must be static modular or global
variables. A pvCurrent and pvPercent variable should be declared for each
HART 1/0O module in use. A local variable or dynamically allocated variable may
not be used because a late command response received after the variable is
freed will write data over the freed variable space.

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid.
Notes

The HART_DEVICE structure needs to be initialized using hartCommandO or
hartCommand11.

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

The code field of both HART_VARIABLE structures is not changed. The
response from the HART device to command 2 does not include variable codes.

The units field of the pvCurrent variable is set to 39 (units = mA). The units field
of the pvPercent variable is set to 57 (units = percent). The response from the
HART device to command 2 does not include units.

See Also

hartCommand1, hartStatus, hartSetConfiguration

Document (Version 1.61) 5/19/2011 287

Function Specifications

hartCommand3

Read Primary Variable Current and Dynamic Variables

Syntax

#include <ctools.h>
BOOLEAN hartCommand3 (UINT16 module, HART DEVICE * const device,
HART VARIABLE * variables);

Description

This function reads dynamic variables and primary variable current from a HART
device using command 3.

The function has three parameters: the module number of the 5904 module (0 to
3); the device to be read; and a pointer to an array of five HART_VARIABLE
structures.

The variables array must be static modular or global variables. An array of
variables should be declared for each HART 1/O module in use. A local variable
or dynamically allocated variable may not be used because a late command
response received after the variable is freed will write data over the freed variable
space.

The variables array is updated when the response is received by the 5904
interface as follows.

Variable Contains

Variables[0] | primary variable current
Variables[1] | primary variable
Variables[2] | secondary variable
Variables[3] | tertiary variable
Variables[4] | fourth variable

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid.

Notes

The HART_DEVICE structure needs to be initialized using hartCommandO0 or
hartCommand11.

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

Document (Version 1.61) 5/19/2011 288

Function Specifications

Not all devices return primary, secondary, tertiary and fourth variables. If the
device does not support a variable, zero is written into the value and units code
for that variable.

The code field of both HART_VARIABLE structures is not changed. The
response from the HART device to command 3 does not include variable codes.

The units field of variable[0] is set to 39 (units = mA). The response from the
HART device to command 3 does not include units.
See Also

hartCommand33, hartStatus, hartSetConfiguration

Document (Version 1.61) 5/19/2011 289

Function Specifications

hartCommand11l

Read Unique Identifier Associated with Tag

Syntax

#include <ctools.h>
BOOLEAN hartCommandll (UINT16 module, char * deviceTag, HART DEVICE
* device);

Description

This function reads the unique identifier of a HART device using command 11.
This is a link initialization function.

The function has three parameters: the module number of the 5904 module (0 to
3); a pointer to a null terminated string containing the tag of the HART device;
and a pointer to a HART_DEVICE structure. The information read by command
11 is written into the HART_DEVICE structure when the response is received by
the 5904 interface.

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid.
Notes

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

A program needs to initialize the link before executing any other commands.

See Also

hartCommand0, hartStatus, hartSetConfiguration

Document (Version 1.61) 5/19/2011 290

Function Specifications

hartCommand33

Read Transmitter Variables

Syntax

#include <ctools.h>
BOOLEAN hartCommand33 (UINT16 module, HART DEVICE * const device,
UINT16 variableCode[4], HART VARIABLE * variables);

Description
This function reads selected variables from a HART device using command 33.

The function has four parameters: the module number of the 5904 module (0 to
3); the device to be read; an array of codes; and a pointer to an array of four
HART_VARIABLE structures.

The variables array must be static modular or global variables. An array of
variables should be declared for each HART 1/O module in use. A local variable
or dynamically allocated variable may not be used because a late command
response received after the variable is freed will write data over the freed variable
space.

The variableCode array specifies which variables are to be read from the
transmitter. Consult the documentation for the transmitter for valid values.

The variables array is updated when the response is received by the 5904
interface as follows.

Variable Contains

Variables[0] | transmitter variable, code and units specified by
variableCode[0]

Variables[1] | transmitter variable, code and units specified by
variableCode[1]

Variables[2] | transmitter variable, code and units specified by
variableCode[2]

Variables[3] | transmitter variable, code and units specified by
variableCode[3]

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid.
Notes

The HART_DEVICE structure needs to be initialized using hartCommandO0 or
hartCommand11.

The pointer variables needs to point to an array with at least four elements.

Document (Version 1.61) 5/19/2011 291

Function Specifications

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

The function requests four variables and expects four variables in the response.

See Also

hartCommand3, hartStatus, hartSetConfiguration

Document (Version 1.61) 5/19/2011 292

Function Specifications

hartStatus
Return Status of Last HART Command Sent

Syntax

#include <ctools.h>
BOOLEAN hartStatus (UINT16 module, HART RESULT * status, UINTl6 *
code) ;

Description

This function returns the status of the last HART command sent by a 5904
module (0 to 3). Use this function to determine if a response has been received
to a command sent.

The function has three parameters: the module number of the 5904 module; a
pointer to the status variable; and a pointer to the additional status code variable.
The status and code variables are updated with the following information.

Result Status code

HART interface HR_NoModuleResponse | not used
module is not
communicating

Command ready HR_CommandPending not used

to be sent

Command sentto | HR_CommandSent current attempt number

device

Response HR_Response response code from HART

received device (see Notes)

No valid response | HR_NoResponse 0=no response from HART

received after all device.

attempts made Other = error response code
from HART device (see
Notes)

HART interface HR_WaitTransmit not used

module is not
ready to transmit

The function returns TRUE if the status was read. The function returns FALSE if
the module number is invalid.

Notes

The response code from the HART device contains communication error and
status information. The information varies by device, but there are some common
values.

o If bit 7 of the high byte is set, the high byte contains a communication error
summary. This field is bit-mapped. The table shows the meaning of each bit

Document (Version 1.61) 5/19/2011 293

Function Specifications

as defined by the HART protocol specifications. Consult the documentation

for the HART device for more information.

Bit

Description

vertical parity error

overrun error

framing error

longitudinal parity error

reserved — always 0

buffer overflow

O|lFR|IN WAoo

Undefined

e If bit 7 of the high byte is cleared, the high byte contains a command
response summary. The table shows common values. Other values may be
defined for specific commands. Consult the documentation for the HART

device.
Code Description
32 Busy — the device is performing a function
that cannot be interrupted by this command
64 Command not Implemented — the command

is not defined for this device.

e The low byte contains the field device status. This field is bit-mapped. The
table shows the meaning of each bit as defined by the HART protocol
specifications. Consult the documentation for the HART device for more

information.

Bit

Description

field device malfunction

configuration changed

cold start

AlOIO]| N

more status available (use command 48 to
read)

primary variable analog output fixed

primary variable analog output saturated

non-primary variable out of limits

Ol N|W

primary variable out of limits

See Also

hartSetConfiguration

Document (Version 1.61) 5/19/2011

Function Specifications

hartGetConfiguration
Read HART Module Settings

Syntax

#include <ctools.h>

BOOLEAN hartGetConfiguration (UINT16 module, HART SETTINGS *
settings);

Description

This function returns the configuration settings of a 5904 module.

The function has two parameters: the module number of the 5904 module (0 to
3); and a pointer to the settings structure.

The function returns TRUE if the settings were read. The function returns FALSE
if the module number is invalid.
See Also

hartSetConfiguration

Document (Version 1.61) 5/19/2011 295

Function Specifications

hartSetConfiguration
Write HART Module Settings

Syntax

#include <ctools.h>

BOOLEAN hartSetConfiguration (UINT16 module, HART SETTINGS
settings);

Description

This function writes configuration settings to a 5904 module.

The function has two parameters: the module number of the 5904 module (0 to
3); and a settings structure.

The function returns TRUE if the settings were written. The function returns
FALSE if the module number or the settings are invalid.
Notes

The configuration settings are stored in flash. The user-defined settings are used
when the controller is reset in the RUN mode. Default settings are used when the
controller is reset in the SERVICE or COLD BOOT modes. To save these
settings with the controller settings in flash memory so that they are loaded on
controller reset, call flashSettingsSave as shown below.

request_resource(FLASH_MEMORY);
flashSettingsSave(CS_RUN);
release_resource(FLASH_MEMORY);

See Also

hartGetConfiguration

Document (Version 1.61) 5/19/2011 296

Function Specifications

hartPackString
Convert String to HART Packed String

Syntax

#include <ctools.h>

void hartPackString (CHAR * pPackedString, const CHAR * pString,
UINT16 sizePackedString);

Description

This function stores an ASCII string into a HART packed ASCII string.

The function has three parameters: a pointer to a packed array; a pointer to an
unpacked array; and the size of the packed array. The packed array needs to be
a multiple of three in size. The unpacked array needs to be a multiple of four in
size. It should be padded with spaces at the end if the string is not long enough.

The function has no return value.

See Also

hartUnpackString

Document (Version 1.61) 5/19/2011 297

Function Specifications

hartUnpackString
Convert HART Packed String to String

Syntax

#include <ctools.h>

void hartUnpackString (CHAR * pString, const CHAR * pPackedString,
UINT16 sizePackedString);

Description

This function unpacks a HART packed ASCII string into a normal ASCII string.

The function has three parameters: a pointer to an unpacked array; a pointer to a
packed array; and the size of the packed array. The packed array needs to be a
multiple of three in size. The unpacked array needs to be a multiple of four in
size.

The function has no return value.

See Also
hartPackString

Document (Version 1.61) 5/19/2011 298

Function Specifications

htonl

Syntax

#include <ctools.h>

unsigned long htonl

(unsigned long longValue

);

Description

This function converts a long value from host byte order to network byte order.
Parameters

longValue The value to convert

Returns

The converted value.

Document (Version 1.61) 5/19/2011 299

Function Specifications

htons

Syntax

#include <ctools.h>

unsigned short htons

L(msigned short shortValue

);

Description

This function converts a short value from host byte order to network byte order.
Parameters

shortValue The value to convert

Returns

The converted value.

Document (Version 1.61) 5/19/2011 300

Function Specifications

inet_addr

Syntax
#include <ctools.h>
unsigned long inet addr
(
char * ipAddressDottedStringPtr
);
Function Description
This function converts an IP address from the decimal dotted notation to an
unsigned long.
Parameters

ipAddressDottedStringPtr The dotted string (i.e. “208.229.201.4")

Returns

Value Meaning

-1 Error

Other The IP Address in Network Byte Order.

Document (Version 1.61) 5/19/2011 301

Function Specifications

install_handler

Install Serial Port Handler

Syntax

#include <ctools.h>
void install handler (FILE *stream, BOOLEAN (*function) (INT32,
INT32));

Description

The install_handler function installs a serial port character handler function. The
serial port driver calls this function each time it receives a character. If stream
does not point to a valid serial port the function has no effect.

function specifies the handler function, which takes two arguments. The first
argument is the port number. The second argument is the received character. If
function is NULL, the default handler for the port is installed. The default handler
does nothing.

Notes

The install_handler function can be used to write custom communication
protocols.

The handler is called at the completion of the receiver interrupt handler. RTOS
calls (see functions listed in the section Real Time Operating System Functions
at the start of this chapter) may not be made within the interrupt handler, with one
exception. The interrupt_signal_event RTOS call can be used to signal events.

To optimize performance, minimize the length of messages on com3. Examples
of recommended uses for com3 are for local operator display terminals, and for
programming and diagnostics using the IEC 61131-1 program.

Example

See the Install Serial Port Handler Example in the Examples section.

Document (Version 1.61) 5/19/2011 302

Function Specifications

installClockHandler

Install Handler for Real Time Clock

Syntax

#include <ctools.h>

void installClockHandler (void (*function) (void));
Description

The installClockHandler function installs a real time clock alarm handler function.
The real time clock alarm function calls this function each time a real time clock
alarm occurs.

function specifies the handler function. If function is NULL, the handler is
disabled.
Notes

RTOS calls (see functions listed in the section Real Time Operating System
Functions at the start of this chapter) may not be made within the interrupt
handler, with one exception. The interrupt_signal_event RTOS call can be used
to signal events.

See Also

setClockAlarm

Example

See the Install Clock Handler Example in the Examples section.

Document (Version 1.61) 5/19/2011 303

Function Specifications

installDbaseHandler
Install User Defined Dbase Handler (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>

void installDbaseHandler
(
BOOLEAN (* handler)

(
UINT16 address,
INT16 *value

)
)

Description

The installDbaseHandler function allows an extension to be defined for the
dbase() function.

If a handler is installed, it is called by the dbase function when one of the
following conditions apply:

e Thereis no IEC 61131-1 application downloaded, or
e Thereis no IEC 61131-1 variable assigned to the specified Modbus address.

The function installDbaseHandler has one parameter: a pointer to a function to
handle the dbase extensions. See the section Dbase Handler Function for a full
Description of the handler function and it's parameters. If the pointer is NULL, no
handler is installed.

The installed handler is always called with a Modbus address. Linear addresses
are converted to Modbus addresses before calling the handler. Use the
installSetdbaseHandler function to install a write access handler for the same
addresses handled by the dbase handler.

The C++ Tools functions dbase and setdbase are used by all protocols to access
Modbus or Linear registers.

Notes

Call this function with the NULL pointer to remove the dbase handler. This needs
to be done when the application program is ended with an exit handler. Use the
installExitHandler function to install the exit handler.

If the Dbase handler is not removed within an exit handler, it will remain installed
and continue to operate until the controller power is cycled. Erasing the C
Program from the Initialize dialog will not remove the Dbase handler. If the
handler is located in a RAM-based application and left installed while a different
C application is downloaded, the original handler will be corrupted and the
system will likely crash.

Document (Version 1.61) 5/19/2011 304

Function Specifications

installSetdbaseHandler
Install User Defined Setdbase Handler (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>
void installSetdbaseHandler

(
BOOLEAN (* handler)

(
UINT16 address,
INT16 value
)

)

Description

The installSetdbaseHandler function allows an extension to be defined for the
setdbase() function.

If a handler is installed, it is called by the setdbase function when one of the
following conditions apply:

e Thereis no IEC 61131-1 application downloaded, or
e Thereis no IEC 61131-1 variable assigned to the specified Modbus address.

The function installSetdbaseHandler has one parameter: a pointer to a function
to handle the setdbase extensions. See the section Setdbase Handler Function
for a full Description of the handler function and it's parameters. If the pointer is
NULL, no handler is installed.

The installed handler is called with a Modbus address. Linear addresses are
converted to Modbus addresses before calling the handler. Use the
installDbaseHandler function to install a read access handler for the same
addresses handled by the setdbase handler.

The C++ Tools functions dbase and setdbase are used by all protocols to access
Modbus or Linear registers.

Notes

Call this function with the NULL pointer to remove the setdbase handler. This
needs to be done when the application program is ended with an exit handler.
Use the installExitHandler function to install the exit handler.

If the Setdbase handler is not removed within an exit handler, it will remain
installed and continue to operate until the controller power is cycled. Erasing the
C Program from the Initialize dialog will not remove the Setdbase handler. If the
handler is located in a RAM-based application and left installed while a different
C application is downloaded, the original handler will be corrupted and the
system will likely crash.

Document (Version 1.61) 5/19/2011 305

Function Specifications

See Also

setdbase, installDbaseHandler
Example

See Example for Setdbase Handler Function.

Document (Version 1.61) 5/19/2011 306

Function Specifications

installExitHandler

Install Handler Called when Task Ends

Syntax

#include <ctools.h>
BOOLEAN installExitHandler (UINT32 taskID, FUNCPTR function));

Description

The installExitHandler function defines a function that is called when the task,
specified by taskID, is ended. function specifies the handler function. If function is
NULL, the handler is disabled.

Notes

The exit handler function will be called when:

e the task is ended by the end_task or end_group function

o the end_application function is executed and the function is an
APPLICATION type function

e the program is stopped from the IEC 61131-1 or Telepace program and the
task is an APPLICATION type function

e the program is erased by the IEC 61131-1 or Telepace program.

The exit handler function is not called if power to the controller is removed. In this
case all execution stops when power is removed. The application program starts
from the beginning when power is reapplied.

Do not call any RTOS functions from the exit handler.
Example

See the Example for startTimedEvent.

Document (Version 1.61) 5/19/2011 307

Function Specifications

installModbusHandler

Install User Defined Modbus Handler

Syntax

#include <ctools.h>
void installModbusHandler (
UINT16 (* handler) (UCHAR *, UINT1o6,
UCHAR *, UINT1l6 *)
);

Description

The installModbusHandler function allows user-defined extensions to standard
Modbus protocol. This function specifies a function to be called when a Modbus
message is received for the station, but is not understood by the standard
Modbus protocol. The installed handler function(s) is called only if the message is
addressed to the station, and the message checksum is correct.

The function has one parameter: a pointer to a function to handle the messages.
See the section Handler Function for a full Description of the function and it's
parameters. The function has no return value.

Notes

This function is used to create a user-defined extension to the standard Modbus
protocol.

Call the removeModbusHandler function to remove a previously installed
handler. This needs to be done when the application program is ended with an
exit handler. Use the installExitHandler function to install the exit handler.

If the Modbus handler is not removed within an exit handler, it will remain
installed and continue to operate until the controller power is cycled. Changing
the protocol type or Erasing the C Program from IEC 61131-1 Initialize dialog will
not remove the Modbus handler. If the handler is located in a RAM-based
application and left enabled while a different C application is downloaded, the
original handler will be corrupted and the system will likely not work.

See Also

removeModbusHandler, Handler Function, installExitHandler

Document (Version 1.61) 5/19/2011 308

Function Specifications

installRTCHandler

Install User Defined Real-Time-Clock Handler

Syntax

#include <ctools.h>
void installRTCHandler (
void (* rtchandler) (TIME *now, TIME *newTime));

Description

The installRTCHandler function allows an application program to override
Modbus protocol and DNP protocol commands to set the real time clock. This
function specifies a function to be called when a Modbus or DNP message is
received for the station. The installed handler function is called only if the
message is to set the real time clock.

The function has one parameter: a pointer to a function to handle the messages.
See the section RTCHandler Function for a full Description of the function and its
parameters. If the pointer is NULL, no function is called for set the real time clock
commands, and the default method is used set the real time clock.

The function has no return value.

Notes

Call this function with the NULL pointer to disable processing of Set Real Time
Clock messages. This needs to be done when the application program is ended
with an exit handler. Use the installExitHandler function to install the exit handler.

If the RTC handler is not disabled within an exit handler, it will remain installed
and continue to operate until the controller power is cycled. Changing the
protocol type or Erasing the C Program from the Telepace Initialize dialog will not
remove the handler. If the handler is located in a RAM-based application and left
enabled while a different C application is downloaded, the original handler will be
corrupted and the system will likely not work.

See Also

RTCHandler Function, installExitHandler

Document (Version 1.61) 5/19/2011 309

Function Specifications

RTCHandler Function

User Specified Real Time Clock Handler Function
The handler function is a user-specified function that handles processing
of Modbus messages or DNP messages for setting the real time clock. The
function can have any name; rtchandler is used in the Description below.

Syntax

#include <ctools.h>

volid rtchandler (
TIME *now,
TIME *newTime
)

Description

This function rtchandler is a user-defined handler for processing Modbus
messages or DNP messages. The function is called only for messages that set
the real time clock.

The rtchandler function should set the real time clock to the requested time. If
there is a delay before this can be done, the time when the message was
received is provided so that a correction to the requested time can be made.

The function has two parameters.

e The now parameter is a pointer to the structure containing the time when the
message was received.

e The new parameter is a pointer to the structure containing the requested
time.

The function does not return a value.

Notes

The IO_SYSTEM resource has already been requested before calling this
function. If this function calls other functions that require the IO_SYSTEM
resource (e.g. setclock), there is no need to request or release the resource.

This function must not request or release the IO_SYSTEM resource.

See Also
installRTCHandler

Document (Version 1.61) 5/19/2011 310

Function Specifications

ioClear
Turn Off all Outputs

Syntax

#include <ctools.h>
void ioClear (void)

Description

The ioClear function turns off all outputs as follows.

e areset of all /O modules is added to the I/O System queue;
e analog outputs are set to 0;

o digital outputs are set to O (turned off).

Notification of the completion of I/O requests made by this function may be
obtained using the ioNatification function.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

Document (Version 1.61) 5/19/2011 311

Function Specifications

ioDatabaseReset

Initialize I/O Database with Default Values

Syntax

#include <ctools.h>
void ioDatabaseReset (void) ;

Description

The ioDatabaseReset function resets the target controller to default settings.

Configuration parameters are reset to the default values.
Communication status counters are reset to zero.
Output I/O points are cleared.

Locked variables are unlocked.

Clear all I/0O forcing

Clear all /O points

Set all database locations to zero

Set 1/O database for real-time clock to current time
Clear real time clock alarm settings

Configure serial ports with default parameters

Configure serial ports with default protocols

Clear serial port event counters

Clear store and forward configuration

Enable LED power by default and return to default state after 5 minutes
Set Outputs on Stop settings to Hold

Set 5904 HART modem configuration for all modems
Set Modbus/TCP default configuration

Write new default data to Flash

Notes

This function can be used to restore the controller to its default state.
ioDatabaseReset has the same effect as selecting the Initialize Controller option
from the Initialize command in the IEC 61131-1 program.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

#include <ctools.h>

Document (Version 1.61) 5/19/2011

312

Function Specifications

int main (void)

{
/* Power Up Initialization */
request resource (IO SYSTEM) ;
ioDatabaseReset () ;
release resource (IO SYSTEM) ;

/* ... the rest of the program */

Document (Version 1.61) 5/19/2011 313

Function Specifications

ioGetConfiguration

Get I/O Controller Configuration

Syntax

#include <ctools.h>

IO CONFIG& ioGetConfiguration(void)
Description

This function returns the 1/0O controller configuration.
The function has no arguments.

The function returns an 10_CONFIG structure containing the configuration.

Document (Version 1.61) 5/19/2011 314

Function Specifications

ioNotification
Add I/O Notification Request

Syntax

#include <ctools.h>
BOOLEAN ioNotification (UINT16 eventNumber)

Description

This function adds a Notification Request to the I1/O Controller request queue.
The specified event number is signaled when the notification request is
processed.

The function has one argument: an event number. Valid events are numbered 0
to 31.

The function returns TRUE if the request was added. The function returns FALSE
if there is no room in the request queue or if the event number is invalid.

Document (Version 1.61) 5/19/2011 315

Function Specifications

ioRead4203DRInputs

Read 4203 DR Inputs

Syntax

#include <ctools.h>
BOOLEAN ioRead4203DRInputs (
UCHAR &dinData,

INT1l6 &ainData,
UINT32 (&cinData) [2]
)

Description

This function reads buffered data from the digital and analog input of the 4203
DR 1/0O. Buffered data are updated when an 1/O request for the module is
processed.

dinData is a reference to a UCHAR variable. Digital data for the input is written to
this array. One bit in the array represents each input point.

ainData is a reference to a INT16 variables. Analog data are written to this array.

cinData is a reference to two UINT32 variables. Counter data is written to this
array.

The function returns FALSE if the data was read from the internal table;
otherwise TRUE is returned.

See Also
ioWrite4203DROutputs

Example

This program displays the values of the digital input and the analog input read
from the 4203 DR I/O.

#include <ctools.h>

#define MY EVENT 1
int main (void)
{
UCHAR dinData;
INT16 ainData;
UINT32 cinDatal[2];
BOOLEAN status;
IO STATUS io_status;

// main loop

while (TRUE)

{
// add module scan to queue
if (!ioRequest (MT 4203DRInputs,
{

0))

Document (Version 1.61) 5/19/2011

316

Function Specifications

status = FALSE;
else

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

}

// read input data from last scan
status = ioRead4203DRInputs (dinData, ainData,
cinData) ;

// check status of last scan
if (status == FALSE)
{

// insert code to handle the failure here
}
else if (!ioStatus(MT 4203DRInputs, 0, &io status))
{

// insert code to handle the failure here
}
else if (!io status.commStatus)
{

// insert code to handle the failure here
}
else

{

// The last scan was successful so print the // data

ainData);

fprintf (com2, "status = %u,\
Dins 0 = %X, Ain = %d\r\n", status, dinData,

done = TRUE;
}

// sleep processor for 100ms
sleep processor (100);

Document (Version 1.61) 5/19/2011

317

Function Specifications

ioRead4203DSInputs

Read 4203 DS Inputs

Syntax

#include <ctools.h>
BOOLEAN ioRead4203DSInputs (
UCHAR &dinData,

INT16 (&ainData) [3],
UINT32 (&cinData) [2]
)
Description

This function reads buffered data from the digital and analog inputs of the 4203
DS I/O. Buffered data are updated when an 1/0O request for the module is
processed.

dinData is a reference to a UCHAR variable. Digital data for the input is written to
this array. One bit in the array represents each input point.

ainData is a reference to an array of three INT16 variables. Analog data are
written to this array.

cinData is a reference to two UINT32 variables. Counter data is written to this
array.

The function returns FALSE if the data was read from the internal table;
otherwise TRUE is returned.

See Also

ioWrite4203DSOutputs

Example

This program displays the values of the digital input and the 3rd analog input
read from the 4203 DS 1/0.

#include <ctools.h>

#define MY EVENT 1
int main (void)
{
UCHAR dinData;
INT16 ainDatal5];
UINT32 cinDatal[2];
IO STATUS io_status;
BOOLEAN status;

// main loop
while (TRUE)
{
// add module scan to queue
if (!ioRequest (MT 4203DSInputs,

Document (Version 1.61) 5/19/2011

318

Function Specifications

status = FALSE;
else

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT);

}

// read input data from last scan
status = ioRead4203DSInputs (dinData, ainData,
cinData) ;

// check status of last scan
if (status == FALSE)
{

// insert code to handle the failure here

}

else if (!ioStatus(MT 4203DSInputs, 0, &io status))

{

// insert code to handle the failure here
}
else if (!io status.commStatus)
{
// insert code to handle the failure here
}
else
{
fprintf (com2, "status = %u,\
Dins 0 = %X, Ain 2 = %d\r\n",
status, dinData, ainDatal[2]);
done = TRUE;
}

// sleep processor for 100ms
sleep processor (100);

Document (Version 1.61) 5/19/2011

319

Function Specifications

ioRead5210Inputs
Read SCADAPack 330 controller board inputs

Syntax

#include <ctools.h>

BOOLEAN ioRead5210Inputs (
UINT32 (&counterData) [3],
UCHAR &dinData
);

Description

This function reads buffered data from the digital and counter inputs of a
SCADAPack 330 controller board. Buffered data are updated when an I/O
request for the module is processed.

counterData is a reference to an array to receive the counter input values. Data
from three counter inputs is written to this variable.

dinData is a reference to a variable to receive the digital input values.
e Bit 0 of this variable is written with the com3 (HMI) power status.
e Bits 1to 7 are not used.

The function returns TRUE as no I/O errors are possible.

See Also
ioRead52100utputs

Example

This program displays the values of the 7 internal digital inputs and the single
physical digital input. The first counter input is displayed as well.

#include <ctools.h>
#include "nvMemory.h"
#define My EVENT 1

void main (void)

{

UCHAR dinData;
UINT32 counterData[3];
IO _STATUS io_status;
BOOLEAN status;

// main loop
while (TRUE)
{
// add module scan to queue
if (!ioRequest (MT 5210Inputs, 0))
{
status = FALSE;

Document (Version 1.61) 5/19/2011 320

Function Specifications

}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT);

// read input data from last scan
status = ioRead5210Inputs (counterData, dinData);

// check status of last scan

if (!ioStatus(MT_5210Inputs,0, &io status))
{ status = FALSE;

;lse if (!io status.commStatus)

{ status = FALSE;

}

//print data

fprintf (coml, "status = %u,\
Dins 0 to 7 = %X, Counter 1 = %d\r\n",

status, dinData, counterDatal0]);

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011

321

Function Specifications

ioRead52100utputs
Read SCADAPack 330 controller board outputs

Syntax

#include <ctools.h>
BOOLEAN ioRead52100utputs (
UCHAR &doutData
)
Description

This function reads buffered data from the digital outputs of a SCADAPack 330
controller board. Buffered data are written with the ioWrite52100utputs function.

doutData is a reference to a variable to receive the digital output values.
e Bit 0 of this variable is written with the USB LED control.

e Bit 1 of this variable is written with the com3 (HMI) power control.

e Bits 2to 7 are not used.

The function returns TRUE as no I/O errors are possible.

See Also
ioRead5210Inputs, ioWrite52100utputs

Document (Version 1.61) 5/19/2011 322

Function Specifications

ioRead5414Inputs
Read 5414 module inputs.

Syntax

#include <ctools.h>

BOOLEAN ioRead5414Inputs (
UINT16 moduleAddress,
UCHAR (&dinData) [2]
)

Description

This function reads buffered data from the digital inputs5414 module. Buffered
data are updated when an I/O request for the module is processed.

moduleAddress is the address of the 5414 module. Valid values are 0 to 15.
dinData is a reference to an array of two UCHAR variables. Digital data for the 16
inputs are written to this array. One bit in the array represents each input point.
See Also

ioWrite54140utputs

Example

This program displays the values of the first 8 digital inputs.

#include <ctools.h>
#include "nvMemory.h"
#define MY EVENT 1

void main (void)

{

UCHAR dinDatal[2];
IO STATUS io_status;
BOOLEAN status;

// main loop
while (TRUE)
{
// add module scan to queue
if (!ioRequest (MT_ 5414Inputs, 0))
{
status = FALSE;
}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

// read input data from last scan
status = ioRead5414Inputs (0, dinData);

Document (Version 1.61) 5/19/2011 323

Function Specifications

// check status of last scan

if (!ioStatus(MT 5414Inputs,0, &io status))
{ status = FALSE;

élse if (!io_status.commStatus)

{ status = FALSE;

}

//print data

fprintf (coml, "status = %u,\
Dins 0 to 7 = %X\r\n",
status, dinData([0]):;

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011 324

Function Specifications

ioRead5415Inputs
Read 5415 module inputs

Syntax

#include <ctools.h>

BOOLEAN ioRead5415Inputs (
UINT16 moduleAddress,
UCHAR &dinData
)

Description

This function reads buffered data from the digital inputs (relay coil power status
and power jumper position) of the 5415 relay output module. Buffered data are
updated when an 1/O request for the module is processed.

moduleAddress is the address of the 5415 module. Valid values are 0 to 15.

dinData is a reference to a UCHAR variable. Digital data from the 2 inputs are
written to this array. Bit 0 holds the relay coil power status. Bit 1 holds the relay
power jumper position.

See Also
ioWrite54150utputs, ioRead54150utputs

Example

This Example reads the digital inputs on the 5415 I/O module

#include <ctools.h>
#include "nvMemory.h"
#define MY EVENT 1

void main (void)

{

UCHAR dinDatal[l];
IO STATUS io_status;
BOOLEAN status;

// main loop
while (TRUE)
{
// add module scan to queue
if (!ioRequest (MT 5415Inputs, 0))
{
status = FALSE;
}

// wait for scan to complete
ioNotification (MY EVENT) ;

Document (Version 1.61) 5/19/2011

325

Function Specifications

wait event (MY EVENT);

// read input data from last scan
status = ioRead5415Inputs (0, dinData);

// check status of last scan

if (!ioStatus(MT_5415Inputs,0, &io status))
{ status = FALSE;

élse if (!io_status.commStatus)

{ status = FALSE;

}

//print data

fprintf (coml, "status = %u,\
Dins 0 to 7 = %X\r\n",
status, dinData[0]):;

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011

326

Function Specifications

ioRead54150utputs
Read 5415 module outputs

Syntax

#include <ctools.h>

BOOLEAN ioRead54150utputs (
UINT16 moduleAddress,
UCHAR (&doutData) [2]
)

Description

This function reads buffered data from 1/O table for the 12 output points of a 5415
relay output module. Buffered data are written using the ioWrite54150utputs
function

moduleAddress is the address of the 5415 module. Valid values are 0 to 15.

doutData is a reference to an array of two UCHAR variables. Digital data for the
12 outputs are written to this array. One bit in the array represents each output
point.

See Also

ioWrite54150utputs, ioRead5415Inputs

Document (Version 1.61) 5/19/2011 327

Function Specifications

ioRead5505Inputs
Read 5505 Inputs

Syntax

#include <ctools.h>

BOOLEAN ioRead5505Inputs (
UINT16 moduleAddress,
UINT16 &dinData,
float (&ainData) [4]

)

Description

This function reads buffered data from the digital and analog inputs of a 5505 I/O
module. Buffered data are updated when an 1/O request for the module is
processed.

moduleAddress is the address of the 5505 module. Valid values are 0 to 15.

dinData is a reference to a UINT16 variable. Digital data for the 16 internal inputs
are written to this variable. One bit in the variable represents each input point.
The function of the 16 digital inputs is described in the table below.

Point Function
Offset
0 OFF = channel 0 RTD is good
ON = channel 0 RTD is open or PWR input is off
1 OFF = channel 0 data in range
ON = channel 0 data is out of range
2 OFF = channel 0 RTD is using 3-wire measurement
ON = channel 0 RTD is using 4-wire measurement
3 reserved for future use
4 OFF = channel 1 RTD is good
ON = channel 1 RTD is open or PWR input is off
5 OFF = channel 1 data in range
ON = channel 1 data is out of range
6 OFF = channel 1 RTD is using 3-wire measurement
ON = channel 1 RTD is using 4-wire measurement
7 reserved for future use
8 OFF = channel 2 RTD is good
ON = channel 2 RTD is open or PWR input is off
9 OFF = channel 2 data in range
ON = channel 2 data is out of range
10 OFF = channel 2 RTD is using 3-wire measurement
ON = channel 2 RTD is using 4-wire measurement

Document (Version 1.61) 5/19/2011 328

Function Specifications

Point
Offset

Function

11

reserved for future use

12

OFF = channel 3 RTD is good

ON = channel 3 RTD is open or PWR input is off

13

OFF = channel 3 data in range
ON = channel 3 data is out of range

14

OFF = channel 3 RTD is using 3-wire measurement
ON = channel 3 RTD is using 4-wire measurement

15

Reserved for future use

ainData is a reference to an array of four floating point variables. Analog data are
written to this array.

The function returns FALSE if the module address is invalid; otherwise TRUE is

returned.

See Also

ioRead55050utputs, ioWrite55050utputs

Example

This program displays the values of the 16 internal digital inputs and the 4th
analog input read from 5505 I/O at address 5.

#include <ctools.h>

#define

MY EVENT 1

int main (void)

{

UINT16 dinData;

float ainDatal4];
IO STATUS io status;
BOOLEAN status;
BOOLEAN done;

// main loop

while

{

(TRUE)

// add module scan to queue
if (!ioRequest (MT_ 5505Inputs,
{

5))

status = FALSE;

}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

// read input data from last scan

Document (Version 1.61) 5/19/2011

329

Function Specifications

status = ioRead5505Inputs (5, dinData, ainData);

// check status of last scan

if (!ioStatus(MT _5505Inputs, 5, &io status))
{ status = FALSE;

;lse if (!io status.commStatus)

{ status = FALSE;

}

// print data

if (!done)
{
fprintf (coml, "status = %u,\
Dins 0 to 15 = %X, Ain 3 $f\r\n",

status, dinData, ainDatal[3]):;
done = TRUE;
}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011

330

Function Specifications

ioRead55050utputs
Read 5505 Configuration

Syntax

#include <ctools.h>

BOOLEAN ioRead55050utputs (
UINT16 moduleAddress,
UINT16 (&inputType) [4],
UINT16 &inputFilter

)

Description

This function reads configuration data from the 1/O Table for a 5505 I/0O module.
Configuration data are written using the ioWrite55050utputs function.

moduleAddress is the address of the 5505 module. Valid values are 0 to 15.

inputType is a reference to an array of four UINT16 variables. Analog input
measurement types are written to this array. Valid values are

e 0=RTD in deg Celsius

e 1=RTD in deg Fahrenheit

e 2=RTDin deg Kelvin

e 3 =resistance measurement in ohms.

inputFilter is a reference to a UINT16 variable. The input filter selection is written
to this variable.

e 0=05s

e 1=1s

e 2=2s

e 3=4s

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

See Also

ioRead5505Inputs, ioWrite55050utputs

Example

This program reads configuration data for the 5505 I/O module at address 5.
#include <ctools.h>
int main (void)

{
UINT16 inputTypel4];

Document (Version 1.61) 5/19/2011 331

Function Specifications

UINT16 inputFilter;
BOOLEAN status;
BOOLEAN done;

// main loop

while (TRUE)

{
// read output data from I/O table
status = ioRead55050utputs (5, inputType,

inputFilter);
// print data
if (!done)
{
fprintf (coml, "status = %u,\
inputType 0 = %d, inputFilter = %d\r\n", status, inputType[0],
inputFilter);

done = TRUE;
}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011 332

Function Specifications

ioRead5506Inputs
Read 5506 Inputs

Syntax

#include <ctools.h>

BOOLEAN ioRead5506Inputs (
UINT16 moduleAddress,
UCHAR &dinData,
INT16 (&ainData) [8]

)

Description

This function reads buffered data from the digital and analog inputs of a 5506 1/O
module. Buffered data are updated when an I/O request for the module is
processed.

moduleAddress is the address of the 5506 module. Valid values are 0 to 15.

dinData is a reference to a UCHAR variable. Digital data for the 8 internal inputs
are written to this variable. One bit in the variable represents each input point.
The 8 internal inputs indicate if the corresponding analog input value is over
range.

ainData is a reference to an array of eight INT16 variables. Analog data are
written to this array.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

See Also

ioRead55060utputs, ioWrite55060utputs

Example

This program displays the values of the 8 internal digital inputs and the 5th
analog input read from 5506 1/O at address 5.

#include <ctools.h>
#define MY EVENT 1

int main (void)

{

UCHAR dinData;
INT16 ainDatal[8];
IO _STATUS io_status;
BOOLEAN status;
BOOLEAN done;

// main loop
while (TRUE)
{

// add module scan to queue

Document (Version 1.61) 5/19/2011 333

Function Specifications

if (!ioRequest (MT 5506Inputs, 5))
{

status = FALSE;
}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

// read input data from last scan
status = ioRead5506Inputs (5, dinData, ainData);

// check status of last scan

if (!ioStatus(MT_5506Inputs, 5, &io status))
{ status = FALSE;

élse if (!io_status.commStatus)

{ status = FALSE;

}

// print data
if (!done)

{

Dins 0 to 7 = %X, Ain 4
status, dinData, ainData
done = TRUE;

fprintf (coml, "status = %u,\
= %d\r\n",
[4])

}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011 334

Function Specifications

ioRead55060utputs
Read 5506 Configuration

Syntax

#include <ctools.h>

BOOLEAN ioRead55060utputs (
UINT16 moduleAddress,
UINT16 (&inputType) [8],
UINT16 &inputFilter,
UINT16 &scanFrequency

)

Description

This function reads configuration data from the 1/0 Table for a 5506 /O module.
Configuration data are written using the ioWrite55060utputs function.

moduleAddress is the address of the 5506 module. Valid values are 0 to 15.

inputType is a reference to an array of eight UINT16 variables. Analog input
measurement types are written to this array. Valid values are

e 0=0to5V
e 1=1to5V
e 2=0to20mA
e 3=410 20 mA.

inputFilter is a reference to a UINT16 variable. The input filter selection is written
to this variable.

e 0=3Hz
e 1=6Hz
e 2=11Hz
e 3=30Hz

scanFrequency is a reference to a UINT16 variable. The scan frequency
selection is written to this variable.

e 0=60Hz
e 1=50Hz

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

See Also
ioRead5506Inputs, ioWrite55060utputs

Document (Version 1.61) 5/19/2011 335

Function Specifications

Example

This program reads configuration data for the 5506 I/O module at address 5.

#include <ctools.h>

int main (void)

{
UINT16 inputTypel[8];
UINT16 inputFilter;
UINT16 scanFrequency;
BOOLEAN status;
BOOLEAN done;

// main loop
while (TRUE)
{
// read output data from I/O table
status = ioRead55060utputs (5, inputType, inputFilter,
scanFrequency) ;

// print data
if (!done)
{

fprintf (coml, "status = %u,\
inputType 0 = %d, inputFilter = %d,\
scanFrequency = %d \r\n",

status, inputType[0],
inputFilter, scanFrequency) ;

done = TRUE;
}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011 336

Function Specifications

ioRead5606Inputs
Read 5606 Inputs

Syntax

#include <ctools.h>

BOOLEAN ioRead5606Inputs (
UINT16 moduleAddress,
UCHAR (&dinData) [5],
INT16 (&ainData) [8]

)

Description

This function reads buffered data from the digital and analog inputs of a 5606 I/O
module. Buffered data are updated when an I/O request for the module is
processed.

moduleAddress is the address of the 5606 module. Valid values are 0 to 7.

dinData is a reference to an array of five UCHAR variables. Digital data for the 32
external and 8 internal inputs are written to this array. One bit in the array
represents each input point. The 8 internal inputs indicate if the corresponding
analog input value is over range.

ainData is a reference to an array of eight INT16 variables. Analog data are
written to this array.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

See Also

ioRead5606Inputs, ioRead56060utputs

Example

This program displays the values of the first 8 digital inputs and the 5th analog
input read from 5606 1/O at address 5.

#include <ctools.h>
#define MY EVENT 1

int main (void)

{

UCHAR dinDatal[5];
INT16 ainDatal[8];
IO _STATUS io_status;
BOOLEAN status;
BOOLEAN done;

// main loop
while (TRUE)
{

// add module scan to queue

Document (Version 1.61) 5/19/2011 337

Function Specifications

if (!ioRequest (MT_ 5606Inputs,
{
status = FALSE;

}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

// read input data from last
status = ioRead5606Inputs (5,

// check status of last scan
if (!ioStatus(MT_5606Inputs,
{
status = FALSE;
}
else if
{
status = FALSE;

}

// print data
if (!done)
{

fprintf (coml, "status

5))

scan

dinData,

5,

(!io_status.commStatus)

Dins 0 to 7 = %X, Ain 4

status, dinDatal[O0],
done = TRUE;
}

u, \
sd

ainData) ;

&io_status))

\r\n",

ainDatal[4]);

// release processor to other priority 1 tasks

release processor();

Document (Version 1.61) 5/19/2011

338

Function Specifications

ioRead56060utputs

Read 5606 Outputs

Syntax

#include <ctools.h>

BOOLEAN ioRead56060utputs (
UINT16 moduleAddress,
UCHAR (&doutData) [2],
INT16 (&aoutData) [2],
UINT16 (&inputType) [8],
UINT16 &inputFilter,
UINT16 &scanFrequency,
UINT16 &outputType

)

Description

This function reads buffered data from the digital and analog outputs of a 5606
I/0 module. Buffered data are written using the ioWrite56060utputs function.

moduleAddress is the address of the 5606 module. Valid values are 0 to 7.

doutData is a reference to an array of two UCHAR variables. Digital data for the
16 outputs are written to this array. One bit in the array represents each output
point.

aoutData is a reference to an array of two INT16 variables. Analog data for the
two analog outputs are written to this array.

inputType is a reference to an array of eight UINT16 variables. Analog input
measurement types are written to this array. Valid values are

e 0=0tobV

e 1=0tol0V
e 2=0to20mA
e 3=410 20 mA.

inputFilter is a reference to a UINT16 variable. The input filter selection is written
to this variable.

e 0=3Hz
e 1=6Hz
e 2=11Hz
e 3=30Hz

scanFrequency is a reference to a UINT16 variable. The scan frequency
selection is written to this variable.

e 0=60Hz

Document (Version 1.61) 5/19/2011 339

Function Specifications

e 1=50Hz

outputType is a reference to a UINT16 variable. The analog output type is written
to this variable.

e 0= 0to20mA
e 1=4to 20 mA.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

See Also
ioRead5606Inputs, ioWrite56060utputs

Example

This program reads output data from the I/O table for the 5606 digital outputs and
analog outputs at address 5.

#include <ctools.h>

int main (void)

{
UCHAR doutDhatal2];
INT16 aoutbDatal2];
UINT16 inputType[8];
UINT16 inputFilter;
UINT16 scanFrequency;
UINT16 outputType;
BOOLEAN status;
BOOLEAN done;

// main loop
while (TRUE)
{
// read output data from I/O table
status = ioRead56060utputs (5, doutData, aoutData,
inputType, inputFilter, scanFrequency, outputType);

// print data
if (!done)
{
fprintf (coml, "status = %u,\
Douts 0 to 7 = %X, Aout 0 = %d\r\n",
status, doutData[0], aoutDatal[0]);

done = TRUE;
}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011 340

Function Specifications

ioRead5607Inputs
Read 5607 Inputs

Syntax

#include <ctools.h>

BOOLEAN ioRead5607Inputs (
UINT16 moduleAddress,
UCHAR (&dinData) [3],
INT16 (&ainData) [8]

)

Description

This function reads buffered data from the digital and analog inputs of a 5607 I/O
module. Buffered data are updated when an I/O request for the module is
processed.

moduleAddress is the address of the 5607 module. Valid values are 0 to 7.

dinData is a reference to an array of three UCHAR variables. Digital data for the
16 external and 8 internal inputs are written to this array. One bit in the array
represents each input point. The 8 internal inputs indicate if the corresponding
analog input value is over range.

ainData is a reference to an array of eight INT16 variables. Analog data are
written to this array.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

See Also

ioRead56070utputs, ioWrite56070utputs

Example

This program displays the values of the first 8 digital inputs and the 5th analog
input read from 5607 1/O at address 5.

#include <ctools.h>
#define MY EVENT 1

void main (void)

{

UCHAR dinDatal[3];
INT16 ainDatal[8];
IO _STATUS io_status;
BOOLEAN status;

// main loop
while (TRUE)
{
// add module scan to queue
if (!ioRequest (MT_ 5607Inputs, 5))

Document (Version 1.61) 5/19/2011 341

Function Specifications

{
status = FALSE;

}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

// read input data from last
status = ioRead5607Inputs (5,

// check status of last scan
if (!ioStatus(MT_5607Inputs,
{

status = FALSE;
}

scan

dinData, ainData);

5, &io_status))

else if (!io status.commStatus)

{
status = FALSE;

}

// print data
fprintf (com3, "status = %u
Dins 0 to 7 = %X, Ain 4 =

status, dinDatal[0],

o\
$d\
ainDatal4

r\nn,

1)

// release processor to other priority 1 tasks

release processor();

Document (Version 1.61) 5/19/2011

342

Function Specifications

ioRead56070utputs

Read 5607 Outputs

Syntax

#include <ctools.h>

BOOLEAN ioRead56070utputs (
UINT16 moduleAddress,
UCHAR (&doutData) [2],
INT16 (&aoutData) [2],
UINT16 (&inputType) [8],
UINT16 &inputFilter,
UINT16 &scanFrequency,
UINT16 &outputType

)

Description

This function reads buffered data from the digital and analog outputs of a 5607
I/0 module. Buffered data are written using the ioWrite56070Outputs function.

moduleAddress is the address of the 5607 module. Valid values are 0 to 7.

doutData is a reference to an array of two UCHAR variables. Digital data for the
10 outputs are written to this array. One bit in the array represents each output
point.

aoutData is a reference to an array of two INT16 variables. Analog data for the
two analog outputs are written to this array.

inputType is a reference to an array of eight UINT16 variables. Analog input
measurement types are written to this array. Valid values are

e 0=0tobV

e 1=0tol0V
e 2=0to20mA
e 3=410 20 mA.

inputFilter is a reference to a UINT16 variable. The input filter selection is written
to this variable.

e 0=3Hz
e 1=6Hz
e 2=11Hz
e 3=30Hz

scanFrequency is a reference to a UINT16 variable. The scan frequency
selection is written to this variable.

e 0=60Hz

Document (Version 1.61) 5/19/2011 343

Function Specifications

1=50Hz

outputType is a reference to a UINT16 variable. The analog output type is written

to this variable.
0= 0to20mA
1=4to 20 mA.

The function returns FALSE if the module address is invalid; otherwise TRUE is

returned.

See Also
ioRead5607Inputs, ioWrite56070utputs

Example

This program reads output data from the I/O table for the 5607 digital outputs and

analog outputs at address 5.

#include <ctools.h>

void main (void)
{
UCHAR
INT16
UINT1l6
UINT1l6

doutDatal2];

aoutbDatal2];
inputType[8];
inputFilter;
UINT16 scanFrequency;
UINT16 outputType;
BOOLEAN status;
BOOLEAN done;

// main loop
while (TRUE)
{
// read output data from I/O table
status ioRead56070utputs (5,
inputFilter, scanFrequency,

inputType,

// print data

doutData,
outputType) ;

aoutbata,

fprintf (com3, "status = %u,\
Douts 0 to 7 = %X, Aout 0 = %d\r\n",
status, doutData[0], aoutDatal[0]);

// release processor to other priority 1 tasks

release processor();

Document (Version 1.61) 5/19/2011

344

Function Specifications

ioReadAin4
Read Data From 4-point Analog Input Module

Syntax

#include <ctools.h>
BOOLEAN ioReadAin4 (UINT16 moduleAddress, INT1l6 (&data) [4])

Description

This function reads buffered data from the 4 point analog input module at the
specified module address. Buffered data are updated when an 1/O request for the
module is processed.

The function has two parameters: the module address, and a reference to an
array of four INT16 variables. If the moduleAddress is valid, analog input data are
copied to the array. The valid range for moduleAddress is 0 to 15.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

Document (Version 1.61) 5/19/2011 345

Function Specifications

ioReadAin8

Read Data From 8-point Analog Input Module

Syntax

#include <ctools.h>
BOOLEAN ioReadAin8 (UINT16 moduleAddress, INT1l6 (&data) [8])

Description

This function reads buffered data from the 8 point analog input module at the
specified moduleAddress. Buffered data are updated when an I/O request for the
module is processed.

The function has two parameters: the module address, and a reference to an
array of eight INT16 variables. If the moduleAddress is valid, analog input data
are copied to the array. The valid range for moduleAddress is 0 to 15.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

Document (Version 1.61) 5/19/2011 346

Function Specifications

ioReadAout2

Read Data From 2-point Analog Output Module

Syntax

#include <ctools.h>
BOOLEAN ioReadAout2 (UINT16 moduleAddress, INT1l6 (&data) [2])

Description

This function reads buffered data used for the 2-point analog output module at
the specified module address. Buffered data are written using the ioWriteAout2
function.

The function has two parameters: the module address, and a reference to an
array of two INT16 variables. If the moduleAddress is valid, data are copied to
the array. The valid range for moduleAddress is 0 to 15.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

Document (Version 1.61) 5/19/2011 347

Function Specifications

ioReadAout4

Read Data From 4-point Analog Output Module

Syntax

#include <ctools.h>
BOOLEAN ioReadAout4d (UINT16 moduleAddress, INT1l6 (&data) [4])

Description

This function reads buffered data used for the 4-point analog output module at
the specified module address. Buffered data are written using the ioWriteAout4
function.

The function has two parameters: the module address, and a reference to an
array of four INT16 variables. If the moduleAddress is valid, data are copied to
the array. The valid range for moduleAddress is 0 to 15.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

Document (Version 1.61) 5/19/2011 348

Function Specifications

ioReadAout5303
Read Data From 2-point 5303 Analog Output Module

Syntax

#include <ctools.h>

BOOLEAN ioReadAout5303 (INT1l6 (&data) [2])
Description

This function reads buffered data used for the 2-point 5303 analog output
module. Buffered data are written using the ioWriteAout5303 function.

The function has one parameter: a reference to an array of two INT16 variables.
The buffered data are copied to the array.

The function needs to returns TRUE.

Document (Version 1.61) 5/19/2011 349

Function Specifications

ioReadCounter4

Read Data From 4-point Counter Input Module

Syntax

#include <ctools.h>
BOOLEAN ioReadCounter4 (UINT16 moduleAddress, UINT32 (&data) [4])

Description

This function reads buffered data from the 4 point counter input module at the
specified module address. Buffered data are updated when an 1/O request for the
module is processed.

The function has two parameters: the module address, and a reference to an
array of four UINT32 variables. If the moduleAddress is valid, data are copied to
the array. The valid range for moduleAddress is 0 to 15.

The maximum count is 4,294,967,295. Counters roll back to 0 when the
maximum count is exceeded.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

Document (Version 1.61) 5/19/2011 350

Function Specifications

ioReadCounterSP2
Read Data From the SCADAPack 350 Counter Inputs

Syntax

#include <ctools.h>

BOOLEAN ioReadCounterSP2 (UINT32 (&data) [3])
Description

This function reads buffered data from the SCADAPack 350 counter inputs.
Buffered data are updated when an I/O request for the module is processed.

The function has one parameter: a reference to an array of three UINT32
variables. The buffered data are copied to the array.

The maximum count is 4,294,967,295. Counters roll back to O when the
maximum count is exceeded.

The function returns TRUE.

Document (Version 1.61) 5/19/2011 351

Function Specifications

ioReadDin16
Read Data From 16-point Digital Input Module

Syntax

#include <ctools.h>
BOOLEAN ioReadDinl6 (UINT16 moduleAddress, UINT16 & data)

Description

This function reads buffered data from the 16 point digital input module at the
specified module address. Buffered data are updated when an 1/O request for the
module is processed.

The function has two parameters: the module address, and a reference to an
INT16 variable. If the moduleAddress is valid, digital input data are copied to the
variable. The valid range for moduleAddress is 0 to 15.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

Document (Version 1.61) 5/19/2011 352

Function Specifications

ioReadDin32
Read 32 Digital Inputs

Syntax

#include <ctools.h>
BOOLEAN ioReadDin32 (UINT16 moduleAddress, UINT32 & data)

Description

This function reads buffered data from the 32 point digital input module at the
specified module address. Buffered data are updated when an 1/O request for the
module is processed.

moduleAddress is the address of the digital output module. The valid range is 0
to 15.

data is a reference to a variable to receive the input data.

The function returns TRUE if data was written. The function returns FALSE if the
module address is invalid.

See Also
ioReadDin8, ioReadDin16

Example

This program displays the values of the 32 digital inputs read from a 32 point
Digital Input Module at module address 0.

#include <ctools.h>
#define IO_NOTIFICATION 0

int main (void)

{
UINT16 point;
UINT32 dinData;

/* request read from digital input module */
ioRequest (MT Din32, 0);

/* wait for the read to complete */
iONOtification(IO_NOTIFICATION);
wait_event (IO _NOTIFICATION) ;

/* get the data read */
ioReadDin32 (0, dinData);

/* Print module data */
fprintf (coml, "Point Value") ;
for (point = 0; point < 32; point++)
{
fprintf (coml, "\n\r%d ", point);

Document (Version 1.61) 5/19/2011 353

Function Specifications

putchar (dinData & 0x0001 2 '1' :'0");
dinData >>= 1;

Document (Version 1.61) 5/19/2011 354

Function Specifications

ioReadDin8
Read Data From 8-point Digital Input Module

Syntax

#include <ctools.h>
BOOLEAN ioReadDin8 (UINT16 moduleAddress, UCHAR & data)

Description

This function reads buffered data from the 8 point digital input module at the
specified module address. Buffered data are updated when an 1/0O request for the
module is processed.

The function has two parameters: the module address, and a reference to an
UCHAR variable. If the moduleAddress is valid, digital input data are copied to
the variable. The valid range for moduleAddress is 0 to 15.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

Document (Version 1.61) 5/19/2011 355

Function Specifications

ioReadDout16
Read Data From 16-point Digital Output Module

Syntax

#include <ctools.h>
BOOLEAN ioReadDoutl6 (UINT16 moduleAddress, UINT1l6 & data)

Description

This function reads buffered data used for the 16-point digital output module at
the specified module address. Buffered data are written using the ioWriteDout16
function.

The function has two parameters: the module address, and a pointer to an
UINT16 variable. If the moduleAddress is valid, digital input data are copied to
the variable. The valid range for moduleAddress is 0 to 15.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

Document (Version 1.61) 5/19/2011 356

Function Specifications

ioReadDout32
Read from 32 Digital Outputs

Syntax

#include <ctools.h>

BOOLEAN ioReadDout32 (
UINT16 moduleAddress,
UINT32 & data)

Description

The ioReadDout32 function reads buffered data for a 32-bit digital output module.
Buffered data are written using the ioWriteDout32 function.

The function has two parameters.
moduleAddress is the address of the module. The valid range is 0 to 15.

data is reference to a UINT32 variable. If the module address is valid, data are
copied to this variable.

The function returns FALSE if the moduleAddress is invalid; otherwise TRUE is
returned.

See Also

ioReadDout8, ioReadDout16

Document (Version 1.61) 5/19/2011 357

Function Specifications

ioReadDout8
Read Data From 8-point Digital Output Module

Syntax

#include <ctools.h>
BOOLEAN ioReadDout8 (UINT16 moduleAddress, UCHAR & data)

Description

This function reads buffered data used for the 8-point digital output module at the
specified module address. Buffered data are written using the ioWriteDout8
function.

The function has two parameters: the module address, and a reference to an
UCHAR variable. If the moduleAddress is valid, digital input data are copied to
the variable. The valid range for moduleAddress is 0 to 15.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

Document (Version 1.61) 5/19/2011 358

Function Specifications

ioReadSP2Inputs
Read SCADAPack 350 Inputs

Syntax

#include <ctools.h>
BOOLEAN ioReadSP2Inputs (
UCHAR (&dinData) [2],
INT16 (&ainData) [8]
)

Description

This function reads buffered data from the digital and analog inputs of the
SCADAPack 350 I/0. Buffered data are updated when an I/O request for the
module is processed.

dinData is a reference to an array of two UCHAR variables. Digital data for the 12
inputs are written to this array. One bit in the array represents each input point.

ainData is a reference to an array of eight INT16 variables. Analog data are
written to this array.

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

See Also

ioReadSP20utputs, ioWriteSP20utputs

Example

This program displays the values of the first 8 digital inputs and the 5th analog
input read from the SCADAPack 350 1/0.

#include <ctools.h>
#define MY EVENT 1

int main (void)

{

UCHAR dinDatal2];
INT16 ainDatal[8];
IO STATUS io status;
BOOLEAN status;
BOOLEAN done;
BOOLEAN printNow;

// main loop
while (TRUE)
{
// add module scan to queue
if (!ioRequest (MT SP2Inputs, 0))
{
status = FALSE;
}

Document (Version 1.61) 5/19/2011 359

Function Specifications

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

// read input data from last scan
status = ioReadSP2Inputs (dinData, ainData);

// check status of last scan

if (!ioStatus(MT_SP2Inputs, 0, &io status))
{ status = FALSE;

élse if (!io_status.commStatus)

{ status = FALSE;

}

// print data when coil register 100 is selected
request resource (IO SYSTEM) ;
printNow = dbase (MODBUS, 100);
release resource (IO SYSTEM) ;
if (printNow)
{
if (!done)
{
fprintf (coml, "status = %u,\
Dins 0 to 7 = %X, Ain 4 = %d\r\n",
status, dinData[0], ainDatal([4]):;
done = TRUE;

}

else

{
done = FALSE;

}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011 360

Function Specifications

ioReadSP20utputs
Read SCADAPack 350 Outputs

Syntax

#include <ctools.h>

BOOLEAN ioReadSP20utputs (
UCHAR (&doutData) [2],
INT16 (&aoutData) [2]

)

Description

This function reads buffered data from the digital and analog outputs of a
SCADAPack 350 I/0 module. Buffered data are written using the
ioWriteSP20utputs function.

doutData is a reference to an array of two UCHAR variables. Digital data for the
10 outputs are written to this array. One bit in the array represents each output
point.

aoutData is a reference to an array of two INT16 variables. Analog data for the
two analog outputs are written to this array.

The function returns TRUE.

See Also
ioReadSP2Inputs, ioWriteSP20utputs

Example

This program reads output data from the I/O table for the SCADAPack 350 digital
outputs and analog outputs.

#include <ctools.h>

int main (void)

{

UCHAR doutDatal[2];
INT16 aoutDatal2];
BOOLEAN status;
BOOLEAN done;
BOOLEAN printNow;

// main loop
while (TRUE)
{
// read output data from I/O table
status = ioReadSP20utputs (doutData, aoutData);

// print data when coil register 100 is selected
request resource (IO SYSTEM) ;
printNow = dbase (MODBUS, 100);

Document (Version 1.61) 5/19/2011 361

Function Specifications

fprintf (coml,
Douts 0 to 7

done

TRUE;

}

release resource (IO SYSTEM) ;

if (printNow)

{
if (!done)
{

"status = %u,\

= %X, Aout 0 = %d\r\n",

status, doutDatal[0], aoutDatal[0]);

}

else

{
done = FALSE;

}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011

362

Function Specifications

ioRequest
Add I/0 Module Scan Request to Request Queue

Syntax

#include <ctools.h>

BOOLEAN ioRequest (IO TYPE moduleType, UINT16 moduleAddress)

Description

This function adds to the 1/0 Controller request queue an I/0O module scan

request for the specified 1/0 module.

The function has two arguments: the module type, and the module address.
Refer to the table below for valid I/O module types and address ranges.

The function returns TRUE if the request was added. The function returns FALSE
if there is no room in the request queue or if an argument is invalid.

I/O Module Type

Address Range

MT_Ain4 Oto 15
MT_Ain8 Oto 15
MT_Aout2 Oto 15
MT_Aout4 Oto 15
MT_Din8 Oto 15
MT_Din16 Oto 15
MT_Dout8 Oto 15
MT_Dout16 Oto 15
MT_Counter4 Oto 15

MT_5601Inputs

not applicable

MT_56010utputs

not applicable

MT_5904Inputs

Oto 3

MT_59040utputs

Oto3

MT_CounterSP2

not applicable

MT_SP2Inputs

not applicable

MT_SP20utputs

not applicable

MT_Dout32

Oto 15

MT_Din32

Oto 15

MT_5604Inputs

not applicable

MT_56040utputs

not applicable

MT_Aout4_Checksum

Oto 15

MT_4203DRInputs

not applicable

MT_4203DROutputs

not applicable

MT_4203DSInputs

not applicable

Document (Version 1.61) 5/19/2011

363

Function Specifications

I/O Module Type

Address Range

MT_4203DSOutputs

not applicable

MT_410Inputs

not applicable

MT_5210Inputs

not applicable

MT_52100utputs

not applicable

MT_5607Inputs

Oto7

MT_56070utputs Oto7

MT_5414Inputs Oto 15
MT_54140utputs Oto 15
MT_5415Inputs Oto 15
MT_54150utputs 0to 15
MT_5411Inputs Oto 15
MT_54110utputs Oto 15
MT_5606Inputs Oto7

MT_56060utputs Oto7

MT_5506Inputs Oto 15
MT_55060utputs Oto 15
MT_5505Inputs Oto 15
MT_55050utputs 0to 15

Document (Version 1.61) 5/19/2011

364

Function Specifications

ioSetConfiguration
Set I/O Controller Configuration

Syntax

#include <ctools.h>

BOOLEAN ioSetConfiguration(const IO CONFIG & settings)
Description

This function sets the 1/O controller configuration and adds a request to write the
settings to the 1/O controller.

The function has one argument: a reference to an I0_CONFIG structure.

The function returns TRUE if the request was added. The function returns FALSE
if there is no room in the request queue or if there is an error in the settings.

Document (Version 1.61) 5/19/2011 365

Function Specifications

ioStatus

Read Status of Last Scan of Specified I/O Module

Syntax

#include <ctools.h>

BOOLEAN ioStatus (IO _TYPE moduleType, UINT16 moduleAddress,

IO STATUS * status)

Description

This function reads the status of the last scan of the specified 1/0O module.

The function has three arguments: the module type, the module address, and a
pointer to an IO_STATUS structure. Refer to the table below for valid I/O module

types and address ranges.

The function returns TRUE if status information was copied to the structure
pointed to by status. The function returns FALSE if an argument is invalid.

is no room in the request queue or if an argument is invalid.

I/0O Module Type

Address Range

MT_Ain4 Oto 15
MT_Ain8 Oto 15
MT_Aout2 Oto 15
MT_Aout4 Oto 15
MT_Din8 Oto 15
MT_Din16 Oto 15
MT_Dout8 Oto 15
MT_Dout16 Oto 15
MT_Counter4 Oto 15

MT_5601Inputs

not applicable

MT_56010utputs

not applicable

MT_5904Inputs

Oto3

MT_59040utputs

Oto 3

MT_CounterSP2

not applicable

MT_SP2Inputs

not applicable

MT_SP20utputs

not applicable

MT_Dout32

Oto 15

MT_Din32

Oto 15

MT_5604Inputs

not applicable

MT_56040utputs

not applicable

MT_Aout4_Checksum

Oto 15

MT_4203DRInputs

not applicable

Document (Version 1.61) 5/19/2011

366

Function Specifications

I/O Module Type

Address Range

MT_4203DROutputs

not applicable

MT_4203DSInputs

not applicable

MT_4203DSOutputs

not applicable

MT_410Inputs

not applicable

MT_5210Inputs

not applicable

MT_52100utputs

not applicable

MT_5607Inputs

Oto7

MT_56070utputs Oto7

MT_5414Inputs Oto 15
MT_54140utputs Oto 15
MT_5415Inputs Oto 15
MT_54150utputs 0to 15
MT_5411Inputs Oto 15
MT_54110utputs Oto 15
MT_5606Inputs Oto7

MT_56060utputs Oto7

MT_5506Inputs Oto 15
MT_55060utputs 0to 15
MT_5505Inputs Oto 15
MT_55050utputs Oto 15

Document (Version 1.61) 5/19/2011

367

Function Specifications

ioSystemReset
Add Reset Request to I/O Controller Request Queue

Syntax

#include <ctools.h>
BOOLEAN ioSystemReset (void)
Description

This function adds a reset request to the 1/0 Controller request queue. When the
request is sent to the I/O Controller, all I/O modules are reset.

The function has no arguments.

The function returns TRUE if the request was added. The function returns FALSE
if there is no room in the request queue.

Document (Version 1.61) 5/19/2011 368

Function Specifications

ioVersion

Get the I/O Controller Firmware Version

Syntax

#include <ctools.h>

BOOLEAN ioVersion (UINT1l6 & pVersion)
Description

This function returns the I/O controller firmware version. The version is read from
the 1/0O controller at initialization.

The function has one argument: a reference to an UINT16 value to which the
firmware version is copied if it is available.

The function returns TRUE if the firmware version is available. It returns FALSE if
the firmware version has not been read from the 1/O controller.

Document (Version 1.61) 5/19/2011 369

Function Specifications

ioWrite4203DROutputs
Write 4203 DR Outputs

Syntax

#include <ctools.h>

BOOLEAN ioWrited4203DROutputs (
UCHAR &doutData,
INT16 &aoutData

)

Description

This function writes data to the I/O table for the digital output and analog output
of the 4203 DR 1/O. Data is written to the module when an I/O request for the
module is processed.

doutData is a reference to a UCHAR variable. Digital data for the output is read
from this variable. One bit in the array represents each output point.

aoutData is a reference to a INT16 variable. Analog data for the analog output is
read from this variable.

The function returns TRUE if the supplied data was written to the I/O table.
FALSE is returned if the data could not be written to the 1/O table.

See Also

ioRead4203DRInputs

Example

This program turns on the digital output and sets the analog output to full scale
on the 4203 DR.

#include <ctools.h>
#define MY EVENT 1

int main (void)

{

UCHAR doutData;
INT16 aoutData;
IO STATUS io status;

// main loop

while (TRUE)

{
// write data to output tables for next scan
doutData = 0x01;
aoutData = 32767;

ioWrited4203DROutputs (doutData, aoutData);

// add module scan to queue
if (!ioRequest (MT_ 4203DROutputs, 0))

Document (Version 1.61) 5/19/2011 370

Function Specifications

{

// insert code to handle

}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

// check status of last scan
if (!ioStatus(MT 4203DROutputs,
{

// insert code to handle
}
else if

{

(!io_status.commStatus)

// insert code to handle

}

// release processor for 100ms
sleep processor (100);

the failure here

0, &io status))

the failure here

the failure here

Document (Version 1.61) 5/19/2011

371

Function Specifications

iIoWrite4203DSOutputs
Write 4203 DS Outputs

Syntax

#include <ctools.h>

BOOLEAN ioWrited4203DSOutputs (
UCHAR &doutData

)

Description

This function writes data to the I/O table for the digital outputs of the 4203 DS
I/O. Data is written to the module when an 1/O request for the module is
processed.

doutData is a reference to a UCHAR variable. Digital data for the outputs is read
from this variable. One bit in the array represents each output point.

The function returns TRUE if the supplied data was written to the I/O table.
FALSE is returned if the data could not be written to the 1/O table.

See Also
ioRead4203DSInputs

Example

This program turns on the digital outputs on the 4203 DS.

#include <ctools.h>
#define MY EVENT 1

int main (void)

{
UCHAR doutData;
IO STATUS io status;

// main loop

while (TRUE)

{
// write data to output tables for next scan
doutData = 0x03;

ioWrited4203DSOutputs (doutData) ;

// add module scan to queue
if (!ioRequest (MT_ 4203DSOutputs, 0))
{
// insert code to handle the failure here

}

// wait for scan to complete
ioNotification (MY EVENT) ;

Document (Version 1.61) 5/19/2011 372

Function Specifications

wait event (MY EVENT) ;

// check status of last scan

if (!ioStatus(MT_4203DSOutputs, 0, &io status))
{ // insert code to handle the failure here
;lse if (!io status.commStatus)

{ // insert code to handle the failure here
}

// release processor for 100ms
sleep processor (100);

Document (Version 1.61) 5/19/2011 373

Function Specifications

iIoWrite52100utputs
Write SCADAPack 330 controller board outputs

Syntax

#include <ctools.h>
BOOLEAN ioWrite52100ututs (
UCHAR &doutData
)
Description

This function writes buffered data to the digital outputs of a SCADAPack 330
controller board. Data are written to the module when an 1/O request for the
module is processed.

doutData is a reference to a variable holding the digital output values.
e Bit O of this variable is written to the USB LED control.

e Bit 1 of this variable is written to the com3 (HMI) power control.

e Bits 2to 7 are not used.

The function returns TRUE as no I/O errors are possible.

See Also
ioRead52100utputs

Example

This Example turns on the USB STAT LED.

#include <ctools.h>
#include "nvMemory.h"
#define MY EVENT 1

void main (void)

{

UCHAR doutDatall];
IO STATUS io status;
BOOLEAN status;

// main loop

while (TRUE)

{
// write data to output tables for next scan
doutDatal[0] = 0x01;

status = ioWrite52100utputs (doutbDatal0]);

// add module scan to queue

Document (Version 1.61) 5/19/2011 374

Function Specifications

if (!ioRequest (MT 52100utputs,0))
{

status = FALSE;
}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT);

// read input data from last scan

// check status of last scan
if (!ioStatus(MT 52100utputs,0, &io status))
{
status = FALSE;
}
else if (!io status.commStatus)
{
status = FALSE;
}
// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011

375

Function Specifications

ioWrite54140utputs

Write 5414 module configuration parameter outputs

Syntax

#include <ctools.h>

BOOLEAN ioWriteb54140utputs (
UINT16 moduleAddress,
UINT16 inputType,
UINT16 scanFrequency
)

Description

This function writes to the 1/O table for the output configuration of a 5414 module.
Data are written to the module when an 1/O request for the module is processed.

moduleAddress is the address of the 5414 module. Valid values are 0 to 15.
inputType selects the input type of AC or DC. Valid values are.

e 0=DC

e 1=AC

scanFrequency selects the scan frequency setting. Valid values are.

e 0=60Hz
e 1=50Hz
See Also

ioRead5414Inputs

Document (Version 1.61) 5/19/2011 376

Function Specifications

ioWrite54150utputs
Write 5415 module outputs.

Syntax

#include <ctools.h>

BOOLEAN ioWrite54150utputs (
UINT16 moduleAddress,
UCHAR (&doutData) [2]
)

Description

This function writes to the I/O table for the 12 output points of a 5415 relay output
module. Data are written to the module when an 1/O request for the module is
processed.

moduleAddress is the address of the 5415 module. Valid values are 0 to 15.

doutData is a reference to an array of two UCHAR variables. Digital data for the
12 outputs are read from this array. One bit in the array represents each output
point.

See Also

ioRead54150utputs, ioRead5415Inputs

Example

This Example turns on all the digital outputs on the 5415 1/0O module.

#include <ctools.h>
#include "nvMemory.h"
#define MY EVENT 1

void main (void)

{

UCHAR doutbhatal2];
IO STATUS io_status;
BOOLEAN status;

// main loop

while (TRUE)

{
// write data to output tables for next scan
doutData[0] = OxFF;
doutData[l] 0xO0F;

status = ioWrite54150utputs (0,doutData) ;

// add module scan to queue
if (!ioRequest (MT 54150utputs,0))
{

Document (Version 1.61) 5/19/2011 377

Function Specifications

status = FALSE;
}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT);

// read input data from last scan

// check status of last scan

if (!ioStatus(MT 54150utputs,0, &io status))
{ status = FALSE;

;lse if (!io status.commStatus)

{ status = FALSE;

}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011 378

Function Specifications

iIoWrite55050utputs
Write 5505 Configuration

Syntax

#include <ctools.h>

BOOLEAN ioWrite55050utputs (
UINT16 moduleAddress,
UINT16 (&inputType) [4],
UINT16 inputFilter

)

Description

This function writes configuration data to the 1/0 Table for a 5505 I/O module.
Data are written to the module when an 1/O request for the module is processed.

moduleAddress is the address of the 5505 module. Valid values are 0 to 15.

inputType is a reference to an array of four UINT16 variables selecting the input
range for the corresponding analog input. Valid values are

e 0=RTD in deg Celsius

e 1=RTD in deg Fahrenheit

e 2=RTDin deg Kelvin

e 3 =resistance measurement in ohms.

inputFilter selects input filter selection is written to this variable.

e 0=05s

e 1=1s

e 2=2s

e 3=4s

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

See Also

ioRead5505Inputs, ioRead55050utputs

Example

This program writes configuration data to the 5505 module at address 5.

#include <ctools.h>
#define MY EVENT 1

int main (void)
{
UINT16 inputTypel[4];

Document (Version 1.61) 5/19/2011 379

Function Specifications

UINT16 inputFilter;
IO STATUS io status;
BOOLEAN status;

// main loop
while (TRUE)
{
/* set analog input types to RTD in deg F */
inputType[0] = 1;
inputType[l] =
inputType[2]
inputType[3]

1/
1;
1.

’

/* set filter */
inputFilter = 3; // minimum filter

status = ioWrite55050utputs (5, inputType,
inputFilter);

// add module scan to queue
if (!ioRequest (MT 55050utputs, 5))
{
status = FALSE;
}

// wait for scan to complete
ioNotification (MY EVENT);
wait event (MY EVENT) ;

// check status of last scan

if (!ioStatus(MT_ 55050utputs, 5, &io status))
{ status = FALSE;

;lse if (!io_status.commStatus)

{ status = FALSE;

}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011 380

Function Specifications

iIoWrite55060utputs
Write 5506 Configuration

Syntax

#include <ctools.h>

BOOLEAN ioWrite55060utputs (
UINT16 moduleAddress,
UINT16 (&inputType) [8],
UINT16 inputFilter,
UINT16 scanFrequency

)

Description

This function writes configuration data to the 1/O Table for a 5506 /O module.
Data are written to the module when an I/O request for the module is processed.

moduleAddress is the address of the 5506 module. Valid values are 0 to 15.

inputType is a reference to an array of eight UINT16 variables selecting the input
range for the corresponding analog input. Valid values are

e 0=0to5V
e 1=1to5V
e 2=0to20mA
e 3=410 20 mA.

inputFilter selects input filter selection is written to this variable.

e 0=3Hz
e 1=6Hz
e 2=11Hz
e 3=30Hz

scanFrequency selects the scan frequency setting. Valid values are.
e 0=60Hz
e 1=50Hz

The function returns FALSE if the module address is invalid; otherwise TRUE is
returned.

See Also
ioRead5506Inputs, ioRead55060utputs

Example

This program writes configuration data to the 5506 module at address 5.

Document (Version 1.61) 5/19/2011 381

Function Specifications

#include <ctools.h>

#define

MY EVENT 1

int main (void)

{

UINT16 inputTypel[8];
UINT16 inputFilter;
UINT16 scanFrequency;
IO _STATUS io_status;
BOOLEAN status;

// main loop

while

{

inputFilter,

(TRUE)

/* set analog input types to 4-20 mA */
inputType[0] = 3;

inputType[l] =

inputType[2] =
inputType[3]
inputType[4]
inputTypel[5] =
inputType[6] =
inputType([7] =

’
’
’
’
’

’

wWwwwwww

’

/* set filter and frequency */
inputFilter = 3; // minimum filter
scanFrequency = 0; // 60 Hz

status = ioWrite55060utputs (5, inputType,
scanFrequency) ;

// add module scan to queue
if (!ioRequest (MT_55060Qutputs, 5))
{
status = FALSE;
}

// wait for scan to complete
ioNotification (MY EVENT);
wailt event (MY EVENT) ;

// check status of last scan

if (!ioStatus(MT_55060utputs, 5, &io_status))
{ status = FALSE;

;lse if (!io_status.commStatus)

{ status = FALSE;

}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011

382

Function Specifications

iIoWrite56060utputs

Write 5606 Outputs

Syntax

#include <ctools.h>

BOOLEAN ioWrite56060utputs (
UINT16 moduleAddress,
UCHAR (&doutData) [2],
INT16 (&aoutData) [2],
UINT16 (&inputType) [8],
UINT16 inputFilter,
UINT16 scanFrequency,
UINT16 outputType

)

Description

This function writes data to the I/O table for the 16 digital outputs and 2 analog
outputs of a 5606 1/0 module. Data are written to the module when an I/O
request for the module is processed.

moduleAddress is the address of the 5606 module. Valid values are 0 to 7.

doutData is a reference to an array of two UCHAR variables. Digital data for the
16 outputs are read from this array. One bit in the array represents each output
point.

aoutData is a reference to an array of two INT16 variables. Analog data for the
two analog outputs are read from this array.

inputType is a reference to an array of eight UINT16 variables selecting the input
range for the corresponding analog input. Valid values are

e 0=0to5V

e 1=0tol0V

e 2=0to20 mA

e 3=41t0 20 mA.

inputFilter selects input filter selection is written to this variable.
e 0=3Hz

e 1=6Hz
e 2=11Hz
e 3=30Hz

scanFrequency selects the scan frequency setting. Valid values are.
e 0=60Hz
e 1=50Hz

Document (Version 1.61) 5/19/2011 383

Function Specifications

outputType selects the analog output type setting. Valid values are.

e (0= 0to20mA
e 1=4to 20 mA.

The function returns FALSE if the module address is invalid; otherwise TRUE is

returned.

See Also

ioRead5606Inputs, ioRead56060utputs

Example

This program turns on all 16 digital outputs and sets the analog outputs to full
scale on the 5606 module at address 5.

#include <ctools.h>
#define MY EVENT 1

int main (void)
{
UCHAR
INT16
UINT16
UINT1l6

inputType[8];
inputFilter;
UINT16 scanFrequency;
UINT16 outputType;

IO STATUS io_status;
BOOLEAN status;

// main loop

doutDatal[2];
aoutDatal(2];

while (TRUE)
{
// write data to output tables for next scan
doutData[0] = OxFF;
doutDatal[l] = OxFF;
aoutData[0] = 32767;
aoutDatal[l] = 32767;

/* set analog input types to 4-20 mA */

inputType[0] = 3;
inputTypel[l] =
inputType |
inputType [
inputType |
[
[
[

inputType
inputType
inputType

’

’

Wwwwwww

]
2]
3]
4] =
5]
6]
7]

/* set filter and

inputFilter = 3;
scanFrequency =

0;

frequency */
// minimum filter
// 60 Hz

/* set analog output type to 4-20 mA */

outputType = 1;

Document (Version 1.61) 5/19/2011

384

Function Specifications

inputType,

status = ioWrite56060utputs (5, doutData, aoutData,
inputFilter, scanFrequency, outputType);

// add module scan to queue
if (!ioRequest (MT_ 56060utputs, 5))
{

status = FALSE;

}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

// check status of last scan

if (!ioStatus(MT_56060Outputs, 5, &io status))
{ status = FALSE;

élse if (!io_status.commStatus)

{ status = FALSE;

}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011

385

Function Specifications

iIoWrite56070utputs

Write 5607 Outputs

Syntax

#include <ctools.h>

BOOLEAN ioWrite56070utputs (
UINT16 moduleAddress,
UCHAR (&doutData) [2],
INT16 (&aoutData) [2],
UINT16 (&inputType) [8],
UINT16 inputFilter,
UINT16 scanFrequency,
UINT16 outputType

)

Description

This function writes data to the I/O table for the 10 digital outputs and 2 analog
outputs of a 5607 1/0 module. Data are written to the module when an I/O
request for the module is processed.

moduleAddress is the address of the 5607 module. Valid values are 0 to 7.

doutData is a reference to an array of two UCHAR variables. Digital data for the
10 outputs are read from this array. One bit in the array represents each output
point.

aoutData is a reference to an array of two INT16 variables. Analog data for the
two analog outputs are read from this array.

inputType is a reference to an array of eight UINT16 variables selecting the input
range for the corresponding analog input. Valid values are

e 0=0to5V

e 1=0tol0V

e 2=0to20mA

e 3=41t0 20 mA.

inputFilter selects input filter selection is written to this variable.
e 0=3Hz

e 1=6Hz
e 2=11Hz
e 3=30Hz

scanFrequency selects the scan frequency setting. Valid values are.
e 0=60Hz
e 1=50Hz

Document (Version 1.61) 5/19/2011 386

Function Specifications

outputType selects the analog output type setting. Valid values are.

e (0= 0to20mA
e 1=4to 20 mA.

The function returns FALSE if the module address is invalid; otherwise TRUE is

returned.

See Also

ioRead56070utputs, ioRead5607Inputs

Example

This program turns on all 10 digital outputs and sets the analog outputs to full
scale on the 5607 module at address 5.

#include <ctools.h>
#define MY EVENT 1

void main (void)
{
UCHAR
INT16
UINT16
UINT1l6

inputType[8];
inputFilter;
UINT16 scanFrequency;
UINT16 outputType;

IO STATUS io_status;
BOOLEAN status;

// main loop
while (TRUE)
{

doutDatal[2];
aoutDatal(2];

// write data to output tables for next scan

doutData[0] = OxFF;
doutDatal[l] = OxFF;
aoutData[0] = 32767;
aoutDatal[l] = 32767;

/* set analog input types to 4-20 mA */

inputType[0] = 3;
inputTypel[l] =
inputType |
inputType [
inputType |
[
[
[

inputType
inputType
inputType

’

’

Wwwwwww

]
2]
3]
4] =
5]
6]
7]

/* set filter and

inputFilter = 3;
scanFrequency =

0;

frequency */
// minimum filter
// 60 Hz

/* set analog output type to 4-20 mA */

outputType = 1;

Document (Version 1.61) 5/19/2011

387

Function Specifications

inputType,

status = ioWrite56070utputs (5, doutData, aoutData,
inputFilter, scanFrequency, outputType);

// add module scan to queue
if (!ioRequest (MT_ 56070utputs, 5))
{

status = FALSE;

}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

// check status of last scan

if (!ioStatus(MT_56070utputs, 5, &io status))
{ status = FALSE;

élse if (!io_status.commStatus)

{ status = FALSE;

}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011

388

Function Specifications

ioWriteAout2
Write Data to 2-Point Analog Output Module

Syntax

#include <ctools.h>
BOOLEAN ioWriteAout2 (UINT16 moduleAddress, INT1l6 (&data) [2])

Description

This function writes data to the I/O tables for the 2-point analog output module at
the specified module address. Data are written to the module when an /O
request for the module is processed.

The function has two parameters: the module address, and a reference to an
array of two INT16 variables. Data are read from the array and written to the 1/0
table. The valid range for moduleAddress is 0 to 15.

The function returns TRUE if the data was written. The function returns FALSE if
the module address is invalid.

Document (Version 1.61) 5/19/2011 389

Function Specifications

ioWriteAout4
Write Data to 4-Point Analog Output Module

Syntax

#include <ctools.h>

BOOLEAN ioWriteAoutd (UINT16 moduleAddress, INT1l6 (&data) [4])
Description

This function writes data to the I/O tables for the 4-point analog output module at
the specified module address. Data are written to the module when an I/O
request for the module is processed.

The function has two parameters: the module address, and a reference to an
array of four INT16 variables. Data are read from the array and written to the I/O
table. The valid range for moduleAddress is 0 to 15.

The function returns TRUE if the data was written. The function returns FALSE if
the module address is invalid.
Notes

This function writes to the output table only. Use the ioRequest function to write
the data to the module.

e Call ioRequest with the module type MT_Aout4 for analog output modules
without checksum support. All modules can use this module type.

e CallioRequest with the module type MT_Aout4_Checksum for analog output
modules with checksum support. Some modules such as the 5304 can use
this module type.

Example

This Example sets all four outputs of any analog output module to half scale.

#include <ctools.h>

int main (void)
{
INT16 dataArrayl([4];

/* set all output values to one-half scale */

dataArray[0] = 16384;
dataArray[l] = 16384;
dataArray[2] = 16384;
dataArray[3] = 16384;

/* Write data to analog output module at
module address 0 */

ioWriteAout4 (0, dataArray);

ioRequest (MT_Aout4, 0);

Document (Version 1.61) 5/19/2011 390

Function Specifications

ioWriteAout5303
Write Data to 5303 Analog Output Module

Syntax

#include <ctools.h>

BOOLEAN ioWriteAout5303 (INT16 (&data) [2])
Description

This function writes data to the I/O tables for the 2-point 5303 analog output
module. Data are written to the module when an 1/O request for the module is
processed.

The function has one parameter: a reference to an array of two INT16 variables.
Data are read from the array and written to the 1/O table.

The function returns TRUE.

Document (Version 1.61) 5/19/2011 391

Function Specifications

ioWriteDout16
Write Data to 16-Point Digital Output Module

Syntax

#include <ctools.h>
BOOLEAN ioWriteDoutl6 (UINT16 moduleAddress, UINT1l6 data)

Description

This function writes data to the I/O tables for the 16-point digital output module at
the specified module address. Data are written to the module when an 1/O
request for the module is processed.

The function has two parameters: the module address, and the data to be
written. Data are read from the 16-bit data value and written to the 1/O table. The
valid range for moduleAddress is 0 to 15.

The function returns TRUE if the data was written. The function returns FALSE if
the module address is invalid.

Document (Version 1.61) 5/19/2011 392

Function Specifications

ioWriteDout32
Write to 32 Digital Outputs

Syntax

#include <ctools.h>

BOOLEAN ioWriteDout32 (
UINT16 moduleAddress,
UINT32 data)

Description

This function writes data to the I/O tables for the 32-point digital output module at
the specified module address. Data are written to the module when an 1/0
request for the module is processed.

moduleAddress is the address of the digital output module. The valid range is 0
to 15.

data is the output data to be written. Data are written to the I/O table.
The function returns TRUE if the data was written. The function returns FALSE if
the module address is invalid.

See Also

Example

This program turns ON all 32 digital outputs of a 32-point Digital Output Module
at module address 0.

#include <ctools.h>

int main (void)

{
/* Write data to digital output module */
ioWriteDout32 (0, OxXFFFFFFFF);
ioRequest (MT Dout32, 0);

Document (Version 1.61) 5/19/2011 393

Function Specifications

ioWriteDout8
Write Data to 8-Point Digital Output Module

Syntax

#include <ctools.h>
BOOLEAN ioWriteDout8 (UINT16 moduleAddress, UCHAR data)

Description

This function writes data to the I/O tables for the 8-point digital output module at
the specified module address. Data are written to the module when an /O
request for the module is processed.

The function has two parameters: the module address, and the data to be
written. Data are read from the 8-bit data value and written to the 1/O table. The
valid range for moduleAddress is 0 to 15.

The function returns TRUE if the data was written. The function returns FALSE if
the module address is invalid.

Document (Version 1.61) 5/19/2011 394

Function Specifications

ioWriteSP20utputs
Write SCADAPack 350 Outputs

Syntax

#include <ctools.h>

BOOLEAN ioWriteSP20utputs (
UCHAR (&doutData) [2],
INT16 (&aoutData) [2]

)

Description

This function writes data to the I/O table for the 10 digital outputs and 2 analog
outputs of the SCADAPack 350 I/0. Data are written to the module when an 1/0O
request for the module is processed.

doutData is a reference to an array of two UCHAR variables. Digital data for the
10 outputs are read from this array. One bit in the array represents each output
point.

aoutData is a reference to an array of two INT16 variables. Analog data for the
two analog outputs are read from this array.

The function returns TRUE.

See Also
ioReadSP20utputs, ioReadSP2Inputs

Example

This program turns on all 10 digital outputs and sets the analog outputs to full
scale on the SCADAPack 350.

#include <ctools.h>
#define MY EVENT 1

int main (void)

{

UCHAR doutDatal2];
INT16 aoutDatal2];
IO STATUS io status;
BOOLEAN status;

// main loop
while (TRUE)
{

// write data to output tables for next scan

doutData[0] = OxFF;
doutData[l] = 0x03;
aoutData[0] = 32767;
aoutDatal[l] = 32767;

status = ioWriteSP20utputs (doutData, aoutData);

Document (Version 1.61) 5/19/2011 395

Function Specifications

// add module scan to queue
if (!ioRequest (MT SP20utputs, 0))
{
status = FALSE;
}

// wait for scan to complete
ioNotification (MY EVENT) ;
wait event (MY EVENT) ;

// check status of last scan

if (!ioStatus(MT_SP20utputs, 0, &io status))
{ status = FALSE;

;lse if (!io status.commStatus)

{ status = FALSE;

}

// release processor to other priority 1 tasks
release processor();

Document (Version 1.61) 5/19/2011 396

Function Specifications

ipFindFriendlylPAddress
Checks if an address is in the Friendly IP List

Syntax
BOOLEAN ipFindFriendlyIPAddress (UINT32 ipAddress);

Description
This function checks if the IP address ipAddress is in the Friendly IP List.

The function returns TRUE if the supplied ipAddress is in the Friendly IP List.
Otherwise FALSE is returned.

Document (Version 1.61) 5/19/2011 397

Function Specifications

ipGetConnectionSummary

Get Summary of Active TCP/IP Connections

Syntax

#include <ctools.h>
void ipGetConnectionSummary(IP_CONNECTION SUMMARY * pSummary) ;

Description

The ipGetConnectionSummary function returns a summary of the number of
active IP connections. The IP connections include Modbus/TCP, Modbus RTU
over UDP, Modbus ASCII over UDP, DNP over TCP, and DNP over UDP. The
information is copied to the structure pointed to be pSummary. The structure
IP_CONNECTION_SUMMARY is described in the Structures and Types section.

The information in the structure summarizes the number of connections as:
master, slave or unused. Note that if a connection is allocated to master
messaging but is currently disconnected, it will still be listed in the number of
master connections.

Also, additional connections for store and forward translations will be included in
the summary. For Example, a master connection will be listed if a serial to
Ethernet store and forward translation is currently active.

Document (Version 1.61) 5/19/2011 398

Function Specifications

ipGetinterfaceType
Get Interface Type from IP Address

Syntax

#include <ctools.h>

BOOLEAN ipGetInterfaceType(IP ADDRESS localIP, COM INTERFACE *
pIfType);

Description

The function ipGetinterfaceType determines the interface that is configured to the
specified local IP address, locallP. If no interface is configured to the specified IP
address FALSE is returned; otherwise TRUE is returned and the interface type if
copied to the value pointed to by ifType.

ipInitializeFriendlylPSettings
Reset the friendly IP list

Syntax
void iplnitializeFriendlylPSettings(void);

Description
This function deletes all Friendly IP List entries and disables the Friendly IP List.
The function has no parameters.

The function has no return value.

Document (Version 1.61) 5/19/2011 399

Function Specifications

ipReadFriendlyListControl
Get the status of the friendly IP list

Syntax

UCHAR ipReadFriendlyListControl (void) ;

Description

This function returns the status of friendly IP list control.

The function has no parameters.

The function returns TRUE if friendly IP list is enabled and FALSE otherwise.

See Also

ipWriteFriendlyListControl

Document (Version 1.61) 5/19/2011 400

Function Specifications

ipReadFriendlylPListEntry

Read one entry in the friendly IP list

Syntax

BOOLEAN ipReadFriendlyIPListEntry (
UINT16 index,
IP ADDRESS *pIpAddressStart
IP ADDRESS *pIpAddressEnd
);
Description
This function reads an entry from the Friendly IP List.

index specifies the location in the list, and needs to be less than or equal to the
Friendly IP List size.

plpAddressStart and plpAddressStart are pointers to IP addresses; they are
written by this function.

The function returns TRUE if successful and FALSE if the index is invalid.

See Also
ipReadFriendlylPListSize, ipWriteFriendlylPListEntry, ipWriteFriendlylPListSize

Document (Version 1.61) 5/19/2011 401

Function Specifications

ipReadFriendlylIPListSize
Read the size of the friendly IP list

Syntax

UINT16 ipReadFriendlyIPListSize (void);

Description

This function reads the total number of active entries in the Friendly IP List.

The function has no parameters.

_The function returns the total number of active entries in the list or zero if the list
is empty.

See Also

ipReadFriendlylPListEntry, ipWriteFriendlylPListEntry, ipWriteFriendlylPListSize

Document (Version 1.61) 5/19/2011 402

Function Specifications

ipWriteFriendlyListControl
Enable or disable the friendly IP list

Syntax

BOOLEAN ipWriteFriendlyListControl (
BOOLEAN state
)

Description

This function enables or disables the friendly IP list. When the list is disabled the
controller accepts messages from any IP address. When the list is enabled only
messages from the IP addresses on the list are accepted.

state specifies if the friendly IP list is enabled or disabled. Valid values are TRUE
(enabled) and FALSE (disabled). If the list is not valid then it can not be enabled.

The function returns TRUE if command was successful. It returns FALSE if it was
attempted to enable an empty list or a list with invalid entries.

See Also

ipReadFriendlyListControl

Document (Version 1.61) 5/19/2011 403

Function Specifications

ipWriteFriendlylPListEntry
Write one entry in the friendly IP list

Syntax

BOOLEAN ipWriteFriendlyIPListEntry (
UINT16 index,
IP ADDRESS ipAddressStart,
IP ADDRESS ipAddressEnd
);
Description
This function writes an entry in the Friendly IP List.

index specifies the location in the list, and needs to be less than or equal to the
Friendly IP List size.

ipAddressStart and ipAddressEnd specify a range of IP addresses (or a single IP
address if they are the same) to be added to the list. Valid values are any IP
address; the start IP address needs to be lower than or equal to the end IP
address.

The function returns TRUE if successful and FALSE if the index or address is
invalid.

Notes

IpWriteFriendlylPListSize needs to be called before calling this function.

See Also

ipReadFriendlylPListEntry

Document (Version 1.61) 5/19/2011 404

Function Specifications

ipWriteFriendlylPListSize
Write the size of the Friendly IP List

Syntax

BOOLEAN ipWriteFriendlyIPListSize (UINT16 size);

Description

This function sets the size of the Friendly IP List. This needs to be written before
any entries are written to the list.

size specifies the number of active entries in the list. Valid values are 0 to 32.

The function returns TRUE if successful, FALSE otherwise.

See Also
ipReadFriendlylPListSize

Document (Version 1.61) 5/19/2011 405

Function Specifications

ledGetDefault

Read LED Power Control Parameters

Syntax

#include <ctools.h>

struct ledControl tag ledGetDefault (void);
Description

The ledGetDefault routine returns the default LED power control parameters. The
controller controls LED power to 5000 I/0O modules. To conserve power, the
LEDs can be disabled.

The user can change the LED power setting with the LED POWER switch on the
controller. The LED power returns to its default state after a user specified time
period.

Example

See the Example for the ledSetDefault function.

Document (Version 1.61) 5/19/2011 406

Function Specifications

ledPower
Set LED Power State

Syntax

#include <ctools.h>
UINT16 ledPower (UINT16 state);

Description

The ledPower function sets the LED power state. The LED power will remain in
the state until the default time-out period expires. state needs to be LED_ON or
LED_OFF.

The function returns TRUE if state is valid and FALSE if it is not.

Notes

The LED POWER switch also controls the LED power. A user may override the
setting made by this function.

The ledSetDefault function sets the default state of the LED power. This state
overrides the value set by this function.
See Also

ledPowerSwitch ledPowerSwitch

Document (Version 1.61) 5/19/2011 407

Function Specifications

ledPowerSwitch
Read State of the LED Power Switch

Syntax

#include <ctools.h>

UINT16 ledPowerSwitch (void) ;

Description

The ledPowerSwitch function returns the status of the led power switch. The
function returns FALSE if the switch is released and TRUE if the switch is
pressed.

Notes

This switch may be used by the program for user input. However, pressing the
switch will have the side effect of changing the LED power state.

See Also

ledPower, ledSetDefault

Document (Version 1.61) 5/19/2011 408

Function Specifications

ledSetDefault

Set Default Parameters for LED Power Control

Syntax

#include <ctools.h>

UINT16 ledSetDefault (struct ledControl tag ledControl);
Description

The ledSetDefault routine sets default parameters for LED power control. The
controller controls LED power to 5000 I/0O modules. To conserve power, the
LEDs can be disabled.

The LED power setting can be changed by the user with the LED POWER switch
on the controller. The LED power returns to its default state after a user specified
time period.

The ledControl structure contains the default values. Refer to the Structures and
Types section for a Description of the fields in the ledControl_tag structure. Valid
values for the state field are LED_ON and LED_OFF. Valid values for the time
field are 1 to 65535 minutes.

The function returns TRUE if the parameters are valid and false if they are not. If
either parameter is not valid, the default values are not changed.

The IO_SYSTEM resource needs to be requested before calling this function.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request_resource(FLASH_MEMORY);
flashSettingsSave(CS_RUN);

release_resource(FLASH_MEMORY);

Example

#include <ctools.h>

int main (void)

{
struct ledControl tag ledControl;
request resource (IO SYSTEM) ;
/* Turn LEDS off after 20 minutes */
ledControl.time = 20;
ledControl.state = LED OFF;
ledSetDefault (ledControl) ;

release resource (IO SYSTEM) ;

/* ... the reset of the program */

Document (Version 1.61) 5/19/2011 409

Function Specifications

listen

Syntax

#include <ctools.h>
int listen

(

int socketDescriptor,
int backLog

)

Description

To accept connections, a socket is first created with socket a backlog for
incoming connections is specified with listen and then the connections are
accepted with accept. The listen call applies only to sockets of type
SOCK_STREAM. The backLog parameter defines the maximum length the
gueue of pending connections may grow to. If a connection request arrives with
the queue full, and the underlying protocol supports retransmission, the
connection request may be ignored so that retries may succeed. For AF_INET
sockets, the TCP will retry the connection. If the backlog is not cleared by the
time the TCP times out, connect will fail with ETIMEDOUT.

Parameters

socketDescriptor The socket descriptor to listen on.

backlog The maximum number of outstanding connections allowed on
the socket.

Returns

0 Success

-1 An error occurred.

listen can fail for the following reason:

EADDRINUSE The address is currently used by another socket.

EBADF The socket descriptor is invalid.
EOPNOTSUPP The socket is not of a type that supports the operation
listen.

Document (Version 1.61) 5/19/2011 410

Function Specifications

master_message

Send Protocol Command

Syntax

#include <ctools.h>

UINT16 master message (FILE *stream, UINT16 function, UINTL16

slave station, UINT16 slave address, UINT16 master address, UINT16
length) ;

Description

The master_message function sends a command using a communication
protocol. The communication protocol task waits for the response from the slave
station. The current task continues execution.

e port specifies the serial port.

e function specifies the protocol function code. Refer to the communication
protocol manual for supported function codes.

o slave specifies the network address of the slave station. This is also known
as the slave station number.

e address specifies the location of data in the slave station. Depending on the
protocol function code, data may be read or written at this location.

¢ master_address specifies the location of data in the master (this controller).
Depending on the protocol function code, data may be read or written at this
location.

e length specifies the number or registers.

The master_message function returns the command status from the protocol
driver.

Value Description

MM_SENT message transmitted to slave
MM_BAD_FUNCTION function is not recognized
MM_BAD_SLAVE slave station number is not valid
MM_BAD_ADDRESS slave or master database address not valid
MM_BAD_LENGTH too many or too few registers specified

MM_EXCEPTION_FUNCTION | Master message status: Modbus slave
returned a function exception.

MM_EXCEPTION_ADDRESS | Master message status: Modbus slave
returned an address exception.
MM_EXCEPTION_VALUE Master message status: Modbus slave
returned a value exception.

The calling task monitors the status of the command sent using the
get_protocol_status function. The command field of the prot_status structure is

Document (Version 1.61) 5/19/2011 411

Function Specifications

set to MM_SENT if a master message is sent. It will be set to MM_RECEIVED
when the response to the message is received.

The command status will be set to MM_RSP_TIMEOUT if the response is not
received within 10 seconds. Sending a retry master message before this timeout
will abort the previous message. To use a timeout other than 10 seconds, use
the serialModbusMaster function.

The master_message function may be used at the same time on the same serial
port as a Telepace MSTR element or IEC 61131-1 master function block.

Notes

Refer to the communication protocol manual for more information.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

modbusSlavelD

Example

See the Example in the Example Programs chapter under the section Master
Message Example Using Modbus Protocol.

Document (Version 1.61) 5/19/2011 412

Function Specifications

memoryPoolUsage

Return amount of non-volatile memory in bytes

Syntax

UINT32 memoryPoolUsage (UINT16 taskGroup)

Description

The function has one parameter: The taskGroup to report the non-volatile
memory usage for the task group specified by taskGroup. A taskGroup of
ALL_TASK_GROUPS will report the total non-volatile memory allocation for all
tasks.

The function returns the amount of non-volatile memory allocated by the
specified task group, or 0 if the specified group was invalid.
See Also

allocateMemory, freeMemory, memoryPoolSize

Document (Version 1.61) 5/19/2011 413

Function Specifications

memoryPoolSize

Return the size of non-volatile memory pool in bytes.

Syntax

UINT32 memoryPoolSize (void)

Description

The function takes no input parameters and returns the size of the non-volatile
memory pool in bytes.

See Also

allocateMemory, freeMemory, memoryPoolUsage

Document (Version 1.61) 5/19/2011 414

Function Specifications

modbusExceptionStatus

Set Response to Protocol Command

Syntax

#include <ctools.h>

void modbusExceptionStatus (UCHAR status);
Description

The modbusExceptionStatus function is used in conjunction with the Modbus
compatible communication protocol. It sets the result returned in response to the
Read Exception Status command. This command is provided for compatibility
with some Modbus protocol drivers for host computers.

The value of status is determined by the requirements of the host computer.

Notes

The specified result will be sent each time that the protocol command is received,
until a new result is specified.

The result is cleared when the controller is reset. The application program needs
to initialize the status each time it is run.
See Also

master_message

Document (Version 1.61) 5/19/2011 415

Function Specifications

modbusSlavelD

Set Response to Protocol Command

Syntax

#include <ctools.h>
void modbusSlavelID (UCHAR *string, UINT16 length);

Description

The modbusSlavelD function is used in conjunction with the Modbus compatible
communication protocol. It sets the result returned in response to the Report
Slave ID command. This command is provided for compatibility with some
Modbus protocol drivers for host computers.

string points to a string of at least length characters. The contents of the string
are determined by the requirements of the host computer. The string is not NULL
terminated and may contain multiple NULL characters.

The length specifies how many characters are returned by the protocol
command. length must be in the range 1 to REPORT_SLAVE_ID_SIZE. If length
is too large only the first REPORT_SLAVE_ID_SIZE characters of the string will
be sent in response to the command.

Notes

The specified result will be sent each time that the protocol command is received,
until a new result is specified.

The function copies the data pointed to by string. string may be modified after the
function is called.

The result is cleared when the controller is reset. The application program needs
to initialize the salve ID string each time it is run.

Document (Version 1.61) 5/19/2011 416

Function Specifications

modemAbort

Unconditionally Terminate Dial-up Connection

Syntax

#include <ctools.h>

void modemAbort (FILE *port);
Description

The modemAbort function unconditionally terminates a dial-up connection,
connection in progress or modem initialization started by the C application. port
specifies the serial port where the modem is installed.

The connection or initialization is terminated only if it was started from a C
application. Connections made from a Ladder Logic application and answered
calls are not terminated.

This function can be used in a task exit handler.

Notes
The serial port type needs to be set to RS232_MODEM.

A pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

Use this function in a task exit handler to clean-up any open dial-up connections
or modem initializations. If a task is ended by executing end_task from another
task, modem connections or initializations needs to be aborted in the exit
handler. Otherwise, the reservation ID for the port remains valid. No other task or
Ladder Logic program may use modem functions on the port. Not calling
modemAbort or modemAbortAll in the task exit handler may result in the port
being unavailable to any programs until the controller is reset.

The modem connection or initialization is automatically terminated when IEC
61131-1 stops the C application and when the controller is rebooted.

Reservation IDs returned by the modemDial and modeminit functions on this port
are invalid after calling modemAbort.

See Also

modemAbortAll, modemDial,
Example

Refer to the Examples in the Functions Overview section.

Document (Version 1.61) 5/19/2011 417

Function Specifications

modemAbortAll

Unconditionally Terminate All Dial-up Connections

Syntax

#include <ctools.h>
void modemAbortAll (void) ;

Description

The modemAbortAll function unconditionally terminates all dial-up connections,
connections in progress or modem initializations started by the C application.

The connections or initializations are terminated only if they were started from a
C application. Connections made from a Ladder Logic application and answered
calls are not terminated.

This function can be used in a task exit handler.

Notes

A pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

Use this function in a task exit handler to clean-up any open dial-up connections
or modem initializations. If executing end_task from another task ends a task,
modem connections or initializations must be aborted in the exit handler.
Otherwise, the reservation ID for the port remains valid. No other task or Ladder
Logic program may use modem functions on the port. Not calling modemAbort or
modemAbortAll in the task exit handler may result in the port being unavailable to
any programs until the controller is reset.

The modem connection or initialization is automatically terminated when IEC
61131-1 stops the C application and when the controller is rebooted.

This function will terminate all open dial-up connections or modem initializations
started by the C application - even those started by other tasks. The exit handler
can call this function instead of multiple calls to modemAbort if all the
connections or initializations were started from the same task.

Reservation IDs returned by the modemDial and modeminit functions are invalid
after calling modemAbort or modemAbortAll.

See Also

Example

This program installs an exit handler for the main task that terminates any dial-up
connections made by the task. This handler is not strictly necessary if IEC
61131-1 ends the main task. However, it demonstrates how to use the
modemAbortAll function and an exit handler for another task in a more complex
program.

#include <ctools.h>

Document (Version 1.61) 5/19/2011 418

Function Specifications

The shutdown function aborts any active
modem connections when the task is ended.

void shutdown (void)
{

modemAbortAll () ;
}

int main (void)
{
TASKINFO taskStatus;

/* set up exit handler for this task */
getTaskInfo (0, &taskStatus);

installExitHandler (taskStatus.taskID,
(FUNCPTR) shutdown) ;

while (TRUE)
{

/* rest of main task here */

/* Allow other tasks to execute */
release processor();

Document (Version 1.61) 5/19/2011 419

Function Specifications

modembDial

Connect to a Remote Dial-up Controller

Syntax

#include <ctools.h>
enum DialError modemDial (struct ModemSetup *configuration,
reserve id *id);

Description

The modemDial function connects a controller to a remote controller using an
external dial-up modem. One modemDial function may be active on each serial
port. The modemDial function handles port sharing and multiple dialing attempts.

The ModemSetup structure specified by configuration defines the serial port,
dialing parameters, modem initialization string and the phone number to dial.
Refer to the Structures and Types section for a Description of the fields in the
ModemSetup structure.

id points to a reservation identifier for the serial port. The identifier provides that
no other modem control function can access the serial port. This parameter
needs to be supplied to the modemDialEnd and modemDialStatus functions.

The function returns an error code. DE_NoError indicates that the connect
operation has begun. Any other code indicates an error. Refer to the dialup.h
section for a complete Description of error codes.

Notes
The serial port type needs to be set to RS232_MODEM.

The modemDialStatus function returns the status of the connection attempt
initiated by modemDial.

The modemDialEnd function terminates the connection to the remote controller.
A pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

If a communication protocol is active on the serial port when a connection is
initiated, the protocol will be disabled until the connection is made, then re-
enabled. This allows the controller to communicate with the external modem on
the port. The protocol settings will also be restored when a connection is
terminated with the modemDialEnd function.

If a modemlnit function or an incoming call is active on the port, the modemDial
function cannot access the port and will return an error code of DE_NotInControl.
If communication stops for more than five minutes, then outgoing call requests
are allowed to end the incoming call. This prevents the modem or the calling
application from permanently disabling outgoing calls.

The reservation identifier is valid until the call is terminated and another modem
function or an incoming call takes control of the port.

Document (Version 1.61) 5/19/2011 420

Function Specifications

To optimize performance, minimize the length of messages on com3. Examples
of recommended uses for com3 are for local operator display terminals, and for
programming and diagnostics using the IEC 61131-1 program.

Do not call this function in a task exit handler.

Example

Refer to the Examples in the Connecting with a Remote Controller Example
section.

Document (Version 1.61) 5/19/2011 421

Function Specifications

modemDialEnd

Terminate Dial-up Connection

Syntax

#include <ctools.h>

void modemDialEnd (FILE *port, reserve id id, enum DialError
*error);

Description

The modemDialEnd function terminates a dial-up connection or connection in
progress. port specifies the serial port the where the modem is installed. id is the
port reservation identifier returned by the modembDial function.

The function sets the variable pointed to by error. If no error occurred
DE_NoError is returned. Any other value indicates an error. Refer to the
Structures and Types section for a complete Description of error codes.
Notes

The serial port type must be set to RS232_MODEM.

A connection can be terminated by any of the following events. Once terminated
another modem function or incoming call can take control of the serial port.

e Execution of the modemDialEnd function.

e Execution of the modemAbort or modemAbortAll functions.

e The remote device hangs up the phone line.

e An accidental loss of carrier occurs due to phone line problems.

A pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

The reservation identifier is valid until the call is terminated and another modem
function or an incoming call takes control of the port. The modemDialEnd
function returns a DE_NotInControl error code, if another modem function or
incoming call is in control of the port.

Do not call this function in a task exit handler. Use modemAbort instead.

Document (Version 1.61) 5/19/2011 422

Function Specifications

modemDialStatus

Return Status of Dial-up Connection

Syntax

#include <ctools.h>
void modemDialStatus (FILE *port, reserve id id, enum DialError *
error, enum DialState *state);

Description

The modemDialStatus function returns the status of a remote connection initiated
by the modemDial function. port specifies the serial port where the modem is
installed. id is the port reservation identifier returned by the modembDial function.

The function sets the variable pointed to by error. If no error occurred
DE_NoError is returned. Any other value indicates an error. Refer to the
Structures and Types section for a complete Description of error codes.

The function sets the variable pointed to by state to the current execution state of
dialing operation. The state value is not valid if the error code is
DE_NotInControl. Refer to the dialup.h section for a complete Description of
state codes.

Notes

The serial port type must be set to RS232_MODEM.

The reservation identifier is valid until the call is terminated and another modem
function or an incoming call takes control of the port. The modemDialStatus
function will return a DE_NotInControl error code, if another dial function or
incoming call is now in control of the port.

Do not call this function in a task exit handler.

Document (Version 1.61) 5/19/2011 423

Function Specifications

modemInit

Initialize Dial-up Modem

Syntax

#include <ctools.h>
enum DialError modemInit (struct ModemInit *configuration,
reserve id *id);

Description

The modemlnit function sends an initialization string to an external dial-up
modem. It is typically used to set up a modem to answer incoming calls. One
modemlInit function may be active on each serial port. The modeminit function
handles port sharing and multiple dialing attempts.

The Modemlnit structure pointed to by configuration defines the serial port and
modem initialization string. Refer to the Structures and Types section for a
Description of the fields in the Modemlnit structure.

The id variable is set to a reservation identifier for the serial port. The identifier
provides that no other modem control function can access the serial port. This
parameter needs to be supplied to the modemInitEnd and modeminitStatus
functions.

The function returns an error code. DE_NoError indicates that the initialize
operation has begun. Any other code indicates an error. Refer to the Structures
and Types section for a complete Description of error codes.

Notes

The serial port type must be set to RS232_MODEM.

The modeminitStatus function returns the status of the connection attempt
initiated by modeminit.

The modemInitEnd function terminates initialization of the modem.

If a communication protocol is active on the serial port, the protocol will be
disabled until the initialization is complete then re-enabled. This allows the
controller to communicate with the external modem on the port. The protocol
settings will also be restored when initialization is terminated with the
modemInitEnd function.

If a modemDial function or an incoming call is active on the port, the modeminit
function cannot access the port and will return an error code of DE_NotInControl.

The reservation identifier is valid until the call is terminated and another modem
function or an incoming call takes control of the port.

To optimize performance, minimize the length of messages on com3. Examples
of recommended uses for com3 are for local operator display terminals, and for
programming and diagnostics using the IEC 61131-1 program.

Do not call this function in a task exit handler.

Document (Version 1.61) 5/19/2011 424

Function Specifications

Example

Refer to the Example in the Modem Initialization Example section.

Document (Version 1.61) 5/19/2011 425

Function Specifications

modemInitEnd

Abort Initialization of Dial-up Modem

Syntax

#include <ctools.h>
void modemInitEnd(FILE *port, reserve id id, enum DialError
*error);

Description

The modemlnitEnd function terminates a modem initialization in progress. port
specifies the serial port where the modem is installed. id is the port reservation
identifier returned by the modeminit function.

The function sets the variable pointed to by error. If no error occurred
DE_NokError is returned. Any other value indicates an error. Refer to the dialup.h
section for a complete Description of error codes.

Notes

The serial port type must be set to RS232_MODEM.

Normally this function should be called once the modemInitStatus function
indicates the initialization is complete.

The reservation identifier is valid until the initialization is complete or terminated,
and another modem function or an incoming call takes control of the port. The
modemiInitEnd function returns a DE_NotInControl error code, if another modem
function or incoming call is in control of the port.

Do not call this function in a task exit handler. Use modemAbort instead.

Document (Version 1.61) 5/19/2011 426

Function Specifications

modemInitStatus

Return Status of Dial-up Modem Initialization

Syntax

#include <ctools.h>
void modemInitStatus (FILE *port, reserve id id, enum DialError
*error, enum DialState *state);

Description

The modemlInitStatus function returns the status of a modem initialization started
by the modeminit function. port specifies the serial port where the modem is
installed. id is the port reservation identifier returned by the modemlinit function.

The function sets the variable pointed to by error. If no error occurred
DE_NoError is returned. Any other value indicates an error. Refer to the
Structures and Types section for a complete Description of error codes.

The function sets the variable pointed to by state to the current execution state of
the dialing operation. The state value is not valid if the error code is
DE_NotInControl. Refer to the dialup.h section for a complete Description of
state codes.

Notes

The serial port type must be set to RS232_MODEM.

The port will remain in the DS_Calling state until modem initialization is complete
or fails. The application should wait until the state is not DS_Calling before calling
the modemiInitEnd function.

The reservation identifier is valid until the initialization is complete or terminated,
and another modem function or an incoming call takes control of the port.

Do not call this function in a task exit handler.

Document (Version 1.61) 5/19/2011 427

Function Specifications

modemNotification

Notify the modem handler of an important event

Syntax

#include <ctools.h>
void modemNotification (UINT16 port index);

Description

The modemNotification function notifies the dial-up modem handler that an
interesting event has occurred. This informs the modem handler not to
disconnect an incoming call when an outgoing call is requested with modemDial.

This function is used with custom communication protocols. The function is
usually called when a message is received by the protocol, although it can be
called for other reasons.

The port_index indicates the serial port that received the message.

Notes
The serial port type must be set to RS232_MODEM.

The dial-up connection handler stops outgoing calls from using the serial port
when an incoming call is in progress and communication is active. If
communication stops for more than five minutes, then outgoing call requests are
allowed to end the incoming call. This keeps the modem or the calling application
from permanently disabling outgoing calls.

The function is used with programs that dial out through an external modem
using the modembDial function. It is not required where the modem is used for
dialing into the controller only.

Document (Version 1.61) 5/19/2011 428

Function Specifications

mTcpGetConfig
Get Modbus/TCP Protocol Settings

Syntax

#include <ctools.h>
UINT16 mTcpGetConfig (MTCP_CONFIGURATION * pSettings)

Description

The mTcpGetConfig function copies the Modbus/TCP protocol settings to the
structure pointed to by pSettings. The structure MTCP_CONFIGURATION is
described in the Structures and Types section.

The settings are common to all connections using the Modbus/TCP protocol. If
the Modbus/TCP server is currently running, 1 is returned. If the server is not
running, 0 is returned.

Document (Version 1.61) 5/19/2011 429

Function Specifications

mTcpGetinterface
Get Modbus IP Interface Settings

Syntax

#include <ctools.h>
BOOLEAN mTcpGetInterface(COM INTERFACE ifType, MTCP_IF SETTINGS *
pSettings);

Description

The mTcpGetinterface function is used to obtain the interface settings for
Modbus IP protocols on the specified interface. If the selected interface is invalid,
FALSE is returned; otherwise TRUE is returned and the settings are copied to
the structure pointed to by pSettings.

The valid value for ifType is CIF_Ethernetl. The enumeration type
COM_INTERFACE and the structure MTCP_IF_SETTINGS are described in the
Structures and Types section.

Document (Version 1.61) 5/19/2011 430

Function Specifications

mTcpGetinterfaceEx
Get Modbus IP Interface Extended Settings

Syntax

#include <ctools.h>

BOOLEAN mTcpGetInterfaceEx (
COM_INTERFACE ifType,
MTCP_IF SETTINGS EX * pSettings
)

Description

This function returns the interface settings used for Modbus IP protocols,
including Enron Modbus settings.

The function has two parameters:
o ifType specifies the interface. The valid value is CIF_Ethernetl.

e pSettings is a pointer to a Modbus IP interface extended settings structure.
The settings are copied to this structure.

The function returns TRUE if the specified interface is valid and FALSE
otherwise. The enumeration type COM_INTERFACE and the structure
MTCP_IF_SETTINGS_EX are described in the Structures and Types section.

Document (Version 1.61) 5/19/2011 431

Function Specifications

mTcpGetProtocol
Get Modbus IP Protocol Settings

Syntax

#include <ctools.h>
BOOLEAN mTcpGetProtocol (IP _PROTOCOL TYPE type,
IP PROTOCOL SETTINGS * pSettings);

Description

The mTcpGetProtocol function copies the settings for a specific Modbus IP or
DNP IP protocol to the structure pointed to by pSettings. The protocol type is
selected with the type argument and it may be set to any of the following:
IPP_ModbusTcp, IPP_ModbusRtuOverUdp, IPP_ModbusAsciiOverUdp,
IPP_DnpOverTcp or IPP_DnpOverUdp.

If the protocol type is valid, the settings are copied and TRUE is returned. If the
protocol type is invalid, FALSE is returned and nothing is copied.

The structure IP_PROTOCOL_SETTINGS is described in the Structures and
Types section.
See Also

mTcpSetProtocol, mTcpGetinterfaceEx

Document (Version 1.61) 5/19/2011 432

Function Specifications

mTcpSetConfig
Set Modbus/TCP Protocol Settings

Syntax

#include <ctools.h>
BOOLEAN mTCpSetCOnfig(MTCP7CONFIGURATION * pSettings) ;

Description

The mTcpSetConfig function is used to configure settings common to all
connections using the Modbus/TCP protocol. Existing connections are
maintained after calling this function. For this reason it is recommended that all
connections using this protocol be closed before calling this function.

If this function is used to change the port number or maximum number of server
connections, then the Modbus/TCP Server task is ended and re-started with the
new settings. Port number changes will only affect new connections made after
calling this function. Other changes take effect on existing as well as new
connections.

The function copies settings from the structure pointed to by pSettings to the
Modbus/TCP protocol configuration and returns TRUE. The structure
MTCP_CONFIGURATION is described in the Structures and Types section. If
there is an invalid setting, FALSE is returned and the settings are not copied.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request_resource(FLASH_MEMORY);
flashSettingsSave (CS_RUN) ;
release resource (FLASH MEMORY) ;

Document (Version 1.61) 5/19/2011 433

Function Specifications

mTcpSetinterface
Set Modbus IP Interface Settings

Syntax

#include <ctools.h>
BOOLEAN mTcpSetInterface(COM INTERFACE ifType, MTCP_IF SETTINGS *
pSettings);

Description

The mTcpSetinterface function is used to set the interface settings used by the
Modbus IP protocols. If the selected interface or the settings are invalid, FALSE
is returned; otherwise TRUE is returned and the settings are set for the specified
interface.

The valid value for ifType is CIF_Ethernetl. The enumeration type
COM_INTERFACE and the structure MTCP_IF_SETTINGS are described in the
Structures and Types section.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request_resource(FLASH_MEMORY);
flashSettingsSave(CS_RUN);
release_resource(FLASH_MEMORY);

Document (Version 1.61) 5/19/2011 434

Function Specifications

mTcpSetinterfaceEx
Set Modbus IP Interface Extended Settings

Syntax

#include <ctools.h>

BOOLEAN mTcpSetInterfaceEx (
COM_INTERFACE ifType,
MTCP_IF SETTINGS EX * pSettings
)

Description

This function sets the interface settings used for Modbus IP protocols, including
Enron Modbus settings.

The function has two parameters:
o ifType specifies the interface. The valid value is CIF_Ethernetl.

e pSettings is a pointer to a Modbus IP interface extended settings structure
that contains the desired settings.

The function returns TRUE if the specified interface and settings are valid and
FALSE otherwise.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request_resource(FLASH_MEMORY);
flashSettingsSave(CS_RUN);
release_resource(FLASH_MEMORY);

Notes

The IO_SYSTEM resource needs to be requested before calling this function
with Telepace firmware.

The settings take effect for all new connections made thereafter on the specified
interface. Existing connections are not affected.

Document (Version 1.61) 5/19/2011 435

Function Specifications

mTcpSetProtocol

Set Modbus IP Protocol Settings

Syntax

#include <ctools.h>
BOOLEAN mTcpSetProtocol (IP _PROTOCOL TYPE type,
IP PROTOCOL SETTINGS * pSettings);

Description

The mTcpSetProtocol function is used to configure settings for a specific Modbus
IP protocol. The protocol type argument may be set to any of the following:
IPP_ModbusTcp, IPP_ModbusRtuOverUdp, IPP_ModbusAsciiOverUdp,
IPP_DnpOverTcp or IPP_DnpOverUdp.

If this function is used to change the port number, then the server task for the
selected protocol is ended and re-started with the new settings. Port number
changes will only affect new connections made after calling this function. Other
changes take effect on existing as well as new connections.

This function may be used to change the server enable status. The
serverEnabled setting selects whether the server is enabled for the selected
protocol. If this flag is set to TRUE the controller supports incoming slave
messages that use the selected protocol. Setting this flag to FALSE prevents the
controller from processing slave messages for this protocol. Master messaging is
always enabled.

The function copies the settings from the structure pointed to by pSettings to the
settings of the specified protocol and returns TRUE. The structure
IP_PROTOCOL_SETTINGS is described in the Structures and Types section. If
there is an invalid setting, FALSE is returned and the settings are not copied.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request resource (FLASH MEMORY) ;
flashSettingsSave (CS_RUN) ;
release resource (FLASH MEMORY) ;

Notes

The IO_SYSTEM resource needs to be requested before calling this function
with Telepace firmware.

See Also

mTcpGetProtocol, mTcpSetinterfaceEx

Document (Version 1.61) 5/19/2011 436

Function Specifications

mTcpMasterClose

Close Modbus IP Master Messaging Session

Syntax

#include <ctools.h>
BOOLEAN mTcpMasterClose(UINT32 connectID);

Description

The mTcpMasterClose function returns the specified connectlD to the pool of
available connections so that it may be re-used for other new connections.
FALSE is returned if the specified connectlD is invalid, or if the connection has
not been disconnected; otherwise TRUE is returned and the connectID is
released.

After calling this function, the function mTcpMasterStatus may no longer be
called with this connectID.

The function mTcpMasterDisconnect needs to be called first before calling
mTcpMasterClose to disconnect and end the mastering task. If this is not done,
mTcpMasterClose returns FALSE and the connectID is not released.

Example

See Example for Master Message Example Using mTcpMasterMessage.

Document (Version 1.61) 5/19/2011 437

Function Specifications

mTcpMasterDisconnect

Disconnect Modbus IP Master Connection

Syntax

#include <ctools.h>
BOOLEAN mTcpMasterDisconnect (UINT32 connectID);

Description

The mTcpMasterDisconnect function signals the mastering task to tell it to
disconnect from the remote slave and end the task. FALSE is returned if the
specified connectlD is invalid; otherwise a TRUE is returned.

FALSE is also returned if the master task has not completed the last command.
In this case, the mTcpMasterDisconnect function needs to be called repeatedly
until TRUE is returned.

After calling the mTcpMasterDisconnect function, the function mTcpMasterStatus
may be used to determine the progress of the disconnect. These functions may
not be called after calling the function mTcpMasterClose with the same
connectID. The results of such a call are unpredictable, as the connectlD may
have been re-used already for a new connection.

After calling mTcpMasterDisconnect successfully, call mTcpMasterClose to
return the connection ID to the pool of available connections.

Example

See the Example in the Example Programs chapter under the section
Master IP Message Example.

Document (Version 1.61) 5/19/2011 438

Function Specifications

mTcpMasterMessage

Send a Modbus IP Master Message

Syntax

#include <ctools.h>

MODBUS CMD STATUS mTcpMasterMessage (UINT32 connectID, IP ADDRESS
remoteIP, IP_PROTOCOL TYPE protocolType, UINT16 function, UINT16
slaveStation, UINT1l6 slaveRegister, UINT1l6 masterRegister, UINT16
length, UINT16 timeout);

Description

The mTcpMasterMessage function builds a Modbus command message using
the specified Modbus IP protocol and signals the mastering task to tell it to send
the command.

The connectID specifies the connection ID returned by the function
mTcpMasterOpen which was called to create a mastering task to service this
connection.

The remotelP specifies the IP address of the remote slave. The value of
remotelP may be the same or different from the IP address used in
mTcpMasterOpen or in a previous call to mTcpMasterMessage. This is possible
because the connectID represents the allocation of a connection from the
connection pool and may be used to connect to any IP address.

When the IP address is changed between function calls, the current connection
is closed and a connection to the new IP address is automatically established. It
is more efficient to allocate one connectlD and its associated master task for
each remotelP because the connection remains connected to one IP address.
However, if there are fewer connections available than there are remote slaves,
the same connectID can be used to re-connect to multiple IP addresses.

Valid values for protocolType are: IPP_ModbusTcp, IPP_ModbusRtuOverUdp, or
IPP_ModbusAsciiOverUdp.

The remaining arguments are used in the same way as they are used in
master_message to send a serial Modbus command:

e function specifies the Modbus function code. Refer to the communication
protocol manual for supported function codes.

o slaveStation specifies the network address of the slave station. This is also
known as the slave station number.

o slaveRegister specifies a Modbus register in the slave station. Depending on
the protocol function code, data may be read or written at this location.

o masterRegister specifies a Modbus register in the master (this controller).
Depending on the protocol function code, data may be read or written at this
location.

¢ length specifies the number of registers.

Document (Version 1.61) 5/19/2011 439

Function Specifications

The timeout, in tenths of seconds, tells the mastering task how long to wait for a
response from the slave. For TCP protocols the same timeout is also used by the
mastering task as the time to wait for a connection to be re-established if this is
required. To disable the timeout and have the mastering task wait forever for a
response or a connection to be established, set the timeout to 0. This timeout
replaces the initial timeout specified in mTcpMasterOpen. This allows
mTcpMasterMessage to specify different timeout values for different IP
addresses each time the function is called.

If a TCP protocol connection is left idle and the master idle timeout occurs, the
connection is closed to conserve resources at the remote slave. The connection
is automatically re-established the next time mTcpMasterMessage is called.
Master idle timeout is set using the function mTcpSetProtocol. Closing the
TCP/IP connection in an idle timeout does not return the connection ID to the
pool of available connections. The connection ID remains allocated to this master
session until mTcpMasterClose is called.

An error code is returned if the specified connectID is invalid, or if a command
argument is invalid; otherwise MM_SENT is returned. If the last command
message is still in progress, the command status is returned and a new message
is not sent. The mTcpMasterMessage returns immediately. It is the mastering
task created in the background that services the IP connection.

The command status returned by this function is set to MM_SENT if a valid
master message was sent. Other values returned for the command status are
described for the enumeration type MODBUS_CMD_STATUS in the Structures
and Types section. Use the function mTcpMasterStatus to determine the
progress of the Modbus IP command and the slave response. The command
status will be set to MM_RECEIVED when the response to the message is
received.

Notes
Refer to the communication protocol manual for more information.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

See the Example in the Example Programs chapter under the section Master IP
Message Example.

Document (Version 1.61) 5/19/2011 440

Function Specifications

mTcpMasterOpen

Open a Modbus IP Master Connection

Syntax

#include <ctools.h>

BOOLEAN mTcpMasterOpen(IP ADDRESS remoteIP, IP PROTOCOL TYPE
protocolType, CONNECTION TYPE appType, UINT1l6 timeout, UINT32 *
connectID, MODBUS CMD STATUS * cmdStatus);

Description

The mTcpMasterOpen function allocates the resources needed to make a
Modbus IP master connection to a remote IP address. These resources consist
of a connection ID from the connection pool and the creation of a task to service
the master IP connection. When the task is created an initial connection to
remotelP is attempted. However, the connection ID and master task are not
restricted to just one remotelP. The currently connected IP address may be
disconnected and connected to a different IP address any time
mTcpMasterMessage is called with a different remotelP for this connection ID.
See mTcpMasterMessage for more details.

Valid values for protocolType are: IPP_ModbusTcp, IPP_ModbusRtuOverUdp, or
IPP_ModbusAsciiOverUdp. There is only one valid value for appType:
CT_MasterCApp.

For TCP protocols, the timeout specifies the time, in tenths of seconds, to wait for
a connection to be established whenever a connection is attempted by the
created master task. To disable the timeout and wait forever for a connection to
be established, set the timeout to 0.

Each time this function is called a new connection ID is allocated from the
connection pool. If the number of currently allocated connections is less than 20,
a task is created to service the allocated connection and the function returns
TRUE. If there are no connections available, or if there is an error in one of the
arguments, FALSE is returned and an error code is copied to the value pointed
by cmdStatus.

The new mastering task establishes the initial connection and sends Modbus IP
master messages each time mTcpMasterMessage is called. Use the function
mTcpMasterStatus to determine the status of the connection or master message
in progress.

The connection ID for this master connection is copied to the value pointed to by
connectlD. This ID needs to be used when calling the remaining master
messaging API functions for this connection: mTcpMasterMessage,
mTcpMasterStatus, mTcpMasterDisconnect, and mTcpMasterClose

The enumeration types and structures used for the function arguments are
described in the Structures and Types section.

Document (Version 1.61) 5/19/2011 441

Function Specifications

Notes

The functions mTcpMasterDisconnect and mTcpMasterClose needs to be called
to disconnect and return this connection ID to the pool of available connections.
Even if the connection to the remote IP is disconnected, manually or
automatically after an idle timeout, the connection ID remains allocated until
mTcpMasterDisconnect is called to disconnect and end the mastering task, and
mTcpMasterClose is called to return the connection ID.

There are only 20 connections available for all Modbus IP master and slave
connections. Use the function ipGetConnectionSummary obtain the number of
master and slave connections that are currently active.

If the initial connection started by this function fails, the connection will be
attempted again if necessary each time mTcpMasterMessage is called.

See the function mTcpMasterMessage for a discussion of whether to allocate
one or several connections when polling multiple remote IP addresses.
Example

See Example for Master Message Example Using mTcpMasterMessage.

Document (Version 1.61) 5/19/2011 442

Function Specifications

mTcpMasterStatus

Modbus IP Master Command Status

Syntax

#include <ctools.h>
BOOLEAN mTcpMasterStatus(UINT32 connectID, MODBUS CMD STATUS *
cmdStatus) ;

Description

The mTcpMasterStatus function obtains the Modbus command status for the
connection specified by connectlD.

This function copies the master command status to the value pointed to by
cmdStatus. FALSE is returned if the specified connectlD is invalid; otherwise
TRUE is returned and the status is copied.

This function may not be called after calling the function mTcpMasterClose with
the same connectID. The results of such a call are unpredictable, as the
connectlD may have been re-used already for a new connection.

Expected values returned for the command status are described for the
enumeration type MODBUS_CMD_STATUS in the Structures and Types section.
Example

See Example for Master Message Example Using mTcpMasterMessage.

Document (Version 1.61) 5/19/2011 443

Function Specifications

mTcpRunServer

Run Modbus IP Servers

Syntax

#include <ctools.h>
void mTcpRunServer (BOOLEAN state);

Description

The mTcpRunServer function is used to start the servers for each IP protocol.
The IP protocols include Modbus/TCP, Modbus RTU over UDP, Modbus ASCII
over UDP, DNP over TCP, and DNP over UDP.

Calling this function with TRUE starts the servers according to the IP protocol
settings: If the server enabled setting for the protocol is TRUE, then the server is
started. If the server enabled setting for the protocol is FALSE, then the server is
stopped. Calling this function with FALSE stops each IP protocol server and
updates IP protocol settings accordingly.

Use the function mTcpSetProtocol to enable or disable a server for a specific IP
protocol.

This function should only be needed in the context of the startup function
appstart.

Document (Version 1.61) 5/19/2011 444

Function Specifications

ntohl

Syntax

#include <ctools.h>

unsigned long ntohl

(unsigned long longValue

);

Description

This function converts a long value from network byte order to host byte order.
Parameters

longValue The value to convert

Returns

The converted value.

Document (Version 1.61) 5/19/2011 445

Function Specifications

ntohs

Syntax

#include <ctools.h>
unsigned short ntohs
(

unsigned short shortValue
);
Description
This function converts a short value from network byte order to host byte order.
Parameters
shortValue The value to convert
Returns

The converted value.

Document (Version 1.61) 5/19/2011 446

Function Specifications

overrideDbase

Overwrite Value in Forced I/0 Database (Telepace firmware only)

Syntax

#include <ctools.h>
BOOLEAN overrideDbase (UINT16 type, UINT1l6 address, INT1l6 value);

Description

The overrideDbase function writes value to the I/O database even if the database
register is currently forced. type specifies the method of addressing the
database. address specifies the location in the database.

If the register is currently forced, the register remains forced but forced to the
new value.

If the address or addressing type is not valid, the I/O database is left unchanged
and FALSE is returned; otherwise TRUE is returned. The table below shows the
valid address types and ranges.

Type Address Ranges Register
Size
MODBUS | 00001 to NUMCOIL 1 bit
10001 to 10000 + NUMSTATUS 1 bit
30001 to 30000 + NUMINPUT 16 bit
40001 to 40000 + NUMHOLDING 16 bit
LINEAR 0 to NUMLINEAR-1 16 bit
Notes

When writing to LINEAR digital addresses, value is a bit mask, which writes data
to 16 1-bit registers at once.

The 1/O database is not modified when the controller is reset. It is a permanent
storage area, which is maintained during power outages.

Refer to the Functions Overview chapter for more information.

The IO_SYSTEM resource needs to be requested before calling this function.
See Also

Example

#include <ctools.h>
int main (void)
{
request_resource(IO_SYSTEM);

overrideDbase (MODBUS, 40001, 102);
overrideDbase (LINEAR, 302, 330);

Document (Version 1.61) 5/19/2011 447

Function Specifications

release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 448

Function Specifications

pidExecute

Execute PID control algorithm

Syntax

#include <ctools.h>

BOOLEAN pidExecute (PID DATA * pData);
Description

This function executes the PID algorithm. The function may be called as often as
desired, but needs to be called at least once per the value in the period field for
proper operation.

The function has one parameter. pData is a pointer to a structure containing the
PID block data and outputs.

The function returns TRUE if the PID block executed. The function returns

FALSE if it was not time for execution.

Notes

To properly initialize the PID algorithm do one of the following.

e Call the pidInitialize function once before calling this function the first time, or

e put the PID algorithm in manual mode (autoMode = FALSE in PID_DATA) for
the first call to the pidExecute function.

Example

This Example initializes one PID control structure and executes the control
algorithm continuously. Input data is read from analog inputs. Output data is
written to analog outputs.

#include <ctools.h>

// event number to signal when I/O scan completes
#define IO COMPLETE 0

int main (void)

{

INT16 ainDatal4]; // analog input data

INT16 aoutDatal[4]; // analog output data

PID DATA pidData; // PID algorithm data
BOOLEAN executed; // indicates if PID executed

// read analog input
ioRequest (MT Aind4, 0);
ioNOtification(IOiCOMPLETE);
wait event (IO COMPLETE) ;
ioReadAin4 (0, ainData);

// get initial process value from analog input
pidData.pv = ainData(0];

Document (Version 1.61) 5/19/2011 449

Function Specifications

// configure PID block

pidData.sp = 1000;
pidData.gain = 1;
pidData.reset = 100;
pidData.rate = 0;
pidData.deadband = 10;
pidData.fullScale = 32767;
pidData.zeroScale = 0;
pidData.manualOutput = 0;
pidData.period = 1000;
pidData.autoMode = TRUE;

// initialize the PID block
pidInitialize (&pidData) ;

// main loop

while

{

(TRUE)

// execute all I/0 requests
ioRequest (MT Ain4, 0);
ioNotification (IO COMPLETE) ;
wait event (IO COMPLETE) ;

// get process input
ioReadAin4 (0, ainData);
pidData.pv = ainData([0];

// execute the PID block
executed = pidExecute (&pidData) ;

// 1if the output changed

if (executed)

{
// write the output to analog output module
aoutData[0] = pidData.output;
ioWriteAout4 (0, aoutData);
ioRequest (MT_Aout4, 0);

}

// release processor to other priority 254 tasks
release processor();

Document (Version 1.61) 5/19/2011

450

Function Specifications

pidinitialize
Initialize PID controller data

Syntax

#include <ctools.h>

void pidInitialize (PID DATA * pData);
Description

This function initializes the PID algorithm data.

The function has one parameter. pData is a pointer to a structure containing the
PID data and outputs.

The function should be called once before calling the pidExecute function for the
first time. The structure pointed to by pData must contain valid values for sp, pv,
and manualOutput before calling the function.

The function has no return value.

See Also

pidExecute
Example

See the Example for pidExecute.

Document (Version 1.61) 5/19/2011 451

Function Specifications

pollABSlave

Poll DF1 Slave for Response

Syntax

#include <ctools.h>

UINT16 pollABSlave (FILE *stream, UINT16 slave);
Description

The pollABSlave function is used to send a poll command to the slave station
specified by slave in the DF1 Half Duplex protocol configured for the specified
port. stream specifies the serial port.

The function returns FALSE if the slave number is invalid, or if the protocol
currently installed on the specified serial port is not an DF1 Half Duplex protocol.
Otherwise it returns TRUE and the protocol command status is set to MM_SENT.
Notes

See the Example in the Example Programs chapter under the section Master
Message Example Using DF1 Protocol. The pollABSlave function is used in the
sample polling function "poll_for_response"” shown in this example.

See Also

resetAllABSlaves

Example

This program segment polls slave station 9 for a response communicating on the
comz2 serial port.

#include <ctools.h>

pollABSlave (com2, 9);

Document (Version 1.61) 5/19/2011 452

Function Specifications

poll_event

Test for Event Occurrence

Syntax

#include <ctools.h>
BOOLEAN poll event (UINT32 event);

Description
The poll_event function tests if an event has occurred.

The poll_event function returns TRUE, and the event counter is decrements, if
the event has occurred. Otherwise it returns FALSE.

The current task always continues to execute.

Notes
Refer to the Real Time Operating System section for more information on events.

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
primitiv.h are not valid events for use in an application program.

Example

This program is based on the Install Serial Port Handler Example.

#include <ctools.h>
#include "nvMemory.h"

#define CHAR RECEIVED 11
void signal serial (INT32 port, INT32 character);

int main (void)
{
INT32 character;
struct prot settings protocolSettings;

//disable protocol

get protocol (com2, &protocolSettings):;
protocolSettings.type = NO_ PROTOCOL;
request resource (IO SYSTEM) ;

set protocol (com2, &protocolSettings);
release resource (IO SYSTEM) ;

// Enable character handler
install handler (com2,
(BOOLEAN (*) (INT32,INT32))signal serial);

while (TRUE)

{
if (poll event (CHAR RECEIVED))

{

character = fgetc(com2);

Document (Version 1.61) 5/19/2011 453

Function Specifications

if (character == EOF)
{
// clear overflow error flag to

// re-enable coml
clearerr (coml) ;
}
fputs (" character: ", com2);
fputc (character, com2);
fputs ("\r\n", com2);
}
/* Allow other tasks to execute */
release processor();

}

void signal serial (INT32 port, INT32 character)

{
interrupt signal event (CHAR RECEIVED) ;

}

Document (Version 1.61) 5/19/2011 454

Function Specifications

poll_message

Test for Received Message

Syntax

#include <ctools.h>

envelope *poll message (void);
Description

The poll_message function tests if a message has been received by the current
task.

The poll_message function returns a pointer to an envelope if a message has
been received. It returns NULL if no message has been received.

The current task always continues to execute.

Notes

Refer to the Real Time Operating System section for more information on
messages.

See Also

poll_event

Example

This task performs a function continuously, and processes received messages
(from higher priority tasks) when they are received.

#include <ctools.h>

void task (void)

{

envelope *letter;

while (TRUE)
{

letter=poll message();
if (letter != NULL)
/* process the message now */

/* more code here */

Document (Version 1.61) 5/19/2011 455

Function Specifications

poll_resource

Test Resource Availability

Syntax

#include <ctools.h>
BOOLEAN poll resource (UINT32 resource);

Description

The poll_resource function tests if the resource specified by resource is
available. If the resource is available it is given to the task.

The poll_resource function returns TRUE if the resource is available. It returns
FALSE if it is not available.

The current task always continues to execute.

Notes

Refer to the Real Time Operating System section for more information on
resources.

See Also

poll_event, poll_message

Document (Version 1.61) 5/19/2011 456

Function Specifications

portindex

Get Index of Serial Port

Syntax

#include <ctools.h>
UINT16 portIndex (FILE *stream);

Description

The portindex function returns an array index for the serial port specified by
stream. It will return a value suitable for an array index, in increasing order of
external serial port numbers, if no error occurs.

If the stream is not recognized, SERIAL_PORTS is returned, to indicate an error.

See Also

portStream

Document (Version 1.61) 5/19/2011 457

Function Specifications

portStream

Get Serial Port Corresponding to Index

Syntax

#include <ctools.h>
FILE *portStream(UINT1l6 index);

Description

The portStream function returns the file pointer corresponding to index. This
function is the inverse of the portindex function. If the index is not valid, the NULL
pointer is returned.

See Also

portindex

Document (Version 1.61) 5/19/2011 458

Function Specifications

gueryStack

Query Stack Space for Known Tasks

Syntax

#include <ctools.h>
void queryStack (UCHAR* filename);

Description

The queryStack function generates a csv file with the supplied filename. The csv
file contains the current stack condition of all known tasks. The file that is
created can be extracted through FTP or Telepace Studio’s File Management
tool.

Notes

This function should be used infrequently as a debugging aid. Itis also
recommended to be used during C++ application development to confirm that the
tasks created by the C++ application have sufficient stack space. Exercising all
code paths is recommended before calling this function to obtain the most useful
results.

Example

#include <ctools.h>

queryStack (“/d0/myStack.csv”);

Document (Version 1.61) 5/19/2011 459

Function Specifications

gueue_mode

Control Serial Data Transmission

Syntax

#include <ctools.h>

void queue mode (FILE *stream, INT16 mode) ;
Description

The queue_mode function controls transmission of the serial data. Normally data
output to a serial port are placed in the transmit buffer and transmitted as soon
as the hardware is ready. If queuing is enabled, the characters are held in the
transmit buffer until queuing is disabled. If the buffer fills, queuing is disabled
automatically.

port specifies the serial port. If it is not valid the function has no effect.

mode specifies the queuing control. It may be DISABLE or ENABLE.

Notes

Queuing is often used with communication protocols that use character timing for
message framing. Its uses in an application program are limited.

Document (Version 1.61) 5/19/2011 460

Function Specifications

readBoolVariable
Read IEC 61131-1 Boolean Variable (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>
BOOLEAN readBoolVariable (UCHAR * varName, UCHAR * value)

Description
This function returns the current value of the specified boolean variable.

The variable is specified by its name expressed as a character string. The name
is case insensitive (The IEC 61131-1 Dictionary also treats variable names as
case insensitive). If the variable is found, TRUE is returned and the variable
value is written to the unsigned char value pointed to by value. If the variable is
not found or if the IEC 61131-1 Symbols Status is invalid, FALSE is returned and
the current value is left unchanged. The IEC 61131-1 Symbols Status is invalid if
the Application TIC code download and Application Symbols download are not
sharing the same symbols CRC checksum.

Notes

This function requires the IEC 61131-1 Application Symbols to be downloaded to
the controller in addition to the Application TIC code. This function provides a
convenient method to access IEC 61131-1 variables by name; however, because
the variable name needs to be looked up in the IEC 61131-1 variable list each
call, the performance of the function may be slow for large numbers of variables.
For better performance, use the variable’s network address and the dbase
function.

The IO_SYSTEM system resource needs to be requested before calling this
function.
See Also

readIntVariable, readRealVariable

Example

This program displays the contents of the boolean variable named “Switch1”.

#include <ctools.h>

int main (void)

{
BOOLEAN status;
UCHAR char value;

request resource (IO SYSTEM) ;
status = readBoolVariable ("Switchl", &value);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 461

Function Specifications

fprintf (coml, "status = %u, Switchl = %d\r\n", status,
value) ;

}

Document (Version 1.61) 5/19/2011 462

Function Specifications

readBattery
Read Lithium Battery Voltage

Syntax
#include <ctools.h>
INT16 readBattery(void);

Description

The readBattery function returns the RAM backup battery voltage in millivolts.
The range is 0 to 5000 mV. A normal reading is about 3600 mV.

Example

#include <ctools.h>

if (readBattery () < 2500)
{

fprintf (coml, “Battery Voltage is low\r\n”);
}

Document (Version 1.61) 5/19/2011 463

Function Specifications

readinputVoltage
Read Input Voltage

Syntax

#include <ctools.h>
INT16 readInputVoltage (void);

Description

The readlnputVoltage function returns the input supply voltage in millivolts. The
typical range is 9000 to 30000 mV.

Example

#include <ctools.h>

if (readInputVoltage() < 9000)

{

fprintf (coml, "The input supply voltage is low\r\n");
}

Document (Version 1.61) 5/19/2011 464

Function Specifications

readintVariable
Read IEC 61131-1 Integer Variable (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>
BOOLEAN readIntVariable (UCHAR * varName, INT32 * value)

Description
This function returns the current value of the specified integer variable.

The variable is specified by its name expressed as a character string. The name
is case insensitive (The IEC 61131-1 Dictionary also treats variable names as
case insensitive). If the variable is found, TRUE is returned and the variable
value is written to the signed long value pointed to by value. If the variable is not
found or if the IEC 61131-1 Symbols Status is invalid, FALSE is returned and the
current value is left unchanged. The IEC 61131-1 Symbols Status is invalid if the
Application TIC code download and Application Symbols download are not
sharing the same symbols CRC checksum.

Notes

This function requires the IEC 61131-1 Application Symbols to be downloaded to
the controller in addition to the Application TIC code. This function provides a
convenient method to access IEC 61131-1 variables by name; however, because
the variable name needs to be looked up in the IEC 61131-1 variable list each
call, the performance of the function may be slow for large numbers of variables.
For better performance, use the variable’s network address and the dbase
function.

The IO_SYSTEM system resource needs to be requested before calling this
function.
See Also

readRealVariable

Example

This program displays the contents of the integer variable named “Temperature”.

#include <ctools.h>

int main (void)

{
BOOLEAN status;
INT32 value;

request resource (IO SYSTEM) ;
status = readIntVariable ("Temperature", &value);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 465

Function Specifications

fprintf (coml, "status = %u, Temp = %$1d\r\n", status, value);

Document (Version 1.61) 5/19/2011 466

Function Specifications

readMsgVariable
Read IEC 61131-1 Message Variable (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>
BOOLEAN readMsgVariable (UCHAR * varName, UCHAR * msgq)

Description
This function returns the current value of the specified message variable.

The variable is specified by its name expressed as a character string. The name
is case insensitive (The IEC 61131-1 Dictionary also treats variable names as
case insensitive). If the variable is found, TRUE is returned and the message is
written to the string pointed to by msg. If the variable is not found or if the IEC
61131-1 Symbols Status is invalid, FALSE is returned and the buffer is left
unchanged. The IEC 61131-1 Symbols Status is invalid if the Application TIC
code download and Application Symbols download are not sharing the same
symbols CRC checksum.

The pointer msg needs to point to a character string large enough to hold the
maximum length declared for the specified message variable plus two length
bytes and a null termination byte (i.e. max declared length + 3). IEC 61131-1
message variables have the following format:

Byte Description

Location

0 Maximum length as declared in IEC 61131-1
Dictionary (1 to 255)

1 Current Length = number of bytes up to first
null byte in message data (0 to maximum
length)

2 First message data byte

max + 1 Last byte in message buffer

max + 2 Null termination byte (Terminates a message
having the maximum length.)

Notes

This function requires the IEC 61131-1 Application Symbols to be downloaded to
the controller in addition to the Application TIC code. This function provides a
convenient method to access IEC 61131-1 variables by name; however, because
the variable name needs to be looked up in the IEC 61131-1 variable list each
call, the performance of the function may be slow for large numbers of variables.
For better performance, use the variable’s network address and the dbase
function.

Document (Version 1.61) 5/19/2011 467

Function Specifications

The IO_SYSTEM system resource needs to be requested before calling this
function.

See Also

readIntVariable, readRealVariable

Example

This program displays the contents of the message variable named “msgData” of
maximum length 20.

#include <ctools.h>

int main (void)

{

BOOLEAN status;
UCHAR msg[23];

request resource (IO SYSTEM) ;
status = readMsgVariable ("msgData", msqg);
release resource (IO SYSTEM) ;

fprintf (coml, "status = %u, max length = %d,

message = %s\r\n", status, msg[0], msg[l],

current length

msg + 2);

Document (Version 1.61) 5/19/2011

468

Function Specifications

readRealVariable
Read IEC 61131-1 Real Variable (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>
BOOLEAN readRealVariable (UCHAR * varName, float * value)

Description

This function returns the current value of the specified real (i.e. floating point)
variable.

The variable is specified by its name expressed as a character string. The name
is case insensitive (The IEC 61131-1 Dictionary also treats variable names as
case insensitive). If the variable is found, TRUE is returned and the variable
value is written to the floating point value pointed to by value. If the variable is not
found or if the IEC 61131-1 Symbols Status is invalid, FALSE is returned and the
current value is left unchanged. The IEC 61131-1 Symbols Status is invalid if the
Application TIC code download and Application Symbols download are not
sharing the same symbols CRC checksum.

Notes

This function requires the IEC 61131-1 Application Symbols to be downloaded to
the controller in addition to the Application TIC code. This function provides a
convenient method to access IEC 61131-1 variables by name; however, because
the variable name needs to be looked up in the IEC 61131-1 variable list each
call, the performance of the function may be slow for large numbers of variables.
For better performance, use the variable’s network address and the dbase
function.

The IO_SYSTEM system resource needs to be requested before calling this
function.
See Also

readIntVariable

Example

This program displays the contents of the real variable named “Flow”.

#include <ctools.h>

int main (void)

{
BOOLEAN status;
float value;

request resource (IO SYSTEM) ;
status = readRealVariable ("Flow", &value);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 469

Function Specifications

fprintf (coml, "status = %u, Flow = %$f\r\n", status, value);

Document (Version 1.61) 5/19/2011 470

Function Specifications

readStopwatch
Read Stopwatch Timer

Syntax

#include <ctools.h>
UINT32 readStopwatch (void)

Description

The readStopwatch function reads the stopwatch timer. The stopwatch time is in
ms and has a resolution of 10 ms. The stopwatch time rolls over to 0 when it
reaches the maximum value for an unsigned long integer: 4,294,967,295 ms (or
about 49.7 days).

Example

This program measures the execution time in ms of an operation.

#include <ctools.h>

int main (void)
{
UINT32 startTime, endTime;

startTime = readStopwatch() ;
/* operation to be timed */
endTime = readStopwatch() ;

fprintf (coml, "Execution time = %$lu ms\r\n", endTime -
startTime) ;

}

Document (Version 1.61) 5/19/2011 471

Function Specifications

readThermistor

Read Controller Ambient Temperature

Syntax

#include <ctools.h>
INT16 readThermistor (UINT16 scale);

Description

The readThermistor function returns the temperature measured at the main
board in the specified temperature scale. If the temperature scale is not
recognized, the temperature is returned in Celsius. The scale may be
T_CELSIUS, T_FAHRENHEIT, T_KELVIN or T_RANKINE.

The temperature is rounded to the nearest degree.

Example

#include <ctools.h>

void checkTemperature (void)

{
INT16 temperature;

temperature = readThermistor(T_FAHREHEIT);
if (temperature < 0)

fprintf (coml, “It’s COLD!!!\r\n”);
else if (temperature > 90)

fprintf (coml, “It’s HOT!!!\r\n”);

Document (Version 1.61) 5/19/2011 472

Function Specifications

readTimerVariable
Read IEC 61131-1 Timer Variable (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>
BOOLEAN readTimerVariable (UCHAR * varName, UINT32 * value)

Description

This function returns the current value in milliseconds of the specified timer
variable. The maximum value returned is 86399999 ms (or 24 hours). The
specified timer may be active or stopped.

The variable is specified by its name expressed as a character string. The name
is case insensitive (The IEC 61131-1 Dictionary also treats variable names as
case insensitive). If the variable is found, TRUE is returned and the variable
value is written to the unsigned long value pointed to by value. If the variable is
not found or if the IEC 61131-1 Symbols Status is invalid, FALSE is returned and
the current value is left unchanged. The IEC 61131-1 Symbols Status is invalid if
the Application TIC code download and Application Symbols download are not
sharing the same symbols CRC checksum.

Notes

This function requires the IEC 61131-1 Application Symbols to be downloaded to
the controller in addition to the Application TIC code. This function provides a
convenient method to access IEC 61131-1 variables by name; however, because
the variable name needs to be looked up in the IEC 61131-1 variable list each
call, the performance of the function may be slow for large numbers of variables.
For better performance, use the variable’s network address and the dbase
function.

The IO_SYSTEM system resource needs to be requested before calling this
function.
See Also

readIntVariable, readRealVariable

Example

This program displays the contents of the timer variable named “Time1”.

#include <ctools.h>

int main (void)

{
BOOLEAN status;
UINT32 value;

request resource (IO SYSTEM) ;
status = readTimerVariable ("Timel", &value);

Document (Version 1.61) 5/19/2011 473

Function Specifications

release resource (IO SYSTEM) ;

fprintf (coml, "status = %u, Timel = %lulr\n", status,
value) ;

}

Document (Version 1.61) 5/19/2011 474

Function Specifications

receive_message

Receive a Message

Syntax

#include <ctools.h>
envelope *receive message (void);

Description

The receive_message function reads the next available envelope from the
message queue for the current task. If the queue is empty, the task is blocked
until a message is sent to it.

The receive_message function returns a pointer to an envelope structure.

Notes

Refer to the Real Time Operating System section for more information on
messages.

See Also

send_message

Example

This task waits for messages, then prints their contents. The envelopes received
are returned to the operating system.

#include <ctools.h>

void show message (void)
{
envelope *msg;
while (TRUE)
{
msg = receive_message();
fprintf (coml, "Message data %1d\r\n", msg->data);
deallocate envelope (msg) ;

Document (Version 1.61) 5/19/2011 475

Function Specifications

recv

Syntax

#include <ctools.h>
int recv

(

int socketDescriptor,
char * bufferPtr,

int bufferlength,

int flags

)

Description

recv is used to receive messages from another socket. recv may be used only on
a connected socket (see connect, accept). socketDescriptor is a socket created
with socket or accept. The length of the message is returned. If a message is too
long to fit in the supplied buffer, excess bytes may be discarded depending on
the type of socket the message is received from (see socket). The length of the
message returned could also be smaller than bufferLength (this is not an error). If
no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is non-blocking, or the MSG_DONTWAIT flag is set in
the flags parameter, in which case -1 is returned with socket error being set to
EWOULDBLOCK.

Out-of-band data not in the stream (urgent data when the SO_OOBINLINE
option is not set (default)) (TCP protocol only).

A single out-of-band data byte is provided with the TCP protocol when the
SO_OOBINLINE option is not set. If an out-of-band data byte is present, recv
with the MSG_OOB flag not set will not read past the position of the out-of-band
data byte in a single recv request. That is, if there are 10 bytes from the current
read position until the out-of-band byte, and if we execute a recv specifying a
bufferLength of 20 bytes, and a flag value of 0, recv will only return 10 bytes. This
forced stopping is to allow us to determine when we are at the out-of-band byte
mark. When we are at the mark, recv with the MSG_OOB flag set can read the
out-of-band data byte. The user needs to use select in order to know when out-
of-band data has arrived, or is arriving.

Out-of-band data (when the SO_OOBINLINE option is set (see setsockopt)).
(TCP protocol only)

If the SO_OOBINLINE option is enabled, the out-of-band data is left in the
normal data stream and is read without specifying the MSG_OOB. More than
one out-of-band data bytes can be in the stream at any given time. The out-of-
band byte mark corresponds to the final byte of out-of-band data that was
received. In this case, the MSG_OOB flag cannot be used with recv. The out-of-
band data will be read in line with the other data. Again, recv will not read past
the position of the out-of-band mark in a single recv request. The user needs to
use select in order to know when out-of-band data has arrived, or is arriving.

Document (Version 1.61) 5/19/2011 476

Function Specifications

select may be used to determine when more data arrives, or/and when out-of-

band data arrives.

Parameters

socketDescriptor

The socket descriptor to receive data from.

bufferPtr The buffer to put the received data into
bufferLength The length of the buffer area that bufferPtr points to
flags See below

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT

Don’t wait for data, but rather return immediately

MSG_OOB Read any “out-of-band” data present on the socket
rather than the regular “in-band” data

MSG_PEEK “Peek” at the data present on the socket; the data is
returned, but not consumed, so that a subsequent
receive operation will see the same data.

Returns

>0 Number of bytes actually received from the socket.

0 EOF

-1 An error occurred

recv will fail if:
EBADF
ENOBUFS

EMSGSIZE

EWOULDBLOCK

The socket descriptor is invalid

There was insufficient user memory available to
complete the operation

The socket requires that message be received
atomically, and bufferLength was too small

The socket is marked as non-blocking or the

MSG_DONTWAIT flag is used and no data is available
to be read, or the MSG_OOB flag is set and the out of
band data has not arrived yet from the peer

ESHUTDOWN The remote socket has closed the connection, and there

is no more data to be received (TCP socket only)

EINVAL One of the parameters is invalid, or the MSG_OOB flag
is set and, either the SO_OOBINLINE option is set, or
there is no out of band data to read or coming from the

peer

ENOTCONN Socket is not connected.

Document (Version 1.61) 5/19/2011 477

Function Specifications

recvfrom

Syntax

#include <ctools.h>

int recvfrom(

int socketDescriptor,

char * bufferPtr,

int bufferlength,

int flags,

struct sockaddr * fromPtr,
int * fromLengthPtr);

Description

recvfrom is used to receive messages from another socket. recvfrom may be
used to receive data on a socket whether it is in a connected state or not but not
on a TCP socket. socketDescriptor is a socket created with socket. If fromPtr is
not a NULL pointer, the source address of the message is filled in.
fromLengthPtr is a value-result parameter, initialized to the size of the buffer
associated with fromPtr, and modified on return to indicate the actual size of the
address stored there. The length of the message is returned. If a message is too
long to fit in the supplied buffer, excess bytes may be discarded depending on
the type of socket the message is received from (see socket). If no messages are
available at the socket, the receive call waits for a message to arrive, unless the
socket is non-blocking, or the MSG_DONTWAIT flag is set in the flags
parameter, in which case -1 is returned with socket error being set to
EWOULDBLOCK.

select may be used to determine when more data arrives, or/and when out-
ofband data arrives.

Parameters

socketDescriptor The socket descriptor to receive data from.
bufferPtr The buffer to put the received data into
bufferLength The length of the buffer area that bufferPtr points to
flags See Below

fromPtr The socket the data is (or to be) received from

fromLengthPtr The length of the data area the fromPtr points to then upon
return the actual length of the from data

The flags parameter is formed by ORing one or more of the following:
MSG_DONTWAIT Don’t wait for data, but rather return immediately

MSG_PEEK “Peek” at the data present on the socket; the data is returned,
but not consumed, so that a subsequent receive operation will see the same
data.

Document (Version 1.61) 5/19/2011 478

Function Specifications

Returns
>0

0

-1

recvfrom will fail if:

EBADF
EINVAL
EMSGSIZE

EPROTOTYPE

ENOBUFS

EWOULDBLOCK

Number of bytes actually received from the socket.
EOF

An error occurred

The socket descriptor is invalid.
One of the parameters is invalid.

The socket requires that message be received
atomically, and bufferLength was too small.

TCP protocol requires usage of recv, not
recvfrom.

There was insufficient user memory available to comp
lete the operation.

The socket is marked as non-blocking and no data is
available to be read.

Document (Version 1.61) 5/19/2011

479

Function Specifications

registerBulkDevOperation

Register bulk device operation

Syntax

#include <ctools.h>
BOOLEAN registerBulkDevOperation (char* extDriveName) ;

Description

registerBulkDevOperation function registers that the removable bulk memory
device is about to be used for an operation. Registration is necessary prior to
using the device in case the device is un-mounted before the operation
completes. This provides that internal resources used for the bulk device are
correctly released. The unregisterBulkDevOperation should be called after the
operation is completed..

Parameters

extDriveName The mounted bulk device drive name, typically “/bd0”.

Returns

TRUE Registration was successful;
FALSE The drive name was invalid.
Notes

The registerBulkDevOperation and unregisterBulkDevOperation should only be
used with a dynamically mounted bulk device, such as a USB memory stick. The
unregisterBulkDevOperation needs to be called with the same device drive name
as the registerBulkDevOperation.

See Also

unregisterBulkDevOperation

Example

#include <ctools.h>

int main (void)
{
if (registerBulkDevOperation (“/bd0”) == FALSE)
{
printf ("registerBulkDevOperation /bd0 failed.\r\n");
}

Copy (V/d0/logs/logl”, “/bd0/logs/logl”);

if (unregisterBulkDevOperation (“/bd0”) == FALSE)
{

Document (Version 1.61) 5/19/2011 480

Function Specifications

printf ("unregisterBulkDevOperation /bd0
failed.\r\n");
}
}

Document (Version 1.61) 5/19/2011 481

Function Specifications

release_processor

Release Processor to other Tasks

Syntax

#include <ctools.h>

void release processor (void);
Description

The release_processor function releases control of the CPU to other tasks. Other
tasks of the same priority will run. Tasks of the same priority run in a round-robin
fashion using a time slicing mechanism. release_processor puts the task
explicitely at the end of the round-robin-queue.

Notes

Calling release_processor in all idle loops is not necessary anymore. In contrary,
it reduces the fair share of CPU time because the CPU is given up before the
end of the time slice. The function release_processor still makes sense if the
calling task does not have anything to do for the moment.

Release all resources in use by a task before releasing the processor.

Refer to the Real Time Operating System section for more information on tasks
and task scheduling.

See Also

request_resource

Document (Version 1.61) 5/19/2011 482

Function Specifications

release_resource

Release Control of a Resource

Syntax

#include <ctools.h>
void release resource (UINT32 resource);

Description

The release_resource function releases control of the resource specified by
resource.

If other tasks are waiting for the resource, the highest priority of these tasks, is
given the resource and is made ready to execute. If no tasks are waiting the
resource is made available, and the current task continues to run.

Notes

Refer to the Real Time Operating System section for more information on
resources.

See Also

request_resource

Example

See the Example for the request_resource function.

Document (Version 1.61) 5/19/2011 483

Function Specifications

removeModbusHandler

Removes a User Defined Modbus Handler

Syntax

#include <ctools.h>
BOOLEAN removeModbusHandler (
UINT16 (* handler) (UCHAR *, UINT1o6,
UCHAR *, UINT1l6 *)
);

Description

The removeModbusHandler function allows user-defined extensions to standard
Modbus protocol to be removed. This function specifies the previously installed
function that is to be removed.

This function returns TRUE if the specified handler was removed, and FALSE if
the specified handler is not present.

Notes

This function is used to remove a user-defined extension to the standard Modbus
protocol.

See Also

installModbusHandler

Document (Version 1.61) 5/19/2011 484

Function Specifications

report_error
Set Task Error Code

Syntax

#include <ctools.h>

void report error (UINT32 error);

Description

The report_error functions sets the error code for the current task to error. An
error code is maintained for each executing task.

Notes

This function is used in sharable 1/O routines to return error codes to the task
using the routine.

Some functions supplied with the Microtec C compiler report errors using the
global variable errno. The error code in this variable may be written over by
another task before it can be used.

Document (Version 1.61) 5/19/2011 485

Function Specifications

request_resource

Obtain Control of a Resource

Syntax

#include <ctools.h>
void request resource (UINT32 resource);

Description

The request_resource function obtains control of the resource specified by
resource. If the resource is in use, the task is blocked until it is available.

Notes

Use the request_resource function to control access to non-sharable resources.
Refer to the Real Time Operating System section for more information on
resources.

See Also

release_resource

Example

This code fragment obtains the dynamic memory resource, allocates some
memory, and releases the resource.

#include <ctools.h>

void task (void)

{
unsigned *ptr;
/* ... code here */
request_resource(DYNAMIC_MEMORY);
ptr = (unsigned *)malloc((size t)100);
release resource (DYNAMIC MEMORY) ;

/* ... more code here */

Document (Version 1.61) 5/19/2011 486

Function Specifications

resetAllABSlaves

Erase All DF1 Slave Responses

Syntax

#include <ctools.h>

UINT16 resetAllABSlaves (FILE *stream) ;
Description

The resetAllABSlaves function is used to send a protocol message to all slaves
communicating on the specified port to erase all responses not yet polled. stream
specifies the serial port.

This function applies to the DF1 Half Duplex protocols only. The function returns
FALSE if the protocol currently installed on the specified serial port is hot a DF1
Half Duplex protocol, otherwise it returns TRUE.

Notes

The purpose of this command is to re-synch slaves with the master if the master
has lost track of the order of responses to poll. This situation may exist if the
master has been power cycled, for Example.

See the Example in the Example Programs chapter under the section Master
Message Example Using DF1 Protocol. The resetAllABSIlaves function should
not normally be needed if polling is done using the sample polling function
"poll_for_response” shown in this example.

See Also

pollABSlave

Example

This program segment will cause all slaves communicating on the com2 serial
port to erase all pending responses.

#include <ctools.h>

resetAll1ABSlaves (com2) ;

Document (Version 1.61) 5/19/2011 487

Function Specifications

resetClockAlarm

Acknowledge and Reset Real Time Clock Alarm

Syntax

#include <ctools.h>

void resetClockAlarm(void);
Description

Real time clock alarms occur once after being set. The alarm setting remains in
the real time clock. The alarm needs to be acknowledged before it can occur
again.

The resetClockAlarm function acknowledges the last real time clock alarm and
re-enables the alarm.

Notes

This function should be called after a real time clock alarm occurs.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

See the Example for the installClockHandler function.

Document (Version 1.61) 5/19/2011 488

Function Specifications

route
Redirect Standard I/O Streams

Syntax

#include <ctools.h>

void route (UCHAR logical, UCHAR hardware);
Description

The route function redirects the 1/0 streams associated with stdout, stdin, and
stderr. These streams are routed to the com1 serial port by default. logical
specifies the stream to redirect. hardware specifies the hardware device which
will output the data. It may be one of 0 = com1, 1 = com2, or 2 = com3.

Notes

This function has a global effect, so all tasks need to agree on the routing.

Output streams need to be redirected to a device that supports output. Input
streams need to be redirected to a device that supports input.

The use of this function is strongly discouraged since tasks beyond the control of
the C Application may make use of the streams stdout, stdin, and stderr. This
may result in data being unexpectedly added or removed from these streams.
Example

This program segment will redirect all input, output and errors to the com2 serial
port.

#include <ctools.h>

route(STD_ERR, 1); /*send errors to com2 */
route(STD_OUT, 1); /* send output to com2 */
route(STD_IN, 1); /* get input from com2 */

rresvport

Syntax
#include <ctools.h>
int rresvport

(

int * portToReservePtr

Document (Version 1.61) 5/19/2011 489

Function Specifications

Description

rresvport is used to create a TCP socket and bind a reserved port to the socket
starting with the port to reserve given by the user. The portToReservePtr
parameter is a value result parameter. The integer pointed to by
portToReservePtr is the first port number that the function attempts to bind to.
The caller typically initializes the starting port number to IPPORT_RESERVED -
1. IPPORT_RESERVED is defined as 1024.) If the bind fails because that port is
already used, then rresvport decrements the port number and tries again. If it
finally reaches IPPORT_RESERVEDSTART (defined as 600) and finds it already
in use, it returns —1 and set the socket error to EAGAIN. If this function
successfully binds to a reserved port number, it returns the socket descriptor to
the user and stores the reserved port that the socket is bound to in the integer
cell pointed to by portToReservePtr.

Parameters

portToReservePtr Pointer to the port number to reserve, and to the port
number reserved on success.

Returns

>=0 Valid socket descriptor

-1 An error occurred.

If an error occurred, the socket error can be retrieved by calling
getErrorCode(socketDescriptor).

rresvport will fail if:

EAGAIN The TCP/IP stack could not find any port number
available between IPPORT_RESERVEDSTART and the
port number to reserve.

EINVAL Bad parameter; pointer is null or port number to reserve
is less than IPPORT_RESERVEDSTART (600).

Document (Version 1.61) 5/19/2011 490

Function Specifications

runBackgroundlO
Run Background I/O Task

Syntax

#include <ctools.h>

void runBackgroundIO(BOOLEAN state);
Description

The runBackgroundIO function is used to start or stop the Background 1/O task.
This task provides dialup support and controls the LED Power pushbutton.

Calling the function with the argument state set to FALSE stops the Background
I/0 task. Calling the function with state set to TRUE starts the task.

This function should only be needed in the context of the startup function
appstart.

Document (Version 1.61) 5/19/2011 491

Function Specifications

runlOSystem
Run I/O System

Syntax

#include <ctools.h>
void runIOSystem(BOOLEAN state);

Description

The runlOSystem function is used to start or stop the /0 System tasks. The I/O
System needs to be running to access I/O modules through the functions in the
ioRead and ioWrite group.

Calling the function with the argument state set to FALSE stops the 1/0O System.
Calling the function with state set to TRUE starts the I/O System.

This function should only be needed in the context of the startup function
appstart.

Document (Version 1.61) 5/19/2011 492

Function Specifications

runLed
Control Run LED State

Syntax

#include <ctools.h>

void runLed (UINT16 state);
Description

The runLed function sets the run light LED to the specified state. state may be
one of the following values.

LED_ON turn on run LED

LED_OFF turn off run LED

The run LED remains in the specified state until changed, or until the controller is
reset.

Notes

The ladder logic interpreter controls the state of the RUN LED. If a ladder logic
program is loaded and running in the controller the interpreter sets the RUN LED
to ON. In this situation if the C application turns the RUN LED to OFF a conflict
occurs and the RUN LED will blink OFF and ON.

Example

#include <ctools.h>

int main (void)

{
runLed (LED ON) ; /* program is running */
/* ... the rest of the code */

Document (Version 1.61) 5/19/2011 493

Function Specifications

runMasterlpStartTask
Run TCP/IP Master Message Support Task

Syntax

#include <ctools.h>

void runMasterIpStartTask(BOOLEAN state);
Description

The runMasterlpStartTask function is used to start or stop the TCP/IP master
message support task. This task needs to be running to allow master messaging
over a TCP/IP network using the functions in the mTcpMaster group.

Calling the function with the argument state set to FALSE stops the task. Calling
the function with state set to TRUE starts the task.

This function should only be needed in the context of the startup function
appstart.
See Also

mTcpMasterMessage

Document (Version 1.61) 5/19/2011 494

Function Specifications

runTarget
Start the Run-Time Engine

Syntax

#include <ctools.h>
void runTarget (BOOLEAN state);

Description

The runTarget function is used to start or stop the run-time engine task. For
Telepace firmware, this is the Ladder Logic run-time engine. For IEC 61131-1
firmware this is the IEC 61131-1 IEC 1131 run-time engine.

Calling the function with the argument state set to FALSE stops the run-time
engine task. Calling the function with state set to TRUE starts the task.

This function should only be needed in the context of the startup function
appstart.

Document (Version 1.61) 5/19/2011 495

Function Specifications

select

Syntax

#include <ctools.h>

int select

(

int numberSockets,

fd set * readSocketsPtr,

fd set * writeSocketsPtr,

fd set * exceptionSocketsPtr,
struct timeval * timeOutPtr
)7

Description

select examines the socket descriptor sets whose addresses are passed in
readSocketsPtr, writeSocketsPtr, and exceptionSocketsPtr to see if any of their
socket descriptors are ready for reading, are ready for writing, or have an
exceptional condition pending, respectively. Out-of-band data is the only
exceptional condition. The humberSockets argument specifies the number of
socket descriptors to be tested. Its value is the maximum socket descriptor to be
tested, plus one. The socket descriptors from 0 to numberSockets -1 in the
socket descriptor sets are examined. On return, select replaces the given socket
descriptor sets with subsets consisting of those socket descriptors that are ready
for the requested operation. The return value from the call to select is the number
of ready socket descriptors. The socket descriptor sets are stored as bit fields in
arrays of integers.

The following macros are provided for manipulating such file descriptor sets:
FD_ZERO(&fdset); Initializes a socket descriptor set (fdset) to the null set.
FD_SET(fd, &fdset); Includes a particular socket descriptor fd in fdset.
FD_CLR(fd, &fdset); Removes fd from fdset.

FD_ISSET(fd, &fdset); Is non-zero if fd is a member of fdset, zero otherwise.

The term “fd” is used for BSD compatibility since select is used on both file
systems and sockets under BSD Unix.

Parameters

numberSockets Biggest socket descriptor to be tested, plus one.

readSocketsPtr The pointer to a mask of sockets to check for a read
condition.

writeSocketsPtr The pointer to a mask of sockets to check for a write
condition.

exceptionSocketsPtr The pointer to a mask of sockets to check for an
exception condition: Out of Band data.

timeOutPtr The pointer to a structure containing the length of time to
wait for an event before exiting.

Document (Version 1.61) 5/19/2011 496

Function Specifications

Returns

>0 Number of sockets that are ready
0 Time limit exceeded

-1 An error occurred

If an error occurred, the socket error can be retrieved by calling
getErrorCode(socketDescriptor).

select will fail if:
EBADF One of the socket descriptors is bad.

EINVAL A component of the pointed-to time limit is outside the
acceptable range: tv_sec needs to be between 0 and
1078, inclusive. tv_usec needs to be greater than or
equal to 0, and less than 1076.

Document (Version 1.61) 5/19/2011 497

Function Specifications

send

Syntax

#include <ctools.h>
int send

(

int socketDescriptor,
char * bufferPtr,

int bufferlLength,

int flags

)

Description

send is used to transmit a message to another transport end-point. send may be
used only when the socket is in a connected state. socketDescriptor is a socket
created with socket.

If the message is too long to pass atomically through the underlying protocol (non
TCP protocol), then the error EMSGSIZE is returned and the message is not
transmitted.

A return value of -1 indicates locally detected errors only. A positive return value
does not implicitly mean the message was delivered, but rather that it was sent.

Blocking socket send: if the socket does not have enough buffer space available
to hold the message being sent, send blocks.

Non blocking stream (TCP) socket send: if the socket does not have enough
buffer space available to hold the message being sent, the send call does not
block. It can send as much data from the message as can fit in the TCP buffer
and returns the length of the data sent. If none of the message data fits, then —1
is returned with socket error being set to EWOULDBLOCK.

Non blocking datagram socket send: if the socket does not have enough buffer
space available to hold the message being sent, no data is being sent and -1 is
returned with socket error being set to EWOULDBLOCK.

The select call may be used to determine when it is possible to send more data.
Sending Out-of-Band Data:

For Example, if you have remote login application, and you want to interrupt with
a "“C keystroke, at the socket level you want to be able to send the ~C flagged as
special data (also called out-of-band data). You also want the TCP protocol to let
the peer (or remote) TCP know as soon as possible that a special character is
coming, and you want the peer (or remote) TCP to notify the peer (or remote)
application as soon as possible. At the TCP level, this mechanism is called TCP
urgent data. At the socket level, the mechanism is called out-of-band data. Out-
of-band data generated by the socket layer, is implemented at the TCP layer with
the urgent data mechanism. The user application can send one or several out-of-
band data bytes. With TCP you cannot send the out-of-band data ahead of the
data that has already been buffered in the TCP send buffer, but you can let the
other side know (with the urgent flag, i.e the term urgent data) that out-of-band

Document (Version 1.61) 5/19/2011 498

Function Specifications

data is coming, and you can let the peer TCP know the offset of the current data
to the last byte of out-of-band data. So with TCP, the out-of-band data byte(s) are
not sent ahead of the data stream, but the TCP protocol can notify the remote
TCP ahead of time that some out-of-band data byte(s) exist. What TCP does, is
mark the byte stream where urgent data ends, and set the Urgent flag bit in the
TCP header flag field, as long as it is sending data before ,or up to, the last byte
of out-of-band data.

In your application, you can send out-of-band data, by calling the send function
with the MSG_OOB flag. All the bytes of data sent that way (using send with the
MSG_OOB flag) are out-of-band data bytes. If you call send several times with
out-of-band data, TCP will always keep track of where the last out-of-band byte
of data is in the byte data stream, and flag this byte as the last byte of urgent
data. To receive out-of-band data, please see the recv section of this manual.

Parameters

socketDescriptor The socket descriptor to use to send data
bufferPtr The buffer to send

bufferLength The length of the buffer to send

flags See below

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT Don’t wait for data send to complete, but rather return
immediately
MSG_0OOB Send “out-of-band” data on sockets that support this

notion. The underlying protocol needs to also support
“out-of-band” data. Only SOCK_STREAM sockets
created in the AF_INET address family support out-of-
band data

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the
duration of the operation. Only diagnostic or routing
programs use it

Returns

>=0 Number of bytes actually sent on the socket

-1 An error occurred.

send will falil if:

EBADF The socket descriptor is invalid.

ENOBUFS There was insufficient user memory available to
complete the operation.

EHOSTUNREACH Non-TCP socket only. No route to destination host.

EMSGSIZE The socket requires that message to be sent atomically,
and the message was too long.

Document (Version 1.61) 5/19/2011 499

Function Specifications

EWOULDBLOCK

ENOTCONN
ESHUTDOWN

The socket is marked as non-blocking and the send
operation would block.

Socket is not connected.

User has issued a write shutdown (TCP socket only).

Document (Version 1.61) 5/19/2011

500

Function Specifications

send_message

Send a Message to a Task

Syntax

#include <ctools.h>
void send message (envelope *penv);

Description

The send_message function sends a message to a task. The envelope specified
by penv contains the message destination, type and data.

The envelope is placed in the destination task's message queue. If the
destination task is waiting for a message it is made ready to execute.

The current task is not blocked by the send_message function.

Notes

Envelopes are obtained from the operating system with the allocate_envelope
function.

See Also

receive_message

Example

This program creates a task to display a message and sends a message to it.

#include <ctools.h>

void showIt (void)

{

envelope *msg;

while (TRUE)

{
msg = receive message();
fprintf (coml, "Message data %1d\r\n", msg->data);
deallocate envelope (msg) ;

}

int main (void)

{
envelope *msg; /* message pointer */
unsigned tid; /* task ID */

tid = create_ task(showIt, 100, applicationGroup, 4);
msg = allocate envelope();

msg->destination = tid;

msg->type = MSG DATA;

msg->data = 1002;

Document (Version 1.61) 5/19/2011 501

Function Specifications

send message (msg) ;

/* wait for ever so that main and other
APPLICATION tasks won’t end */
while (TRUE)
{
/* Allow other tasks to execute */
release processor();

Document (Version 1.61) 5/19/2011 502

Function Specifications

sendto

Syntax

#include <trsocket.h>
int sendto
(
int socketDescriptor,
char * bufferPtr,
int bufferlength,
int flags,
const struct sockaddr * toPtr,
int tolLength
)

Description

sendto is used to transmit a message to another transport end-point. sendto may
be used at any time (either in a connected or unconnected state), but not for a
TCP socket. socketDescriptor is a socket created with socket. The address of the
target is given by to with toLength specifying its size. If the message is too long
to pass atomically through the underlying protocol, then —1 is returned with the
socket error being set to EMSGSIZE, and the message is not transmitted.

A return value of -1 indicates locally detected errors only. A positive return value
does not implicitly mean the message was delivered, but rather that it was sent.

If the socket does not have enough buffer space available to hold the message
being sent, and is in blocking mode, sendto blocks. If it is in non-blocking mode
or the MSG_DONTWAIT flag has been set in the flags parameter, —1 is returned
with the socket error being set to EWOULDBLOCK. The select call may be used
to determine when it is possible to send more data.

Parameters

socketDescriptor The socket descriptor to use to send data.
bufferPtr The buffer to send.

bufferLength The length of the buffer to send.

toPtr The address to send the data to.

toLength The length of the to area pointed to by toPtr.
flags See below

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT Don’t wait for data send to complete, but rather return
immediately.

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the
duration of the operation. Only diagnostic or routing
programs use it.

Document (Version 1.61) 5/19/2011 503

Function Specifications

Returns

Value Meaning

>=0 Number of bytes actually sent on the socket

-1 An error occurred

sendto will fail if:

EBADF The socket descriptor is invalid.

ENOBUFS There was insufficient user memory available to
complete the operation.

EHOSTUNREACH No route to destination host.

EMSGSIZE The socket requires that message be sent atomically,
and the message was too long.

EPROTOTYPE TCP protocol requires usage of send not sendto.

EWOULDBLOCK The socket is marked as non-blocking and the send
operation would block.

Document (Version 1.61) 5/19/2011 504

Function Specifications

serialModbusMaster

Send Modbus Command

Syntax

#include <ctools.h>
BOOLEAN serialModbusMaster (MASTER MESSAGE * message,
MODBUS SESSION * session);

Description

The serialModbusMaster function sends a command on a serial port using a
Modbus protocol. The Modbus protocol task waits for the response from the
slave station. The current task continues execution.

e message points to a MASTER_MESSAGE structure defining the message
parameters and serial port to use. MASTER_MESSAGE is described in the
Structures and Types section.

e session points to a MODBUS_SESSION structure. This structure is used by
the Modbus protocol task. Declare the MODBUS_SESSION structure as a
static modular or global variable. A local variable or dynamically allocated
variable may not be used because a late command response received after
the variable is freed will write data over the freed variable space.

The serialModbusMaster function returns TRUE if a valid message has been
queued for transmission. The function returns FALSE if the message definition is
invalid or the transmission queue is full. Refer to the session->masterCmdStatus
field for an error code. Error codes are described in the Structures and Types
section for the enum MODBUS_CMD_STATUS.

The calling task monitors the status of the command sent using the session-
>masterCmdStatus field. The masterCmdStatus field is set to MM_SENT if a
master message is sent. It will be set to MM_RECEIVED when the response to
the message is received.

The command status will be set to MM_RSP_TIMEOUT if the response is not
received within the specified timeout. The application needs to wait for a status of
MM_RECEIVED or MM_RSP_TIMEOUT before sending the next master
message.

This function may be used at the same time on the same serial port as a
Telepace MSTR element or IEC 61131-1 master function block.

Notes

Refer to the communication protocol manual for more information.

To optimize performance, minimize the length of messages on com3. Examples
of recommended uses for com3 are for local operator display terminals, and for
programming and diagnostics using the IEC 61131-1 program.

The IO_SYSTEM resource needs to be requested before calling this function.

Document (Version 1.61) 5/19/2011 505

Function Specifications

See Also

get_protocol_status, clear_protocol_status, master_message

Example

See the Example in the Example Programs chapter under the section Master
Message Example Using serialModbusMaster.

setABConfiguration

Document (Version 1.61) 5/19/2011 506

Function Specifications

Set DF1 Protocol Configuration

Syntax

#include <ctools.h>
UINT16 setABConfiguration (FILE *stream, struct
ABConfiguration *ABConfig);

Description

The setABConfiguration function sets DF1 protocol configuration parameters.
stream specifies the serial port. ABConfig references a DF1protocol configuration
structure. Refer to the Description of the ABConfiguration structure for an
explanation of the fields.

The setABConfiguration function returns TRUE if the settings were changed. It
returns FALSE if stream does not point to a valid serial port.
See Also

getABConfiguration

Example

This code fragment changes the maximum protected address to 7000. This is the
maximum address accessible by protected DF1 commands received on com2.

#include <ctools.h>
struct ABConfiguration ABConfig;

getABConfiguration (com2, &ABConfig);
ABConfig.max protected address = 7000;
setABConfiguration (com2, &ABConfig);

Document (Version 1.61) 5/19/2011 507

Function Specifications

setBreakCondition

Set a break condition on a serial port.

Syntax

#include <ctools.h>

void setBreakCondition (
FILE *stream

)

Parameters

stream is a pointer to a serial port; valid serial ports are com1, com2, com3, and
com4.

Description

The setBreakCondition function activates the break condition on the
communication port specified by stream. The break condition will persist until it is
cleared by calling clearBreakCondition.

Notes

If the serial port is transmitting characters when this function is called, the
transmission may not complete correctly.

No subsequent character transmissions will be possible until after
clearBreakCondition has been called.

This function is only relevant for RS232 ports. The function will have no effect on
other port types.
See Also

clearBreakCondition

Document (Version 1.61) 5/19/2011 508

Function Specifications

setclock
Set Real Time Clock

Syntax

#include <ctools.h>

void setclock (TIME *now);
Description

The setclock function sets the real time clock. now references a TIME structure
containing the time and date to be set.

Refer to the Structures and Types section for a Description of the fields. All fields
of the clock structure needs to be set with valid values for the clock to operate

properly.
Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

getclock

Example

This function switches the clock to daylight savings time.

#include <ctools.h>

void daylight (void)
{
TIME now;

request resource (IO SYSTEM) ;
getclock (&now) ;
now.hour = now.hour + 1 % 24;
setclock (&now) ;
request_resource(IO_SYSTEM);

Document (Version 1.61) 5/19/2011 509

Function Specifications

setClockAlarm
Set the Real Time Clock Alarm

Syntax

#include <ctools.h>

UINT16 setClockAlarm(ALARM SETTING alarm);
Description

The setClockAlarm function configures the real time clock to alarm at the
specified alarm setting. The ALARM_SETTING structure alarm specifies the time
of the alarm. Refer to the ctools.h section for a Description of the fields in the
structure.

The function returns TRUE if the alarm can be configured, and FALSE if there is
an error in the alarm setting. No change is made to the alarm settings if there is
an error.

Notes

An alarm will occur only once, but remains set until disabled. Use the
resetClockAlarm function to acknowledge an alarm that has occurred and re-
enable the alarm for the same time.

Set the alarm type to AT_NONE to disable an alarm. It is not necessary to
specify the hour, minute and second when disabling the alarm.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

getClockAlarm

Document (Version 1.61) 5/19/2011 510

Function Specifications

setdbase
Write Value to I/O Database

Syntax

#include <ctools.h>

void setdbase (UINT16 type, UINT1l6 address, INT16 value);
Description

The setdbase function writes value to the I/O database. type specifies the
method of addressing the database. address specifies the location in the
database. The table below shows the valid address types and ranges

Type Address Ranges Register
Size
MODBUS | 00001 to NUMCOIL 1 bit
10001 to 10000 + NUMSTATUS 1 bit
30001 to 30000 + NUMINPUT 16 bit
40001 to 40000 + NUMHOLDING 16 bit
LINEAR 0 to NUMLINEAR-1 16 bit
Notes

If the specified register is currently forced, the I/O database remains unchanged.

When writing to LINEAR digital addresses, value is a bit mask which writes data
to 16 1-bit registers at once. If any of these 1-bit registers is currently forced, only
the forced registers remain unchanged.

The I/0O database is not modified when the controller is reset. It is a permanent
storage area, which is maintained during power outages.

Refer to the Functions Overview section for more information.

The IO_SYSTEM resource needs to be requested before calling this function.
Example

#include <ctools.h>

int main (void)

{ request_resource(IO_SYSTEM);

setdbase (MODBUS, 40001, 102);

/* Turn ON the first 16 coils */
setdbase (LINEAR, START COIL, 255);

/* Write to a 16 bit register */
setdbase (LINEAR, 3020, 240);

Document (Version 1.61) 5/19/2011 511

Function Specifications

/* Write to the 12th holding register */
setdbase (LINEAR, START HOLDING, 330);

/* Write to the 12th holding register */
setdbase (LINEAR, START HOLDING, 330);

release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 512

Function Specifications

Setdbase Handler Function
User Defined Setdbase Handler Function

The setdbase handler function is a user-defined function that handles writing to
Modbus addresses not assigned in the IEC 61131-1 Dictionary. The function can
have any name; setdbaseHandler is used in the Description below.

Syntax

#include <ctools.h>

BOOLEAN setdbaseHandler (
UINT16 address,
INT16 value
)

Description

This function is called by the setdbase function when one of the following
conditions apply:

e Thereis no IEC 61131-1 application downloaded, or

e Thereis no IEC 61131-1 variable assigned to the specified Modbus address.
The function has two parameters:

e The address parameter is the Modbus address to be written.

e The value parameter is the integer value to write to the Modbus address.

If the address is to be handled, the handler function needs to return TRUE and
write value to the current value at the Modbus address.

If the address is not to be handled, the function needs to return FALSE and do
nothing.
Notes

The IO_SYSTEM resource must be requested before calling setdbase, which
calls this handler. Requesting the I0_SYSTEM resource provides that only one
task may call the handler at a time. Therefore, the function does not have to be
re-entrant.

An array may be defined to store the current values for all Modbus addresses
handled by this function. See the section Data Storage if a non-initialized data
array is required.

See Also

installSetdbaseHandler

Document (Version 1.61) 5/19/2011 513

Function Specifications

setDTR
Control RS232 Port DTR Signal

Syntax

#include <ctools.h>

void setDTR(FILE *stream, UINT16 state);
Description

The setDTR function sets the status of the DTR signal line for the communication
port specified by port. When state is SIGNAL_ON the DTR line is asserted.
When state is SIGNAL_OFF the DTR line is de-asserted.

Notes

The DTR line follows the normal RS232 voltage levels for asserted and de-
asserted states.

This function is only useful on RS232 ports. The function has no effect if the
serial port is not an RS232 port.

Document (Version 1.61) 5/19/2011 514

Function Specifications

setFtpServerState

Sets the state of the FTP server.

Syntax

#include <ctools.h>
BOOLEAN setFtpServerState (
UINT32 state

)

Parameters

state specifies the desired operational state of the FTP server. The following
values for state are defined:

e 0 =FTP server disabled
e 1 =FTP server enabled, anonymous login permitted

e 2 =FTP server enabled, username and password required

Description

The setFtpServerState function sets the state of the FTP server. TRUE is
returned if the specified state was set. FALSE is returned if the specified state
could not be set.

Notes

This function is only relevant for Ethernet enabled controllers.

See Also

getFtpServerState

Document (Version 1.61) 5/19/2011 515

Function Specifications

setForceFlag

Set Force Flag State for a Register (Telepace firmware only)

Syntax

#include <ctools.h>
BOOLEAN setForceFlag (UINT16 type, UINT16 address, UINT16 value);

Description

The setForceFlag function sets the force flag(s) for the specified database
register(s) to value. value is either 1 or 0, or a 16-bit mask for LINEAR digital
addresses. The valid range for address is determined by the database
addressing type.

If the address or addressing type is not valid, force flags are left unchanged and
FALSE is returned; otherwise TRUE is returned. The table below shows the valid
address types and ranges.

Type Address Ranges Register
Size
MODBUS | 00001 to NUMCOIL 1 bit
10001 to 10000 + NUMSTATUS 1 bit
30001 to 30000 + NUMINPUT 16 bit
40001 to 40000 + NUMHOLDING 16 bit
LINEAR 0 to NUMLINEAR-1 16 bit
Notes

When a register’s force flag is set, the value of the I/0O database at that register is
forced to its current value. This register’s value can only be modified by using the
overrideDbase function or the Edit/Force Register dialog. While forced this value
cannot be modified by the setdbase function, protocols, or Ladder Logic
programs.

Force Flags are not modified when the controller is reset. Force Flags are in a
permanent storage area, which is maintained during power outages.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also
clearRegAssignment
getForceFlag
getOutputsinStopMode

overrideDbase

Document (Version 1.61) 5/19/2011 516

Function Specifications

Example

This program clears the force flag for register 40001 and sets the force flags for
the 16 registers at linear address 302 (i.e. registers 10737 to 10752).

#include <ctools.h>

int main (void)

{
request resource (IO SYSTEM) ;

setForceFlag (MODBUS, 40001, O0)
setForceFlag (LINEAR, 302, 255)

’
’

release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 517

Function Specifications

setlOErrorindication
Set I/O Module Error Indication

Syntax

#include <ctools.h>
void setIOErrorIndication (BOOLEAN state);

Description

The setlOErrorindication function sets the 1/O module error indication to the
specified state. If set to TRUE, the I/O module communication status is reported
in the controller status register and Status LED. If set to FALSE, the 1/0O module
communication status is not reported.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request resource (FLASH MEMORY) ;
flashSettingsSave(CS_PERMANENT);
release resource (FLASH MEMORY) ;

Notes

Refer to the 5203/4 System Manual, SCADAPack 32 System Manual, or
SCADAPack 350 System Manual for further information on the Status LED and
Status Output.

See Also

getlOErrorindication

Document (Version 1.61) 5/19/2011 518

Function Specifications

setOutputsinStopMode

Set Outputs In Stop Mode (Telepace firmware only)

Syntax

#include <ctools.h>

void setOutputsInStopMode (
BOOLEAN holdDoutsOnStop,
BOOLEAN holdAoutsOnStop
)

Description

The setOutputsinStopMode function sets the holdDoutsOnStop and
holdAoutsOnStop control flags to the specified state.

If holdDoutsOnStop is set to TRUE, then digital outputs are held at their last state
when the Ladder Logic program is stopped. If holdDoutsOnStop is FALSE, then
digital outputs are turned OFF when the Ladder Logic program is stopped.

If holdAoutsOnStop is TRUE, then analog outputs are held at their last value
when the Ladder Logic program is stopped. If holdAoutsOnStop is FALSE, then
analog outputs go to zero when the Ladder Logic program is stopped.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request resource (FLASH MEMORY) ;
flashSettingsSave(CS_PERMANENT);
release resource (FLASH MEMORY) ;

See Also

getOutputsinStopMode

Example

This program changes the output conditions to hold analog outputs at their last
value when the Ladder Logic program is stopped.

#include <ctools.h>

int main (void)
{
unsigned holdDoutsOnStop;
unsigned holdAoutsOnStop;
getOutputsInStopMode (&holdDoutsOnStop, &holdAoutsOnStop) ;
holdAoutsOnStop = TRUE;
setOutputsInStopMode (holdDoutsOnStop, holdAoutsOnStop);

Document (Version 1.61) 5/19/2011 519

Function Specifications

set_port

Set Serial Port Configuration

Syntax

#include <ctools.h>
void set port(FILE *stream, struct pconfig *settings);

Description

The set_port function sets serial port communication parameters. port needs to
specify one of com1, com2, or com3. settings references a serial port
configuration structure. Refer to the Description of the pconfig structure for an
explanation of the fields.

Notes

If the serial port settings are the same as the current settings, this function has
no effect.

The serial port is reset when settings are changed. All data in the receive and
transmit buffers are discarded.

The IO_SYSTEM resource needs to be requested before calling this function.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request resource (FLASH MEMORY) ;
flashSettingsSave (CS_RUN) ;
release resource (FLASH MEMORY) ;

See Also

get_port

Example

This code fragment changes the baud rate on com2 to 19200 baud.

#include <ctools.h>
struct pconfig settings;

get port(com2, &settings);
settings.baud = BAUD19200;
request_resource(IO_SYSTEM);
set port(com2, &settings);
release resource (IO SYSTEM) ;

This code fragment sets com2 to the same settings as com1.

#include <ctools.h>
struct pconfig settings;

Document (Version 1.61) 5/19/2011 520

Function Specifications

request resource (IO SYSTEM) ;
set port(com2, get port(coml, &settings));
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 521

Function Specifications

setLoginCredentials

Sets login credentials for a service

Syntax

#include <ctools.h>

BOOLEAN setLoginCredentials (
UINT32 service,
UINT32 index,
UCHAR* username,
UCHAR* password

Parameters

service specifies the service for which the credentials are being set.
index specifies the index for the credentials. Indices are service specific.
username specifies the username to grant access to.

password specifies the password that is valid with the username.

Description

The setLoginCredentials function registers a username and password pair for the
specified service.

Valid services are:

0 = FTP. Maximum username and password length is 16 bytes. Only index O is
supported

The valid values of index are service specific. The username and password are
both NULL terminated strings with a service defined maximum length.

True is returned if the credentials were set. False is returned if the service
rejected the credentials, or if the service was unrecognized.
Notes

Duplicate usernames are supported.

See Also

getLoginCredentials, clearLoginCredentials

Document (Version 1.61) 5/19/2011 522

Function Specifications

setPowerMode

Set Current Power Mode

Syntax

#include <ctools.h>
BOOLEAN setPowerMode (UCHAR cpuPower, UCHAR lan, UCHAR usbHost);

Description

The setPowerMode function returns TRUE if the new settings were successfully
applied. The setPowerMode function allows for power savings to be realised by
controlling the power to the LAN port, changing the clock speed, and individually
controlling the host and peripheral USB power. The following table of macros
summarizes the choices available.

Macro Meaning

PM_CPU_FULL The CPU is set to run at full speed
PM_CPU_REDUCED The CPU is set to run at a reduced speed
PM_CPU_SLEEP The CPU is set to sleep mode
PM_LAN_ENABLED The LAN is enabled
PM_LAN_DISABLED The LAN is disabled
PM_USB_HOST_ENABLED The USB host port is enabled
PM_USB_HOST_DISABLED The USB host port is disabled
PM_NO_CHANGE The current value will be used

TRUE is returned if the requested change was made, otherwise FALSE is
returned.

The application program may view the current power mode with the
getPowerMode function.
See Also

getPowerMode, setWakeSource, getWakeSource

Document (Version 1.61) 5/19/2011 523

Function Specifications

setProgramStatus

Set Program Status Flag

Syntax

#include <ctools.h>
void setProgramStatus (FUNCPTR entryPoint, UINT16 status);

Description

The setProgramsStatus function sets the application program status flag. The
status flag is set to NEW_PROGRAM when a cold boot of the controller is
performed, or a program is downloaded to the controller from the program loader.
The parameter entryPoint should always be set to the function main.

Notes

There are three pre-defined values for the flag. However the application program
may make whatever use of the flag it sees fit.

NEW_PROGRAM indicates the program is newly loaded.

PROGRAM_EXECUTED indicates the program has been executed.

PROGRAM_NOT_LOADED indicates that the requested program is not
loaded

See Also

getProgramStatus

Example

See Get Program Status Example.

Document (Version 1.61) 5/19/2011 524

Function Specifications

set_protocol

Set Communication Protocol Configuration

Syntax

#include <ctools.h>

INT16 set protocol (FILE *stream, struct prot settings *settings);
Description

The set_protocol function sets protocol parameters. port needs to specify one of
coml1, com2 or com3. settings references a protocol configuration structure.
Refer to the Description of the prot_settings structure for an explanation of the
fields.

The set_protocol function returns TRUE if the settings were changed. It returns
FALSE if there is an error in the settings or if the protocol does not start.

The IO_SYSTEM resource needs to be requested before calling this function.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request_resource(FLASH_MEMORY);
flashSettingsSave(CS_RUN);
release_resource(FLASH_MEMORY);

Notes

Setting the protocol type to NO_PROTOCOL ends the protocol task and frees
the stack resources allocated to it.

Add a call to modemNatification when writing a custom protocol.

See Also

get_protocol

Example

This code fragment changes the station number of the com2 protocol to 4.

#include <ctools.h>
struct prot settings settings;

get protocol (com2, é&settings);
settings.station = 4;
request_resource(IO_SYSTEM);
set protocol (com2, &settings);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 525

Function Specifications

setProtocolSettings

Set Protocol Extended Addressing Configuration

Syntax

#include <ctools.h>

BOOLEAN setProtocolSettings (
FILE *stream,

PROTOCOL SETTINGS * settings
);

Description

The setProtocolSettings function sets protocol parameters for a serial port. This
function supports extended addressing.

The function has two arguments: port is one of com1, com2, or com3; and
settings, a pointer to a PROTOCOL_SETTINGS structure. Refer to the
Description of the structure for an explanation of the parameters.

The function returns TRUE if the settings were changed. It returns FALSE if the
stream is not valid, or if the protocol does not start.

The IO_SYSTEM resource must be requested before calling this function.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request_resource(FLASH_MEMORY);
flashSettingsSave(CS_RUN);
release_resource(FLASH_MEMORY);

Notes

Setting the protocol type to NO_PROTOCOL ends the protocol task and frees
the stack resources allocated to it.

Add a call to modemNotification when writing a custom protocol.
Extended addressing is available on the Modbus RTU and Modbus ASCII
protocols only. See the TeleBUS Protocols User Manual for details.
Example

This code fragment sets protocol parameters for the com2 serial port.

#include <ctools.h>
PROTOCOL_SETTINGS settings;

settings.type = MODBUS_ RTU;
settings.station = 1234;
settings.priority = 250;
settings.SFMessaging = FALSE;

settings.mode AM extended;

Document (Version 1.61) 5/19/2011 526

Function Specifications

request resource (IO SYSTEM) ;
setProtocolSettings (com2, &settings);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 527

Function Specifications

setProtocolSettingsEx

Sets extended protocol settings for a serial port.

Syntax

#include <ctools.h>

BOOLEAN setProtocolSettingsEx (
FILE *stream,
PROTOCOL SETTINGS EX * pSettings
)

Description

The setProtocolSettingsEx function sets protocol parameters for a serial port.
This function supports extended addressing and Enron Modbus parameters.

The function has two arguments:
e port specifies the serial port. It is one of com1, com2 or com3.

e pSettings is a pointer to a PROTOCOL_SETTINGS_EX structure. Refer to
the description of the structure for an explanation of the parameters.

The function returns TRUE if the settings were changed. It returns FALSE if the
stream is not valid, or if the protocol does not start.

To save these settings with the controller settings in flash memory so that they
are loaded on controller reset, call flashSettingsSave as shown below.

request_resource(FLASH_MEMORY);
flashSettingsSave(CS_RUN);
release_resource(FLASH_MEMORY);

Notes
The IO_SYSTEM resource needs to be requested before calling this function.

Setting the protocol type to NO_PROTOCOL ends the protocol task and frees
the stack resources allocated to it.

Add a call to modemNotification when writing a custom protocol.

Extended addressing and the Enron Modbus station are available on the Modbus
RTU and Modbus ASCII protocols only. See the TeleBUS Protocols User Manual
for detalils.

Example

This code fragment sets protocol parameters for the com2 serial port.

#include <ctools.h>
PROTOCOL SETTINGS EX settings;

settings.type = MODBUS_ RTU;

Document (Version 1.61) 5/19/2011 528

Function Specifications

settings.station = 1;
settings.priority = 250;
settings.SFMessaging = FALSE;
settings.mode = AM standard;

settings.enronkEnabled = TRUE;
settings.enronStation 4;

request resource (IO SYSTEM) ;
setProtocolSettingsEx (com2, &settings);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 529

Function Specifications

setSFTranslation

Write Store and Forward Translation

Syntax

#include <ctools.h>
struct SFTranslationStatus setSFTranslation (UINT16 index,
SF_TRANSLATION * pTranslation);

Description

Instead of using the setSFTranslation function use the setSFTranslationEx
function, which supports translations with a timeout and with authentication.
Otherwise a default timeout of 10 seconds is set for all forwarded commands.

The setSFTranslation function copies the structure pointed to by pTranslation
into the store and forward translation table at the location specified by index.
Valid values for index are 0 to 127. The function checks for invalid translations.
The translation is stored even if invalid.

The SF_TRANSLATION structure is described in the Structures and Types
section.

The function returns a SFTranslationStatus structure. It is described in the
Structures and Types section. The code field of the structure is set to one of the
following. If there is an error, the index field is set to the location of the translation
that is not valid.

Result code Meaning
SF_VALID All translations are valid
SF_NO_TRANSLATION The entry defines re-transmission of the same

message on the same port
SF_PORT_OUT_OF_RANG [One or both of the serial port indexes is not

E valid
SF_STATION_OUT_OF_R | One or both of the stations is not valid
ANGE

SF_ALREADY_DEFINED The translation already exists in the table
SF_INDEX_OUT_OF_RAN [The entry referenced by index does not exist in

GE the table
SF_INVALID_FORWARDIN | The forwarding IP address is invalid.
G IP

Notes

The TeleBUS Protocols User Manual describes the store and forward messaging
mode.

Writing a translation with both stations set to station 65535 can clear a translation
in the table. Station 65535 is not a valid station.

Document (Version 1.61) 5/19/2011 530

Function Specifications

The Modbus protocol type and communication parameters may differ between
serial ports. The store and forward messaging will translate the protocol
messages.

Translations describe the communication path of the master command: e.g. the
slave interface which receives the command and the forwarding interface to
forward the command. The response to the command is automatically returned
to master through the same communication path in reverse.

Additional entries in the Store and Forward Table are not needed to describe the
response path.

The IO_SYSTEM resource needs to be requested before calling this function.

To save the Store and Forward Table with the controller settings in flash memory
so that it is loaded on controller reset, call flashSettingsSave as shown below.

// save Store & Forward table with controller settings
request resource (FLASH MEMORY) ;

flashSettingsSave (CS_RUN) ;

release resource (FLASH MEMORY) ;

Translations may involve any combination of interfaces. The interfaces may be
running a Serial Modbus or Modbus IP protocol.

Slave Interface Forwarding Interface

Serial Modbus Interface: Serial Modbus Interface:

e.g. coml, com2, or com3 e.g. coml, com2, or com3

Modbus IP Interface: Serial Modbus Interface:

e.g. Ethernetl e.g. coml, com2, or com3

Serial Modbus Interface: Modbus IP Network:

e.g. coml, com2, or com3 e.g. Modbus/TCP, Modbus RTU over UDP,
or Modbus ASCII over UDP

Modbus IP Interface: Modbus IP Network:

e.g. Ethernetl e.g. Modbus/TCP, Modbus RTU over UDP,
or Modbus ASCII over UDP

Modbus IP Network as Forwarding Interface

When forwarding to a TCP or UDP network, the protocol type is selected for the
forwardInterface in the SF_TRANSLATION structure. The IP Stack automatically
determines the exact interface (e.g. Ethernetl) to use when it searches the
network for the forwardIPAddress.

Also, when forwarding on a TCP or UDP network, the forwarding destination 1P
address needs to be entered as the forwardIPAddress. The forwardIPAddress is
entered as an IP address string of the format 255.255.255.255. The
forwardIPAddress is needed to know where to connect so that the command can
be forwarded to its final destination.

Document (Version 1.61) 5/19/2011 531

Function Specifications

Modbus IP Network as Slave Interface

Note that there is no field for a slave IP address. This information is irrelevant
because we don’t care about the IP address of the remote master. We care only
that the remote master connects to the specified slavelnterface and sends a
command to be forwarded.

The protocol type is not specified for slavelnterface. All messages in any Modbus
IP protocol received on slavelnterface for slaveStation will be forwarded.

Serial Modbus Interface as Forwarding Interface

The forwardIPAddress field in the SF_ TRANSLATION structure should be set to
zero when the forwardInterface field is a Serial Modbus interface. Set
forwardIPAddress to zero as follows:

SF_TRANSLATION sfTranslation;
sfTranslation. forwardIPAddress.s addr = 0;

See Also

getSFTranslation

Document (Version 1.61) 5/19/2011 532

Function Specifications

setSFTranslationEx

Write Store and Forward Translation method 2

Syntax

#include <ctools.h>
struct SFTranslationStatus setSFTranslationEx (UINT16 index,
SF TRANSLATION EX * pTranslation);

Description

The setSFTranslationEx function copies the structure pointed to by pTranslation
into the store and forward translation table at the location specified by index.
Valid values for index are 0 to 127. The function checks for invalid translations.
The translation is stored even if invalid.

If the userName parameter is non-NULL then the Store and Forward entry will be
set to use authentication, with the user name set to the contents of the array
pointed to by userName and the password set to the contents of the array
pointed to by password. Both userName and password need to point to arrays of
16 characters. User names and passwords shorter than 16 characters should be
padded to 16 characters with spaces. If the userName parameter is NULL then
no authentication information will be stored with the Store and Forward entry.

The SF_TRANSLATION_EX structure supports a timeout and is described in the
Structures and Types section.

The function returns a SFTranslationStatus structure. It is described in the
Structures and Types section. The code field of the structure is set to one of the
following. If there is an error, the index field is set to the location of the translation
that is not valid.

Result code Meaning
SF_VALID All translations are valid
SF_NO_TRANSLATION The entry defines re-transmission of the same

message on the same port

SF_PORT_OUT_OF_RANG [One or both of the interfaces is not valid
E

SF_STATION_OUT_OF_R | One or both of the stations is not valid
ANGE

SF_ALREADY_DEFINED The translation already exists in the table
SF_INDEX_OUT_OF_RAN | The entry referenced by index does not exist in

GE the table
SF_INVALID_FORWARDIN | The forwarding IP address is invalid.
G IP

Notes

The TeleBUS Protocols User Manual describes store and forward messaging
mode.

Document (Version 1.61) 5/19/2011 533

Function Specifications

Writing a translation with both stations set to station 65535 can clear a translation
in the table. Station 65535 is not a valid station.

The Modbus protocol type and communication parameters may differ between
serial ports. The store and forward messaging will translate the protocol
messages.

Translations describe the communication path of the master command: e.g. the
slave interface which receives the command and the forwarding interface to
forward the command. The response to the command is automatically returned
to master through the same communication path in reverse.

Additional entries in the Store and Forward Table are not needed to describe the
response path.

The IO_SYSTEM resource needs to be requested before calling this function.

To save the Store and Forward Table with the controller settings in flash memory
so that it is loaded on controller reset, call flashSettingsSave as shown below.

// save Store & Forward table with controller settings
request resource (FLASH MEMORY) ;

flashSettingsSave (CS_RUN) ;

release resource (FLASH MEMORY) ;

Translations may involve any combination of interfaces. The interfaces may be
running a Serial Modbus or Modbus IP protocol.

Slave Interface Forwarding Interface
Serial Modbus Interface: Serial Modbus Interface:
e.g. coml, com2, or com3 e.g. coml, com2, or com3
Modbus IP Interface: Serial Modbus Interface:
e.g. Ethernetl e.g. coml, com2, or com3
Serial Modbus Interface: Modbus IP Network:

e.g. coml, com2, or com3 e.g. Modbus/TCP, Modbus RTU over UDP,
or Modbus ASCII over UDP

Modbus IP Interface: Modbus IP Network:

e.g. Ethernetl e.g. Modbus/TCP, Modbus RTU over UDP,
or Modbus ASCII over UDP

Modbus IP Network as Forwarding Interface

When forwarding to a TCP or UDP network, the protocol type is selected for the
forwardInterface in the SF_TRANSLATION_EX structure. The IP Stack
automatically determines the exact interface (e.g. Ethernetl) to use when it
searches the network for the forwardIPAddress.

Also, when forwarding on a TCP or UDP network, the forwarding destination IP
address needs to be entered as the forwardIPAddress. The forwardIPAddress is
entered as an IP address string of the format 255.255.255.255. The
forwardIPAddress is needed to know where to connect so that the command can
be forwarded to its final destination.

Document (Version 1.61) 5/19/2011 534

Function Specifications

Modbus IP Network as Slave Interface

There is no field for a slave IP address. This information is irrelevant because we
don’t care about the IP address of the remote master. We care only that the
remote master connects to the specified slavelnterface and sends a command to
be forwarded.

The protocol type is not specified for slavelnterface. All messages in any Modbus
IP protocol received on slavelnterface for slaveStation will be forwarded.

Serial Modbus Interface as Forwarding Interface

The forwardIPAddress field in the SF_ TRANSLATION_EX structure should be
set to zero when the forwardInterface field is a Serial Modbus interface. Set
forwardIPAddress to zero as follows:

SF _TRANSLATION EX sfTranslation;
sfTranslation. forwardIPAddress.s addr = 0;

See Also

getSFTranslationEx, checkSFTranslation, clearSFTranslation

Document (Version 1.61) 5/19/2011 535

Function Specifications

setsockopt

Syntax

#include <ctools.h>

int setsockopt

(

int socketDescriptor,

int protocollevel,

int optionName,

const char * optionValue,
int optionLength

);

Description

setsockopt is used manipulate options associated with a socket. Options may
exist at multiple protocol levels; they are always present at the uppermost
“socket” level. When manipulating socket options, the level at which the option
resides and the name of the option must be specified. To manipulate options at
the “socket” level, protocolLevel is specified as SOL_SOCKET. To manipulate
options at any other level, protocolLevel is the protocol number of the protocol
that controls the option. For Example, to indicate that an option is to be
interpreted by the TCP protocol, protocolLevel is set to the TCP protocol number.
The parameters optionValuePtr and optionlength are used to access option
values for setsockopt. optionName and any specified options are passed un-
interpreted to the appropriate protocol module for interpretation. The include file
<ctools.h> contains definitions for the options described below. Most socket-level
options take an int pointer for optionValuePtr. For setsockopt, the integer value
pointed to by the optionValuePtr parameter should be non-zero to enable a
boolean option, or zero if the option is to be disabled. SO_LINGER uses a struct
linger parameter that specifies the desired state of the option and the linger
interval (see below). struct linger is defined in <ctools.h>.

struct linger contains the following members:
|_onoff on = 1/off =0
I_linger linger time, in seconds.

The following options are recognized at the socket level

SOL_SOCKET protocolLevel options

SO_DONTROUTE Enable/disable routing bypass for outgoing messages.
Default O.

SO_KEEPALIVE Enable/disable keep connections alive. Default 0.

SO_LINGER Linger on close if data is present. Default is on with 60
seconds timeout.

SO_OOBINLINE Enable/disable reception of out-of-band data in band.
Default 0.

SO_REUSEADDR Enable/disable local address reuse. Default O (disable).

Document (Version 1.61) 5/19/2011 536

Function Specifications

SO_RCVLOWAT The low water mark for receiving data.
SO_SNDLOWAT The low water mark for sending data.

SO_R CVBUF Set buffer size for input. Default 8192 bytes.
SO_SNDBUF Set buffer size for output. Default 8192 bytes.

SO_REUSEADDR indicates that the rules used in validating addresses supplied
in a bind call should allow reuse of local addresses. SO_KEEPALIVE enables the
periodic transmission of messages on a connected socket. If the connected party
fails to respond to these messages, the connection is considered broken.
SO_DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.
SO_LINGER controls the action taken when unsent messages are queued on a
socket and a close on the socket is performed. If the socket promises reliable
delivery of data and SO_LINGER is set, the system will block the process on the
close of the socket attempt until it is able to transmit the data or decides it is
unable to deliver the information. A timeout period, termed the linger interval, is
specified in the setsockopt call when SO_LINGER is requested. If SO_LINGER
is disabled and a close on the socket is issued, the system will process the close
of the socket in a manner that allows the process to continue as quickly as
possible. The option SO_BROADCAST requests permission to send broadcast
datagrams on the socket. With protocols that support out-of-band data, the
SO_OOBINLINE option requests that out-of-band data be placed in the normal
data input queue as received; it will then be accessible with recv call without the
MSG_OOB flag.

SO_SNDBUF and SO_RCVBUF are options that adjust the normal buffer sizes
allocated for output and input buffers, respectively. The buffer size may be
increased for high-volume connections or may be decreased to limit the possible
backlog of incoming data. The Internet protocols place an absolute limit of 64
Kbytes on these values for UDP and TCP sockets (in the default mode of
operation).

The following options are recognized at the IP level:
IP_PROTOIP protocolLevel options

IP_TOS IP type of service. Default O.

IP_TTL IP Time To Live in seconds. Default 64.

IP_MULTICAST_TTL Change the default IP TTL for outgoing multicast
datagrams

IP_MULTICAST_IF Specify a configured IP address that will uniquely identify
the outgoing interface for multicast datagrams sent on
this socket. A zero IP address parameter indicates that
we want to reset a previously set outgoing interface for
multicast packets sent on that socket

The following options are recognized at the TCP level.
IP_PROTOTCP protocolLevel options

Document (Version 1.61) 5/19/2011 537

Function Specifications

TCP_MAXSEG

TCP_NODELAY

Parameters
socketDescriptor
protocolLevel
optionName

optionValuePtr

optionLength

ProtocolLevel
SOL_SOCKET
IP_PROTOIP
IP_PROTOTCP

Sets the maximum TCP segment size sent on the
network. The TCP_MAXSEG value is the maximum
amount of data (including TCP options, but not the TCP
header) that can be sent per segment to the peer., i.e
the amount of user data sent per segment is the value
given by the TCP_MAXSEG option minus any enabled
TCP option (for example 12 bytes for a TCP time stamp
option) . The TCP_MAXSEG value can be decreased or
increased prior to a connection establishment, but it is
not recommended to set it to a value higher than the IP
MTU minus 40 bytes (for example 1460 bytes on
Ethernet), since this would cause fragmentation of TCP
segments. Setting the TCP_MAXSEG option will inhibit
the automactic computation of that value by the system
based on the IP MTU (which avoids fragmentation), and
will also inhibit Path Mtu Discovery. After the connection
has started, this value cannot be changed. The
TCP_MAXSEG value cannot be set below 64 bytes.
Default value is IP MTU minus 40 bytes.

Set this option value to a non-zero value, to disable the
Nagle algorithm that buffers the sent data inside the
TCP. Useful to allow client's TCP to send small packets
as soon as possible (like mouse clicks). Default 0.

The socket descriptor to set the options on.
The protocol to set the option on. See below.
The name of the option to set. See below and above.

The pointer to a user variable from which the option
value is set. User variable is of data type described
below.

The size of the user variable. It is the size of the option
data type described below.

Socket level protocol.
IP level protocol.

TCP level protocol.

ProtocolLevel Option Name Option data Option
type value
SOL_SOCKET SO_DONTROUTE int Oorl
SO_KEEPALIVE int Oorl
SO_LINGER struct linger

Document (Version 1.61) 5/19/2011 538

Function Specifications

ProtocolLevel Option Name Option data Option
type value
SO_OOBINLINE int Oorl
SO_RCVBUF unsigned long
SO_RCVLOWAT unsigned long
SO_REUSEADDR int Oorl
SO_SNDBUF unsigned long
SO_SNDLOWAT unsigned long
IP_PROTOIP IP_TOS unsigned char
IP_TTL unsigned char

IP_MULTICAST_TTL unsigned char
IP_MULTICAST_IF struct in_addr

IP_PROTOTCP TCP_MAXSEG int
TCP_NODELAY int Oorl
Returns
0 Successful set of option
-1 An error occurred

setsockopt will fail if:

EBADF The socket descriptor is invalid

EINVAL One of the parameters is invalid

ENOPROTOOPT The option is unknown at the level indicated.

EPERM Option cannot be set after the connection has been established.

ENETDOWN Specified interface not configured yet
EADDRINUSE Multicast host group already added to the interface
ENOBUF Not enough memory to add new multicast entry.

ENOENT Attempted to delete a non-existent multicast entry on the
specified interface.

Document (Version 1.61) 5/19/2011 539

Function Specifications

setStatusBit
Set Bits in Controller Status Code

Syntax

#include <ctools.h>

UINT16 setStatusBit (UINT16 bitMask):;
Description

The setStatusBit function sets the bits indicated by bitMask in the controller
status code. When the status code is non-zero, the STAT LED blinks a binary
sequence corresponding to the code. If code is zero, the STAT LED turns off.

The function returns the value of the status register.

Notes

The status output opens if code is non-zero. Refer to the System Hardware
Manual for more information.

The binary sequence consists of short and long flashes of the error LED. A short
flash of 1/10th of a second indicates a binary zero. A binary one is indicated by a
longer flash of approximately 1/2 of a second. The least significant digit is output
first. As few bits as possible are displayed — all leading zeros are ignored. There
is a two second delay between repetitions.

The STAT LED is located on the top left hand corner of the controller board.

Bits 0, 1 and 2 of the status code are used by the controller firmware. Attempting
to control these bits will result in indeterminate operation.

See Also

getStatusBit

Document (Version 1.61) 5/19/2011 540

Function Specifications

setStatusMode
Set Source for Status LED

Syntax

#include <ctools.h>

void setStatusMode (UINT16 mode) ;
Description

The setStatusMode function controls wether APPLICATION or SYSTEM status
bits are shown on the STAT LED.

The function has no return value.

Document (Version 1.61) 5/19/2011 541

Function Specifications

setWakeSource
Sets Conditions for Waking from Sleep Mode

Syntax

#include <ctools.h>
void setWakeSource (UINT32 enableMask);

Description

The setWakeSource routine enables and disables sources that will wake up the
processor. It enables all sources specified by enableMask. All other sources are
disabled.

Valid wake up sources are listed below. Multiple sources may be ORed together.
e WS_NONE

e WS _ALL

e WS RTC_ALARM

e WS_COUNTER_1_OVERFLOW

e WS_COUNTER_2 OVERFLOW

e WS_COUNTER_3_OVERFLOW

e WS_LED POWER_SWITCH

e WS DIN_1_CHANGE

e WS_COM3_VISION

Notes

Specifying WS_NONE as the wake up source will keep the controller from
waking, except by a power on reset.

See Also

getWakeSource, setPowerMode

Example

The code fragments below show how to enable and disable wake up sources.

/* Wake up on all sources */
setWakeSource (WS ALL) ;

/* Enable wake up on real time clock only */
setWakeSource (WS_RTC ALARM) ;

Document (Version 1.61) 5/19/2011 542

Function Specifications

shutdown

Syntax

#include <ctools.h>
int shutdown

(

int socketDescriptor,
int howToShutdown

)

Description

Shutdown a socket in read, write, or both directions determined by the parameter

howToShutdown.
Parameters
socketDescriptor The socket to shutdown

howToShutdown Direction:
0 = Read
1 = Write
2 = Both

Returns
0 Success
-1 An error occurred

shutdown will fail if:

EBADF The socket descriptor is invalid
EINVAL One of the parameters is invalid
ENOPROTOOPT The option is unknown at the level indicated.

Document (Version 1.61) 5/19/2011

543

Function Specifications

signal_event

Signal Occurrence of Event

Syntax

#include <ctools.h>

void signal event (UINT32 event number);

Description

The signal_event function signals that the event_number event has occurred.

If there are tasks waiting for the event, the highest priority task is made ready to
execute. Otherwise the event flag is incremented. Up to 32767 occurrences of an
event will be recorded. The current task is blocked if there is a higher priority task
waiting for the event.

Notes

Refer to the Real Time Operating System section for more information on events.

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
ctools.h are not valid events for use in an application program.

This function can be called from application and interrupt code.

See Also

poll_event

Example

This program creates a task to wait for an event, then signals the event.

#include <ctools.h>

void taskl (void)

{
while (TRUE)

{
wait event (20);
fprintf (coml, "Event 20 occurred\r\n");

}

int main (void)
{
UINT32 startTime;
create task(taskl, 75, applicationGroup, 4);

while (TRUE)

{
/* body of main task loop */

Document (Version 1.61) 5/19/2011 544

Function Specifications

/* The body of this main task is intended solely
for signaling the event waited for by taskl. Normally
main would be busy with more

important things to do otherwise the code in
taskl could be executed within main’s wait

loop */
startTime = readStopwatch() ;
while ((readStopwatch() - startTime) < 1000)

/* wait for 1 s */
{
/* Allow other tasks to execute */
release processor();

}

signal event (20);

Document (Version 1.61) 5/19/2011 545

Function Specifications

sleep_processor

Release Processor to other Tasks for a certain time

Syntax

#include <ctools.h>

void sleep processor (UINT32 msTime) ;
Description

The sleep_processor function releases control of the CPU to other tasks for a
certain time. Other tasks of the same priority get a chance to run, or when no
such task is in a ready state lower priority tasks will run. This function is similar to
release_processor with the difference that the CPU is released for at least
msTime, which represents milliseconds. Tasks of the same priority run in a
round-robin fashion, as each releases the processor to the next.

Notes

The call sleep_processor(0) has the same effect as the call release_processor.

Internally the sleep time msTime will be converted into ticks. With a 60 Hz
system clock, the minimum wait time is 16.6 ms. Wait times will be rounded up to
the next tick value.

Refer to the Real Time Operating System section for more information on tasks
and task scheduling.

See Also

release_processor

Document (Version 1.61) 5/19/2011 546

Function Specifications

sleepMode

Suspend Controller Operation

Syntax

#include <ctools.h>
UINT16 sleepMode (void);

Description

The sleepMode function puts the controller into a sleep mode. Sleep mode
reduces the power consumption to a minimum by halting the microprocessor
clock. All programs halt until the controller resumes execution. All output points
turn off while the controller is in sleep mode.

The controller resumes execution under the conditions shown in the table below.
The application program may disable some wake up conditions. If a wake up
condition is disabled the controller will not resume execution when the condition
occurs. All wake up conditions will be enabled by default. Refer to the
Description of the setWakeSource function for details.

sleepMode returns the source that woke the controller from sleep.

See Also

getWakeSource, setWakeSource

Document (Version 1.61) 5/19/2011 547

Function Specifications

socket

Syntax

#include <ctools.h>
int socket

(

int family,

int type,

int protocol

);

Description

socket creates an endpoint for communication and returns a descriptor. The
family parameter specifies a communications domain in which communication
will take place; this selects the protocol family that should be used. The protocol
family is generally the same as the address family for the addresses supplied in
later operations on the socket. These families are defined in the include file
<ctools.h>. If protocol has been specified, but no exact match for the tuplet
family, type, and protocol is found, then the first entry containing the specified
family and type with zero for protocol will be used. The currently understood
format is PF_INET for ARPA Internet protocols. The socket has the indicated
type, which specifies the communication semantics.

Currently defined types are:
SOCK_STREAM
SOCK_DGRAM
SOCK_RAW

A SOCK_STREAM type provides sequenced, reliable, two-way connection-
based byte streams. An out-of-band data transmission mechanism is supported.
A SOCK_DGRAM socket supports datagrams (connectionless, unreliable
messages of a fixed (typically small) maximum length); a SOCK_DGRAM user is
required to read an entire packet with each recv call or variation of recv call,
otherwise an error code of EMSGSIZE is returned. protocol specifies a particular
protocol to be used with the socket. Normally only a single protocol exists to
support a particular socket type within a given protocol family. However, multiple
protocols may exist, in which case, a particular protocol needs to be specified in
this manner.

The protocol number to use is particular to the “communication domain” in which
communication is to take place. If the caller specifies a protocol, then it will be
packaged into a socket level option request and sent to the underlying protocol
layers. Sockets of type SOCK_STREAM are full-duplex byte streams. A stream
socket needs to be in a connected state before any data may be sent or received
on it. A connection to another socket is created with connect on the client side.
On the server side, the server needs to call listen and then accept. Once
connected, data may be transferred using recv and send calls or some variant of
the send and recv calls. When a session has been completed, a close of the
socket should be performed. The communications protocols used to implement a

Document (Version 1.61) 5/19/2011 548

Function Specifications

SOCK_STREAM ensure that data is not lost or duplicated. If a piece of data (for
which the peer protocol has buffer space) cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and
calls will indicate an error with (-1) return value and with ETIMEDOUT as the
specific socket error. The TCP protocols optionally keep sockets “warm” by
forcing transmissions roughly every two hours in the absence of other activity. An
error is then indicated if no response can be elicited on an otherwise idle
connection for an extended period (for instance 5 minutes). SOCK_DGRAM or
SOCK_RAW sockets allow datagrams to be sent to correspondents named in
sendto calls. Datagrams are generally received with recvfrom which returns the
next datagram with its return address. The operation of sockets is controlled by
socket level options. These options are defined in the file <ctools.h>. setsockopt
and getsockopt are used to set and get options, respectively.

Parameters
family The protocol family to use for this socket (currently only
PF_INET is used).
type The type of socket.
protocol The layer 4 protocol to use for this socket.
Family Type Protocol
Actual protocol
PF_INET SOCK_DGRAM IPPROTO_UDP
UDP
PF_INET SOCK_STREAM IPPROTO_TCP
TCP
PF_INET SOCK_RAW IPPROTO_ICMP ICMP
PF_INET SOCK_RAW IPRPTOTO_IGMP IGMP.
Returns

New Socket Descriptor or —1 on error.

If an error occurred, the socket error can be retrieved by calling
getErrorCode(socketDescriptor).

socket will fail if:
EMFILE No more sockets are available

ENOBUFS There was insufficient user memory available to
complete the operation

EPROTONOSUPPORT The protocol type or the specified protocol is not
supported within this family.

Document (Version 1.61) 5/19/2011 549

Function Specifications

start_protocol

Start Serial Protocol

Syntax

#include <ctools.h>

INT16 start protocol (FILE *stream);
Description

The start_protocol function enables a protocol on the specified serial port. It
returns TRUE if the protocol was enabled and FALSE if it was not. The protocol
settings of the specified serial port determine the protocol type enabled by this
function.

This function should only be needed in the context of the startup function
appstart.
See Also

set_port, get_port

Document (Version 1.61) 5/19/2011 550

Function Specifications

startup_task
Identify Start Up Task

Syntax

#include <ctools.h>
struct taskInfo tag startup task(void);

Description

The startup_task function returns the address of the system or application start
up task.

Notes

This function is used by the reset routine. It is normally not used in an application
program.

Document (Version 1.61) 5/19/2011 551

Function Specifications

startTimedEvent

Enable Signaling of a Regular Event

Syntax

#include <ctools.h>
UINT16 startTimedEvent (UINT16 event, UINT16 interval);

Description

The startTimedEvent function causes the specified event to be signaled at the
specified interval. interval is measured in multiples of 0.1 seconds. The task that
is to receive the events should use the wait_event or poll_event functions to
detect the event.

The function returns TRUE if the event can be signaled. If interval is O or if the
event number is not valid, the function returns FALSE and no change is made to
the event signaling (a previously enabled event will not be changed).

Notes

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
primitiv.h are not valid events for use in an application program.

The application program should stop the signaling of timed events when the task
which waits for the events is ended. If the event signaling is not stopped, events
will continue to build up in the queue until a function waits for them. The Start
Timed Event Example shows a simple method using the installExitHandler
function.

See Also

endTimedEvent

Document (Version 1.61) 5/19/2011 552

Function Specifications

sysSerialSetRxTimeout

Set Serial Idle Timeout Before Received Characters Signaled

Syntax

#include <ctools.h>
void sysSerialSetRxTimeout (UCHAR port, UCHAR timeout) ;

Description

The sysSerialSetRxTimeout function causes the operating system to report the
arrival of characters on the specified port after the specified number of 4-bit
timeout intervals.

A port value of 0 specifies com1, 1 specifies com2, and 2 specifies com3.

The timeout specifies the number of 4-bit time intervals that the serial receive line
needs to be idle for before reporting character arrival. Care needs to be
exercised as the character time will consist of a start bit, 7 or 8 data bits, an
optional parity bit, and a stop bit. The number of bits per byte needs to be
calculated for the serial port configuration that is being used. When the specified
timeout has elapsed the installed character hander for that port will be called for
each of the received characters.

Notes

This function is useful for message framing based on the receive line being idle
for a fixed minimum time between messages. The Example below shows a
simple method using the sysSerialSetRxTimeout function to control when serial
data is reported.

Example

This program specifies a timeout of 8 character times on com 1 five seconds
after the program starts, assuming that the port is setup for 8-N-1 operation.

#include <ctools.h>
#define COM1 INDEX 0

BOOLEAN dataToProcess[3] = {FALSE, FALSE, FALSE};
BOOLEAN informOfCharacterArrival (int arg, int c)
{

BOOLEAN retval;

UINT32 previousIntMask;

switch (arqg)

{

case 0:
case 1:
case 2:
// Notify of the arrival
if (dataToProcess|[arg] == FALSE)

{

Document (Version 1.61) 5/19/2011 553

Function Specifications

switch (arg)

{

case 0:
interrupt signal event (COM1 RCVR) ;
break;

case 1:
interrupt signal event (COM2 RCVR) ;
break;

case 2:
interrupt signal event (COM3_ RCVR) ;
break;

default:

// Do nothing this case should be impossible
to each.
break;
}
// Prevent notifications from being generated until
the
// next level has looked at the data
dataToProcess[arg] = TRUE;
}
// We handled the character so return FALSE
retval = TRUE;
break;
default:

// We didn't handle the character so return TRUE
retval = TRUE;
break;

}

return retval;

}

int main (void)

{
UINT32 characterSize;
UCHAR timeoutlInterval;

// install the serial character handler
install handler(coml, informOfCharacterArrival);

// Calculate the character size:
// 1 start bit

// 8 data bits

// no parity bits

// 1 stop bit

characterSize =1 + 8 + 1;

// Delay for 5 seconds
sleep processor (5000);

Document (Version 1.61) 5/19/2011 554

Function Specifications

// Determine the number of timeout intervals needed

// The multiplication by 8 is due to 8 character times
// to delay. The division by 4 is because every value
// specifies 4 bit times.

timeoutInterval = characterSize * 8 / 4;

// Set COM1 to signal character arrival after
// 8 character times of silence
sysSerialSetRxTimeout (COM1 INDEX, timeoutInterval);

while (TRUE)

{
// Wait for the serial callback handler to report a
// message has been received
wailt event (COM1 RCVR);

// Reset the data to process flag so that we’ll
// be notified when the next message arrives

dataToProcess [COM1 INDEX] = FALSE;

// Read out data and process message here

See Also

install_handler

Document (Version 1.61) 5/19/2011 555

Function Specifications

unregisterBulkDevOperation

Un-register bulk device operation

Syntax

#include <ctools.h>

BOOLEAN unregisterBulkDevOperation (char* extDriveName) ;
Description

The unregisterBulkDevOperation function un-registers an operation on a bulk
memory device. It is used in conjunction with the registerBulkDevOperation to
ensure that internal resources used for the bulk device are correctly released if
the device is un-mounted in the middle of an operation.

Parameters

extDriveName The mounted bulk device drive name, typically “/bd0”.

Returns

TRUE The un-register was successful;
FALSE The drive name was invalid.
Notes

The registerBulkDevOperation and unregisterBulkDevOperation should only be
used with a dynamically mounted bulk device, such as a USB memory stick. The
unregisterBulkDevOperation needs to be called with the same device drive name
as the registerBulkDevOperation.

See Also

registerBulkDevOperation

Example

#include <ctools.h>

int main (void)
{
if (registerBulkDevOperation (“/bd0”) == FALSE)

{
printf ("registerBulkDevOperation /bd0 failed.\r\n");
}

Copy (V/d0/logs/logl”, “/bd0/logs/logl”);

if (unregisterBulkDevOperation (“/bd0”) == FALSE)
{
printf ("unregisterBulkDevOperation /bd0
failed.\r\n");
}

Document (Version 1.61) 5/19/2011 556

Function Specifications

Document (Version 1.61) 5/19/2011 557

Function Specifications

wait_event

Wait for an Event

Syntax

#include <ctools.h>

void wait event (UINT32 event);

Description

The wait_event function tests if an event has occurred. If the event has occurred,
the event counter is decrements and the function returns. If the event has not
occurred, the task is blocked until it does occur.

Notes

Refer to the Real Time Operating System section for more information on events.
Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
primitiv.h are not valid events for use in an application program.

Example

See the Example for the signal_event function.

Document (Version 1.61) 5/19/2011 558

Function Specifications

wd_auto
Automatic Watchdog Timer Mode

Syntax

#include <ctools.h>
void wd auto(void);

Description

The wd_auto function gives control of the watchdog timer to the operating
system. The timer is automatically updated by the system.

Notes

Refer to the Functions Overview section for more information.

Example

See the Example for the wd_manual function

Document (Version 1.61) 5/19/2011 559

Function Specifications

wd_enabled
Enable Watchdog

Syntax

#include <ctools.h>
void wd enabled(BOOLEAN state);

Description

The function wd_enabled enables or disables the controller watchdog. This
function should only be needed in the context of the startup function appstart,
where it is called only when a debug build is made of the application.

By default a Release build of the application enables the watchdog and a Debug
build of the application disables the watchdog.

The watchdog needs to be disabled in order to debug an application using the
source-level debugging (e.g. stepping, setting breakpoints) tools provided by the
Hitachi HDI and Emulator.

Calling the function with state set to TRUE enables the watchdog. Calling the
function with state set to FALSE disables the watchdog.

Document (Version 1.61) 5/19/2011 560

Function Specifications

wd_manual
Manual Watchdog Timer Mode

Syntax

#include <ctools.h>
void wd manual (void) ;

Description

The wd_manual function takes control of the watchdog timer.

Notes

The application program needs to retrigger the watchdog timer at least every 0.5
seconds using the wd_pulse function, to avoid a controller reset.

Refer to the Functions Overview section for more information.

See Also

wd_enabled

Example

This program takes control of the watchdog timer for a critical section of code,
then returns it to the control of the operating system.

#include <ctools.h>
int main (void)

{

wd manual () ;

wd pulse () ;

/* ... code executing in less than 0.5 s */
wd pulse () ;

/* ... code executing in less than 0.5 s */
wd_auto ()

/* ... as much code as you wish */

Document (Version 1.61) 5/19/2011 561

Function Specifications

wd_pulse
Retrigger Watchdog Timer

Syntax

#include <ctools.h>
void wd pulse(void);
Description

The wd_pulse function retriggers the watchdog timer.

Notes

The wd_pulse function needs to execute at least every 0.5 seconds, to avoid a
controller reset, if the wd_manual function has been executed.

Refer to the Functions Overview section for more information.

Example

See the Example for the wd_manual function

Document (Version 1.61) 5/19/2011 562

Function Specifications

writeBoolVariable
Write to IEC 61131-1 Boolean Variable (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>
BOOLEAN writeBoolVariable (UCHAR * varName, UCHAR value)

Description
This function writes to the specified boolean variable.

The variable is specified by its name expressed as a character string. The name
is case insensitive (The IEC 61131-1 Dictionary also treats variable names as
case insensitive). If the variable is found, TRUE is returned and the specified
value is written to the variable. If the variable is not found or if the IEC 61131-1
Symbols Status is invalid, nothing is done and FALSE is returned. The IEC
61131-1 Symbols Status is invalid if the Application TIC code download and
Application Symbols download are not sharing the same symbols CRC
checksum.

TRUE is written when value is any non-zero value. FALSE is written when value
is 0.

Notes

This function requires the IEC 61131-1 Application Symbols to be downloaded to
the controller in addition to the Application TIC code. This function provides a
convenient method to access IEC 61131-1 variables by name; however, because
the variable name needs to be looked up in the IEC 61131-1 variable list each
call, the performance of the function may be slow for large numbers of variables.
For better performance, use the variable’s network address and the setdbase
function.

The IO_SYSTEM system resource needs to be requested before calling this
function.
Example

This program writes a TRUE state to the boolean variable named “Switch1”.

#include <ctools.h>

int main (void)
{
BOOLEAN status;

request_resource(IO_SYSTEM);
status = writeBoolVariable ("Switchl", TRUE) ;
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 563

Function Specifications

writelntVariable
Write to IEC 61131-1 Integer Variable (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>
BOOLEAN writeIntVariable (UCHAR * varName, INT32 long value)

Description
This function writes to the specified integer variable.

The variable is specified by its name expressed as a character string. The name
is case insensitive (The IEC 61131-1 Dictionary also treats variable names as
case insensitive). If the variable is found, TRUE is returned and the specified
signed long value is written to the variable. If the variable is not found or if the
IEC 61131-1 Symbols Status is invalid, nothing is done and FALSE is returned.
The IEC 61131-1 Symbols Status is invalid if the Application TIC code download
and Application Symbols download are not sharing the same symbols CRC
checksum.

Notes

This function requires the IEC 61131-1 Application Symbols to be downloaded to
the controller in addition to the Application TIC code. This function provides a
convenient method to access IEC 61131-1 variables by name; however, because
the variable name must be looked up in the IEC 61131-1 variable list each call,
the performance of the function may be slow for large numbers of variables. For
better performance, use the variable’s network address and the setdbase
function.

The IO_SYSTEM system resource needs to be requested before calling this
function.

Example

This program writes the value 120,000 to the integer variable named
“Pressure1”.

#include <ctools.h>

int main (void)
{
BOOLEAN status;

request resource (IO SYSTEM) ;
status = writeIntVariable ("Pressurel", 120000);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 564

Function Specifications

writeRealVariable
Write to IEC 61131-1 Real Variable (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>
BOOLEAN writeRealVariable (UCHAR * varName, float value)

Description
This function writes to the specified real (i.e. floating point) variable.

The variable is specified by its name expressed as a character string. The name
is case insensitive (The IEC 61131-1 Dictionary also treats variable names as
case insensitive). If the variable is found, TRUE is returned and the specified
floating-point value is written to the variable. If the variable is not found or if the
IEC 61131-1 Symbols Status is invalid, nothing is done and FALSE is returned.
The IEC 61131-1 Symbols Status is invalid if the Application TIC code download
and Application Symbols download are not sharing the same symbols CRC
checksum.

Notes

This function requires the IEC 61131-1 Application Symbols to be downloaded to
the controller in addition to the Application TIC code. This function provides a
convenient method to access IEC 61131-1 variables by name; however, because
the variable name needs to be looked up in the IEC 61131-1 variable list each
call, the performance of the function may be slow for large numbers of variables.
For better performance, use the variable’s network address and the setdbase
function.

The IO_SYSTEM system resource needs to be requested before calling this
function.
Example

This program writes the value 25.607 to the real variable named “Flowrate”.

#include <ctools.h>

int main (void)
{
BOOLEAN status;

request resource (IO SYSTEM) ;
status = writeRealVariable ("Flowrate", 25.607);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 565

Function Specifications

writeMsgVariable
Write to IEC 61131-1 Message Variable (IEC 61131-1 firmware only)

Syntax
#include <ctools.h>
BOOLEAN writeMsgVariable(UCHAR * varName, UCHAR * msg)

Description
This function writes to the specified message variable.

The variable is specified by its name expressed as a character string. The name
is case insensitive (The IEC 61131-1 Dictionary also treats variable names as
case insensitive). If the variable is found, TRUE is returned and the specified
string is written to the message variable. If the variable is not found or if the IEC
61131-1 Symbols Status is invalid, nothing is done and FALSE is returned. The
IEC 61131-1 Symbols Status is invalid if the Application TIC code download and
Application Symbols download are not sharing the same symbols CRC
checksum.

The pointer msg must point to a character string large enough to hold the
maximum length declared for the specified message variable plus two length
bytes and a null termination byte (i.e. max declared length + 3).

When writing to the message variable, all bytes are copied except the first byte
(max length byte) and the last byte (null termination byte). IEC 61131-1 message
variables have the following format:

Byte Description

Location

0 Maximum length as declared in IEC 61131-1
Dictionary (1 to 255)

1 Current Length = location of first null byte (0 to
maximum length)

2 First message data byte

max + 1 Last byte in message buffer

max + 2 Null termination byte (Terminates a message
having the maximum length.)

Notes

This function requires the IEC 61131-1 Application Symbols to be downloaded to
the controller in addition to the Application TIC code. This function provides a
convenient method to access IEC 61131-1 variables by name; however, because
the variable name needs to be looked up in the IEC 61131-1 variable list each
call, the performance of the function may be slow for large numbers of variables.

Document (Version 1.61) 5/19/2011 566

Function Specifications

For better performance, use the variable’s network address and the setdbase
function.

The IO_SYSTEM system resource needs to be requested before calling this
function.
Example

This program writes the message “Warning” to the message variable named
“TextData”. TextData has a maximum length of 10 bytes and a current length of 7
bytes.

#include <ctools.h>
int main (void)
{

BOOLEAN status;
unsigned char msg[13];

10;

request_resource(IO_SYSTEM);
status = writeMsgVariable ("TextData", msqg);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 567

Function Specifications

writeTimerVariable
Write to IEC 61131-1 Timer Variable (IEC 61131-1 firmware only)

Syntax

#include <ctools.h>
BOOLEAN writeTimerVariable (UCHAR * varName, UINT32 value)

Description

This function writes a value in milliseconds to the specified timer variable. The
maximum value that may be written is 86399999 ms (or 24 hours). If the value is
greater than 86399999 ms, the value modulus 86399999 is written to the timer
variable. The specified timer may be active or stopped.

The variable is specified by its name expressed as a character string. The name
is case insensitive (The IEC 61131-1 Dictionary also treats variable names as
case insensitive). If the variable is found, TRUE is returned and the specified
unsigned long value is written to the variable. If the variable is not found or if the
IEC 61131-1 Symbols Status is invalid, nothing is done and FALSE is returned.
The IEC 61131-1 Symbols Status is invalid if the Application TIC code download
and Application Symbols download are not sharing the same symbols CRC
checksum.

Notes

This function requires the IEC 61131-1 Application Symbols to be downloaded to
the controller in addition to the Application TIC code. This function provides a
convenient method to access IEC 61131-1 variables by name; however, because
the variable name needs to be looked up in the IEC 61131-1 variable list each
call, the performance of the function may be slow for large numbers of variables.
For better performance, use the variable’s network address and the setdbase
function.

The IO_SYSTEM system resource needs to be requested before calling this
function.
Example

This program writes the value 10000 ms to the timer variable named “Delay”.

#include <ctools.h>

int main (void)
{
BOOLEAN status;

request_resource(IO_SYSTEM);
status = writeTimerVariable ("Delay", 10000);
release resource (IO SYSTEM) ;

Document (Version 1.61) 5/19/2011 568

Function Specifications

Xcopy

Copy afolder and all sub-folders

Syntax

#include <ctools.h>
STATUS xcopy (const char* source, const char* destination);

Description

The xcopy function copies all files in the specified source folder and sub-folders
to the location specified by destination.

If the xcopy operation failed then ERROR is returned. OK is returned if the xcopy
operation completed successfully.

The xcopy function used a significant amount of stack space. 2 extra stack
blocks are required for each layer of sub-directories that are to be copied.

Example

When copying myFolder at least 6 stack blocks will be needed due to the 3 levels
of folder structure.

\myFolder\ProjectA\ltem1\
\myFolder\ProjectB\ltem2\
\myFolder\ProjectC\Iitem1\
\myFolder\ProjectD\Item1\

See Also

copy, xdelete

Document (Version 1.61) 5/19/2011 569

Function Specifications

xdelete

Delete a folder and all sub-folder

Syntax
#include <ctools.h>

UINT16 xdelete(const char* source);

Description
The xdelete function deletes all files and folders in the specified source folder.

If the xdelete operation fails then ERROR is returned. OK is returned if the
xdelete operation completed successfully.

The xdelete function used a significant amount of stack space. 2 extra stack
blocks are required for each layer of sub-directories that are to be deleted.
Example

When deleting myFolder at least 6 stack blocks will be needed due to the 3 levels
of folder structure.

\myFolder\ProjectA\ltem1\
\myFolder\ProjectB\ltem2\
\myFolder\ProjectC\Iitem1\
\myFolder\ProjectD\Iltem1\

See Also

copy, xcopy

Document (Version 1.61) 5/19/2011 570

Macro Definitions

Macro Definitions

A

Macro Definition

AD_BATTERY Internal AD channel connected to lithium
battery

AD_THERMISTOR Internal AD channel connected to thermistor

ADDITIVE Additive checksum

AIN_END Number of last analog input channel.

AIN_START Number of first analog input channel.

AlO_BADCHAN Error code: bad analog input channel
specified.

AIO_SUPPORTED If defined indicates analog 1/0 supported.

AIO_TIMEOUT Error code: input device did not respond.

AO Variable name: alarm output address

AOUT_END Number of last analog output channel.

AOUT_START Number of first analog output channel.

applicationGroup Specifies an application type task. All
application tasks are terminated by the
end_application function.

AT_ABSOLUTE Specifies a fixed time of day alarm.

AT_NONE Disables alarms

B

Macro Definition

BACKGROUND System event: background 1/O requested.
The background 1/O task uses this event. It
should not be used in an application
program.

BASE_TYPE_MASK Controller type bit mask

BAUD110 Specifies 110-baud port speed.

BAUD115200 Specifies 115200-baud port speed.

BAUD1200 Specifies 1200-baud port speed.

BAUD150 Specifies 150-baud port speed.

BAUD19200 Specifies 19200-baud port speed.

Document (Version 1.61) 5/19/2011 571

Macro Definitions

Macro Definition

BAUD2400 Specifies 2400-baud port speed.
BAUD300 Specifies 300-baud port speed.
BAUD38400 Specifies 38400-baud port speed.
BAUD4800 Specifies 4800-baud port speed.
BAUD57600 Specifies 57600-baud port speed.
BAUDG600 Specifies 600-baud port speed.
BAUD75 Specifies 75-baud port speed.
BAUD9600 Specifies 9600-baud port speed.
BYTE_EOR Byte-wise exclusive OR checksum
Macro Definition

CA Variable name: cascade setpoint source

CLASSO_FLAG

Specifies a flag for enabling DNP Class 0
data

CLASS1_FLAG

Specifies a flag for enabling DNP Class 1
data

CLASS2_FLAG

Sspecifies a flag for enabling DNP Class 2
data

CLASS3_FLAG

Specifies a flag for enabling DNP Class 3
data

CLOSED Specifies switch is in closed position

COLD_BOOT Cold-boot switch depressed when CPU was
reset.

coml Points to a file object for the com1 serial
port.

COM1_RCVR System event: indicates activity on com1
receiver. The meaning depends on the
character handler installed.

comz2 Points to a file object for the com2 serial
port.

COM2_RCVR System event: indicates activity on com2
receiver. The meaning depends on the
character handler installed.

com3 Points to a file object for the com3 serial
port.

COM3_RCVR System event: indicates activity on com3

receiver. The meaning depends on the
character handler installed.

COUNTER_CHANNELS

Specifies number of 5000 counter input
channels

Document (Version 1.61) 5/19/2011

572

Macro Definitions

Macro

Definition

COUNTER_END

Number of last counter input channel

COUNTER_START

Number of first counter input channel

COUNTER_SUPPORTED

If defined indicates counter I/O hardware
supported.

CPU_CLOCK_RATE

Frequency of the system clock in cycles per
second

CR Variable name: control register

CRC_16 CRC-16 type CRC checksum (reverse
algorithm)

CRC _CCITT CCITT type CRC checksum (reverse
algorithm)

Macro Definition

DATA_SIZE Maximum length of the HART command or
response field.

DATAY Specifies 7 bit world length.

DATA8 Specifies 8 bit word length.

DB Variable name: deadband

DB_BADSIZE Error code: out of range address specified

DB_BADTYPE Error code: bad database addressing type
specified

DB_OK Error code: no error occurred

DCA_ADD Add the ID to the configuration registers.

DCA REMOVE Remove the ID from the configuration
registers.

DCAT_C Device configuration application type isa C
application

DCAT_LOGIC1 Device configuration application type is the
first logic application

DCAT_LOGIC2 Device configuration application type is the

second logic application

DE_BadConfig

The modem configuration structure contains
an error

DE_BusyLine

The phone number called was busy

DE_CallAborted

A call in progress was aborted by the user

DE_CarrierLost

The connection to the remote site was lost
(modem reported NO CARRIER). Carrier is
lost for a time exceeding the S10 setting in
the modem. Phone lines with call waiting
are very susceptible to this condition.

Document (Version 1.61) 5/19/2011

573

Macro Definitions

Macro

Definition

DE_FailedToConnect

The modem could not connect to the
remote site

DE_InitError

Modem initialization failed (the modem may
be turned off)

DE_NoDialTone

Modem did not detect a dial tone or the S6
setting in the modem is too short.

DE_NoError

No error has occurred

DE_NoModem

The serial port is not configured as a
modem (port type must be
RS232_MODEM). Or no modem is
connected to the controller serial port.

DE_NotInControl

The serial port is in use by another modem
function or has answered an incoming call.

DIN_END

Number of last regular digital input channel.

DIN_START

Number of first regular digital input channel

DIO_SUPPORTED

If defined indicates digital I/O hardware
supported.

DISABLE Specifies flow control is disabled.

DNP Specifies the DNP protocol for the serial
port

DO Variable name: decrease output

DOUT_END Number of last regular digital output
channel.

DOUT_START Number of first regular digital output
channel

DS_Calling The controller is making a connection to a

remote controller

DS_Connected

The controller is connected to a remote
controller

DS_Inactive

The serial port is not in use by a modem

DS_Terminating

The controller is ending a connection to a
remote controller.

DYNAMIC_MEMORY

System resource: all memory allocation
functions such as malloc and alloc.

Macro Definition

ENABLE Specifies flow control is enabled.

ER Variable name: error

EVEN Specifies even parity.

EX Variable name: automatic execution period

Document (Version 1.61) 5/19/2011

574

Macro Definitions

Macro

Definition

EXTENDED_DIN_END

Number of last extended digital input
channel.

EXTENDED_DIN_START

Number of first extended digital input
channel

EXTENDED_DOUT_END

Number of last extended digital output
channel.

EXTENDED_DOUT_START

Number of first extended digital output
channel

Macro

Definition

FOPEN_MAX

Redefinition of macro from stdio.h

FORCE_MULTIPLE_COILS

Modbus function code

FORCE_SINGLE_COIL

Modbus function code

FULL

Specifies full duplex.

Macro Definition

GASFLOW Gas Flow calculation firmware option

Macro Definition

HALF Specifies half duplex.

HT 4203 Specifies that 4203 hardware is persent

HT_5209 Specifies that 5209 hardware is persent

Macro Definition

IO_SYSTEM System resource for all I/O hardware
functions.

Macro Definition

LAN_ENABLED

Enables LAN communication

LAN_DISABLED

Disables LAN communication, reducing
power consumption.

LED_OFF

Specifies LED is to be turned off.

LED_ON

Specifies LED is to be turned on.

Document (Version 1.61) 5/19/2011

575

Macro Definitions

Macro

Definition

LINEAR

Specifies linear database addressing.

LOAD_MULTIPLE_REGISTER
S

Modbus function code

LOAD_SINGLE_REGISTER

Modbus function code

LOW_POWER_MODE

Reduces the operating speed of the
controller, reducing power consumption.

Macro

Definition

MAX_NUMBER_OF_FIELDS

The maximum number of fields in a data log
record.

MAX_NUMBER_OF_LOGS

The maximum number of data logs.

MAX_PRIORITY

The maximum task priority.

MM_BAD_ADDRESS

Master message status: invalid database
address

MM_BAD_FUNCTION

Master message status: invalid function
code

MM_BAD_LENGTH

Master message status: invalid message
length

MM_BAD_SLAVE

Master message status: invalid slave station
address

MM_EXCEPTION_ADDRESS

Master message status: Modbus slave
returned an address exception.

MM_EXCEPTION_FUNCTION

Master message status: Modbus slave
returned a function exception.

MM_EXCEPTION_VALUE

Master message status: Modbus slave
returned a value exception.

MM_NO_MESSAGE

Master message status: no message was
sent.

MM_PROTOCOL_NOT_SUPP
ORTED

Master message status: selected protocol is
not supported.

MM_RECEIVED

Master message status: response was
received.

MM_SENT Master message status: message was sent.
MODBUS Specifies Modbus database addressing.
MODBUS_ASCII Specifies the Modbus ASCII protocol

emulation for the serial port.

MODBUS_PARSER

System resource: Modbus protocol
message parser.

MODBUS_RTU

Specifies the Modbus RTU protocol
emulation for the serial port.

Document (Version 1.61) 5/19/2011

576

Macro Definitions

Macro

Definition

MODEM_CMD_MAX_LEN

Maximum length of the modem initialization
command string

MODEM_MSG System event: new modem message
generated.

MSG_DATA Specifies the data field in an envelope
contains a data value.

MSG_POINTER Specifies the data field in an envelope

contains a pointer.

MT_4203DRInputs

4203 DR controller board inputs

MT_4203DROutputs

4203 DR controller board outputs

MT_4203DSInputs

4203 DS controller board inputs

MT_4203DSOutputs

4203 DS controller board outputs

MT_5210Inputs

SCADAPack 330 controller board inputs

MT_52100utputs

SCADAPack 330 controller board outputs

MT_5414Inputs

5414 digital input module inputs

MT_54140utputs

5414 digital input module outputs

MT_5415Inputs

5415 digital output module digital inputs

MT_54150utputs

5415 digital output module digital outputs

MT_5601Inputs

5601 module analog and digital inputs

MT_56010utputs

5601 module digital outputs

MT_5604Inputs

5604 module analog and digital inputs

MT_56040utputs

5604 module digital outputs

MT_5607Inputs

5607 module analog and digital inputs

MT_56070Outputs

5607 module analog and digital outputs

MT_5904Inputs

HART interface inputs

MT_59040utputs

HART interface outputs

MT_Ain4 Four channel analog input module

MT_Ain8 Eight channel analog input module
MT_Aout2 Two channel analog output module
MT_Aout4 Four channel analog output module

MT_Aout4_Checksum

Four channel analog output module with
checksum. This module type can only be
used with analog output modules with
checksum support.

MT_Counter4

Four channel counter input module

MT_CounterSP2

SCADAPack 350 controller board counter
inputs

MT_Din16 Sixteen channel digital input module
MT_Din32 Thirty two channel digital input module
MT_Din8 Eight channel digital input module

Document (Version 1.61) 5/19/2011

577

Macro Definitions

Macro Definition

MT_Dout16 Sixteen channel digital output module
MT_Dout32 Thirty two channel digital output module
MT_Dout8 Eight channel digital output module

MT_SP2Inputs

SCADAPack 350 controller board inputs

MT_SP20utputs

SCADAPack 350 controller board outputs

Macro Definition

NEVER System event: this event will never occur.
NEW_PROGRAM Application program is newly loaded.
NO_ERROR Error code: indicates no error has occurred.

NO_PROTOCOL

Specifies no communication protocol for the
serial port.

NONE

Specifies no parity.

NORMAL

Specifies the normal Modbus response type
code for a Modbus Handler

NORMAL_POWER_MODE

Sets the controller to run a full operating
speed.

NOTYPE Specifies serial port type is not known.

NUMAB Number of registers in the Allan-Bradley
database.

NUMCOIL Number of registers in the Modbus coll
section.

NUMHOLDING Number of registers in the Modbus holding
register section.

NUMINPUT Number of registers in the Modbus input
register section.

NUMLINEAR Number of registers in the linear database.
NUMSTATUS Number of registers in the Modbus status
section.

Macro Definition
ODD Specifies odd parity.
OPEN Specifies switch is in open position

Macro

Definition

Document (Version 1.61) 5/19/2011

578

Macro Definitions

Macro Definition
PC_FLOW_RX_RECEIVE_ST | Receiver disabled after receipt of a
OP message.

PC_FLOW_RX_XON_XOFF Receiver Xon/Xoff flow control.
PC_FLOW_TX_IGNORE_CTS | Transmitter flow control ignores CTS.
PC_FLOW_TX_XON_XOFF Transmitter Xon/Xoff flow control.
PC_PROTOCOL_RTU_FRAMI | Modbus RTU framing.

NG

PHONE_NUM_MAX_LEN Maximum length of the phone number string
PM_CPU_FULL_CLOCK The CPU is set to run at full speed
PM_CPU_REDUCED_CLOCK | The CPU is set to run at a reduced speed
PM_CPU_SLEEP The CPU is set to sleep mode
PM_LAN_ENABLED The LAN is enabled
PM_LAN_DISABLED The LAN is disabled
PM_USB_PERIPHERAL_ENA | The USB peripheral port is enabled
BLED

PM_USB_PERIPHERAL_DISA | The USB peripheral port is disabled
BLED

PM_USB_HOST_ENABLED The USB host port is enabled
PM_USB_HOST_DISABLED The USB host port is disabled

PM_UNAVAILABLE The status of the device could not be read.

PM_NO_CHANGE The current value will be used

PROGRAM_EXECUTED Application program has been executed.

PROGRAM_NOT_LOADED The requested application program is not
loaded.

R

Macro Definition

READ_COIL_STATUS Modbus function code

READ_EXCEPTION_STATUS | Modbus function code

READ_HOLDING_REGISTER | Modbus function code

READ_INPUT_REGISTER Modbus function code

READ_INPUT_STATUS Modbus function code

READSTATUS enum ReadStatus

REPORT_SLAVE_ID Modbus function code

RFC_MODBUS_RTU Flow control type, may be used in place of
ENABLE

RFC_NONE Flow control type, may be used in place of
DISABLE

RS232 Specifies serial port is an RS-232 port.

RS232_MODEM Specifies serial port is an RS-232 dial-up

Document (Version 1.61) 5/19/2011 579

Macro Definitions

Macro Definition
modem.
RS485 2WIRE Specifies serial port is a 2 wire RS-485 port.
RS232_COLLISION_AVOIDAN | Specifies serial port is RS232 and uses CD
CE for collision avoidance.
RTOS_ENVELOPES Number of RTOS envelopes.
RTOS_EVENTS Number of RTOS events.
RTOS_PRIORITIES Number of RTOS task priorities.
RTOS RESOURCES Number of RTOS resource flags.
RTOS_TASKS Number of RTOS tasks.
RUN Run/Service switch is in RUN position.
S
Macro Definition
S_MODULE_FAILURE Status LED code for /O module
communication failure
S_NORMAL Status LED code for normal status
SERIAL_PORTS Number of serial ports.
SERVICE Run/Service switch is in SERVICE position.
SF_ALREADY_DEFINED Result code: translation is already defined
in the table
SF_INDEX_OUT_OF _RANGE | Result code: invalid translation table index
SF_NO_TRANSLATION Result code: entry does not define a
translation

SF_PORT_OUT_OF_RANGE Result code: serial port is not valid

SF_STATION_OUT_OF_RAN | Result code: station number is not valid

GE
SF_TABLE_SIZE Number of entries in the store and forward
table
SF_VALID Result code: translation is valid
SIGNAL_CTS I/O line bit mask: clear to send signal
SIGNAL_CTS Matches status of CTS input.
SIGNAL_DCD I/O line bit mask: carrier detect signal
SIGNAL_DCD Matches status of DCD input.
SIGNAL_OFF Specifies a signal is de-asserted
SIGNAL_OH I/O line bit mask: off hook signal
SIGNAL_OH Not supported — forced low (1).
SIGNAL_ON Specifies a signal is asserted
SIGNAL_RING I/O line bit mask: ring signal
SIGNAL_RING Not supported — forced low (0).
SIGNAL_VOICE I/O line bit mask: voice/data switch signal

Document (Version 1.61) 5/19/2011 580

Macro Definitions

Macro

Definition

SIGNAL_VOICE

Not supported — forced low (0).

SLEEP_MODE_SUPPORTED

Defined if sleep function is supported

SMARTWIRE_5201_5202

SmartWIRE 5201 and 5202 controllers

STACK_SIZE

Size of the machine stack.

START_COIL

Start of the coils section in the linear
database.

START_HOLDING

Start of the holding register section in the
linear database.

START_INPUT

Start of the input register section in the
linear database.

START_STATUS

Start of the status section in the linear
database.

STARTUP_ Specifies the application start up task.

APPLICATION

STARTUP_SYSTEM Specifies the system start up task.

STOP1 Specifies 1 stop bit.

SYSTEM Specifies a system type task. System tasks
are not terminated by the end_application
function.

Macro Definition

T_CELSIUS Specifies temperatures in degrees Celsius

T_FAHRENHEIT

Specifies temperatures in degrees
Fahrenheit

T_KELVIN

Specifies temperatures in degrees Kelvin

T_RANKINE

Specifies temperatures in degrees Rankine

TELESAFE_6000_16EX

TeleSAFE 6000-16EX controller

TELESAFE_MICRO_16

TeleSAFE Microl6 controller

TFC_IGNORE_CTS

Flow control type, may be used in place of
ENABLE

TEC_NONE

Flow control type, may be used in place of
DISABLE

TIMER_BADINTERVAL

Error code: invalid timer interval

TIMER_BADTIMER

Error code: invalid timer

TIMER_MAX Number of last valid software timer.

TS_EXECUTING Task status indicating task is executing.

TS_READY Task status indicating task is ready to
execute

TS WAIT_ Task status indicating task is blocked

RESOURCE waiting for a resource

Document (Version 1.61) 5/19/2011

581

Macro Definitions

Macro

Definition

TS_WAIT_ENVELOPE

Task status indicating task is blocked
waiting for an envelope

TS_WAIT_EVENT

Task status indicating task is blocked
waiting for an event

TS_WAIT_MESSAGE

Task status indicating task is blocked
waiting for a message

Macro Definition

VI_DATE_SIZE Number of characters in version information
date field

Macro Definition

WRITESTATUS enum WriteStatus

WS_NONE Bit mask to disable all wake sources

WS_REAL_TIME_CLOCK

Bit mask to enable real time clock as a
wake up source

WS_INTERUPT_INPUT

Bit mask to enable interrupt input as wake
up source.

WS_LED_POWER_SWITCH

Bit mask to enable LED power switch as
wake up source

WS_COUNTER_1_OVERFLO
w

Bit mask to enable counter 1 overflow as a
wake up source

WS_COUNTER_2_OVERFLO
W

Bit mask to enable counter 2 overflow as a
wake up source

WS_COUNTER_3_OVERFLO
W

Bit mask to enable counter 3 overflow as a
wake up source

WS_LED_POWER_SWITCH

Bit mask to enable LED power switch as a
wake up source

WS_DIN_1_CHANGE

Bit mask to enable DIN 1 change of state as
a wake up source

WS_COM3_VISION

Bit mask to enable the SCADAPack Vision
on COM 3 as a wake up source

WS_COM3_DCD

Bit mask to enable CDC signal on COM3 as
wake up source

WS_DINO_CHANGE

Bit mask to enable digital input 0 as wake
up source

WS_410_ENABLE_SWITCH

Bit mask to enable the SOLARPack 410
enable switch as wake up source

WS_ONE_SECOND_ALARM

Bit mask to enable one second alarm as

Document (Version 1.61) 5/19/2011

582

Macro Definitions

Macro

Definition

wake up source

WS_ALL

Bit mask to enable all wake up sources

Document (Version 1.61) 5/19/2011

583

Structures and Types

Structures and Types

ADDRESS_MODE

The ADDRESS_MODE enumerated type describes addressing modes for

communication protocols.

typedef enum addressMode t
{
AM standard =
AM extended
}
ADDRESS MODE;

0,

e AM_standard returns standard Modbus addressing. Standard addressing
allows 255 stations and is compatible with standard Modbus devices

e AM_extended returns extended addressing. Extended addressing allows

65534 stations.

ALARM_SETTING

The ALARM_SETTING structure defines a real time clock alarm setting.

typedef struct alarmSetting tag {
UINT16 type;
UINT16 hour;
UINT16 minute;
UINT1l6 second;
} ALARM_SETTING;

e type specifies the type of alarm. It may be the AT_NONE or AT_ABSOLUTE

macro.

e hour specifies the hour at which the alarm will occur.

e minute specifies the minute at which the alarm will occur.

e second specifies the second at which the alarm will occur.

COM_INTERFACE

The COM_INTERFACE enumerated type defines a communication interface type

and may have one of the following values.

typedef enum interface t
{

CIF Coml

CIF Com2

CIF Com3

Document (Version 1.61) 5/19/2011

584

Structures and Types

CIF Ethernetl = 100

}
COM_INTERFACE;

COMM_ENDPOINT

The COMM_ENDPOINT structure defines a communication endpoint. If ethernet
based protocols are not used then the ipAddress, and portNumber fields should
be set to 0.

struct
{
COM_INTERFACE interface;

UINT32 stationAddress;
UINT32 ipAddress;
UINT1l6 portNumber;
UCHAR protocol;

}
COMM ENDPOINT;

CONNECTION_TYPE

The CONNECTION_TYPE enumerated type defines connection types supported
by the connection pool.

typedef enum ipConnection t
{
CT Unused = 0,

CT_Slave, // slave task connection
CT MasterIEC 61131-1, // master task connection created
for an
IEC 61131-1
masterip FB
CT MasterCApp, // master task connection created
for a
C++
application
CT MasterSF // master task connection created

for store
and forward

}
CONNECTION TYPE;

Only the connection type CT_MasterCApp may be used in C++ applications.

DATALOG_CONFIGURATION

The data log configuration structure holds the configuration of the data log. Each
record in a data log may hold up to eight fields. The typesOfFields[] entry in the
structure specifies the types of the fields. Not all the fields are used if fewer than
eight elements are declared in this array.

The amount of memory used for a record depends on the number of fields in the
record and the size of each field. Use the datalogRecordSize function to
determine the memory needed for each record.

Document (Version 1.61) 5/19/2011 585

Structures and Types

typedef struct datalogConfig type
{ UINT16 records; /* # of records */
UINT1l6 fields; /* # of fields per record
*
/ DATALOG VARIABLE typesOfFields[MAXiNUMBERioFiFIELDS];
éATALOG7CONFIGURATION;

DATALOG_STATUS

The data log status enumerated type is used to report status information.

typedef enum
{

DLS CREATED = 0, /* data log created */

DLS BADID, /* invalid log ID */

DLS_ EXISTS, /* log already exists */

DLS NOMEMORY, /* insufficient memory for
log */

DLS BADCONFIG, /* invalid configuration
*/

}
DATALOG STATUS;

DATALOG_VARIABLE

DialError

The data log variable enumerated type is used to specify the type of variables to
be recorded in the log.

typedef enum
{

DLV_UINT16 = O, /* 16 bit unsigned integer
*
/ DLV_INT16, /* 16 bit signed integer
*
/ DLV_UINT32, /* 32 bit unsigned integer
*
/ DLV_INT32, /* 32 bit signed integer
*
/ DLV_FLOAT, /* 32 bit floating point
*
/ DLV_CMITIME, /* 64 bit time */
DLV_DOUBLE, /* 64 bit floating point
*/

DLV_NUMBER OF TYPES

}
DATALOG VARIABLE;

The DialError enumerated type defines error responses from the dial-up modem
functions and may have one of the following values.

enum DialError

{
DE NoError = 0,

Document (Version 1.61) 5/19/2011 586

Structures and Types

DE BadConfig,

DE NoModem,

DE InitError,

DE NoDialTone,

DE BusylLine,

DE CallAborted,

DE FailedToConnect,
DE CarrierlLost,

DE NotInControl

DE CallCut

e DE_NoError returns no error has occurred
o DE_BadConfig returns the modem configuration structure contains an error

o DE_NoModem returns the serial port is not configured as a modem (port type
must be RS232_MODEM). Or no modem is connected to the controller serial
port.

e DE_InitError returns modem initialization failed (the modem may be turned
off)

o DE_NoDialTone returns modem did not detect a dial tone or the S6 setting in
the modem is too short.

e DE_BusyLine returns the phone number called was busy
o DE_CallAborted returns a call in progress was aborted by the user

o DE_FailedToConnect returns the modem could not connect to the remote
site

o DE_CarrierLost returns the connection to the remote site was lost (modem
reported NO CARRIER). Carrier is lost for a time exceeding the S10 setting
in the modem. Phone lines with call waiting are very susceptible to this
condition.

e DE_NotInControl returns the serial port is in use by another modem function
or has answered an incoming call.

e DE_CallCut returns an incoming call was disconnected while attempting to
dial out.

DialState

The DialState enumerated type defines the state of the modemDial operation and
may have one of the following values.

enum DialState
{
DS Inactive,
DS Calling,
DS Connected,
DS Terminating
bi
e DS _Inactive returns the serial port is not in use by a modem

Document (Version 1.61) 5/19/2011 587

Structures and Types

DS_Calling returns the controller is making a connection to a remote
controller

DS_Connected returns the controller is connected to a remote controller

DS_Terminating returns the controller is ending a connection to a remote
controller.

dlogConfiguration Type

This structure defines the data log configuration. It is used with the dlogCreate
function.

typedef struct dlogConfiguration type

{

}

UCHAR configVersion;

BOOLEAN fileRingBuffer;

UINT32 bufferFlushInterval;

UINT32 bufferRecordSize;

UINT32 fileMode;

UINT32 numFiles;

UINT32 fileRecordSize;

UINT32 numRecordElements;

dlogRecordElement* recordList;

UINT32 securityToken;

UCHAR description([255];

UCHAR logName[255];
dlogConfiguration;

configVersion is the version of the configuration structure. Always set this to
1.

fileRingBuffer specifies if the oldest file is deleted when a new file would
exceed the maximum number of files. Set to TRUE to delete the oldest file.
Set to FALSE to stop writing to files and halt buffer flushing when the last file
is full.

bufferFlushinterval is the interval, in seconds, at which the data log server
will flush the buffer to file. Valid values are any value greater than 0.

bufferRecordSize is the number of records in the data log buffer.

fileMode selects where the data log files are stored. Valid values are
O=internal flash drive, 1=internal drive with auto copy to external drive,
2=internal drive with auto move to external drive, 3=external drive.

numFiles is the maximum number of log files. Valid values are any value
greater than 0.

fileRecordSize is the number of records in the each data log file. Valid values
are any value greater than 0.

numRecordElements is the number of elements in each record. Valid values
are any value greater than 0.

Document (Version 1.61) 5/19/2011 588

Structures and Types

e recordList is a pointer to a list of record element definitions. See the
dlogRecordElement type for details.

e securityToken is a security token that must be present on an inserted mass
storage device for these logs to be copied to that device. Set this to 0 to
disable the token.

e description is a string describing the log. The description is included in the
header of the log files. The string has to be null-terminated.

¢ logName is the name of the log. The log name is used to name the log files.
The string has to be null-terminated.

dlogCMITime Type

This structure represents the time stamps for data log records. Time is measured
as the number of days since January 1, 1997, and the number of centiseconds
since the start of the current day. The time in this format can be obtained using
the getClockTime function.

typedef struct
{

INT32 days;

INT32 centiseconds;
} dlogCMITime;

e days is the number of days since January 1, 1997.

e centiseconds is the number of hundredths of a second since the start of the
current day.

dlogMediaStatus Type

The dlogMediaStatus enumerated type indicates the status of the media used by
the configured data log. For non auto-transfer enabled data logs the states can

be either

typedef enum dlogMediaStatus type {
DLOGS MEDIA PRESENT, // media is present
DLOGS_MEDIA NOT PRESENT,// no external media present
DLOGS MEDIA EXT FULL, // external media is full
DLOGS_MEDIA INT FULL, // internal media is full
DLOGS MEDIA ALL FULL // ext. and int. media full

} dlogMediaStatus;

dlogRecordElement Type

This structure defines a data log record. It provides on how an element in a
record can be packed into a log file.

typedef struct dlogRecordElement type
{

UCHAR type;

UINT32 size;

UINT32 offset;

Document (Version 1.61) 5/19/2011 589

Structures and Types

} dlogRecordElement;

e type is the type of field. Valid values are:

Type Description Size (bytes)
DLOG_UINT16 16 bit unsigned integer 2
DLOG_INT16 16 bit signed integer 2
DLOG_UINT32 32 bit unsigned integer 4
DLOG_INT32 32 bit signed integer 4
DLOG_FLOAT single precision floating 4
point
DLOG_CMITIME time (see dlogCMITime 8
type)
DLOG_DOUBLE double precision floating 8
point
DLOG_STRING16 16 byte fixed length string 16
DLOG_STRING32 32 byte fixed length string 32
DLOG_STRING64 64 byte fixed length string 64
DLOG_STRING128 128 byte fixed length string 128
DLOG_STRING192 192 byte fixed length string 192
DLOG_STRING255 255 hyte fixed length string 255

DLOG_FIRST_USER_TYPE
to

DLOG_LAST_USER_TYPE

custom types

type specific

e size is the size, in bytes, of the element. The sizeof() function can be used to

determine this value.

o offset is the offset, in bytes, of the first byte of the element from the start of
the record passed to the dlogWrite function.

Example

This is an example on how a record can be defined. It contains information on
how the structure can be packed into log files.

// User type definition:

array of 10 UINT16 variables
typedef UINT16 userType[l0];

// Structure used to copy one record into data log

typedef struct dataRecord
{

UINT16 valuel;
INT32 value?2;
double value3;
float valued;

Document (Version 1.61) 5/19/2011

590

Structures and Types

userType valueb;
} dlogRecord;

// Variables for data log configuration
dlogConfiguration dLogConfig;
dlogRecordElement recordElement[5];

// define the data log records

recordElement [0].type = DLOG UINT16;

recordElement [0].size = sizeof (UINT16);

recordElement [0].offset = offsetof(dlogRecord, valuel);
recordElement [1].type = DLOG INT32;

recordElement [1l].size = sizeof (INT32);

recordElement [1l].offset = offsetof(dlogRecord, value2);
recordElement [2].type = DLOG DOUBLE;

recordElement [2].size = sizeof (double);

recordElement [2].offset = offsetof (dlogRecord, value3);
recordElement [3].type = DLOG_ FLOAT;

recordElement [3].size = sizeof (float);

recordElement [3].offset = offsetof(dlogRecord, valued);
recordElement [4].type = DLOG FIRST USER TYPE;
recordElement [4].size = sizeof (userType);

recordElement [4].offset = offsetof (dlogRecord, valued);

// insert the record list into the data log configuration
dLogConfig.recordList = recordElement;

dlogStatus Type

The dlogStatus enumerated type indicates the status of a data log operation. The
specific meaning may vary according to the function returning the status.

typedef enum dlogStatus type ({

DLOGS_SUCCESS, // operation was successful

DLOGS FAILURE, // operation failed
DLOGS_INPROGRESS, // operation in progress
DLOGS_EXISTS, // data log exists

DLOGS DIFFERENT, // data log configuration differs
DLOGS INVALID, // data log configuration invalid
DLOGS_NOMEMORY, // failed due to lack of memory
DLOGS BADID, // data log ID is not valid

DLOGS_WRONGPARAM, // wrong parameter (except dlogID)
DLOGS BUFFERFULL, // data log buffer is full
DLOGS_COMPLETE // operation is complete

} dlogStatus;

dlogTransferStatus Type

The dlogTransferStatus enumerated type indicates the status of the current or
recent auto-transfer operation. The transfer status only makes sense for data
logs configured to perform autocopy or automove transfers when an external
USB media is inserted. The transfer status for data logs without auto-transfer
capabilities is defaulted to DLOGS_TRANSFER_DONE_ALL.

typedef enum dlogTransferStatus type {

Document (Version 1.61) 5/19/2011 591

Structures and Types

DLOGS TRANSFER INPROGRESS,

// Auto transfer is not done or in progress
DLOGS TRANSFER DONE ALL,

// Auto transfer is done with files transferred
DLOGS_TRANSFER_DONE_NO WORK,

// Auto transfer is done with no files transferred
DLOGS TRANSFER DONE INVALID TOKEN

// Auto transfer is done because of invalid token
DLOGS TRANSFER NOT USED

// Auto transfer not configured or not started

} dlogTransferStatus;

DNP_ADDRESS_MAP_TABLE

The dnpAddressMapTable type describes an entry in the DNP Address Mapping
Table.

dnpAnaloginput

typedef struct dnpAddressMapTable type

{

UINT1l6 address;

CHAR objectType;

UINT16 remoteObjectStart;
UINT16 numberOfPoints;
UINT1l6 localModbusAddress;
} dnpAddressMapTable;

address is the DNP station address of the remote station.

objectType is the DNP object type.

remoteObjectStart is the DNP address of first object in the remote station.
numberOfPoints is the number of points.

localModbusAddress is the Modbus address of first object in local station.

The dnpAnaloginput type describes a DNP analog input point. This type is used
for both 16-bit and 32-bit points.

typedef struct dnpAnalogInput type

{

UINT16 modbusAddress;
UCHAR class;
UINT32 deadband;

} dnpAnalogInput;

modbusAddress is the address of the Modbus register number associated
with the point.

class is the reporting class for the object. It may be set to CLASS 1,
CLASS_2 or CLASS_3.

deadband is the amount by which the analog input value needs to change
before an event will be reported for the point.

Document (Version 1.61) 5/19/2011 592

Structures and Types

DnpAnaloglnputShortFloat

The dnpAnaloglnputShortFloat type describes a DNP analog input point. The
format of this point complies with the IEEE-754 standard for floating-point
number representation. This type is used for 32-bit points.

typedef struct dnpAnalogInputShortFloat type
{
UINT16 modbusAddress;
UCHAR eventClass;
float deadband;
} dnpAnalogInputShortFloat;
¢ modbusAddress is the address of the Modbus register number associated
with the point.

o eventClass is the reporting class for the object. It may be setto CLASS 1,
CLASS_2 or CLASS_3.

¢ deadband is the amount by which the analog input value needs to change
before an event will be reported for the point.

dnpAnalogOutput

The dnpAnalogOutput type describes a DNP analog output point. This type is
used for both 16-bit and 32-bit points.

typedef struct dnpAnalogOutput type

{
UINT16 modbusAddress;
} dnpAnalogOutput;

o modbusAddress is the address of the Modbus register associated with the
point.

dnpBinarylnput
The dnpBinarylnput type describes a DNP binary input point.

typedef struct dnpBinaryInput type
{
UINT16 modbusAddress;
UCHAR class;
} dnpBinaryInput;
o modbusAddress is the address of the Modbus register associated with the
point.

e class is the reporting class for the object. It may be set to CLASS_1,
CLASS_2 or CLASS_3.
dnpBinarylnputEx
The dnpBinarylnputEx type describes an extended DNP Binary Input point.

typedef struct dnpBinaryInputEx type
{
UINT16 modbusAddress;

Document (Version 1.61) 5/19/2011 593

Structures and Types

UCHAR eventClass;
UCHAR debounce;

} dnpBinaryInputEx;

dnpBinaryOutput

modbusAddress is the address of the Modbus register associated with the
point.

class is the reporting class for the object. It may be set to CLASS 1,
CLASS_2 or CLASS_3.

debounceTime is the debounce time for thebinary input.

The dnpBinaryOutput type describes a DNP binary output point.

typedef struct dnpBinaryOutput type

{

UINT16 modbusAddressl;
UINT16 modbusAddress?2;
UCHAR controlType;

} dnpBinaryOutput;

modbusAddressl is the address of the first Modbus register associated with
the point. This field is always used.

modbusAddress?2 is the address of the second Modbus register associated
with the point. This field is used only with paired outputs. See the controlType
field.

controlType determines if one or two outputs are associated with this output
point. It may be set to PAIRED or NOT_PAIRED.

A paired output uses two Modbus registers for output. The first output is the
Trip output and the second is the Close output. This is used with Control
Relay Output Block objects.

A non-paired output uses one Modbus register for output. This is used with
Binary Output objects.

dnpConnectionEventType

This enumerated type lists DNP events.

typedef enum dnpConnectionEventType

{

DNP_ CONNECTED=0,

DNP_ DISCONNECTED,

DNP CONNECTION REQUIRED,
DNP MESSAGE COMPLETE,
DNP MESSAGE TIMEOUT

} DNP_CONNECTION EVENT;

The DNP_CONNECTED event indicates that the handler has connected to
the master station. The application sends this event to DNP. When DNP
receives this event it will send unsolicited messages.

Document (Version 1.61) 5/19/2011 594

Structures and Types

dnpConfiguration

The DNP_DISCONNECTED event indicates that the handler has
disconnected from the master station. The application sends this event to
DNP. When DNP receives this event it will request a new connection before
sending unsolicited messages.

The DNP_CONNECTION_REQUIRED event indicates that DNP wishes to
connect to the master station. DNP sends this event to the application. The
application should process this event by making a connection.

The DNP_MESSAGE_COMPLETE event indicates that DNP has received
confirmation of unsolicited messages from the master station. DNP sends
this event to the application. The application should process this event by
disconnecting. In many applications a short delay before disconnecting is
useful as it allows the master station to send commands to the slave after the
unsolicited reporting is complete.

The DNP_MESSAGE_TIMEOUT event indicates that DNP has attempted to
send an unsolicited message but did not receive confirmation after all
attempts. This usually means there is a communication problem. DNP sends
this event to the application. The application should process this event by
disconnecting.

The dnpConfiguration type describes the DNP parameters.

typedef struct dnpConfiguration type

{

UINT16

UINT16

UINT16

UINT16

CHAR

UINT16
UINT16
CHAR
CHAR
UINT16
UINT16
UCHAR
UINT16
UCHAR
UINT16

masterAddress;
rtuAddress;
datalinkConfirm;
datalinkRetries;
datalinkTimeout;
operateTimeout;
applicationConfirm;
maximumResponse;
applicationRetries;
applicationTimeout;
INT1l6 timeSynchronization;
UINT16 BI number;

BI startAddress;

CHAR BI reportingMethod;
UINT16 BI soebufferSize;
UINT16 BO number;

BO startAddress;

UINT16 CI16 number;
CIl6_startAddress;

CHAR CIl6_reportingMethod;
UINT16 CI16 bufferSize;
UINT16 CI32 number;

CI32 startAddress;

CHAR CI32 reportingMethod;
UINT16 CI32 bufferSize;
CI32 wordOrder;

UINT16 AI1l6 number;

Document (Version 1.61) 5/19/2011

595

Structures and Types

UINT16 AIl6 startAddress;

CHAR

ATIl6 reportingMethod;

UINT16 AIl6 bufferSize;
UINT16 AI32 number;
UINT16 AI32 startAddress;

CHAR

AI32 reportingMethod;

UINT16 AI32 bufferSize;
CHAR AI32 wordOrder;

UINT16 AISF number;
UINT16 AISF startAddress;

CHAR

AISF reportingMethod;

UINT16 AISF bufferSize;
CHAR AISF wordOrder;

UINT16 AOl6 number;
UINT16 AOl6 startAddress;

UINT16 AO32 number;
UINT16 AO32 startAddress;
CHAR AO32 wordOrder;

UINT16 AOSF number;
UINT16 AOSF startAddress;
CHAR AOSF wordOrder;

UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16

autoUnsolicitedClassl;
holdTimeClassl;
holdCountClassl;
autoUnsolicitedClass2;
holdTimeClass?2;
holdCountClass2;
autoUnsolicitedClass3;
holdTimeClass3;
holdCountClass3;

enableUnsolicitedOnStartup;
sendUnsolicitedOnStartup;

level2Compliance;

} dnpConfiguration;

e masterAddress is the address of the master station. Unsolicited messages
are sent to this station. Solicited messages must come from this station.
Valid values are 0 to 65534.

e rtuAddress is the address of the RTU. The master station must send

messages to this address. Valid values are 0 to 65534.

¢ datalinkConfirm enables requesting data link layer confirmations. Valid
values are TRUE and FALSE.

e datalinkRetries is the number of times the data link layer will retry a failed
message. Valid values are 0 to 255.

e datalinkTimeout is the length of time the data link layer will wait for a
response before trying again or aborting the transmission. The value is
measured in milliseconds. Valid values are 100 to 60000 in multiples of 100
milliseconds.

Document (Version 1.61) 5/19/2011

596

Structures and Types

e operateTimeout is the length of time an operate command is valid after
receiving a select command. The value is measured in seconds. Valid values
are 1 to 6500.

¢ applicationConfirm enables requesting application layer confirmations. Valid
values are TRUE and FALSE.

e maximumResponse is the maximum length of an application layer response.
Valid values are 20 to 2048. The recommended value is 2048 unless the
master cannot handle responses this large.

e applicationRetries is the number of times the application layer will retry a
transmission. Valid values are 0 to 255.

e applicationTimeout is the length of time the application layer will wait for a
response before trying again or aborting the transmission. The value is
measured in milliseconds. Valid values are 100 to 60000 in multiples of 100
milliseconds. This value must be larger than the data link timeout.

e timeSynchronization defines how often the RTU will request a time
synchronization from the master.

e Setthis to NO_TIME_SYNC to disable time synchronization requests.

e Setthisto STARTUP_TIME_SYNC to request time synchronization at start
up only.

e Setthisto 1to 32767 to set the time synchronization period in seconds.
e Bl _number is the number of binary input points. Valid values are 0 to 9999.
e BI_startAddress is the DNP address of the first Binary Input point.

e Bl _reportingMethod determines how binary inputs are reported either
Change Of State or Log All Events.

e BI_soeBufferSize is the Binary Input Change Event Buffer Size.

e BO_number is the number of binary output points. Valid values are 0 to
9999.

e BO_startAddress is the DNP address of the first Binary Output point.

e CI16_number is the number of 16-bit counter input points. Valid values are 0
to 9999.

e Cl16_startAddress is the DNP address of the first CI16 point.

e CI16_reportingMethod determines how CI16 inputs are reported either
Change Of State or Log All Events.

e Cl16_bufferSize is the number of events in the 16-bit counter change buffer.
Valid values are 0 to 9999.

e CI32_number is the number of 32-bit counter input points. Valid values are 0
to 9999.

o CI32_startAddress is the DNP address of the first CI32 point.

Document (Version 1.61) 5/19/2011 597

Structures and Types

e CI32_reportingMethod determines how CI32 inputs are reported either
Change Of State or Log All Events.

o CI32_bufferSize is the number of events in the 32-bit counter change buffer.
Valid values are 0 to 9999.

e CI32_wordOrder is the Word Order of CI32 points (0=LSW first, 1=MSW
first).

e Al16_number is the number of 16-bit analog input points. Valid values are 0
to 9999.

e All6_startAddress is the DNP address of the first Al16 point.
e All16_reportingMethod determines how 16-bit analog changes are reported.

e Setthis to FIRST_VALUE to report the value of the first change event
measured.

e Set this to CURRENT_VALUE to report the value of the latest change event
measured.

e Al16_hufferSize is the number of events in the 16-bit analog input change
buffer. Valid values are 0 to 9999.

e AI32_number is the number of 32-bit analog input points. Valid values are 0
to 9999.

e AI32_startAddress is the DNP address of the first AI32 point.
o AI32_reportingMethod determines how 32-bit analog changes are reported.

e Setthis to FIRST_VALUE to report the value of the first change event
measured.

e Set this to CURRENT_VALUE to report the value of the latest change event
measured.

o AI32_hufferSize is the number of events in the 32-bit analog input change
buffer. Valid values are 0 to 9999.

e AI32_wordOrder is the Word Order of Al32 points (0=LSW first, 1=MSW first)

e AO16_number is the number of 16-bit analog output points. Valid values are
0 to 9999.

e AO16_startAddress is the DNP address of the first AO16 point.

e AO32_number is the number of 32-bit analog output points. Valid values are
0 to 9999.

e AO32_startAddress is the DNP address of the first AO32 point.

e AO32_wordOrder is the Word Order of AO32 points (0=LSW first, 1=MSW
first)

e AOSF_number is the number of short float Analog Outputs.

e AOSF_startAddress is the DNP address of first AOSF point.

Document (Version 1.61) 5/19/2011 598

Structures and Types

dnpConfigurationEx

AOSF_wordOrder is the Word Order of AOSF points (0=LSW first, 1=MSW
first).

autoUnsolicitedClass1 enables or disables automatic Unsolicited reporting of
Class 1 events.

holdTimeClass1 is the maximum period to hold Class 1 events before
reporting

holdCountClass1 is the maximum number of Class 1 events to hold before
reporting.

autoUnsolicitedClass2 enables or disables automatic Unsolicited reporting of
Class 2 events.

holdTimeClass2 is the maximum period to hold Class 2 events before
reporting

holdCountClass? is the maximum number of Class 2 events to hold before
reporting.

autoUnsolicitedClass3 enables or disables automatic Unsolicited reporting of
Class 3 events.

holdTimeClass3 is the maximum period to hold Class 3 events before
reporting.

holdCountClass?2 is the maximum number of Class 3 events to hold before
reporting.

enableUnsolicitedOnStartup controls whether unsolicited reporting is initially
enabled or disabled in the controller.

sendUnsolicitedOnStartup controls whether a null unsolicited message is
sent from the controller on startup.

level2Compliance controls which DNP point types are sent in a Class 0 Poll.
If level2Compliance is TRUE, floating point types and 32-bit Analog Outputs
are not sent (because they are not level 2 compliant DNP types) — they are
converted to 32-bit Analog Inputs and 16-bit Analog Outputs. If
level2Compliance is FALSE, all points are reported as their true point type.

The dnpConfigurationEx type includes extra parameters in the DNP
Configuration.

typedef struct dnpConfigurationEx type

{

UINT16 rtuAddress;

UCHAR datalinkConfirm;
UCHAR datalinkRetries;
UINT16 datalinkTimeout;
UINT16 operateTimeout;
UCHAR applicationConfirm;
UINT16 maximumResponse;
UCHAR applicationRetries;

Document (Version 1.61) 5/19/2011 599

Structures and Types

UINT16
INT16

UINT16
UINT16
UCHAR

UINT16
UINT16
UINT16
UINT16
UINT16
UCHAR

UINT16
UINT16
UINT16
UCHAR

UINT16
UCHAR

UINT16
UINT16
UCHAR

UINT16
UINT16
UINT16
UCHAR

UINT16
UCHAR

UINT16
UINT16
UCHAR

UINT16
UCHAR

UINT16
UINT16
UINT16
UINT16
UCHAR

UINT16
UINT16
UCHAR

UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16

applicationTimeout;
timeSynchronization;
BI number;

BI startAddress;

BI reportingMethod;
BI soeBufferSize;
BO_number;

BO startAddress;

CI16 number;

CIl6 startAddress;
CIl6 reportingMethod;
CIl6 bufferSize;

CI32 number;

CI32 startAddress;
CI32 reportingMethod;
CI32 bufferSize;

CI32 wordOrder;

AIl6 number;

ATl6 startAddress;
AIl6 reportingMethod;
AIl6 bufferSize;

AI32 number;

AI32 startAddress;
AI32 reportingMethod;
AI32 bufferSize;

AI32 wordOrder;

AISF number;

AISF startAddress;
AISF reportingMethod;
AISF bufferSize;

AISF wordOrder;

AOl6 number;

AOl6 startAddress;
AO32 number;

AO32 startAddress;
AO32 wordOrder;

AOSF number;

AOSF startAddress;
AOSF wordOrder;
autoUnsolicitedClassl;
holdTimeClassl;
holdCountClassl;
autoUnsolicitedClass?2;
holdTimeClass2;
holdCountClass?2;
autoUnsolicitedClass3;
holdTimeClass3;
holdCountClass3;

enableUnsolicitedOnStartup;
sendUnsolicitedOnStartup;

level2Compliance;
masterAddressCount;
masterAddress|[8];
maxEventsInResponse;
dialAttempts;
dialTimeout;

Document (Version 1.61) 5/19/2011

600

Structures and Types

UINT16 pauseTime;
UINT16 onlinelInactivity;
UINT16 dialType;
Char modemInitString([64];
} dnpConfigurationEx;
e rtuAddress is the address of the RTU. The master station must send
messages to this address. Valid values are 0 to 65534.

e datalinkConfirm enables requesting data link layer confirmations. Valid
values are TRUE and FALSE.

o datalinkRetries is the number of times the data link layer will retry a failed
message. Valid values are 0 to 255.

¢ datalinkTimeout is the length of time the data link layer will wait for a
response before trying again or aborting the transmission. The value is
measured in milliseconds. Valid values are 100 to 60000 in multiples of 100
milliseconds.

e operateTimeout is the length of time an operate command is valid after
receiving a select command. The value is measured in seconds. Valid values
are 1 to 6500.

¢ applicationConfirm enables requesting application layer confirmations. Valid
values are TRUE and FALSE.

¢ maximumResponse is the maximum length of an application layer response.
Valid values are 20 to 2048. The recommended value is 2048 unless the
master cannot handle responses this large.

¢ applicationRetries is the number of times the application layer will retry a
transmission. Valid values are 0 to 255.

e applicationTimeout is the length of time the application layer will wait for a
response before trying again or aborting the transmission. The value is
measured in milliseconds. Valid values are 100 to 60000 in multiples of 100
milliseconds. This value must be larger than the data link timeout.

e timeSynchronization defines how often the RTU will request a time
synchronization from the master.

e Setthisto NO_TIME_SYNC to disable time synchronization requests.

e Setthisto STARTUP_TIME_SYNC to request time synchronization at start
up only.

e Setthisto 1to 32767 to set the time synchronization period in seconds.
e BIl_number is the number of binary input points. Valid values are 0 to 9999.
o BIl_startAddress is the DNP address of the first Binary Input point.

e BI_reportingMethod determines how binary inputs are reported either
Change Of State or Log All Events.

e BI_soebufferSize is the Binary Input Change Event Buffer Size.

Document (Version 1.61) 5/19/2011 601

Structures and Types

e BO_number is the number of binary output points. Valid values are 0 to
9999.

e BO_startAddress is the DNP address of the first Binary Output point.

e CI16_number is the number of 16-bit counter input points. Valid values are 0
to 9999.

e CIl16_startAddress is the DNP address of the first CI16 point.

e CIl16_reportingMethod determines how CI16 inputs are reported either
Change Of State or Log All Events.

o CIl16_bufferSize is the number of events in the 16-bit counter change buffer.
Valid values are 0 to 9999.

e CI32_number is the number of 32-bit counter input points. Valid values are O
to 9999.

o CI32_startAddress is the DNP address of the first CI32 point.

e CI32_reportingMethod determines how CI32 inputs are reported either
Change Of State or Log All Events.

o CI32_bufferSize is the number of events in the 32-bit counter change buffer.
Valid values are 0 to 9999.

e CI32_wordOrder is the Word Order of CI32 points (0=LSW first, 1=MSW
first).

e Al16_number is the number of 16-bit analog input points. Valid values are 0O
to 9999.

e All6_startAddress is the DNP address of the first Al16 point.
e All16_reportingMethod determines how 16-bit analog changes are reported.

e Set this to FIRST_VALUE to report the value of the first change event
measured.

e Setthis to CURRENT_VALUE to report the value of the latest change event
measured.

o Al16_bufferSize is the number of events in the 16-bit analog input change
buffer. Valid values are 0 to 9999.

e AI32_number is the number of 32-bit analog input points. Valid values are 0
to 9999.

o AI32_startAddress is the DNP address of the first Al32 point.
o AI32_reportingMethod determines how 32-bit analog changes are reported.

e Set this to FIRST_VALUE to report the value of the first change event
measured.

e Set this to CURRENT_VALUE to report the value of the latest change event
measured.

Document (Version 1.61) 5/19/2011 602

Structures and Types

e AlI32 bufferSize is the number of events in the 32-bit analog input change
buffer. Valid values are 0 to 9999.

e AlI32_wordOrder is the Word Order of Al32 points (0O=LSW first, 1=MSW first)
e AISF_number is the number of short float Analog Inputs.
e AISF_startAddress is the DNP address of first AISF point.

e AISF_reportingMethod is the event reporting method, Change Of State or
Log All Events.

e AISF_bufferSize is the short float Analog Input Event Buffer Size.

e AISF_wordOrder is the word order of AISF points (0=LSW first, 1=MSW first)
*/

e AO016_number is the number of 16-bit analog output points. Valid values are
0 to 9999.

e AOl6_startAddress is the DNP address of the first AO16 point.

e AO032 number is the number of 32-bit analog output points. Valid values are
0 to 9999.

e AO032_startAddress is the DNP address of the first AO32 point.

e AO32_wordOrder is the Word Order of AO32 points (0O=LSW first, 1=MSW
first)

e AOSF_number is the number of short float Analog Outputs.
e AOSF_startAddress is the DNP address of first AOSF point.

e AOSF_wordOrder is the Word Order of AOSF points (0=LSW first, 1=MSW
first).

e autoUnsolicitedClass1 enables or disables automatic Unsolicited reporting of
Class 1 events.

e holdTimeClassl is the maximum period to hold Class 1 events before
reporting

e holdCountClassl is the maximum number of Class 1 events to hold before
reporting.

e autoUnsolicitedClass2 enables or disables automatic Unsolicited reporting of
Class 2 events.

e holdTimeClass2 is the maximum period to hold Class 2 events before
reporting

e holdCountClass?2 is the maximum number of Class 2 events to hold before
reporting.

e autoUnsolicitedClass3 enables or disables automatic Unsolicited reporting of
Class 3 events.

Document (Version 1.61) 5/19/2011 603

Structures and Types

e holdTimeClass3 is the maximum period to hold Class 3 events before
reporting.

e HoldCountClass3 is the maximum number of Class 3 events to hold before
reporting.

e EnableUnsolicitedOnStartup enables or disables unsolicited reporting at
start-up.

e SendUnsolicitedOnStartup sends an unsolicited report at start-up.

o level2Compliance reports only level 2 compliant data types (excludes floats,
AO-32).

e MasterAddressCount is the number of master stations.
e masterAddress|[8] is the number of master station addresses.

¢ MaxEventsinResponse is the maximum number of change events to include
in read response.

¢ PSTNDialAttempts is the maximum number of dial attempts to establish a
PSTN connection.

o PSTNDialTimeout is the maximum time after initiating a PSTN dial sequence
to wait for a carrier signal.

o PSTNPauseTime is the pause time between dial events.

¢ PSTNOnlinelnactivity is the maximum time after message activity to leave a
PSTN connection open before hanging up.

e PSTNDialType is the dial type: tone or pulse dialling.

¢ modemlinitString[64] is the initialization string to send to the modem.

dnpCounterinput

The dnpCounterinput type describes a DNP counter input point. This type is used
for both 16-bit and 32-bit points.

typedef struct dnpCounterInput type

{
UINT16 modbusAddress;
UCHAR class;
UINT32 threshold;

} dnpCounterInput;
o modbusAddress is the address of the Modbus register number associated
with the point.

e class is the reporting class for the object. It may be set to CLASS 1,
CLASS_2 or CLASS_3.

e threshold is the amount by which the counter input value needs to change
before an event will be reported for the point.

Document (Version 1.61) 5/19/2011 604

Structures and Types

dnpMasterPoll
The dnpMasterPoll type describes an entry in the DNP Master Poll Table.

typedef struct dnpMasterPoll type
{

UINT16 dnpRemoteStationAddress;
UINT16 classOPollRate;

UINT16 classlPollRate;

UINT16 class2PollRate;

UINT16 class3PollRate;

UINT16 timeSyncRate;

UINT16 unsolicitedResponseFlags;
} dnpMasterPoll;

o dnpRemoteStationAddress is the remote DNP station address.
o classOPollRate is the Class 0 Polling rate.

¢ classl1PollRate is the Class 1 Polling rate.

¢ class2PollRate is the Class 2 Polling rate.

o class3PollRate is the Class 3 Polling rate.

e timeSyncRate is the time synchronization rate.

e unsolicitedResponseFlags are the DNP Master Unsolicited Response enable
flags.

DNP Master Poll table Extended Entry

The dnpMasterPollEx type describes an extended entry in the DNP Master Poll
Table.

typedef struct dnpMasterPollTableEx type
{
INT16 dnpRemoteStationAddress;
INT16 classOPollRate;
INT16 classlPollRate;
INT16 class2PollRate;
INT16 class3PollRate;
INT1l6 timeSyncRate;
UINT16 unsolicitedResponseFlags;
UINT16 classOPollOffset;
UINT16 classlPollOffset;
UINT16 class2PollOffset;
UINT16 class3PollOffset;
UINT16 timeSyncOffset;
INT16 classlMaxEvents;
INT16 class2MaxEvents;
INT16 class3MaxEvents;
UINT16 savellINFlagsRegister;
} dnpMasterPollTableEx;

Document (Version 1.61) 5/19/2011 605

Structures and Types

e dnpRemoteStationAddress is the remote DNP station address.

o classOPollRate is the Class 0 Polling rate.

o classlPollRate is the Class 1 Polling rate.

e class2PollRate is the Class 2 Polling rate.

e class3PollRate is the Class 3 Polling rate.

e timeSyncRate is the time synchronization rate.

¢ unsolicitedResponseFlags are the DNP Master Unsolicited Response enable

flags.

e TimeSyncRate is the time synchronisation rate.

e unsolicitedResponseFlags are the flags for enabling Unsolicited Responses.

¢ classOPollOffset is the offset for Class 0 Polling.

e classlPollOffset is the offset for Class 1 Polling.

o class2PollOffset is the offset for Class 2 Polling.

¢ class3PollOffset is the offset for Class 3 Polling.

¢ timeSyncOffset is the offset for time synchronization.

o classlMaxEvents is the maximum limit of Class 1 events in poll response.
o class2MaxEvents is the maximum limit of Class 2 events in poll response.

¢ class3MaxEvents is the maximum limit of Class 3 events in poll response.

¢ savellNFlagsRegister.

dnpPointType

The enumerated type DNP_POINT_TYPE includes all allowed DNP data point

types.

typedef enum dnpPointType

{
BI_POINT=0, /*
AIl6 POINT, /*
AI32 POINT, /*
AISF POINT, /*
AILF POINT, /*
CI16_POINT, /*
CI32 POINT, /*
BO POINT, /*
AO16 POINT, /*
2032 POINT, /*
AOSF_POINT, /*
AOLF POINT /*

} DNP_POINT TYPE;

binary input */

16 bit analog input */

32 bit analog input */
short float analog input */
long float analog input */
16 bit counter output */

32 bit counter output */
binary output */

16 bit analog output */

32 bit analog output */
short float analog output */
long float analog output */

Document (Version 1.61) 5/19/2011

606

Structures and Types

dnpProtocolStatus

The dnpPrototocolStatus structure contains status information for DNP message
transactions.

struct dnpPrototocolStatus {

dnpRoutingTableEx

UINT16 successes;

UINT16 failures;

UINT16 failuresSincelLastSuccess;
UINT16 formatErrors;

UINT16 framesReceived;

UINT16 framesSent;

UINT16 messagesReceived;

UINT16 messagesSent;

successes is the number of successful DNP message transactions

failures is the total number of failed DNP message transactions
failuresSinceLastSuccess is the number of failures since last the success
formatErrors is the number of messages received with bad message data.
framesReceived is the number of DNP frames (message packets) received.
framesSent is the number of DNP frames (message packets) sent.
messagesReceived is the number of DNP messages received.
messagesSent is the number of DNP messages sent.

commandStatus is the status of the last protocol command sent.

The dnpRoutingTableEx type describes an entry in the DNP Routing Table. The
DNP Routing Table is a list of routes, which are maintained in ascending order of
DNP addresses.

typedef struct RoutingTableEx type

{

UINT16 address; // station address
UINT16 comPort; // com port interface
UINT16 retries; // number of retries
UINT16 timeout; // timeout in milliseconds
IP_ADDRESS ipAddress; // IP address

} dnpRoutingTableEx;

address is the DNP station address of the destination station.

comPort specifies the communications port interface. Allowed values are :
1 = serial port com1
2 = serial port com2
3 = serial port com3

Document (Version 1.61) 5/19/2011 607

Structures and Types

103 = DNP over TCP, using LAN port
104 = DNP over UDP, using LAN port

e retries is the number of times the data link layer will retry the message in the
event of a failure.

e timeout is the timeout in milliseconds.

ipAddress is the IP address of the destination station.

DNP_RUNTIME_STATUS

The dnpRuntimeStatus type describes a structure for holding status information
about DNP event log buffers.

/* DNP Runtime Status */
typedef struct dnp runtime status

{

UINT16 eventCountBI; /* number of binary input events
*/

UINT16 eventCountCIlé6; /* number of 16-bit counter events
*/

UINT16 eventCountCI32; /* number of 32-bit counter events
*/

UINT16 eventCountAIl6; /* number of 16-bit analog input
events */

UINT16 eventCountAI32; /* number of 32-bit analog input
events */

UINT16 eventCountAISF; /* number of short floating-point
analog input events */

UINT16 eventCountClassl; /* number of class 1 events */

UINT16 eventCountClass2; /* number of class 2 events */
UINT16 eventCountClass3; /* number of class 3 events */
} DNP_RUNT IME_S TATUS;

e eventCountBIl is number of binary input events.

e eventCountCl16 is number of 16-bit counter events.

e eventCountCI32 is number of 32-bit counter events.

¢ eventCountAll6 is number of 16-bit analog input events.

e eventCountAl32 is number of 32-bit analog input events.

e EventCountAISF is number of short floating-point analog input events.
e eventCountClassl is the class 1 event counter.

e eventCountClass? is the class 2 event counter.

e eventCountClass3 is the class 3 event counter.

envelope

The envelope type is a structure containing a message envelope. Envelopes are
used for inter-task communication.

Document (Version 1.61) 5/19/2011 608

Structures and Types

HART_COMMAND

HART_DEVICE

typedef struct envelope type {

UINT32 source; // sender task ID
UINT32 destination; // destination task ID
UINT32 type; / type of message
UINT32 data; // the message data
}

envelope;

¢ link is a pointer to the next envelope in a queue. This field is used by the
RTOS. Itis of no interest to an application program.

e source is the task ID of the task sending the message. This field is specified
automatically by the send_message function. The receiving task may read
this field to determine the source of the message.

e destination is the task ID of the task to receive the message. It must be
specified before calling the send_message function.

o type specifies the type of data in the data field. It may be MSG_DATA,
MSG_POINTER, or any other value defined by the application program. This
field is not required.

e data is the message data. The field may contain a datum or pointer. The
application program determines the use of this field.

The HART_COMMAND type is a structure containing a command to be sent to a
HART slave device. The command field contains the HART command number.
The length field contains the length of the data string to be transmitted (the byte
count in HART documentation). The data field contains the data to be sent to the
slave.

typedef struct hartCommand t

{

UINT16 command;

UINT16 length;

CHAR data [DATA SIZE];

}
HART COMMAND;

e command is the HART command number.
e length is the number of characters in the data string.

o data[DATA_SIZE] is the data field for the command.

The HART_DEVICE type is a structure containing information about the HART
device. The information is read from the device using command 0 or command
11. The fields are identical to those read by the commands. Refer to the
command documentation for more information.

typedef struct hartDevice t
{

Document (Version 1.61) 5/19/2011 609

Structures and Types

HART_RESPONSE

HART_RESULT

UCHAR manufacturerID;
UCHAR manufacturerDeviceType;
UCHAR preamblesRequested;
UCHAR commandRevision;
UCHAR transmitterRevision;
UCHAR softwareRevision;
UCHAR hardwareRevision;
UCHAR flags;

UINT32 devicelD;

}

HART DEVICE;

The HART_RESPONSE type is a structure containing a response from a HART
slave device. The command field contains the HART command number. The
length field contains the length of the data string to be transmitted (the byte count
in HART documentation). The data field contains the data to be sent to the slave.

typedef struct hartResponse t
{
UINT1l6 code;
UINT16 length;
CHAR * pData;
}
HART RESPONSE;

e response is the response code from the device.
e length is the length of response data.

o data|[DATA_SIZE] is the data field for the response.

The HART_RESULT enumeration type defines a list of results of sending a
command.

typedef enum hartResult t
{
HR NoModuleResponse=0,
HR CommandPending,
HR CommandSent,
HR Response,
HR NoResponse,
HR WaitTransmit
}
HART RESULT;

e HR_NoModuleResponse returns no response from HART modem module.
¢ HR_CommandPending returns command ready to be sent, but not sent.
¢ HR_CommandSent returns command sent.

¢ HR_Response returns response received.

Document (Version 1.61) 5/19/2011 610

Structures and Types

e HR_NoResponse returns no response after all attempts.

¢ HR_WaitTransmit returns modem is not ready to transmit.

HART_SETTINGS

The HART_SETTINGS type is a structure containing the configuration for the
HART modem module. The useAutoPreamble field indicates if the number of
preambles is set by the value in the HART_SETTINGS structure (FALSE) or the
value in the HART_DEVICE structure (TRUE). The deviceType field determines
if the 5904 modem is a HART primary master or secondary master device
(primary master is the recommended setting).

typedef struct hartSettings t

{

UINT16 attempts;

UINT16 preambles;

BOOLEAN useAutoPreamble;
UINT16 deviceType;

}
HART SETTINGS;

e attempts is the number of command attempts (1 to 4).
e preambles is the number of preambles to send (2 to 15).
e useAutoPreamble is a flag to use the requested preambles.

o deviceType is the type of HART master (1 = primary; O = secondary).

HART_VARIABLE

The HART_VARIABLE type is a structure containing a variable read from a
HART device. The structure contains three fields that are used by various
commands. Not all fields will be used by all commands. Refer to the command
specific documentation.

typedef struct hartVariable t
{

float value;
UINT16 units;
UINT16 variableCode;

}
HART VARIABLE;

e value is the value of the variable.
e units are the units of measurement.

e variableCode is the transmitter specific variable ID.

IO _CONFIG Structure
The I0_CONFIG structure contains 1/0 System configuration data.

typedef struct{

UINT16 slaveAddress;
UINT16 dataRate;

Document (Version 1.61) 5/19/2011 611

Structures and Types

UINT16 numberOfAttempts;
UINT16 ledPower;

}O_CONFIG;
e slaveAddress returns the I°C address, 0 = slave mode disabled

e dataRate returns the I/O bus data rate 0 = 100 kHz ;1 = 150 kHz; 2 = 200
kHz; 3 = 250 kHz; 4 = 300 kHz; 5 = 350 kHz; 6 = 400 kHz (default); 7 = 450
kHz;

e numberOfAttempts returns the number of attempts, 1 to 4 (default = 1)

e ledPower returns the led power state, 0 = off, 1 = on (default)

IO_STATUS Structure

The I0_STATUS structure contains status information from the last scan of a
specific /0 module.

typedef struct{
UINT1l6 commStatus;
UINT32 scanTime;
}IO0_STATUS;

The I0_STATUS structure contains the following data fields.
e commStatus returns the communication status, O=failed, 1=success

e scanTime returns time of last scan in milliseconds according to the stop
watch clock

IP_ADDRESS

The IP Address structure defines an IPv4 address. This is the standard |IPv4
address structure used by sockets APIs and is also used by Modbus/TCP C++
Tools functions .

struct in_addr
{
u long s _addr;
b
typedef struct in addr IP ADDRESS;

e S _addris a 32bit netis/hostid address in network byte order.

IP_CONNECTION_SUMMARY

The IP Connection Summary structure summarizes the number and type of
active TCP/IP connections.

typedef struct st connectionSummary
{
UINT32 slaveConnections;
UINT32 masterConnections;
UINT32 unusedConnections;

}

Document (Version 1.61) 5/19/2011 612

Structures and Types

IP CONNECTION SUMMARY;

e slaveConnections is the number of active slave TCP/IP connections.
e masterConnections is the number of active master TCP/IP connections.

e unusedConnections is the number of unused TCP/IP connections available.

IP_CONFIG_MODE Enumeration

The IP_CONFIG_MODE enumeration defines IP configuration options. The PPP
options are not supported on SCADAPack 350 or 4203 controllers.

typedef enum ipConfigMode t

{
IPConfig CtrlSettings
IPConfig GatewayOnLAN
IPConfig GatewayOnComl
IPConfig GatewayOnCom2
IPConfig GatewayOnCom3
IPConfig GatewayOnCom4

1 | T
S s~ S~ S

S wWw Nk O o

}
IP_CONFIG MODE;

¢ IPConfig_CtrISettings configures IP settings from controller settings. Default
gateway is on LAN subnet. IP_SETTINGS defines gateway address. Same
as IPConfig_GatewayOnLAN.

¢ |IPConfig_GatewayOnLAN configures IP settings from controller settings.
Default gateway is on LAN subnet. IP_SETTINGS defines gateway address.
Same as IPConfig_CtrlSettings.

¢ IPConfig_GatewayOnCom1 configures IP settings from controller settings.
Default gateway is the com1 PPP connection.

e |IPConfig_GatewayOnCom2 configures IP settings from controller settings.
Default gateway is the com2 PPP connection.

¢ IPConfig_GatewayOnCom3 configures IP settings from controller settings.
Default gateway is the com3 PPP connection.

¢ |IPConfig_GatewayOnCom4 configures IP settings from controller settings.
Default gateway is the com4 PPP connection.

IP_PROTOCOL_SETTINGS

The Modbus IP Protocol Settings structure defines settings for one of the
Modbus IP communication protocols.

typedef struct st ipProtocolSettings
{

UINT16 portNumber;

UINT32 masterIdleTimeout;
UINT32 serverIdleTimeout;
BOOLEAN serverkEnabled;

Document (Version 1.61) 5/19/2011 613

Structures and Types

}
IP_PROTOCOL SETTINGS;

e portNumber is the TCP or UDP port number for the Modbus IP of DNP IP
protocol. Valid port numbers are 1 to 65535.

o masterldleTimeout is the length of time, in seconds, that a master connection
will wait for the user to send the next command before ending the
connection. This allows the slave device to free unused connections while
the master application may retain the connection allocation. Setto 0 to
disable timeout and let the application close the connection. Valid values are
any 32-bit integer. Default value is 10 seconds. TCP protocols only. Not used
by UDP protocols.

o serverldleTimeout is the length of time, in seconds, that a server connection
will wait for a message before ending the connection. Set to 0 to disable
timeout and let remote client close connection. Valid values are any 32-bit
integer. Default value is 250 seconds. TCP protocols only. Not used by UDP
protocols.

e serverEnabled is the enable server control flag.

IP_PROTOCOL_TYPE

IP_SETTINGS

The IP_PROTOCOL_TYPE enumerated type defines TCP/IP protocols
supported by the SCADAPack 350.

typedef enum ipProtocol t
{
PP None = 0,
IPP ModbusTcp,
IPP ModbusRtuOverUdp,
IPP ModbusAsciiOverUdp,
IPP DnpOverTcp,
IPP DnpOverUdp
}
IP_PROTOCOL_TYPE;

The IP Settings structure defines IP settings for a communication interface
installed on the TCP/IP stack.

typedef struct st IPSettings
{

IP CONFIG MODE ipConfigMode;
UINT32 ipAddress|[4];
UINT32 gateway([4];
UINT32 netMask;
UCHAR ipVersion;

}
IP_SETTINGS;

Document (Version 1.61) 5/19/2011 614

Structures and Types

e ipConfigMode are the IP configuration options. See the IP_CONFIG_MODE
enumeration for values supported.

e ipAddress is the IP address. Only the first 32-bit value in this array is
supported and contains IP address in form of 32-bit unsigned integer. For
example IP address 172.016.017.018 will be represented with following 32-
bit unsigned number:

172 + 16x256 + 17x256x256 + 18x256x256x256 = 303108268
e gateway is the network gateway. Only the first 32-bits are supported.
e netMask is the subnet mask.

e ipVersion is the IP version. Only the value 4 is supported for IP version 4.

ledControl_tag

The ledControl_tag structure defines LED power control parameters.

struct ledControl tag
{
UINT1l6 state;
UINT16 time;
bi
e state is the default LED state. It is either the LED_ON or LED_OFF macro.

e time is the period, in minutes, after which the LED power returns to its default
state.

MASTER_MESSAGE
The MASTER_MESSAGE structure defines a Modbus serial master message.

typedef struct st masterMessage

{

FILE * stream; // serial port
UINT16 function; // Modbus function code
UINT16 slaveStation; // slave station address
UINT16 slaveRegister; // slave Modbus register
UINT16 masterRegister; // master Modbus register
UINT16 length; // number of registers
UINT16 timeout; // time to wait for response in tenths
of seconds
BOOLEAN eventRequest; // signal event on completion
(optional)
UINT32 eventNo; // event to signal when timeout or

response received (optional)

}
MASTER MESSAGE;

e stream is the serial port to send the command message. Valid values are:
coml, com2, and com3.

o function specifies the Modbus function code. Refer to the communication
protocol manual for supported function codes.

Document (Version 1.61) 5/19/2011 615

Structures and Types

o slaveStation specifies the address of the slave station.

e slaveRegister specifies the location of data in the slave station. Depending
on the Modbus function code, data may be read or written at this location.

e masterRegister specifies the location of data in the master (this controller).
Depending on the function code, data may be read or written at this location.

¢ length specifies the number of registers.
e timeout specifies how long in tenths of seconds to wait for a response.

e eventRequest requests an event to be signaled on completion. If set to
TRUE, the eventNo will be signaled when the response is received or a
timeout has occurred. Set to FALSE to disable this feature.

¢ eventNo specifies the event to signal on completion. This field is only used if
eventRequest is set to TRUE.

MODBUS_CMD_STATUS

The master command status codes have been changed from macros to the
enumeration type MODBUS_CMD_STATUS. The previously supported status
codes have the same value as they did as a macro.

typedef enum modbusCmdStatus t

{
MM SENT =0,
MM RECEIVED =
MM NO MESSAGE
MM BAD FUNCTION
MM BAD SLAVE
MM BAD ADDRESS
MM BAD LENGTH =
MM PROTOCOL NOT SUPPORTED = 7,

~

[]
oUW N
~ S

~

~

~

// additional master command status codes used for Modbus/TCP
master messaging only

MM CONNECTING = 8,

MM CONNECTED =9,

MM _CONNECT TIMEOUT = 10,

MM _SEND ERROR =11,

MM RSP TIMEOUT 12,

MM RSP ERROR 13,

MM_DISCONNECTING 14,

MM DISCONNECTED = 15,

MM _BAD CONNECT_ ID = 16,

MM _BAD PROTOCOL_TYPE =17,

MM BAD IP ADDRESS = 18,

MM _BUSY =19,

MM_ENDED 20,

MM CONNECT ERROR = 21,

MM _NO MORE_CONNECTIONS = 22,

MM BAD CONNECTION TYPE = 23,
MM_EXCEPTION_FUNCTION = 24,
MM EXCEPTION ADDRESS = 25,

MM_EXCEPTION_VALUE = 26,

Document (Version 1.61) 5/19/2011 616

Structures and Types

MM QUEUE_FULL = 27,
MM _STATIONS ARE EQUAL = 28,

MM _EXCEPTION DEVICE FAILURE= 29,

MM _ EXCEPTION DEVICE BUSY = 30

}
MODBUS CMD_STATUS;

e MM_SENT returns a valid command has been sent

e MM_RECEIVED returns response was received.

e MM_NO_MESSAGE returns no message was sent.

¢ MM_BAD_FUNCTION returns invalid function code used

¢ MM_BAD_SLAVE returns invalid slave station address used
¢ MM_BAD_ADDRESS returns invalid database address used
e MM_BAD_LENGTH returns invalid message length

e MM_PROTOCOL_NOT_SUPPORTED returns selected protocol is not
supported.

¢ MM_CONNECTING returns connecting to slave IP address.
e MM_CONNECTED returns connected to slave IP address.

e MM_CONNECT_TIMEOUT returns timeout while connecting to slave IP
address.

¢ MM_SEND_ERROR returns TCP/IP error has occurred while sending
message.

¢ MM_RSP_TIMEOUT returns timeout has occurred waiting for response.

¢ MM_RSP_ERROR returns slave has closed connection; incorrect response;
or, incorrect response length.

¢ MM_DISCONNECTING returns disconnecting from slave IP address is in
progress.

¢ MM_DISCONNECTED returns connection to slave IP address is
disconnected.

e MM_BAD_CONNECT_ID returns invalid connection ID.

¢ MM_BAD_PROTOCOL_TYPE returns invalid protocol type.
¢ MM_BAD_IP_ADDRESS returns invalid slave IP address.
e MM_BUSY returns last message is still being processed.

e MM_ENDED returns Master connection has been released. This status is
only reported by the IEC 61131-1 masterIP function block. It is not available
from the mTcpMasterStatus function.

e MM_CONNECT_ERROR returns error while connecting to slave IP address.

Document (Version 1.61) 5/19/2011 617

Structures and Types

e MM_NO_MORE_CONNECTIONS returns no more connections are
available.

e MM_BAD_CONNECTION_TYPE returns invalid connection type used in
mTcpMasterMessage.

e MM_EXCEPTION_FUNCTION Returns master message status:
Modbus slave returned a function exception

e MM_EXCEPTION_ADDRESS Returns master message status:
Modbus slave returned an address exception

e MM_EXCEPTION_VALUE Returns master message status: Modbus slave
returned a value exception

¢ MM_QUEUE_FULL Returns master message status: Serial transmit queue is
full

e MM_STATIONS ARE_EQUAL Returns master message status: Master and
slave stations are equal. They must be different.

ModemInit
The Modemlnit structure specifies modem initialization parameters for the
modemilnit function.
struct ModemInit
{
FILE * port;
CHAR modemCommand[MODEM CMD MAX LEN + 2];
bi
e portis the serial port where the modem is connected.
e modemCommand is the initialization string for the modem. The characters
AT will be prefixed to the command, and a carriage returned suffixed to the
command when it is sent to the modem. Refer to the section Modem
Commands for suggested command strings for your modem.
ModemSetup

The ModemSetup structure specifies modem initialization and dialing control
parameters for the modembDial function.

struct ModemSetup
{
FILE * port;
UINT16 dialAttempts;
UINT16 detectTime;
UINT16 pauseTime;
UINT16 dialmethod;
CHAR modemCommand [MODEM CMD MAX LEN + 2];
CHAR phoneNumber [PHONE NUM MAX LEN + 2];
bi

Document (Version 1.61) 5/19/2011 618

Structures and Types

e portis the serial port where the modem is connected.

o dialAttempts is the number of times the controller will attempt to dial the
remote controller before giving up and reporting an error.

e detectTime is the length of time in seconds that the controller will wait for
carrier to be detected. It is measured from the start of the dialing attempt.

e pauseTime is the length of time in seconds that the controller will wait
between dialing attempts.

o dialmethod selects pulse or tone dialing. Set dialmethod to O for tone dialing
or 1 for pulse dialing.

o modemCommand is the initialization string for the modem. The characters
AT will be prepended to the command, and a carriage returned appended to
the command when it is sent to the modem. Refer to the section Modem
Commands for suggested command strings for your modem.

¢ phoneNumber is the phone number of the remote controller. The characters
ATD and the dialing method will be prepended to the command, and a
carriage returned appended to the command when it is sent to the modem.

MTCP_CONFIGURATION

The Modbus/TCP Settings structure defines settings for the Modbus/TCP
communication protocol.

typedef struct st ModbusTcpSettings
{

UINT16 portNumber;

UINT32 masterIdleTimeout;
UINT32 slaveRecvTimeout;
UINT32 maxServerConnections;

}
MTCP_CONFIGURATION;

e portNumber is the Modbus/TCP protocol port number. Valid port numbers
are 0 to 65535. Selecting port number 65535 allows a server to listen for
incoming connection requests on all the ports. Default port number is 502.

o masterldleTimeout is the length of time, in seconds, that a master connection
will wait for the user to send the next command before ending the
connection. Set to 0 to disable timeout and let application close the
connection. Valid values are any 32-bit integer. Default value is 10 seconds.

e slaveRecvTimeout is the length of time, in seconds, that a server connection
will wait for a message before ending the connection. Set to 0 to disable
timeout and let remote client close connection. Valid values are any 32-bit
integer. Default value is 10 seconds.

maxServerConnections is the maximum number of connections allowed by the
server at once. Default value is 20.

Document (Version 1.61) 5/19/2011 619

Structures and Types

MTCP_IF_SETTINGS

The Modbus IP Interface Settings structure defines the interface settings when
using any Modbus IP protocol on the specified interface.

typedef struct st MTcpIfSettings
{

UINT16 station;
UCHAR addrMode;
BOOLEAN sfMessaging;

}
MTCP IF SETTINGS;

e station is the Modbus station address for the specified communication
interface. Valid values are 1 to 255 in standard Modbus, 1 to 65534 in
extended Modbus. Default value is 1.

e addrMode is the addressing mode, AM_standard or AM_extended. Default
value is AM_standard.

e SFMessaging is the enable Store and Forward messaging control flag.
Enable store and forward when set to TRUE. Disable store and forward when
set to FALSE. Default value is FALSE.

MTCP_IF_SETTINGS_EX

The Modbus IP Interface Extended Settings structure defines the interface
settings when using any Modbus IP protocol on the specified interface. This
structure includes Enron Modbus support.

typedef struct st MTcpIfSettingsEx type
{

UINT1l6 station;
UCHAR addrMode;
BOOLEAN sfMessaging;
BOOLEAN enronEnabled;
UINT1l6 enronStation;

}
MTCP IF SETTINGS EX;

e station is the Modbus station address for the specified communication
interface. Valid values are 1 to 255 in standard Modbus, 1 to 65534 in
extended Modbus. Default value is 1.

e addrMode is the addressing mode, AM_standard or AM_extended. Default
value is AM_standard.

¢ SFMessaging is the enable Store and Forward messaging control flag.
Enable store and forward when set to TRUE. Disable store and forward when
set to FALSE. Default value is FALSE.

e enronEnabled determines if the Enron Modbus station is enabled. It may be
TRUE or FALSE.

Document (Version 1.61) 5/19/2011 620

Structures and Types

e enronStation is the station address for the Enron Modbus protocol. It is used
if enronEnabled is set to TRUE. Valid values are 1 to 255 for standard
addressing, and 1 to 65534 for extended addressing.

pconfig

The pconfig structure contains serial port settings.

struct pconfig {
UINT1l6 baud;
UINT16 duplex;
UINT16 parity;
UINT16 data bits;
UINT16 stop bits;
UINT1l6 flow_rx;
UINT16 flow tx;
UINT16 type;
UINT16 timeout;
}i

e baud is the communication speed. It is one of the BAUD macros.

e duplexis either the FULL or HALF macro.

e parity is one of NONE, EVEN or ODD macros.

o data_bits is the word length. It is either the DATA7 or DATA8 macro.

e stop_bits in the number of stop bits transmitted. The only supported selection
is the STOP1 macro.

o flow_rx specifies flow control on the receiver. It is either the
RFC_MODBUS_RTU (=ENABLE), or RFC_NONE (=DISABLE). If the
Modbus RTU protocol is used, set flow_rx to RFC_MODBUS_RTU. For the
Modbus ASCII protocol or any other protocol, set flow_rx to RFC_NONE.

o flow_tx specifies flow control on the transmitter. It is either the
TFC_IGNORE_CTS (=ENABLE) or TFC_NONE (=DISABLE) macro. Setting
this parameter to TFC_IGNORE_CTS causes the port to ignore the CTS
signal. Setting this parameter to TFC_NONE causes the port to use the CTS
signal, which is the default setting.

e type specifies the serial port type. It is one of RS232, RS232_MODEM, or
RS485 2WIRE macros.

e timeout is not supported. This setting is ignored and is fixed at 600ms for
backwards compatibility.

PID_DATA

The PID_DATA structure contains data for a PID control calculation. The
structure contains input values, calculation results, and internal data that needs
to be maintained from one execution to the next.

typedef struct pidData type
{

Document (Version 1.61) 5/19/2011 621

Structures and Types

}

/* input values */
float pv;

float sp;

float gain;

float reset;

float rate;

float deadband;
float fullScale;
float zeroScale;
float manualOutput;
UINT32 period;
BOOLEAN autoMode;

/* calculation results */
float output;
BOOLEAN outOfDeadband;

/* historic data values */
float pvN1l;

float pvN2;

float errorNl;

UINT32 lastTime;

PID DATA;

pv is the process value

sp is the set point

gain is the gain

reset is the reset time in seconds

rate is the rate time in seconds

deadband is the deadband

fullScale is the full scale output limit

zeroScale is the zero scale output limit
manualOutput is the manual output value

period is the execution period in milliseconds
autoMode is the auto mode flag: TRUE = auto, FALSE
output is the last output value

outOfDeadband is the error is outside the deadband
pvNL1 is the process value from n-1 iteration

pvN2 is the process value from n-2 iteration

errorN1 is the error from n-1 iteration

lastTime is the time of last execution

= manual

Document (Version 1.61) 5/19/2011

622

Structures and Types

PROTOCOL_SETTINGS

The Extended Protocol Settings structure defines settings for a communication
protocol. This structure differs from the standard settings in that it allows
additional settings to be specified.

typedef struct protocolSettings t

{

UCHAR type;

UINT16 station;
UCHAR priority;
UINT16 SFMessaging;
ADDRESS MODE mode;

}
PROTOCOL_ SETTINGS;

type is the protocol type. It may be one of NO_PROTOCOL, MODBUS_RTU,
or MODBUS_ASCII, AB_FULL_BCC, AB_FULL_CRC, AB_HALF_BCC,
DNP or AB_HALF_CRC macros. To set the remaining settings use the
function mTcpSetinterfaceEx.

station is the station address of the controller. Each serial port may have a
different address. The valid values are determined by the communication
protocol. This field is not used if the protocol type is NO_PROTOCOL.

priority is the task priority of the protocol task. This field is not used if the
protocol type is NO_PROTOCOL.

SFMessaging is the enable Store and Forward messaging control flag.

ADDRESS_MODE is the addressing mode, standard or extended.

PROTOCOL_SETTINGS_EX Type

This structure contains serial port protocol settings including Enron Modbus
support.

typedef struct protocolSettingsEx t

{

UCHAR type;

UINT1l6 station;

UCHAR priority;
UINT16 SFMessaging;
ADDRESS_MODE mode;
BOOLEAN enronEnabled;
UINT16 enronStation;

}
PROTOCOL SETTINGS EX;

type is the protocol type. It may be one of NO_PROTOCOL, MODBUS_RTU,
or MODBUS_ASCII, AB_FULL_BCC, AB_FULL_CRC, AB_HALF_BCC,
DNP or AB_HALF_CRC macros. To set the remaining settings use the
function mTcpSetinterfaceEx.

Document (Version 1.61) 5/19/2011 623

Structures and Types

prot_settings

prot_status

station is the station address of the controller. Each serial port may have a
different address. The valid values are determined by the communication
protocol. This field is not used if the protocol type is NO_PROTOCOL.

priority is the task priority of the protocol task. This field is not used if the
protocol type is NO_PROTOCOL.

SFMessaging is the enable Store and Forward messaging control flag.
ADDRESS_MODE is the addressing mode, AM_standard or AM_extended.

enronEnabled determines if the Enron Modbus station is enabled. It may be
TRUE or FALSE.

enronStation is the station address for the Enron Modbus protocol. It is used
if enronEnabled is set to TRUE. Valid values are 1 to 255 for standard
addressing, and 1 to 65534 for extended addressing.

The Protocol Settings structure defines settings for a communication protocol.
This structure differs from the extended settings in that it allows fewer settings to
be specified.

struct prot settings {

UCHAR type;
UCHAR station;

UCHAR priority;

UINT16 SFMessaging;

}i

type is the protocol type. It may be one of NO_PROTOCOL, MODBUS_RTU,
MODBUS_ASCII, AB_FULL_BCC, AB_HALF_BCC, AB_FULL_CRC,
AB_HALF_CRC, DNP macros. To set the remaining settings use the function
mTcpSetinterfaceEx.

station is the station address of the controller. Each serial port may have a
different address. The valid values are determined by the communication
protocol. This field is not used if the protocol type is NO_PROTOCOL.

priority is the task priority of the protocol task. This field is not used if the
protocol type is NO_PROTOCOL.

SFMessaging is the enable Store and Forward messaging control flag.

The prot_status structure contains protocol status information.

struct prot status {

UINT16 command errors;
UINT16 format errors;
UINT16 checksum errors;
UINT16 cmd received;
UINT16 cmd sent;

UINT16 rsp received;
UINT16 rsp_ sent;

Document (Version 1.61) 5/19/2011 624

Structures and Types

UINT16 command;

INT16 task id;

UINT16 stored messages;

UINT16 forwarded messages;

bi

command_errors is the number of messages received with invalid command
codes.

format_errors is the number of messages received with bad message data.
checksum_errors is the number of messages received with bad checksums.
cmd_received is the number of commands received.

cmd_sent is the number of commands sent by the master_message function.

rsp_received is the number of responses received by the master_message
function.

rsp_sent is the number of responses sent.
command is the status of the last protocol command sent.

task_id is the ID of the protocol task. This field is used by the set_protocol
function to control protocol execution.

stored_messages is the number of messages stored for forwarding.

forwarded_messages is the number of messages forwarded.

PORT_CHARACTERISTICS

The PORT_CHARACTERISTICS type is a structure that contains serial port
characteristics.

typedef struct portCharacteristics tag {

UINT1l6 dataflow;

UINT16 buffering;
UINT16 protocol;

UINT32 options;

} PORT_CHARACTERI STICS;

dataflow is a bit mapped field describing the data flow options supported on
the serial port. ANDing can isolate the options with the
PC_FLOW_RX_RECEIVE_STOP, PC_FLOW_RX_XON_XOFF,
PC_FLOW_TX_IGNORE_CTS or PC_FLOW_TX_XON_XOFF macros.

buffering describes the buffering options supported. No buffering options are
currently supported.

protocol describes the protocol options supported. The macro,
PC_PROTOCOL_RTU_FRAMING is the only option supported.

options describes additional options supported. No additional options are
currently supported.

Document (Version 1.61) 5/19/2011 625

Structures and Types

pstatus

READSTATUS

The pstatus structure contains serial port status information.

struct pstatus {

UINT16 framing;

UINT16 parity;

UINT16 c_overrun;
UINT16 b overrun;
UINT16 rx buffer size;
UINT16 rx buffer used;
UINT16 tx buffer size;
UINT16 tx buffer used;
UINT16 io lines;

b

framing is the number of received characters with framing errors.
parity is the number of received characters with parity errors.
c_overrun is the number of received character overrun errors.
b_overrun is the number of receive buffer overrun errors.
rx_buffer_size is the size of the receive buffer in characters.
rx_buffer_used is the number of characters in the receive buffer.
tx_buffer_size is the size of the transmit buffer in characters.
tx_buffer_used is the number of characters in the transmit buffer.

io_lines is a bit mapped field indicating the status of the 1/O lines on the serial
port. The values for these lines differ between serial ports (see tables below).
ANDing can isolate the signals with the SIGNAL_CTS, SIGNAL_DCD,
SIGNAL_OH, SIGNAL_RING or SIGNAL_VOICE macros.

The READSTATUS enumerated type indicates the status of an I°C bus message
read and may have one of the following values.

enum ReadStatus {

RS success,
RS selectFailed
b

typedef enum ReadStatus READSTATUS;

RS_success returns read was successful.

RS_selectFailed returns slave device could not be selected

Document (Version 1.61) 5/19/2011 626

Structures and Types

routingTable

The routingTable structure type describes an entry in the DNP Routing Table.
This structure can be used with IP routing table entries but it cannot set the IP
address. Use the dnpRoutingTableEx structure instead.

The DNP Routing Table is a list of routes, which are maintained in ascending
order of DNP addresses.

typedef struct RoutingTable type
{

UINT16 address; // station address

UINT16 comPort; // com port interface
UINT16 retries; // number of retries
UINT16 timeout; // timeout in milliseconds

} routingTable;

e address is the DNP station address of the destination station.

e comPort specifies the communications port interface. Allowed values are :
1 = serial port com1
2 = serial port com2
3 = serial port com3
4 = serial port com4
103 = DNP over TCP, using LAN port
104 = DNP over UDP, using LAN port

e retries is the number of times the data link layer will retry the message in the
event of a failure.

e timeout is the timeout in milliseconds.

SF_TRANSLATION

The SF_TRANSLATION structure contains Store and Forward Messaging
translation information. This is used to define an address and port translation.

typedef struct st SFTranslationMTcp
{

COM_INTERFACE slaveInterface; // slave interface type

UINT16 slaveStation; // slave station address

COM_ INTERFACE forwardInterface; // forwarding interface
type

UINT16 forwardStation; / forwarding
station address

IP_ADDRESS forwardIPAddress; // forwarding IP address

}
SF_TRANSLATION;

e slavelnterface is the communication interface, which receives the slave
command message. Valid interface types are: 1 = coml, 2 =com2, 3 =
com3, 4= com4, 100 = Ethernetl.

Document (Version 1.61) 5/19/2011 627

Structures and Types

e slaveStation is the station address used in the slave command message.
Valid address range is: 0 to 255 in standard Modbus, 0 to 65534 in extended
Modbus. 65535 = entry cleared. This station address must be different from
the station address assigned to the slavelnterface.

e forwardInterface is the communication interface from which to forward the
command message, as master. Valid interface types are: 1 =coml, 2 =
com2, 3 = com3, 4= com4, 100 = Modbus/TCP network, 101 = Modbus RTU
over UDP network, 102 = Modbus ASCII over UDP network.

o forwardStation is the station address of the remote slave device to forward
the command message to. Valid address range is: 0 to 255 in standard
Modbus, 0 to 65534 in extended Modbus. 65535 = entry cleared. This station
address must be different from the station address assigned to the
forwardinterface.

¢ forwardIPAddress is the IP address of the remote slave device to forward a
Modbus IP command message to. Set to zero if not applicable.

SF_TRANSLATION_EX

The SF_TRANSLATION_EX structure contains Store and Forward Messaging
translation information. This is used to define an address and port translation with
a timeout.

typedef struct st SFTranslationEx
{

COM_INTERFACE slavelnterface; // slave interface type

UINT16 slaveStation; // slave station address

COM_ INTERFACE forwardInterface; // forwarding interface
type

UINT16 forwardStation; // forwarding
station address

IP_ADDRESS forwardIPAddress; // forwarding IP address

UINT16 timeout; //
time-out

}
SF_TRANSLATION EX;

e slavelnterface is the communication interface which receives the slave
command message. Valid interface types are: 1 = coml, 2 =com2, 3 =
com3, 100 = Ethernetl.

e slaveStation is the station address used in the slave command message.
Valid address range is: 0 to 255 in standard Modbus, 0 to 65534 in extended
Modbus. 65535 = entry cleared. This station address must be different from
the station address assigned to the slavelnterface.

e forwardInterface is the communication interface from which to forward the
command message, as master. Valid interface types are: 1 =coml, 2 =
com2, 3 =com3, 100 = Modbus/TCP network, 101 = Modbus RTU over UDP
network, 102 = Modbus ASCII over UDP network.

Document (Version 1.61) 5/19/2011 628

Structures and Types

o forwardStation is the station address of the remote slave device to forward
the command message to. Valid address range is: 0 to 255 in standard
Modbus, 0 to 65534 in extended Modbus. 65535 = entry cleared. This station
address must be different from the station address assigned to the
forwardinterface.

o forwardIPAddress is the IP address of the remote slave device to forward a
Modbus IP command message to. Set to zero if not applicable.

e timeout is the maximum time the forwarding task waits for a valid response
from the forward station, in tenths of seconds. Valid values are 0 to 65535.

SFTranslationStatus

TASKINFO

The SFTranslationStatus structure contains information about a Store and
Forward Translation table entry. It is used to report information about specific
table entries.

struct SFTranslationStatus {
UINT1l6 index;
UINT16 code;
}i

e index is the location in the store and forward table to which the status code
applies.

e code is the status code. It is one of SF_VALID,
SF_INDEX_OUT_OF_RANGE, SF_NO_TRANSLATION,
SF_PORT_OUT_OF_RANGE, SF_STATION_OUT_OF_RANGE,
SF_ALREADY_DEFINED or SF_INVALID_FORWARDING_IP macros.

The TASKINFO type is a structure containing information about a task.

/* Task Information Structure */
typedef struct taskInformation tag ({

UINT16 taskID;

UINT16 priority;

UINT16 status;

UINT16 requirement;

UINT1l6 error;

UINT16 type;

} TASKINFO;

e tasklID is the identifier of the task.
e priority is the execution priority of the task.

e status is the current execution status of the task. This may be one of
TS_READY, TS_EXECUTING, TS_WAIT_ENVELOPE, TS_WAIT_EVENT,
TS _WAIT_MESSAGE, or TS_WAIT_RESOURCE macros.

e requirement is used if the task is waiting for an event or resource. If the
status field is TS_WAIT_EVENT, then requirement indicates on which event

Document (Version 1.61) 5/19/2011 629

Structures and Types

taskinfo_tag

TIME

it is waiting. If the status field is TS WAIT_RESOURCE then requirement
indicates on which resource it is waiting.

error is the task error code. This is the same value as returned by the
check_error function.

type is the task type. It will be either SYSTEM or applicationGroup.

The taskinfo_tag structure contains start up task information.

struct taskInfo tag f{

void *address;
UINT1l6 stack;
UINT16 identity;
}i
address is the pointer to the start up routine.

stack is the required stack size for the routine

identity is the type of routine found (STARTUP_APPLICATION or
STARTUP_SYSTEM)

The TIME structure contains time and date for reading or writing the real time
clock.

struct clock {

UINT16 year;
UINT16 month;
UINT16 day;
UINT16 dayofweek;
UINT16 hour;
UINT16 minute;
UINT1l6 second;
UINT16 hundredth;
} TIME;

year is the current year. It is in the range 97 (for the year 1997) to 96 (for the
year 2096).

month is the current month. It is in the range 1 to 12.
day is the current day. It is in the range 1 to 31.

dayofweek is the current day of the week. Itis in the range 1 to 7. The
application program defines the meaning of this field.

hour is the current hour. It is in the range 00 to 23.
minute is the current minute. It is in the range 00 to 59.
second is the current second. It is in the range 00 to 59.

hundredth is the current hundredth of a second. It is in the range 00 to 99.

Document (Version 1.61) 5/19/2011 630

Structures and Types

timer_info

timeval

VERSION

WRITESTATUS

The timer_info structure contains information about a timer.

struct timer info {
UINT16 time;
UINT16 interval;
UINT16 interval remaining;

}i

e time is the time remaining in the timer in ticks.
e interval is the length of a timer tick in 10ths of a second.

e interval_remaining is the time remaining in the interval count down register in
10ths of a second.

struct timeval

{

long tv_sec; /* Number of Seconds */

long tv_usec; /* Number of micro seconds */
}i

The Firmware Version Information Structure holds information about the
firmware.

typedef struct versionInfo tag {
UINT16 version;
UINT16 build;
UINT16 controller;
CHAR date[VI DATE SIZE + 1];
CHAR copyright [VI STRING SIZE + 1];
} VERSION;

e version is the firmware version number.
e controller is target controller for the firmware.
e date is a string containing the date the firmware was created.

e copyright is a string containing Control Microsystems copyright information.

The WRITESTATUS enumerated type indicates the status of an 1°C bus
message read and may have one of the following values.

enum WriteStatus {

WS success,
WS_selectFailed,
WS noAcknowledge

Document (Version 1.61) 5/19/2011 631

Structures and Types

};
typedef enum WriteStatus WRITESTATUS;

e WS_success returns write was successful
e WS _selectFailed returns slave could not be selected

e WS _noAcknowledge returns slave failed to acknowledge data

Document (Version 1.61) 5/19/2011 632

Example Programs

Example Programs

Connecting with a Remote Controller Example

The following code shows how to connect to a remote controller using a modem.
The example uses a US Robotics modem. It also demonstrates the use of the
modemAbort function in an exit handler.

#include <ctools.h>
#include <string.h>

The myshutdown function aborts any active
modem connections when the task is ended.

void myshutdown (void)

{

}

modemAbort (coml) ;

int main (void)

{

struct ModemSetup dialSettings;
reserve id portID;
enum DialError status;
enum DialState state;
struct pconfig portSettings;
TASKINFO taskStatus;

/* Configure
portSettings

portSettings.
.parity =

portSettings

portSettings.
portSettings.
portSettings.
portSettings.
portSettings.
portSettings.

serial port

.baud =
= FULL;

duplex

data bits =
stop bits =
flow rx =
flow tx =
type =
timeout =

1 */
BAUD19200;

NONE;
DATAS;
STOP1;

RFC_MODBUS_RTU;

TFC_NONE;
RS232_MODEM;
600;

request resource (IO SYSTEM) ;

set port (coml,

&portSetti

ngs) ;

release resource (IO SYSTEM) ;

/* Configure
dialSettings

dialSettings.
dialSettings.
.pauseTime

dialSettings

dialSettings.
strcpy(dialSettings.modemCommand,
strcpy(dialSettings.phoneNumber,

US Robotics

.port
dialAttempts =

detectTime

dialmethod

modem */
= coml;

3;

= 60;

= 30;

= 0;

"&F1l &AO0 &KO &MO &B1");
"555-1212");

Document (Version 1.61) 5/19/2011

633

Example Programs

/* set up exit handler for this task */

getTaskInfo (0, &taskStatus);

installExitHandler (taskStatus.taskID, (FUNCPTR)
myshutdown) ;

/* Connect to the remote controller */
if (modemDial (&dialSettings, &portID) == DE NoError)
{

do

{
/* Allow other tasks to execute */
release processor();

/* Wait for initialization to complete */
modemDialStatus (coml, portID, &status,
&state) ;

}
while (state == DS Calling);

/* If the remote controller connected */
if (state == DS Connected)
{

/* Talk to remote controller here */

}

/* Terminate the connection */
modemDialEnd (coml, portID, &status);

A pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

Create Task Example

#include <ctools.h>
#define TIME TO PRINT 20

void taskl (void)
{

int a, b;

while (TRUE)

{ /* body of task 1 loop - processing I/0 */

request resource (IO SYSTEM); a = dbase (MODBUS, 30001); b =
dbase (MODBUS, 30002); setdbase (MODBUS, 40020, a * b);
release resource (IO SYSTEM); }

}

Document (Version 1.61) 5/19/2011 634

Example Programs

void task2 (void)

{
while (TRUE)

{ /* body of task 2 loop - event handler */

wait event (TIME TO PRINT); fprintf (coml,"It's time for a coffee
break\r\n"); }

}

2

The myShutdown function stops the signalling

of TIME TO PRINT events when application is

stopped.

void myShutdown (void)

{ endTimedEvent(TIME_TO_PRINT); }

int main (void)

{
TASKINFO taskStatus;

/* continuos processing task at priority 100 */
create task(taskl, 100, applicationGroup, 2);

/* event handler needs larger stack for printf function */
create task(task2, 75, applicationGroup, 4);

/* set up task exit handler to stop

signalling of events when this task ends */

getTaskInfo (0, &taskStatus);

installExitHandler (taskStatus.taskID, (FUNCPTR) myShutdown) ;

/* start timed event to occur every 10 sec */
startTimedEvent (TIME TO PRINT, 100);

while (TRUE)

{ /* body of main task loop */ /* other processing code */ }

}

Document (Version 1.61) 5/19/2011 635

Example Programs

DataLog Example

KA A A AR AR A A A A AR AR A A A A AR AR A I AA A A AR A A A A A A AR A A AR A A AR A AR A A A Ak hA kA Ak, Kk

DISCLATIMER

This program is an example to demonstrate one or more programming
functions or

methods. This is not an application specific program and it is
presented as a

programming example only. Control Microsystems assumes no
liability for the

use or application of this example program or any portion
thereof.

SCADAPack 350 C++ Application Main
Program
Copyright (c) 2009, Control Microsystems Inc.

DESCRIPTION: The following program demonstrates how to configure
data log for
data logging into the external FLUSH memory. This
program is doing the following:
- adding register assignment for SCADAPack 350;
- configure data for logging three values per record (date/time,
- AIN1 raw value and AINl scaled value 0 to 100) and then
creates the log;
- use DIN1 to suspend (DIN1l OFF) or resume (DIN1 ON) data loging
- toggling FORCE LED every second as indication that data
logging is active;
- loging data every 5 seconds;

Date: 01/APR/09
Name: Goran Babic
Descr.: File/Example created.

***/

#include "ctools.h"
#include "nvMemory.h"

extern "C"

{

Document (Version 1.61) 5/19/2011 636

Example Programs

// add prototypes here

typedef struct dataRecord { dlogCMITime valuel;
INT16
value2;
float
value3;

} dlogRecord;

/*****k********k**
main
This routine is the main application loop.
‘k*‘k*‘k**/
int main (void)
{ char *statusString[] = { "SUCCESS",

"FAILURE",

"INPROGRESS",

"EXISTS",

"DIFFERENT",

"INVALID",

"NOMEMORY",

"BADID",

"WRONGPARAM",

"BUFFERFULL",

"NOTSTARTED",

"COMPLETE"

by

strLogDescription|]
"Data Log to File Example",
strLogName [] =
"AIN1 data log";
INT16 rtcPreviousSecond = 0,
dinlCurrentState = 0,
dinlPreviousState = 0;

UINT32 dlogIdNumber;
dlogStatus dlogStatusInfo;
dlogRecordElement recordFieldsDefinitions[3];
TIME currentTime;

BOOLEAN loghata = TRUE;

Document (Version 1.61) 5/19/2011 637

Example Programs

dlogRecord flashMemoryRecord;
dlogConfiguration usbMemLogConfig;

/* */
/* Add RTC and SP350 I/Os in register assignment */
/* */

request resource (IO SYSTEM) ;

clearRegAssignment () ;

addRegAssignment (SCADAPack 2I0, 0, 1, 10001, 30001, 40001);
release resource (IO SYSTEM) ;

/* */

/* Delete all existing logs */

/* */

dlogStatusInfo = dlogDeleteAll () ;

//
// Data log configuration
//
// Config struct version # should be always set to 1
usbMemLogConfig.configVersion =1;

// The oldest log file will be deleted when a new file
would exceed defined

// maximum number of files when this parameter is set
to TRUE

usbMemLogConfig.fileRingBuffer = TRUE;

// Interval in seconds after which server will flush buffer
to file
usbMemLogConfig.bufferFlushInterval = 10;

// Buffer size is number of records in the data log buffer
usbMemLogConfig.bufferRecordSize = 1000;

// External drive selected when set to 3.
usbMemLogConfig.fileMode = 3;

// Maximum number of log files
usbMemLogConfig.numFiles = 50;

// File size in number of records
usbMemLogConfig.fileRecordSize = 1000;

// Number of elements/fields in each record
usbMemLogConfig.numRecordElements = 3;

// 1lst field - Date and Time
recordFieldsDefinitions[0].type = DLOG CMITIME;

recordFieldsDefinitions[0].size =
sizeof (dlogCMITime) ;
recordFieldsDefinitions[0] .offset= offsetof (dlogRecord,
valuel) ;
// 2nd field - 16-bit AIN raw value
recordFieldsDefinitions[1l].type = DLOG INT16;

Document (Version 1.61) 5/19/2011 638

Example Programs

recordFieldsDefinitions[1l].size = sizeof (INT106) ;

recordFieldsDefinitions[1l].offset= offsetof (dlogRecord,

value?2) ;
// 3rd field - 32-bit floating point scaled value
recordFieldsDefinitions[2].type = DLOG_FLOAT;

recordFieldsDefinitions[2] .size = sizeof (float);

recordFieldsDefinitions[2].o0ffset= offsetof (dlogRecord,
value3) ;

// Pointer to array of record element definitions

usbMemLogConfig.recordList =

recordFieldsDefinitions;
// Security token disabled when set to 0.

usbMemLogConfig.securityToken = 0;

// Text description of log. Maximum 255 characters
memcpy (usbMemLogConfig.description,
strLogDescription,
strlen (strLogDescription)+1);
// The log name. Maximum 255 characters
memcpy (usbMemLogConfig.logName,
strLogName,
strlen (strLogName) +1) ;

//
// Create the log

//
dlogStatusInfo = dlogCreate (&usbMemLogConfig,

&dlogIdNumber) ;

while (TRUE)
{

//
// Read RTC and I/Os

//
request resource (IO SYSTEM) ;

databaseRead (MODBUS, 10001, &dinlCurrentState);
getclock (¤tTime) ;

release resource (IO SYSTEM) ;

//
// Turn on FORCE LED flashing and data logging if

DIN1 is turned ON

//
if (dinlCurrentState)

{

if ((currentTime.second != rtcPreviousSecond))

{
rtcPreviousSecond = currentTime.second;
forceled(!getForcelLed());

}

// Log data every 5 seconds

if (!(currentTime.second%5))

{

Document (Version 1.61) 5/19/2011 639

Example Programs

if (logDbata)
{
request resource (IO SYSTEM) ;
// Get RTC time stamp date/time
getClockTime (
&flashMemoryRecord.valuel.days,
&flashMemoryRecord.valuel.centiseconds) ;
// Read AIN1 raw value
databaseRead (MODBUS, 30001,
&flashMemoryRecord.value?2) ;
release resource (IO SYSTEM) ;
// Scale AIN1 0-100%
flashMemoryRecord.value3 =
((float) flashMemoryRecord.value2 / 16384.0) * 100.0;
// Write date to log file

dlogStatusInfo = dlogWrite (
dlogIdNumber, (UCHAR *) (&flashMemoryRecord)) ;

if (dlogStatusInfo ==
DLOGS BUFFERFULL)

dlogStatusInfo =

dlogFlush(dlogIdNumber);
dlogStatusInfo =

dlogWrite (dlogIdNumber, (UCHAR *) (&flashMemoryRecord)) ;

}
logbata = FALSE;

else

logbata = TRUE;

else

// Turn off FORCE LED if DIN1 is OFF
forceLed (LED OFF);
}
//
// Suspend (DIN1=OFF) or resume (DIN1=ON) loging
//

if (dinlCurrentState != dinlPreviousState)

{

if (dinlCurrentState)

{
dlogStatusInfo = dlogResume (

dlogIdNumber);

dlogStatusInfo = dlogSuspend (
dlogIdNumber) ;
}
}

dinlPreviousState = dinlCurrentState;

Document (Version 1.61) 5/19/2011 640

Example Programs

}
}
DNP Configuration Example

SCADAPack 350 C++ Application Main Program
Copyright 2001 - 2004, Control Microsystems Inc.

The following program demonstrates how to configure DNP for
operation
on com3 of the SCADAPack 350.

extern "C"
{

// add prototypes here
}
UINT32 mainPriority = 100;
UINT32 mainStack = 4;
UINT32 applicationGroup = 0;

UINT1l6 index;
// loop index

PROTOCOL_CONFIGURATION protocolSettings; // protocol
settings

dnpConfiguration configuration; //
configuration settings

dnpBinaryOQutput binaryOutput; // binary
output settings

dnpBinaryInput binaryInput; //
binary input settings

dnpAnalogInput analogInput; //
analog input settings

dnpAnalogOutput analogOutput; // analog
output settings

dnpCounterInput counterInput; // conter
input settings

Document (Version 1.61) 5/19/2011 641

Example Programs

e

// Stop any protocol currently active on com port 3

/= e
get protocol (com3, &protocolSettings);
protocolSettings.type = NO_ PROTOCOL;
set protocol (com3, &protocolSettings);

/= e

// Load DNP Configuration Parameters

e
configuration.masterAddress = 100;
configuration.rtuAddress = 1;
configuration.datalinkConfirm = FALSE;
configuration.datalinkRetries = DEFAULT DLINK RETRIES;
configuration.datalinkTimeout = DEFAULT DLINK TIMEOUT;

configuration.operateTimeout =

DEFAULT OPERATE TIMEOUT;
configuration.applicationConfirm = FALSE;
configuration.maximumResponse = DEFAULT MAX RESP LENGTH;
configuration.applicationRetries = DEFAULT APPL RETRIES;
configuration.applicationTimeout = DEFAULT APPL TIMEOUT;
configuration.timeSynchronization = NO TIME SYNC;

configuration.BI number = 1701;
configuration.BI startAddress = 0;
configuration.BI reportingMethod = REPORT ALL EVENTS;
configuration.BI soeBufferSize = 1000;
configuration.BO number = 1051;
configuration.BO startAddress = 0;
configuration.CI16 number = 50;
configuration.CIl6 startAddress = 0;

configuration.CI16 reportingMethod =
REPORT_ ALL_EVENTS;

configuration.CI16 bufferSize = 0;
configuration.CI32 number = 0;
configuration.CI32 startAddress = 100;

configuration.CI32 reportingMethod =
REPORT ALL EVENTS;
configuration.CI32 bufferSize
configuration.CI32 wordOrder = MSW FIRST;
Configuration.AIl6:number = 751;
configuration.AIl6 startAddress = 0;
configuration.AIl6 reportingMethod =
REPORT_ ALL_EVENTS;
configuration.AIl6 bufferSize = 1000;
configuration.AI32 number = 0;
configuration.AI32 startAddress = 100;
configuration.AI32 reportingMethod =
REPORT ALL EVENTS;
configuration.AI32 bufferSize = 0;
configuration.AI32 wordOrder = MSW_FIRST;
configuration.AISF number = 0;
configuration.AISF startAddress = 200;
configuration.AISF reportingMethod =
REPORT CHANGE EVENTS;
configuration.AISF bufferSize = 0;
configuration.AISF wordOrder = MSW_FIRST;

I
o
~

Document (Version 1.61) 5/19/2011 642

Example Programs

configuration.A0l6 number = 20;
configuration.A0l6 startAddress = 0;
configuration.A032 number = 12;
configuration.A032 startAddress = 100;
configuration.A032 wordOrder = MSW_FIRST;
configuration.AOSF number = 0;
configuration.AOSF startAddress = 200;
configuration.AOSF wordOrder = MSW_FIRST;
configuration.autoUnsolicitedClassl = TRUE;
configuration.holdTimeClassl = 10;
configuration.holdCountClassl = 3;
configuration.autoUnsolicitedClass2 = TRUE;
configuration.holdTimeClass2 = 10;
configuration.holdCountClass?2 = 3;
configuration.autoUnsolicitedClass3 TRUE;
configuration.holdTimeClass3 = 10;
configuration.holdCountClass3 = 3;
configuration.enableUnsolicitedOnStartup = TRUE;
configuration.sendUnsolicitedOnStartup = FALSE;
configuration.level2Compliance = FALSE;

get protocol (com3, &protocolSettings);
protocolSettings.type = DNP;
set protocol (com3, &protocolSettings);

/e

// Configure Binary Output Points

/e
for (index = 0; index < configuration.BO number; index++)

binaryOutput.modbusAddressl = 1 + index;

binaryOutput.modbusAddress2 = 1 + index;

binaryOutput.controlType = NOT PAIRED;

dnpSaveBOConfig (configuration.BO startAddress +
index, &binaryOutput) ;

/e
// Configure Binary Input Points

/e
for (index = 0; index < configuration.BI number; index++)

{
binaryInput.modbusAddress = 10001 + index;
binaryInput.eventClass = CLASS 1;
dnpSaveBIConfig (configuration.BI startAddress +
index, é&binaryInput);

Document (Version 1.61) 5/19/2011 643

Example Programs

analogInput.modbusAddress = 30001 + index;

analogInput.eventClass = CLASS 2;

analogInput.deadband = 1;

dnpSaveAIl6Config(configuration.AI16 startAddress +
index, &analoglInput);

/e
// Configure 32 Bit Analog Input Points

e
for (index = 0; index < configuration.AI32 number; index++)

analogInput.modbusAddress = 30001 + index;

analogInput.eventClass = CLASS 2;

analogInput.deadband = 1;

dnpSaveAI32Config(configuration.AIl6 startAddress +
index, &analoglInput);

/e
// Configure 16 Bit Analog Output Points

/e
for (index = 0; index < configuration.AOl6 number; index++)

{
analogOutput.modbusAddress = 40001 + index;
dnpSaveAOl6Config (configuration.A0l6 startAddress +
index, &analogOutput) ;

B
// Configure 32 Bit Analog Output Points

/=

for (index = 0; index < configuration.A032 number; index++)

analogOutput.modbusAddress = 41001 + index * 2;
dnpSaveA032Config (configuration.A032 startAddress +
index, &analogOutput) ;

e
// Configure 16 Bit Counter Input Points

e
for (index = 0; index < configuration.CI16 number; index++)

{
counterInput.modbusAddress = 30001 + index;
counterInput.eventClass = CLASS 3;
counterInput.threshold = 1;
dnpSaveCIl6Config (configuration.CI16 startAddress +
index, &counterInput) ;

A e bt
// Configure 32 Bit Counter Input Points

A e bt
for (index = 0; index < configuration.CI32 number; index++)

counterInput.modbusAddress = 30001 + index * 2;

counterInput.eventClass = CLASS 3;

counterInput.threshold = 1;

dnpSaveCI32Config(configuration.CI32 startAddress +
index, &counterInput);

Document (Version 1.61) 5/19/2011 644

Example Programs

}

// main loop
while (TRUE)
{

// add remainder of program here

// release processor to other priority 254 tasks
release processor();

Get Program Status Example

This program stores a default alarm limit into the 1/O database the first time it is
run. On subsequent executions, it uses the limit in the database. The limit in the
database can be modified by a communication protocol during execution.

#include <ctools.h>

#define HI_ ALARM 41000
#define ALARM OUTPUT 1026
#define SCAN_ EVENT 0

int main(void)
{
if (getProgramStatus ((FUNCPTR)main) == NEW_ PROGRAM)
{
/* Set default alarm limit */
request_resource(IO_SYSTEM);
setdbase (MODBUS, HI ALARM, 4000) ;
release resource (IO SYSTEM) ;

/* Use values in database from now on */
setProgramStatus ((FUNCPTR) main, PROGRAM EXECUTED) ;
}
while (TRUE)

{
INT16 ain[8]; // analog input module data

/* Scan ain module */
ioRequest (MT_Ain8, 0);
ioNotification (SCAN EVENT) ;
wait event (SCAN EVENT) ;
ioReadAin8 (0, ain);

/* Test input against alarm limits */

request_resource(IO_SYSTEM);

if (ain[0] > dbase (MODBUS, HI ALARM))
setdbase (MODBUS, ALARM OUTPUT, 1);

else
setdbase (MODBUS, ALARM OUTPUT, O0);

Document (Version 1.61) 5/19/2011 645

Example Programs

release resource (IO SYSTEM) ;

/* Allow other tasks to execute */
release processor();

Get Task Status Example
The following program displays information about all valid tasks.

#include <string.h>
#include <ctools.h>

int main (void)

{
struct prot settings settings;
TASKINFO taskStatus;

/* Disable the protocol on serial port 1 */
settings.type = NO_ PROTOCOL;
settings.station = 1;

settings.priority = 250;
settings.SFMessaging = FALSE;

request resource (IO SYSTEM) ;

set protocol (coml, &settings);

release resource (IO SYSTEM) ;

/* display information about current task */
if (getTaskInfo (0, &taskStatus))
{
/* show information for valid task */
fprintf (coml, "\r\n\r\nInformation about task
%d:\r\n", task);

fprintf (coml, " Task ID: Ox%x\r\n",
taskStatus.taskID);

fprintf (coml, " Current Priority:%d\r\n",
taskStatus.cPriority);

fprintf (coml, " Normal Priority: %$d\r\n",
taskStatus.priority);

fprintf (coml, " Task Group: %d\r\n",
taskStatus.taskGroup) ;

if (taskStatus.requirement == REQ NO WAIT)

{

fprintf (coml, " Ready to run \r\n");

}
if (taskStatus.requirement & REQ MQUEUE)
{
fprintf (coml, " Waiting to receive a
message.\r\n") ;
}
if (taskStatus.requirement & REQ RESOURCE)
{
fprintf (coml, " Waiting for resource:
$d\r\n", taskStatus.requirement & REQ MASK) ;

Document (Version 1.61) 5/19/2011 646

Example Programs

}
if (taskStatus.requirement & REQ EVENT)

{

fprintf (coml, " Waiting on event number:
$d\r\n", taskStatus.requirement & REQ MASK) ;
}

fprintf (coml, " Error: %$d\r\n",
taskStatus.error);

}

while (TRUE)
{

/* Allow other tasks to execute */
release processor();

Handler Function Example

2
handler.c
This is a sample program for the InstallModbusHandler
function. This sample program uses function code 71 to
demonstrate a simple method for using the

installModbusHandler function.
When the handler is installed Modbus ASCII messages using
function code 71 that are received on com2 of the controller will
be processed as shown in the program text.

To turn on digital output 00001:
From a terminal send the ASCII command :014701B7
Where;

01 is the station address

47 is the function code in hex

01 is the command for the function code

B7 is the message checksum

To turn off digital output 00001:
From a terminal send the ASCII command :014700B8
Where;

01 is the station address

47 is the function code in hex

00 is the command for the function code

B8 is the message checksum

#include <ctools.h>

static UINT16 myModbusHandler (
UCHAR * message,
UINT16 messagelength,
UCHAR * response,
UINT16 * responseLength

Document (Version 1.61) 5/19/2011 647

Example Programs

UCHAR * pMessage;
UCHAR * pResponse;

pMessage = message;

if (*pMessage == 71)

{
/* Action for command data */
pMessage+t++;

if (*pMessage == 0)
{
request_resource(IO_SYSTEM);
setdbase (MODBUS, 1, 0);
release resource (IO SYSTEM) ;

pResponse = response;
*pResponse = 71;
pResponse++;
*pResponse = '0";
pResponse++;
*pResponse = 'F';
pResponse++;
*pResponse = 'F';
pResponse++;
*responselLength = 4;

return NORMAL;

}

else if (*pMessage == 1)

{
request resource (IO SYSTEM) ;
setdbase (MODBUS, 1, 1);
release resource (IO SYSTEM) ;

pResponse = response;
*pResponse = 71;
pResponse++;
*pResponse = '0";
pResponse++;
*pResponse = 'N';
pResponse++;
*responselLength = 3;

return NORMAL;

return FUNCTION NOT HANDLED;

Document (Version 1.61) 5/19/2011

648

Example Programs

else
return FUNCTION NOT HANDLED;
}

static void myshutdown (void)
{
removeModbusHandler (myModbusHandler) ;

}

This routine is the modbus slave application.

Serial port com2 is configured for Modbus ASCII protocol.
Register Assignment is configured.

The modbus handler is installed.

The exit handler is installed.

__ */

int main (void)

{
TASKINFO taskStatus;
struct pconfig portSettings;
struct prot settings protSettings;
portSettings.baud = BAUD9600;
portSettings.duplex = FULL;
portSettings.parity = NONE;
portSettings.data bits = DATA7;
portSettings.stop bits = STOP1;
portSettings.flow rx = RFC_NONE;
portSettings.flow tx = TFC_NONE;
portSettings.type = RS232;
portSettings.timeout = 600;
set port(com2, &portSettings);
get protocol (com2, &protSettings);
protSettings.station = 1;
protSettings.type = MODBUS_ ASCII;

set protocol (com2, &protSettings);

/* Configure Register Assignment */
clearRegAssignment () ;

addRegAssignment (DIN generic8, 0, 10017, 0, 0, 0);
addRegAssignment (DIAG protocolStatus,1,31000, 0, 0, 0);

/* Install Exit Handler */
getTaskInfo (0, &taskStatus);
installExitHandler (taskStatus.taskID, (FUNCPTR)
myshutdown) ;

/* Install Modbus Handler */
request resource (IO SYSTEM) ;
installModbusHandler (myModbusHandler) ;

Document (Version 1.61) 5/19/2011 649

Example Programs

release resource (IO SYSTEM) ;

while (TRUE)
{
release processor();
}
}

Install Serial Port Handler Example

SCADAPack 350 C++ Application Main Program
Copyright 2006, Control Microsystems Inc.

*/
#include <ctools.h>
#include "nvMemory.h"

#define CHAR RECEIVED 11

*/

*/
extern "C"
{
// add prototypes here
}

This program displays all characters received
om coml using an installed handler to signal
the reception of a character.

*/

int main (void)

{
INT32 port = 1;
INT32 character;

struct prot settings protocolSettings;
//disable Protocol

get protocol (com2, é&protocolSettings):;
protocolSettings.type = NO_ PROTOCOL;

Document (Version 1.61) 5/19/2011 650

Example Programs

request resource (IO SYSTEM) ;
set protocol (com2, &protocolSettings);
release resource (IO SYSTEM) ;

// Enable character handler
install handler (com2,
(BOOLEAN (*) (INT32, INT32))signal serial);

// Print each character as it is received

while (TRUE)
{
wait_event(CHAR_RECEIVED);
character = fgetc(com2);
if (character == EOF)
{
// clear overflow error flag to re-enable coml
clearerr (coml) ;
}
fputs ("character: ", com2);
fputc (character, com2);
fputs ("\r\n", com2);
// release processor to other priority 1 tasks
release processor();

2 S ——
signal serial
This routine signals an event when a character
is received. If there is an error, the
character is ignored.
*/

void signal serial (INT32 port, INT32 character)
{

interrupt signal event (CHAR RECEIVED) ;
}

Install Clock Handler Example

This program demonstrates how to call a
function at a specific time of day.

#include <ctools.h>

#define ALARM EVENT 20

This function signals an event when the alarm
occurs.

Document (Version 1.61) 5/19/2011 651

Example Programs

volid alarmHandler (void)

{
interrupt signal event(ALARM EVENT);

This task processes alarms signaled by the
clock handler

void processAlarms (void)
{
while (TRUE)

{
wait event (ALARM EVENT);

/* Reset the alarm for the next day */
request resource (IO SYSTEM) ;
resetClockAlarm() ;

release resource (IO SYSTEM) ;

fprintf (coml, "It’s quitting time!\r\n");
}

int main (void)

{
struct prot settings settings;
ALARM SETTING alarm;

/* Disable the protocol on serial port 1 */
settings.type = NO_PROTOCOL;
settings.station = 1;

settings.priority = 250;
settings.SFMessaging = FALSE;

request resource (IO SYSTEM) ;

set protocol (coml, &settings);

release resource (IO SYSTEM) ;

/* Install clock handler function */
installClockHandler (alarmHandler) ;

/* Create task for processing alarm events */
create task(processAlarms, 75, applicationGroup, 4);

/* Set real time clock alarm */

alarm.type = AT ABSOLUTE;
alarm.hour = 16;
alarm.minute = 0;
alarm.second = 0;

request resource (IO SYSTEM) ;
setClockAlarm(alarm) ;
release resource (IO SYSTEM) ;

while (TRUE)
{

Document (Version 1.61) 5/19/2011 652

Example Programs

/* body of main task loop */
/* other processing code */

/* Allow other tasks to execute */
release processor();

}

Install Database Handler Example

This program assumes that the pointer pAllocatedMem has been declared in
nvMemory.h.

This is a sample IEC 61131-1 application for the
installDbaseHandler and installSetdbaseHandler functions.
This sample program demonstrates database handlers for the
Modbus registers:

1001 to 1100
11001 to 11100
31001 to 31100
41001 to 41100

This database is allocated in non-volatile memory.

When the handlers are installed, calls to the functions dbase,

setdbase, databaseRead, and databaseWrite for these Modbus

registers will call these handlers. This is true as long as

the register is not already assigned to an IEC 61131-1
variable.

Note that these database access functions are used by C++
applications and by all protocols.

#include <ctools.h>
#include <string.h>
#include “nvMemory.h”

#define SAMPLE SIZE 100
#define SCAN EVENT NO 0

// custom Modbus database structure
struct myDatabase
{
BOOLEAN coilDbase[SAMPLEisIZE];
BOOLEAN statusDbase[SAMPLE_SIZE];
INT16 inputDbase[SAMPLEisIZE};
INT16 holdingDbase [SAMPLE SIZE];
i

#define MEM SIZE (sizeof (struct myDatabase))

This is the dbase handler.

Document (Version 1.61) 5/19/2011 653

Example Programs

__ */
static BOOLEAN dbaseHandler (
UINT16 address, /* Modbus register address */
INTl6 “*value /* pointer to value at address */

)
{

struct myDatabase * pMyDatabase; // pointer to custom

database

pMyDatabase = (struct myDatabase *) pNvMemory-
>pAllocatedMem;

if (pMyDatabase == NULL)

{
// database could not be allocated
return FALSE;

}

if ((address > 1000) && (address <= 1000 + SAMPLE SIZE))
{
*value = pMyDatabase->coilDbase[address - 1001];
return TRUE;
}
else if ((address > 11000) && (address <= 11000 +
SAMPLE SIZE))
{
*value = pMyDatabase->statusDbase[address - 11001];
return TRUE;
}
else if ((address > 31000) && (address <= 31000 +
SAMPLE SIZE))
{
*value = pMyDatabase->inputDbase[address - 31001];
return TRUE;
}
else if ((address > 41000) && (address <= 41000 +
SAMPLE SIZE))

*value = pMyDatabase->holdingDbase[address - 41001];
return TRUE;

/* all other addresses are not handled */
return FALSE;

/* __
This is the setdbase handler.
__ */

static BOOLEAN setdbaseHandler (

UINT16 address, /* Modbus register address */
INT16 value /* value to write at address */

)

Document (Version 1.61) 5/19/2011 654

Example Programs

struct myDatabase * pMyDatabase; // pointer to custom

database

pMyDatabase = (struct myDatabase *) pNvMemory-
>pAllocatedMem;

if (pMyDatabase == NULL)

{
// database could not be allocated
return FALSE;

}

if ((address > 1000) && (address <= 1000 + SAMPLE SIZE))
{
if (value == 0)
{
pMyDatabase->coilDbase[address - 1001] =

FALSE;
}
else
{
pMyDatabase->coilDbase[address - 1001] = TRUE;
}
return TRUE;
}
else if ((address > 11000) && (address <= 11000 +
SAMPLE SIZE))
{
if (value == 0)
{
pMyDatabase->statusDbase[address - 11001] =
FALSE;
}
else
{
pMyDatabase->statusDbase[address - 11001] =
TRUE;
}
return TRUE;
}
else if ((address > 31000) && (address <= 31000 +
SAMPLE SIZE))
{
pMyDatabase->inputDbase[address - 31001] = value;
return TRUE;
}
else if ((address > 41000) && (address <= 41000 +
SAMPLE SIZE))
{
pMyDatabase->holdingDbase[address - 41001] = value;

return TRUE;

/* all other addresses are not handled */
return FALSE;

Document (Version 1.61) 5/19/2011 655

Example Programs

static void myshutdown (void)

{
/* remove database handlers */
installDbaseHandler (NULL) ;
installSetdbaseHandler (NULL) ;

This routine initializes the custom database.

The database memory is allocated if application has just been
downloaded. The exit handler is installed and the database
handlers are installed.

static void initializeDatabase (void)
{

TASKINFO taskStatus;

BOOLEAN status;

if (getProgramStatus ((FUNCPTR)main) == NEW_ PROGRAM)

{
// BApplication has just been downloaded. Any memory

// previously allocated has been freed automatically.
// Allocate non-volatile dynamic memory.
request resource (DYNAMIC MEMORY) ;
status = allocateMemory ((void **) & (pNvMemory-
>pAllocatedMem), MEM SIZE);
release resource (DYNAMIC MEMORY) ;
if (status == TRUE)
{
// set program status so memory is not re-
allocated
// until next program download
setProgramStatus ((FUNCPTR)main,
PROGRAM_EXECUTED);

// zero-fill new custom database
memset (pNvMemory->pAllocatedMem, 0, MEM SIZE);

else

// memory could not be allocated
pNvMemory->pAllocatedMem = NULL;

}

// install exit handler to remove the custom database

// 1f the application is stopped or erased

getTaskInfo (0, &taskStatus);

installExitHandler (taskStatus.taskID, (FUNCPTR)
myshutdown) ;

Document (Version 1.61) 5/19/2011 656

Example Programs

// install database handlers
installDbaseHandler (dbaseHandler) ;
installSetdbaseHandler (setdbaseHandler) ;

This routine is the main program. The custom i/o database is
initialized. The database is then updated continuously with
I/0 data in the main loop.

__ */
int main (void)
{
UINT16 dinData; // data from 16 Din points
INT16 ainDatal[8]; // data from 8 Ain points
UINT16 doutData = 0; // data written to Dout points

UINT16 index;

// initialize custom i/o database
initializeDatabase () ;

// main loop

while (TRUE)

{
// write data to Output tables
ioWrite56010utputs (doutData) ;

// add I/0 requests to the I/0 System queue

ioRequest (MT_5601Inputs, 0);

ioRequest (MT 56010utputs, 0);

// this event signals completion of preceding i/o
requests

ioNotification (SCAN EVENT NO) ;

// wait for your event to be signalled when all your

// I/0 requests have been processed.

wait event (SCAN EVENT NO);

// get the data read from Input modules
ioRead5601Inputs (dinbData, ainData);

request_resource(IO_SYSTEM);

// copy Ain data to the database
for (index=0; index<8; index++)
{
setdbase (MODBUS, 31001 + index,
ainData[index]) ;

}

// copy Din data to the database
for (index=0; index<16; index++)
{
if (dinData & 0x01)
{
setdbase (MODBUS, 11001 + index, 1);
}

else

Document (Version 1.61) 5/19/2011 657

Example Programs

{
setdbase (MODBUS, 11001 + index, 0);
}
dinData >>= 1;
}

// get 12 DOUT points from the database
for (index=0; index<12; index++)
{

doutData <<= 1;

if (dbase (MODBUS, 1012 - index))

{
doutData |= 1;

}
}

release resource (IO SYSTEM) ;

// release processor to other priority 254 tasks
release processor();

Memory Allocation Example

This program allocates dynamic non-volatile memory only when the C++
Application is run the first time after downloading.

Refer to the section Non-Volatile Data Sections for instructions on declaring non-
volatile variables. This program assumes that the pointer pAllocatedMem has
been declared in nvMemory.h.

#include <ctools.h>
#include “nvMemory.h"

struct myTable
{

UINT32 data[100];
}i

#define MEM SIZE (sizeof (struct myTable))

int main(void)
{
BOOLEAN status;
struct myTable * pTable;

status = TRUE;
if (getProgramStatus ((FUNCPTR)main) == NEW_ PROGRAM)
{
// Bpplication has just been downloaded.
request resource (DYNAMIC MEMORY) ;
status = allocateMemory ((void **) & (pNvMemory-
>pAllocatedMem), MEM SIZE);
release_ resource (DYNAMIC MEMORY) ;

Document (Version 1.61) 5/19/2011 658

Example Programs

if (status == TRUE)
{
// set program status so memory is not re-
allocated
// until application is downloaded again
setProgramStatus ((FUNCPTR)main,
PROGRAMiEXECUTED) ;
}
}

// use non-volatile memory for table structure
pTable = (struct myTable *) (pNvMemory->pAllocatedMem) ;

while (TRUE)

{
if (status == TRUE)
{

// pTable is used in remainder of program

//

// print error message

}

// Allow other tasks to execute
release processor();

Master Message Example Using Modbus Protocol

This program sends a master message, on com2, using the Modbus protocol,
then waits for a response from the slave. The number of good and failed
messages is printed to com1.

poll.c
Polling program for Modbus slave.

wait for response

The wait for response function waits for a
response to be received to a master message on
the serial port specified by stream. It returns
when a response is received, or when the period
specified by time (in tenths of a second)
expires.

Document (Version 1.61) 5/19/2011 659

Example Programs

void wait for response (UCHAR port, unsigned time)
{

UINT32 startTime;

struct prot status status;

static unsigned long good, bad;

startTime = readStopwatch() ;

do {
/* Allow other tasks to execute */
release processor();

status = get protocol status(port);
}
while ((readStopwatch() - startTime) < (100 * time)
status.command == MM SENT) ;
if (status.command == MM RECEIVED)
good++;
else
bad++;
fprintf (coml, "Good: %8lu Bad: %8lu\r", good,
bad) ;
}
2
main

The main function sets up serial ports then
sends commands to a Modbus slave.

int main (void)

{
struct prot settings settings;
struct pconfig portset;

request_resource(IO_SYSTEM);

/* disable protocol on serial port 1 */
settings.type = NO_PROTOCOL;
settings.station = 1;

settings.priority = 250;
settings.SFMessaging = FALSE;

set protocol (coml, &settings);

/* Set communication parameters for port 1 */

portset.baud = BAUD9600;
portset.duplex = FULL;
portset.parity = NONE;

portset.data bits = DATAS;
portset.stop bits = STOP1l;

portset.flow rx = RFC_NONE;
portset.flow_tx = TFC_NONE;
portset.type = RS232;
portset.timeout = 600;

set port(coml, &portset);

/* enable Modbus protocol on serial port 2 */

&&

Document (Version 1.61) 5/19/2011

660

Example Programs

settings.type = MODBUS ASCII;
settings.station = 2;
settings.priority = 250;
settings.SFMessaging = FALSE;
set protocol (com2, &settings);

/* Set communication parameters for port 2 */

portset.baud = BAUD9600;
portset.duplex = HALF;
portset.parity = NONE;

portset.data bits = DATAS;
portset.stop bits = STOP1l;

portset.flow rx = RFC _NONE;
portset.flow tx = TFC NONE;
portset.type = RS485 4WIRE;
portset.timeout = 600;

set port(com2, &portset);

release resource (IO SYSTEM) ;

/* enable timers used in wait for response */

runTimers (TRUE) ;

/* Main communication loop */
while (TRUE)
{

/* Transfer slave inputs to outputs */

request resource (IO SYSTEM) ;
master message(comZ2, 2, 1, 10001,
release resource (IO SYSTEM) ;
wait for response(com2, 10);

8);

/* Transfer inputs to slave outputs */

request resource (IO SYSTEM) ;

master message(comZ2, 15, 1, 1, 10009,

release resource (IO SYSTEM) ;
wait for response(com2, 10);

/* Allow other tasks to execute */

release processor();

Master Message Example Using serialModbusMaster

8);

This program sends master messages on com2 demonstrating two methods

using the function serialModbusMaster.

SCADAPack 350 C++ Application Main Program

Copyright 2001 - 2004, Control Microsystems Inc.

#include <ctools.h>

// function prototypes

Document (Version 1.61) 5/19/2011

661

Example Programs

static void master2 (void) ;

2 —
Modular variables
__ */

// declare session as modular to reduce stack space usage

static MODBUS SESSION masterSessionl;

static MODBUS SESSION masterSession2;

2 —
main

The main function sets up serial port then
sends commands to a Modbus slave. This task
monitors the command status to check when
the response is received. This method is
useful when other processing can be done
while waiting for the response.

UINT32 mainPriority = 100;

UINT32 mainStack = 4;

UINT32 applicationGroup = 0; int main (void)
{

MASTER MESSAGE message;
BOOLEAN status;
UINT1l6 good, bad;

struct prot settings settings;
struct pconfig portset;

request resource (IO SYSTEM) ;

// enable Modbus protocol on com2
settings.type = MODBUS RTU;
settings.station = 1;
settings.priority = 250;
settings.SFMessaging = FALSE;

set protocol (com2, &settings);

// set communication parameters for com2
portset.baud = BAUD9600;
portset.duplex = FULL;
portset.parity = NONE;
portset.data bits = DATAS;
portset.stop bits = STOP1;
portset.flow rx = RFC MODBUS RTU;
portset.flow tx = TFC NONE;
portset.type = RS232;
portset.timeout = 600;

set port(com2, &portset);

release resource (IO SYSTEM) ;

// start second polling task example
create task(master2, 100, applicationGroup, 4);

Document (Version 1.61) 5/19/2011 662

Example Programs

// define master message to read slave
// analog inputs

message.stream = com2;
message.function = 4;
message.slaveStation = 2;
message.slaveRegister = 30001;
message.masterRegister = 40001;
message.length = 8;
message.timeout = 30;
message.eventRequest = FALSE;
message.eventNo = 0;

// main communication loop
while (TRUE)
{
// send a new command
request resource (IO SYSTEM) ;
status = serialModbusMaster (&message,
sgmasterSessionl) ;
release resource (IO SYSTEM) ;

if (status)
{
// wait for response or timeout
while (masterSessionl.masterCmdStatus ==
MM_SENT)

// do other things here...
// allow other tasks to execute while
waiting

release processor();

}

if (masterSessionl.masterCmdStatus ==
MM_RECEIVED)

good++;

bad++;

}

// allow other tasks to execute
release processor();

master?2

This task sends commands to a Modbus slave
using the same serial port as main(). Use a

Document (Version 1.61) 5/19/2011 663

Example Programs

different MODBUS SESSION structure when
sharing a serial port with another master.

This task uses the event request option. The
task waits for the completion event to free
up the processor for other tasks.

__ */
static void master2 (void)
{
MASTER MESSAGE message;
BOOLEAN status;
UINT16 good, bad;
// define master message to copy slave
// digital inputs to master outputs
message.stream = com2;
message.function = 2;
message.slaveStation = 2;
message.slaveRegister = 10001;
message.masterRegister = 1;
message.length = 8;
message.timeout = 30;
message.eventRequest = TRUE;
message.eventNo = 1;
// main communication loop
while (TRUE)
{
// send a new command
request resource (IO SYSTEM) ;
status = serialModbusMaster (&message,

gmasterSession?) ;
release resource (IO SYSTEM) ;

if (status)

{
// wait for completion event when response or
// timeout has occurred
wailt event (1) ;

if (masterSession?2.masterCmdStatus ==
MM_RECEIVED)

good++;

bad++;

}

// allow other tasks to execute
release processor();

Document (Version 1.61) 5/19/2011 664

Example Programs

Master Message Example Using mTcpMasterMessage
This program sends master messages on the LAN interface using Modbus/TCP
protocol.

SCADAPack 350 C++ Application Main Program
Copyright 2001 - 2004, Control Microsystems Inc.

__ */
#include <ctools.h>
// master IP modes
typedef enum masterIPModes t
{
MIP_OPEN CONNECTION = 0,
MIP CONNECTING,
MIP SEND MESSAGE,
MIP WAIT FOR RESPONSE,
MIP_DISCONNECT,
MIP CLOSE
}
MIP MODE;
2 S —
main
This routine is the main application loop.
__ */
int main (void)
{
MIP MODE mode;
IP SETTINGS ipSettings;
IP_ADDRESS remotelP;
IP_ PROTOCOL _TYPE protocolType;
CONNECTION TYPE appType;
UINT16 timeout;
UINT32 connectID;
MODBUS CMD_STATUS cmdStatus;
BOOLEAN status;
UINT16 function;
UINT1l6 slaveStation;
UINT16 slaveRegister;
UINT1l6 masterRegister;
UINT1l6 length;

// IP settings for SCADAPack LAN interface

ipSettings.ipConfigMode = IPConfig GatewayOnLAN;
ipSettings.ipAddress[0] = inet addr("172.16.10.0");
ipSettings.gateway[0] = inet addr("172.16.0.1");
ipSettings.netMask = inet addr("255.255.0.0");
ipSettings.ipVersion = 4;

status = ethernetSetIP(&ipSettings);

// master IP command definition
remotelIP.s addr = inet addr("172.16.3.8"); //
destination IP address

Document (Version 1.61) 5/19/2011 665

Example Programs

protocolType = IPP ModbusTcp;
appType = CT MasterCApp;
timeout = 30;

// tenths of seconds
function = 3;

// read holding registers
slaveStation = 1;
slaveRegister = 40155;
masterRegister = 40001;
length = 2;

// main loop

mode = MIP OPEN CONNECTION;

while (TRUE)

{

switch (mode)

{

&cmdStatus) ;

are error codes

case MIP OPEN CONNECTION:

{

// open a connection

status = mTcpMasterOpen (
remotelP,
protocolType,
appType,
timeout,
&connectlID,
&cmdStatus
);

if (status)

{
mode = MIP CONNECTING;

}

break;

case MIP CONNECTING:

{
// check master command status
status = mTcpMasterStatus (connectID,

if (status)
{
switch (cmdStatus)
{
case MM CONNECTING:
break;
case MM CONNECTED:
mode = MIP SEND MESSAGE;
break;
default:
// remaining status codes

mode = MIP DISCONNECT;
break;

Document (Version 1.61) 5/19/2011

666

Example Programs

sent;

successfully

error codes

&cmdStatus) ;

response

}

break;

case MIP SEND MESSAGE:

{

}

// send master IP message

cmdStatus = mTcpMasterMessage (
connectID,
remotelP,
protocolType,
function,
slaveStation,
slaveRegister,
masterRegister,
length,
timeout

)

switch (cmdStatus)
{
case MM CONNECTING:
case MM DISCONNECTING:
case MM DISCONNECTED:
// last command is still being

// not ready for new message
break;

case MM SENT:
// message send started

mode = MIP WAIT FOR RESPONSE;
break;

default:
// remaining status codes are

// message not sent
mode = MIP DISCONNECT;
break;

break;

case MIP WAIT FOR RESPONSE:

{

// check master command status
status = mTcpMasterStatus (connectID,

if (status)
{

switch (cmdStatus)
{
case MM SENT:
// still waiting for

break;
case MM RECEIVED:

Document (Version 1.61) 5/19/2011

667

Example Programs

// response received

successfully; send next message

are error codes

released

}

mode = MIP SEND MESSAGE;
break;

default:
// remaining status codes

mode = MIP DISCONNECT;
break;

}

break;

case MIP DISCONNECT:
if (mTcpMasterDisconnect (connectID))

{

// disconnect is successfully started
mode = MIP CLOSE;
}

break;

case MIP CLOSE:
if (mTcpMasterClose (connectID))

{

// connection has been successfully

// open new connection and start again
mode = MIP OPEN CONNECTION;
}

break;

// release processor to other priority 254 tasks
release processor();

}

Modem Initialization Example

The following code shows how to initialize a modem. Typically, the modem
initialization is used to prepare a modem to answer calls. The example sets up a
Hayes modem to answer incoming calls.

#include <ctools.h>
#include <string.h>

int main (void)

{

struct ModemInit initSettings;
reserve id portID;

enum DialError status;

enum DialState state;

struct pconfig portSettings;

/* Configure serial port 1 */

Document (Version 1.61) 5/19/2011

668

Example Programs

portSettings.baud = BAUD1200;
portSettings.duplex = FULL;
portSettings.parity = NONE;

portSettings.data bits = DATAS;
portSettings.stop bits = STOP1;

portSettings.flow rx = RFC_MODBUS RTU;
portSettings.flow tx = TFC NONE;
portSettings.type = RS232 MODEM;
portSettings.timeout = 600;

request resource (IO SYSTEM) ;
set port(coml, &portSettings);
release resource (IO SYSTEM) ;

/* Initialize Hayes modem to answer incoming calls */

initSettings.port = coml;
strcpy (initSettings.modemCommand, " F1Q0V1X1 SO0=1");
if (modemInit (&initSettings, &portID) == DE NoError)
{

do

{
/* Allow other tasks to execute */
release processor();

/* Wait for the initialization to complete */
modemInitStatus (coml, portID, &status,
&state) ;

}
while (state == DS Calling);

/* Terminate the initialization */
modemInitEnd (coml, portID, &status);

Real Time Clock Program Example

The following program illustrates how the date and time can be set and
displayed. All fields of the clock structure need to be set with valid values for the
clock to operate properly.

#include <ctools.h>

int main (void)
{
TIME now;

/* Set to 12:01:00 on January 1, 1997 */
now.hour = 12; /* set the time */
now.minute =

1

1

now.second =0
now.day = 1; /* set the date */

1

9

3

’

~.

now.month =
now.year =
now.dayofweek =

1~
~.

; /* day is Wed. */

Document (Version 1.61) 5/19/2011 669

Example Programs

request resource (IO SYSTEM) ;
setclock (&now) ;

getclock (&now) ; /* read the clock
*/

release resource (IO SYSTEM) ;
/* Display current hour, minute and second */

fprintf (coml, "%$2d/%2d/%2d", now.day, now.month,
now.year) ;
fprintf (coml, "%$2d:%$2d\r\n", now.hour, now.minute) ;

}

Start Timed Event Example

This program prints the time every 10 seconds.

#include <string.h>
#include <ctools.h>

#define TIME TO PRINT 15

The myshutdown function stops the signalling
of TIME TO PRINT events.

__ */
void myshutdown (void)
{
endTimedEvent(TIME_TO_PRINT);
}
2 ——
The main function sets up signalling of
a timed event, then waits for that event.
The time is printed each time the event
occurs.
__ */

int main (void)

{
struct prot settings settings;
struct clock now;
TASKINFO taskStatus;

/* Disable the protocol on serial port 1 */
settings.type = NO_PROTOCOL;
settings.station = 1;

settings.priority = 250;
settings.SFMessaging = FALSE;

request resource (IO SYSTEM) ;

set protocol(coml, &settings);

release resource (IO SYSTEM) ;

/* set up task exit handler to stop
signalling of events when this task ends */

Document (Version 1.61) 5/19/2011 670

Example Programs

getTaskInfo (0, &taskStatus);

installExitHandler (taskStatus.taskID, (FUNCPTR)
myshutdown) ;

/* start timed event */
startTimedEvent (TIME TO_ PRINT, 100);

while (TRUE)
{
wait event (TIME TO PRINT);
request resource (IO SYSTEM) ;
getclock (&now) ;
release resource (IO SYSTEM) ;
fprintf (coml, "Time %02u:%02u:%02u\r\n", now.hour,
now.minute, now.second);

Document (Version 1.61) 5/19/2011 671

Porting Existing C Tools Applications

Porting Existing C Tools Applications

Porting SCADAPack 32 C++ Applications to the SCADAPack 350 and 4203

Compiler Differences between Hitachi and GNU

The Hitachi compiler used with the SCADAPack 32 has the following difference
with GNU compiler used with the SCADAPack 350 and 4203:

The order of bit fields is reversed. Bit field ordering is not specified by the C
standard. It is left to the compiler maker. Existing programs using bit fields need
to be modified if the order of the bit fields affects the operation of the program. If
the bit fields are being used only for space efficiency the program does not need
rewriting.

Porting Existing C++ Tools Applications

Existing SCADAPack 32 C++ applications are highly compatible with the
SCADAPack 350 and 4203 C++ Tools. However changes are necessary. The
following guide describes the steps in porting an application.

Copy SCADAPack C++ Application Framework

Begin by making a copy of the SCADAPack C++ application framework using the
IEC 61131-1 sample application or the Telepace sample application. By default
the samples are installed at C:\Program Files\Control
Microsystems\CTools\Controller\Framework Applications. Make a copy of one of
the following directories:

e C:\Program Files\Control Microsystems\CTools\Controller\Framework
Applications\Telepace

e C:\Program Files\Control Microsystems\CTools\Controller\Framework
Applications\IEC 61131-1

Changes to appstart.cpp

Instead of appSettings.src used in SCADAPack 32 C++ applications, the new
appstart.cpp assigns the stack size as well as the main task priority. Task
priorities are discussed under changes to the function create_task. The heap size
is no longer configurable. The C++ application has access to the entire system
heap.

Open the sample appstart.cpp to review these application settings:

/I Priority of the task main().
/I Priority 100 is recommended for a continuously running task.
UINT32 mainPriority = 100;

Document (Version 1.61) 5/19/2011 672

Porting Existing C Tools Applications

/I Stack space allocated to the task main().
/I Note that at least 5 stack blocks are needed to call fprintf().
UINT32 mainStack = 5;

/I Application group assigned to the task main().

/I A unique value is assigned by the system to the applicationGroup
/I for this application. Use this variable in calls to create_task()

/I by this application.

UINT32 applicationGroup = 0;

A C++ application should not require any further modifications to appstart.cpp.
There are no longer function calls in appstart() for starting various drivers as
there were in the SCADAPack 32 version. These drivers are already running
when a C++ Application is executed. It is still possible to call these functions to
disable functionality. For example, runTarget(FALSE) may still be called from
appstart() or main() to stop the logic application.

Replace main.cpp

Replace the sample file main.cpp with the main.cpp from your SCADAPack 32
C++ Application. Edit your main.cpp and make the following changes:

e |n addition to the ctools.h header you need to include the header file
nvMemory.h.

e The C++ Tools require main() to have the prototype: int main(void). Change
the syntax of main() so that it returns the data type int instead of void. Note
that the returned int value is not accessible to the user and so any value may
be returned or none at all.

¢ Remove the function definition for abort(). This function is provided by the
operating system.

e The call release_processor() in the main loop can be deleted. See section
Operating System Scheduling for details.

Add Remaining C and CPP Files

Copy any additional C, CPP or H files from your application to the copied sample
application directory.

Replace Partially Supported and Unsupported Functions

Existing programs may use some functions that are partially supported or
unsupported on the SCADAPack 350 4203 controllers. The program needs to be
changed to use the new functions of the SCADAPack 350 4203 controllers. For a
list of the functions affected refer to the sections Partially Supported C++ Tools
Functions,.

Document (Version 1.61) 5/19/2011 673

Porting Existing C Tools Applications

Build the Application

The SCADAPack C++ Tools use a command line to compile and link a C++
application. The sample application includes the command file build.bat to do
this. Please see the section Application Development for more details on editing
build.bat, command line options, and loading the application into the controller.

Test the Application

This step is specific to the application. It needs to be tested to confirm it operates
correctly on the SCADAPack controllers.

e SCADAPack 32 controllers have higher performance than do SCADAPack
350 4203 controllers. Check that any I/O operations allow enough time for
field signals to change state. Some timing relationships in the existing
program may not be true in the new program, depending on how you have
implemented them. For example, a calculation done between two I/O
operations may execute slower and cause the second I/O operation to take
place later than you want.

e Check that any periodic functions execute at the correct rate. If you've used
standard timing functions this should not be a problem. If you've used delay
loops then these will execute slower. You should replace them with standard
timing functions.

Partially Supported C++ Tools Functions

The following sections describe functions that are supported by the SCADAPack
32 C++ Tools but are only partially supported by the SCADAPack C++ Tools.
The following features are similar to existing SCADAPack 32 C++ Tools features
but require some source code modification.

Refer to these sections when porting existing SCADAPack 32 C++ Tools
Applications to the SCADAPack 350 4203 controllers.

Event Numbers for SCADAPack C++ Applications

The SCADAPack 350 4203 support up to 32 separate user-loaded C++
Applications. Event numbers 0 to 31 were made available to the SCADAPack 32
C++ application. This same event number range need to be shared on the
SCADAPack 350 4203 among the user-loaded C++ Applications.

The Realflo C++ Application uses events 20, 21, or 22. These events may not be
used by other C++ Applications when the Realflo C++ Application is loaded in the
SCADAPack 350 4203.

Stack used by fprintf Function

Tasks that call the function fprintf require at least 5 stack blocks. This function
required only 4 stack blocks when used in SCADAPack 32 C++ applications. As
a general rule, add 1 stack block to the amount used in a SCADAPack 32 C++
application.

Document (Version 1.61) 5/19/2011 674

Porting Existing C Tools Applications

Macro stdout is Disabled

The macro stdout is disabled in the SCADAPack C++ Tools. Instead use the
serial port macros: com1, com2, or com3. This means that the following functions
that use stdout do not work: printf, putc, getc. Use the replacement functions

listed below.
Function Replaced with
printf fprintf
putc fputc
getc fgetc

Task Creation Function

The task priorities have changed with the SCADAPack 350 and 4203. There are
now 255 priority levels, and the highest priority task has a priority of 0. Existing
calls to create_task will need to be modified to account for a lower number being
a higher priority.

The table below contains the recommended priority values to use when porting to
the SCADAPack 350 and 4203.

Priority Description Equivalent Priority Priority Value for
Value for SCADAPack | SCADAPack 32
350 and 4203

Higher Priority 25 4
50 3
75 2
Lower Priority 100 1

The argument used for application type in existing calls to create_task must be
replaced with the global variable applicationGroup. The operating system assigns
a unique value to applicationGroup when it is defined in appStart.cpp.

Please see the documentation for create_task in the Function Specifications
section for more details.
Controller I/O Functions

The following functions are no longer supported. The replacement function is
indicated for each. Each function is documented in the Function Specifications

section.
Function Replaced with
interruptinput no replacement function
interruptCounter no replacement function
readCounter ioReadCounterSP2
readCounterlnput no replacement function

Document (Version 1.61) 5/19/2011 675

Porting Existing C Tools Applications

ioReadDin5232 no replacement function
ioReadCounter5232 ioReadCounterSP2
ioRead5601Inputs ioReadSP2Inputs
ioRead56010utputs ioReadSP20utputs
ioWrite56010utputs ioWriteSP20utputs

Exit Handler Function

The argument used to specify the exit handler function in existing calls to
installExitHandler must be cast to the type (FUNCPTR). Please see the
documentation for installExitHandler in the Function Specifications section for
more details.

Program Status Functions

The functions getProgramStatus and setProgramStatus have changed syntax.
To support multiple C++ applications, these functions now have an argument to
specify the application. The new syntax for these functions is documented in the
Function Specifications section.

Freeing Dynamic Memory

When a C++ Application is ended (e.g. by using the STOP button from the C/C++
Program Loader), memory allocated by using the malloc function is not freed
automatically. An exit handler must be installed to free allocated memory. Please
see the documentation for installExitHandler in the Function Specifications
section for more details.

Non-Volatile Data Sections

The SCADAPack 350 and 4203 have a different method for declaring static non-
volatile memory. There is still 8 kB of memory available but it needs to now be
shared with all user-loaded C++ applications. Non-volatile variable declarations
and their pragma statements need to be removed from each source file and
declared globally in the one file nvMemory.h. Include nvMemory.h in each source
file that uses non-volatile variables.

Please see the section Non-Volatile Memory for more details on editing
nvMemory.h and on using these variables in your source files.

Socket Functions

The following functions are no longer supported. The replacement function is
indicated for each.

Function Replaced with
tfClose close
tfGetSocketError errnoGet

Modbus Handler Functions

Document (Version 1.61) 5/19/2011 676

Porting Existing C Tools Applications

The installModbusHandler is used to add user-defined extensions to the standard
Modbus protocol. To uninstall a Modbus handler in a SCADAPack 32 C++
application, the same function is called with the NULL pointer.

SCADAPack C++ applications support the installation of multiple Modbus
handlers. In order to remove a specific Modbus handler the new function
removeModbusHandler is used. Calling installModbusHandler with the NULL
pointer has no effect.

Unsupported C++ Tools Functions

Timers

The following sections describe functions that are supported by the SCADAPack
32 C++ Tools but are not supported by the SCADAPack C++ Tools.

Refer to these sections when porting existing C++ Tools Applications to the
SCADAPack 350 and 4203.

The following C++ Tools Timer functions are not supported. Use the functions
readStopwatch or startTimedEvent instead.

Function
interval
read_timer_info
runTimers
settimer

timer

Option Switch Function

IP Functions

The following C++ Tools function is not supported.

Function
optionSwitch

The following C++ Tools functions are not supported.

Function

readv

tfBcopy

tfBindNoCheck
tfBlockingState

tfBzero
tfDialerAddExpectSend
tfDialerAddSendExpect
tfFreeZeroCopyBuffer

Document (Version 1.61) 5/19/2011 677

Porting Existing C Tools Applications

PPP Functions

Function

tfGetOobDataOffset

tfGetPppDnslpAddress

tfGetPppPeerlpAddress

tfGetSendCompltBytes

tfGetWaitingBytes

tfGetZeroCopyBuffer

tfinetToAscii

tfloctl

tfPingClose

tfPingGetStatistics

tfPingOpenStart

tfPppSetOption

tfRead

tfRegisterSocketCB

tfRegisterSocketCBParam

tfResetConnection

tfSendTolnterface

tfSetPppPeerlpAddress

tfSetTreckOptions

tfSocketArrayWalk

tflUseDialer

tfWrite

tfZeroCopyRecv

tfZeroCopyRecvFrom

tfZeroCopySend

tfZeroCopySendTo

writev

The following C++ Tools PPP functions are not supported.

Function

pppGetinterfaceHandle

pppReadSettings

pppReadUserTableEntry

pppReadUserTableSize

pppWriteSettings

pppWriteUserTableEntry

pppWriteUserTableSize

Document (Version 1.61) 5/19/2011

678

Porting Existing C Tools Applications

Porting SCADAPack C Applications to the SCADAPack 350 and 4203

Porting Existing C Tools Applications

Existing SCADAPack C applications are highly compatible with the SCADAPack
C++ Tools. However changes are necessary. The following guide describes the
steps in porting an application.

Copy SCADAPack C++ Application Framework

Begin by making a copy of the SCADAPack C++ application framework using the
IEC 61131-1 sample application or the Telepace sample application. By default
the samples are installed at C:\Program Files\Control
Microsystems\CTools\Controller\Framework Applications. Make a copy of one of
the following directories:

o C:\Program Files\Control Microsystems\CTools\Controller\Framework
Applications\Telepace

e C:\Program Files\Control Microsystems\CTools\Controller\Framework
Applications\IEC 61131-1

Changes to appstart.cpp

The new appstart.cpp assigns the stack size as well as the main task priority.
Task priorities are discussed under changes to the function create_task. The
heap size is no longer configurable. The C++ application has access to the entire
system heap.

Open the sample appstart.cpp to review these application settings:

/I Priority of the task main().
/I Priority 100 is recommended for a continuously running task.
UINT32 mainPriority = 100;

/I Stack space allocated to the task main().
/I Note that at least 5 stack blocks are needed to call fprintf().
UINT32 mainStack = 5;

/I Application group assigned to the task main().

/I A unique value is assigned by the system to the applicationGroup
/I for this application. Use this variable in calls to create_task()

/I by this application.

UINT32 applicationGroup = 0;

A C++ application should not require any further modifications to appstart.cpp.
Note that there are no longer function calls in appstart() for starting various
drivers as there were in the SCADAPack version. These drivers are already
running when a C++ Application is executed. It is still possible to call these

Document (Version 1.61) 5/19/2011 679

Porting Existing C Tools Applications

Add Existing Program

functions to disable functionality. For example, runTarget(FALSE) may still be
called from appstart() or main() to stop the logic application.

Files to Framework

e Copy all user-written *.C files from the SCADAPack application to the
framework directory created in the last section.

e Copy user-written *.H files, if any, from the SCADAPack application to the
framework directory. Do NOT copy the SCADAPack ctools.h file or any other
C Tools header files (e.g. older SCADAPack C Tools headers such as
protocol.h). The new ctools.h is already in the framework directory.

e For each user-written *.H file copied to the framework directory in step 2,
make sure that the following statements are included at the top of each
header file:

#ifdef cplusplus
extern "C"

{

#endif

And also make sure that the following statements are included at
the bottom of each header file:

#ifdef cplusplus

}

#endif

o Edit the SCADAPack application file that contains the function main(). Open
this file and copy its contents beginning after the included headers and paste
this into the framework file main.cpp after the prototypes as shown below. If
there are additional headers included, copy these include statements to the
main.cpp file next.

2
SCADAPack 350 and 4203 C++ Application Main Program
Copyright 2006, Control Microsystems Inc.

___ */

#include <ctools.h>

#include "nvMemory.h"

2
C++ Function Prototypes
___ */

// add prototypes here

/* ___

C Function Prototypes
___ */

// add prototypes here

Document (Version 1.61) 5/19/2011 680

Porting Existing C Tools Applications

Paste your code here

e Delete the additional stub function main() at the end of the file main.cpp. The
C++ Tools require main() to have the prototype: int main(void). Change the
syntax of main() so that it returns the data type int instead of void. The
returned int value is not accessible to the user and so any value may be
returned or none at all.

Replace Older C Tools Headers with ctools.h

If the ported application used SCADAPack C Tools version 2.12 or older, the
program C files will likely have include statements with C Tools header files, such
as protocol.h, primitiv.h, etc. Replace all these C Tools include statements in all
program C files with just one include statement:

include <ctools.h>

Replace Partially Supported and Unsupported Functions

Build the Application

Test the Application

Existing programs may use some functions that are partially supported or
unsupported on the SCADAPack 350 and 4203 controllers. The program must be
changed to use the new functions. For a list of the functions affected refer to the
sections Partially Supported C Tools Functions.

The SCADAPack C++ Tools use a command line to compile and link a C++
application. The sample application includes the command file build.bat to do
this. Please see the section Application Development for more details on editing
build.bat, command line options, and loading the application into the controller.

This step is specific to the application. It must be tested to confirm it operates
correctly on the SCADAPack 350 and 4203 controllers. You also should pay
attention to the following.

e SCADAPack 350 and 4203 controllers have higher performance than do
SCADAPack controllers. Check that any I/O operations allow enough time for
field signals to change state. Some timing relationships in the existing
program may not be true in the new program, depending on how you have
implemented them. For example, a calculation done between two 1/0
operations may execute faster and cause the second I/O operation to take
place sooner than you want.

e Check that any periodic functions execute at the correct rate. If you've used
standard timing functions this should not be a problem. If you've used delay
loops then these will execute faster. You should replace them with standard
timing functions.

Partially Supported C Tools Functions

The following sections describe functions that are supported by the Telepace C
Tools and IEC 61131-1 C Tools but are only partially supported by the

Document (Version 1.61) 5/19/2011 681

Porting Existing C Tools Applications

SCADAPack C++ Tools. The following features are similar to existing C Tools
features but require some source code modification.

Refer to these sections when porting existing SCADAPack C Tools Applications.

Event Numbers for SCADAPack C++ Applications

The SCADAPack 350 and 4203 support up to 32 separate user-loaded C++
Applications. Event numbers 0 to 31 were made available to the SCADAPack C
application. This same event number range needs to be shared on the
SCADAPack 350 and 4203 among the user-loaded C++ Applications.

The Realflo C++ Application uses events 20, 21, or 22. These events may not be
used by other C++ Applications when the Realflo C++ Application is loaded in the
SCADAPack 350 and 4203.

Stack used by fprintf Function

Tasks that call the function fprintf require at least 5 stack blocks. This function
required only 4 stack blocks when used in SCADAPack C applications. As a
general rule, add 1 stack block to the amount used in a SCADAPack application.

Macro stdout is Disabled

The macro stdout is disabled in the SCADAPack C++ Tools. Instead use the
serial port macros: com1, com2, or com3. This means that the following functions
that use stdout do not work: printf, putc, getc. Use the replacement functions

listed below.
Function Replaced with
printf fprintf
putc fputc
getc fgetc

Task Creation Function

The task priorities have changed with the SCADAPack 350 and 4203. There are
now 255 priority levels, and the highest priority task has a priority of 0. Existing
calls to create_task will need to be modified to account for a lower number being
a higher priority.

The table below contains the recommended priority values to use when porting.

Priority Description Equivalent Priority Priority Value for
Value for SCADAPack | SCADAPack
350 and 4203

Higher Priority 25 4
50 3
75 2
Lower Priority 100 1

Document (Version 1.61) 5/19/2011 682

Porting Existing C Tools Applications

The argument used for application type in existing calls to create_task needs to
be replaced with the global variable applicationGroup. The operating system
assigns a unigue value to applicationGroup when it is defined in appStart.cpp.

Please see the documentation for create_task in the Function Specifications
section for more details.

Exit Handler Function

The argument used to specify the exit handler function in existing calls to
installExitHandler must be cast to the type (FUNCPTR). Please see the
documentation for installExitHandler in the Function Specifications section for
more details.

Program Status Functions

The functions getProgramStatus and setProgramStatus have changed syntax.
To support multiple C++ applications, these functions now have an argument to
specify the application. The new syntax for these functions is documented in the
Function Specifications section.

Freeing Dynamic Memory

When a C++ Application is ended (e.g. by using the STOP button from the C/C++
Program Loader), memory allocated by using the malloc function is not freed
automatically. An exit handler must be installed to free allocated memory. Please
see the documentation for installExitHandler in the Function Specifications
section for more details.

Non-Volatile Data Sections

C Tools applications could make any variable non-volatile by renaming the
memory section where it was located. This was done using a compiler pragma
directive. This is not supported on the SCADAPack 350 and 4203.

SCADAPack C++ Tools applications can make variables non-volatile by locating
them in SRAM. There is 8 KB of SRAM available for static application variables.
If this is not enough, up to 1 MB of SRAM is available for dynamic non-volatile
memory allocation. See the function allocateMemory.

To create a non-volatile section, refer to the section Non-Volatile Memory
(nvMemory.h).

I/O System Functions

The SCADAPack 350, SCADAPack 4203 and SCADAPack 32 use a different 1/0
system architecture than the SCADAPack. I/O operations can be performed in
parallel with application program execution. This improves the performance of
IEC 61131-1 and Telepace applications, and can have similar impact on user
applications.

In the new architecture, 1/0O requests are added to a queue. Requests are read
from the queue and processed by separate 1/O controller hardware. Data are
stored in 1/O arrays that can be read and written by the application program. The

Document (Version 1.61) 5/19/2011 683

Porting Existing C Tools Applications

application program can also synchronize with the I/O controller to determine

when a set of I/0 requests is complete.

Existing application programs need to be rewritten to use the new I/O system

functions.

Most I/0O System functions are C++ functions. In order to call C++ functions from
a source file, the source file must be a *.CPP file. If an existing *.C file must be
renamed to a *.CPP file.

The following is a list of the 1/0 System functions. Each function is documented in

the Function Specifications section.

C++ | Function Description
v ioSetConfiguration Set I/0O controller configuration
v ioGetConfiguration Get I/O controller configuration
v ioVersion Get I/O controller firmware version
ioNotification Request notification
ioSystemReset Request reset of all I/O modules
ioRequest Request I/O module scan
ioStatus Read 1/0 module status
v ioReadAin4 Read buffered data from 4 point
analog input module
v ioReadAin8 Read buffered data from 8 point
analog input module
v ioReadAout2 Read buffered data for 2 point
analog output module
v ioReadAout4 Read buffered data for 4 point
analog output module
v ioReadCounter4 Read buffered data from 4 point
counter input module
v ioReadCounterSP2 Read buffered data from
SCADAPack 350 counters
v ioReadDin16 Read buffered data from 16 point
digital input module
v ioReadDiIn8 Read buffered data from 8 point
digital input module
v ioReadDout16 Read buffered data for 16 point
digital output module
v ioReadDout8 Read buffered data for 8 point digital
output module
v ioReadSP2Inputs Read buffered data from
SCADAPack 350 inputs
v ioReadSP20utputs Read buffered data for SCADAPack
350 outputs
v ioWriteAout2 Write buffered data for 2 point

Document (Version 1.61) 5/19/2011

684

Porting Existing C Tools Applications

C++ | Function Description
analog output module
v ioWriteAout4 Write buffered data for 4 point
analog output module
ioWriteDout16 Write buffered data for 16 point
digital output module
ioWriteDout8 Write buffered data for 8 point digital
output module
ioWriteSP20utputs Write buffered data for SCADAPack
350 outputs

Controller I/O Functions

The following functions are no longer supported. The replacement function is

indicated for each.

Function Replaced with
interruptinput no replacement function
interruptCounter no replacement function
readCounter ioReadCounterSP2

readCounterlnput

no replacement function

readinternalAD

readBattery, readThermistor

ioReset ioSystemReset

ioRefresh functions in the ioWrite group
ioReadDin5232 no replacement function
ioReadCounter5232 ioReadCounterSP2
ioRead5601Inputs ioReadSP2Inputs
ioRead56010utputs ioReadSP20utputs
ioWrite56010utputs ioWriteSP20utputs

IEC 61131-1 I/O Functions
The I/O System functions are used in place of the following IEC 61131-1 C++

Tools I/O functions which are no longer supported.

Function Replaced with
isaRead4Ain ioReadAin4
isaRead8Ain ioReadAin8
isaRead4Counter ioReadCounter4
isaRead8Din ioReadDin8
isaRead16Din ioReadDin16
isaRead5601Inputs ioReadSP2Inputs
isaWrite2Aout ioWriteAout2
isaWrite4Aout ioWriteAout4

Document (Version 1.61) 5/19/2011

685

Porting Existing C Tools Applications

Function Replaced with
isaWrite8Dout ioWriteDout8
isaWritel6Dout ioWriteDout16
isaW'rite56010utputs ioWriteSP20utputs

Backwards Compatibility I/O Functions

The following I/O related functions were available in the original release of the
Telepace C++ Tools. They were supported for backward compatibility in later
versions of the Telepace C++ Tools, but did not allow access to all I/O modules.
They are no longer compatible with the I/O system architecture.

These functions are replaced with equivalent I/O system functions. The new
functions provide access to all I/O modules.

Function Replaced with

dout functions in the ioWrite group
din functions in the ioRead group
aout functions in the ioWrite group
ain functions in the ioRead group

Other 1/0O Function Changes

Jiffy Clock Functions

The following C++ Tools I/O functions are fully supported in the SCADAPack
C++ Tools with the following difference. Instead of executing the required I/O
operation immediately before returning from the function, the 1/0O operation is
added to the 1/0 System queue as an I/O request and is performed by the 1/O
System architecture in parallel with application program execution.

Notification of the completion of an 1/O request may be obtained using the
ioNotification function.

Function Description

hartlO Request a hart I/O module scan. The scan
reads data from the 5904 interface module,
processes HART responses, processes
HART commands, and writes commands
and configuration data to the 5904 interface
module.

ioClear Request all 1/0O points to be cleared.

The C Tools function jiffy is replaced with the readStopwatch function. This
function returns the time in milliseconds. Existing programs need to be modified
to call the new function and to convert any timing constants to milliseconds.

The C Tools function setjiffy is not supported. Elapsed time from a particular
point can be measured by saving the time at the start of the interval, rather than
setting the clock to zero.

Document (Version 1.61) 5/19/2011 686

Porting Existing C Tools Applications

Real Time Clock Functions

The getclock function has a new syntax. A clock structure is no longer returned
by the function. Instead a pointer to a clock structure is passed as an argument.
The getclock function is documented in the Function Specifications section.

Get Task Information Function

The getTaskInfo function has a new syntax. A TASKINFO structure is no longer
returned by the function. Instead a pointer to a TASKINFO structure is passed as
an argument and a status flag is returned. The getTasklInfo function is
documented in the Function Specifications section.

EEPROM/Flash Memory Functions

SCADAPack 350 and 4203 controllers use flash memory instead of EEPROM to
store controller settings. The following functions are no longer supported. The
replacement function is indicated for each.

Function Replaced with
load flashSettingsLoad
save flashSettingsSave

Controller Status Function

The controller status functions setStatusBit and getStatusBit are fully supported.
The setStatus function is no longer supported. Use setStatusBit in place of
setStatus.

Store and Forward Functions

The syntax for the following two functions has been changed. Instead of passing
or returning a SFTranslation structure, the new functions pass a pointer to a
SF_TRANSLATION structure. See the new function syntax in the sections

following.
Function Description
getSFTranslation Read Store and Forward Translation
setSFTranslation Write store and forward translation table
entry.

The previous structure, struct SFTranslation, shown below is no longer
supported.

struct SFTranslation {
unsigned portA,;
unsigned stationA,;
unsigned portB;

unsigned stationB;

%

Document (Version 1.61) 5/19/2011 687

Porting Existing C Tools Applications

This structure is replaced with the structure, SF_ TRANSLATION, which includes
an IP address field to accommodate store and forward involving the Ethernet
port. The structure is defined as:

typedef struct st_ SFTranslationMTcp

{
COM_INTERFACE slavelnterface; // slave interface type
UINT16 slaveStation; /I slave station address
COM_INTERFACE forwardInterface; I forwarding interface
type
UINT16 forwardStation; // forwarding station address
IP_ADDRESS forwardIPAddress; /l forwarding IP address
}

SF_TRANSLATION,;

The following table explains how to correct existing programs that use the older
structure. The new SF_TRANSLATION structure is documented following this

table.

Item to be replaced Replacement

struct SFTranslation The new structure has the macro name
SF_TRANSLATION.

portA field Set slavelnterface field = portA + 1
(L=coml, 2=com2, 3=com3, 100 =
Ethernetl)

portB field Set forwardInterface field = portB + 1
(1 =coml, 2 =com2, 3=com3, 100 =
Ethernetl)

stationA field slaveStation field

stationB field forwardStation field

Instead of entering a translation in any order for the communication interfaces (as
done with the old structure), the translation data is entered specifying the
receiving slave interface (slavelnterface and slaveStation) and the forwarding
master interface (forwardInterface, forwardStation and forwardIPAddress, if
applicable).

Translations describe the communication path of the master command: e.g. the
slave interface which receives the command and the forwarding interface to
forward the command. The response to the command is automatically returned
to the master through the same communication path in reverse.

The getSFTranslation and setSFTranslation functions are documented in the
Function Specifications section.

Document (Version 1.61) 5/19/2011 688

Porting Existing C Tools Applications

Serial Port Configuration Functions

portConfiguration

The C Tools function portConfiguration returned a pointer to the port
configuration table for com1 and com2 only. These functions are no longer
supported.

Use the functions get_port and set_port in place of portConfiguration.

Default Settings for Com1 and Com2

Rx Flow Control

The default settings for Com1 and Com2 have changed. All serial ports of the
SCADAPack 350 and 4203 have the same default settings and the same range
of available settings. This change is most notable in the default setting for Rx
Flow control as described below.

The documentation for the structure pconfig has been updated below to reflect
these changes.

The C Tools required the Rx Flow Control for com1 and com2 to be set to
DISABLE when the Modbus RTU protocol is used. The ports com1 and com2 on
the SCADAPack 350 and 4203 must have Rx Flow Control set to
RFC_MODBUS_RTU (or ENABLE) when the Modbus RTU protocol is used. Rx
Flow Control must be set to RFC_NONE (or DISABLE) when the Modbus ASCII
or any other protocol is used.

Rx and Tx Flow Control requirements are now the same for all serial ports of the
SCADAPack 350 and 4203.

New Flow Control MACROS

To help clarify the type of Flow Control feature provided when ENABLE or
DISABLE is specified, four new macros have been defined:

RFC_MODBUS_RTU may be used in place of ENABLE. Both have the value 1.
RFC_NONE may be used in place of DISABLE. Both have the value 0.
TFC_IGNORE_CTS may be used in place of ENABLE. Both have the value 1.
TFC_NONE may be used in place of DISABLE. Both have the value 0.

Timeout Setting Not Supported

Timed Events

The timeout serial port setting is no longer supported for com1 and com2. The
serial port timeout setting was never supported for com3 or com4 on the
SCADAPack controller. This setting is ignored and is fixed at 600ms for
backwards compatibility.

Periodic timing may be desired when a continuous loop needs to be repeated at
a fixed interval of time. The timed event feature sets up a periodic event that is
signaled by the operating system at a specified fixed interval.

Document (Version 1.61) 5/19/2011 689

Porting Existing C Tools Applications

A main application task or an additional application task can be made to wait on
a periodic event before executing a set of actions. If the actions are completed
before the next periodic event has been signaled, the task is blocked while
waiting for the event. This blocked state allows the processor to execute other
application or system tasks while it waits. This is more efficient than executing a
loop that checks for a timer to expire.

For an example using timed events see the function startTimedEvent.

Reading the System Stopwatch

For one-time actions and timed actions that need accuracy better that a tenth of
a second, the system clock may be read using the function readStopwatch. This
function returns the system time in milliseconds and has a resolution of 10 ms.
The stopwatch time rolls over to 0 when it reaches the maximum value for an
unsigned long int (i.e. a UINT32): 4,294,967,295 ms (or about 49.7 days).

For example,

startTime = readStopwatch();

/I wait for 50 ms (+/- 10 ms)
while ((readStopwatch() — startTimed) < 50)
{

release_processor();

Refer to the section describing the function readStopwatch for other timing
examples using this function.

Modbus Handler Functions

The installModbusHandler is used to add user-defined extensions to the standard
Modbus protocol. To uninstall a Modbus handler in a SCADAPack C application,
the same function is called with the NULL pointer.

SCADAPack 350 and 4203 C++ applications support the installation of multiple
Modbus handlers. In order to remove a specific Modbus handler the new function
removeModbusHandler is used. Calling installModbusHandler with the NULL
pointer has no effect.

Unsupported C Tools Functions

The following sections describe functions that are supported by the Telepace C
Tools and IEC 61131-1 C Tools but are not supported by the SCADAPack C++
Tools.

Refer to these sections when porting existing SCADAPack C Tools Applications.

Document (Version 1.61) 5/19/2011 690

Porting Existing C Tools Applications

Application Checksum Function

A checksum is no longer used for the C++ application. The C Tools function
applicationChecksum is not supported.

Backwards Compatibility Functions

These functions were supported in previous C Tools for backwards compatibility,
however they were stubs. The following C Tools functions are not supported.

Function
setSFMapping
getSFMapping

Boot Type Functions

These functions are not useful to C++ Applications. The following C Tools
functions are not supported.

Function
setBootType
getBootType

/0O Bus Communication Functions

The SCADAPack 350 and 4203 1/0 System does not support these C Tools
functions. These functions provide user access to third party 1’c compatible
devices. Without these functions access is limited to Control Microsystems 1/O
modules only.

Function

ioBusStart
ioBusStop
ioBusReadByte
ioBusReadLastByte
ioBusWriteByte
ioBusSelectForRead
ioBusSelectForWrite
ioBusReadMessage
ioBusWriteMessage

Timers

The following C++ Tools Timer functions are not supported. Use the functions
readStopwatch or startTimedEvent instead.

Function
interval
read_timer_info

Document (Version 1.61) 5/19/2011 691

Porting Existing C Tools Applications

settimer
timer

Document (Version 1.61) 5/19/2011 692

