

 User Guide

 Destination and Basic

Features

 License Agreement

 Product Registration

 Technical Support

 System requirements

 Installation

 Components licensing

 Product Localization

 Getting Started

 Basic Information

 Creating templates in the
wizard

 Report Creation
Techniques

 Using the Widgets
Component

 Using the ChartControl
Component

 Working with the Report
Viewer

 Working with the Report
Designer Using the Report

 Using the Report
Generator in Applications

 Additional Information

 Working with the
Expression Editor

 Destination and Basic Features

Report Sharp-Shooter™ is the most flexible .NET report engine

available on the market. It's a suite of 100% managed .NET

components allowing the creation of both bound and unbound

reports, with an unlimited number of master-detail relations, groups,

columns and crosses. The product supports the ADO.NET

hierarchical data model, WinForms and ASP.NET WebForms and

C#/VB.NET scripting. The package includes the designer needed

for final documents and report templates. The built-in pivot table

component allows dynamic data analysis. You can visualize data

contained in the report by using the embedded Charting component.

For more information visit our home page:

http://www.perpetuumsoft.com

Product features:

100% .NET Compatible:

• Managed report engine.

• Managed report designer is available in both design- and

run-time.

• Compatible with Visual Studio .NET, Borland C# Builder,

Delphi.NET and other .NET IDEs. It is also possible to use

the product without an IDE.

• Compatible with ADO.NET, supports hierarchical data

model with relations.

• Supports WinForms and ASP.NET WebForms.

• Supports all .NET data sources, including ADO.NET

DataSets, DataViews, Collections, Arrays and any classes

that implement IEnumerable, IList or IListSource.

http://www.perpetuumsoft.com/Home.aspx?lang=en

 2

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

• Multiple data sources can be used in a single report.

• Use of GDI+ advantages: gradient fills, alpha blending, custom shapes etc.

• Scripting is supported for C# and VB.NET, as well as for any language supported by the .NET

Framework. No need to learn any additional script language.

100% Flexible:

• Unlimited level of nested master-detail bands in a single report.

• Natural cross-reports generation using cross-bands.

• Full rendering customization using C#/VB scripting with full access to all .NET Framework

capabilities (including import of any project namespaces, local variables, procedures, functions

etc.).

• Fully managed document object model (Report DOM), easy to understand, same for report

templates and ready documents.

• Different page sizes and orientations within a single report.

• Flexible page headers and footers make your reports look nice and easier to read.

• Page overlays allow you to create objects such as watermarks on a page background.

• Open plug-in architecture.

• Rich visual controls set, including texts, shapes, pictures, bar codes and zip codes. You can also

use any WinForms control as a report element.

• Styles are supported. You can use different style sheets to optimize reports for preview, print,

export etc.

• Both bound and unbound modes are supported.

• Manual build mode is supported. Use manual build mode to control all aspects of report

generation process (for very complex reports only). You can also combine manual and automatic

rendering mechanisms to produce any possible band sequence.

• Metric and inch measure units support.

• Powerful binding model (similar to Win/Web Forms data-binding) allows you to bind all

controls properties to data fields, system and local variables, as well as to a custom expression

written in current script language (C# or VB.NET).

• Generated reports are stored in the form of objects graph (using ReportDOM) rather than in

metafile format, which allows you to easily modify final reports.

• PDF, RTF, HTML, EMF, BMP, JPG, GIF, TIFF, PNG, Excel, Excel(XML), CSV and Text

export filters are available. Report Sharp-Shooter allows using custom export filters.

• Create reports with the exact positioning without bands utilization

 3

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

• An automatic converter allows quick transformation of Crystal Reports into Report Sharp-

Shooter.

100% easy to use and deploy:

• Easy to deploy - just copy few DLLs!

• XML-based report file format, easy to share over Internet.

• Report Wizard availability allows your customers to create reports quickly and easily.

• Report generator is fully localized (including PropertyGrid). It is possible to change the interface

language without the product rerun.

100% Royalty free runtime:

• Royalty free report engine

• Royalty free report viewer

• Royalty free full-featured final documents run-time designer

• Royalty free full-featured report templates run-time designer

 License Agreement
Perpetuum Software LLC

Report Sharp-Shooter

SOFTWARE COMPONENT PRODUCT

Copyright (C) 2006 Perpetuum Software LLC

END-USER LICENSE AGREEMENT FOR REPORT SHARP-SHOOTER SOFTWARE

COMPONENT PRODUCT

IMPORTANT - READ CAREFULLY: This Perpetuum Software LLC End-User License Agreement

("EULA") is a legal agreement between you, a developer of software applications ("Developer End

User") and Perpetuum Software LLC (“Perpetuum Soft”) for Report Sharp-Shooter SOFTWARE

COMPONENT PRODUCT, its relevant controls, source code, demos, intermediate files, media, printed

materials, and "online" or electronic documentation ("PRODUCT") contained in the installation file.

By installing, copying, or otherwise using the PRODUCT, the Developer End User agrees to be bound

by the terms of this EULA. The PRODUCT is in "use" on a computer when it is loaded into temporary

memory (i.e. RAM) or installed into permanent memory (e.g. hard disk, CD-ROM, or other storage

device) of that computer.

 4

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

If the Developer End User does not agree to any part of the terms of this EULA, THE DEVELOPER

END USER CAN NOT INSTALL, USE, DISTRIBUTE, OR REPLICATE IN ANY MANNER, ANY

PART, FILE OR PORTION OF THE PRODUCT, OR USE THIS PRODUCT FOR ANY OTHER

PURPOSES.

The PRODUCT is licensed, not sold.

LICENSE GRANT.

Upon acceptance of this EULA Perpetuum Soft grants the Developer End User a personal, nonexclusive

license to install and use the PRODUCT on compatible devices for the sole purposes of designing,

developing, testing, and deploying application programs the Developer End User creates. If the

Developer End User is an entity, it must designate one individual within its organization to license the

right to use the PRODUCT in the manner provided herein.

The Developer End User may install and use the PRODUCT as permitted by the license type purchased

as described below. The license type purchased is specified in the product receipt.

EVALUATION LICENSE.

Under the terms of an Evaluation License the Developer End User may install and use any number of

copies of the PRODUCT on unlimited number of computers for the limited purposes of testing,

evaluation and demonstrations ONLY.

This License is granted for a limited period of thirty (30) days after installation of the evaluation version

of the PRODUCT ("Evaluation Period"). After the Evaluation Period, the Developer End User shall

either

(i) delete the PRODUCT and all related documentation from ALL computers onto which it was installed

or copied, or

(ii) contact Perpetuum Soft or one of its authorized resellers to purchase the PRODUCT.

The Developer End User may not distribute ANY of the files provided with the evaluation version of the

PRODUCT to ANY PARTIES.

DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

Not for Resale Software.

 5

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

If the PRODUCT is labeled and provided as "Not for Resale" or "NFR", then, notwithstanding other

sections of this EULA, the Developer End User may not resell, distribute, or otherwise transfer for value

or benefit in any manner, the PRODUCT or any derivative work using the PRODUCT. The Developer

End User may not transfer, rent, lease, lend, copy, modify, translate, sublicense, time-share or

electronically transmit the PRODUCT, media or documentation. This also applies to any and all

intermediate files, source code, and compiled executables.

Limitations on Reverse Engineering, Decompilation, and Disassembly.

The Developer End User may not reverse engineer, decompile, create derivative works, modify,

translate, or disassemble the PRODUCT, and only to the extent that such activity is expressly permitted

by applicable law notwithstanding this limitation. The Developer End User agrees to take all reasonable,

legal and appropriate measures to prohibit the illegal dissemination of the PRODUCT or any of its

constituent parts and redistributables to the fullest extent of all applicable local, federal and international

laws and treaties regarding anti-circumvention, including but not limited to the Geneva and Berne

World Intellectual Property Organization (WIPO) Diplomatic Conferences.

Separation of Components, their Constituent Parts and Redistributables.

The PRODUCT is licensed as an indivisible unit. The PRODUCT and its constituent parts and any

provided redistributables may not be reverse engineered, decompiled, disassembled or separated for use

on more than one computer, nor placed for distribution, sale, or resale as individual creations by the

Developer End User. The provision of source code, if included with the PRODUCT, does not constitute

transfer of any legal rights to such code, and resale or distribution of all or any portion of all source code

and intellectual property will be prosecuted to the fullest extent of all applicable local, federal and

international laws. All PRODUCT libraries, source code, redistributables and other files remain

Perpetuum Soft exclusive property. The Developer End User may not distribute any files, except those

that Perpetuum Soft has expressly designated as Redistributables.

REDISTRIBUTABLES.

The PRODUCT may include certain files intended for distribution by the Developer End User to the

users of the programs created by him/her – “Redistributables”. Redistributables include, for example,

those files identified in printed or on-line documentation as redistributable files, those files preselected

for deployment by an install utility provided with the PRODUCT (if any). In any event, the

Redistributables for the PRODUCT are only those files specifically designated as such by Perpetuum

 6

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Soft. Subject to all of the terms and conditions in this EULA, the Developer End User may reproduce

and distribute exact copies of the Redistributables, provided that such copies are made from the original

copy of the PRODUCT. Copies of Redistributables may only be distributed with and for the sole

purpose of executing application programs permitted under this EULA that the Developer End User has

created using the PRODUCT. Under no circumstances may any copies of Redistributables be distributed

separately.

The following file(s) are considered redistributables under this EULA:

PerpetuumSoft.Framework.dll

PerpetuumSoft.Reporting.dll

PerpetuumSoft.Reporting.Export.CSV.dll

PerpetuumSoft.Reporting.Export.Excel.dll

PerpetuumSoft.Reporting.Export.ExcelXML.dll

PerpetuumSoft.Reporting.Export.Html.dll

PerpetuumSoft.Reporting.Export.Pdf.dll

PerpetuumSoft.Reporting.Export.Rtf.dll

PerpetuumSoft.Reporting.Web.dll

PerpetuumSoft.Writers.Excel.dll

PerpetuumSoft.Writers.Pdf.dll

THE DEVELOPER END USER IS NOT AUTHORIZED TO REDISTRIBUTE ANY OTHER FILE

CONTAINED IN THE PRODUCT.

Rental.

The Developer End User may not rent, lease, or lend the PRODUCT.

Transfer.

The Developer End User may NOT permanently or temporarily transfer ANY of his/her rights under

this EULA to any individual or entity. Regardless of any modifications which the Developer End User

makes and regardless of how the Developer End User might compile, link, and/or package his/her

programs, under no circumstances may the libraries, redistributables, and/or other files of the

PRODUCT (including any portions thereof) be used for developing programs by anyone other than the

Developer End User. Only the Developer End User has the right to use the libraries, redistributables, or

other files of the PRODUCT (or any portions thereof) for developing programs created with the

PRODUCT. In particular, the Developer End User may not share copies of the Redistributables with

other co-developers. The Developer End User may not reproduce or distribute any PRODUCT

documentation without Perpetuum Soft explicit permission.

 7

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Termination.

Without prejudice to any other rights or remedies, Perpetuum Soft will terminate this EULA upon the

failure of the Developer End User to comply with all the terms and conditions of this EULA. In such

events, the Developer End User must destroy all copies of the PRODUCT and all of its component parts

including any related documentation, and must immediately remove ANY and ALL use of the

technology contained in the PRODUCT from any applications developed by the Developer End User,

whether in native, altered or compiled state.

Additional Restrictions.

Distribution by the Developer End User of any design-time tools (EXE's, OCX's or DLL's), executables,

and source code distributed by Perpetuum Soft as part of this PRODUCT and not explicitly identified as

a redistributable file is strictly prohibited. Redistribution by the Developer End User’s users of

Perpetuum Soft DLL's and OCX's or PRODUCT redistributable files modified by the Developer End

User without an appropriate redistribution license obtained from Perpetuum Soft is strictly prohibited.

The Developer End User shall not develop software applications that provide an application

programming interface to the PRODUCT or the PRODUCT as modified.

The Developer End User may NOT distribute the PRODUCT, in any format, to other users for

development or application compilation purposes. Specifically, if Developer End User creates a control

using the PRODUCT as a constituent control, Developer End User may NOT distribute the control

created with the PRODUCT (in any format) to users to be used at design time and or for ANY

development purposes.

THE DEVELOPER END USER MAY NOT USE THE PRODUCT TO CREATE ANY TOOL OR

PRODUCT THAT DIRECTLY OR INDIRECTLY COMPETES WITH THE PRODUCT.

UPDATES, UPGRADES AND FIXES.

Perpetuum Soft will provide the Developer End User with free updates, upgrades and fixes for the

PRODUCT for one year since the purchase date.

RIGOROUS ENFORCEMENT OF INTELLECTUAL PROPERTY RIGHTS.

 8

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

IF THE DEVELOPER END USER IS USING THE EVALUATION VERSION OF THE PRODUCT,

Perpetuum Soft WILL NOT PROVIDE THE DEVELOPER END USER WITH UPDATES,

UPGRADES AND FIXES RELATED TO THE PRODUCT.

COPYRIGHT.

All title and copyrights in and to the PRODUCT (including but not limited to any images, demos, source

code, intermediate files, packages, photographs, redistributables, animations, video, audio, music, text,

and "applets" incorporated into the PRODUCT, the accompanying printed materials, and any copies of

the PRODUCT) are owned by Perpetuum Soft. The PRODUCT is protected by copyright laws and

international treaty provisions. Therefore, the Developer End User must treat the PRODUCT like any

other copyrighted material except that the Developer End User may install the PRODUCT on a single

computer provided that he/she keeps the original solely for backup or archival purposes. The Developer

End User may not copy the printed materials accompanying the PRODUCT.

RIGOROUS ENFORCEMENT OF INTELLECTUAL PROPERTY RIGHTS.

If the licensed right of use for this PRODUCT is purchased by the Developer End User with any intent

to reverse engineer, decompile, create derivative works, and the exploitation or unauthorized transfer of

any Perpetuum Soft intellectual property and trade secrets, to include any exposed methods or source

code where provided, no licensed right of use shall exist, and any product created as a result shall be

judged illegal by definition of all applicable laws. Any sale or resale of intellectual property or created

derivatives so obtained will be prosecuted to the fullest extent of all local, federal and international laws.

Installation and Use.

The license granted in this EULA for the Developer End User to create his/her own compiled programs

and to distribute such programs and the Redistributables (if any), is subject to all of the following

conditions:

(i) the programs by the Developer End User that contain Perpetuum Soft PRODUCT must be

written using a licensed, registered copy of the PRODUCT;

(ii) the programs by the Developer End User must add primary and substantial functionality, and

may not be merely a set or subset of any of the libraries, code, Redistributables or other files

of the PRODUCT;

(iii) the Developer End User may not remove or alter any Perpetuum Soft copyright, trademark or

other proprietary rights notices contained in any portion of Perpetuum Soft libraries, source

code, Redistributables or other files that bear such a notice;

 9

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

(iv) all copies of the programs the Developer End User creates must bear a valid copyright notice,

either his/her own or the Perpetuum Soft copyright notice that appears on the PRODUCT;

(v) the Developer End User may not use Perpetuum Soft or any of its suppliers' names, logos, or

trademarks to market his/her programs;

(vi) the Developer End User will remain solely responsible to anyone receiving his/her programs

for support, service, upgrades, or technical or other assistance, and such recipients will have

no right to contact Perpetuum Soft for such services or assistance;

(vii) the Developer End User will indemnify and hold Perpetuum Soft, its related companies and

its suppliers, harmless from and against any claims or liabilities arising out of the use,

reproduction or distribution of his/her programs.

NO WARRANTIES.

Perpetuum Soft EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE PRODUCT. THE

PRODUCT AND ANY RELATED DOCUMENTATION IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT

LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF

USE OR PERFORMANCE OF THE PRODUCT REMAINS WITH THE DEVELOPER END

USER.

NO LIABILITIES.

To the maximum extent permitted by applicable law, in no event shall Perpetuum Soft be liable for

any special, incidental, indirect, or consequential damages whatsoever (including, without limitation,

damages for loss of business profits, business interruption, loss of business information, or any other

pecuniary loss) arising out of the use of or inability to use the PRODUCT or the provision of or

failure to provide Support Services, even if Perpetuum Soft has been advised of the possibility of

such damages.

SUPPORT SERVICES.

Perpetuum Soft will provide the Developer End User with free support services related to the

PRODUCT ("Support Services") for one year since the purchase date. Use of Support Services is

governed by Perpetuum Soft policies and programs described in the user manual, in "on line"

documentation and/or other Perpetuum Soft provided materials. Any supplemental PRODUCT

provided to the Developer End User as part of the Support Services shall be considered part of the

PRODUCT and subject to the terms and conditions of this EULA. With respect to technical

 10

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

information the Developer End User provides to Perpetuum Soft as part of the Support Services,

Perpetuum Soft may use such information for its business purposes, including for PRODUCT

support and development. Perpetuum Soft will not utilize such technical information in a form that

personally identifies the Developer End User.

GENERAL PROVISIONS.

This EULA may only be modified in writing signed by you and an authorized officer of Perpetuum

Soft. If any provision of this EULA is found void or unenforceable, the remainder will remain valid

and enforceable according to its terms. If any remedy provided is determined to have failed for its

essential purpose, all limitations of liability and exclusions of damages set forth in the Limited

Warranty shall remain in effect.

Perpetuum Soft reserves all rights not specifically granted in this EULA.

Perpetuum Soft reserves the right to make changes in this EULA at any moment by publishing the

appropriate alterations on http://www.perpetuumsoft.com 20 calendar days prior to the moment

these alternations take effect.

ACKNOWLEDGEMENT.

THE DEVELOPER END USER ACKNOWLEDGES THAT IT HAS READ AND UNDERSTANDS

THIS AGREEMENT AND AGREES TO BE BOUND BY ITS TERMS. THE DEVELOPER END

USER FURTHER AGREES THAT THIS AGREEMENT IS THE COMPLETE AND EXCLUSIVE

STATEMENT OF THE AGREEMENT BETWEEN THE DEVELOPER END USER AND

PERPETUUM SOFTWARE, AND SUPERCEDES ANY PROPOSAL OR PRIOR AGREEMENT,

ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS RELATING TO THE SUBJECT

MATER OF THIS AGREEMENT.

 Product Registration
The product is licensed for each computer on which it is installed and used. If you need to used the

product on more than one computer, you should obtain additional license for the product. After you

ordered your license and made payment, an e-mail containing detailed instructions on how to register

the product is sent to your e-mail. If you have any questions regarding product licensing, please, feel

free to contact our sales representative via e-mail: sales@perpetuumsoft.com

mailto:sales@perpetuumsoft.com

 11

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 Technical Support

Perpetuum Software official policy is to employ a very strong support team. This guarantees that all

your questions and inquiries will be answered in a quick and professional manner. We would be very

thankful for any suggestions and recommendations you might have regarding our products. We do take

in account the opinion of every single person who has shown interest in our products.

Of course, Perpetuum Software support team is for all to help you with products troubleshooting if any.

They can be reached via e-mail: support@perpetuumsoft.com.

You can get additional information or exchange your opinion on technical issues with Perpetuum

Software representatives and other users at our technical support forum:

http://www.perpetuumsoft.com/Forums.aspx

If you are interested in our products, have suggestions on broadening products functionality; if you have

questions on licensing or would like to make a cooperation proposal, please contact our sales department

at: sales@perpetuumsoft.com.

 System requirements

To create applications with the Report Sharp-Shooter components, we recommend that you use such

high-level development environments as Microsoft Visual Studio 2003 and 2005, Borland Delphi 8,

Borland C# Builder or others.

To run applications that use Report Sharp-Shooter components, Microsoft .NET Framework 1.1/2.0 is

required. Minimal hardware requirements match those for Microsoft .NET Framework 1.1.

 Installation
Report Sharp-Shooter is distributed as a Microsoft Installer package. The name of the installation

package file is NETModelKitSuite.msi. To install the software, run this file and follow instructions of

the wizard.

If during setting installation you chose the «Add components to Visual Studio Toolbox» option, the

Report Sharp-Shooter components will be automatically added to the Microsoft Visual Studio .Net

Toolbox. This option works only for Visual Studio 2003. To use the Report Sharp-Shooter components

in Microsoft Visual Studio 2005, you should add the Report Sharp-Shooter components onto the

ToolBox manually. To do it, start Visual Studio, right-click on the ToolBox, select the Add Tab item

from the context menu, enter the name of the tab (for example, Report Sharp-Shooter) and press Enter.

mailto:sales@perpetuumsoft.com
mailto:sales@perpetuumsoft.com
http://www.perpetuumsoft.com/Forums.aspx

 12

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

After that you should add components to the created tab. Open it by clicking on it with the left mouse

button, use the right mouse button to open its contextual menu and select the Choose Items item. After

that you will see the dialog box shown below.

To sort the list by namespaces (the namespaces of all components begin from PerpetuumSoft), click on

the Namespace column header.

Then select the following components: ReportGenerator, ReportManager, DesignerDataSourceTree,

DesignerDocumentTree, DesignerErrorList, DesignerPropertyGrid, DesignerStatusBar,

DesignerToolBar, DesignerToolBox, ReportDesigner, CSVExportFilter, ExcelExportFilter,

ExcelXMLExportFilter, BitmapExportFilter, EmfExportFilter, GifExportFilter, JpgExportFilter,

TiffExportFilter, HtmlExportFilter, PdfExportFilter, RTFExportFilter, ReportViewer,

SharpShooterWebViewer and click OK.

 Components licensing

To license Perpetuum Software components, the mechanism based on the standard licensing scheme,

realized in the System.ComponentModel is used.

After you purchased a license for the product the following steps are required to install your license:

If you already have your personal account on the Perpetuum Software LLC web site, log in to it under

your current user name and password.

 13

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

If you don’t have your personal on the Perpetuum Software LLC web site, company representative will

create it for you. Corresponding information on your account will be sent to the e-mail, specified in the

order form.

Then, proceed to the ‘Downloads’ section. Download and install evaluation version of the product.

Note: If the current product version trial is already installed on your computer, there is no need to

reinstall the software.

Look up for a license link for the product and click it. You will be prompted to download the zip-packed

license key file. This file should contain the *.elic license file. If you purchased several licenses, license

key file should include several different *.elic files, one for each purchased license.

Download and unpack the license key file. Open the file and launch the product LicenseManager from

the 'Start' menu. In the License Manager, click the ‘Add License’ button and copy-paste the registration

key file content into the ‘Register Form’ window. Then, click the ‘Register’ button.

If you purchased several licenses for the product, you should install different licenses on the machines.

If the license has not been installed, you will get a warning that the trial version of the product is used.

When you add components or compile your project, the data on the installed license are added to the

resources of your application. For that purpose, the license.licx file is created and included in the

resources of your project. This license.licx file contains a list of the licensed components.

The license is being embedded in the project during the application compiling. And when you run your

application on a machine where the license is not installed, the license will be taken from the resources

of your application. It allows you to use your final application without installing the license on your end

users machines.

We strongly recommend that you make sure that the data on the license have been included into your

project before your final application is distributed. To do that, please make sure that the license.licx file

is created and included into the root folder of your application and that this file contains description of

all types of the used components. In addition, run your application on a machine where the license for

the product is not installed.

Sometimes recompilation of the application does not cause recompilation of its resources. And it is

possible that the license.licx file will not be created in some Integrated Development Environments

(IDE). In this case, please do the following: make any minor changes on a form where the used

components are located and recompile the application. These changes will force an IDE to recompile

resources and refresh the license.licx file.

Each license has an expiration date. But it doesn’t mean that your product will not work after this date.

The expiration date indicates the date after which you will not be entitled to use your current license

 14

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

with the product versions released after this date. If you don’t want to renew your license you are able to

work with the previous product versions without any time limits.

If the project is created by a group of developers with use of several computers, it is required to install a

unique license on each machine. Otherwise, if you use only one license and move your project to

another machine, you will get a warning that the license is illegally used.

You will get this warning if the project has been developed on one machine but transported to another

machine for some reason or another. It is not a violation, but you will get a warning while compilation.

After that the license will be assigned to this machine and you will not get the warning.

If you do not use forms in your application or do not place components on these forms but dynamically

create them from the code, you can create the license.licx file manually. For example, your application

uses report generator that runs the report designer, ReportViewer component and uses the

ReportManager component. Then, the license.licx file should include the following:

PerpetuumSoft.Reporting.Components.ReportManager, PerpetuumSoft.Reporting, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=<keytoken>

PerpetuumSoft.Reporting.View.ReportViewer, PerpetuumSoft.Reporting, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=<keytoken>

PerpetuumSoft.Reporting.Designer.ReportDesigner, PerpetuumSoft.Reporting, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=<keytoken>

If manual creation of this file causes difficulties, you may do the following. Create a temporary form (or

a web page) in your application, place there all types of components you use and recompile the

application. The license.licx file will be created and you may delete the temporary form. And the

license.licx file will remain in your application resources.

If you create your application without using any visual tools and compile it from the command line, you

should use the lc utility that is included into the .NET Framework SDK. For example, you create an

application with the MyApplication.exe name and it uses the licensed components. Then, you should

create the license.licx file with the list of components you use (how to create this file is described above)

and write the following in the command line:

lc.exe /target:MyApplication.exe /complist:licenses.licx /i:PerpetuumSoft.Framework.dll /i:PerpetuumSoft.Reporting.dll

This utility creates resource file with licenses (we get the MyApplication.exe.licenses file in our

example)

After that you should add this file to the resources of your application. For example:

 15

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

csc /res:MyApplication.exe.licenses /reference:….

 Product Localization

The Perpetuum Software’s products can be easily localized. All string resources used by the products

are taken from the ad hoc localization XML-file.

There are several ways to set localization language:

1) One can set language by means of the SelectLanguage application included in the delivery package.

This application changes the register record responsible for the language of Perpetuum Software’s

products.

Here you can select one of the preinstalled languages (Select from list); set custom language using a

custom localization file (Load from file); set default language (Default) or change the folder from which

the list of languages is selected.

2) Another way is to set language from your application. To do it, use the types from the

PerpetuumSoft.Framework.Localization namespace.

PerpetuumSoft.Framework.Localization.Language.CurrentLanguage – is the current language.

You can change it by means of:

 16

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

1. Loading a localization string from a special format file
PerpetuumSoft.Framework.Localization.LocalizationFile localizationFile = new
PerpetuumSoft.Framework.Localization.LocalizationFile();
localizationFile.Read(<filePath>);
PerpetuumSoft.Framework.Localization.Language language =
PerpetuumSoft.Framework.Localization.Language();
language. AddLocalizationFile(localizationFile);
PerpetuumSoft.Framework.Localization.Language.CurrentLanguage = language;

2. Setting default language
PerpetuumSoft.Framework.Localization.Language.CurrentLanguage =
PerpetuumSoft.Framework.Localization.Language.DefaultLanguage;

3. Specifying localization language as a current language in the registry.

PerpetuumSoft.Framework.Localization.Language.CurrentLanguage =

PerpetuumSoft.Framework.Localization.Language.CreateLanguageFromRegistrySettings();

If a language you need is not included in the package, you can create a localization file for a desired

language on your own. You will need to translate all strings.

Upon your request, we can provide an XML-file containing the strings to be translated. After we receive

translation of string resources, a localization file will be produced and provided to you.

Please feel free to contact us at support@PerpetuumSoft.com in regard to localization issues.

 Getting Started
In this section we will go through creating a simple report step by step.

Start Microsoft Visual Studio and create a new C# Windows Application project.

Create a data source for the report. To do it, add the System.Data.DataSet object to the form and create a

Customers table with two fields of the string type called Name and Phone.

Insert the following code into the form Load event handler to fill the table with data
DataRow row = dataTable1.NewRow();
row["Name"] = "Johnson Leslie";
row["Phone"] = "613-442-7654";
dataTable1.Rows.Add(row);
row = dataTable1.NewRow();
row["Name"] = "Fisher Pete";
row["Phone"] = "401-609-7623";
dataTable1.Rows.Add(row);
row = dataTable1.NewRow();
row["Name"] = "Brown Kelly";
row["Phone"] = "803-438-2771";
dataTable1.Rows.Add(row);

mailto:sales@perpetuumsoft.com

 17

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Place the ReportManager component onto the form (if this component is not available on the ToolBox

see the Installation section). ReportManager is a non-visual component and is displayed in the lower

part of the Form Designer window.

Now you should specify a data source for the report. Select the added component (its default name is

reportManager1). Select the DataSources property in the Properties window and click the button to

open the property editor. The following form will appear on the screen:

Click the Add button and in the appeared dialog box enter CustomersDataSet into the Name field, set

the Value property to dataSet1 and click OK.

 18

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Close the Data Binding Editor by clicking the OK button.

Now you should add a report. In the properties window choose the Reports property and click the

button to call the property editor. The following form will appear:

Add the InlineReportSlot object by clicking the Add button. Then choose the Document property in the

property grid and click the button

 19

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

in order to open Report designer.

Choose the File\New menu item, the form displayed in the image below will appear.

 20

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Choose the Standard Report form the New tab list and click OK. The Standard Wizard window will

appear on the screen.

On the Report template properties panel specify report name “Customers”. Then click the button. A

new tab for data section will appear in the list under the button.

 21

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Now you can choose one of the tabs; and a list of settings available for the current tab will be displayed

on the right panel. Set a data source (Data Source field) for the data section (button) equal to

CustomersDataSet.Customers. In the All fields list select the Name field and add it on the Visible fields

tab with the help of the button or by dragging it with a mouse. Do the same for the Phone field.

After all changes the Standard Wizard form should have the following appearance.

 22

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Click the ‘OK’ button. A generated report will appear in the Report Designer window. Close Report

Designer having the report template saved by clicking the button.

Add a button onto the form and specify its Text property as Preview. Create the Click event handler for

this button and write the following code there.
 if (inlineReportSlot1 != null)
 try
 {
 inlineReportSlot1.Prepare();
 }
 catch(Exception exc)
 {
 MessageBox.Show(exc.Message, "Report Sharp-Shooter", MessageBoxButtons.OK,
MessageBoxIcon.Error);
 }
 }

Then select the inlineReportSlot1 object in the properties editor.

Add the RenderCompleted event handler and write the following code there.

 using (PerpetuumSoft.Reporting.View.PreviewForm previewForm = new
PerpetuumSoft.Reporting.View.PreviewForm(inlineReportSlot1))
 {
 previewForm.WindowState = FormWindowState.Maximized;
 previewForm.ShowDialog(this);
 }

This code generates the final document according to the report template and opens the Report Viewer

component.

Start the application, click the Preview button and you will see the generated report. If you have any

difficulties, you can take a look at the implementation of this example in the GettingStartedExample

folder.

 23

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 Basic Information

Concept

Let us examine basic concepts necessary for working with Report Sharp-Shooter.

To generate a report, its template is created. A template is a set of pages (one page is usually

used). Each page contains various visual components; the components’ properties allow you to

customize the appearance of the future report. There are three ways to create a report template:

• design it in the Report Designer component;

• create it dynamically using the wizard;

• create it dynamically in a programmatic way.

A template can be saved in the xml format with the extensions *.xml or *.rst. The created template is

saved with the help of the PerpetuumSoft.Reporting.Components.ReportSlot class’s methods. The

ReportManager component is designed for storing various report sources (the Report property) and data

sources (the DataSource property). After report generation (data replacement in a template) a Final

Document is gotten. The PerpetuumSoft.Reporting.DOM.Document class is used for both representing

final documents and report templates.

Any final document is viewed in the Report Viewer component. Here you can print out the

report and save it in the XML format with the extensions *.xml or *.rsd, as well as export it to many

popular formats.

At present, Report Sharp-Shooter supports exporting to the following formats: GIF, PNG, JPG, BMP,

EMF, PDF, HTML, CSV, TXT, Excel, XML, Excel, and RTF.

After a final document is generated, you can make minor changes to it either programmatically

or using the Report Designer component that can be opened directly from the Report Viewer

component.

You can see how reports are generated in the picture below.

 24

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Data Sources

Using Data Sources in Report Sharp-Shooter

The following classes can be used as data sources for Report Sharp-Shooter:

• ADO.NET objects – System.Data.DataSet, System.Data.DataView, System.Data.DataTable;

• User objects (Business Objects) implementing the System.ComponentModel.IListSource or

System.Collections.Ienumerable interfaces (the Ienumerable interface is implemented in many

standard classes, for example, System.Array, System.Collections.ArrayList,

System.Collections.CollectionBase and many others);

All properties of any other user classes (Business Objects), not included in the list mentioned above,

will be available as data sources.

Data sources for reports are specified using the DataSources property of the ReportManager class. This

property is of the PerpetuumSoft.Reporting.Components.ObjectPointerCollection type. This class is a

collection of objects linked to string keys.

To specify data sources for a report in the property editor, select the ReportManager object and

click the button in the Properties window of the DataSources property. The Data Binding Editor

form shown in the picture below will appear.

 25

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The Edit button opens the editor for the data source selected in the Data Binding List; the Delete

button deletes the selected data source, clicking on the Close button closes the Data Binding Editor.

To add a new data source, click the Add button; it will open the dialog box shown in the picture.

The Name field is used to enter the name under which the data source will be available in the report.

The Value field is used to select the object name that is used in your application and represents the data

source itself. As a result, code similar to the shown below will be added to the InitializeComponent()

method

(C#)
this.reportManager.DataSources =
 new PerpetuumSoft.Reporting.Components.ObjectPointerCollection(
 new string[] {"AccountsDataSet", "CustomersByCity"},
 new object[] {this.accountsDataSet, this.customersByCity});

(VB)
Me.reportManager.DataSources =
 New PerpetuumSoft.Reporting.Components.ObjectPointerCollection(
 New String() {"AccountsDataSet", "CustomersByCity"},
 New Object() {Me.accountsDataSet, Me.customersByCity })

 26

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

To be displayed in the Value list, a data source should be inherited from the

System.ComponentModel.Component class.

To add a data source from the code, you can use either the Add method of the

ObjectPointerCollection class or the Item property

(C#)
reportManager.DataSources.Add("DataSourceName", dataSource);
 (VB)
reportManager.DataSources.Add("DataSourceName", dataSource)
or

(C#)
reportManager.DataSources["DataSourceName"] = dataSource;
 (VB)
reportManager.DataSources("DataSourceName ") = dataSource

The Add method has two parameters: name of the data source under which it will be available in the

report and the data source itself. In the same way we specify the name and the data source when using

the Item property.

A data source for a report can also be loaded directly into the template with the help of report scripts

(see the example GetDataExample).

Using ADO.NET Objects
Let us take an example of using ADO.NET as a data source. Suppose we have a database with two

tables named “Authors” and “Books” where we store names of the authors and the titles of books they

wrote. There will be two fields in the “Authors” table: a primary key and author's name, in the “Books”

table there will be a primary key, author's key, title and price. You can find this example in the folder

ADODataSource.

Using Business Objects
As it was stated above, business objects should implement either the

System.Collections.IEnumerable or System.ComponentModel.IlistSource interface (the IEnumerable

interface is implemented in many standard classes, for example, System.Array,

System.Collections.ArrayList, System.Collections. CollectionBase and many others) to be used as a

data source. There are two members defined in the IlistSource interface: the Boolean

ContainsListCollection {get;}property that does not affect Report Sharp-Shooter; and the GetList()

method that returns reference to the System.Collections.Ilist interface that in its turn implements the

Ienumerable interface.

 27

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Anyway, working with a business data source is performed via the IEnumerable interface that

has a single method named GetEnumerator() defined in it; it returns reference to the

System.Collections.IEnumerator interface. This interface allows you to access all collection items. The

IEnumerator interface has the Current {get;} property object defined in it that represents the current

object in the collection and two methods: a boolean method called MoveNext() and a void method

called Reset(). The MoveNext() method provides moving on to the next item in the collection and

returns true if it is successful and false if the current item is the last item in the collection. The Reset()

method resets the enumerator; it means that the position before the first item in the collection becomes

the current one.

All properties of objects stored in business datasets will be available as data fields. If a property

is of a type that implements the IListSource or IEnumerable interface, it can also be considered as a list

in its turn. Using business data sources allows you to create complex reports with the hierarchical links.

If a data source implements neither the IListSource interface nor the IEnumerable interface, all

its properties will be available as data. Thus, we can create one record in the table.

Now let us create our data sources for the database with authors and books from the “Using

ADO.NET objects” section.

To store information about one book, create the following class
public class Book
{
 public Book()
 {
 }

 private string name = string.Empty;

 public string Name
 {
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
 }

 private decimal price;

 public decimal Price
 {
 get
 {
 return price;
 }
 set
 {

 28

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 price = value;
 }
 }
}
This class contains two properties that will be available while creating a report.

Now add a collection class named BookCollection that implements the IEnumerable interface for

storing instances of the Book class. We will store data in the ArrayList class instance. Besides, we will

implement the Add() method to add an item to the collection and the GetEnumerator method to

implement the IEnumerable interface. The code of this class is given below
public class BookCollection : IEnumerable
{
 private ArrayList list = new ArrayList();

 public BookCollection()
 {
 }

 public void Add(Book b)
 {
 list.Add(b);
 }

 public IEnumerator GetEnumerator()
 {
 return list.GetEnumerator();
 }
}

Now create a class that will be used to store information about one author. Since an author can

have numerous books, the property where books are stored must be a collection. Thus, we implement

the hierarchical link in the business data sources.
public class Author
{
 public Author()
 {
 }

 private string name = string.Empty;
 public string Name
 {
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
 }

 private BookCollection books = new BookCollection();

 public BookCollection Books
 {
 get

 29

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 {
 return books;
 }
 }
}

And finally create a collection for storing authors. For example, this class can be inherited from

System.Collections.CollectionBase that is the base class for strongly typed collections. It implements

the IEnumerable interface.
public class AuthorCollection : CollectionBase
{
 public Author Add(Author value)
 {
 base.List.Add(value as object);
 return value;
 }

 public void Remove(Author value)
 {
 base.List.Remove(value as object);
 }

 public void Insert(int index, Author value)
 {
 base.List.Insert(index, value as object);
 }

 public Author this[int index]
 {
 get
 {
 return (base.List[index] as Author);
 }
 set
 {
 base.List[index] = value;
 }
 }
}

In this example the BookCollection class implements the IEnumerable interface only to

demonstrate such a possibility. Of course, collections can also be stored in arrays or, for example, in the

ArrayList class instances, but it is better to use strongly typed collections (those inherited from

CollectionBase).

You can find this example in the UserDataSource folder. Data source filling and its addition to

the DataSources collection of the ReportManager class is executed in the Init() method.

Nonstandard Ways of Using Business Objects
If you need to change the standard mechanism of working with business data sources to use

dynamically calculated properties instead of object properties, you should implement the

ICustomTypeDescriptor interface for an object representing one record in the data source and the

ITypedList interface for the collection where these objects are stored.

 30

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Let us take this feature in our next example. Suppose we are developing a program for a

company engaged in supplying various constituents around the entire world. Obviously, we will have to

convert prices to various currencies from the main currency in our reports. You can find this example in

the CustomTypeDescriptorExample folder.

The Currency class is used to store information about possible currencies. The class has two

properties defining name and the rate used to coverting from the main currency. The SystemCurrencies

static array is also declared in the class. It is used to store all the currencies used in the system. In our

example, the value is directly assigned to the array, but in real applications you can upload this array

from a database.

To store one record representing a constituent, we use the Path class that implements the

IcustomTypeDescriptor interface. Below you can see the code of the static method generating the

collection of dynamic properties for this class.
public static PropertyDescriptorCollection GetPartProperties()
{
 PropertyDescriptorCollection props = new PropertyDescriptorCollection(null);
 foreach(Currency c in Currency.SystemCurrencies)
 {
 props.Add(new CurrencyPropertyDescriptor(c));
 }
 props.Add(TypeDescriptor.CreateProperty(typeof(Part), "Name", typeof(string)));
 return props;
}

This method is called by following methods:

ICustomTypeDescriptor.GetProperties(Attribute[] attributes)
ICustomTypeDescriptor.GetProperties()

As you can see from the code, at first the CurrencyPropertyDescriptor class instances are created for

each currency from the Currency.SystemCurrencies array and then the name of a constituent is added.

The CurrencyPropertyDescriptor is inherited from the PropertyDescriptor class. Please pay

attention to the way the PropertyType and ComponentType properties of this class are implemented.

They return type of the property and class that implements this property. The GetValue and SetValue

methods return and set property value correspondingly.

And finally, we are going to consider the PartCollection class used to store constituents

collection. This class implements the ITypedList interface. The interface has two methods: GetListName

that returns name of the list and GetItemProperties that returns the array of the PropertyDescriptors

objects that describe dynamic properties of objects in the list. This method returns the result of the static

Part.GetPartProperties() method.

 31

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Thus, it will be enough just to implement a separate report template for each country where

prices will be displayed in the required currency.

Using an XML File as a Data Source
An example of using data from XML file can be found in the XmlDataSourceExample folder. In

this example, the Document CommonScript property contains descriptions of objects that will read data

from an XML file
private XPathDocument doc;
private XPathNavigator nav;
XPathNodeIterator iTitle;
XPathNodeIterator iPrice;
XPathNodeIterator iFirstName;
XPathNodeIterator iLastName;
Initialization code is inserted in the Document object’s GenerateScript:
doc = new XPathDocument("books.xml");
nav = doc.CreateNavigator();
iTitle = (XPathNodeIterator) nav.Evaluate("bookstore/book/title");
iPrice = (XPathNodeIterator) nav.Evaluate("bookstore/book/price");
iFirstName = (XPathNodeIterator) nav.Evaluate("bookstore/book/author/first-name");
iLastName = (XPathNodeIterator) nav.Evaluate("bookstore/book/author/last-name");
dataBand1.InstanceCount = iTitle.Count;
Please pay attention to the last line. Here the number of records in the data source is assigned to the

DataBand InstanceCount property. The InstanceCount property defines the number of records; it means

that the section will be repeated InstanceCount times while generating a report.

The GenerateScript property of dataBand1 contains the following code
iTitle.MoveNext();
iFirstName.MoveNext();
iLastName.MoveNext();
iPrice.MoveNext();
That is, we move on to the next record when each new DataBand is displayed. This code cannot be used

in the GenerateScript properties of the TextBox objects, since these objects will be destroyed and

regenerated for a new page if the next generated line does not fit into the current page. Thus we will

miss a record; and GenerateScript of the DataBand section will always be called once for each record.

Direct Access to the Database
Data sources for reports can be loaded directly to the template. To do it, we use the

GenerateScript property of the document containing the entire code that loads data and adds a source to

the report. This is an example of such a code
OleDbConnection cn = new OleDbConnection();
cn.ConnectionString = "Provider=\"Microsoft.Jet.OLEDB.4.0\";"+
"Data Source=\"D:\\DataBases\\database.mdb\"";
cn.Open();
string sqlCmd = "select * from persons";
OleDbDataAdapter adapt = new OleDbDataAdapter(sqlCmd,cn);
DataSet dataSet = new DataSet("Persons");
try

 32

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

{
 adapt.Fill(dataSet,"Persons");
}
catch(Exception exc)
{
 MessageBox.Show(exc.Message, "Report Sharp-Shooter", MessageBoxButtons.OK,
MessageBoxIcon.Error);
}
finally
{
 cn.Close();
}
DataObjects.Add("Persons",dataSet.Tables["Persons"]);

The last line adds a table to report data sources.

Unbound Reports
It is also possible to create reports without specifying their data source. The DataBand object has

the InstanceCount property that defines how many times this object will display its content in the report.

You can find an example of an unbound report in the WithoutDataExample folder. This example

displays a multiplication table. The report template contains two DataBand sections. The dataBand2

section is embedded in the dataBand1. Both have the InstanceCount property set to 10. The following

value is assigned to the Value property of the textBox1 object
dataBand1.LineNumber.ToString() + " * " + dataBand2.LineNumber.ToString() + " = " +
(dataBand1.LineNumber * dataBand2.LineNumber).ToString()

The LineNumber property of the DataBand section contains number of the current line. Thus, we

consecutively display the multiplication table for 1, then for 2 and so on up to 10.

Report Parameters
Custom data sources can be used as report parameters. Let us consider a simple example of using

report parameters. Suppose we need to create a report on all books in the database with their prices (see

the “Using business objects” section). But we want to provide clients from various countries with

reports containing the prices not only in our currency, but also in their national currencies. To do it, we

will need a currency exchange coefficient. At the same time, clients from our country do not need this

additional information. That is why we will need a boolean parameter defining if it is necessary to give

prices in another.

An example with this report can be found in the ParamsExample folder. There are TextBox and

CheckBox elements on the form. They will be used to enter report parameters. When the Designer

button is clicked, the Report Designer component runs, the Preview button opens the Report Viewer

component. The Exit button closes the program. To store report parameters, the par variable of the

Params type is used. The code of the Params class is given below

 33

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

public class Params
{
 public Params()
 {
 }

 private bool show = false;

 public bool Show
 {
 get
 {
 return show;
 }
 set
 {
 show = value;
 }
 }

 private decimal factor;
 public decimal Factor
 {
 get
 {
 return factor;
 }
 set
 {
 factor = value;
 }
 }
}

To add our parameters as a report data source, the following line is inserted in the form editor.
reportManager1.DataSources["Parameters"] = par;

Now let us see how these parameters are used in the report. Start the program and click the

Design button. The right textBox4 column is displayed in the report only if the Show parameter is set to

true. In this case prices are converted according to the coefficient we have specified. It is achived due to

assigning the Value and Visible properties calculated during the report generation process. To view

these properties, select the textBox4 object and click the button in the Properties window. The

Visible property is set to GetData("Parameters.Show"), so this property will have the value returned by

the GetData method with the "Parameters.Show" parameter during the report generation process. The

GetData method returns the values of the provided data source. It means that the TextBox will be visible

only if the "Parameters.Show" value is set to true. In a similar manner, the Value property of textBox4

has the decimal value GetData("Parameters.Factor")*(decimal)dataBand2["Price"], i.e., the price of a

book multiplied by the currency exchange coefficient.

Starting from version 2.0, Report Sharp-Shooter features the mechanism of passing parameters

straight to a document. It can be demonstrated in the following example. Let us create a new project.

Add the reportManager1 component onto the form and add the inlineReportSlot1 data source in its

 34

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Reports property. Then run the inlineReportSlot1.Document property editor. For a start, let’s create a

new document by clicking the toolbar button. Now let us run the Document.Parameters property

editor, add two parameters named Date and Number and correspondingly specify System.DateTime and

System.Int32 parameter types. We shall get the following:

Then, let us add two textboxes. For one textbox we shall specify the “GetParameter(“Date”)” Value

property, and for the other one – “GetParameter(“Number”)”. Thus, at report generation, the parameter

values will be calculated and placed into the textboxes’ Value property. Here the document composition

is over. Save it and close the editor.

Then add two textboxes onto the main application form. We will use these textboxes to enter parameters

values passed to the document. Let us write the following code in the Load form event handler:

 private void Form1_Load(object sender, System.EventArgs e)
 {
 textBox1.Text = DateTime.Now.ToString();
 textBox2.Text = Environment.TickCount.ToString();
 }

We shall write the following code for the inlineReportSlot1 component in the RenderCompleted event

handler:

 private void inlineReportSlot1_RenderCompleted(object sender, System.EventArgs
e)
 {
 using (PerpetuumSoft.Reporting.View.PreviewForm form = new
PerpetuumSoft.Reporting.View.PreviewForm(inlineReportSlot1))
 {
 form.WindowState = FormWindowState.Maximized;
 form.ShowDialog();
 }

 35

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 }

In the GetReportParameter event handler we shall write the following:

 private void inlineReportSlot1_GetReportParameter(object sender,
PerpetuumSoft.Reporting.Components.GetReportParameterEventArgs e)
 {
 e.Parameters["Date"].Value = textBox1.Text;
 e.Parameters["Number"].Value = textBox2.Text;
 }

Now, let us add a button onto the form and write the code shown below in the Click event handler:

 private void button1_Click(object sender, System.EventArgs e)
 {
 inlineReportSlot1.Prepare();
 }

This example can be found in the DocumentParametersUsing catalogue.

Let us see what is happening while report rendering. A document copy is created before the beginning

of report rendering. At the same time, the handlers of the GetReportParameter event which helps to set

parameter values from an application are called. If a report contains sub reports, the event handlers for

them are called before rendering these sub reports. If a report presupposes Master report availability, the

event handlers for such Master report are called prior to the ones for a current report.

Exporting Reports
At present, Report Sharp-Shooter supports reports export to the following formats: GIF, PNG,

JPG, BMP, EMF, PDF, HTML, CSV, TXT, Excel, XML, Excel, and RTF

Export filters for PNG, BMP, EMF, GIF, JPG and TIFF file formats are located in the

PerpetuumSoft.Reporting assembly; PDF filter is located in the PerpetuumSoft.Reporting.Export.Pdf

and PerpetuumSoft.Writers.Pdf assemblies; HTML filter is located in the

PerpetuumSoft.Reporting.Export.Html assembly; filters for CSV and TXT formats are located in the

PerpetuumSoft.Reporting.Export.Text assembly; Excel export filter is in

PerpetuumSoft.Reporting.Export.Excel and PerpetuumSoft.Writers.Excel; Excel XML filter is in the

PerpetuumSoft. Reporting.Export.ExcelXML assembly.

Export filters have the overloaded Export function that is used to export a document to the

corresponding format:
public void Export(Document document, string fileName)
public virtual void Export(Document document,string fileName,bool showDialog),
here, document is the final document;

 fileName is the name of the file the exported document will be saved to;

 36

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 showDialog defines whether to show the filter settings dialog box.

In case the first method is used, the filter settings dialog box will be displayed.

Exporting to the formats that use filters from the PerpetuumSoft.Reporting assembly is always

available in Report Viewer. To use the rest of filters, you will have to enable the corresponding

assembly and create at least one instance of this filter class. The simplest way to do it is to place the

needed filter on the form.

Besides, the PerpetuumSoft.Reporting.Export.RegisterExportFilter(ExportFilterFactory factory) static

method and the PerpetuumSoft.Reporting.Export.ExportFilters static collection are accessible in order to

manipulate available export filters.

 Creating templates in the wizard
The wizard allows fast creation of a report template. After you configure and generate a template

using the wizard, you will only have to customize its appearance.

To open the wizard, you can select the File\New item in the Report Designer, press the Ctrl+N

shortcut or the button on the toolbar. After that the form shown below will be displayed on the

screen.

Select a Standard Report in the list and click OK. The following form will appear on the screen

 37

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The Pages panel on the left of the form contains items. At first, only the Common item is

available. You can use it to configure the main parameters of a report template: title, unit measure,

styles, script language, page parameters, column parameters.

To add data sections, use the button. A data section will be nested in the section currently

selected in the list. If the Common item is selected, your section will be added to the highest level. To

delete a section, you should select it in the list and click the button.

You can configure the parameters of the section selected in the list on the Pages panel (after you

create a new section, it is automatically selected).

 38

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Use the Data Source field to specify data source name and the Field layout drop-down list to

specify the fields layout type. When the Field Layout value is set to List, fields are displayed as a table,

when its value is set to Card, each field will be displayed as a new line.

Fields available in the data source are displayed in the All fields list. Fields that will be present in the

report should be moved to the Visible fields tab. You can use the and/or buttons to add and

remove fields from the Visible fields list. To add a blank field, you should click the button. To

change the field position, you should use the and/or buttons. You can specify field caption and

width in the Caption and Width input fields. The Aggregate column allows you to specify an aggregate

function that will be calculated by this field. In this case, the LineNumber property of all data sections

the current section is included to will be defined as a condition for aggregate grouping.

To specify grouping conditions, you should add the corresponding fields to the list on the Groups tab.

Using the Wizard for Designing a Pivot Table-based Report
While working with the PivotTable element, you can use a special wizard intended for simplifying the

creation and customization of a pivot table-based report. Open the report designer; create a new

document template by selecting the File->New item in the designer’s menu (you can also use the New (

) Toolbar button or the Ctrl+N shortcut). You will see a window containing a list of available

wizards. Select Pivot table Report and click OK.

After you do that, a PivotTable Wizard window will open.

Basic settings of a document, in which a pivot table is to be placed, are assigned on the Common

settings tab. Pay attention to the Style sheet field. Here one you select one of the predefined styles used

 39

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

for drawing the final pivot table. The other form fields are responsible for setting document’s

corresponding properties.

The settings specific for the PivotTable element are assigned on the Pivot table settings tab. It is

necessary to specify a data source that will be used for building a pivot table in the Data Source field.

The nested data sources the information from which will be considered during the process of a pivot

table creation are specified in the NestedFields list.

 40

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

When the data source is specified, one can proceed to setting pivot table layout. To do that, one should

click the Configure layout button; this will run the Layout editor form. You can learn more about the

Layout editor in the previous section of this User Guide.

The form fields located on the Pivot table settings tab and united into the Display group set the

corresponding properties of the PivotTable element.

In addition, there is a button panel on the Pivot table Wizard form.

The Preview button (): when this button is clicked a report is rendered subject to the settings and

can be viewed by a user.

The Edit template button () returns to template editing mode.

After your pivot table is composed, click the OK button. The final report is presented below.

 41

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 Report Creation Techniques

Introduction
The majority of examples that you will see in this section are based upon the database which

structure is shown below.

 42

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The database is designed for a company engaged in selling various products. The company has

customers that order and buy products. One company employee takes care of each order. Thus, our

database can consist of five tables: Customers, Employees, Orders, LineItems (order lines) and Parts

(products).

Visual Items in Reports, Setting Common Properties and Data Binding
Let us consider items used in the process of creating reports. They are available either via the

Insert menu in the Report Designer or via the buttons on the Components Toolbox. All components

have their set of properties which values can be specified statically, at the same time each property can

be bound to an expression that will be calculated during the report generation process. To display the list

of properties that can be bound to an expression, click the button on the Properties tab.

Probably, the most important control element while creating reports is the DataBand section .

It allows multiple use of components inserted into it for each data source record. The DataBand data

source is specified via the DataSource property. To get access to data, you should add the Detail section

 to the DataBand.

There are also sections named PageHeader and PageFooter that are used to create page

header and page footer. The Header and Footer sections allow you to create DataBand header

and DataBand footer. The GroupHeader and GroupFooter sections are the header and footer of

a group. The PageOverlay section is the overlay of a page. The CrossBand section allows you

to display data sections right to left instead of top to bottom.

 Report Sharp-Shooter features elements intended for managing the process of report generation.

The BandContainer element () displays its content once and is analogous to the DataBand element

which InstanceCount property is equal to 1. The SideBySide element () allows creating parallel

reports. The SubReport element () allows to use sub reports. The Content element () is used in

Master report templates. The PivotTable element () is used to create pivot tables.

These elements are described in the corresponding sections of this User Guide.

Let us examine properties common for quite a few components used in the process of creating a

report.

The Bookmark property allows you to create a bookmark you can later refer to using the

Hyperlink property.

 43

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The Hyperlink property allows you to create a link that is followed when the object is clicked. In

this case searching is done in the following way. If the link is found among the bookmarks of objects

included in the report, the corresponding report part is opened; the rest of links is passed to the operating

system that decides what application should be used for this link.

The Border property allows you to specify whether borders should be displayed and set the style

of lines.

The CanGrow property allows you to enable enlarging objects if their content inserted during the

report generation process does not fit to the size specified to the object in the template.

The CanShrink property allows you to enable shrinking objects if their content inserted during

the report generation process is smaller in size than the size of the object specified in the template.

The GrowToBottom allows you to enable enlarging objects in the final document so that it can

reach the bottom of its section irrespective of its size in the template.

The Fill property defines the color and fill style for the area occupied by the object.

The Location and Size properties define the position and size of the upper-left corner of the

object.

The Margins property defines the size of margins in the object.

The Name property allows you to specify an object name.

The StyleName property defines the style used for the control element.

The Tag property is used to store additional information about the object.

The Visible property defines the visibility of the object.

Now let us consider visual components used for creating a report.

 TextBox

This component allows you to display text information. The Text property defines some static

value for the text, it is possible to calculate this value dynamically by specifying an expression for the

Value property. For example, you can take the value of a field from your data source. If the Value

property is specified, the Text property is ignored. The component has also the Font property defining

text font, its TextAlign property defines text alignment, the TextFill property defines text color and text

style, and the TextFormat property defines text format.

More details about specifying a text format can be found in the .NET Framework Developer’s

Guide Formatting types.

AdvancedText

This component allows displaying information as formatted text. It is possible to assign

paragraph and text styles and to use expressions directly within a certain text item. The formatted text

 44

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

can be defined with the help of: an HTML similar markup language (the Text property), an RTF format

subset (the RtfText property). For more details see the “Using AdvancedText component” section.

 Picture

The Picture object allows you to include pictures in the report. This object has the Image

property allowing you to specify the image; it also has the ImageAlign property that allows specifying

the alignment for the picture and the SizeMode property making it possible to specify how the picture

should be stretched.

 Shape

The Shape object allows you to display various shapes. A shape is specified in the ShapeStyle

property, the Line property allows you to specify the type of lines while the Shadow and ShadowFill

properties define its shadow and fill.

 ZipCode

This object allows you to display a zip code. Its value is specified in the Code property.

 BarCode

The BarCode object allows you to display a bar code. Its value is specified in the Code property,

the CodeType property is used to specify the type of code.

 RichText

RichText allows you to display the text in the RTF format. The text is specified in the RTFText

property.

 WinFormsControl

This object allows you to include a Windows Forms control element in the report. The

ControlTypeName property allows you to specify the type for the control element.

Using Expressions and Scripts

General Overview
All expressions and scripts in a report template are written in the programming language you

select. C#, Visual Basic .NET or any other language supporting the .NET environment can be used for

that.

Attention: All scripts are saved in a template as a source code, that is why the client computer

where the report will be generated should have the corresponding compiler installed on it. The

compilers of the C#, Visual Basic .NET and Jscript .NET languages are included in the Microsoft

.NET Framework package.

 45

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

In expressions and scripts you can use all functions and objects from the assemblies loaded in

your application.

To display the list of properties that can be bound to an expression, click the button on the

Properties tab.

An example of binding expressions to the TextBox properties is shown in the picture.

To open the property editor, click the button. It will open the Script Editor form.

 46

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

You can enter an expression manually or drag fields from the data sources on the Data Sources

panel.

Along with the expressions, each report element has the GenerateScript property that contains

the code executed before an instance of the object is created.

Actually, expressions are just short forms of scripts.

Property Binding

Value dataBand1[“Column1”]

Fill new SolidFill(Color.Blue)

It is equivalent to adding the following code to the GenerateScript property
textBox1.Value = dataBand1[“Column1”];
textBox1.Fill = new SolidFill(Color.Blue);

And yet, of course, using script, you can employ the entire power of the programming language

you select and make your report as flexible as you need.

Besides the GenerateScript property, the Document object has the CommonScript property

where you can specify the objects you need and declare some fields, methods or properties that can be

later used in any scripts and expressions.

The Page object has the ManualBuildScript property where you can write the code controlling

display of the objects during the report generation process.

Accessing Environment Variables
In scripts and expressions you can use special properties, objects that are included in the

template and also any objects from the assemblies of your application.

 47

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Template objects are represented as global variables with the corresponding names stored in the

Name field:
textBox1.Text = “New Text”;
etc.

During the report generation process, the following special properties are available

Property Value

PageNumber Current page number

PageCount Total number of pages in the report

ColumnNumber Current column number

Now Date when report generation was started

Document.Title Document title

Document.Description Document description

DataObjects Collection of data sources

Attention. During the first pass, the PageCount property is always equal to PageNumber as the

total number of pages is not yet known. If you want to use this property, make your report

double-pass. To do it, set the DoublePass property of the Document object to true.

Please, pay attention to the DataObjects property. This property allows you to access all data

sources of your report. Thus, you can use methods of data source objects to calculate some values. For

example, you can calculate aggregate functions using the Compute method of the

System.Data.DataTable object.
(DataObjects["AccountsDataSet"] as
DataSet).Tables["LineItems"].Compute("Sum(Price)", "OrderNo = " +
dataBand1["OrderNo"])

To sum it up, you can use in scripts and expressions the following elements:

• all properties and functions available in the

PerpetuumSoft.Reporting.Rendering.ReportScriptBase class;

• all objects included in the template;

• any objects and functions from the assemblies loaded in your application;

• all objects and methods described in the Document.CommonScript property.

Examples of Using Scripts

Color Management

 48

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Let us create a report where 100 random numbers are generated and mark negative ones with red

color. You can find this example in the TextFillExample folder. An array with random numbers is used

as a data source. The following value is assigned to the TextFill property
(int)dataBand1.DataItem >= 0 ? null : new SolidFill(Color.Red)
The Document’s Imports property has the string System.Drawing inserted into it. All namespaces used

in the scripts are specified in this property. This task can be also implemented with the help of styles.

Visibility Management
Let us create an example that will display the number of the current line and only odd lines will

be visible. You can find this example in the VisibleBindingExample folder. In our example, the

DataBand section has the InstanceCount property set to 100. This property defines the amount of times

the DataBand section will display its content in the report. The TextBox object in the template is used to

display the number of the current line, while the following value is assigned to the Visible property of

the Detail object:

(C#)
dataBand1.LineNumber % 2 == 0 ? false : true
(VB)
IIf(dataBand1.LineNumber Mod 2 = 0,false,true)
Detail is visible only if the current line is an odd one. If we want to manage the visibility of the TextBox

object instead of the Detail object, there will be an empty line displayed between odd lines: it is the

Detail object with the invisible TextBox object.

Position Management
The following example shows how you can manage the position of an object. You can find this

example in the LocationBindingExample folder. Similarly to the previous example, the InstanceCount

property of the DataBand object is set to 100. In our example, each five TextBox objects are displayed

with a 3.5-centimeter shift to the right. To make it possible, the following value is assigned to the

dynamic Location property

(C#)
new PerpetuumSoft.Framework.Drawing.Vector(1.5f+3.5f*((dataBand1.LineNumber - 1) %
5),0f).ConvertUnits(Unit.Centimeter,Unit.InternalUnit)
 (VB)

New PerpetuumSoft.Framework.Drawing.Vector(1.5f+3.5f*((dataBand1.LineNumber - 1)
Mod 5),0f).ConvertUnits(Unit.Centimeter,Unit.InternalUnit)
The ConvertUnits method converts unit measure.

Accessing Application Functions

 49

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

As it was shown above, all objects from the assemblies of your application are available for using in

scripts. Let us consider a simple example of using a function from the application. You can find this

example in the HostingApplicationExample folder. The static GetString() function declared in the class

of the main form returns the string “Hello from HostingApplicationExample.exe”. To access the form

class, just add the namespace where the form is stored to the Imports property of the Document object.

The GetString() function is invoked in the Value property of the textBox1 object.

Calculating a Rrunning Sum
Let us take an example of using a script to calculate the running sum. You can find this example

in the CustomScript folder. There are two reports in this example. The first one displays an array of 100

random numbers and the sum of all previous elements opposite each number. To calculate the sum, the

int sum=0 variable is declared in the CommonScript property of the Document object; GenerateScript of

DataBand contains the following code

sum += (int) dataBand1.DataItem;
It means that each time we move on to a new record, the value of the next array element is added to the

sum. You cannot put this code into the GenerateScript property of the TextBox object that is used to

display the sum, since if some generated line does not fit into the current page, all visual components

will be generated once again and we will add one and the same number to the sum twice.

In the second example, the array is displayed in reverse order and the sum of the current element

with all the following elements is displayed opposite each number. In this case, we will have to make

the report double-pass. To do it, set the DoublePass property of the Document object to true. There are

two int variables: sum1 = 0 and sum2 = 0 - declared in Document CommonScript property. The sum of

elements during the first pass is calculated in the variable sum1, and during the second pass it is done in

sum2. To make it possible, the following code is added to the DataBand GenerateScript property:
if(!Engine.IsDoublePass)
 sum1 += (int) dataBand1.DataItem;
else
 sum2 += (int) dataBand1.DataItem;
The IsDoublePass property is false during the first pass and it is true during the second pass. The

following value is assigned to the dynamic Value property of the TextBox
sum1-sum2+(int)dataBand1.DataItem

Scripting Background
The information below is given for those who want to know the inner mechanism of using

scripts in the report manager.

Actually, all scripts and expressions form a class with the following structure
public class Script : PerpetuumSoft.Reporting.Rendering.ReportScriptBase

 50

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

{
 private PerpetuumSoft.Reporting.DOM.Page page1;
 private PerpetuumSoft.Reporting.DOM.TextBox textBox1;
 …
 <Document.CommonScript>
 public Script(PerpetuumSoft.Reporting.DOM.Document document,
PerpetuumSoft.Reporting.Components.ObjectPointerCollection dataObjects,
PerpetuumSoft.Reporting.Rendering.RenderEngine engine) : base(document,
dataObjects, engine)
 {
 this.page1 =
((PerpetuumSoft.Reporting.DOM.Page)(document.ControlByName("page1")));
 this.textBox1 = ((PerpetuumSoft.Reporting.DOM.TextBox)
(document.ControlByName("textBox1")));
 …
 this.page1.ManualBuild += new System.EventHandler(this.page1_ManualBuild);
 this.textBox1.Generate += new System.EventHandler(this.textBox1_Generate);
 …
 }

 private void page1_ManualBuild(object sender, System.EventArgs e)
 {
 …
 }

 private void textBox1_Generate(object sender, System.EventArgs e)
 {
 this.textBox1.Value = <binding expression for Value property of the textBox1>;
 …
 <textBox1.GenerateScript>
 }
 …
}
Here is a real example of the resulting class that is generated for the second example of calculating the

running sum:
namespace PerpetuumSoft.Reporting.ReportScript
{

 #line 1 "Document$ImportsString"
 using System;

 #line default
 #line hidden

 #line 1 "Document$ImportsString"
 using PerpetuumSoft.Reporting.DOM;

 #line default
 #line hidden
 #line 1 "Document$ImportsString"
 using PerpetuumSoft.Framework.Drawing;

 #line default
 #line hidden

 public class Script : PerpetuumSoft.Reporting.Rendering.ReportScriptBase
 {

 51

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 private PerpetuumSoft.Reporting.DOM.TextBox textBox2;

 private PerpetuumSoft.Reporting.DOM.TextBox textBox3;

 private PerpetuumSoft.Reporting.DOM.TextBox textBox1;

 private PerpetuumSoft.Reporting.DOM.Header header1;

 private PerpetuumSoft.Reporting.DOM.Detail detail1;

 private PerpetuumSoft.Reporting.DOM.TextBox textBox4;

 private PerpetuumSoft.Reporting.DOM.DataBand dataBand1;

 private PerpetuumSoft.Reporting.DOM.Page page1;

 #line 1 "Document$Common"
 int sum1 = 0;
 int sum2 = 0;
 #line default
 #line hidden

 public Script(PerpetuumSoft.Reporting.DOM.Document document,
PerpetuumSoft.Reporting.Components.ObjectPointerCollection dataObjects,
PerpetuumSoft.Reporting.Rendering.RenderEngine engine) : base(document,
dataObjects, engine)
 {
 this.textBox2 =
((PerpetuumSoft.Reporting.DOM.TextBox)(document.ControlByName("textBox2")));
 this.textBox3 =
((PerpetuumSoft.Reporting.DOM.TextBox)(document.ControlByName("textBox3")));
 this.textBox1 =
((PerpetuumSoft.Reporting.DOM.TextBox)(document.ControlByName("textBox1")));
 this.header1 =
((PerpetuumSoft.Reporting.DOM.Header)(document.ControlByName("header1")));
 this.detail1 =
((PerpetuumSoft.Reporting.DOM.Detail)(document.ControlByName("detail1")));
 this.textBox4 =
((PerpetuumSoft.Reporting.DOM.TextBox)(document.ControlByName("textBox4")));
 this.dataBand1 =
((PerpetuumSoft.Reporting.DOM.DataBand)(document.ControlByName("dataBand1")));
 this.page1 =
((PerpetuumSoft.Reporting.DOM.Page)(document.ControlByName("page1")));
 this.textBox2.Generate += new System.EventHandler(this.textBox2_Generate);
 this.textBox1.Generate += new System.EventHandler(this.textBox1_Generate);
 this.dataBand1.Generate += new System.EventHandler(this.dataBand1_Generate);
 }

 private void textBox2_Generate(object sender, System.EventArgs e)
 {
 #line 1 "textBox2$Value"
 this.textBox2.Value = sum1-sum2+(int)dataBand1.DataItem;

 #line default
 #line hidden

 #line 1 "textBox2$Generate"

 #line default

 52

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 #line hidden
 }

 private void textBox1_Generate(object sender, System.EventArgs e)
 {

 #line 1 "textBox1$Value"
 this.textBox1.Value = dataBand1.DataItem;

 #line default
 #line hidden

 #line 1 "textBox1$Generate"

 #line default
 #line hidden
 }

 private void dataBand1_Generate(object sender, System.EventArgs e)
 {
 #line 1 "dataBand1$Generate"
 if(!Engine.IsDoublePass)
 sum1 += (int) dataBand1.DataItem;
 else
 sum2 += (int) dataBand1.DataItem;

 #line default
 #line hidden
 }
 }
}

Creating a Simple List
Let us consider an example of creating a simple list. We will create a report where the list of

products for sale will be displayed. You can find this example in the SimpleList folder. To create your

own report, start the program and click the “Design” button. It will run the ReportDesigner. Create a

new empty report template. To do it, click the button on the toolbar, select a Blank Report in the

dialog box and click ‘OK’.

To display the page header, place PageHeader onto the template, place TextBox onto

PageHeader and stretch it to the entire width of the template without borders. Set the TextBox Value

property to "Page #"+PageNumber.ToString(). To display the Value property value on the TextBox at

design-time, you should specify an empty value for the Text property (otherwise, the value of the Text

property will be displayed) and the value of the Value expression will be displayed in the report. We

will also change the Border property of TextBox so that the bottom border is displayed (use the property

editor to do it) and the TextAlign property so that the text is aligned to the right.

 53

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Now let us create a title for the report. To do it, place the Detail section onto the form and insert

the TextBox object into it. Set the Text property to Parts. You can also try changing the following

properties: Font (defines the text font), Fill (defines the fill for the area taken by the TextBox object) and

TextFill (defines the text fill).

Now let us place DataBand on the form and use the DataSet property to specify the “Parts” table

as its data source. After that, put Header onto DataBand to display column headers. Set the Header

RepeatEveryPage property to true to display column headers on each page. Altogether we will have two

headers: a product name and its price, so put two TextBoxes onto Header. Set the Text property of the

right one to “Part” while set this property of the left one to “Price”. You can also customize the font and

fill of these objects and use the TextAlign property to align the text. In the given example, “Part” is

aligned to the right border, while “Price” is aligned to the left border.

 To display all lines from the data source, put Detail onto DataBand. Set the CanGrow and

CanShrink properties of Detail to true to automatically adjust height of this section subject to the height

of objects included in it. Now insert two TextBox objects into Detail to display the name and price of

products, reset the Text property for them, set the CanGrow and CanShrink to true to automatically

adjust height of this section subject to the size of the text displayed in them. Set the GrowToBottom

property to true to adjust objects in one line to fit the height of the largest one. Set the Value property of

the left TextBox object to dataBand1["Description"] and of the right object to dataBand1["ListPrice"].

Use the TextAlign property to align text in the TextBox objects. Also, specify the TextFormat property

for the right TextBox object. To do it, use the property editor. You can either use the standard Currency

format or specify a custom one (to do it, select the Format->Custom list item and enter the format you

need in the Format mask field).

 54

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Now place the PageFooter on the form to display a the page footer. Insert the TextBox object

into it to display the current date. Set the Value property to Now and use the TextFormat property to

customize the date format.

The report template you should finally get looks approximately like this

Using Styles
In the “Creating a simple list” example, the final report is rather difficult to read because it is

difficult to understand for what product each price is displayed. Let us use styles to improve report

readability. You can specify font, text fill, object fill and borders with the help of styles. Thus, we can

create two various styles and use one of them for even lines in the report and another one for odd ones.

You can specify the collection of styles in the Document.StyleSheet property. To select the Document

object, either click the button on the toolbar or select it from the drop-down list on the Properties

tab. Then open the property editor and create two different styles named “EvenColumn” and

“OddColumn”. Now you can use these styles for any objects in the template. And if you specify a style

for a container containing some other objects, the specified style is applied to the included objects as

well. The corresponding object properties process values that are specified in the style, only if they have

 55

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

their default values (if you do not change those properties). Property values different from the default

ones are displayed in bold type in the Property Grid. To set the value of some property to the default,

right-click the corresponding property and select the Reset item from the contextual menu.

To apply different styles to different lines in the report, set the StyleName property of detail2 to
dataBand1.LineNumber % 2 == 0 ? "EvenColumn" : "OddColumn"

We use the DataBand.LineNumber property in this expression. It defines the number of the current line
during the report generation process.

You can find this example in the StyleSheet folder.

If you use styles to customize the way your report looks like instead of specifying fonts, fills and

borders for each object, you can easily change report arrearance by modifying Styles collection. For

example, you can use a colored style to view your report on the screen and a style with gray gradations

to print the report on a monochrome printer. See an example of changing styles in the

SharpShooterDemo application.

Creating Multicolumn Reports
The report created in the “Creating a simple list” section contains only two columns and there is

a lot of free space left between records in these columns. To use the space on the page more effectively,

let us modify this report to make it multicolumn. You can find this example in the MultiColumn folder.

To make the report run in two columns, you should specify the ColumnsCount and ColumnsGap

properties of DataBand that define the number of columns and spacing between them. We will have two

columns. Let us set the spacing between them to 0.5. After that you should resize the TextBox objects in

Header and Detail so that they fit into one column (columns will be marked with light-red vertical lines).

Also, set the Header.RepeatEveryColumn property to true to display column headers in each column.

The template you should finally get looks approximately as shown in the picture below

 56

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Creating Labels
You can find the example of creating labels in the LabelExample folder. Creating labels is

almost the same as creating a usual report. The main difference is that you will have to adjust the page

size. To do it, you should change some properties of the Page object. First, you should set the PaperKind

property to Custom. And after that you should specify the necessary size using the CustomSize property.

In our example, two TextBoxes for displaying the description and the price of a product, as well

as BarCode for displaying its bar code are added to the detail1 object. Besides, objects are positioned

vertically instead of being positioned horizontally. At the same time, the size of these objects is fixed,

that is, the CanGrow and CanShrink properties are set to false.

Creating Hierarchical Reports, Using DataRelations for Creating Hierarchical Reports
Let us consider an example of creating a more complicated report with hierarchical links. We

will create a report that will show all customers, their orders and products included in orders. You can

find this example in the MasterDetail folder. To create your own report, start the program and click the

“Design” button. It will open the Report Designer component. Create a new empty report template. To

do it, click the button on the toolbar, select a Blank Report in the dialog box and click OK.

First, put the DataBand onto the template and set the Customers table from the AccountsDataSet

as a data source (the DataSource property). Then place Detail onto the DataBand and set its CanGrow

and CanShrink properties to true. Now place TextBox into Detail, set its CanGrow and CanShrink

properties to true and the Value property to "Customer: "+dataBand1["Company"]+"\n"+ "Phone:

"+dataBand1["Phone"]. Thus, the TextBox will show two lines: company name in the first one and

telephone number in the second one.

 57

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Now let us place another DataBand into the first one and specify

AccountDataSet.Customers.CustomersOrders as its data source. CustomersOrders is a name of the

DataRelation object that is used to create a link between the Customers and Orders tables in the

AccountDataSet. Order records related to the current customer will be available in the embedded

DataBand during the report generation process.

Now place Detail into the dataBand2 and set its CanGrow and CanShrink properties to true.

Then put three TextBoxes into Detail, set their CanGrow, CanShrink and GrowToBottom properties to

true. Set the Value property of the first TextBox to " + dataBand2["EmpNo.LastName"]+" "+

dataBand2["EmpNo.FirstName"], of the second one to "Sale Date: " + dataBand2["SaleDate"], of the

thrid one to "Payment Method: " + dataBand2["PaymentMethod"]. Please, pay attention to the

expression dataBand2["EmpNo.LastName"]. The EmpNo field is used to link the Employee and Orders

tables in the AccountDataSet. In other words, the EmpNo field from the Orders table is a foreign key

you can use to refer to any field in the Employee table.

Finally, place another DataBand into the dataBand2 to display order lines and set its DataSource

property to AccountDataSet.Customers.CustomersOrders.OrdersLineItems. As in the previous case,

OrdersLineItems is a DataRelation object establishing links between the Orders and LineItems tables.

We will display the following information in order lines: product name, quantity, price, discount and

cost and arrange it to be displayed as a table. The best way to specify table borders is to use the Border

property of the TextBox object. Place Header into the dataBand3 for displaying the table header and put

five TextBox objects that will represent column headers onto it.

 58

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 Let us add Detail to display rows of our tables and set its CanGrow and CanShrink properties to

true. Now place five TextBoxes into this Detail and set the Value property for the first one to

dataBand3["PartNo.Description"], for the second one to dataBand3["Qty"], for the third one to

dataBand3["Price"], for the forth one to dataBand3["Discount"], for the fifth one to dataBand3["Total"].

Also, set the CanGrow, CanShrink and GrowToBottom properties to true for all TextBox objects. We

also use an foreign key to refer to the table called Parts in the expression

dataBand3["PartNo.Description"].

 Finally, we should add a title, page header and page footer to the report. The report template you

should finally get looks approximately like this:

In this example, we created a report with two nested levels. One of the main advantages in Report

Sharp-Shooter is the possibility to create reports with any number of nested levels.

Reports without Sections
Sometimes it is necessary to create a document according to a strict template. Suppose we need

to create a card for storing information about a customer. The card contains information about the

company, country, state, city, address, telephone number, fax number and the contact person's name.

You can find this example in the WithoutBands folder. Page size and the template size are

modified in this example. We use the PaperKind, CustomSize and TemplateSize properties of the Page

object. A DataGrid, where the Customers table and three buttons are displayed, is on the form. Clicking

the Design button runs the Report Designer, clicking Close closes the application. The Preview button is

 59

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

used to prepare a data source and form a card for the current customer in the DataGrid. An instance of

the Customer class is used as a data source for the report. The code of this class is given below
public class Customer
{
 public Customer()
 {
 }

 private string company = String.Empty;
 public string Company
 {
 get
 {
 return company;
 }
 set
 {
 company = value;
 }
 }
 private string country = String.Empty;
 public string Country
 {
 get
 {
 return country;
 }
 set
 {
 country = value;
 }
 }
 private string state = String.Empty;
 public string State
 {
 get
 {
 return state;
 }
 set
 {
 state = value;
 }
 }
 private string city = String.Empty;
 public string City
 {
 get
 {
 return city;
 }
 set
 {
 city = value;
 }
 }
 private string addr = String.Empty;
 public string Addr
 {

 60

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 get
 {
 return addr;
 }
 set
 {
 addr = value;
 }
 }
 private string phone = String.Empty;
 public string Phone
 {
 get
 {
 return phone;
 }
 set
 {
 phone = value;
 }
 }

 private string fax = String.Empty;
 public string Fax
 {
 get
 {
 return fax;
 }
 set
 {
 fax = value;
 }
 }

 private string contact = String.Empty;
 public string Contact
 {
 get
 {
 return contact;
 }
 set
 {
 contact = value;
 }
 }
}
Eight TextBox objects are placed on the report template to display the corresponding information. To

access data, the following method is used: public object GetData(string dataMember). This method is

defined in the ReportScriptBase class that is a parent for the script class generated during the report

creation process.

For example, the Value property of the textBox1 object used to display the company name is set

to "Company: " + GetData("Customer.Company"). Below you can see what this template looks like

 61

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Using Several Pages in Report Templates
Report Sharp-Shooter allows you to create report templates consisting of several pages. And the

final document will be a combination of the reports generated according to all page templates. The final

document contains the parts of the report generated by each template page in the same order the

corresponding pages come in the template. Of course, you can divide such a report into two reports and

generate them separately. But in this case these reports will not have common page numbers, common

bookmarks and links. Multi-page reports are also convenient when it is necessary to generate a title page

in a report.

Let us examine an example of creating a multi-page report. Let us display information about the

customers. The first page will contain minimum information: the company name, country and telephone

number. The second page of the report will contain more detailed information about the customer. You

can find this example in the MultiPage folder.

At the same time, to make navigating through the report more comfortable, we will make it

possible to jump from the less detailed description of a customer to the more detailed description and

vice versa.

To add a new page to the report, you can use either the Report\Add Page menu item or the

corresponding toolbar button.

Below you can see both report pages

 62

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

To make it possible to switch between the detailed and brief descriptions, we will use bookmarks

and links (the Bookmark and Hyperlink properties). A bookmark (the Bookmark property) defines the

value any other object can refer to using the Hyperlink property. The first page contains the TextBox

object that is responsible for displaying company name, its Bookmark property is set to "#" +

dataBand1["Company"], while its Hyperlink property is "#" + dataBand1["Company"] + "\\" +

"(detailed)". The second page contains the TextBox object that is responsible for displaying the

information about a customer, its Bookmark property is set to "#" + dataBand1["Company"], while its

Hyperlink property is set to "#" + dataBand1["Company"] + "\\" + "(detailed)". Thus, these objects just

refer to each other. Note that the lines start from the # character. This character signifies that clicking

this link in the contents should result in jumping to the object with this bookmark. In the same way, the \

 63

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

character allows you to create nested links. In our case it means that each customer will have a nested

link in the contents.

Groups
Report Sharp-Shooter supports displaying grouped data. The GroupHeader and GroupFooter

sections are used for that. These objects have the Group property that defines an expression and when

this expression is modified these sections are displayed.

You can find an example of using groups in the Groups folder.

This report displays information about companies grouped by country and state, i.e.

groupHeader1 (the Group property is set to dataBand1["Country"].ToString() +

dataBand1["State"].ToString()), inside such a group the data is additionally grouped by city, i.e.

 64

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

groupHeader2 (the Group property is set to dataBand1["City"]). The customersByCity representation of

the Customer table is used as a data source for the report. This representation is sorted by the Country,

State, City fields, i.e. by those fields and in the order the groups are displayed. Sorting is necessary to

display groups correctly, since GroupHeader and GroupFooter are displayed only when the expression

for grouping is modified (the Group property).

The Creation of Side-by-side Reports

The SideBySide element () is used to create side by side reports. Let us take a look at a

simple example which does not involve data. Run the report designer, create a new empty document and

put the SideBySide element on a document page. Then place two DataBand elements into it and set their

InstanceCount property to 30 and 10. Place the Detail element inside each DataBand. After that, place

the textBox1 into one of details, so that it appears on the left side of the page and write

“dataBand1.LineNumber” in the Value script. Set the textBox height to 1 cm. Place another textBox in

the second detail, so it would appear on the right side of the page and set its height to 1.5 cm. The

resulting template shall appear like it is shown in the image below.

In a final document, the textboxes from dataBand1 and dataBand2 will be rendered starting from the

same vertical position.

 65

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The Use of the PivotTable Element

Destination and Main Features

The PivotTable element () is intended for creating cross-reports based on high volume statistical data

as well as for generating pivot tables. The result of its use is a report block containing the visual

representation of a pivot table described within a Report Sharp-Shooter document.

The ad hoc pivot table layout editor allows a user to visually specify the data used for calculation. In

order to get a required report it is simply enough to drag the existing fields of a specified data source

into the required areas within the editor and click several buttons to set your pivot table presentation

style.

You can use scripts in one of the programming languages supported by Report Sharp-Shooter in order to

assign the calculation rules for pivot table dimensions as well as for dimensions intersection cells. This

allows you to adjust a pivot table depending on your data source content. The use of scripts affords a

broad variety of pivot table setting options from simple summation of several data source field values up

to diverse variants of setting groupings within report dimensions (e.g. the breaking of dates into years,

months, quarters or days of week).

To calculate the values at pivot table dimension intersections, one can use an aggregate function (e.g.

the retrieval of average, minimum or maximum value).

All pivot table settings can be saved to a file thus making it possible to promptly get back to pivot table

unconfigured state at any moment.

A Pivot Table-based Report Creation Example
The PivotTable element serves to organize data from an external data source as a pivot table. To set a

table, one should specify fields for each dimension (by rows and columns). The fact fields, which data

are used to calculate the values at rows and columns intersections, should also be specified.

A rule for retrieving data from a data source is specified in a field by means of a script.

An aggregate function intended to be used for intersection value calculation should also be specified to

fact fields.

Let us try to construct a simple cross-report, using the PivotTable element, step-by-step. We shall build

a pivot table representing the total sales data of a specific product for each of two conditional

companies.

 66

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The grouping of data in the final table is presented in the screenshot below.

Our columns will contain names of the supplier companies, and the rows will contain product categories

and product names. The intersection will return data on sales total subject to product price, quantity and

the offered discount.

Let us take the Access NWind.mdb.demonstrational data base as our data source.

First of all, we shall create a data source for our report. To do that, let us add the System.Data.DataSet

object onto the application form. Then, within the System.Data.DataSet object we shall create the Sales

table which fields will correspond to the source data table structure.

 67

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Now it is necessary to form a document template. To do that, one should add the ReportManager object

onto the form. After it is done, we shall add our Sales table to the ReportManager’s data source

collection.

Let us add the InlineReportSlot object to the ReportManager Reports collection and name it

pivotTableReportSlot. Editing of this object will run the report designer.

For a start, let us set the document style table (the StyleSheet property). We shall add a new style, name

it Simple style and set the Border and TextAlign properties.

 68

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Then we shall place the PivotTable element onto the template and specify the Sales table as the

element’s DataSource property.

Now we shall set the appearance of our pivot table. To do that, one should correspondingly change the

Layout property of the PivotTable element. The Layout property editor is shown on the screenshot

below.

 69

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Now let us drag the CompanyName record from the Source fields list and drop it into the X dimension

fields list. The CategoryName and ProductName items should correspondingly be placed into the Y

dimension fields list.

Then click the Add button in the Facts fields list. Let us specify the following properties for the newly-

appeared field.
Caption Sales sum
Format 0.00
Expression GetData ("Sales.UnitPrice") * GetData ("Sales.Quantity") * (1 – GetData
("Sales.Discount"))
Width 150
Total label Total price

 70

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

To make the pivot table be correctly displayed in a final report, it is necessary to specify the painting

styles for the PivotTable element. This is done by means of altering the Styles property.

Our pivot table is now set. Now let us add the ReportViewer object onto the application form and

specify pivotTableReportSlot as the Source property value of ReportViewer.

In the form upload event handler, it is necessary to add the code responsible for filling the Sales table

from DataSet as well as the code ensuring the rendering of our template with a pivot table.

If we run our application, we shall see the constructed pivot table as it is shown below.

 71

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

You can find this example in the GettingStartedPivotTable catalogue.

General Information

Concept
The rows and columns of a pivot table described by the PivotTable element are based on the data taken

from several columns of an initial table or another data source.

The information contained in pivot table cells is the data aggregated by corresponding rows and

columns.

Generally, an OLAP cube represents a structure containing multidimensional OLAP-data i.e.

dimensions – descriptive data constituting the axes of a multidimensional cube, and facts –

computational numerical values. The dimensions contain multilevel hierarchies of values and the facts

are the aggregate data (sums, averages, minimal or maximal values, the number of records etc.) based on

the fields of a data source.

Pivot table formation presupposes execution of the following actions:

Data grouping;

Calculation of intermediate results by subgroups;

Calculation of final results.

The field objects are used to define facts and dimensions. In a field, one can specify the data to be used

for pivot table calculation as well as specify the way the data will be presented to a user. The order of

specifying fields within a dimension also assigns the internal data grouping.

The values of resulting fields (both facts and dimensions) are defined by a user. The values can be

defined by means of assigning a script to a field. As for facts, one can also assign an aggregate function.

Thus, the resulting values for facts are the aggregation of results of their scripts’ execution. As a result,

the pivot table formation process is conducted as follows:

- At the data grouping stage, the formation of the tree-type table dimension structure takes place. The

calculation of a script for a corresponding field subject to the data source information occurs for each

tree node (the value of a dimension element). At that, the grouping is taken into account: a group is a

tree node (a field from the dimension elements list is associated with a node), subgroups are leaves of

this node (the following field in the dimension elements list).

- At the stage of intermediate results calculation, the direct filling of a resulting pivot table takes place.

For dimensions’ intersections, the value of a fact is calculated in accordance with the script of its

corresponding field. The calculation of a script occurs subject to the values of all dimension groups

formulated at the data grouping stage.

 72

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

- The calculation of final results occurs simultaneously to filling the table for subgroups in whole. It is

conducted subject to the aggregate functions specified in fields and on the basis of fact values already

calculated. A user can modify the sorting, assign an expression for filtering by optional combinations of

data and execute various table transformations.

Data Sources
The data sources specified in the ReportManager object’s DataSources property are used as data

sources for creating cross-reports designed with the help of the PivotTable element. Please visit the Data

Sources section of this User Guide to learn more about Report Sharp-Shooter’s data sources.

The PivotTable Element – Detailed Description.
In order to duly set the PivotTable element one can use its following properties:

AutoColumnWidth.

When this property is set, the width of table cells will align by their content at table rendering.

AutoRowHeight.

This property has three values:

None – the alignment of row height will not be executed;

Dissimilar – the height of each table cell is set depending on the maximal height of cell content within

the given row.

Similar – the height of all table rows is the same (set depending on maximal content height in all rows).

DimensionOnEveryPage.

When this property is set, the dimension headers will appear on every report page.

ShowRepeatText.

When this property is set, the cell text will be displayed in every case of moving a cell to another page.

ShowSingleFact.

When this property is set, the resulting report will show the names of facts even in case when there is

only one fact present.

TableCaption.

The text displayed as a pivot table caption.

ShowTableCaption.

If this property is not set, the pivot table caption will not be displayed in the resulting report.

DataSource.

The name of a data source used to build a pivot table.

NestedFields.

 73

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

A collection of data sources relative to the source specified by the DataSource property that will be used

to build a pivot table.

FilterExpression.

An expression (condition), written in one of programming languages supported by Report Sharp-

Shooter. A set of data not satisfying a condition described in the FilterExpression property will not be

involved in pivot table calculation.

Styles.

This property defines the drawing styles for various pivot table elements. A desired style should be

present in document’s StyleSheet collection.

Layout.

This property is responsible for pivot table layout i.e. the status of dimension and fact elements, the

order of elements grouping in dimensions, the sorting methods and rules of value formation. A special

editor (Layout editor) is used to simplify the setting of the Layout property. The appearance of it is

shown in the screenshot below.

The editor has four lists containing fields for pivot table composition:

Source fields – a list granting all data source fields to a user.

Inactive fields – a list of fields that are selected by a user for pivot table composition but are not

involved in its calculation.

 74

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

X dimension fields – a list of fields taken from a data source or created by a user to form a column

dimension.

Y dimension fields – a list of fields taken from a data source or created by a user to form a row

dimension.

Facts fields – a list of fields taken from a data source or created by a user to form the facts of a pivot

table.

A user has the ability to drag the fields from one list to another or move the fields within one list thus

changing the field order. Each list has a number of buttons intended to make the list contents

management process easier.

The Move up button () allows moving a selected field one position up within a list.

The Move down button () allows moving a selected field one position down within a list.

When the Add field () button is clicked, a new field is being created and added into the list.

The Remove field button () allows removing a selected field from the list.

There is a selected field property editor in the Layout window.

The Caption property assigns a field caption;

 75

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The Format property assigns a field data output formatting string;

The Show percent property defines whether the current field data will be presented in percentage terms;

The Sort order property assigns field data sorting order;

The Total label property assigns a label for field total;

The Width property assigns field width;

The Aggregate property assigns field data aggregation type (makes sense for facts only);

The Expression property assigns an expression the result of which will take part in pivot table

calculation;

The DisplayExpression property assigns an expression the result of which will be displayed in the

resulting pivot table;

The Layout editor has a button panel.

The Open button () allows loading pivot table settings from file.

The Save button () allows saving pivot table settings to file.

Working with Sub Reports
Report Sharp-Shooter 2.0 makes it possible to use sub reports.

The SubReport element () is used to create sub reports. The TemplateName property is used to

indicate a report to be used as a subordinate one. In a simple case, a reportSlot containing a report

intended to be used as a sub report should be included into the reportManager.Reports collection.

However, there is another way. One can write a handler for the reportManager.ResolveSubReport event.

There one can define a required report template by name and pass a link to it in handler parameters.

There is a possibility to pass parameters to a sub report. The subReport.Parameters collection is used

for that purpose. Each parameter is assigned by name and a script the calculation result of which will be

passed to a document used as a sub report. If a sub report already has a parameter with a given name, the

value will be replaced; otherwise it will be added.

It should be mentioned that only sections (such as DataBand, detail etc.) of a report used as a sub report

will be rendered; visual elements that are placed directly on a page as well as PageBands are not

considered.

Destination of the BandContainer
Report Sharp-Shooter features an element called BandContainer. This element is intended expressly for

users’ convenience and is analogous to the DataBand element which InstanceCount property is equal to

1.

 76

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Master Report Concept
Report Sharp-Shooter makes it possible to use the co-called ‘Master report’.

When a document that uses master template is rendered, the final document includes results of rendering

master template and document template. This ability provides an opportunity to design a group of

documents homogeneously.

In order to assign a master report it is necessary to assign a name to a master template in the

Document.MasterReport property. At report rendering a template with a given name should be gotten

through the IResolveSubReport interface. For example, master template with the required name should

be added to the same ReportManager the initial template was added to.

While creating a template used as a master template, it is necessary to place the Content element onto

this template. Creation of a document that uses master template is executed in the following way. The

final report includes the result of the master template rendering and the Content element is substituted

by the result of the initial report rendering.

Working with Aggregate Functions

Basic Information

If you have worked with other report generators before, you might expect that it is enough to

introduce SUM() to get the total sum of data in Footer. Report Sharp-Shooter allows you to combine

sections with data, groups, etc. so this kind of summing cannot be correct in all cases. You will have to

perform some extra actions to exactly inform the report generator what groups should be summed. You

will need some time to deal with it, but it is not so bad because:

1. you have more flexibility concerning the use of aggregate functions and can make calculations

that would need additional queries in different conditions;

2. you are always aware of what is going on;

3. it is possible to calculate the total for any expression (using any available functions);

4. this approach allows you to optimize the report generation process (reports are created in one

pass mode in most cases).

Besides, the wizard will do the entire work for you in most cases.

At present, the report generator supports 5 built-in aggregate functions:

• Sum – the total of all elements;

• Avg – arithmetic mean;

• Min – minimal element;

• Max – maximal element;

 77

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

• Count – the number of elements.

Aggregate functions are bound to sections. It ensures that only those records that are visible in

the report are calculated. For calculation, you should add an aggregate field to the Aggregates collection

of the corresponding section and give it a unique name, as well as specify an expression for aggregating

using the syntax of the language you chose to writing scripts in.

Calling the function calculating aggregates looks like this

band.Sum ([int pageNumber], string aggregateName, [groupCondition1 [, groupCondition2]…])

where

pageNumber is an optional parameter defining the number of the page to calculate the total for. If this

parameter is absent, the total is calculated for the entire document.

aggregateName – the unique name of an aggregate field

and at the end there are grouping conditions according to which summing is performed, absent grouping

conditions are ignored.

The aggregate values are calculated at the first pass of the document rendering. Now there is an

opportunity to recalculate aggregates at the second pass with the help of the Running property. It means

that, if this property is set to ‘true’, the aggregate will be calculated during the second pass of the

document rendering. Thus, if there is the need to calculate a cumulative sum, it is enough to set the

Running property to ‘true’.

Examples of Using Aggregates

Using Aggregates in Hierarchical Reports

Let us consider an example of using aggregates in hierarchical reports. To do it, we will add the

possibility to calculate the total sum of every order and the total sum of all company orders to our report

from the section “Creating hierarchical reports, using DataRelations for creating hierarchical reports”.

You can find this example in the MasterDetailAggregates folder.

To calculate these two figures, add two sections - footer1 and footer2 - to the report and an

aggregate to the Aggregates collection of the dataBand3 section (the Add button in the Aggregate

Collection Editor).

 78

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Set its Name property to TotalAggr, and its Expression property to dataBand3[“Total”]. After that open

the editor of the Groups collection and add two grouping conditions, the first condition’s Expression

property is set to dataBand1["CustNo"] and the second one’s Expression property is set to

dataBand2["OrderNo"]

The aggregate is ready. During the report generation process, all values of dataBand3[“Total”]

along with the current values of dataBand1["CustNo"] and dataBand2["OrderNo"] will be saved to this

aggregate. Afterwards you can refer to this aggregate at any moment specifying dataBand1["CustNo"]

and dataBand2["OrderNo"] and the function that you want to apply to dataBand3[“Total”]. This

function will be calculated using only those values of dataBand3[“Total”] that come together with the

specified values of dataBand1["CustNo"] and dataBand2["OrderNo"].

 79

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

As it was mentioned above, there are two Footer sections added to the report and used to display

the totals.

The footer1 section is in dataBand2 and it is used to display the total sum for the ordering

company. This section contains textBox21, its Value property is set to dataBand3.Sum("TotalAggr",

dataBand1["CustNo"]). This expression represents the sum of all values from the TotalAggr aggregate

that are connected with the current value of dataBand1["CustNo"]. Since the value of the second

grouping condition is not specified, it is ignored.

The footer2 section in dataBand3 is used to display the sum for each order. There are two

TextBoxes in it, the first one just displays “Total:” and the second has the Value property set to

dataBand3.Sum("TotalAggr",dataBand1["CustNo"],dataBand2["OrderNo"]), i.e. it represents the sum

of all values from the TotalAggr aggregate that came together with the values of dataBand1["CustNo"]

and dataBand2["OrderNo"] during the report generation process.

Using Aggregates in Groups
Let’s add calculating of the customers number in each country state to the report template from

the section “Using groups”. You can find this example in the GroupsAggregates folder.

 80

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

There is an aggregate named “Count” added to the detail2 section. As we calculate the quantity,

the Expression property is set to 1. dataBand1["Country"] and dataBand1["State"] are specified as

grouping conditions (the Groups property).

The textBox6 on the groupFooter1 section is used to display the number of customers. Its Value

property is detail2.Sum("Count",dataBand1["Country"],dataBand1["State"]), i.e. the sum of aggregate

values that were obtained with specified dataBand1["Country"] and dataBand1["State"]. The Expression

property of the aggregate is set to 1, therefore, we have the sum of units equal to the customers in the

given state of this country, thus, the number of customers is calculated.

Page Aggregates
As it was mentioned above, an aggregate can be calculated not only for the entire report, but also

for a certain page. To illustrate this feature, we will use the example from the “Using styles” section. We

will add the output of information on the amount of items from the entire quantity is located on the

given page. This example can be found in the PageAggregates folder.

 81

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The “Count” aggregate is added to the Aggregates collection of the detail2 section. The Groups

collection of this aggregate is empty because we do not need any grouping conditions. pageFooter1 has

textBox8 added to it. The Value property of the textBox8 is set to "Records " +

detail2.Count(PageNumber,"Count") + " of " + detail2.Count("Count"). The expression

detail2.Count(PageNumber,"Count") represents the number of elements in the “Count” aggregate on

page PageNumber. PageNumber is a special variable available during the report generation process and

used to store the number of the current page. The expression detail2.Count("Count") represents the

overall number of elements in the “Count” aggregate.

In most cases, data is displayed before totals. But there are exceptions when displaying some

total in the header is more convenient. Moreover, mind that elements located directly on the page or on

various page sections (such as PageHeader, PageFooter, PageOverlay) are calculated prior to elements

in other sections. The report must be a double-pass one so that aggregate functions in all the above cases

can be correctly calculated. To make a report double-pass, just set the Document.DoublePass property to

true.

In our case, the aggregate value is displayed in the PageFooter section. Besides, the overall

number of records is displayed on each page and this number can become known only after the entire

report is processed and it means that the report must be a double-pass one.

Scenarios of Using Text and Images
Below you can see the recommendations that you should follow, especially when you are going

to export your reports to tabular formats, such as Microsoft Excel.

It is better to use the Border property of the TextBox objects to add not only cell borders to your

tables, but also any other lines. This object will be just converted to the borders of table cells.

Also, we do not recommend that you place objects over each other because it will be impossible

to match objects and cells exactly while exporting.

Let us dwell upon the methods of using pictures in a report. One of possible variants is when the

pictures are stored in a database. To use them, you should include the Picture object in the template and

assign the corresponding value to its Image property. There is a report demonstrating this feature in the

SharpShooterDemo example. The report is called Pictures.

Another possible case is when only filenames are stored in a database. In this case you can load

the image by assigning the following value to the Image property.
Image.FromFile((string)dataBand1["Picture"])
Besides, in this case you should specify the System.Drawing namespace in the Imports property of the

Document object.

 82

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Another variant is loading a picture from a server. Suppose URLs are stored in a database. In this

case you will have to write approximately the following code in the Picture.GenerateScript property:
System.Net.WebRequest req =
System.Net.WebRequest.Create((string)dataBand1["Picture"]);
using(System.Net.WebResponse res = req.GetResponse())
{
 using(Stream strm = res.GetResponseStream())
 {
 picture1.Image = Image.FromStream(strm);
 }
}
and add two namespaces called System.Drawing and System.IO to the Imports property of the

Document object.

Using the AdvancedText Component
This component allows displaying the information as formatted text. It is possible to assign paragraph

and text styles and also to use expressions directly within a certain text item. The formatted text can be

defined with the help of: an HTML similar markup language (the Text property), a subset of RTF format

(the RtfText property).

The use of the Text property: HTML similar markup tags are used for text formatting.

Paragraph formatting: the couple of tags <P> </P> defines a separate paragraph. The align

attribute defines the horizontal alignment of the text in the paragraph. Legitimate values:

• Align = “left” – alignment to paragraph left margin.

• Align = “right” - alignment to paragraph right margin.

• Align = “center” – alignment to paragraph center.

• Align = “justify” - paragraph alignment with both the left and right margins.

Align = “left” is assumed by default.

Text formatting: the tag defines the subsequent text display style. The closing tag

cancels the previous settings. Embedding font tags is allowed. Text style is defined with the help of the

following attributes:

• face – defines font name,

• size – defines font size,

• color – defines text color.

The admissible properties are color name (e.g. color = red), assigning a hexadecimal RGB color value of

separate components (e.g. color = #FF0000)

The tag – the subsequent text will appear as the bold type. The closing tag

cancels this setting.

 83

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The <I> tag - the subsequent text will appear as the italic type. The </I> closing tag cancels

this setting.

The <U> tag - the subsequent text will appear underlined. The </U> closing tag cancels this

setting.

The
 tag – defines the line break within the paragraph.

Symbols defining:

&nbsp; - the space symbol,

&amp; - the ‘&’ symbol,

&It; - the ‘<’ symbol,

&#ddd; - a symbol with ‘ddd’ code.

Note: if the text is not included in a separate paragraph, the aligning is applied according to

TextAlign property. If some text font settings are not obviously defined, the settings will be applied

according to the Font property. If the text color is not is not defined, the TextFill property will be

applied. In the processing of marked text the line folding, spaces following one by one, unknown tags

and attributes are ignored. The case in tags and attributes names has no meaning.

The use of Expressions: within the marked text the expressions, which calculation result will be

substituted in the text, can be used. The expression is defined as {=<Expression>}. The

<Expression> is an expression in the assigned script language. All available types and objects can be

used in the expression (see the “use of expressions and scripts” section). Before an expression

calculation result is placed into the text, the formatting according to the mask, defined in the “Format”

property, is applied to it. If an error occurs during the expression calculating, the error message is

displayed in the text as a result of the expression calculation.

The AdvancedText use example: the following value is defined to the Text property:
“
Page number <i> {=PageNumber} </i>
of <i> {=PageCount} </i>”

The result looks like this:

The use of RtfText property: the RTF format subset is used for text formatting. The following

constructions are supported from RTF format: font table, color table, notes, paragraph formatting

operators (“\par”, “\pard”, “\ql”, “\qr”, “\qc”, “\qj”, “\line”), text formatting operators

(“\fxx”,“\fsxx”,“\cfxx”,“\b”,“\i”,“\u”). The rest of constructions and operators is ignored. The RtfText

 84

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

property is intended only for setting. The RtfText property is connected to the Text property: when the

RtfText property is assigned, the Text property value is defined automatically.

 Using the Widget Component

Destination and Basic Features
The Widgets component is intended for displaying various visual controls. It can be both common

controls such as gauges, dials, sliders, progress bars, odometers, thermometers and industry-specific

instruments: robots, scales, horizon, special-purpose devices and many others.

Full-featured designer allows the creation of visual components having unique appearance and

functionality with a few mouse clicks.

Every visual control displayed in the Widget component consists of visual and non-visual objects that

interact with each other. Using these objects the developer can design any necessary visual control.

In order to assign elements properties, expressions can be used. It allows you to set the property subject

to the current state of the instrument and mouse.

The Widget element is designed for displaying instruments created with the Instrumentation ModelKit.

To get more details on Instrumentation ModelKit features, please see the corresponding user guide

section.

Let’s consider an example of using the Widget component in Report Sharp-Shooter. Create a simple

data source for a report. To do it, add the System.Data.DataSet object to the form, create a SimpleTable

table with the NameColumn string field and the DataColumn field of double type in it.

 85

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Add the Load event handler, filling table with data:
private void Form1_Load(object sender, System.EventArgs e)
 {
 simpleTable.Rows.Add(new object[] {"Data1", 20.0});
 simpleTable.Rows.Add(new object[] {"Data2", 15.0});
 simpleTable.Rows.Add(new object[] {"Data3", 35.0});
 simpleTable.Rows.Add(new object[] {"Data4", 45.0});
 }

Now it is necessary to form a report template. Add the Report Manager object onto the form. Add the

Simple Table table to the ReportManager data sources collection.

Add the InlineReportSlot object to the ReportManager Reports collection and assign its name:

widgetTableReportSlot. Editing this object will result to running template designer.

 86

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Place the DataBand element onto the template. Set its DataSource property value to SimpleTable. Add

the Detail element to the DataBand.

Place the Widget element inside the Detail element.

Double click to run the element designer. In the appeared Wizard window select an instrument.

 87

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Click the OK button and the selected instrument will appear in the designer.

Let’s customize instrument appearance and functionality. The instrument consists of separate elements

with their own properties and functionality. Designer allows developers to add, delete elements and set

their properties. In order to perform any manipulations over the element, you should select it by a mouse

in the instrument window or in the tree displaying instrument’s structure. Select an instrument pointer,

for example:

 88

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Now let’s assign range, within which scale value changes. Select the Scale1 element in the tree. In the

property grid set its Maximum property value to 50.

Then assign a new color to the scale. Select the Colorizer property and call its editor. It has the

following look.

You can assign color and bounds for separate scale ranges in this editor. You can add a new color range

or delete an existing one. To assign color ranges move bounds pointers with a mouse, to assign colors

use buttons on the right of the window. Let’s add two ranges and assign their colors. Confirm changes

by clicking the OK button.

 89

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Exit the Designer by clicking the OK button. The resulting instrument will be used by the Widgets

component.

The instrument is ready. Now it is necessary to bind it to a data source to display the current

DataColumn field value. Assign the following expression in the GenerateScript property.

(widget1.Instrument.GetByName("Slider1") as PerpetuumSoft.Instrumentation.Model.Slider).Value =

(double)dataBand1["DataColumn"];

This expression binds the Slider element value to the current DataColumn from a data source.

Save the template and close the designer. Place the ReportViewer control intended for displaying reports

onto the form and set the widgetReportSlot as its data source in the Source property. It is necessary to

add the following code in the form load event handler to generate a report by the template:

widgetReportSlot.Prepare();

Start the application.

 90

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

This example can be fount in the GettingStartedWidget folder.

 Using the ChartControl Component

The ChartControl is designed for building charts of different types in reports. Full-featured designer

allows customization of charts appearance. Created charts can be saved to a file for re-use.

The ChartControl element is intended for displaying charts created with Chart ModelKit. To get more

information on Chart ModelKit features, please refer to the corresponding user guide section.

Let’s consider an example of using the ChartControl element in Report Sharp-Shooter.

Create a simple data source for a report. To do it, add the System.Data.DataSet object onto the form,

create a SimpleTable table with a NameColumn string field and a DataColumn field of double type in it.

 91

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Add the Load event handler, filling table with data:
 private void Form1_Load(object sender, System.EventArgs e)
 {
 simpleTable.Rows.Add(new object[] {"Data1", 20.0});
 simpleTable.Rows.Add(new object[] {"Data2", 15.0});
 simpleTable.Rows.Add(new object[] {"Data3", 35.0});
 simpleTable.Rows.Add(new object[] {"Data4", 45.0});
 }

Now it is necessary to design a report template. To do it, add the ReportManager object onto the form.

Add the Simple Table table in the ReportManager data source collection.

Add the InlineReportSlot object to the ReportManager Reports collection. Editing this object will result

in running the template designer.

 92

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Place the DataBand element on the template. Specify Simple Table as a data source. Add the Detail

element to the DataBand.

Place two TextBox elements to the Detail section and bind their Value fields to the nameColumn and

dataColumn data source fields. Thus, the report will display table strings in series.

Place the Footer element in the dataBand section and add the ChartControl to it.

 93

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Specify SimpleTable as a data source. Double click to run the designer, select the ColoredCylinder

template in the Wizard window, and click the OK button.

Let’s modify the chart. Delete the chart Title, Value Labels, changeY-axis ScaleLabels and Ticks step to

10.

 94

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Set the Series ScaleType value to Qualitative to make arguments of series points possess nonnumeric

values. Set the X-axis IsDiscrete property value to true to make ScaleLabels lying on the axis display

discrete values.

Then assign a data source for the chart. Open the Series DataSource property editor, set DataSource and

bind arguments of series points to the nameColumn field and series values to the dataColumn field.

Close the DataSource editor by clicking the Ok button. Close the chart designer.

 95

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Save a template and exit the template designer. Place the ChartViewer control onto the form and set

chartControlReportSlot as its data source. Run the application.

This example is situated in the ChartControlGettingStarted folder.

 Working with the Report Viewer
The Report Viewer is used to view final documents. Using it, the end user can view, print, save,

and export the report to any available format, etc. The way the Report Viewer looks like is shown in the

picture below.

 96

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

To view your report, you can use the following buttons on the toolbar or items from the Navigate menu.

 or Navigate\Next Page – go to the next page;

 or Navigate\Next Page – go to the previous page;

 or Navigate\Next Page – go to the first page of the report;

 or Navigate\Next Page – go to the last page of the report;

Besides, you can navigate through the report using the Page Up and Page Down keys that take you to

the previous / next visible part of the report and the cursor keys that scroll the report. The Home / End

keys are used to move to the beginning / end of the page, while Ctrl+Home / Ctrl+End are used to jump

to the beginning / end of the report.

While you are viewing a report, the Report Viewer saves the navigation history. To move

between saved positions, use the and buttons or the Navigate\Backwards and Navigate\Forward

menu items.

To go to a particular page of the report, you can use the Navigate\Go to Page menu item.

If your report has contents, it is displayed in the left part of the form. When you click on a link,

you move to the corresponding place in the report. You can enable / disable displaying these links using

the button on the toolbar.

Report Viewer allows you to search for text in the report. This feature is available via the

Document\Find menu, the toolbar button or the Ctrl+F shortcut.

The following features are also available in the Document menu:

• Refresh Ctrl+R refreshes the report, you can also use the button on the toolbar to do it;

• Edit Report Ctrl+D runs Report Designer where you can change the final document, you can

also use the button on the toolbar to open the component.

Let us examine the features of the View menu and the toolbar buttons corresponding to the menu

items.

The following group of menu items allows you to specify how the mouse should be used:

• Pan F2 toolbar button - the mouse is used to navigate through the report; to use this mode

click the left mouse button on the document and drag the document in the direction you need

holding down the mouse button;

• Zoom In F3 toolbar button - the document is zoomed in when you click the left mouse

button on it;

 97

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

• Zoom In F4 toolbar button - the document is zoomed out when you click the left mouse

button on it;

• Dynamic Zoom F6 toolbar button - if you click the left mouse button in this mode and

move it up or down while holding the key, the document will be zoomed either out or in;

• Zoom to Rectangle F5 toolbar button - allows you to zoom in the selected rectangular area;

you can select some area by clicking the left mouse button and move the mouse pointer in the

necessary direction while holding the mouse button down.

The following group of items allows you to adjust the zoom automatically:

• Whole Page toolbar button - while in this mode, the document will be zoomed to fit the

entire page to the Report Viewer window;

• Page Width toolbar button - while in this mode, the page will fit the window by its width;

• Actual Size toolbar button - while in this mode, the page will be zoomed to 100%.

Using the menu item View\Custom Zoom Ctrl+Z, you can specify the value for the document to

be zoomed to: from 10% to 10000%.

The following items are available in the File menu:

• Open Ctrl+O toolbar button - open a saved document;

• Save Ctrl+S toolbar button - save the report;

• Export Ctrl+E toolbar button - export the document into one of the available formats;

• Print Ctrl+P toolbar button - print the document;

• Exit Viewer - exit Report Viewer.

Two more buttons are also available on the toolbar: - only one page is always displayed;

- all pages are displayed sequentially.

 Working with the Report Designer
The Report Designer is used to create report templates. The way it looks like is shown in the

picture below. A report template is a set of page templates where various components are placed to get

the required report. Each component has a set of properties that are displayed in the Tool window on the

Properties tab. Most properties can be linked to expressions written in any .Net-compatible

programming language. To display these properties on the Properties tab, you should click the

button.

 98

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Visual and non-visual components used in the process of creating a report template are available

in the Report Designer either in the Insert menu or via buttons on the Components Toolbox. To place a

component onto the template, you should select it using either the menu or the Components Toolbox.

After that you should either click the left mouse button on the Work area or click and hold it down to be

able to enlarge the component to the size you need.

Let us see what items are available in the File menu.

The File\New menu item, Ctrl+N, (toolbar button) - allows you to create a new report

template. It will open the Wizards Gallery form shown in the picture.

 99

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

If you select a Blank Report from the list and click ОК, a blank template will be created. If you

select a Standard Report, the standard wizard will be opened. If you click the Load from file button,

there will appear a standard Open file dialog box where you will be able to select a previously saved

wizard file. You can use the Saved tab to select one of the wizard files you prepared. Path to them can

be specified by clicking the Browse button. The detailed description of how to use the Standard Report

wizard can be found in the section “Creating templates in the wizard”.

The File/Open menu item, Ctrl+O, (toolbar button) opens the dialog box for loading a report

template from a file. The File/Save menu item, Ctrl+S, (toolbar button) saves the report template. To

save the template with a new filename, File\Save As is used. The File\Select Language menu item

allows you to select the interface language for Report Sharp-Shooter. You can exit the Report Designer

using the File\Exit Designer menu item.

To undo changes in the report template, use the Edit\Undo menu item, Ctrl+Z, or the toolbar

button. To redo undone changes, you can use the Edit\Redo menu item, Ctrl+Shift+Z, or click the

button on the toolbar.

Similar to Report Viewer, Report Designer allows you to use your mouse in several modes that

can be selected either in the View menu or via the corresponding toolbar buttons.

The object selection mode is specified either by selecting the View\Select menu item, F2 or by

clicking the button on the toolbar. When in this mode, the mouse is used to select various

components in the template. You can select several objects either by clicking them with the left mouse

button while holding down the Shift key or by clicking the left mouse button and selecting the area

where you want to select objects while holding down the mouse button. You can also select an object

from the drop-down Object List on the Properties tab. Besides, you can use special means to select the

Page and Document objects. Page can be selected using either the Report\Page Properties menu item or

the button on the toolbar, while Document can be selected using either Report\Document Properties

or the button on the toolbar.

The following mode is specified using either the View\Pan menu item, F2, or the toolbar

button. This mode allows you to navigate through the report by clicking the left mouse button on the

document area and dragging the document in the needed direction while holding down the mouse

button.

 100

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The dynamic zoom mode is available either via View\Dynamic Zoom F6 or the toolbar

button. If you click the left mouse button in this mode and move the mouse up or down while holding

down its button, the document will be zoomed either out or in.

The zoom-in mode is enabled using either the View\ Zoom In menu item, F4, or the button

on the toolbar. If you click the document with the left mouse button in this mode, it will be zoomed in.

The zoom-out mode is enabled using either the View\ Zoom Out menu item, F5, or the

button on the toolbar. If you click the document with the left mouse button in this mode, it will be

zoomed out.

Zooming in a certain area of the document is available via the Zoom to Rectangle menu item, F5

(the toolbar button). This mode allows you to zoom in the selected rectangular area. You can select

such an area by clicking the left mouse button on the document area and moving the mouse pointer in

the needed direction while holding down the mouse button.

The following group of items in the View menu allows you to adjust the automatic zoom:

• Whole Page toolbar button - while in this mode, the page will be zoomed to fit the entire

page to the Report Viewer window;

• Page Width toolbar button - while in this mode, the page will fit to the window by its width;

• Actual Size toolbar button - while in this mode, the page will be zoomed to 100%.

The View menu also contains the following items:

• Show Grid (toolbar button) – enable / disable the grid;

• Snap to Grid (toolbar button) – enable / disable snapping to the grid; While in this mode,

you can move or resize objects only along the grid line;

• Show Object bounds (toolbar button) – enable / disable displaying object borders;

• Layout Bands (toolbar button) – enable / disable arranging sections automatically; while in

this mode, sections are arranged automatically according to the order they will be displayed in

the report;

• Show Rulers (the toolbar button) – enable / disable displaying vertical and horizontal rulers;

A report template can consist of several pages. To add a page, you should use either the

Report\Add Page menu item or the button on the toolbar. Deleting pages is possible using either the

 101

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Report\Delete Page menu item or the button on the toolbar; the template must have at least one

page. Switching between pages is done with the help of bookmarks in the lower-left part of the form.

The Edit menu provides various means for working with selected objects. The Edit\Cut Objects

menu item, Ctrl+X (or the button on the toolbar) allows you to copy the selected objects onto the

clipboard and cut them. Edit\Copy Objects, Ctrl+C (the button on the toolbar) copies selected

objects onto the clipboard. Edit\Insert Objects Ctrl+V (the button on the toolbar) inserts objects

from the clipboard. Edit\Delete Objects Ctrl+D (the button on the toolbar) deletes the selected

objects. Report Designer uses the Z-buffer for objects. The earlier an object is inserted into the template,

the lower it is in the Z-buffer. The order of objects is also changed via the Edit menu. Edit\Arrange\

Bring to Front (the button on the toolbar) places the selected object on top of all other objects on the

page. Edit\Arrange\ Bring to Back (the button on the toolbar) places the selected object below all

other objects on the page. Edit\Arrange\Move forward (the button) and Edit\Arrange\Move back

(the button) place the selected object one step up or down respectively.

To create a report according to a template prepared beforehand, you can use either the

Report\Preview menu item or the button on the toolbar. If there is an error detected in the script, the

Error List will appear in the lower part of the Report Designer window. You can enable / disable it using

the Window\Error List menu item, Ctrl+E. You can also check your script without generating the report.

To do it, you can use either the Report\Check Script menu item or the button on the toolbar.

Similarly, you can enable / disable displaying the Tool Window using the Window\Tool

Window menu item, Ctrl+P.

The Tool Window contains two more tabs called Data Sources and Document tree along with the

Properties tab. You can use the Data Sources tab to view available data sources. Also, you can add these

components to the report by drag-and-drop. The Document Tree tab displays the structure of the current

template.

 102

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 Using the Report Generator in Applications

Getting Started Working with the Report Generator
 To start working over the report generator creation and its use in your applications it is necessary

to place the PerpetuumSoft.Reporting.Components.ReportManager component onto the form. Report

sources will be stored in this component. Every report is stored in a non-visual ReportSlot component.

This component stores a report template, it has methods for launching the component, for editing reports

and for rendering a final document that can be previewed and printed according to a template.

Report Generation Principles
The mechanism of binding report templates to data by dint of the ReportGenerator component has been

replaced by a new mechanism based on the ReportManager and ReportSlot components.

ReportManager binds data to several report templates represented by ReportSlots. Report templates can

be stored in a file, application code or any other source.

For instance, the package includes the UrlReportSlot type which gets a report template from the URL

address specified by a user. A user can also implement custom classes derived from ReportSlot to store

report templates in a manner which is peculiar to his/her application (e.g. in a data base).

 103

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The ReportManager component provides the ability to manage a group of reports that use the same data

source regardless of the report templates location. The ReportManager also binds dependent templates

for such relations as Report - MasterReport, Report –SubReports.

The data for the ReportManager are specified in the DataSources property. DataSources is a collection

of data sources. The object-source and its name are assigned for every data source. The object-source is

any object (ADO.NET object, business-object). The ReportManager is also capable of calling data with

the help of the ResolveDataSource event.

Templates are assigned in the ReportManager.Reports property. Report is a collection of objects that

implement IReportSource interface.

IReportSource represents the interface for managing report generation according to a report template.

The Document property provides report templates.

The RenderDocument() method returns a rendered report.

The Prepare() method launches the anisochronous process of the report rendering.

The RenderCompleted method notifies about the report rendering completion.

The IReportSource interface is implemented for the ReportSlot type by default. ReportSlot is a basic

class for all slot types.

Basic ReportSlot properties:

Manager is the object of the ReportManager which is included in the ReportSlot component.

StyleSheet is a set of styles that are used at report rendering. If the given property is set to null, the

styles saved in the document are used.

ReportName is a name of a report template by which it can be called through the IResolveSubReport

interface that is implemented in the ReportManager.

SupportSave indicates whether a report template can be saved.

Basic ReportSlot methods:

SaveReport(<template>) saves a templates to a slot.

LoadReport() returns a template specified in a slot.

Slot types used for template representation.

FileReportSlot is a report slot for a template from a file. The path to the file is specified in the FilePath

property.

InlineReportSlot represents a template that is serialized to the application code.

UrlReportSlot represents a template that is received form the URL address that is specified in the Url

property.

 104

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

ReportManager implements the IResolveSubReports interface. This interface is required for getting a

bound report by its name, i.e. for getting sub reports or master reports by the assigned name.

The ReportManager selects a template from the Reports collection by the assigned name. In addition,

ReportManager calls the ResolveSubReport event for getting a template by its name.

The Report slots mechanism and grouping in the ReportManager component are intended for report

generation and substitute the ReportGenerator mechanism. The ReportGenerator type is available to

secure compatibility, but its use is not recommended and will not be supported in future versions of

Report Sharp-Shooter.

Editing Reports at Design Time and at Run Time
 You can design report templates in the Report Designer either by launching it from the

development environment or by opening Report Designer from you running application. To call the

Report Designer in the IDE you should select the ReportManager.Reports property. Add the required

source type and launch the Document property editor. Some data sources can be unavailable, for

example those added at application run time. As a rule, available sources are empty (data are not loaded

to them). That is why you will not be able to preview a final document (see how a final document looks

like). Thus, it is better to design report templates in the launched application when all data sources are

available and data are uploaded to them.

To do this you can temporarily add a button for calling the Report Designer to your application, prepare

all necessary report templates, save them on a disk and then remove this button. The following code in

required for calling the Report Designer.
reportSlot.DesignTemplate();

Working in Web Applications

Peculiarities of Working on the Web
When you use Report Sharp-Shooter in WebForms applications, reports are always generated on

the server side and then sent to the client. In this case you can send the report to the client in various

formats: html, pdf etc. You can send the entire report or only the requested page at once. Below we will

see various examples of using Report Sharp-Shooter in web applications.

Using the SharpShooterWebViewer
Report Sharp-Shooter has a special web control called

PerpetuumSoft.Reporting.Web.SharpShooterWebViewer for viewing reports from ASP.NET

applications. This component has the property for customizing the ViewMode mode of viewing reports

that can process the following values from the PerpetuumSoft.Reporting.Web.ViewMode enumeration:

 105

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

• HtmlSinglePage – view a single page;

• HtmlWholeReport – view the entire report;

• WindowsForms – view the report in PerpetuumSoft.Reporting.View.ReportViewer (the

component for viewing reports in Windows Forms applications).

The source of the SharpShooterWebViewer document is specified in the Source property of the

ReportBase type from which the ReportSlot component is inherited. SharpShooretWebViewer also

allows you to view the entire report in the pdf format. SharpShooretWebViewer caches all viewed

documents; the time for reports to be stored in the cache is specified in the CacheTimeOut property.

Using properties from the Page category, you can customize the way the line allowing navigating

through pages in the report will look like, NextText defines text for the link to the next page,

PagePosition defines the position of the navigation line, etc. The ImageFormat property defines the

format in which pictures from the report are sent.

The WebDemo example demonstrates the use of SharpShooterWebViewer.

Displaying a Report Instead of the Web Page Content
The WebPublish example shows the way of displaying reports on a web page without using

SharpShooterWebViewer. The main page is used to customize the report header and the format to get

the report in. After the “Show” button is clicked, its Click event handler redirects the request to the

ReportPage page
Response.Redirect("ReportPage.aspx?format="+DropDownList1.SelectedItem.Value.ToStri
ng()+"&title="+TextBox1.Text)
The Load event handler of the ReportPage page exports the report into the necessary format and sends it

to the client.

Using the HttpHandler
Another way to view reports without using SharpShooterWebViewer is to implement the

System.Web.IHttpHandler interface that allows you to create your own HTTP request handler and

configure it for a particular extension: for example, *.rst. This handler will return a document generated

according to the template specified in the request. The IHttpHandler interface is used in the HttpHandler

example. Request processing is implemented in the ProcessRequest method of the ReportHttpHandler

class. The request handler just exports the report into the requested format and places it into the respond

stream. To use such a handler, you should include approximately the following information into

Web.config.
<configuration>
 <system.web>
 <httpHandlers>
 <add verb="*" path="*.rst" type="HttpHandler.ReportHttpHandler,HttpHandler"/>

 106

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 </httpHandlers>
 </system.web>
</configuration>

The verb attribute defines the list of HTTP commands for which this handler will be called, the path

attribute defines the URL or the URL mask to call this handler for, and the type attribute defines the

handler class and the assembly that contains it.

In our case, we should also click the “Settings” button on the “Home directory” tab in the web

server settings and assign the .rst extension to {disk}:\{Microsoft.NET Framework

path}\aspnet_isapi.dll. on the “Assignment” tab.

Property Description

ShowContent Show/Do not show the Show content button

ShowDesigner Show/Do not show the Edit report button

ShowExport Show/Do not show the Export document button

ShowFind Show/Do not show the Find text button

ShowNavigator Show/Do not show the Move backwards and Move forward buttons

ShowOpen Show/Do not show the Open document button

ShowPageNavigator Show/Do not show the Go to first page, Go to previous page, Go to

next page, Go to last page buttons

ShowPrint Show/Do not show the Print document button

ShowRefresh Show/Do not show the Refresh report button

ShowSave Show/Do not show the Save document button

ShowScale Show/Do not show the Pan mode, Dynamic zoom mode, Zoom in

mode, Zoom out mode, Zoom to rectangle, Fit to whole page, Fit to

page width, Actual size buttons

ShowStatusBar Show/Do not show the status bar

ShowStatusBarGrip Show/Do not show Grip on the status

ShowToolBar Show/Do not show the toolbar

Working in Windows Forms Applications

Using the Report Viewer Component in Applications

The Report Viewer is a separate component with a set of properties that allows you to customize

its appearance. These properties allow you to enable / disable displaying its status bar, toolbar, as well as

separate buttons and column groups on the toolbar. The list of these properties is given below.

 107

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Property Description

ShowContent Show/Do not show the Show content button

ShowDesigner Show/Do not show the Edit report button

ShowExport Show/Do not show the Export document button

ShowFind Show/Do not show the Find text button

ShowNavigator Show/Do not show the Move backwards and Move forward buttons

ShowOpen Show/Do not show the Open document button

ShowPageNavigator Show/Do not show the Go to first page, Go to previous page, Go to

next page, Go to last page buttons

ShowPrint Show/Do not show the Print document button

ShowRefresh Show/Do not show the Refresh report button

ShowSave Show/Do not show the Save document button

ShowScale Show/Do not show the Pan mode, Dynamic zoom mode, Zoom in

mode, Zoom out mode, Zoom to rectangle, Fit to whole page, Fit to

page width, Actual size buttons

ShowStatusBar Show/Do not show the status bar

ShowStatusBarGrip Show/Do not show Grip on the status

ShowToolBar Show/Do not show the toolbar

ReportViewer has the Actions property that provides access to all commands and allows you to

redefine them. The list of all commands is given below.

Print Called when the Print document button is clicked

Load Called when the Open document button is clicked

Save Called when the Save document button is clicked

Export Called when the Export document button is clicked

Pan Called when the Pan mode button is clicked

DynamicZoom Called when the Dynamic zoom mode button is clicked

ZoomIn Called when the Zoom in mode button is clicked

ZoomOut Called when the Zoom out mode button is clicked

ZoomRectangle Called when the Zoom to rectangle button is clicked

Content Called when the Show content button is clicked

WholePage Called when the Fit to whole page button is clicked

PageWidth Called when the Fit to page width button is clicked

 108

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

ActualSize Called when the Actual size button is clicked

Zoom25 Zoom to 25%

Zoom50 Zoom to 50%

Zoom75 Zoom to 75%

Zoom100 Zoom to 100%

Zoom125 Zoom to 125%

Zoom150 Zoom to 150%

Zoom200 Zoom to 200%

Zoom300 Zoom to 300%

Zoom500 Zoom to 500%

Forward Called when the Move forward button is clicked

Backwards Called when the Move backwards button is clicked

CustomZoom Called when the Ctrl+Z key combination is pressed or the “Custom zoom”

item of the context menu for the Zoom area on the status bar ic clicked

FirstPage Called when the Go to first page button is clicked

PrevPage Called when the Go to previous page button is clicked

NextPage Called when the Go to next page button is clicked

LastPage Called when the Go to last page button is clicked

GotoPage Called when the you click your mouse on the status bar where the

information about the current page and the overall number of pages is

displayed

EditReport Called when the Edit report button is clicked

RefreshReport Called when the Refresh report button is clicked

SinglePage Called when the Single page mode button is clicked

ContinuedPage Called when the Continued page mode button is clicked

To redefine the default action, you should write a handler for the Executing event. Mind that if

you set the Handled property of the ExecutingEventArgs object sent over to the event handler to true,

the standard action defined in the Execute event will not be called. For example, to redefine the Export

action you should use the following code:
reportViewer1.Actions["Export"].Executing += new
Action.ExecutingEventHandler(Export);
and write the handler
private void Export(object sender, ExecutingEventArgs e)
{
 // Do something

 109

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 e.Handled = true;
}

Customizing the Report Viewer Component
Sometimes you may need to change standard interface of the Report Viewer component. For

example, it does not correspond to the style of your application or you need to modify the toolbar.

As an example, let us create the Report Viewer with no toolbar (to do it, we should set the

ShowToolBar properties of Report Viewer to false) and add onto the form three buttons for moving on

to the previous / next page of the report and for printing it. To do so, we will use the Actions collection

of the ReportViewer component. A correspondence between a management component and an Action is

set up by the ActionBind type methods. To bind the buttons to certain actions, it is necessary to

implement a class derived from ActionBind.

Here is an example of how it can be done:
public class ButtonActionBind : ActionBind
{
 public ButtonActionBind(Button button)
 {
 SetComponent(button);
 }

 public Button Button
 {
 get
 {
 return this.Component as Button;
 }
 }

 protected override void Bind()
 {
 Button.Click += new EventHandler(Button_Click);
 }

 protected override void Unbind()
 {
 Button.Click -= new EventHandler(Button_Click);
 }

 public override void Update()
 {
 if (Action != null)
 {
 Button b = Button;
 b.Enabled = Action.Enabled;
 b.Text = Action.Text;
 b.Visible = Action.Visible;
 }
 }

 private void Button_Click(object sender, EventArgs e)
 {

 110

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 if (Action != null)
 Action.ExecuteAction();
 }
 }
Now let us bind the buttons to Actions in the ReportViewer:
PerpetuumSoft.Reporting.Windows.Forms.Action action =
reportViewer1.Actions["PrevPage"];
 ButtonActionBind bind = new ButtonActionBind(prevPageButton);
 action.Bind(bind);
 action = reportViewer1.Actions["NextPage"];
 bind = new ButtonActionBind(nextPageButton);
 action.Bind(bind);
 action = reportViewer1.Actions["Print"];
 bind = new ButtonActionBind(printButton);
 action.Bind(bind);

Thus, we have bound the corresponding buttons to the specified actions of the ReportViewer.

The generated report source in the ReportViewer is specified in the ReportBase type Source property.

The form designer on which the ReportViewer is placed takes the ReportBase type parameter and

assigns it to the Source property.

You can find this example in the CustomDesignerViewer folder.

Using the Report Designer Component in Applications
To open the Report Designer from your application, it is enough just to call the

DesignTemplate() method of the ReportSlot component.

Customizing the Report Designer Component
If you are not satisfied with the standard Report Designer interface, you can easily develop your

own interface because all its elements: its toolbar, status bar, error list, etc. - are available as separate

components. The full list of all these components is given below.

DesignerDataSourceTree – the component displaying data sources. In the standard Report

Designer, it is on the Data Sources tab of the Tool Window.

DesignerDataSourceTree – the component displaying the document structure. In the standard

Report Designer, it is on the Document Tree tab of the Tool Window.

DesignerErrorList – the component displaying the list of errors in the script. In the standard

Report Designer, it is displayed when the function of checking the script is called or during the report

generation process in the lower-part of the form in case there are errors in the report.

DesignerPropertyGrid – the component displaying the list of properties for the selected object. In

the standard Report Designer, it is on the Properties tab of the Tool Window.

DesignerStatusBar – the status bar of the Report Designer.

DesignerToolBar – the toolbar of the Report Designer.

 111

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

DesignerToolBox – Component ToolBox. In the standard Report Designer, it is docked to the

left border of the form.

ReportDesigner – the main component where the template of a document is edited. All other

components are linked together by the ReportDesigner. To do it, you should set the Designer property to

specify the corresponding ReportDesigner component.

You can find an example of a custom Report Designer in the CustomDesignerViewer folder. To

open a custom Report Designer, there is a button labeled Custom Designer on the main form. When this

button is clicked the button1_Click event handler is executed. The first line creates the form of our

Report Designer
CustomDesignerForm f = new CustomDesignerForm();
The Designer property of the ReportDesigner type is declared in the form. We use this property to

specify data sources for the report and the edited report template
f.Designer.DataSourceManager = reportManager1.DataSources;
f.Designer.SubReportResolver = reportManager1;
f.Designer.Document = reportSlot1.LoadTemplate();
And then we display the form on the screen
f.ShowDialog();

Let us also redefine handling a click on the Preview Report button (), so that the final document will

be displayed in the custom Report Viewer. To do it, we will use the Actions property of the

ReportDesigner component. The Actions property is a collection of actions. The action we need is called

Preview. When you call an action, the Executing event is called first and then the Execute event is

called, if the Executing event handler returns the event that is not processed, the Execute event will not

be called. When the Execute event is called, the standard handler for this event is called. Thus, we

should write our own handler for the Executing event that will open our Report Viewer and set the flag

signaling that the event is processed. This event handler is shown below
private void Preview(object sender, ExecutingEventArgs e)
{
 if (reportDesigner1.Document != null)
 {
 ReportManager manager = new ReportManager();
 InlineReportSlot slot = new InlineReportSlot();
 manager.Reports.Add(slot);
 manager.DataSources = this.DataSources;
 slot.SaveReport(this.Document);
 manager.OwnerForm = ParentForm;
 manager.ResolveSubReport += new
ResolveSubReportEventHandler(manager_ResolveSubReport);
 slot.RenderCompleted += new EventHandler(slot_RenderCompleted);
 slot.HyperlinkClick += new HyperlinkEventHandler(slot_HyperlinkClick);
 slot.GetReportParameter += new
GetReportParameterEventHandler(slot_GetReportParameter);
 slot.Prepare();
 e.Handled = true;
 }

 112

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

}

private void slot_RenderCompleted(object sender, EventArgs e)
{
 ReportSlot slot = sender as ReportSlot;
 using(ViewerForm f = new ViewerForm(slot))
 {
 f.WindowState = FormWindowState.Maximized;
 f.ShowDialog(this);
 }
}

We set this procedure as the handler of the Executing event for the Preview action.
reportDesigner1.Actions["Preview"].Executing +=
new Action.ExecutingEventHandler(Preview);

 Additional Information

Object Model
Let us consider the hierarchy of classes used while creating templates and final documents.

The base class for all Report Sharp-Shooter classes is PerpetuumSoft.Basic.Atom, which is

inherited from the System.Object class and implements the System.IClonable interface. The Atom class

is a parent to the ReportComponent, which is the base class for all Report Sharp-Shooter components.

The ReportComponent and all the classes and interfaces mentioned below are located in the

PerpetuumSoft.Reporting.DOM namespace. This class has the Name property defining the object name.

 113

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Two classes - Document and ReportControl - are inherited from the ReportComponent. The Document

is used to represent the report template and the final document and contains the collection of document

pages called Pages. The ReportControl is the base class for all elements in the template or in the final

document. Two classes are inherited from it: ContainerControl and VisualControl. The

ContainerControl is the basic class for all nonvisual report elements that can, in their turn, contain

elements inherited from the ReportControl. The VisualControl class is the base class for all visual

elements in the report.

Let us dwell upon the ContainerControl. This class implements the IContainerControl interface

containing the Controls property, which is a collection of objects embedded both in this method and in

the IsValidChild method taking the parameter of the ReportControl type and returning true if the sent

object can be embedded into this one. Below you can see the hierarchy of classes inherited from the

ContainerControl.

 114

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Page and Section are directly inherited from the ContainerControl. The Page represents a page in

the template and in the final document. The Section object is the base one for all sections; CrossBand

and BandBase are inherited from it. The CrossBand allows you to display the report from left to right.

The PageBand and RegularBand are inherited from the BandBase. The PageBand is the base section for

the PageHeader, PageFooter and PageOverlay sections that are displayed on each page. The

RegularBand is the base class for all other sections. It contains the collection of aggregates (the

Aggregates property) and has the MasterBand property of the DataBand type, thus DataBand and

elements inherited from it can be placed into the DataBand section. It allows you to make reports with

the hierarchical links with any level of nesting.

The DetailBase is inherited from the RegularBand, this class is the base one for all sections that

can contain visual control elements and has the Render method uotputting the section content into the

final document. The Header and Footer are inherited directly from it, they are the header and footer for

the DataBand section; the Detail section displayed for each data record and GroupBand are also

inherited from the RegularBand. The GroupBand is the base class for the GroupHeader header and the

GroupFooter footer of a group, it has the Group property defining the expression the change of which

makes visual control elements in GroupHeader and GroupFooter be displayed in the final document.

Now let us take the elements inherited from the VisualControl class.

The Shape and Box classes are inherited from this class. The Shape class allows you to display various

shapes in the report. The Box class is the base class for control elements placed in the rectangular area

and has the Border property for specifying the borders of the area, the Fill property for specifying its fill

 115

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

and the Margins margins. The following classes are inherited from Box: BarCode – the control element

for displaying the bar code, Picture – for displaying pictures, RichText – for displaying text in the RTF

format, WinFormsControl – for displaying the Windows Forms control elements, ZipCode – for

displaying zip code, and the TextControl class. The TextControl is the base class for displaying text

information in the report, it has the properties defining the angle for text called Angle, allowing you to

automatically change the height of an object depending on the displayed text called CanGrow and

CanShrink, defining the font called Font, defining text alignment called TextAlign, defining the text

filling called TextFill and defining the text format called TextFormat. The TextBox and FindText

method are inherited from the TextControl. The TextBox has the Text property defining the static value

for the text and the Value property defining the expression for calculating it during the report generation

process. The FindText is used to find text information.

Managing the Report Generation Process
Report Sharp-Shooter allows its user to change the standard report generation mechanism if

needed. To do it, the ManualBuildScript code should be written in the corresponding Page object. An

example demonstrating the custom report generation process can be found in the ManualBuildExample

folder. This example contains two reports. The first one displays a multiplication table and the second

one displays the tree of the folder where Report Sharp-Shooter is installed.

Let us start from a simpler example: a multiplication table. There is only one Detail with three

TextBoxes in the report template. The Value property of these TextBox objects is set to a, b and c

respectively. a, b and c are variables of the int type declared in the CommonScript property of the

Document object. The following code is inserted in the ManualBuildScript on the page
for (a = 1; a < 10; a++)
 for (b = 1; b < 10; b++)
 {
 c = a*b;
 detail1.Render();
 }

Thus, we use loops to assign all possible pairs of values from 1 to 10 to the variables a and b,

calculate the value c, and the detail1.Render() line makes the Detail section be displayed in the report.

We have just assigned new values to the variables a, b and c that will be displayed by the TextBox

objects in this section.

Now let us see the example displaying the tree of folders. There is one detail1 section with the

textBox1 object in the template. This TextBox object is used to display the current folder or file. The

CommonScript property of the Document object contains the following code
private string fileName;
private float x = 0;
private void walkTree(DirectoryInfo dirInfo, int c)

 116

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

{
 x = (float)c * 0.5f;
 fileName = "[" + dirInfo.Name + "]";
 detail1.Render();
 DirectoryInfo[] di = dirInfo.GetDirectories();
 foreach(DirectoryInfo d in di)walkTree(d,c+1);
 FileInfo[] fi = dirInfo.GetFiles();
 x = (float)(c+1) * 0.5f;
 foreach(FileInfo f in fi)
 {
 fileName = f.Name;
 detail1.Render();
 }
}
private void buildTree()
{
 string path =
(string)Microsoft.Win32.Registry.LocalMachine.OpenSubKey("SOFTWARE\\PerpetuumSoft\\
Report Sharp-Shooter").GetValue("Reports");
 path = path.Substring(0,path.LastIndexOf("Examples\\Reports"));
 DirectoryInfo dirInfo = new DirectoryInfo(path);
 walkTree(dirInfo,0);
}

Two variables - fileName and x - are declared in the script. The fileName variable is assigned to

the Value property of the textBox1 object, while x is used to calculate the new values of the Location

and Size properties for textBox1. The buildTree() method is used to find the directory where Report

Sharp-Shooter is installed and to call the walkTree() method that makes a recursive search through the

tree of folders and displays the names of directories and files. To display the tree of folders during the

report generation process, we just have to add the ManualBuildScript property to the Page object and

add calling the buildTree() method.

Dynamic Report Template Generation
You can create a report template dynamically using the wizard or you can create it completely on

your own. An example with both template creation methods can be found in the Dynamic folder. There

are two buttons on the main form: “Wizard” – template generation using the wizard, “Dynamic” – report

generation completely on your own.

First, let us examine using the wizard. Classes from the PerpetuumSoft.Reporting.Wizards

namespace are used to create the template. The main class on which the creation of the template is based

is a StandartWizard. The StandartWizard class has properties for creating multicolumn reports, setting

up page parameters, unit measure and a language used for writing scripts, creating data sections, etc. For

more information, consult the Report Sharp-Shooter Class Reference. After all the information about the

report is ready, the StandartWizard.BuildTemplate() function is called to generate the report.

 117

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Data sections of the report are stored in the DataSections collection. The DataWizardInfo class is

used to represent a section. The properties of this class allow us to specify a data source, fields displayed

in the section, how elements should be combines in the section, groups and embedded sections.

The FieldInfoWizard class is used to represent a field, the GroupInfoWizard class is used to

represent a group.

Of course, dynamic report generation without using the wizard is a much more flexible method.

You can use absolutely all Report Sharp-Shooter features, but this method is more difficult than using

the wizard.

The Document class is used to represent both templates and final documents, but a report

template must have the IsTemplate property set to true. It is important to mention that all properties

defining the size and position of an object use internal unit measure; that is why it is necessary to

convert the unit measure you use. To do it, you can use either the structure method called Vector
public Vector ConvertUnits(Unit fromUnit, Unit toUnit)

or the static structure method called Unit
public static float Convert(float value, Unit fromUnit, Unit toUnit)

Creating Live Reports
Report Sharp-Shooter allows you to redefine the standard mechanism of handling clicks on links,

as well as any other object in your report. An example demonstrating this feature can be found in the

LiveReportExample folder. In the example, the report template contains the TextBox object and two

Shape objects. The Hyperlink property of the TextBox object is equal to “New report”. To intercept a

click on this link, the HyperlinkClick event of the ReportManager component is used. Let us do so that a

new report is displayed when this link is clicked. The code of the HyperlinkClick event handler is given

below.
private void reportManager1_HyperlinkClick(object sender,
PerpetuumSoft.Reporting.Components.HyperlinkEventArgs e)
{
 if (e.Hyperlink == "New report")
 {
 e.Handled = true;
 try
 {
 reportSlot2.RenderDocument();
 using(PerpetuumSoft.Reporting.View.PreviewForm previewForm = new
PerpetuumSoft.Reporting.View.PreviewForm(reportSlot2))
 {
 previewForm.WindowState = FormWindowState.Maximized;
 previewForm.ShowDialog(this);
 }
 }
 Catch (Exception exception)
 {

 118

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

 MessageBox.Show(exception.Message, "Report Sharp-Shooter",
MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 }
}

The HyperlinkEventArgs class has two important Hyperlink properties – the text for the link and the

Handled property that returns the value that the event was handled.

When clicking some Shape object, its name is displayed on the screen. The ViewObjectClick

event of the ReportViewer component is used for that. This event handler contains the following code
private void reportManager1_ViewObjectClick(object Sender,
PerpetuumSoft.Reporting.View.ReportViewEventArgs e)
{
 if(e.Control is PerpetuumSoft.Reporting.DOM.Shape)
 {
 MessageBox.Show("You click on shape: " + (e.Control as
PerpetuumSoft.Reporting.DOM.Shape).Name);
 e.Handled = true;
 }
}

The ReportViewEventArgs contains two Control properties of the

PerpetuumSoft.Reporting.DOM.ReportControl type: the object that has been clicked and the Handled

property of the boolean type, the latter is used to return the value whether the event has been handled or

not.

Creating Custom Components
An example of using a custom component can be found in the CustomReportControlDemo

folder. This example contains a custom component inherited from the Box object. The new component

has two properties added to it: the Color property defining its color and the Checked property. If

Checked is true, the area the object is crossed by two diagonal lines. The Stored attribute indicates that

this property is saved when the document is saved. The ReportBindable attribute indicates that you can

write expressions calculating values for this property.

If you want to change the default values for some properties of a class, you should write the

corresponding code in the InitNew() method. The PaintContent method draws the component. The most

important method is Render(), this method is called to display a component in the final document. You

should create a new instance of your object in this method
CheckBoxReportControl result = new CheckBoxReportControl();
Then you should assign the necessary values to its properties by calling the method
PopulateProperties(result);
find its position in the final document
RenderLocation(result);
and place it on the current page in the final document

 119

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

Engine.ProductionPage.Controls.Add(result);
To register your component and add it to your report template, the handler for the Load event of

the form contains the following code
PerpetuumSoft.Reporting.DOM.ReportControl.RegisterControlType(typeof(CheckBoxReport
Control));
CheckBoxReportControl customControl = new CheckBoxReportControl();
customControl.Location = new Point(300, 300);
customControl.Size = new Size(300, 300);
Document template = reportSlot.LoadReport();
template.Pages[0].Controls.Add(customControl);
reportSlot.SaveReport(template);

 Working with the Expression Editor

Expression editor appearance is displayed in the image below.

Classic operators and expression language functions are located by categories in the TrewView elements

on the Operators and Functions tabs. The TreeView located on the right of the window contains

available data source fields subject to their nesting. Any construction described in either Tree can be

moved to the text entry field by drag-and-drop. Double click on the tree element will lead to pasting the

construction into the current position of the entry field.

After the entry is complete it is required to click the OK button to confirm modifications or the Cancel

button to cancel modifications. If the OK button is pressed, syntax checking is executed before the

window is closed.

 120

R
e

p
o

rt S
h

a
rp

-S
h

o
o

te
r

The expression editor has a button panel.

The Save button () allows saving expression text to a file.

The Open button () allows reading expression text from a file.

The Check expression button () allows executing syntax checking. In case a syntax error is found a

corresponding warning specifying the initial position of the erroneous construction is displayed.

 Russia,

Perpetuum Software LLC Barnaul,
sales@perpetuumsoft.com Prospect Kalinina 15, 238
support@perpetuumsoft.com Altay 656002
http://www. perpetuumsoft.com Tel: +7 3852 357 347

http://www.perpetuumsoft.com/Home.aspx?lang=en

	Destination and Basic Features
	License Agreement
	Product Registration
	Technical Support
	System requirements
	Installation
	Components licensing
	Product Localization
	Getting Started
	Basic Information
	Concept
	Data Sources
	Using Data Sources in Report Sharp-Shooter
	Using ADO.NET Objects
	Using Business Objects
	Nonstandard Ways of Using Business Objects
	Using an XML File as a Data Source
	Direct Access to the Database
	Unbound Reports

	Report Parameters
	Exporting Reports

	Creating templates in the wizard
	Using the Wizard for Designing a Pivot Table-based Report

	Report Creation Techniques
	Introduction
	Visual Items in Reports, Setting Common Properties and Data Binding
	Using Expressions and Scripts
	General Overview

	Accessing Environment Variables
	Examples of Using Scripts
	Color Management
	Visibility Management
	Position Management
	Accessing Application Functions
	Calculating a Rrunning Sum

	Scripting Background

	Creating a Simple List
	Using Styles
	Creating Multicolumn Reports
	Creating Labels
	Creating Hierarchical Reports, Using DataRelations for Creating Hierarchical Reports
	Reports without Sections
	Using Several Pages in Report Templates
	Groups
	The Creation of Side-by-side Reports
	The Use of the PivotTable Element
	Destination and Main Features
	A Pivot Table-based Report Creation Example
	General Information
	Concept
	Data Sources
	The PivotTable Element – Detailed Description.

	Working with Sub Reports
	Destination of the BandContainer
	Master Report Concept
	Working with Aggregate Functions
	Basic Information
	Examples of Using Aggregates
	Using Aggregates in Hierarchical Reports
	Using Aggregates in Groups
	Page Aggregates

	Scenarios of Using Text and Images
	Using the AdvancedText Component

	Using the Widget Component
	Destination and Basic Features

	Using the ChartControl Component
	Working with the Report Viewer
	Working with the Report Designer
	Using the Report Generator in Applications
	Getting Started Working with the Report Generator
	Report Generation Principles
	Editing Reports at Design Time and at Run Time
	Working in Web Applications
	Peculiarities of Working on the Web
	Using the SharpShooterWebViewer
	Displaying a Report Instead of the Web Page Content
	Using the HttpHandler

	Working in Windows Forms Applications
	Using the Report Viewer Component in Applications
	Customizing the Report Viewer Component
	Using the Report Designer Component in Applications
	Customizing the Report Designer Component

	Additional Information
	Object Model
	Managing the Report Generation Process
	Dynamic Report Template Generation
	Creating Live Reports
	Creating Custom Components

	Working with the Expression Editor

