
R

ML300
Reference
Design
User Guide

UG057 (v1.1) March 18, 2004

ML300 Reference Design www.xilinx.com UG057 (v1.1) March 18, 2004
1-800-255-7778

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE
Generator, CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit
Speeds...and Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze,
MicroVia, MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketIO, SelectIO, SelectRAM,
SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM,
VectorMaze, VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL,
XACT-Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products,
XChecker, XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2004 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

http://www.xilinx.com

UG057 (v1.1) March 18, 2004 www.xilinx.com ML300 Reference Design
1-800-255-7778

ML300 Reference Design
UG057 (v1.1) March 18, 2004

The following table shows the revision history for this document..

Version Revision

01/12/04 1.0 Initial Xilinx release.

03/18/04 1.1 Updates for EDK 6.2i.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com UG057 (v1.1) March 18, 2004
1-800-255-7778

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 5
UG057 (v1.1) March 18, 2004 1-800-255-7778

Preface: About This Guide
Guide Contents . 11
Additional Resources . 11
Conventions . 12

Typographical . 12
Online Document . 13

Chapter 1: Introduction to ML300 Embedded PPC405 Reference
System

Introduction . 15
Requirements . 15
V2PDK Users and New EDK Users . 15
CoreConnect . 16
Reference System Information . 16
Further Reading. 17

Resources for EDK Users (Including New Users) . 17
Documentation Provided by Xilinx . 17
IBM ® CoreConnect™ Documentation . 17

IBM CoreConnect Bus Architecture Specifications . 18
IBM CoreConnect Toolkit Documentation . 18

Chapter 2: ML300 Embedded PPC405 Reference System
Introduction . 19
Hardware . 19

Overview . 19
Processor Local Bus (PLB) . 20
On-Chip Peripheral Bus (OPB) . 21
Device Control Registers (DCR) . 22
Other Devices . 23
Interrupts . 23
Clock/Reset Distribution . 24
CPU Debug via JTAG . 25
IP Version and Source . 26

Simulation and Verification . 27
Simulation Overview. 27
SWIFT and BFM CPU Models . 29
Behavioral Models . 29

Design Flow Environment. 30
Memory Map . 30
ML300 Specific Registers . 32
Extending or Modifying the Design . 33

Adding or Removing IP Cores . 33

Table of Contents

http://www.xilinx.com

6 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

R

Other Modifications . 34
Behavioral Models/Testbenches . 34

Directory and File Listings . 34

Chapter 3: EDK Tutorial and Demonstration
Introduction . 37
Instructions for Invoking the EDK tools . 37

Launching Xilinx Platform Studio (XPS) . 37
Instructions for Selecting Software Application. 38
Instructions for Running Functional Simulations . 38
Instructions for Building / Implementing Design . 41
Instructions for Downloading Design . 41

Download Using Parallel Cable IV (iMPACT Program) . 41
Download Using System ACE . 42

Software . 43
Building the Software Demo Applications . 45
Building the Linux BSP . 45

Chapter 4: Introduction to Hardware Reference IP
Introduction . 47
Hardware Reference IP Source Format and Size. 47
Further Reading. 48

Resources for EDK Users (Including New Users) . 48
Documentation Provided by Xilinx . 48
IBM CoreConnect Documentation . 49

IBM CoreConnect Bus Architecture Specifications . 49
IBM CoreConnect Toolkit Documentation . 49

Chapter 5: Using IPIF to Build IP
Abstract. 51
Introduction . 51
SRAM Protocol Overview of IPIF . 52

Basic Write Transactions . 53
Basic Read Transactions . 54
IPIF Status and Control Signals . 54

Using IPIF to Create a GPIO Peripheral from Scratch . 55
Using IPIF to Connect a Pre-existent Peripheral to the Bus 57
Conclusion. 57

Chapter 6: IPIF Specification
Overview . 59

IPIF Master Module Overview . 60
IPIF Slave Modules Overview . 60

Signal Conventions . 61
Bus Numbering and Bit Ordering . 62
Parameter Indexing Versus Parameter Numbering . 62

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 7
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

IPIF Modules in an Example OPB System . 62
A: Slave SRAM to CROM . 63
B: Slave SRAM to UART . 63
C: Slave Control Register to New IP . 64
D: Slave FIFO and DMA Engine to Ethernet MAC. 64
E: Slave DMA Handshake to 8255 . 64
F: Master with Slave Control Register and DMA Engine to New IP. 64
G: Bus-to-Bus Bridges . 64

Design Considerations . 65
DMA Engine . 65
Interrupts . 65
Bus Arbiter and Bridges . 66
Data Bus Width . 66
Retry, Error, and Timeout Suppress . 67

IPIF Module Specifications. 67
Slave DMA Handshake Module . 67

Example Slave DMA Handshake Application . 68
Generic Slave DMA Handshake Model . 69
Slave DMA Handshake Signal Protocol . 70
Slave DMA Handshake Signal List . 71
Slave DMA Handshake Parameters . 72

Slave Control Register Module . 72
Example Slave Control Register Application . 73
Generic Slave Control Register Model . 76
Slave Control Register Signal Protocol . 78
Slave Control Register Signal List . 79
Slave Control Register Parameters . 80

Slave SRAM Module . 81
Example Slave SRAM Application . 82
Generic Slave SRAM Model . 84
Slave SRAM Signal Protocol . 85
Slave SRAM Signal List. 88
Slave SRAM Parameters . 89

Slave FIFO Module . 90
Example Slave FIFO Application . 90
Generic Slave FIFO Model . 93
Slave FIFO Signal Protocol . 94
Slave FIFO Signal List . 95
Slave FIFO Parameters . 97

Master Module . 98
Example Master Application . 98
Generic Master Model. 100
Master Signal Protocol . 102
Master Signal List . 106
Master Parameters . 107

IPIF Parameterization . 108
IPIF Signals . 110

Chapter 7: OPB to PCI Bridge Lite
Overview . 113
Related Documents . 113

http://www.xilinx.com

8 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

R

Features. 113
Module Port Interface . 114
Implementation . 116

OPB Slave to PCI Initiator Transactions . 117
PCI Target to OPB Master Transactions . 118
Arbiter . 118

Memory Map . 118
Configuration . 119

Xilinx LogiCORE PCI . 120

Chapter 8: OPB to PCI Bridge Lite
Overview . 121
Related Documents . 121
Features. 121
Module Port Interface . 122
Implementation . 124

OPB Slave to PCI Initiator Transactions . 125
PCI Target to OPB Master Transactions . 126
Arbiter . 126

Memory Map . 126
Configuration . 127

Xilinx LogiCORE PCI . 128

Chapter 9: OPB Touch Screen Controller
Overview . 129
Related Documents . 129
Features. 129
Module Port Interface . 129
Implementation . 131
Memory Map . 132

Chapter 10: OPB AC97 Sound Controller
Overview . 135
Related Documents . 135
Features. 135
Module Port Interface . 135
Implementation . 137
Memory Map . 139

Chapter 11: OPB to PLB Bridge-In Module (Lite)
Overview . 143
Related Documents . 143
Features. 143
Module Port Interface . 144

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 9
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Implementation . 147
High Level Description . 147
OPB Interface . 148

Address Decode Cycle . 148
Write Transactions . 149
Read Transactions. 149

Transfer Interface . 149
PLB Interface . 149

Chapter 12: OPB PS/2 Controller (Dual)
Overview . 151
Related Documents . 151
Features. 151
Module Port Interface . 151
Implementation . 153
Memory Map . 154

Chapter 13: PLB TFT LCD Controller
Overview . 159
Related Documents . 159
Features. 159
Module Port Interface . 159
Hardware . 162

Implementation . 162
Video Timing . 164

Memory Map . 166
Video Memory . 166
Control Registers (DCR Interface) . 167

http://www.xilinx.com

10 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

R

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 11
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Preface

About This Guide

This user guide documents the ML300 reference design.

Guide Contents
This manual contains the following chapters:

• Chapter 1, “Introduction to ML300 Embedded PPC405 Reference System”

• Chapter 2, “ML300 Embedded PPC405 Reference System”

• Chapter 3, “EDK Tutorial and Demonstration”

• Chapter 4, “Introduction to Hardware Reference IP”

• Chapter 5, “Using IPIF to Build IP”

• Chapter 6, “IPIF Specification”

• Chapter 7, “OPB to PCI Bridge Lite”

• Chapter 8, “OPB to PCI Bridge Lite”

• Chapter 9, “OPB Touch Screen Controller”

• Chapter 10, “OPB AC97 Sound Controller”

• Chapter 11, “OPB to PLB Bridge-In Module (Lite)”

• Chapter 12, “OPB PS/2 Controller (Dual)”

• Chapter 13, “PLB TFT LCD Controller”

Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

http://support.xilinx.com/xlnx/xil_ans_browser.jsp

Application Notes Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://support.xilinx.com/apps/appsweb.htm

12 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Preface: About This Guide
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Data Sheets Device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

Resource Description/URL

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select
from a menu File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

http://www.xilinx.com
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

ML300 Reference Design www.xilinx.com 13
UG057 (v1.1) March 18, 2004 1-800-255-7778

Conventions
R

Online Document
The following conventions are used in this document:

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

14 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Preface: About This Guide
R

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 15
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 1

Introduction to ML300 Embedded
PPC405 Reference System

Introduction
This chapter briefly describes the reference system provided for the ML300 Evaluation
Platform. The ML300 Embedded PPC405 Reference System contains a combination of
known working hardware and software elements that, together, create an entire system. It
demonstrates a system utilizing the Processor Local Bus (PLB), On-Chip Peripheral Bus
(OPB), Device Control Register (DCR) Bus, and PPC405 On-Chip Memory (OCM). The
design operates under the Embedded Development Kit (EDK) suite of tools which
provides a graphical tool framework for designing embedded hardware and software. The
reference system is intended to familiarize users with the Virtex-II Pro product, its design
tool flows, and its features. While it does not contain all elements a user system might
require, it provides a foundation for those who are just learning about the embedded
PowerPC processor in Virtex-II Pro FPGAs.

Requirements
The following hardware and software are required in order to use the ML300 Embedded
PPC405 Reference System.

Operating System Requirements:

Windows 2000/XP Professional or Solaris 2.8/2.9

Note: A PC is required for FPGA download and debug via Xilinx download cables.

Hardware Requirements:

Xilinx ML300 Development Board

Software Requirements:

Embedded Development Kit (EDK) 6.2

ISE 6.2i

ModelSim SE 5.7b

Note: Later versions are expected to work, but were not tested.

V2PDK Users and New EDK Users
For users of the Virtex-II Pro™ Developer's Kit (V2PDK), the ML300 Embedded PPC405
Reference System provides an example design to help in the migration to the EDK tools.
The EDK version of this design is very similar in functionality and capability as the V2PDK

http://www.xilinx.com

16 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 1: Introduction to ML300 Embedded PPC405 Reference System
R

version. The EDK designs attempts to preserve as much software and hardware
compatibility as possible to the V2PDK design.

For new EDK users, the ML300 Embedded PPC405 Reference System provides an excellent
example of how the EDK tools can be used to design a full featured embedded system
consisting of hardware, software, and operating systems. The reference system also
illustrates how to perform debug and simulation of designs under EDK.

References to additional information about learning to use EDK is available in “Further
Reading,” page 17.

CoreConnect
Download and installation of the IBM CoreConnect Toolkit is highly recommended for use
with the ML300 Embedded PPC405 Reference System. The CoreConnect Toolkit is only
available to CoreConnect licensees. Xilinx has simplified the process of becoming a
CoreConnect licensee through a web based registration that is available at
http://www.xilinx.com/coreconnect. CoreConnect licensees are entitled to full access to
the CoreConnect Toolkit including powerful bus functional modeling, bus monitoring
tools and periodic updates. To get the most out of the Embedded Development Kit, Xilinx
recommends the use of the IBM CoreConnect Toolkit.

Reference System Information
This section is an overview of the features of the ML300 Embedded PPC405 Reference
System. Although the information contained in the reference system chapter is not
exhaustive, it covers the basic requirements to effectively use PPC405. Chapter 2, “ML300
Embedded PPC405 Reference System” and Chapter 3, “EDK Tutorial and Demonstration”
have instructions on how to simulate, synthesize, and run the designs through the Xilinx
Implementation Tools (ISE) for the Virtex-II Pro family.

The reference system chapters contain sections about:

• Hardware used in the system

• HDL file organization

• Simulation and verification

♦ Using SWIFT

♦ Using Bus Functional Model (BFM)

• Synthesis and implementation

• Software applications that interoperate with the system

• How to run the software applications

• Directory structure of each system

The ML300 Embedded PPC405 Reference System is an example of a completely embedded
computer. It provides a wide variety of memory interfaces on three differing buses, as well
as various peripherals such as IIC, General Purpose I/O (GPIO), UARTs, PCI interface,
TFT LCD controller, and a memory-mapped DCR bus bridge. The ML300 Embedded
PPC405 Reference System combines the elements of a typical embedded system by taking
advantage of the architectural features of the PPC405, such as separated Instruction-Side
and Data-Side OCM interfaces. It illustrates the use of a typical segmented bus design
where the higher-speed elements (such as memory) are differentiated from the lower-
speed elements (such as GPIO) through the use of bus arbiters and bridges. This system
provides an excellent example of the various elements a user might use to run a Real-Time

http://www.xilinx.com/coreconnect
http://www.xilinx.com

ML300 Reference Design www.xilinx.com 17
UG057 (v1.1) March 18, 2004 1-800-255-7778

Further Reading
R

Operating System (RTOS). The example software provided with this reference system is
designed to demonstrate it as only a stand-alone application or under an operating system
such as Linux or VxWorks.

The Embedded PPC405 Reference System provides additional study of the PLB, OCM, and
DCR buses. In addition, it affords the opportunity to see how OPB-based devices are used
in a system. Step-by-step instructions are provided to help the user through the design
flow and to target a Virtex-II Pro device. Users can modify the ML300 Embedded PPC405
Reference System to add and subtract peripherals, as well as to change the software for
their own custom-designed systems. These designs can be fully simulated, synthesized,
and run through place-and-route to produce a bitstream for Virtex-II Pro devices.

Further Reading
Xilinx provides a wealth of valuable information to assist you in your design efforts. Some
of the relevant documentation is listed below with more information available through the
Xilinx Support website at http://support.xilinx.com. To obtain the most recent revision of
documentation related to the ML300, see http://www.xilinx.com/ml300.

Resources for EDK Users (Including New Users)
EDK Main Web Page

http://www.xilinx.com/ise/embedded/edk.htm

Getting Started with the EDK

http://www.xilinx.com/ise/embedded/edk_getstarted.pdf

Embedded System Tools Guide

http://www.xilinx.com/ise/embedded/est_guide.pdf

EDK Tutorials and Design Examples

http://www.xilinx.com/ise/embedded/edk_examples.htm

Embedded Processor Discussion Forum

http://toolbox.xilinx.com/cgi-bin/forum?14@@/Embedded%20Processors

Documentation Provided by Xilinx
Virtex-II Pro Advance Product Specification (Data Sheet)

http://www.xilinx.com/bvdocs/publications/ds083.pdf

Virtex-II Pro Platform FPGA User Guide

http://www.xilinx.com/bvdocs/userguides/ug012.pdf

RocketIO Transceiver User Guide
http://www.xilinx.com/publications/products/v2pro/ug_pdf/ug024.pdf

IBM ® CoreConnect™ Documentation
The Embedded Development Kit integrates with the IBM CoreConnect Toolkit. This
toolkit is not included with the EDK, but is required if bus functional simulation is desired.
The toolkit provides a number of features which enhance design productivity and allow
you to get the most from the EDK. To obtain the toolkit, you must be a licensee of the IBM

http://support.xilinx.com
http://www.xilinx.com/ml300
http://www.xilinx.com/ise/embedded/edk.htm
http://www.xilinx.com/ise/embedded/edk_getstarted.pdf
http://www.xilinx.com/ise/embedded/est_guide.pdf
http://www.xilinx.com/ise/embedded/edk_examples.htm
http://toolbox.xilinx.com/cgi-bin/forum?14@@/Embedded%20Processors
http://www.xilinx.com/bvdocs/publications/ds083.pdf
http://www.xilinx.com/bvdocs/userguides/ug012.pdf
http://www.xilinx.com/publications/products/v2pro/ug_pdf/ug024.pdf
http://www.xilinx.com

18 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 1: Introduction to ML300 Embedded PPC405 Reference System
R

CoreConnect Bus Architecture. Licensing CoreConnect provides access to a wealth of
documentation, Bus Functional Models, Hardware IP, and the toolkit.

Xilinx provides a Web-based licensing mechanism that allows you to obtain the
CoreConnect toolkit from our website. To license CoreConnect, use an Internet browser to
access http://www.xilinx.com/ipcenter/processor_central/register_coreconnect.htm.
Once your request has been approved (typically within 24 hours), you will receive an
e-mail granting access to a protected website. You may then download the toolkit. If you
prefer, you can also license CoreConnect directly from IBM.

If you would like further information on CoreConnect Bus Architecture, please see IBM's
CoreConnect website at http://www.ibm.com/chips/products/coreconnect.

Once you have licensed the CoreConnect toolkit, and installed it with the Developer's Kit,
the following documents will be available to you in the following locations:

IBM CoreConnect Bus Architecture Specifications

IBM CoreConnect Processor Local Bus (PLB) Architecture Specification
see $CORECONNECT/published/corecon/64bitPlbBus.pdf

IBM CoreConnect On-chip Peripheral Bus (OPB) Architecture Specification
see $CORECONNECT/published/corecon/OpbBus.pdf

IBM CoreConnect Device Control Register (DCR) Bus Architecture Specification
see $CORECONNECT/published/corecon/DcrBus.pdf

IBM CoreConnect Toolkit Documentation

PLB Bus Functional Model Toolkit - User's Manual
see $CORECONNECT/published/corecon/PlbToolkit.pdf

OPB Bus Functional Model Toolkit - User's Manual
see $CORECONNECT/published/corecon/OpbToolkit.pdf

DCR Bus Functional Model Toolkit - User's Manual
see $CORECONNECT/published/corecon/DcrToolkit.pdf

CoreConnect Test Generator - User's Manual
see $CORECONNECT/published/corecon/ctg.pdf

Note: $CORECONNECT is an environment variable that is created when installing the
Developer's Kit or CoreConnect Toolkit.

http://www.xilinx.com/ipcenter/processor_central/register_coreconnect.htm
http://www.ibm.com/chips/products/coreconnect
http://www.xilinx.com

ML300 Reference Design www.xilinx.com 19
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 2

ML300 Embedded PPC405 Reference System

Introduction
The ML300 Embedded PPC405 Reference System is an example of a large Virtex-II Pro™
based system. An IBM Core Connect™ infrastructure connects the CPU to numerous
peripherals using Processor Local Bus (PLB), On-Chip Peripheral Bus (OPB), and Device
Control Register (DCR) buses to build a complete system. This document describes the
contents of the reference system and provides information about how the system is
organized and implemented. It also discusses verification methodologies including
software-driven and bus-model-driven simulations. A complete design cycle
incorporating simulation, synthesis, FPGA implementation, and download is described.
The information presented introduces many aspects of the ML300 Embedded PPC405
Reference System, but the user should refer to additional specific documentation for more
detailed information about the software, tools, peripherals, interface protocols, and
capabilities of the FPGA.

Hardware

Overview
Figure 2-1, page 20 provides a high-level view of the hardware contents of the Embedded
PPC405 System. This design demonstrates a system that uses PLB, OPB, and DCR devices.
The PLB protocol generally supports higher bandwidths, so the memory devices are
placed there. The OPB connects the peripheral devices to the CPU by way of a PLB-to-OPB
Bridge and primarily is intended for lower performance devices. The OPB offers a less
complex protocol relative to the PLB, making it easier to design peripherals that do not
require high performance. The OPB also has the advantage that it can support a greater
number of devices, and it acts to decouple the peripherals from the higher-speed memory
devices. DCR is used with control and status registers for simplicity when performance is
not important. Refer to the PLB, OPB, and DCR CoreConnect Architecture Specifications
for more information. The hardware devices used in this design are described in more
detail in the Processor IP User Guide (<EDK Install Directory>/doc/proc_ip_ref_guide.pdf)
and in Chapter 4, “Introduction to Hardware Reference IP”.

http://www.xilinx.com

20 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 2: ML300 Embedded PPC405 Reference System
R

Processor Local Bus (PLB)
The PLB connects the CPU to high-performance devices, such as memory controllers. The
PLB protocol supports higher bandwidth transactions and has a feature set that better
supports memory operations from the CPU. Highlights of the PLB protocol include
synchronous architecture, independent read/write data paths, and split transaction
address/data buses. The reference design includes a 64-bit PLB infrastructure with 64-bit
master and slave devices attached.

The PLB devices in the reference system include:

• PLB Masters

♦ 640x480 VGA TFT LCD Controller

♦ CPU Instruction-Side PLB Interface

Figure 2-1: High-Level Hardware View of ML300 Embedded PPC405 Reference System

UG057_01_0227 04

BRAM

BRAM

Non-Crit.
INTC

DSOCM

DSPLB

ISPLB

INT

ISOCM

PPC405
Processor Block

DDR
Model

IIC
Model

GPIO
Pins

Term

Term

PCI Slv
Model

Memory Mapped
DCR Bus

DDR
MEMC

PLB2OPB
Bridge

OPB2PLB
Bridge

PLB
ARB

OPB
ARB

EthernetIP
IF

Touch Screen
DigitizerIP

IF

IIC

UART
16450

UART
16450

PCI

DCR
Bridge

IP
IF

IP
IF

Par Port
Ctlr

PS/2
PS/2

IP
IF

System ACE
MPUIP

IF
IP

IF

SPIIP
IF

AC97
Sound

CtlrIP
IF

IP
IF

IP
IF

IP
IF

IP
IF

BRAMBRAM
MEMC

PPC405
OCM Ctlr

TFT
LCD Ctlr

GPIO
GPIO

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 21
UG057 (v1.1) March 18, 2004 1-800-255-7778

Hardware
R

♦ CPU Data-Side PLB Interface

♦ OPB-to-PLB Bridge

• PLB Slaves

♦ BRAM Controller

♦ Double Data Rate (DDR) SDRAM Controller

♦ PLB-to-OPB Bridge-Out

• PLB Arbiter

♦ 64-bit Xilinx PLB Arbiter

In general, all PLB devices are optimized around the Virtex-II Pro architecture and make
use of pipelining to improve maximum clock frequencies and reduce logic utilization.
Refer to the accompanying documentation for each device for more information about its
design.

On-Chip Peripheral Bus (OPB)
The OPB connects lower-performance peripheral devices to the system. The OPB has a less
complex architecture, which simplifies peripheral development. A PLB-to-OPB Bridge
translates PLB transactions into OPB transactions, allowing the CPU to access the OPB
devices. OPB devices can also access PLB devices by way of an OPB-to-PLB Bridge.

The OPB devices in the reference system include:

• OPB Masters

♦ PLB-to-OPB Bridge-Out

♦ Ethernet Controller (DMA Engine, if enabled)

♦ OPB PCI Bridge

• OPB Slaves

♦ IIC Controller

♦ Dual 32-Bit General-Purpose Input/Output (GPIO)

♦ 16450 UART #1

♦ 16450 UART #2

♦ PCI Bus Master

♦ AC97 Sound Controller

♦ OPB-to-DCR Bridge

♦ Ethernet Controller

♦ Dual PS/2 Controller

♦ SPI Controller

♦ Touch Screen Digitizer

♦ Parallel Port

♦ System ACE MPU Interface

♦ OPB-to-PLB Bridge-In

• OPB Arbiter

In general, all OPB devices are optimized around the Virtex-II Pro architecture and make
use of pipelining to improve maximum clock frequencies and reduce logic utilization.

http://www.xilinx.com

22 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 2: ML300 Embedded PPC405 Reference System
R

Refer to the accompanying documentation for each device for more information about its
design.

The OPB devices in the reference design make use of Intellectual Property InterFace (IPIF)
modules to further simplify IP development. The IPIF converts the OPB protocol into
common interfaces, such as an SRAM protocol or a control register interface. IPIF modules
also provide support for DMA and interrupt functionality. IPIF modules simplify software
development since the IPIF framework has many common features. Refer to Chapter 6,
“IPIF Specification” for more information.

Note that the IPIF is designed mainly to support a wide variety of common interfaces, but
may not be the optimal solution in all cases. Where additional performance or
functionality is required, the user can develop a custom OPB interface. The IPIF protocols
can also be extended to support other bus standards, such as PLB. This allows the backend
interface to the IP to remain the same while the bus interface logic in the IPIF is changed.
This provides an efficient means for supporting different bus standards with the same IP
device.

The OPB specification supports masters and slaves of up to 64 bits with a dynamic bus sizing
capability that allows OPB masters and slaves of different sizes to communicate with each
other. The ML300 Embedded PPC405 Reference System uses a subset of the OPB
specification which only supports 32-bit byte enable masters and slaves. Legacy devices
utilizing 8- or 16-bit interfaces or those that require dynamic bus sizing functionality are
not directly supported. It is recommended that all new OPB peripherals support byte
enable operations for better performance and reduced logic utilization.

Device Control Registers (DCR)
The DCR offers a very simple interface protocol and is used for accessing control and
status registers in various devices. It allows for register access to various devices without
loading down the OPB and PLB interfaces. Since DCR devices are generally accessed
infrequently and do not have high-performance requirements, they are used throughout
the reference design for functions, such as error status registers, interrupt controllers, and
device initialization logic.

The CPU contains a DCR master interface that is accessed through special Move To DCR
and Move From DCR instructions. Some users may prefer to see DCR registers memory
mapped so an alternative DCR Master is provided. An OPB-to-DCR Bridge can be
instantiated to locate the 4-KB DCR space within the general system memory space. The
reference design demonstrates both methods for accessing DCR.

The DCR slave devices connected to the CPU's DCR port include:

• Data-Side OCM (8 KB)

• Instruction-Side OCM (4 KB)

The DCR slave devices connected to the OPB-to-DCR Bridge include:

• Non-Critical Interrupt Controller

• PLB Arbiter *

• PLB-to-OPB Bridge *

• OPB-to-PLB Bridge*

• VGA TFT LCD Controller

* The DCR connections to these devices are disabled to make the system more
compact. The DCR ports can be enabled via the EDK GUI or by editing the system
description file, system.mhs.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 23
UG057 (v1.1) March 18, 2004 1-800-255-7778

Hardware
R

The DCR specification requires that the DCR master and slave clocks be synchronous to
each other and related in frequency by an integer multiple. It is important to be aware of
the clock domains of each of the DCR devices to ensure proper functionality.

Other Devices
In addition to the PLB, OPB, and DCR devices, the ML300 Embedded PPC405 Reference
System contains Instruction-Side and Data-Side OCM modules. The OCM consists of
BRAMs directly connected to the CPU. They allow the CPU fast access to memory and are
useful for providing instructions or data directly to the CPU, bypassing the cache. This can
prevent thrashing of caches to better process packet data or execute interrupt service
routines. Refer to the OCM documentation for information about applications and design
information.

Interrupts
The CPU also contains two interrupt pins, one for critical interrupt requests and the other
for non-critical interrupts. An interrupt controller for non-critical interrupts is controlled
through the DCR. It allows multiple edge or level sensitive interrupts from peripherals to
be OR'ed together back to the CPU. The ability for bitwise masking of individual interrupts
is also provided. Table 2-1 summarizes the connections from the IP to the interrupt
controller.

Table 2-1: List of IP Connections to the Interrupt Controller

Interrupt Source

UART 16450 #1

UART 16450 #2

IIC Controller

Ethernet Controller

PS/2 Port #1

PS/2 Port #2

Touch Screen Digitizer

SPI

PCI (INTR A,B,C,D OR'd together)

SYSACE MPU

AC97 Sound Controller (Play Buffer)

AC97 Sound Controller (Record Buffer)

IIC (general wired-OR interrupt line)

IIC Temperature Sensor Alarm

External Ethernet PHY Chip

OPB to PLB Bridge Error

PLB Arbiter Error

PLB to OPB Bridge Error

http://www.xilinx.com

24 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 2: ML300 Embedded PPC405 Reference System
R

Clock/Reset Distribution
Virtex-II Pro FPGAs have abundant clock management and global clock buffer resources.
To demonstrate some of these capabilities, the ML300 Embedded PPC405 Reference
System uses a variety of different clocks. Figure 2-2 illustrates use of the digital clock
managers (DCMs) for generating the main clocks in the design. A 100 MHz input reference
clock is used to generate the main 100 MHz PLB, OPB, and OCM clocks. The CLK90 output
of the DCM produces a 100 MHz clock that is phase shifted by 90 degrees for use by the
DDR SDRAM controller. The main 100 MHz clock is divided down by three to create a 33
MHz PCI clock. The CPU clock is multiplied up from the PLB clock to 300 MHz. A second
DCM is used to recover and deskew the external clock from the DDR SDRAM. The second
DCM also drives the 12.5 MHz clock to the VGA TFT controller. A third DCM (not shown)
is used to deskew the externally driven PCI clock with the internal PCI clock.

Since each clock is referenced from the same 100 MHz clock, they are all phase aligned to
each other. This synchronous phase alignment is required by the CPU and many other
devices so they can pass signals from one clock domain to another. The CPU clock can run
at any integer multiple of the PLB clock up to the maximum CPU clock frequency. During
reset, internal clock synchronizers in the CPU detect the phase alignment of the PLB and
CPU clocks and adjust for it automatically. The OCM clock must be divided down from
the CPU clock by an integer multiple (up to eight), and the two clocks must be
synchronous to each other.

After a system reset or at FPGA startup, a debounce circuit inside the Processor System
Reset IP Module holds the FPGA in reset until the DCM has locked onto its reference clock.
Once the DCM is locked and the clocks remain stable for several cycles (may take several
microseconds in simulation), the reset condition is released to allow the system logic to

Figure 2-2: Clock Generation

UG057_02_010804

CLK1X

CLK90

CLKDV

IN

CLKFX

PLB/OPB/OCM

PCI

CPU

Digital Clock
Manager 1

External
Reference

Clock

100 MHz

Off-chip connection for board deskew

100 MHz

100 MHz +90˚

100 MHz

100 MHz +90˚

CLK1X

CLK90

CLKDV

IN

CLKFX

DDR
Controller

DDR
Controller

DDR
Controller

Digital Clock
Manager 2

TFT
12.5 MHz

33.3 MHz

300 MHz

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 25
UG057 (v1.1) March 18, 2004 1-800-255-7778

Hardware
R

begin operating. (For example, the CPU will begin fetching instructions a few cycles after
reset is released.) Since the reset net is a high-fanout signal, it may not be able to reach all
the logic in the design within one clock cycle. User IP blocks should be designed to take
into account the possible skew in the global reset and still start up properly. Alternatively,
the global reset can be registered locally in each IP block to generate a synchronous reset
signal.

The design implements the three levels of reset supported by the PPC405:

• Core reset

• Chip reset

• System reset

The core reset only affects the processor while the chip reset clears all the logic on the
FPGA. The system reset is designed to reset the entire system including the FPGA and
external devices connected to the FPGA. The CPU provides an internal special-purpose
register that allows software to request that one of the three resets be performed.

The reset logic in the ML300 Embedded PPC405 Reference System is an example
implementation of the PPC405 reset architecture. Designers should set the scope,
boundaries, and effects of resets as appropriate to their designs. For more information,
refer to the Processor System Reset Module documentation in the EDK Processor IP User
Guide.

CPU Debug via JTAG
The CPU in the ML300 Embedded PPC405 Reference System can be debugged via JTAG
with a variety of software development tools from VxWorks, GNU, IBM and others. The
JTAG logic connected to the CPU in addition to the circuitry on the ML300 board offers
two different types of JTAG chains for connecting to the CPU. This permits the widest
compatibility among JTAG products that support the PPC405.

The preferred method of communicating with the CPU via JTAG is to combine the CPU
JTAG chain with the FPGA's main JTAG chain which is also used to download bitstreams.
This method requires the user to instantiate a JTAGPPC component from the library of
Xilinx FPGA primitives and directly connect it to the CPU in the user's design. The
primary advantage of sharing the same JTAG chain for CPU debug and FPGA
programming is that this simplifies the number of cables needed since a single JTAG cable
(like the Xilinx Parallel IV Cable) can be used for bitstream download as well as CPU
software debugging.

An alternate method of using JTAG with the CPU is to directly connect the CPU's JTAG
pins to the FPGA's user I/O. In this case the CPU is on a separate JTAG chain from the
FPGA. This method requires two separate JTAG cables be used but is more compatible
with third party JTAG tools which cannot perform the necessary JTAG commands to
support a single combined JTAG chain with multiple devices on it.

The ML300 Embedded PPC405 Reference System contains a simple autosensing circuit to
multiplex between the two types of JTAG chains. The JTAG circuit is normally in the state
where it connects the CPU to the JTAGPPC component for a single combined JTAG chain.
The design then senses the TCK pin on the CPU-only JTAG port. This pin is normally held
high with a pull-up. If the TCK pin is ever pulled low (by an external JTAG programmer
connected to this port) it will switch over the CPU JTAG pins to the other JTAG port. Any
internal reset condition will return the JTAG multiplexer back to the default state. This
circuit should be used for evaluation only. It should be replaced with a fixed circuit after
the desired method of using JTAG has been determined. This autosensing circuit is not as

http://www.xilinx.com

26 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 2: ML300 Embedded PPC405 Reference System
R

reliable as a fixed circuit since small glitches on TCK may cause a false detection. In
addition, the JTAG switching circuit may prevent System ACE (described later) from
functioning correctly because System ACE relies on using the combined JTAG chain to talk
to the CPU. If System ACE is being used with the autosensing circuit present, any external
JTAG programmer should not be connected to the CPU-only JTAG port until after
System ACE download is complete.

IP Version and Source
summarizes the list of IP cores making up the ML300 Embedded PPC405 Reference
System. The table shows the hardware version number of each IP core used in the design.
The table also lists whether the source of the IP is from the EDK installation or whether it
is reference IP in the local pcores directory.

Table 2-2: IP Cores in the ML300 Embedded PPC405 Reference System

Hardware IP Version Source

bram_block 1.00.a EDK Installation

clocks 1.00.c Local “pcores” Directory

dcr_intc 1.00.b EDK Installation

misc_logic 1.00.a Local “pcores” Directory

my_jtag_logic 1.00.a Local “pcores” Directory

opb_gpio 2.00.a EDK Installation

opb2dcr_bridge 1.00.a EDK Installation

opb_iic 1.01.b EDK Installation

opb_sysace 1.00.b EDK Installation

opb_uart16550 1.00.c EDK Installation

plb2opb_bridge 1.00.b EDK Installation

opb2plb_bridge_ref 1.00.a Local “pcores” Directory

plb_bram_if_cntlr 1.00.a EDK Installation

plb_ddr 1.00.c EDK Installation

ppc405 2.00.c EDK Installation

dsocm_v10 1.00.b EDK Installation

dsbram_if_cntlr 2.00.a EDK Installation

bram_block 1.00.a EDK Installation

isocm_v10 1.00.b EDK Installation

isbram_if_cntlr 2.00.a EDK Installation

ppc_trace 1.00.a Local “pcores” Directory

proc_sys_reset 1.00.a EDK Installation

opb_ethernet 1.00.m EDK Installation

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 27
UG057 (v1.1) March 18, 2004 1-800-255-7778

Simulation and Verification
R

Simulation and Verification

Simulation Overview
Figure 2-3, page 28 diagrams the organization of the higher-level HDL files that comprise
the system and testbench environment.

Note: The simulation testbench is available in Verilog only.

For simulation, the main testbench module (testbench.v) instantiates the FPGA (system.v)
as the device under test and includes behavioral models for the FPGA to interact with. In
addition to behavioral models for memory devices, clock oscillators, and external
peripherals, the testbench also instantiates the CoreConnect bus monitors to observe the
PLB, OPB, and DCR buses for protocol violations. The testbench can also preload some of
the memories in the system for purposes such as loading software for the CPU to execute.
The sim_params.v file is designed to be modified by the user to customize various
simulation options. These options include message display options, maximum simulation
time, and clock frequency. The user should edit this file to reflect personal simulation
preferences.

Some of the testbench code is used to access signals internal to the design using hierarchy
path names to reach into the design without changing any of the port interfaces. It is
important that the design source files used for simulation match the source files for
synthesis. Therefore, port interfaces should not be different or else inconsistencies can
result.

opb_spi 1.00.b EDK Installation

opb_ps2_dual_ref 1.00.a Local “pcores” Directory

plb_tft_cntlr_ref 1.00.b Local “pcores” Directory

opb_tsd_ref 1.00.a Local “pcores” Directory

opb_ac97_controller_ref 1.00.a Local “pcores” Directory

opb_par_port_ref 1.00.a Local “pcores” Directory

opb_pci_ref 1.00.b Local “pcores” Directory

pci_arbiter 1.00.a Local “pcores” Directory

dcr_v29 1.00.a EDK Installation

opb_v20 1.10.b EDK Installation

plb_v34 1.01.a EDK Installation

Table 2-2: IP Cores in the ML300 Embedded PPC405 Reference System

Hardware IP Version Source

http://www.xilinx.com

28 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 2: ML300 Embedded PPC405 Reference System
R

Figure 2-3: Organization of Higher-Level HDL Files

UG057_03_022704

system.v

testbench.v

BRAM
BRAM

BRAM

Non-Crit.
INTC

100 MHz
Ref. Clock

Rst
Gen

DCM

Global
Signals

DDR
Model

DDR
MEMC

BRAM
MEMC

PLB2OPB
Bridge

OPB2PLB
Bridge

PLB Monitor DCR MonitorOPB Monitor

PLB
ARB

OPB
ARB

IIC
Model

IIC

IP
IF

GPIO
Pins

GPIO
GPIOIP

IF

Term
UART
16450IP
IF

Term
UART
16450IP

IF
PCI Slv
Model

PCI
IP

IF

SPI

IP
IF

DCR
BridgeIP

IF

DSOCM

DSPLB

ISPLB

INT

ISOCM

PPC405
Processor Block

PPC405
OCM Ctlr

EthernetIP
IF

Touch Screen
DigitizerIP

IF

TFT
LCD Ctlr

Par Port
Ctlr

PS/2
PS/2

IP
IF

System
ACE MPUIP

IF
IP

IF

AC97
Sound

CtlrIP
IF

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 29
UG057 (v1.1) March 18, 2004 1-800-255-7778

Simulation and Verification
R

SWIFT and BFM CPU Models
The ML300 Embedded PPC405 Reference System demonstrates two different simulation
methods to help verify designs using the PPC405 CPU. One method uses a full simulation
model of the CPU based on the actual silicon. The second method employs bus functional
models (BFMs) to generate processor bus cycles from a command scripting language.
These two methods offer different trade-offs between behavior in real hardware, ease of
generating bus cycles, and the amount of real time to simulate a given clock cycle.

A SWIFT model can be used to simulate the CPU executing software instructions. In this
scenario, the executable binary images of the software are preloaded into memory from
which the CPU can boot up and run the code. Though this is a relatively slow way to
exercise the design, it more accurately reflects the actual behavior of the system.

The SWIFT model is most useful for helping to bring up software and for correlating
behavior in real hardware with simulation results. The ML300 Embedded PPC405
Reference System demonstrates the SWIFT model simulation flow, by allowing the user to
write a C program that is compiled into an executable binary file. This executable (in ELF
format) is then converted into BRAM initialization commands using a tool called
Data2MEM. (Note that Data2MEM can also generate memory files for the Verilog
command readmemh to use to initialize external DDR memory.)

When a simulation begins and reset is released, the CPU SWIFT model fetches the
instructions from BRAM (which is mapped to the boot vector) and begins running the
program. The user can then observe the bus cycles generated by the CPU or any other
signal in the design. For debugging purposes, the values of the CPU's internal program
counter, general-purpose registers, and special-purpose registers are available for display
during simulation.

Generating a desired sequence of bus operations from the CPU may require a lot of
software setup or simulation time. For early hardware bring-up or IP development, a bus
functional model can be used to speed up simulation cycles and avoid having to write
software. A model of the CPU is available in which two PLB master BFMs and one DCR
BFM are instantiated to drive the CPU's PLB/DCR ports. These BFMs are provided in the
CoreConnect toolkits and allow the user to generate bus operations by writing a script
written in the Bus Functional Language (BFL). The ML300 Embedded PPC405 Reference
System provides a sample BFL script that exercises many of the peripherals in the system.
Refer to the CoreConnect Toolkit documentation for more information.

Since the CPU SWIFT model and BFM model both have the same set of port interfaces,
users can switch between the two simulation methods by compiling the appropriate set of
files without having to modify the system's design source files. Users may, however, need
to modify their testbenches to take into account which model is being used.

Behavioral Models
The ML300 Embedded PPC405 Reference System includes some behavioral models to help
exercise the devices and peripherals in the FPGA. Many of these models are freely
available from various manufacturers and include interface protocol-checking features.
The behavioral models and features included in the reference design are:

• DDR memory models for testing the memory controllers:

♦ These models can also be preloaded with data for simulations

• EEPROM model with IIC interface

• Pull-ups connected to the GPIO for reading and driving outputs without getting
unknown values

http://www.xilinx.com

30 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 2: ML300 Embedded PPC405 Reference System
R

• Terminal interface connected to the UARTs for sending and receiving serial data

♦ The terminal allows a user to interact with the simulation in real time

♦ Characters sent out by the UARTs are displayed on a terminal while characters
typed into the terminal program are serialized and sent to the UARTs

♦ A simple file I/O mechanism passes data between the hardware simulator and
the terminal program

• Simple PCI Slave that responds to commands from the PCI Master in the reference
design

♦ The PCI Slave acts as a memory device that the PCI Master can write to and read
back from

♦ The PCI Slave responds to configuration, memory, and I/O PCI cycles

Synthesis and Implementation
The ML300 Embedded PPC405 Reference System can be synthesized and placed/routed
into a Virtex-II Pro FPGA under the EDK tools. A basic set of timing constraints for the
design is provided to allow the design to go through place and route.

Design Flow Environment
The EDK provides an environment to help manage the design flow for the ML300
Embedded PPC405 Reference System including simulation, synthesis, implementation,
and software compilation. EDK offers a GUI or command line interface to run these tools
as part of the design flow. Consult the EDK documentation for more information.

Memory Map
This section diagrams the system memory map for the ML300 Embedded PPC405
Reference System. It also documents the location of the DCR devices as mapped by the
OPB to DCR Bridge. The memory map reflects the default location of the system devices as
defined in the system.mhs file.

See Table 2-3 and Table 2-4, page 31.

Table 2-3: CPU-Connected DCR Device Memory Map

Device
Address Boundaries

Size
Upper Lower

Data Side OCM Controller 203 200 32B

Instruction Side OCM Controller 103 100 32B

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 31
UG057 (v1.1) March 18, 2004 1-800-255-7778

Memory Map
R

Table 2-4: Memory Maps

UG057_04_022704

256 BDual GPIO 900000FF 90000000

8 KBA0010000UART2 (16450) A0011FFF

512 BA8000000IIC Controller A80001FF

512 MB20000000PCI Bus Master 3FFFFFFF

FFFFFFFF F0000000 256 MB

1FFFFFFF 00000000 512 MB

512 B

OPB to PLB Bridge

4 KB mem addr = DCR addr x 4D0000000OPB to DCR Bridge D0000FFF

8 KBUART1 (16450) A0001FFF A0000000

16 KB60000000Ethernet 60003FFF

8 B

128 B

A9000000PS/2 (Dual) A9001FFF

8 BAA000000Touch Screen Digitizer AA000007

A4000000SPI A400007F

A6000000AC97 Sound A60000FF

90010000Parallel Port 900100FF

CF000000System ACE MPU CF0001FF

Non-Crit. INTC (0x3F0 - 0x3F7)32 BNon-Crit. INTC D0000FDF D0000FC0

TFT Control Regs (0x080- 0x081)8 BTFT VGA Controller D0000207 D0000200

256 B

256 B

PLB Device Memory Map

Device

8 KB

128 MB

4 KB

3.5 GB

32 KB

Address
Max Min Size

Contains Boot Vector

40000000

DDR SDRAM 07FFFFFF 00000000 128 MB

DDR SDRAM Shadow Memory 0FFFFFFF 08000000

Data Side OCM Space 40001FFF

50000000Instruction Side OCM Space 50000FFF

20000000PLB to OPB Bridge Space DFFFFFFF

PLB BRAM Space FFFF8000 FFFF0000

OPB Device Memory Map

O
P

B
 to

 D
C

R
 B

rid
ge

Memory-Mapped DCR Device Map

Device
Address

Max Min Size

Config (0x00000000 - 0x01FFFFFF)

Self Config (0x00000000 - 0x01FFFFFF)

I/O (0x38000000 - 0x03BFFFFF)

Mem (0x20000000 - 0x37FFFFFF)

PCI Memory Map

Device

PCI Memory Space 37FFFFFF 20000000 384 MB

64 MB

32 MB

Address
Max Min Size

Comment

Comment
(DCR Addr Range)

Comment
(PCI Addr Range)

PCI I/O Space 3BFFFFFF 38000000

PCI Card Configuration Space 3DFFFFFF 3C000000

32 MBPCI Controller Master Registers 3FFFFFFF 3E000000

P
LB

 to
 O

P
B

 B
rid

ge
 S

pa
ce

Device
Address

Max Min Size Comment

P
C

I B
us

 M
as

te
r

Shadow memory allows TFT video
memory to be accessed as an
uncached region. Video memory region
starts at 0xFE000000.

http://www.xilinx.com

32 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 2: ML300 Embedded PPC405 Reference System
R

ML300 Specific Registers
The design also contains a number of register bits to control various items on the ML300
such as the buttons and LEDs. Note that the 32-bit GPIO pins on the ML300 are controlled
with a standard set of GPIO registers at 0x90000008. See the EDK Processor IP User Guide
documentation for more information about the GPIO. Table 2-5 and Table 2-6 contain
information about control and status registers specific to the ML300 Embedded PPC405
Reference System.

Table 2-5: Game Button/LED Register Map (Address 0x90000000)

Bits Description

0 (MSB) Reserved

1 Left GAME Switch LFT

2 Left GAME Switch TOP

3 Left GAME Switch RT

4 Left GAME Switch BOT

5 Left TOP Switch

6 Left MID Switch

7 Left BOT Switch

8 Reserved

9 Right GAME Switch LFT

10 Right GAME Switch TOP

11 Right GAME Switch RT

12 Right GAME Switch BOT

13 Right TOP Switch

14 Right MID Switch

15 Right BOT Switch

[16:31]
(LSB)

Game LEDs bits [15:0]. These LEDs are labeled on the ML300
board. Power on default value is 0.

Note: Status bits for buttons are read-only. A “1” value indicates the button was
pushed. “0” indicates button was not pushed. LED control bits are read/write where
a “1” value turns on the LED and a “0” turns off the LED.

Table 2-6: Control Register Map (Address 0x90000004)

Bits Description

0 (MSB) PLB error light clear. Writing a “1” to this bit will clear the PLB error light
on the ML300 board. This bit must be written back to “0” to enable the PLB
error light. Defaults to 1.

1 Unused

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 33
UG057 (v1.1) March 18, 2004 1-800-255-7778

Extending or Modifying the Design
R

Extending or Modifying the Design
The ML300 Embedded PPC405 Reference System is a good starting point from which a
user can add, remove, or modify components in the system. Since most of the IP in the
design is attached to the CoreConnect infrastructure under EDK, adding or removing
devices is a fairly straightforward process. Below is an overview for making various
changes to the system.

Adding or Removing IP Cores
To remove an IP core:

• Delete the instantiation for that piece of IP from the system.mhs file (or use the
Add/Edit Cores feature of the EDK GUI)

• Delete all corresponding external I/O ports from the system.mhs file

• Remove corresponding UCF file entries specifying timing or pinout locations for that
IP

• Remove anything in the testbench connected to that IP and update the BFL scripts if
necessary

To add an IP core:

♦ Instantiate the device by adding it to the system.mhs file (or use the Add/Edit
Cores feature of the EDK GUI)

♦ Connect its external I/O to the top level

♦ Set its configuration parameters (i.e., base address) in the system.mhs file (or use
the Add/Edit Cores feature of the EDK GUI)

♦ Add appropriate timing and pinout constraints to the UCF file

♦ Update the testbench to allow the new IP to be tested and update the BFL scripts
if necessary

2 IIC write protect bit. Setting this bit to “1” prevents the IIC devices with
nonvolatile storage from being written to. A “0” allows writes to the
EEPROM. This bit default to 0.

3 Caselight Enable. The illumination LEDs under the ML300 board are
normally turned on when the system reset is inactive. Writing a “1” to this
bit allows these LEDs to be on when reset is not present. A “0” turns off the
LED. This bit defaults to 1.

4 OPB error light clear. Writing a “1” to this bit will clear the OPB error light
on the ML300 board. This bit must be written back to “0” to enable the OPB
error light. Defaults to 1.

[5:19] Unused

[20:31]
(LSB)

Software Powerdown. Writing the hex value 0x0FF as in “off” will cause
the ML300 to power off. The 0x0FF value must be held for about 1-2
seconds before the board turns off. This register defaults to 0x00.

Table 2-6: Control Register Map (Address 0x90000004) (Continued)

Bits Description

http://www.xilinx.com

34 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 2: ML300 Embedded PPC405 Reference System
R

Other Modifications
Both the Instruction and Data Side OCM ports are connected to BRAMs. The user can
change the memory base addresses, sizes, or clock frequencies. Refer to the OCM
documentation for information about connecting BRAM memory to the OCM and
configuring it.

Each Interrupt Controller supports up to 32 separate interrupts, but only a few of the
interrupt inputs are used. New IP capable of generating interrupts should tie in their
interrupt request lines to the interrupt controller so the CPU can see them.

Behavioral Models/Testbenches
Whenever new IP devices are added or new BFMs are added, the testbenches should be
updated. This may include new device models or edits to the connections of some of the
bus monitors. The sample BFL script supplied with the design can be used as a template
for building custom test scripts.

Directory and File Listings
The files and directories specific to the ML300 Embedded PPC405 design are listed in the
tables that follow. Note that the following tables only list files that are present after
installation. After running simulation, synthesis, or place and route, additional files may
be created. Directory path names are shown separated by the “/” character as is the UNIX
convention. For Windows, the “\” character should be used to separate directory paths.

Table 2-7: Directory and File Listings for ML300 Embedded PPC405 Design

Directory/File Description

projects/ml300_edk3/genace.tcl Enhanced System ACE file generation script

projects/ml300_edk3/xmd.ini XMD configuration files specifying OCM address ranges

projects/ml300_edk3/system.xmp EDK system project file containing multiple software applications

projects/ml300_edk3/system_linux.xmp EDK system project file utilizing Linux

projects/ml300_edk3/system_linux.mss MSS file - Describes system software drivers under EDK (Linux specific)

projects/ml300_edk3/system.mhs MHS file - Describes system hardware under EDK

projects/ml300_edk3/system.mss MSS file - Describes system software drivers under EDK (For general
software applications)

projects/ml300_edk3/bsp Linux specific files

projects/ml300_edk3/data/AT24CXXX.v IIC EEPROM model

projects/ml300_edk3/data/compile_corecon.f Verilog –f file to compile CoreConnect modules

projects/ml300_edk3/data/compile_corecon_dummy.f Verilog –f file to compile placeholder files if CoreConnect is not installed

projects/ml300_edk3/data/cygncurses6.dll Used by terminal.exe

projects/ml300_edk3/data/cygwin1.dll Used by terminal.exe

projects/ml300_edk3/data/edn_patch.do ModelSim script to load pre-generated simulation netlists if needed

projects/ml300_edk3/data/gen_memfiles.sh Script file to create MEM files for external memory initialization

projects/ml300_edk3/data/init_patch.sh Script file to patch system_init.v simulation file to use simulation
hierarchy

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 35
UG057 (v1.1) March 18, 2004 1-800-255-7778

Directory and File Listings
R

projects/ml300_edk3/data/memory_init.bmm BMM file for design, including all external memory

projects/ml300_edk3/data/mt46v32m8.v DDR memory model

projects/ml300_edk3/data/opb_dcl.inc OPB bus monitor configuration file

projects/ml300_edk3/data/pci_lc_i.v Simulation model of PCI Core

projects/ml300_edk3/data/pci_targ32.v Simulation model of PCI target device

projects/ml300_edk3/data/ppc405_0_wrapper.v Simulation wrapper for PPC405

projects/ml300_edk3/data/sim_params.v Simulation parameters

projects/ml300_edk3/data/start_terminal.bat Batch file to create UART simulation terminal

projects/ml300_edk3/data/start_terminal.sh Script file to create UART simulation terminal

projects/ml300_edk3/data/system.ucf UCF of system

projects/ml300_edk3/data/terminal Simulation Terminal executable (Solaris)

projects/ml300_edk3/data/terminal.exe Simulation Terminal executable (PC)

projects/ml300_edk3/data/testbench.do Main simulation .do file for Modelsim

projects/ml300_edk3/data/testbench.v Main simulation testbench

projects/ml300_edk3/data/uart_rcvr.v Simple UART receiver / decoder load

projects/ml300_edk3/data/use_ppc405_bfm.do Used with BFM simulation to override SWIFT model

projects/ml300_edk3/data/view_reg.v Generate PPC405 register messages

projects/ml300_edk3/data/wave.do ModelSim waveform .do file

projects/ml300_edk3/data/bfl/X_proc_block_BFM.v BFM of PPC405 for use with back-annotated simulation

projects/ml300_edk3/data/bfl/proc_block_BFM.v BFM of PPC405 for use with functional simulation

projects/ml300_edk3/data/bfl/run_BFC.sh Script to invoke CoreConnect Bus Functional Compiler

projects/ml300_edk3/data/bfl/*.bfl BFM Simulation scripts for various hardware IP cores

projects/ml300_edk3/data/bfl/test_system_place_holder.v Placeholder file for simulations where the CoreConnect toolkit is not
installed

projects/ml300_edk3/data/corecon_dummy/*.* Placeholder file for simulations where the CoreConnect toolkit is not
installed

projects/ml300_edk3/drivers Software drivers corresponding to IP in local “pcores” directory

projects/ml300_edk3/etc/bitgen.ut Bitgen options

projects/ml300_edk3/etc/download.cmd IMPACT command file for downloading system.bit

projects/ml300_edk3/etc/fast_runtime.opt XFLOW option file for the FPGA implementation tool settings

projects/ml300_edk3/pcores/clocks_v1_00_c Clock module

projects/ml300_edk3/pcores/misc_logic_v1_00_a Miscellaneous glue logic

projects/ml300_edk3/pcores/my_jtag_logic_v1_00_a Custom JTAG logic

projects/ml300_edk3/pcores/opb2plb_bridge_ref_v1_00_a OPB-to-PLB Bridge (Lite) Reference IP

projects/ml300_edk3/pcores/opb_ac97_controller_ref_v1_00_a AC97 Sound CODEC Controller Reference IP

projects/ml300_edk3/pcores/opb_par_port_ref_v1_00_a OPB Parallel Port Controller Reference IP

projects/ml300_edk3/pcores/opb_pci_ref_v1_00_b OPB PCI Bridge (Lite) Reference IP

Table 2-7: Directory and File Listings for ML300 Embedded PPC405 Design (Continued)

Directory/File Description

http://www.xilinx.com

36 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 2: ML300 Embedded PPC405 Reference System
R

projects/ml300_edk3/pcores/opb_ps2_dual_ref_v1_00_a Dual PS/2 Controller Reference IP

projects/ml300_edk3/pcores/opb_tsd_ref_v1_00_a Touch Screen Digitizer Reference IP

projects/ml300_edk3/pcores/pci_arbiter_v1_00_a PCI Arbiter Reference IP

projects/ml300_edk3/pcores/plb_tft_cntlr_ref_v1_00_b PLB TFT LCD Controller Reference IP

projects/ml300_edk3/pcores/ppc_trace_v1_00_a Trace Logic

sw/standalone/lib Additional shared libraries (not shipped with EDK)

sw/standalone/mapfiles Map files - Linker Scripts

sw/standalone/<various other directories> Various software applications - See Software Section of EDK Tutorial
Chapter for more information

Table 2-7: Directory and File Listings for ML300 Embedded PPC405 Design (Continued)

Directory/File Description

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 37
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 3

EDK Tutorial and Demonstration

Introduction
This chapter contains basic instructions for using the EDK tools with the ML300 Embedded
PPC405 Reference System. It is designed to help illustrate the steps to build, download,
and simulate the design. Information about demonstration software applications will also
be provided. The instructions that follow provide only an overview of the capabilities of
EDK. Much more detail about operating the EDK tools can be found in the EDK
documentation. This chapter assumes that the reference design and all other necessary
tools are properly installed according to the provided installation instructions.

Instructions for Invoking the EDK tools
This tutorial section and those that follow have directory path names that are shown
separated by the “/” character as is the UNIX convention. For Windows, the “\” should be
used to separate directory paths. The instructions that follow reference the <EDK Project
Directory> located at <Reference Design Install Directory>/projects/ml300_edk3/. This is
the area where the EDK Xilinx Microprocessor Project files (.xmp) reside after installing
the ML300 Embedded PPC405 Reference System.

Launching Xilinx Platform Studio (XPS)
1. Open the XPS GUI.

On PC, click:

Start → Programs →Xilinx Platform Studio

On Solaris, source the necessary environment scripts, and launch XPS:

$ xps

2. Open XPS project file for the ML300 Embedded PPC405 Reference System:

Click File →Open Project

Browse to find the <EDK Project Directory>

Select the file system.xmp, Click Open

This opens the project file under EDK. It is now ready to build, download, or simulate
the system using the user-selected software application program. You are now ready
to proceed to follow the remaining instructions below.

http://www.xilinx.com

38 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 3: EDK Tutorial and Demonstration
R

Instructions for Selecting Software Application
The system.xmp EDK project file supports multiple user software applications. To select
which software application to compile or simulate, follow the instructions below.

1. Click the Applications tab on the left-hand pane, then scroll down and look for
Project: ppc405_0_hello_uart.

2. Right-click on Project: ppc405_0_hello_uart and select Make Project Active.

Note: This tutorial uses the hello_uart application as an example. To select a different software
application, right-click on the active project and select Make Project Inactive. Then find the software
application of interest and make that project active. See “Software,” page 43 for more information.

Instructions for Running Functional Simulations
The ML300 Embedded PPC405 Reference System comes with SWIFT and BFM based
simulation examples. This section describes the necessary steps for running these
simulations.

1. Check that the simulation settings are correct and that the libraries are pointing to the
correct directories on your system (the project defaults are not likely to match that of
your system). Under XPS, go to Options→Project Options. Click the “HDL and
Simulation” tab to show the current ModelSim library paths. Change these paths if
incorrect.

Note: If you followed the recommended default library names and locations from the
installation instructions, the path settings are:

EDK Library = <EDK Install Dir>/mti_se/edklib
Xilinx Library = <EDK Install Dir>/mti_se

In the HDL box, ensure that Verilog is selected for the simulation to work properly. In
the Simulation Models box, select either Behavioral or Structural. The Behavioral
setting allows for HDL source code level simulation, but requires a mixed-language
Verilog/VHDL ModelSim license. The structural setting simulates the design at the
netlist level, but only requires a Verilog ModelSim license.

When complete, the Project Options→HDL and Simulation settings should look
similar to Figure 3-1, page 39.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 39
UG057 (v1.1) March 18, 2004 1-800-255-7778

Instructions for Running Functional Simulations
R

Click OK when finished.

2. Optional: Modify <EDK Project Directory>/data/sim_params.v to suit your
simulation needs.

3. Speed up the UART baud rate for simulation.

The UART is normally set to 9600 baud when running in real hardware. However, in
simulation this is an excessively slow baud rate and would require prohibitive
amounts of time to simulate the transmission of a single character. Therefore a user
flag can be set so that software applications will compile in a baud rate of about
3 Mbaud to speed up the transfer rate of UART data. Setting this flag is recommended
when simulating an application that uses a UART.

Click the Applications tab on the left-hand pane, then double-click Compiler Options
under the active project ppc405_0_hello_uart. Choose the Advanced tab in the “Set
Compiler settings for...” window that pops up.

In the top box for “Program Sources Compiler Options” change from the default of
“-DSIM=0” to “-DSIM=1” for simulation.

Note: Remember to set this back to “-DSIM=0” before generating bitstreams or running the
software application in real hardware.

Click OK when finished.

4. Run Simulation.

Click Tools→Hardware Simulation

XPS will compile the hardware and software files and invoke ModelSim. Note: EDK
does not currently support behavioral simulation for Verilog designs. Therefore,
structural simulation is used which requires the hardware IP simulation models to be
generated from the post-synthesized netlist. It may take some time to complete this
translation process.

Figure 3-1: HDL and Simulation Settings

http://www.xilinx.com

40 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 3: EDK Tutorial and Demonstration
R

5. Proceed to either Step 5a or 5b below to begin either a SWIFT or BFM simulation.

5a. SWIFT simulation

After ModelSim is up, load the design by entering the following command at the
ModelSim console prompt:

Modelsim> do ../../data/testbench.do

This testbench.do file will perform a number of tasks:

- Run data2mem to generate MEM files for external memory

- Compile CoreConnect monitors (if installed)

- Compile the testbench and peripheral simulation models

- Invoke the UART terminal application

Now start the simulation. At the ModelSim prompt, type:

Modelsim> run -all

For the hello_uart program, you can interact with the simulation using the terminal
program. On the UART 1 terminal, the words “Hello world” followed by a carriage
return will appear as the program executes in the simulation. You can also type into
the terminal (after Hello world is displayed) and have the characters echoed back after
some delay. Keep in mind that the program is running in simulation, so it may take
many seconds of real time for the characters to get transmitted and received. Pressing
the Esc (escape) key will exit the terminal and stop the simulation after a few seconds.

Note: It is normal to see some warnings from the PLB monitor or behavioral memory models
during reset, but the PLB/OPB/DCR monitors should not report any protocol errors during
simulation (warnings and notes may occur depending on the circumstances). Some programs
may run for relatively long periods of time or indefinitely. You can modify the sim_params.v file
to stop the simulation after a desired amount of time or press Ctrl c (break) to stop the
simulation.

5b. BFM simulation

After ModelSim is up, load the design by entering the following command at the
ModelSim console prompt (Note: the CoreConnect toolkit must be installed to support
BFM simulation):

Modelsim> do ../../data/testbench.do bfm

This testbench.do file will perform a number of tasks:

- Run data2mem to generate MEM files for external memory

- Compile CoreConnect monitors

- Invoke Bus Functional Compiler (BFC) on Bus Functional Language (BFL)
scripts

- Compile the testbench and peripheral simulation models

- Invoke the UART terminal application

Now start the simulation. At the ModelSim prompt, type:

Modelsim> run -all

The BFL script performs a set of memory write/read tests to all memory devices in the
system. It then sends out “Hello” over UART 1 and “world” over UART 2. The script
finishes up by accessing the other peripherals in the system, including BRAM, PCI,
IIC, and so on.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 41
UG057 (v1.1) March 18, 2004 1-800-255-7778

Instructions for Building / Implementing Design
R

The simulation stops when the BFL script is finished executing or when an error
occurs. If the simulation completes successfully, the simulator displays the following
message:

Synch 31 received… Simulation Completed

If an error is detected, either in the form of a protocol violation reported by a bus
monitor or a read comparison error, the simulation stops and an error message is
displayed. It is a useful exercise to view the simulator's waveform display and
correlate the commands in the .bfl script with the bus transaction waveforms over
PLB, OPB, and DCR.

6. Close MTI.

It may be necessary to close MTI after completing simulation in order to properly
return control back to the XPS GUI.

Instructions for Building / Implementing Design
After successfully simulating the design, it can now be synthesized and place and routed
to be run on real ML300 hardware.

1. Synthesize the design.

In XPS, Click Tools→Generate Netlist.

Note: This step may take some time to complete.

2. Implement the design.

In XPS, Click Generate Bitstream.

Note: This step may take some time to complete.

3. Restore software configuration to use normal baud rate.

Software applications should be set back to 9600 baud in order to correctly send data
via the UART.

Go to Options→Compiler Options→Others.

In the top box for “Program Sources Compiler Options” set it back to “-DSIM=0”.

Click OK.

Instructions for Downloading Design
The hardware bitstreams and software binary executable files can be downloaded to the
ML300 board via the Xilinx Parallel Cable IV cable or System ACE.

The downloaded design will run the hello_uart program. To see this program running,
connect a serial cable from a PC to the ML300 board. Use a terminal program like
HyperTerminal which comes with Windows and set the COM port settings to 9600 baud,
8 Data Bits, No Parity, 1 Stop Bit, Hardware or No flow control. Once the program is
downloaded using the instructions below, you should be able to see “Hello world” on
your terminal. The board will then echo the characters you type until you hit escape.

Download Using Parallel Cable IV (iMPACT Program)
After the design is implemented, a bitstream can then be generated and downloaded into
an FPGA using a program like Impact available with the Xilinx ISE tools. (A PC should be
used for this step.)

http://www.xilinx.com

42 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 3: EDK Tutorial and Demonstration
R

1. Connect Parallel Cable IV from a PC to the ML300 board and power on the board.

2. Click Tools→Download within XPS.

Note: This will load a bitstream that contains a bootloop program that effectively idles the
PPC405 - NOT the software program that you have specified. You must continue on with the
remaining steps in this section to load your program with GDB.

3. Click Tools→XMD to run the Xilinx Microprocessor Debug tool.

4. This opens an XMD command shell (which loads the configuration file <EDK Project
Directory>/xmd.ini).

5. Click Tools→Software Debugger to bring up GDB.

6. A menu window will open. Choose the software application project
"ppc405_0_hello_uart" to download. Then click OK.

Note: In this window, you must choose the software application that is marked as active under
the Applications tab in the main left window pane. Do not choose an inactive software
application.

7. Within GDB:

Go to Run menu and select Connect to Target.

For target, select XMD and make sure that Port is set to the same port number reported
within the XMD shell (usually 1234) and click OK.

Go to the Run menu and select Download - this will load your software and set the PC
to the beginning.

8. Now you can set breakpoints and run as you wish. For example, the Control menu
allows you to step through your code or run to completion (Finish).

Refer to the EDK documentation for further details.

Download Using System ACE
System ACE is a configuration management controller chip. It allows the user to store
hardware and software information on a flash memory device and use it to program one or
more devices via JTAG. The ML300 platform makes use of the System ACE chip in
conjunction with standard compact flash cards to enable hardware and software
programming of the FPGA. More information about System ACE is available from
http://www.xilinx.com/systemace. EDK supports the generation of System ACE files to
download bitstreams and software applications onto Virtex-II Pro FPGAs. This is
accomplished by concatenating the JTAG commands to download the bitstream with the
JTAG commands to download the software program. This combined set of JTAG commands
is encoded into a .ace file that can be read from a compact flash card by the System ACE chip.

This download method creates an ACE file that contains the bitstream and software that
can be saved to the Microdrive and inserted into ML300.

1. Within XPS, select Tools→Generate System ACE File.

Note: This command uses the local script file <EDK Project Directory>/genace.tcl (overriding
the EDK default script) to generate the ACE file <EDK Project
Directory>/implementation/system.ace

2. Copy this file to your Microdrive or CompactFlash device.

- If using a newly formatted Microdrive or CompactFlash device, copy it to the
root directory.

- If using the Microdrive that shipped with ML300, it is recommended that the
ACE file be copied into the XILINX\myace directory of the Microdrive.

http://www.xilinx.com/systemace
http://www.xilinx.com

ML300 Reference Design www.xilinx.com 43
UG057 (v1.1) March 18, 2004 1-800-255-7778

Software
R

3. Insert the Microdrive or CompactFlash device into the ML300.

- If the ACE file is in the root directory, it will be downloaded immediately

- If the ACE file is in the XILINX\myace directory of the Microdrive, select
“My OWN Ace File” on the bootloader touch screen menu.

Refer to the System ACE and EDK documentation for further details.

Software
Table 3-1 lists the software demo applications ported to the EDK design. The demo
software is kept apart from the hardware design to make it reusable for other projects. The
user selects the desired software project by selecting the Applications tab in the left-hand
window pane and choosing which application to use.

Most software projects are linked with the built-in linker script. However, in certain cases
specialized linker scripts are used. These linkers scripts are located in at <Reference Design
Install Directory>/sw/standalone/mapfiles.

Mapfile5 is set up to run demo programs directly out of the processor caches.

Note: Software programs that utilize preloaded caches as a section of main memory cannot be
simulated. These programs include hello_cache and xrom which can only be run in real hardware.

Table 3-1: Software Applications

Name Description Design Files

bootload Displays graphical menu on TFT and loads
appropriate ACE file based on user input on touch
screen

sw/standalone/bootload, system.xmp

dispbmp Displays a user-selectable bitmap image on the
TFT

sw/standalone/dispbmp, system.xmp

hello Using C's stdio library, prints "Hello world!" and
echoes characters entered via standard input to
standard output

sw/standalone/hello, system.xmp

hello_cache Runs entirely out of caches, prints brief
explanation of program and outputs characters
entered using standard input to standard output

sw/standalone/hello_cache, system.xmp,
sw/standalone/mapfiles/mapfile5

hello_gpio Prints "Hello world!" to the GPIO data register,
causing LEDs to blink

sw/standalone/hello_gpio, system.xmp

hello_pit Prints "PIT" on TFT when PIT interrupt occurs and
outputs characters entered via standard input to
standard output until ESC key is pressed.

sw/standalone/hello_pit, system.xmp

hello_tft Prints seven lines of ASCII characters (0x20 to
0x80) in seven color (foreground, background)
combinations on the TFT

sw/standalone/hello_tft, system.xmp

hello_uart Using the EDK UART driver, prints "Hello world!"
on the UART and outputs characters entered via
standard input to standard output

sw/standalone/hello_uart, system.xmp

iic_tft_brightness Adjusts TFT screen brightness based on user input
('+' and '-' keys on standard input device). Value
ranges from 0-255 (0 does not mean a completely
blank TFT)

sw/standalone/iic_tft_brightness,
system.xmp

http://www.xilinx.com

44 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 3: EDK Tutorial and Demonstration
R

linux Generates BSP for Linux kernel sw/standalone/linux, system_linux.xmp

ml300_set_eeprom Stores user-specified MAC address into the IIC-
EEPROM

sw/standalone/ml300_set_eeprom,
system.xmp

ps2_scancodes_int Interrupt-driven, reads keystrokes on a keyboard
attached to PS/2 port 1 and displays
corresponding PS/2 scancodes on standard
output

sw/standalone/ps2_scancodes_int,
system.xmp

ps2_scancodes_polled Polled, reads keystrokes on a keyboard attached to
PS/2 port 1 and displays corresponding PS/2
scancodes on standard output

sw/standalone/ps2_scancodes_polled,
system.xmp

scalechar Displays seven variations of "The quick brown fox
jumps over the lazy dog 1234567890" in different
sizes on the TFT

sw/standalone/scalechar, system.xmp

scan_pci Initializes OPB PCI bridge and scans devices on
PCI bus

sw/standalone/scan_pci, system.xmp

sysace_sector_ops_polled Reads and writes data to a CompactFlash card or
MicroDrive in the System ACE CF card slot

sw/standalone/sysace_sector_ops_polled,
system.xmp

test_ac97 Records a buffer of sound from either the Line-In
or Mic-In ports of the ML300 to the AC97
controller and plays it back through the Line-Out
port using the AC97.

sw/standalone/test_ac97, system.xmp

test_spi Sets up SPI, clears memory, writes and reads back
sequence of bytes from 0x0 to 0xff eight times
(addresses 0 to 2047)

sw/standalone/test_spi, system.xmp

touchcalibrate Calculates display constants for the touch screen
based on user input

sw/standalone/touchcalibrate,
system.xmp

touchscreen_int Interrupt-driven, detects touches to the touch
screen and polls the raw coordinates and pressure
variables before printing them to standard output

sw/standalone/touchscreen_int,
system.xmp

touchscreen_polled Polled, detects touches to the touch screen, prints
raw coordinates and pressure variable to standard
output

sw/standalone/touchscreen_polled,
system.xmp

v2pdraw Drawing program - polled (works better) and
interrupt-driven versions

sw/standalone/v2pdraw, system.xmp

v2ptictactoe Tic Tac Toe game sw/standalone/v2ptictactoe, system.xmp

xrom Tests memory on BRAM, DDR SRAM, LEDs, IIC sw/standalone/xrom, system.xmp

xrom_ml300 Tests TFT, PS/2, touch screen + XROM tests sw/standalone/xrom_ml300, system.xmp

Table 3-1: Software Applications (Continued)

Name Description Design Files

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 45
UG057 (v1.1) March 18, 2004 1-800-255-7778

Building the Software Demo Applications
R

Building the Software Demo Applications
1. Start XPS and load system.xmp.

2. Click the Applications tab on the left-hand pane, then scroll down and look for Project:
ppc405_0_hello_gpio.

3. Right-click on Project: ppc405_0_hello_gpio and select Make Project Active. Make
sure all other applications are inactive.

4. Implement the design using the steps outlined in “Instructions for Building /
Implementing Design.”

5. Select Tools→Build All User Applications.

The resulting ELF file is located in ppc405_0/code/hello_gpio.elf.

Building the Linux BSP
The EDK design comes with MLD/TCL technology to generate a Linux BSP for ML300.
The MLD and TCL files are located in sw_services. To build a BSP for the Linux kernel
proceed as follows:

1. Start XPS in command line mode and load the Linux XMP:

$ xps -nw system_linux.xmp

2. Generate the Linux BSP from within XPS:

XPS% run libs

The resulting Linux BSP is located in ppc405_0/libsrc/linux_v1_00_a/linux. Copy the
whole sub-tree into the Linux kernel before configuration and compilation. The Linux
kernel and the tools to build the Linux kernel are available from MontaVista
(http://www.mvista.com).

http://www.mvista.com
http://www.xilinx.com

46 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 3: EDK Tutorial and Demonstration
R

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 47
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 4

Introduction to Hardware Reference IP

Introduction
The ML300 Embedded PPC405 Reference System contains additional hardware IP beyond
what may be shipped with the EDK tool suite. This hardware IP supports some of the
features present on the ML300 board. The IP and its source code is provided as a reference
example to illustrate how hardware can be designed to interface with the Processor Local
Bus (PLB), On-chip Peripheral Bus (OPB), and Device Control Register (DCR) bus. Each of
these is documented in greater detail in the chapters that follow. Generally, the interface
and function of the IP is described, along with sufficient register information for customers
to use the devices. The reference IP source code is located within the pcores directory of the
ML300 Reference System's EDK project directory.

In addition to describing the individual hardware IPs, this volume also includes a
specification of the IP InterFace, or IPIF modules. These modules are designed to greatly
accelerate the process of hooking up pre-existent IP, or creating new IP in a system. The
specification defines a CoreConnect compliant interface on one side, and a simple interface
for hooking up existent IP on the other side. Since this is a building block piece of IP, it is
available for use in any customer design.

The hardware IP uses the IBM CoreConnect bus standards as their means of
communication between the PowerPC and other devices. These standards are
documented in the IBM CoreConnect release. Please see the Further Reading section for
more information on where to find the relevant documents.

Further information on each IP, and on the IPIF can be found in the following chapters of
this volume. If you have suggestions for improvement, or have questions, please contact
the relevant support contact listed in the letter that came with your ML300.

Hardware Reference IP Source Format and Size
The hardware reference IP available with the ML300 Embedded PPC405 Reference System
originates in one language as either Verilog or VHDL source code. IP delivered in Verilog
or VHDL source format is directly viewable and editable by the user as a text file. The EDK
tools handle the process of building systems consisting of a mixture of IP written in
different languages. For example, the PLB TFT LCD Controller is available only in Verilog
source code so the EDK tools would need to convert into a blackbox netlist for use in a top
level VHDL based design.

The table also includes information about the source code format and resource utilization
for these cores. Many of the IP blocks are parameterizeable so their size may decrease
depending on how they are configured. These area numbers represent a full
implementation of each IP synthesized with the Xilinx tool XST. It is also important to note
that as IP is connected together in a system, there are often cross boundary logic

http://www.xilinx.com

48 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 4: Introduction to Hardware Reference IP
R

optimizations and resource sharing that will further reduce the logic count of each IP. Slice
utilization is only an estimate since the packing of lookup tables (LUTs) and flip-flops (FFs)
into slices depends on the overall system implementation.

Further Reading
Xilinx provides a wealth of valuable information to assist you in your design efforts. Some
of the relevant documentation is listed below with more information available through the
Xilinx Support website at http://support.xilinx.com. To obtain the most recent revision of
documentation related to the ML300, see http://www.xilinx.com/ml300.

Resources for EDK Users (Including New Users)
EDK Main Web Page

http://www.xilinx.com/ise/embedded/edk.htm

Getting Started with the EDK

http://www.xilinx.com/ise/embedded/edk_getstarted.pdf

Embedded System Tools Guide

http://www.xilinx.com/ise/embedded/est_guide.pdf

EDK Tutorials and Design Examples

http://www.xilinx.com/ise/embedded/edk_examples.htm

Embedded Processor Discussion Forum

http://toolbox.xilinx.com/cgi-bin/forum?14@@/Embedded%20Processors

Documentation Provided by Xilinx
Virtex-II Pro Advance Product Specification (Data Sheet)

http://www.xilinx.com/bvdocs/publications/ds083.pdf

Table 4-1: Developer’s Kit Hardware IP and Logic Utilization

Source Code
Format

Logic Utilization

Name Verilog VHDL Slice FFs LUTs
Slices
(Est)

BRAMs

OPB AC97 Sound Controller X 177 219 129 0

OPB Parallel Port Controller X 72 21 42 0

OPB PS/2 Controller X 264 412 225 0

OPB to PCI Bridge Lite
(Includes PCI Core)

X 1133 836 917 0

OPB to PLB Bridge-In Module
Lite

X 221 84 132 0

OPB Touch Screen Controller X 93 105 63 0

PLB TFT LCD Controller X 260 226 163 1

http://support.xilinx.com
http://www.xilinx.com/ml300
http://www.xilinx.com/ise/embedded/edk.htm
http://www.xilinx.com/ise/embedded/edk_getstarted.pdf
http://www.xilinx.com/ise/embedded/est_guide.pdf
http://www.xilinx.com/ise/embedded/edk_examples.htm
http://toolbox.xilinx.com/cgi-bin/forum?14@@/Embedded%20Processors
http://www.xilinx.com/bvdocs/publications/ds083.pdf
http://www.xilinx.com

ML300 Reference Design www.xilinx.com 49
UG057 (v1.1) March 18, 2004 1-800-255-7778

Further Reading
R

Virtex-II Pro Platform FPGA User Guide

http://www.xilinx.com/bvdocs/userguides/ug012.pdf

RocketIO Transceiver User Guide

http://www.xilinx.com/publications/products/v2pro/ug_pdf/ug024.pdf

IBM CoreConnect Documentation
The Embedded Development Kit integrates with the IBM CoreConnect Toolkit. This
toolkit is not included with the EDK, but is required if bus functional simulation is desired.
The toolkit provides a number of features which enhance design productivity and allow
you to get the most from the EDK. To obtain the toolkit, you must be a licensee of the IBM
CoreConnect Bus Architecture. Licensing CoreConnect provides access to a wealth of
documentation, Bus Functional Models, Hardware IP, and the toolkit.

Xilinx provides a Web-based licensing mechanism that allows you to obtain the
CoreConnect toolkit from our website. To license CoreConnect, use an Internet browser to
access http://www.xilinx.com/ipcenter/processor_central/register_coreconnect.htm.
Once your request has been approved (typically within 24 hours), you will receive an
e-mail granting access to a protected website. You may then download the toolkit. If you
prefer, you can also license CoreConnect directly from IBM.

If you would like further information on CoreConnect Bus Architecture, please see IBM's
CoreConnect website at http://www.ibm.com/chips/products/coreconnect.

Once you have licensed the CoreConnect toolkit, and installed it with the Developer's Kit,
the following documents will be available to you in the following locations:

IBM CoreConnect Bus Architecture Specifications

IBM CoreConnect Processor Local Bus (PLB) Architecture Specification
see $CORECONNECT/published/corecon/64bitPlbBus.pdf

IBM CoreConnect On-chip Peripheral Bus (OPB) Architecture Specification
see $CORECONNECT/published/corecon/OpbBus.pdf

IBM CoreConnect Device Control Register (DCR) Bus Architecture Specification
see $CORECONNECT/published/corecon/DcrBus.pdf

IBM CoreConnect Toolkit Documentation

PLB Bus Functional Model Toolkit - User's Manual
see $CORECONNECT/published/corecon/PlbToolkit.pdf

OPB Bus Functional Model Toolkit - User's Manual
see $CORECONNECT/published/corecon/OpbToolkit.pdf

DCR Bus Functional Model Toolkit - User's Manual
see $CORECONNECT/published/corecon/DcrToolkit.pdf

CoreConnect Test Generator - User's Manual
see $CORECONNECT/published/corecon/ctg.pdf

Note: $CORECONNECT is an environment variable that is created when installing the
Developer's Kit or CoreConnect Toolkit.

http://www.xilinx.com/bvdocs/userguides/ug012.pdf
http://www.xilinx.com/publications/products/v2pro/ug_pdf/ug024.pdf
http://www.xilinx.com
http://www.xilinx.com/ipcenter/processor_central/register_coreconnect.htm
http://www.ibm.com/chips/products/coreconnect

50 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 4: Introduction to Hardware Reference IP
R

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 51
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 5

Using IPIF to Build IP

Abstract
Virtex-II Pro™ devices combine PowerPC® CPUs and FPGA fabric into one integrated
circuit. In the past, system development efforts relied on engineers building each
component from scratch. Today, engineers have a wide variety of microprocessor
peripherals in their IP libraries. The Intellectual Property InterFace (IPIF) is designed to
ease the creation of new IP, as well as the integration of existent IP, within a Virtex-II Pro
device. This chapter will illustrate the utility of the IPIF to integrate IP into a system.

Introduction
Intellectual Property InterFace (IPIF) modules simplify the development of
CoreConnect™ devices. The IPIF converts complex system buses, such as the PLB or OPB,
into common interfaces, such as an SRAM protocol or a control register interface. This
makes IPIF modules ideal for quickly developing new bus peripherals, or converting
existing IP to work in a CoreConnect bus-based system. The IPIF modules provide point-
to-point interfaces using simple timing relationships and very light protocols.

The IPIF is designed to be bus-agnostic. This allows the back-end interface for the IP to
remain the same while only the bus interface logic in the IPIF is changed. It therefore
provides an efficient means for supporting different bus standards without change to the
IP device.

IPIF modules also provide support for DMA and interrupt functionality. The IPIF is
designed to support a wide variety of common interfaces (like SRAM, FIFO, and control
register protocols), but may not be the optimal solution in all cases. Where additional
performance or functionality is required, the user can develop a custom OPB or PLB bus
interface.

IPIF modules simplify driver software development since the IPIF framework contains
many common features. These include a consistent means of interrupt handling, DMA,
and organizing control/status registers.

This document demonstrates how quickly and easily a new piece of IP can be developed
using the IPIF. The process and steps for building a new CoreConnect device based on the
SRAM protocol IPIF is described below. For this sample design, a 32-bit General Purpose
I/O (GPIO) device will be created. The GPIO allows a CoreConnect master such as the
CPU to be able to control a set of external pins using a simple memory-mapped interface.

http://www.xilinx.com

52 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 5: Using IPIF to Build IP
R

SRAM Protocol Overview of IPIF
Figure 5-1 diagrams the connections between the IPIF and the user IP for SRAM protocol
interface. The IPIF simplifies the design by providing a PLB or OPB interface and
condensing it down to a small set of easily understood signals.

All interface signals with the IPIF are synchronous to rising clock edges. The IPIF takes the
clock from the OPB or PLB bus interface and passes it to the IP, causing the IP to use the
same global clock as the bus it is connected to. (Future IPIF designs may permit the IP clock
and the bus clock to be independent.) The SRAM interface protocol used by the IPIF can be
described by observing what a write and read transaction looks like.

Figure 5-1: IPIF SRAM Module Interface

UG057_05_010804

IP Slave
Peripheral SRAM

Module

Bus2IP_Clk

Bus2IP_Addr[m:0]

Bus2IP_Data[0:n]

IP2Bus_Data[0:n]

Bus2IP_BE[0:b]

Bus2IP_SRAM_CE

Bus2IP_WrReq

IP2Bus_WrAck

Bus2IP_RdReq

IP2Bus_Retry

IP2Bus_Error

IPIF Slave
SRAM Module

Note: Supports
both with and
without DMA

Bus

Bus2IP_Reset

IP2Bus_ToutSup

IP2Bus_Intr[0:i]

IP2Bus_RdAck

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 53
UG057 (v1.1) March 18, 2004 1-800-255-7778

SRAM Protocol Overview of IPIF
R

Basic Write Transactions
Figure 5-2 shows the timing diagram for a write transaction. A write transaction begins
when the IPIF drives the address (Bus2IP_Addr), byte enables (Bus2IP_BE), and write data
(Bus2IP_Data) to the IP. Note that the signal direction is specified in the signal name:
Bus2IP versus IP2Bus. The IPIF qualifies the write by asserting a single clock cycle High
pulse (Bus2IP_WrReq) at the beginning of the transaction. It then waits for the IP device to
acknowledge completion of the write by sending back a single clock cycle High pulse on
IP2Bus_WrAck. During the entire transaction from Bus2IP_WrReq to IP2Bus_WrAck, the
signal Bus2IP_SRAM_CE is held high as an enveloping signal around the transaction.
After a completed transaction, the IPIF may issue a new transaction. Note that burst write
transactions on the bus are converted into a series of single data transfers to the IP, which
all look alike.

Figure 5-2: IPIF Simple SRAM Write Cycle

UG057_06_010804

Bus2IP_Addr

Bus2IP_BE

Bus2IP_SRAM_CE

Bus2IP_WrReq
Later Ack due
to IP response

Bus2IP_Data

Bus2IP_Clk

IP2Bus_WrAck

Valid Valid

Valid Valid

Valid Valid

http://www.xilinx.com

54 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 5: Using IPIF to Build IP
R

Basic Read Transactions
Figure 5-3 diagrams a read transaction, which looks very similar to a write transaction. A
read transaction begins when the IPIF drives the address (Bus2IP_Addr) and byte enables
(Bus2IP_BE) to the IP. It qualifies the read by asserting a single clock cycle high pulse
(Bus2IP_RdReq) at the beginning of the transaction. It then waits for the IP device to
acknowledge completion of the read by sending back a single clock cycle High
acknowledge pulse on IP2Bus_RdAck. During the entire transaction from Bus2IP_RdReq
to IP2Bus_RdAck, the signal Bus2IP_SRAM_CE is held high as an enveloping signal
around the transaction. After a completed transaction, the IPIF may issue a new
transaction. Note that burst read transactions on the bus are converted into a series of
single data transfers to the IP, which all look alike.

IPIF Status and Control Signals
Extra status and control signals are also present in the SRAM protocol. If the IP2Bus_Retry
signal is asserted instead of IP2Bus_RdAck/IP2Bus_WrAck, the IPIF will assert retry on
the bus side and terminate the transaction. IP2Bus_Error asserted with
IP2Bus_RdAck/IP2Bus_WrAck will cause the IPIF to signal an error on the bus interface.
For slow IP devices, an IP2Bus_ToutSup signal can be asserted to prevent timeouts on the
bus interface. Finally the Bus2IP_Reset passes the bus-side reset to the IP.

Figure 5-3: IPIF Simple SRAM Read Cycle

UG057_07_010804

Bus2IP_Addr

Bus2IP_BE

Bus2IP_SRAM_CE

Bus2IP_RdReq
Later Ack due
to IP response

IP2Bus_Data

Bus2IP_Clk

IP2Bus_RdAck

Valid Valid

Valid Valid

Valid Valid

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 55
UG057 (v1.1) March 18, 2004 1-800-255-7778

Using IPIF to Create a GPIO Peripheral from Scratch
R

Using IPIF to Create a GPIO Peripheral from Scratch
A General Purpose Input/Output (GPIO) peripheral can be used to show how the IPIF
simplifies new peripheral creation. The GPIO module has three 32-bit registers: one
register to control the TBUF for each I/O pin, one register to write the I/O pins, and one
register to read the I/O pins. The GPIO peripheral uses a very small amount of additional
“control logic” when used with a 32-Bit IPIF Slave SRAM module.

Figure 5-4 shows a conceptual view of the logic necessary to build the GPIO module using
the IPIF Slave SRAM module. The IP2Bus_RdAck / IP2Bus_WrAck signals are directly
connected to the corresponding Bus2IP_RdReq / Bus2IP_WrReq signals, since it only
takes one clock cycle to read or write the GPIO registers. If more “access time” is required
by the registers, a simple SRL16-based shift register between the Req/Ack signals could be
used to set the number of cycles the register will respond in. An example use of this
function is to gain timing margin by treating the register access as a multicycle path. This
simple enhancement to the IPIF can have very positive effects in meeting the timing
requirements typical of complex microprocessor-based systems. Note too that register
response time can be tuned differently between the read and the write.

http://www.xilinx.com

56 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 5: Using IPIF to Build IP
R

To drive an external I/O pin, the output enable for that pin must be asserted, allowing the
pin to be driven high or low based upon the contents of the write register. If the output
enable for a given pin is deasserted, the pin’s driver is put in a high impedance state
allowing an external device to drive the pin. The CPU can sense the current value of any
pin (regardless of its direction) by reading the read register. Driving the direction of the
I/O pin is controlled by the contents of the three-state register.

The GPIO registers support byte enables during writes to the 32-bit registers. Note that a
set of simple AND gates is all that is required to generate a Clock Enable to the registers.
Four 3-input AND gates are used to drive the 4 bytes of the three-state control register, and
four more 3-input AND gates are used to drive the 4 bytes of output-pin data.

The IPIF uses a set of user-specified parameters that allow common things such as the base
address of the IP to be established. These parameters are specified before the system is
implemented in order to minimize the logic area and maximize the performance of the

Figure 5-4: IPIF SRAM Module to GPIO logic Interface

�

�

�

�

��

�

�

�

��

�

�

�

��

�

�

�

��

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

IPIF
Slave

Module

OPB

[8:15]

[0:7]

[0:7]

[8:15]

[16:23]

[24:31]

[0:7]

[8:15]

[16:23]

[24:31]

[24:31]

[16:23]

[8:15]

[0:7]

[24:31]

[16:23]

WrReq
BE[0]

BE[1]

BE[2]
Addr[29]

Addr[29]

Addr[29]

Addr[29]

Addr[29]

Addr[29]

Addr[29]

Addr[29]

[0:31]

[0:31] Addr[29]

BE[3]

BE[0]

BE[1]

BE[2]

BE[3]

WrReq

WrReq

WrReq

WrReq

WrReq

WrReq

WrReq

1

0

Bus2IP_Reset

Bus2IP_RdReq

Bus2IP_WrReq

Bus2IP_BE[0:3]

Bus2IP_Data[0:31]

Bus2IP_Addr[0:31]

Bus2IP_Clk

Bus2IP_SRAM_CE

IP2Bus_ToutSup

IP2Bus_Error

IP2Bus_Retry

IP2Bus_RdAck

IP2Bus_WrAck

IP2Bus_Data[0:31]

Bus2IP_Reset

UG057_08_010804

T

O

I

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 57
UG057 (v1.1) March 18, 2004 1-800-255-7778

Using IPIF to Connect a Pre-existent Peripheral to the Bus
R

system. Note that in the GPIO example, additional decoding is used externally to specify
two different memory locations. One location is used for reading or writing to the I/O pins
(read register, and write register share the same address), and one location is used for
reading and writing to the T of the I/O pin (three-state register).

Using IPIF to Connect a Pre-existent Peripheral to the Bus
Often, some legacy IP will need to be brought into a modern system. Many of these legacy
IPs use some form of 8-bit microprocessor bus. Typically, this might consist of a few
address lines, an 8 bit data bus, a read and write signal, a chip enable, a clock, a reset, and
perhaps an interrupt pin. In most instances, this kind of IP can be almost directly
connected to the IPIF SRAM module. This particular IPIF module was actually designed to
serve this very purpose.

To connect a legacy IP, one would simply connect the address, data, chip enable, clock,
reset, and interrupt pins to their corresponding versions in the IPIF SRAM module. Some
small amount of logic might be needed to generate a properly timed read or write signal.
The IPIF SRAM module provides separate Req/Ack pairs for read and write, because
many older peripherals require different timing for reads and writes. For read or write, the
logic between the IP and the IPIF must accomplish two things:

• Provide the proper response time to the IPIF so the peripheral’s register can be read or
written

• Provide the proper relationship of the read or write signal on the IP relative to the
address and data

Consider the following example: The IP might expect its write signal to be valid one clock
after address and data is valid, and be held for four clock cycles to properly write the data.
Following write going invalid, the address and data must be held for one additional cycle.
To accommodate this kind of pattern, a six-stage shift register (SR) can be implemented.
The D input to the SR is tied to the Bus2IP_WrReq pin, and the Q output of the SR is tied
to the IP2Bus_WrAck pin of the IPIF. This provides the proper timing for the length of time
the cycle must be held on the bus. By using the first, second, third, and fourth taps of the
SR, and feeding them into an OR gate, a write strobe can be generated for the IP. If this
write strobe must be glitch-free, taps 0, 1, 2, and 3 could be used, OR’d and fed into a
synchronizing register. While on the surface this may appear wasteful of logic, Xilinx
FPGAs are abundantly equipped with flip-flops.

Conclusion
Using the IPIF with a small amount of logic makes it very easy to create CoreConnect
devices with little knowledge of the buses used. For complex buses such as PLB, this saves
the designer time and helps to ensure IP functions correctly, since the IPIF provides a pre-
verified design to connect to. The GPIO design is just one example of how IPIF can be used.
More examples of IPIF designs are provided within many of the other IP devices in the
reference systems. It is recommended that the designer who wishes to learn about IPIF
studies the sample source code for some of these IPIF-based designs in context with
simulation to gain experience with IPIF.

The IPIF used in the ML300 Embedded PPC405 Reference System currently only supports
the SRAM module. Additional IPIF modules are available through EDK that support
many parameterizeable features. Refer to the IPIF chapter of the Processor IP User Guide
located in <EDK Install Directory>/doc/proc_ip_ref_guide.pdf.

http://www.xilinx.com

58 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 5: Using IPIF to Build IP
R

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 59
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 6

IPIF Specification

Note: This document is provided as reference since some Hardware Reference IP is built using
IPIF modules conforming to this version of the specification. Please refer to the IPIF chapter of the
Processor IP User Guide (located in <EDK Install Directory>/doc/proc_ip_ref_guide.pdf) for the latest
information and documentation on IPIF cores. New designs should use these IPIF modules available
through EDK.

Overview
The Intellectual Property InterFace (IPIF) backplane is a framework that provides a
common set of interfaces for connecting intellectual property to on-chip buses. These
common interfaces are built in a modular fashion, allowing standardized connections
between IP and the on-chip bus. Additionally, these modules provide an infrastructure to
assist in developing new IP, as illustrated in the examples of on-chip bus interface
techniques.

Each interface is described as a module that can be independently “plugged in” to the
backplane. This modular approach allows the customer to pay only for the resources that
are required to implement the desired functions.

Although this specification describes the overall use of interface modules in a system, but
it does not address how the IPIF backplane integrates with the rest of the system. This
information is addressed in the IPIF Architectural Specification, not yet released.

The following documents provide additional useful information:

• IPIF Architectural Specification

• Virtex-II Pro™ Data Sheet

• IBM CoreConnect™ PLB Architectural Specification

Xilinx IPIF modules, available to internal IP developers, third party IP developers, and
customers, are designed around a common modular framework that permits mixing and
matching of various modules. The interfaces provided in this framework are based on
commonly used interfaces for existent IP, with a mind to future IP development as well.
These interface modules represent an abstraction layer to assist in developing fully
customized peripherals for an on-chip bus. Figure 6-1 illustrates the scope of the interfaces
addressed in this specification.

Figure 6-1: Scope of Interfaces in This Specification

UG057_09_010804

IP Module IPIF Module

Bus

IPIF Interfaces

http://www.xilinx.com

60 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

The IPIF Backplane provides two basic interface classes: IPIF master and IPIF slave. This
specification defines one IPIF master, and four IPIF slave modules. The various modules
allow system integrators to minimize the FPGA resources required to implement a
particular IP, easing difficulty in achieving performance targets and reducing cost.

IPIF Master Module Overview
The IPIF master module is a single interface that looks very much like a simple SRAM
interface. The master IP must provide address, data, and a read or write command in order
to initiate a transaction onto the bus. The IPIF master module provides 8, 16, or 32-bit
interfaces to the master IP as required by the system implemented.

IPIF Slave Modules Overview
IPIF slave modules can be built with any combination of four different interfaces:

• SRAM

• Control Register

• FIFO

• DMA Handshake

Each interface is designed to address differing needs, but can be combined to meet
multiple needs. For example, a customer with a typical microprocessor peripheral IP, such
as a 16550 UART, can use the IPIF Slave SRAM module to easily connect a peripheral.
Similarly, if a customer requires only a few control registers, the IPIF Slave Control
Register module can be used to connect the control registers to the bus. The IPIF Slave
FIFO module is designed to connect to communications devices with FIFO interfaces. The
IPIF Slave DMA Handshake module provides the classic DMA_Req/DMA_Ack
handshake to enable devices that require such handshakes for proper operation.

Note: The IPIF Slave DMA Handshake module differs from the optional DMA engine described in
the “DMA Engine” section.

For certain existent microprocessor-style peripherals, mixing IPIF modules may be
advantageous. The IPIF master module and IPIF slave modules can be instantiated as
mix-and-match components. For example, a simple IP might only require an IPIF Slave
SRAM module, whereas a more complicated IP might require IPIF Master, Slave SRAM,
Slave Control Register, and Slave FIFO modules. All modules share logic on a common
backplane, thereby minimizing FPGA resource utilization for the desired functions.

Master and slave IPIF modules have user-settable parameters that control their
capabilities. Typical parameters include which IPIF modules to build, what addresses they
reside at, how wide their IP data path is, etc. Additionally, the IPIF master and IPIF slave
modules can be built with a Direct Memory Access (DMA) controller of varying
capabilities, referred to in this specification as the DMA engine. The DMA engine can be
instantiated into any of the IPIF modules to provide basic DMA service, Scatter Gather
(SG) via linked list and/or linear list, as well as basic packet processing functions. The
DMA engine and other capabilities of the IPIF are set at the time of instantiation, and are
visible to software for device discovery and management. (For more details, see the
DMA/SG section of the IPIF Architectural Specification, not yet released.)

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 61
UG057 (v1.1) March 18, 2004 1-800-255-7778

Signal Conventions
R

The IPIF modules are really subsets of a general model, demonstrated in Figure 6-2. The
general IPIF model was developed such that each IPIF module could be instantiated as
required by the IP system integrator. Note that the general model of the IPIF shows each of
the module types: IPIF Slave DMA Handshake, IPIF Slave Control Register, IPIF Slave
SRAM, IPIF Slave FIFO, and IPIF Master. Additionally, the general model of the IPIF
shows the optional DMA engine. This general model offers the IP integrator broad design
functionality.

Signal Conventions
The signal names used throughout this specification use a specific format to identify the
direction and function of each signal. This signal name format is illustrated in Figure 6-3.

In addition, three source and destination signals have specific meaning:

• Bus - Signals that connect to the IPIF

• IP - Signals that connect to the IP

• FIFO - Signals that connect to a FIFO in the IPIF, when present

Figure 6-2: General Model of the IPIF Backplane

UG057_10_010804

(Uses one or
more interfaces

as required)

Customer
Slave and/or Master IP IPIF Backplane

D
M

A
 E

ng
in

e

OPB

Master Interface

Slave SRAM
Interface

Slave FIFO Interface

Slave Control
Register Interface

Slave DMA
Handshake Interface

Figure 6-3: Signal Name Format Example

UG057_11_010804

Bus2IP_Clk

Signal Function
Signal Destination
Signal Source

http://www.xilinx.com

62 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Bus Numbering and Bit Ordering
The IBM signal name convention is used for address, data, and control buses throughout
this specification. IBM numbers the bits from left to right as 0 to n. For example, a 32-bit
data bus is named IP2Bus_Data[0:31].

The bit order for buses always has the most significant bit (MSB) on the left, and the least
significant bit (LSB) on the right. Thus, IP2Bus_Data[0:31] is identified as a 32-bit bus,
whose MSB is bit 0, and whose LSB is bit 31. This is commonly known as “big endian”
format.

The IPIF specification uses big endian bit ordering for all of its examples. However, it is
possible to use parameters to alter the endianness of the IPIF for proper interaction with
Motorola or Intel style IP. (These parameters will be covered in a new section, TBD.)

Parameter Indexing Versus Parameter Numbering
The function of the IPIF can be changed by setting various parameters. Please see “IPIF
Parameterization” for more details. There are four main classifications of parameters that
are used within this specification: number, index, boolean, and mask.

Consider a parameter that adjusts the size of the data bus. In this case, the parameter is best
defined as a number. For example, the IPIF data bus width can be set to 8, 16, or 32,
depending on how the parameter IP_DATA_BUS_WIDTH is set.

However, in the bits of the buses whose width is controlled by IP_DATA_BUS_WIDTH,
the indices of the bus start at zero and end at IP_DATA_BUS_WIDTH - 1. For example,
IP2Bus_Data[0:n], where n is the index parameter based on the IP_DATA_BUS_WIDTH
number parameter minus one.

The result of this situation is that parameters in the IPIF are defined as either number
parameters or index parameters, in order to clearly identify the function of the actual
parameter value.

Boolean parameters are those that have binary states; 1 = on and 0 = off. For example,
IP_HAS_OWN_INTC.

Parameters can also be mask values. A mask is a bit-wise operation that is used by the IPIF
to apply a specific enable operation, typically against another parameter. For example, the
IPIF Slave SRAM module defines an array of parameters called IP_SRAMb_BASE_ADDR.
These parameters specify the start address of a particular region of memory which the IPIF
will decode. In order to allow for a set of addresses to reside within the space began at
IP_SRAMb_BASE_ADDR, a mask value parameter is used to set which specific bits of the
address are decoded and which are ignored. This is set by the
IP_SRAMb_BASE_ADDR_BIT_ENBL mask value.

IPIF Modules in an Example OPB System
Figure 6-4, page 63 is a diagram of an example system utilizing an IBM CoreConnect™ On-
Chip Peripheral Bus (OPB). It illustrates a variety of IPIF modules connected to a variety of
IP elements. This example system is intended only to illustrate general abilities, and
should not be construed as limitations upon the IPIF.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 63
UG057 (v1.1) March 18, 2004 1-800-255-7778

Signal Conventions
R

The IPIF easily connects to new and existing IP. The example in Figure 6-4 illustrates
possible scenarios.

A: Slave SRAM to CROM

Section A in Figure 6-4 illustrates an IPIF Slave SRAM module used to connect to a
configuration ROM (CROM) made from a Xilinx block RAM. The CROM can be used to
store information about the entire system, such as the system version number, IP
capabilities, and IP version numbers. (More information on CROM structures appears in
the IPIF Architectural Specification, not yet released.)

B: Slave SRAM to UART

Section B in Figure 6-4 shows another IPIF Slave SRAM module that interconnects with an
existent IP, such as the 16550 UART shown here. This example uses the optional DMA

Figure 6-4: Example System Using IPIF to Connect to OPB

Bridge

OPB Master

PLB Slave

Customer
Slave and/or Master IP

IPIF
Backplane

UG057_12_010804

OPB

OPB ARB

PLB

CROMA

Req

Ack8255

16550 UART

Bridge

OPB Slave

PLB Master

IPIF Slv SRAM I/F

IPIF Slv SRAM I/F

SRAM I/F

SRAM I/F
OPB Master

OPB Slave

OPB Slave

Existent IP

IPIF Slv Ctrl Reg

Ctrl Reg I/F

Ctrl Reg I/F

OPB Master

OPB Slave
New IP

FIFO

DMA Engine

SRAM I/F

DMA Handshake

DMA Engine

DMA Engine

Ethernet MAC

IPIF Slv FIFO I/F

OPB Master

OPB Slave
Existent IP

IPIF Slv DMA Hndsk I/F

OPB Slave

Existent IP

IPIF Slv Ctrl Reg I/F

OPB Slave

New IP

B

C

D

G

E

F

http://www.xilinx.com

64 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

engine that is instantiated to relieve the CPU burden in moving data. (More information on
DMA engine capabilities appears in the IPIF Architectural Specification, not yet released.)

C: Slave Control Register to New IP

Section C in Figure 6-4 shows a customized piece of new IP that utilizes the IPIF Slave
Control Register module in order to reduce complexity in the IP. By using this module, the
new IP can directly instantiate its registers that are connected to the IPIF Slave Control
Register module. The IPIF backplane operates independently of the registers in the new IP,
and does not rely on whether the registers are read/write, read only, or write only. The
IPIF Slave Control Register module allows other OPB masters to have memory mapped
access to the registers in the IP.

D: Slave FIFO and DMA Engine to Ethernet MAC

Section D in Figure 6-4 illustrates the IPIF Slave FIFO module and optional DMA engine
interfaced to an Ethernet MAC, directly providing the bulk of logic to allow quick design
of an IP system. Some communications IP might also contain registers that are memory
mapped, which may require additional IPIF Slave Control Register or IPIF Slave SRAM
models, depending upon the type of interface provided by the IP.

E: Slave DMA Handshake to 8255

Section E in Figure 6-4 shows another example of an old legacy CPU peripheral, in this
case an 8255 Parallel I/O IP. Legacy devices often contain fairly simple CPU interfaces and
DMA handshaking provisions. These kinds of IP can easily connect to the IPIF backplane.
The IPIF Slave SRAM module is used for the CPU interface to the IP and the IPIF Slave
DMA Handshake module is used for the DMA handshake of the IP. The IPIF DMA
Handshake module allows the IPIF backplane to store up a series of accesses before
interrupting the processor that is requesting service.

While it is possible to implement the optional DMA engine in this example, it might be
FPGA-area inefficient to use it for a slow device that does not have high bus utilization
(e.g. small data rates). The DMA Handshake module allows support of the DMA function
of the IP, but does not inherently require the use of the optional DMA Engine to effect the
proper behavior. The point of this IPIF example is to illustrate the power to choose various
options while considering other variables in the system, such as performance, area, and
speed.

F: Master with Slave Control Register and DMA Engine to New IP

Section F in Figure 6-4 shows a typical instance of a master/slave IPIF. In general, most
master IP devices also require slave interfaces to control the master interface. This example
assumes that the a new piece of IP has been created that requires both master and slave
access. Additionally, the optional DMA engine is used in this example to offload the CPU
from the data transfers. The IPIF Slave Control Register module is used to communicate to
the slave side of the IPIF backplane. This offers quick and easy memory mapped access to
the internal registers of the IP, including the DMA engine registers.

G: Bus-to-Bus Bridges

Section G in Figure 6-4 illustrates a pair of bus-to-bus bridges. In this case, between
Processor Local Bus (PLB) and the OPB. One bridge provides master access to the OPB,
while the other bridge provides slave access.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 65
UG057 (v1.1) March 18, 2004 1-800-255-7778

Design Considerations
R

Design Considerations
IPIF modules can be implemented with many different options. The available options and
related issues are addressed in this section.

DMA Engine
The optional capabilities of the DMA engine are illustrated throughout Figure 6-4. For
example, the DMA engine in the IPIF Slave SRAM module connected to the 16550 UART
only requires very basic DMA movement operations. In contrast, the Ethernet MAC
requires packet-aware DMA for highest bandwidth transmission and reception. While a
single DMAC could be instantiated to handle both, it can complicate how embedded
software handles the device. Xilinx’s recommended system uses distributed DMA engines,
one per device, to ensure a clean device driver environment. Additionally, distributed
DMA will enhance performance of the overall system since many independent agents can
be simultaneously active. Having optional DMA engine capabilities means that only the
logic required by the IP is paid for in the FPGA fabric. (More information on DMA engine
capabilities will appear in the IPIF Architectural Specification, not yet released.)

Interrupts
In addition to the DMA engine capabilities, the IPIF backplane can handle various aspects
of interrupts for the system, as shown in Figure 6-5. Existent IPs typically have their own
interrupt pins and sets of registers internal to the IP for status and control of interrupts.
However, this infrastructure must be designed for new IPs. The IPIF model allows for all
of this and more. The IPIF model generally allows from 0 to 8 independent interrupts. Two
basic modes can be optionally enabled: existent IP mode, where a single INT pin is
provided from the IP to the IPIF; and new IP mode where up to 8 INT pins are provided
and the register infrastructure is built in the IPIF. The parameters to the IPIF modules
permit the FPGA resources to be optimized to the minimum required by the IP. (More
information on interrupts appears in the IPIF Architectural Specification, not yet released.)

http://www.xilinx.com

66 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Bus Arbiter and Bridges
Every on-chip bus that contains multiple masters requires some form of arbitration
control. Section G in Figure 6-4 illustrates an example of the OPB arbiter. Arbiters typically
have a variety of parameters that can be statically or dynamically set to address system
integration issues such as priority control and pipelining. (See the IBM CoreConnect™ PLB
Architectural Specification for additional information on both PLB and OPB arbiters.)

Most embedded computing systems use layers of bus hierarchy to separate the high-speed
devices from the low-speed devices. Typically, the CPU and memory sit on one high
speed, lightly loaded bus, while the other elements reside on a heavily loaded, slower bus.
To communicate between the two, a bridge-in/bridge-out function is used. The bridge out
allows the CPU to act as a master to the slower bus. The bridge in function allows devices
(such as DMA engines) to act as a master on the higher speed bus. Typically, to talk to
system memory. The IPIF example in section G of Figure 6-4 illustrates both bridge-in and
bridge-out functions of a more complex system.

Data Bus Width
The bus side of the IPIF is always 32 bits. Since an IPIF module can be 8, 16, or 32 bits wide,
some unexpected behavior may occur. If a bus master issues a request for a word transfer
(32 bits) across the bus to an IPIF module that implements only a byte-wide IP data width,
the IPIF will sequence through the data as four separate requests to the IP. That is, four
separate request/acknowledge cycles will occur between the IP and IPIF.

Figure 6-5: Example of Three Interrupt Scenarios

UG057_13_010804

INTC

IP IPIF

New IP IPIF

IP IPIF

IPIF_HAS_INTC = 0

IPIF Parameter

IPIF Parameter

IPIF Parameter

IP_HAS_OWN_INTC = 1

IPIF_HAS_INTC = 1
IP_HAS_OWN_INTC = 1

IPIF_HAS_INTC = 1
IP_HAS_OWN_INTC = 0

INTC

INTC

Interrupt
Sources

INTC

IP IPIF

IPIF_HAS_INTC = 0

IPIF Parameter

IP_HAS_OWN_INTC = 0

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 67
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Retry, Error, and Timeout Suppress
All IPIF Slave modules permit the IP to tell the bus to retry, or that an error has occurred.
The IP logic tells the IPIF this by asserting the IP2Bus_Retry or IP2Bus_Error signal, with
or without the appropriate acknowledge signal for the intended cycle. Additionally, the IP
may suppress the normal timeout (16 bus clocks) mechanism for transfers that take longer
on the bus. The use of the IP2Bus_ToutSup signal is not recommended unless absolutely
necessary since it has a detrimental effect on bus bandwidth.

Figure 6-6 shows the relationship of the IP2Bus_ToutSup, IP2Bus_Error, and
IP2Bus_Retry. The IP2Bus_Error signal is used to indicate to the master (which initiated
the transaction) that some unspecified error has occurred.

The IP2Bus_Retry is not a likely requirement in most applications. It is used to signal the
bus master to retry the bus cycle, forcing the bus master off the bus. The master then
rearbitrates for the bus and attempts the cycle again. In general, retry is only used for
deadlock conditions, such as when a bus master attempts to access a bus master/slave
while the bus master/slave is attempting a cycle of its own.

IP2Bus_Retry is sometimes used as a means to hold off further bus access to the IP until
the bus is no longer busy. Typically, a bus cycle initiates an operation that forces the IP to
a busy condition. Further bus cycles could result in inappropriate behavior, therefore the
IP issues IP2Bus_Retry. This use would strain available bus bandwidth, but can be used to
implement a primitive semaphoring mechanism. The IP2Bus_Retry signal would be
issued by the IP while the device is not ready, and the cycle would be acknowledged once
the IP was ready. Again, this is very expensive in bus bandwidth, but the use is not
prohibited.

IPIF Module Specifications

Slave DMA Handshake Module
This section covers the following topics:

• “Example Slave DMA Handshake Application”

• “Generic Slave DMA Handshake Model”

• “Slave DMA Handshake Signal Protocol”

• “Slave DMA Handshake Signal List”

• “Slave DMA Handshake Parameters”

The simplest IPIF slave module is the DMA Handshake module. This module is typically
used in concert with one of the other slave modules to connect existing IP to a bus. It uses
two simple handshake signals, IP2DMA_Req and DMA2IP_Ack, along with two
unidirectional data buses. This permits the IP to request service from the optional DMA
engine, which can be built into an IPIF module. The IPIF Slave DMA Handshake module is
not recommended for new IP designs since its functionality can be handled directly by the
optional DMA engine in other modules.

Figure 6-6: Relationship of Retry, Error, and Timeout Suppress Signals

UG057_07_010804

TBD

http://www.xilinx.com

68 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Example Slave DMA Handshake Application

Figure 6-7 shows an example application of the IPIF Slave DMA Handshake module. This
example shows how the DMA_Req and DMA_Ack pins of an existent IP peripheral can
connect to the IPIF module. The IP block will likely use other IPIF modules too, even
though they are not shown in this example.

Existent IP often utilizes a bidirectional bus instead of dual unidirectional buses. In these
kinds of scenarios, the read and write sides must be separated into unidirectional buses. In
some IP, the 3-state logic is implemented in the I/O where it is easy for it to cut out the
I/Os. However, often the IP utilizes FPGA TBUFs to accomplish the same end. When
TBUFs are used internal to the IP, removing them may be problematic.

The example application in Figure 6-7 assumes the use of TBUFs internal to the IP and,
therefore, must be converted to single unidirectional data lines. The IP provides its data on
the IP_Data bus. IP_Data is split into Bus2IP_Data by using a set of TBUFs to provide
isolation from the Bus2IP_Data bus from the IP_Data bus. The T pins on the TBUFs must
be driven from within the IP using some small, new logic. The IP must tell the
Bus2IP_Data bus when it can write onto the IP_Data bus. This arrangement permits the
Bus2IP_Data bus to be valid for long periods of time before a write cycle, if required. The
IP2Bus_Data is simply connected to the IP_Data bus unless it is required to be otherwise
qualified.

Figure 6-7: Example Slave DMA Handshake Application

Existent IP w/ DMA Handshake IPIF DMA Handshake ModuleCLKDIV

CLK

8

DMA_Req

DMA_Ack

Retry

Error/recovery logic if
required by system,
else set pins to ground

Error

Timeout
Suppress

New
Logic

IP2Bus_Intr[0:i]

IP2Bus_ToutSup

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Data[0:7]

Bus2IP_Data[0:7]

Bus2IP_Clk

IP2Bus_DMA_Req

Bus2IP_DMA_Ack

INT

IP_Data

Bidir Bus

TBUF

UG057_15_010804

Reset Bus2IP_Reset

8

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 69
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

The IP’s DMA_Req signal connects to the IP2Bus_DMA_Req signal and the IP’s
DMA_Ack signal connects to the Bus2IP_DMA_Ack signal on the IPIF Slave DMA
Handshake module. Since this type of interface does not imply a direction of data flow, it
is important that the direction is agreed to prior to any requests for service. Generally, this
is done by the CPU setting specific registers inside the IP to indicate a read or write, and
then doing the same in the IPIF module.

Since many existent IPs will not operate at the high clock frequency of a bus, it might be
necessary to provide a clock divider and global clock buffer to provide a frequency that the
IP can handle. If this occurs, the IP2Bus_DMA_Req and Bus2IP_DMA_Ack require
additional circuitry to cross the clock domains. Simple synchronous set/reset flip-flops can
be used to guarantee correct operation.

The 3-state control on the TBUF which drives Bus2IP_Data onto the IP_Data bus usually
requires some small modifications to the existent IP logic. Typically, a write signal is
available inside the IP, and can be used to build a read/write qualifier. Additionally, the
DMA_Req and DMA_Ack signals can be fed into a set/reset synchronous flip-flop to
build an enveloping signal. The enveloping signal, when AND’ed with the write signal of
the IP, can then be used to control the 3-state control of the Bus2IP_Data TBUF.

Generic Slave DMA Handshake Model

Figure 6-8 illustrates a generic instance of the IPIF Slave DMA Handshake module. The
data bus widths and number of interrupts for the IP are generically specified.

The IPIF Slave DMA Handshake module outputs a clock, Bus2IP_Clk, that is sourced by a
BUFG elsewhere in the design. The required BUFG reduces clock skew on all the
synchronous elements clocked by Bus2IP_Clk. This clock can be asynchronous from the
bus, but requires extra synchronization in the IPIF module. This synchronization is
provided for in the IPIF module.

Figure 6-8: Generic Instance of the IPIF Slave DMA Handshake Module

UG057_16_010804

Existent
IP Peripheral

IP2Bus_DMA_Req

Bus2IP_DMA_Ack

Bus2IP_Data[0:n]

IP2Bus_Data[0:n]

IP2Bus_Retry

IP2Bus_Error

IP2Bus_Intr[0:i]

IPIF Slave
DMA Handshake

Module

Bus
Bus2IP_Clk

Bus2IP_Reset

http://www.xilinx.com

70 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Slave DMA Handshake Signal Protocol

Figure 6-9 illustrates a simplified signal protocol diagram of the IPIF Slave DMA
Handshake module. Note that the IP2Bus_DMA_Req is required to be a single clock high
at the Bus2IP_Clk rate. The data validity is based upon the direction agreed to between the
IP and the IPIF. For IPIF read data, the data bus is IP2Bus_Data. For IPIF write data, the
data is Bus2IP_Data.

The IPIF Slave DMA Handshake module may include internal parameters, such as
response time for Bus2IP_DMA_Ack, and its width when valid (in Bus2IP_Clk cycles).
These parameters are used to specify a minimum time that the IPIF module can answer a
request for service, and a time that the IP requires the data to be valid. Since the IP is often
legacy IP, and is generally slower than the IPIF Slave DMA Handshake module, the ability
to determine the response speed is critical to ensure proper operation of the IP.

The minimum time before Bus2IP_DMA_Ack will go high is controlled by the
DMA_HNDSHK_RESPONSE_TIME_MIN parameter. This parameter guarantees that the
IPIF module will not respond any sooner than the specified number of Bus2IP_Clk cycles.
The IPIF module may respond in more cycles, however, depending on bus activity on the
bus. In the example shown in Figure 6-9, the DMA_HNDSHK_RESPONSE_TIME_MIN
parameter is set to two cycles, but the IPIF does not acknowledge the cycle until the third
cycle after the request.

The DMA_HNDSHK_DATA_VALID_WIDTH parameter sets the number of Bus2IP_Clk
cycles that the Bus2IP_DMA_Ack signal will be held high. During IPIF write cycles, the
IPIF will drive the Bus2IP_Data bits with write data for the entire duration of
Bus2IP_DMA_Ack. IPIF read cycles require the IP to drive the IP2Bus_Data buses with
read data prior to the last positive edge of Bus2IP_Clk that samples Bus2IP_DMA_Ack
high. The IP2Bus_Data line must continue to be held until the Bus2IP_DMA_Ack had
drawn low. Read data is sampled by the IPIF on the rising edge of the Bus2IP_Clk that
caused Bus2IP_DMA_Ack to fall.

Note:

1. Data buses are shared between the IPIF Slave SRAM and IPIF Slave Control Register
modules. Data qualifiers are used to indicate which module has access to the bus.

2. The specification allows driving data into the next cycle, as shown in Figure 6-9.

Figure 6-9: IPIF Slave DMA Handshake Signal Protocol

UG057_17_010804

IP2Bus_DMA_Req

Bus2IP_DMA_Ack

Bus2IP_Data (IPIF Write)

*DMA_HNDSHK_RESPONSE_TIME_MIN Parameter **DMA_HNDSHK_DATA_VALID_WIDTH Parameter

IP2Bus_Data (IPIF Read)

Valid

min*

Bus2IP_Clk

Write Data Driven Read Data Sampled

Valid

Valid**

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 71
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Slave DMA Handshake Signal List

Table 6-1 shows the name, direction, and a brief description of the signals that connect to
the IP from the IPIF Slave DMA Handshake module.

Table 6-1: IPIF Slave DMA Handshake Signals Connecting to IP

Name Direction Description

 Bus2IP_Clk From IPIF Clock source (from global buffer)

Bus2IP_Reset From IPIF Active-high synchronous reset source (from
global buffer)

IP2Bus_Intr[0:i] To IPIF Interrupt input from IP to IPIF

IP2Bus_Error To IPIF Error signal from IP to IPIF (valid only
during a data acknowledge cycle)

IP2Bus_Retry To IPIF Indicates IP wants master to retry the cycle

IP2Bus_ToutSup To IPIF Forces the suppression of watch dog
timeout on the bus

Bus2IP_Data[0:n] From IPIF IPIF Write data (where n =
IPIF_DATA_BUS_WIDTH –1)

IP2Bus_Data[0:n] To IPIF IPIF Read data (where n =
IPIF_DATA_BUS_WIDTH –1)

Bus2IP_BE[0:b] From IPIF Byte enable, 1 = byte lane valid (where b =
IPIF_NUMBER_OF_BYTE_ENABLES –1)

IP2Bus_DMA_Req To IPIF DMA handshake transfer request from IP

Bus2IP_DMA_Ack From IPIF DMA handshake transfer acknowledge
from IPIF

http://www.xilinx.com

72 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Slave DMA Handshake Parameters

Table 6-2 shows the parameters that can be selected for the IPIF Slave DMA Handshake
module..

Slave Control Register Module
This section covers the following topics:

• “Example Slave Control Register Application”

• “Generic Slave Control Register Model”

• “Slave Control Register Signal Protocol”

• “Slave Control Register Signal List”

• “Slave Control Register Parameters”

The IPIF Slave Control Register module provides a set of signals which permit basic
control registers to directly attach to a bus. The overall number of registers, number of bits
in each specified register, and direction for each bit of each register are parameters that
may be specified when instantiating this module.

Table 6-2: IPIF Slave DMA Handshake Module Parameters

Affects Parameter Value Type

General IPIF IPIF_DATA_BUS_WIDTH

Sets the size of the data bus for IPIF (where “n” in
Bus2IP_Data[0:n] or IP2Bus_Data[0:n] is equal to
IPIF_DATA_BUS_WIDTH)

8, 16, or 32 number

IPIF_NUMBER_OF_BYTE_ENABLES

Sets the number of byte enables

1, 2, or 4 number

IPIF_NUMBER_OF_INTR

Sets the number of interrupts the IP provides to the IPIF
(where “i” in IP2Bus_Intr[0:i] is equal to
IPIF_NUMBER_OF_INTR)

0 to 8 number

IPIF_INTR_ID

Sets the unique interrupt ID for this IPIF

16 bits number

IPIF_HAS_INTC

Sets whether the IPIF has a built-in interrupt controller
(See Figure 6-5 for more information)

0 or 1, 1 = true boolean

IP_HAS_OWN_INTC

Sets whether the IP has its own interrupt controller (See
Figure 6-5 for more information)

0 or 1, 1 = true boolean

General IPIF Slave
DMA Handshake
Module

DMA_HNDSHK_RESPONSE_TIME_MIN

Sets the minimum number of Bus2IP_Clk cycles in
which the IPIF will respond with a DMA_ACK

0 to 255 number

DMA_HNDSHK_DATA_VALID_WIDTH

Sets the number of Bus2IP_Clk cycles that the data will
remain valid during DMA handshaking

0 to 255 number

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 73
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Example Slave Control Register Application

Figure 6-10 contains an example application of the IPIF Slave Control Register module. It
illustrates how read/write, read only, and write only registers can be implemented.
Typical systems contain many kinds of registers, each of which can be easily connected to
the IPIF Slave Control Register module.

The read/write (R/W) register shown in Figure 6-10 is 24 bits wide, and is centered about
the 32-bit data bus as D[8:31] logically. Since it is a read/write register, it requires data into
the flip-flops from both user logic (if present) and the IPIF module. Accordingly, a
multiplexer, controlled by the user logic, allows the write update to the register to be
selected between the IP and IPIF. Also note that the CE pin of the R/W register is OR’ed
together with the CE (Bus2IP_RegCE1) provided by the IPIF and the CE from the user
logic. Also note that the Q outputs of the R/W register are available to user logic as
needed, and are multiplexed into the IP2Bus_Data path for read access of the register.

The read-only (R/O) register is read back across the bus when the address on the bus is set
for the decodes of IP2Bus_RegCE2. Address decoding for all the registers is contained
within the IPIF Slave Control Register module and is specified by the user during
instantiation. In this example, the R/O register is 16 bits and connects to D[16:31] logically.
This R/O register is truly read only. The user logic is responsible for updating the contents
of the register. While the IP logic might utilize the Q outputs of the R/O register, the IPIF
Slave Control Register module can not write to the register. The R/O register’s data path is
multiplexed with the R/W register back to the Bus2IP_Data bus of the IPIF Slave Control
Register.

The write-only (W/O) register in this example is instantiated as a 24-bit register and
connects to D[0:23] logically. Like the R/W register, the W/O register may have user logic
which can write to the it. Accordingly, a mux is needed on the D input and at least an OR
gate on the CE input to the register. The Q outputs of the W/O register are not available to
the IPIF Slave Control Register module, making this register truly write-only. The W/O
register in this example also demonstrates the use of an additional qualifying signal to
update the content during IPIF write operation. A signal called WE causes the write to
occur at a specific time in the bus cycle. Similar logic can be used to force the write to occur
at any time during the bus cycle.

http://www.xilinx.com

74 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 75
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Figure 6-10: Example Application of an IPIF Slave Control Register Module

IPIF Slave Control Register Module

24

Byte Enables if
required for R or W

IP2Bus_Intr[0:i]

Bus2IP_BE[0:3]

IP2Bus_RdAck

Bus2IP_RdReq

IP2Bus_WrAck

Bus2IP_WrReq

IP2Bus_Data[0:n]

Bus2IP_Data[0:n]

User Logic

User Logic

User Logic

Bus2IP_Clk (BUFG)

Bus2IP_Clk

Bus2IP_Clk

Bus2IP_Clk

WE

Write Response Timer (4 cycles)

Read Response Timer (5 cycles)

Bus2IP_RegWrCE1

Bus2IP_RegRdCE1
Bus2IP_RegRdCE2

Bus2IP_RegWrCE3

RegCE1=24 Bit R/W Reg (from 8:31)

RegCE3=24 Bit W/O Reg (from 0:23)

RegCE2=16 Bit R/O Reg (from 16:31)

Note: Reg data bits can be anywhere in data word, and can include holes,
e.g. data bits [0:3], [5], [8:12], etc. Zeros are filled in for missing bits on reads.

Bus2IP_RegRdCE1
Bus2IP_RegRdCE2

UG057_18_010804

D

C

Q
CE

R/W

Reg1

Reg2

Reg3

D

C

Q
CE

W/O
24 24

24

16
D

C

Q
CE

R/O
16

1
0User_Data

User_Data

WE

User_Data

User_CE

User_CE

User_CE

D

C

Q D

C

Q D

C

Q D

C

Q

D

C

Q D

C

Q D

C

Q D

C

Q D

C

Q

Interrupts as
required by IP

0 R/W

0 R/O

W/O 0

RegCE1

Example Memory Map

RegCE3

RegCE2

Bus_Addr

Decoded Addr

Bus_Addr+8

Bus_Addr+4

0 31

Bus2IP_Clk

Bus2IP_WrReq

IP2Bus_WrAck

WE

Bus2IP_Clk

Bus2IP_RdReq

IP2Bus_RdAck

Retry

Error/recovery logic if
required by system,
else set pins to ground

Error

Timeout
Suppress IP2Bus_ToutSup

IP2Bus_Error

IP2Bus_Retry

Reset Bus2IP_Reset

http://www.xilinx.com

76 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

It should be noted that the IPIF Slave Control Register module does not inherently know
about the read/write ability of any register that is connected to it. It is how the various
registers are connected that allows for read/write, read only, or write only behavior. In
addition, the width of the registers, size of the registers, etc. are defined during the
instantiation of the IPIF Slave Control Register module. See Table 6-4 for further
information.

The IPIF Slave Control Register module can never generate both read and write requests at
the same time because the bus, unlike the Processor Local Bus, does not permit
simultaneous read and write transactions. Accordingly, the IP logic can be developed to
look at the read and write sides independently without and fear of collision between the
two sides.

Figure 6-10 illustrates one simple means of answering the request for service by the IPIF
Slave Control Register module. When a bus address hit (in the ranges defined by
parameters) is detected in this module, the module will generate either Bus2IP_WrReq or
Bus2IP_RdReq requesting write or read service. The connecting IP is required to issue an
acknowledge when it has completed the transaction. In the case of writes, the
IP2Bus_WrAck signal indicates that the control register has been properly written. Reads
utilize the IP2Bus_RdAck signal and present data on the IP2Bus_Data bus during the
same cycle that the acknowledge is valid. Also shown in Figure 6-10 is a simple shift
register chain that allows a four-cycle write time and a five-cycle read time. For very fast
systems, the requests can be tied directly to the acknowledge signals, assuming that the
data can be dealt with in the given time. By using FPGA SRL16 elements, the shift registers
can be built in a single look-up table (LUT) instead of using a multitude of LUT flip-flops.
For more information on how to do this, see Chapter 2 of the Virtex-II Platform FPGA
User Guide (UG002).

The IPIF Slave Control Register module also provides the ability to write only certain bytes
of the registers. The Bus2IP_BE byte enable signals can be used to qualify which bytes are
valid during the transfer. Figure 6-10 does not illustrate this usage, however, the byte
enables can simply be used as additional qualifier terms in the clock enable term of the
register.

All IPIF slave modules, including the Control Register module, permit the IP to tell the bus
to retry, or that an error has occurred. The IP logic tells the IPIF this by asserting the
IP2Bus_Retry or IP2Bus_Error signal, with or without the appropriate acknowledge
signal for the intended cycle. Additionally, the IP may suppress the normal timeout (16
bus clocks) mechanism for transfers that will take longer on the bus. The use of the
IP2Bus_ToutSup signal is not recommended unless absolutely necessary, since it reduces
bus bandwidth.

Generic Slave Control Register Model

Figure 6-11 illustrates a generic instance of the IPIF Slave Control Register module. The
data bus widths, number of registers, number of byte enables, and number of interrupts
for the IP are generically specified.

http://www.xilinx.com
http://www.xilinx.com/publications/products/ug_index.htm
http://www.xilinx.com/publications/products/ug_index.htm

ML300 Reference Design www.xilinx.com 77
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

The IPIF Slave Control Register module outputs a clock, Bus2IP_Clk, that is sourced by a
BUFG elsewhere in the design. The required BUFG reduces clock skew on all the
synchronous elements clocked by Bus2IP_Clk. This clock can be asynchronous from the
bus, but requires extra synchronization in the IPIF module. This synchronization is
provided for in the IPIF module.

The registers generate a unique decode off the internal address decoder of the IPIF. The
number of bits available for each register depends on the data width of the IPIF module.
For example, if an 8-bit IPIF Slave Control Register module is instantiated, all registers are
limited to a maximum of 8 bits. Each register can be from 0 to 8 bits in this case. The 0 case
seems odd at first; however, it may be advantageous for software to “skip” an address
location, therefore, 0-bit registers are allowed. Based upon the size of the data bus, the IPIF
Slave Control Register module assigns address decodes for the Bus2IP_RegWrRdCE
signals. If the data bus is 8 bits, then each Bus2IP_RegWrRdCE will be up to a byte wide,
and will start at the base address of the IPIF Slave Control Register module, and increment
by one. If the data bus is 16 bits, then each Bus2IP_RegWrRdCE will be up to 16 bits wide,
and will increment by two from the base address. Similarly, for 32-bit data bus, each
register decode is offset by four from the base address.

The indexing of the Bus2IP_RegWrCE or Bus2IP_RegRdCE is based upon the bus size.
Regardless of whether the bus is 8 bits or 32 bits, Bus2IP_RegWrRdCE will increment by
one for each instantiated register. There will be holes for zero-bit registers, however. (For

Figure 6-11: Generic Instance of the IPIF Slave Control Register

UG057_19_010804

IP Peripheral
Register Module

Bus2IP_Clk

Bus2IP_RegWrCE(r)

Bus2IP_Data[0:n]

IP2Bus_Data[0:n]

Bus2IP_BE[0:b]

Bus2IP_WrReq

Bus2IP_RdReq

IP2Bus_WrAck

IP2Bus_RdAck

IP2Bus_Retry

IP2Bus_Error

IPIF Slave
Control Register

Module

OPB

Bus2IP_Reset

IP2Bus_ToutSup

IP2Bus_Intr[0:i]

Bus2IP_RegRdCE(r)

http://www.xilinx.com

78 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

example, if register 3 is zero bits and register 4 is 12 bits, no register 3 clock enable decodes
are provided.)

The IPIF Slave Control Register module allows the IP implementor to emplace only the
register bits required for the function. This minimizes the logic required for the
implementation of registers. Since undriven read bits left are forced to a zero inside the
IPIF module, even data multiplexing requirements are eased.

Control over this flexibility is represented as an array of four basic parameters. Each
register has control over the total number of bits (0 to 32 data bus width) that can be
contained within the register. Additionally, each register can identify the bit-wide position
of every bit in the register. Each bit position can also be marked as readable and/or
writeable by the IPIF.

Slave Control Register Signal Protocol

Figure 6-12 illustrates the IPIF Slave Control Register module protocol, highlighting the
simplicity of both read and write transactions. Note that all signals are active-high true,
and are referenced to the positive edge of the Bus2IP_Clk signal. These states are generally
more favorable to FPGA logic implementation.

Figure 6-12: Timing Diagrams for Slave IP Module Register
Protocol Read and Write

UG057_20_010804

Bus2IP_RegWrCE

Valid Valid

Bus2IP_BE

Bus2IP_Data

Later Ack due
to IP response

Later Ack due
to IP response

Bus2IP_Clk

W
rit

e
R

eg
is

te
r

R
ea

d
R

eg
is

te
r

Bus2IP_RegRdCE

Valid Valid

Bus2IP_BE

IP2Bus_Data

IP2Bus_RdAck

Bus2IP_RdReq

Valid Valid

Bus2IP_WrAck

Bus2IP_WrReq

Valid Valid

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 79
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Write Transactions

Write transactions begin with the IPIF Slave Control Register issuing a IP2Bus_WrReq on
a positive edge of Bus2IP_Clk. The data to be written is presented on Bus2IP_Data,
qualified by Bus2IP_RegRdWrCE(r) to indicate a register IPIF cycle, and is byte-qualified
by the Bus2IP_BE signals. (If high, the byte lane is valid; if low, ignore the data.) When the
IP has correctly stored the data, the IP2Bus_WrAck signal is asserted. Two cases are
illustrated in Figure 6-12: immediate acknowledgement, and extended IP2Bus_WrAck by
five clock cycles. The limit to issuing IP2Bus_WrAck is approximately 10 cycles(1) after
Bus2IP_WrReq, unless the IP2Bus_ToutSup signal is held high. If IP2Bus_ToutSup is
used, it must go low in the same cycle that IP2Bus_WrAck transitions from high to low.

Note: Actual number of cycles to be determined.

Read Transactions

Read transactions are very similar to write transactions in the IPIF Slave Control Register
module. Reads utilize the Bus2IP_RdReq and IP2Bus_RdAck counterparts to the write
signals and Bus2IP_RegRdCE(r). The data must be presented to the IP2Bus_Data bus
during the cycle that Bus2IP_RdAck is valid. The Bus2IP_BE signals can be used to mask
read data values, but this is not required. The master that generated the transaction on the
bus is always required to pull only the data it wants from the bus. The Bus2IP_BE signals
are generally only used for writes.

Slave Control Register Signal List

Table 6-3 shows the name, direction, and a brief description of the signals that connect to
the IP from the IPIF Slave Control Register module.

Table 6-3: Signals for the IPIF Slave Control Register Module

Name Dir Description

 Bus2IP_Clk From IPIF Clock source (from global buffer)

Bus2IP_Reset From IPIF Active-high synchronous reset source (from
global buffer)

IP2Bus_Intr[0:i] To IPIF Interrupt input from IP to IPIF

IP2Bus_Error To IPIF Error signal from IP to IPIF (valid only during a
data acknowledge cycle)

IP2Bus_Retry To IPIF Indicates IP wants master to retry the cycle

IP2Bus_ToutSup To IPIF Forces the suppression of watch dog timeout on
the bus

Bus2IP_Data[0:n] From IPIF IPIF Write data (where n =
IPIF_DATA_BUS_WIDTH –1)

IP2Bus_Data[0:n] To IPIF IPIF Read data (where n =
IPIF_DATA_BUS_WIDTH –1)

Bus2IP_BE[0:b] From IPIF Byte enable, 1 = byte lane valid (where b =
IPIF_NUMBER_OF_BYTE_ENABLES –1)

Bus2IP_WrReq From IPIF Write request from IPIF to IP, single clock high

http://www.xilinx.com

80 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Slave Control Register Parameters

Table 6-4 shows the parameters that can be selected for the IPIF Slave DMA Handshake
module.

IP2Bus_WrAck To IPIF Acknowledge that write data has been taken
from Bus2IP_Data[0:n], single Bus2IP_Clk
high

Bus2IP_RdReq From IPIF Read request from IPIF to IP, single clock high

IP2Bus_RdAck To IPIF Acknowledge that read data has been placed on
IP2Bus_Data[0:n], single Bus2IP_Clk high

Bus2IP_RegCE(r) From IPIF Clock enable of decoded “r” register (where r =
0 to IPIF_NUMBER_OF_REGS –1)

Table 6-3: Signals for the IPIF Slave Control Register Module (Continued)

Name Dir Description

Table 6-4: IPIF Slave Control Register Parameters

Affects Parameter Value Type

General IPIF IPIF_DATA_BUS_WIDTH

Sets the size of the data bus for IPIF (where “n” in
Bus2IP_Data[0:n] or IP2Bus_Data[0:n] is equal to
IPIF_DATA_BUS_WIDTH)

8, 16, or 32 number

IPIF_NUMBER_OF_BYTE_ENABLES

Sets the number of byte enables

1, 2, or 4 number

IPIF_NUMBER_OF_INTR

Sets the number of interrupts the IP provides to the IPIF
(where “i” in IP2Bus_Intr[0:i] is equal to
IPIF_NUMBER_OF_INTR)

0 to 8 number

IPIF_INTR_ID

Sets the unique interrupt ID for this IPIF

16 bits number

IPIF_HAS_INTC

Sets whether the IPIF has a built-in interrupt controller
(See Figure 6-5 for more information)

0 or 1, 1 = true boolean

IP_HAS_OWN_INTC

Sets whether the IP has its own interrupt controller (See
Figure 6-5 for more information)

0 or 1, 1 = true boolean

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 81
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Slave SRAM Module
This section covers the following topics:

• “Example Slave SRAM Application”

• “Generic Slave SRAM Model”

• “Slave SRAM Signal Protocol”

• “Slave SRAM Signal List”

• “Slave SRAM Parameters”

The IPIF Slave SRAM module is virtually identical to the IPIF Slave Control Register
module. The primary difference is that the IPIF Slave SRAM module also includes an
address, and only provides a single clock enable for the range of valid addresses. The
similarity between the two interfaces is intentional. It is recognized that many forms of IP
require both registers and random accessible storage space. Accordingly, the IPIF Slave
SRAM module and IPIF Slave Control Register module can be easily combined. In high-
performance systems, a single IPIF Slave SRAM module per IP is necessary; whereas in
lower performance systems, several IPs can share one IPIF Slave SRAM module.

General IPIF Slave
Control Register
Module

IPIF_NUMBER_OF_REGS

Sets the total number of registers at the bus width set by
IPIF_DATA_BUS_WIDTH

1 to 255 number

IPIF_REG_BASE_ADDR

Sets the base address where IPIF registers will start in
memory

32-bit decode number

IPIF_REG_BASE_ADDR_BIT_ENBL[0:31]

Allows specification of which address bits to decode in
IPIF_REG_BASE_ADDR

1 = decode
respective
address bit

mask

IPIF Slave Control
Register (Arrays of
Parameters)

IPIF_REGx_NUMBER_OF_BITS

Defines the number of bits for each register
(where x = 0 to IP_NUMBER_OF_REGS –1)

ordinal
between
0 and 32

number

IPIF_REGx_DATA_BIT_VALID_MASK[0:n]

Defines which bits in each register are physically present
(where x = 0 to IP_NUMBER_OF_REGS –1 and n =
IPIF_DATA_BUS_WIDTH -1)

1 = bit position
is used in this
register

mask

IPIF_REGx_READABLE_BITS[0:n]

Defines which bits in each register are readable by the IPIF
(where x = 0 to IP_NUMBER_OF_REGS –1 and n =
IPIF_DATA_BUS_WIDTH -1)

1 = bit position
will be readable
by IPIF

mask

IPIF_REGx_WRITEABLE_BITS[0:n]

Defines which bits in each register are writable by the IPIF
(where x = 0 to IP_NUMBER_OF_REGS –1 and n =
IPIF_DATA_BUS_WIDTH -1)

1 = bit position
will be writable
by IPIF

mask

Table 6-4: IPIF Slave Control Register Parameters (Continued)

Affects Parameter Value Type

http://www.xilinx.com

82 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Example Slave SRAM Application

Figure 6-13 illustrates an example application of the IPIF Slave SRAM module. This
example assumes use of a 16-bit wide asynchronous SRAM with some additional logic
surrounding it to handle byte data, and setting of the read and write cycle times. While this
example shows connection to a real SRAM, the IPIF Slave SRAM module can be connected
to any IP that requires a multitude of addresses for its operation. For example, an existent
disk drive controller whose interface is a microprocessor memory mapped device can take
advantage of this IPIF module with little modification.

The Bus2IP_Addr bus is used to broadcast the address of the bus Slave transaction to the
SRAM. The SRAM in this example is organized as 512 x 16 or 1 KB total. In this case, the

Figure 6-13: Example Application of IPIF Slave SRAM Module

IPIF Slave SRAM Module

SRAM

IP2Bus_Intr[0:i]

IP2Bus_RdAck
Bus2IP_RdReq

IP2Bus_WrAck
Bus2IP_WrReq

Bus2IP_Clk

Bus2IP_Addr[22:30]

IP2Bus_Data[0:15]

Bus2IP_Data[0:15]OE2Read

Read

Write

Write

Bus2IP_BE1

Bus2IP_BE0

Bus2IP_BE1

Bus2IP_BE0

OE1

WE2

WE1

CS

DO

DI

Addr

Bus2IP_SRAM_CE

UG057_21_010804

Interrupts as required by IP

Bus2IP_BE[0:1]

Bus2IP_Clk

Bus2IP_RdReq

Read

Write

IP2Bus_RdAck

Bus2IP_RdReq

IP2Bus_RdAck

Write

D

C

Q D

C

Q D

C

Q

S

R

Q
C

Read

D

C

Q D

C

Q D

C

Q

S

R

Q
C

9

16

16

RetryError/recovery
logic if required
by system, else
set pins to
ground

Error

Timeout
Suppress IP2Bus_ToutSup

IP2Bus_Error

IP2Bus_Retry

Reset Bus2IP_Reset

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 83
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

byte address is the lower 10 bits of the address, Bus2IP_Addr[22:31]. Since the example
uses half words (16 bit quantities) and the IPIF Slave SRAM module always provides byte
addresses, the lower order address line is left unconnected, leaving the next nine address
lines to provide the 512 half words.

Since most systems require the ability to read and write individual bytes of data from an
SRAM, the IPIF Slave SRAM module provides byte enables by way of the Bus2IP_BE
signals. In the example in Figure 6-13, these byte enables are used to qualify both writes
and reads by way of the active-high WE and OE pins. This permits the SRAM to be read
and written a single byte at a time, if required. Byte enable usage on read cycles is not
required, since the IPIF module will automatically handle the read data alignment. (More
information on data alignment will appear in the IPIF Architectural Specification, not yet
released.)

This example also shows that the Bus2IP_SRAM_CE pin is connected directly to the
active-high chip select (CS) pin on the SRAM. This example assumes that the SRAM CS pin
qualifies the OE and WE signals. If the SRAM does not use CS to qualify the OE and WE
signals, the Bus2IP_SRAM_CE signal must qualify both reads and writes. This is a
particular issue that warrants attention when the IPIF Slave SRAM module is used to talk
with several ranges of memory which may be discrete SRAMs or IPs.

Figure 6-13 also demonstrates a simple technique to generate both the acknowledgement
responses and a set of enveloping signals. The acknowledgement of read and write cycles
is handled by delaying the respective request signal by a known number of clocks (three in
this example). This is very efficient to implement in a single FPGA look-up table (LUT) by
utilizing an SRL16 model. The SRL16s allow the customer to instantiate a 1- to 16-bit shift
register at the price of a single LUT.

In addition to providing the IP2Bus_WrAck and IP2Bus_RdAck, the outputs of the shift
register can be used to build a simple enveloping signal. The write and read signals
illustrated in the figure are created by flip-flops that are set by Bus2IP_WrReq or
Bus2IP_RdReq, respectively. They are reset by the IP2Bus_WrReq or IP2Bus_RdAck
signals, respectively. This provides a single clock delayed envelope that is valid for the
transaction, and can be used to enable specific read or write operations. The read and write
signals are used to qualify the OE and WE inputs to the SRAM. The write signal can also be
derived as a single cycle delayed clock enable, if necessary to meet data hold time
requirements (e.g., another tap can be used).

http://www.xilinx.com

84 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Generic Slave SRAM Model

Figure 6-14 illustrates a generic instance of the IPIF Slave SRAM module. The data bus
widths, number of address bits, number of byte enables, and number of interrupts for the
IP are generically specified.

The IPIF Slave SRAM module outputs a clock, Bus2IP_Clk,that is sourced by a BUFG
elsewhere in the design. The required BUFG reduces clock skew on all the synchronous
elements clocked by Bus2IP_Clk. This clock can be asynchronous from the bus, but
requires extra synchronization in the IPIF module. This synchronization is provided for in
the IPIF module.

The number of address locations covered by the IPIF Slave SRAM interface, and the
number of address bits required to support those address locations is specified during
instantiation of the module.

The data width for the IPIF Slave SRAM interface, illustrated generically in Figure 6-14,
can be configured as 8, 16 or 32 bits. The n variable in the figure is always subtracted by one
from the number of bits specified by the IP_DATA_BUS_WIDTH parameter.

Figure 6-14 also shows the active-high signal, Bus2IP_SRAM_CE. This signal indicates
that the address presented on Bus2IP_Addr is valid. Since the regions of memory decoded
by the IPIF Slave SRAM module are parameterizeable, it is possible that the
Bus2IP_SRAM_CE may be valid in discontinuous regions. The bus addresses that will

Figure 6-14: Slave IP Module SRAM Protocol Block Diagram

UG057_22_010804

IP Slave
Peripheral SRAM

Module

Bus2IP_Clk

Bus2IP_Addr[m:0]

Bus2IP_Data[0:n]

IP2Bus_Data[0:n]

Bus2IP_BE[0:b]

Bus2IP_SRAM_CE

Bus2IP_WrReq

IP2Bus_WrAck

Bus2IP_RdReq

IP2Bus_Retry

IP2Bus_Error

IPIF Slave
SRAM Module

Note: Supports
both with and
without DMA

Bus

Bus2IP_Reset

IP2Bus_ToutSup

IP2Bus_Intr[0:i]

IP2Bus_RdAck

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 85
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

initiate the transaction on the IPIF Slave SRAM module are set during the instantiation of
the module by the parameters defined in Table 6-6.

The remaining signals illustrated in Figure 6-14 are illustrated by example in Figure 6-13.

Slave SRAM Signal Protocol

Figure 6-15 and Figure 6-16 illustrate the IPIF Slave SRAM module protocol for write and
read cycles, respectively. All signals shown in both figures are active-high true, and are
referenced to the positive edge of the Bus2IP_Clk signal. These states are often most
favorable to FPGA logic implementation.

Write Transactions

Write transactions begin with the IPIF Slave SRAM module issuing a IP2Bus_WrReq on a
positive edge of Bus2IP_Clk. The data to be written is presented on Bus2IP_Data,
qualified by Bus2IP_SRAM_CE to indicate an SRAM cycle, and is byte qualified by the
Bus2IP_BE signals. (High = data in byte lane is valid; low = ignore data.) The address of
the write transfer is presented on the Bus2IP_Addr bus on the same rising edge of the
clock that generated Bus2IP_WrReq.

When the IP has correctly stored the data, it asserts the IP2Bus_WrAck signal. Figure 6-15
illustrates two cases. The first case is immediate acknowledgement, and the second case
extends the IP2Bus_WrAck out six clock cycles. The limit to issuing IP2Bus_WrAck is 10
cycles after the Bus2IP_WrReq, unless the IP2Bus_ToutSup signal is held high. If
IP2Bus_ToutSup is used, it must go low at the same time that IP2Bus_WrAck transitions
from high to low.

Figure 6-15: IPIF Slave SRAM Module Single Write Transaction

UG057_23_010804

Bus2IP_Addr

Bus2IP_BE

Bus2IP_SRAM_CE

Bus2IP_WrReq
Later Ack due
to IP response

Bus2IP_Data

Bus2IP_Clk

IP2Bus_WrAck

Valid Valid

Valid Valid

Valid Valid

http://www.xilinx.com

86 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Read Transactions

Read transactions are very similar to write transactions in the IPIF Slave SRAM module.
Reads utilize the Bus2IP_RdReq and IP2Bus_RdAck counterparts to the write signals.
Data must be presented to the IP2Bus_Data bus during the cycle that Bus2IP_RdAck is
valid. The Bus2IP_BE signals can be used to mask read data values, but this is not
required. The master that generated the transaction on the bus is always required to pull
only the data it wants from the bus. The Bus2IP_BE signals are generally used only for
writes.

Figure 6-16: IPIF Slave SRAM Module Single Read Transaction

UG057_24_010804

Bus2IP_Addr

Bus2IP_BE

Bus2IP_SRAM_CE

Bus2IP_RdReq
Later Ack due
to IP response

IP2Bus_Data

Bus2IP_Clk

IP2Bus_RdAck

Valid Valid

Valid Valid

Valid Valid

Figure 6-17: IPIF Slave SRAM Module Write Burst Transaction

UG057_25_010804

Bus2IP_Addr

Bus2IP_BE

Bus2IP_SRAM_CE

Bus2IP_WrReq

Bus2IP_Data

Bus2IP_Clk

Bus2IP_SRAM_Burst

IP2Bus_WrAck

(Valid) A0

(Valid) B0

(Valid) D0

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

D1 D2 D3 D4 D5

Latency
Example Cycles:

Burst Data Burst DataPage
Cross

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 87
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Write Burst Transactions

Figure 6-17 illustrates the IPIF Slave SRAM module protocol for write burst cycles. Bursts
from a bus master are treated as individual requests for service per datum. That is, the IPIF
Slave SRAM module issues a set of requests acknowledges per datum. If the IP data bus is
smaller, then the IPIF will sequence the data in the order it was received. Thus, a 32-bit bus
transfer to an 8-bit IP is turned into four req/ack pairs.

Write bursts are designed to utilize maximum bandwidth across the IPIF. It is wisest to
burst only to 32-bit IP devices, or else poor bus bandwidth will result. In the case of
Figure 6-17, it is assumed that the IP is a 32-bit device. Note that the IPIF indicates an
SRAM burst cycle by generating Bus2IP_Addr, asserting Bus2IP_SRAM_CE, and issuing
Bus2IP_SRAM_Burst and Bus2IP_WrReq all in the same cycle. The IP then acknowledges
the cycle by way of the IP2Bus_WrAck signal after a 1-cycle latency. The IP continues to
acknowledge the next three cycles. In the next cycle, the IP chooses to throttle the
transaction by deasserting the IP2Bus_WrAck signal. If the IP2Bus_WrAck signal is
deasserted for more than 16 clocks, the bus will time out, unless the IP also asserts the
IP2Bus_ToutSup signal, shown elsewhere. The IP eventually completes the data transfers,
and the IPIF deasserts the Bus2IP_WrReq. The IP will then deassert IP2Bus_WrAck. Note
that data is always transferred on the rising edge of the Bus2IP_Clock, which sampled the
IP2Bus_WrAck as high.

Also note that Bus2IP_SRAM_Burst is deasserted after the second-to-last data is
transferred. This allows the IP to know which datum is last in the burst. In effect, there is
always only one more IP2Bus_WrAck after Bus2IP_SRAM_Burst is deasserted.

Read Burst Transactions

Figure 6-18 illustrates the IPIF Slave SRAM module protocol for read burst cycles. Bursts
to a bus master are treated as individual requests for service per datum. That is, the IPIF
Slave SRAM module issues a set of request acknowledges per datum. If the IP data bus is

Figure 6-18: IPIF Slave SRAM Module Read Burst Transaction

UG057_26_010804

Bus2IP_Addr

Bus2IP_BE

Bus2IP_SRAM_CE

Bus2IP_RdReq

Bus2IP_Data

Bus2IP_Clk

Bus2IP_SRAM_Burst

IP2Bus_RdAck

(Valid) A0

(Valid) B0

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

D0 D1 D2 D3 D4 D5

Latency
Example Cycles:

Burst Data Burst DataPage
Cross

http://www.xilinx.com

88 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

smaller, then the IPIF sequences the data in the order it is received. Thus, a 32-bit bus
transfer to an 8-bit IP gets turned into four req/ack pairs.

Read bursts are designed to utilize maximum bandwidth across the IPIF. It is wisest to
only burst to 32-bit IP devices, or else poorer bus bandwidth will result. In the case of
Figure 6-18, it is assumed that the IP is a 32-bit device. Note that the IPIF indicates an
SRAM burst cycle by generating Bus2IP_Addr, asserting Bus2IP_SRAM_CE and issuing
Bus2IP_SRAM_Burst and Bus2IP_RdReq all in the same cycle. The IP then acknowledges
the cycle by way of the IP2Bus_RdAck signal after a 1-cycle latency. The IP continues to
acknowledge the next three cycles. The IP throttles the transaction, for example, by
deasserting the IP2Bus_RdAck signal. If this signal is deasserted for more than 16 clocks,
the bus will time out, unless the IP also asserts the IP2Bus_ToutSup signal. The IP
eventually completes the data transfers, the IPIF deasserts the Bus2IP_RdReq, and the IP
deasserts IP2Bus_RdAck. Note that data is always transferred on the rising edge of the
Bus2IP_Clk, which sampled the IP2Bus_RdAck as high.

Also note that Bus2IP_SRAM_Burst is deasserted after the second-to-last data is
transferred. This allows the IP to know which datum is last in the burst. In effect, there is
always only one more IP2Bus_WrAck after Bus2IP_SRAM_Burst is deasserted.

Other SRAM Module Uses

The IPIF Slave SRAM module can be used in many more forms than are illustrated in this
specification. For example, it can be used as a simple external bus controller to talk to
SRAM, FLASH, or external IP peripherals. Additionally, if a system is not performance
intensive, it can be used to connect to all IP CPU peripherals. Since the address ranges of
the IPIF module are adjustable, and multiple ranges are possible, this is easily achieved by
adding an address decoder between the IPIF Bus2IP_Addr lines (qualified by
Bus2IP_SRAM_CE) and the IP peripherals.

Slave SRAM Signal List

Table 6-5 shows the name, direction, and a brief description of the signals that connect to
the IP from the IPIF Slave Control Register module.

Table 6-5: Signals for the IPIF Slave SRAM Module

Name Direction Description

Bus2IP_Clk From IPIF Clock source (from global buffer)

Bus2IP_Reset From IPIF Active-high synchronous reset source (from
global buffer)

IP2Bus_Intr[0:i] To IPIF Interrupt input from IP to IPIF

IP2Bus_Error To IPIF Error signal from IP to IPIF (Valid only during a
data acknowledge cycle)

IP2Bus_Retry To IPIF Indicates IP wants master to retry the cycle

IP2Bus_ToutSup To IPIF Forces the suppression of watch dog timeout on
the bus

Bus2IP_Data[0:n] From IPIF IPIF Write data (where n =
IPIF_DATA_BUS_WIDTH –1)

IP2Bus_Data[0:n] To IPIF IPIF Read data (where n =
IPIF_DATA_BUS_WIDTH –1)

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 89
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Slave SRAM Parameters

Table 6-6 shows the parameters that can be selected for the IPIF Slave SRAM module..

Bus2IP_BE[0:b] From IPIF Byte enable, 1 = byte lane valid (where b =
IPIF_NUMBER_OF_BYTE_ENABLES –1)

Bus2IP_WrReq From IPIF Write request from IPIF to IP, single clock high

IP2Bus_WrAck To IPIF Acknowledge that write data has been taken from
Bus2IP_Data[0:n], single Bus2IP_Clk high

Bus2IP_RdReq From IPIF Read request from IPIF to IP, single clock high

IP2Bus_RdAck To IPIF Acknowledge that read data has been placed on
IP2Bus_Data[0:n], single Bus2IP_Clk high

Bus2IP_Addr[al:ah] From IPIF IPIF Slave SRAM address, where:

al = IPIF_SLV_SRAM_ADDR_BUS_MSB
ah = IPIF_SLV_SRAM_ADDR_BUS_LSB
(al is a lower number than ah due to big-endian
numbering)

Bus2IP_SRAM_CE From IPIF Clock enable of decoded SRAM address space,
high for entire bus cycle

Table 6-5: Signals for the IPIF Slave SRAM Module (Continued)

Name Direction Description

Table 6-6: Parameters for the IPIF Slave SRAM Module

Affects Parameter Value Type

General IPIF IPIF_DATA_BUS_WIDTH

Sets the size of the data bus for IPIF (where “n” in
Bus2IP_Data[0:n] or IP2Bus_Data[0:n] is equal to
IPIF_DATA_BUS_WIDTH)

8, 16, or 32 number

IPIF_NUMBER_OF_BYTE_ENABLES

Sets the number of byte enables

1, 2, or 4 number

IPIF_NUMBER_OF_INTR

Sets the number of interrupts the IP provides to the IPIF
(where “i” in IP2Bus_Intr[0:i] is equal to
IPIF_NUMBER_OF_INTR)

0 to 8 number

IPIF_INTR_ID

Sets the unique interrupt ID for this IPIF

16 bits number

IPIF_HAS_INTC

Sets whether the IPIF has a built-in interrupt controller (See
Figure 6-5 for more information)

0 or 1, 1 = true boolean

IP_HAS_OWN_INTC

Sets whether the IP has its own interrupt controller (See
Figure 6-5 for more information)

0 or 1, 1 = true boolean

http://www.xilinx.com

90 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Slave FIFO Module
This section covers the following topics:

• “Example Slave FIFO Application”

• “Generic Slave FIFO Model”

• “Slave FIFO Signal Protocol”

• “Slave FIFO Signal List”

• “Slave FIFO Parameters”

The IPIF Slave FIFO module is designed to interface between basic communications
devices and a bus. The module looks substantially like a bidirectional FIFO. The IPIF Slave
FIFO module provides a set of signals to the IP that permit the IP to access the module’s
internal FIFOs. These FIFOs can be configured from one datum deep up to 2 KB deep.

Example Slave FIFO Application

Figure 6-19 illustrates a simplified example application of the IPIF Slave FIFO module,
showing a vastly simplified communication IP with both transmit and receive functions.
Each of the functions are connected to the IPIF by way of the IPIF Slave FIFO module.

General IPIF
Slave SRAM
Module

IPIF_NUMBER_OF_SRAM_DECODER_REGIONS

Defines the number of decoded regions of memory address
space for the IPIF Slave SRAM module

1 to 4 decoded
regions allowed

number

IPIF_SLV_SRAM_ADDR_BUS_LSB

Sets the LSB index number for the address provided by the
IPIF to the IP

ordinal between 0
to 31

number

IPIF_SLV_SRAM_ADDR_BUS_MSB

Sets the MSB index number for the address provided by the
IPIF to the IP

ordinal between 0
to 31

number

IPIF Slave
SRAM
Module
(Arrays of
Parameters)

IPIF_SRAMd_BASE_ADDR

Sets the base address of the “d” region for the Slave SRAM
module (where d = 0 to
IPIF_NUMBER_SRAM_DECODER_REGIONS –1)

32-bit decode of
one region

number

IPIF_SRAMd_BASE_ADDR_BIT_ENBL[0:31]

Allows specification of which bits address bits to decode in
the IPIF_SRAMd_BASE_ADDR (where d = 0 to
IPIF_NUMBER_SRAM_DECODER_REGIONS –1)

1 = decode
respective
address bit

mask

Table 6-6: Parameters for the IPIF Slave SRAM Module (Continued)

Affects Parameter Value Type

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 91
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

The generic IP communication transmitter and receiver pair shown in Figure 6-19 are
connected to the IPIF module’s write FIFO and read FIFO respectively. The transmitter IP
waits for data requests from the IPIF module. The receiver IP initiates requests for transfers
when data is pending inside its receive buffer.

The the transmitter IP in this example has signals such as:

• TxReq, a transmit request input

• TxDAck, a transmit data acknowledge output

• TxData, a transmit data input

• TxEmpty, a transmit empty flag input (indicating the IPIF has no more data to
transmit)

Figure 6-19: Example Application of IPIF Slave FIFO Module

TxEmpty

TxData

TxDAck

TxReq

IPIF Slave FIFO Module

Transmitter IP

CE

CE

IP2Bus_Intr[0:i]

IP2FIFO_WrAck
FIFO2IP_WrReq

FIFO2IP_Empty

FIFO2IP_Data

FIFO2IP_WrAck

IP2FIFO_WrReq

FIFO2IP_Full

IP2FIFO_Data

Bus2IP_Clk
IP2Bus_Clk

RxFull

RxData

RxDAck

RxReq

Bus2IP_FIFO_CE

UG057_27_010804

Interrupts as required by IP

Receiver IP

IP2FIFO_RdFIFO_Restore
IP2FIFO_RdFIFO_Mark

IP2FIFO_WrFIFO_Restore
IP2FIFO_WrFIFO_Mark

FIFO2IP_RdFIFO_Vacancy[0:fv]

FIFO2IP_WrFIFO_Occupancy[0:fo]

Retry

Error/recovery logic if
required by system,

else set pins to ground

Error

Timeout
Suppress IP2Bus_ToutSup

IP2Bus_Error

IP2Bus_Retry

IP2FIFO_RdFIFO_Release

IP2FIFO_WrFIFO_Release

Reset Bus2IP_Reset

http://www.xilinx.com

92 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

The receiver IP in this example has signals such as:

• RxReq, a receive request output

• RxDAck, a receive data acknowledge input

• RxData, a receive data output

• RxFull, a receiver full flag input (indicating the IPIF can no longer accept data from
the receiver IP)

Both transmitter IP and receiver IP may also require a clock enable (CE) to indicate when
cycles are for them rather than another IP block which might be connected.

The transmitter and/or receiver can be clocked from the Bus2IP_Clk output of the IPIF
Slave FIFO module. While this is recommended, the transmitter and/or receiver IPs can
also generate a clock, IP2FIFO_Clk, which is used to control the FIFO interfaces between
the IPIF and the IP.

In Figure 6-19, when a bus master wishes to transmit data to the IP, it issues a write cycle
to the IPIF Slave FIFO module. The address of this operation can be set by way of user
parameters, and can be either a range of addresses spanning the depth of the FIFO, or can
be a single “keyhole” address. If the IPIF Slave FIFO module detects an address hit on a
write cycle, it can issue a request for service to the transmitter. The number of bus write
cycles to the IPIF Slave FIFO module, before FIFO2IP_WrReq goes valid, is parametrically
settable at the time of instantiation of the IPIF module. (See Table 6-8.) Once the IPIF Slave
FIFO contains a single datum, the FIFO2IP_Empty flag is lowered to indicate that the IPIF
has data in the write FIFO. When the IPIF Slave FIFO module has hit the write data
threshold in its write FIFO, it will issue write requests until the transmitter IP causes the
IPIF FIFO to go empty. Should the IPIF Slave FIFO module attempt to overflow the
transmitter IP, the transmitter simply stops giving back IP2FIFO_WrAck until the
condition is cleared. If the transmitter is stalled so long that the internal FIFO in the IPIF
fills, then bus retry is issued until the condition clears.

Additional signals are also illustrated in Figure 6-19 which are available if the optional
Packet mode of the Slave FIFO module is used. These signals are designed to add packet
level awareness to the FIFO. For each FIFO, three basic signals are provided: mark, restore,
and release. Vacancy or Occupancy level signals are also provided so that the Tx and Rx IP
can know how much data is present in the FIFO of the IPIF.

The function of the mark, restore, and release pins is illustrated using the Write FIFO as
context. The Read FIFO works identically. The purpose behind the
IP2FIFO_WrFIFO_Mark signal is to mark the beginning of a packet of data. This mark
causes the Slave FIFO module to memorize where in the FIFO the datum that was marked
resides. This permits the IP to request a retransmit of the packet from the FIFO via the
IP2FIFO_WrFIFO_Restore signal, should it be required. Once a packet has been known to
be properly transmitted, or past a point where the data for the packet is committed, then
the IP can issue the IP2FIFO_WrFIFO_Release signal to release the contents of the FIFO to
accept new data. The overall effect of these signals is to permit smarter transmission of
data between the bus and the IP. In addition to the mark, restore, and release signals, the
Write FIFO also provides a set of signals which indicate how much data is present in the
FIFO. This is done via the FIFO2IP_WrFIFO_Occupancy[0:fo] signals, where fo
represents the index of bits required to contain the count of data. Similarly, the read FIFO
has a set of vacancy signals, FIFO2IP_RdFIFO_Vacancy[0:fv], where fv represents the
index of bits required to contain the count of data.

These signals are not available at present for user designs, but may be made available in a
future release of the IPIF specification. Accordingly, no timing diagrams are currently
presented to illustrate this functionality.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 93
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Generic Slave FIFO Model

Figure 6-20 illustrates the generic instance of the IPIF Slave FIFO module. The data bus
widths, and number of interrupts for the IP have been generically specified.

The IPIF Slave FIFO module also provides a clock enable signal, Bus2IP_FIFO_CE, to
indicate to other elements in the system that the FIFO is currently busy. Bus2IP_FIFO_CE

Figure 6-20: Generic Slave FIFO Module Block Diagram

UG057_28_010804

IP Slave
Peripheral

Module

Bus2IP_Clk (default)

IP2Bus_Clk (optional)

Bus2IP_FIFO_CE

FIFO2IP_Data[0:n]

FIFO2IP_WrReq

FIFO2IP_Empty

IP2FIFO_WrAck

IP2FIFO_Data[0:n]

IP2FIFO_WrReq

W
rit

e
IP

 F
IF

O

FIFO2IP_WrAck

IP2Bus_Error

IPIF Slave
FIFO Module
(withFIFOs on
both read/write

from/to IP)

Note: Supports
both with and
without DMA

Bus

IP2Bus_Retry

IP2FIFO_RdFIFO_Release

IP2FIFO_RdFIFO_Mark

IP2FIFO_RdFIFO_Restore

IP2Bus_ToutSup

IP2Bus_Intr[0:i]

FIFO2IP_Full

RdFIFO(n)

FIFO2IP_RdFIFO_Vacancy(n) [0:fv]

WrFIFO(n)

FIFO2IP_WrFIFO_Occupancy(n) [0:fo]

R
ea

d
IP

 F
IF

O

Bus2IP_Reset

IP2FIFO_WrFIFO_Release

IP2FIFO_WrFIFO_Mark

IP2FIFO_WrFIFO_Restore

http://www.xilinx.com

94 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

is valid anytime that the IPIF module is busy transferring data on the bus, and may not
reflect the current values of the write or read FIFOs. Typically, the clock enable is necessary
only when using additional IPIF modules.

Slave FIFO Signal Protocol

Figure 6-21 shows a protocol diagram of the IPIF Slave FIFO module, illustrating both
reads and writes.

Write Transactions

The write FIFO in the IPIF Slave FIFO module works as the transmit FIFO.

In addition to the write FIFO data, the write FIFO example in Figure 6-21 has the following
signals:

• FIFO2IP_WrFIFO_WrReq, a write request output (requesting the IPIF to write data
to the IP)

• IP2FIFO_WrFIFO_WrAck, a write acknowledge input (from the IP to the IPIF,
indicating it has taken the FIFO2IP_Data)

• FIFO2IP_WrFIFO_Empty, a write FIFO empty output (indicates to the IP that the
IPIF has no more data)

Figure 6-21 (top half) illustrates the IPIF Slave FIFO module write protocol. In this
diagram, the IP is first notified that there is data in the IPIF’s write FIFO by the deassertion
of the FIFO2IP_WrFIFO_Empty signal. When it transitions from high to low, it indicates
that the write FIFO has data in it. Note that the FIFO2IP_WrFIFO_Data bus is also now
valid, and remains so until the cycle that acknowledges the data. The IPIF Slave FIFO
module generates a request to the IP to take data from the IPIF by asserting the

Figure 6-21: Timing Diagram for Slave IP FIFO Module Read and Write
Transactions

UG057_29_010804

FIFO2IP_WrFIFO_Data

FIFO2IP_WrFIFO_Empty

FIFO2IP_WrFIFO_WrReq
Shows throttling
of data by slaveIP2FIFO_WrFIFO_WrAck

FIFO2IP_RdFIFO_Data

FIFO2IP_RdFIFO_Full

FIFO2IP_RdFIFO_WrReq

IP2FIFO_RdFIFO_WrAck

Bus2IP_Clk

D0 D1 D2 D3 D4

W
rit

e/
T

X
R

ea
d/

R
X

Shows throttling
of data by slave

D0 D1 D2 D3 D4

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 95
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

FIFO2IP_WrFIFO_WrReq signal. The IP can acknowledge immediately, or delay as
required. The signal for acknowledging the cycle is the IP2FIFO_WrFIFO_WrAck. This
permits the IP to throttle the data from the IPIF as required. The end of the diagram
illustrates emptying the FIFO again.

Read Transactions

The read FIFO of the IPIF Slave FIFO module works as the receive FIFO. In order to allow
communications between the IP and the IPIF, four basic signals are provided.

In addition to the read FIFO data, the read FIFO example in Figure 6-21 has the following
signals:

• IP2FIFO_RdFIFO_WrReq, a write request input (indicating a request by the IP to
write data to the IPIF)

• FIFO2IP_RdFIFO_WrAck, a write acknowledge output (from the IPIF to the IP,
indicating it has taken the IP2FIFO_Data)

• FIFO2IP_RdFIFO_Full, a read FIFO full output (indicating to the IP that the IPIF is
currently full and no other requests will be acknowledged until the FIFO empties)

Figure 6-21 (bottom half) illustrates the IPIF Slave FIFO module read protocol. In this
diagram, the IP has issued a request to write data to the IPIF FIFO via the
IP2FIFO_RdFIFO_WrReq signal. Note that in this case, the IPIF read FIFO was full,
indicated by FIFO2IP_RdFIFO_Full signal. The IP must not request another data transfer
until the full condition has been removed. Since the IPIF Slave FIFO module is busy
transferring data on the bus, it will eventually reach a condition where it is no longer full.
Once this occurs, the IPIF permits more data transfers. It holds the
FIFO2IP_RdFIFO_WrAck signal low until the same cycle that the FIFO2IP_RdFIFO_Full
signal will go low. Then it permits the FIFO2IP_RdFIFO_Full to transition to low, and the
FIFO2IP_RdFIFO_WrAck to transition high to acknowledge the requested data transfer.
The data transfers can continue for as long as the IPIF read FIFO is not full. The IP can
throttle the transfers by not issuing IP2FIFO_RdFIFO_WrReq.

Slave FIFO Signal List

Table 6-7 shows the name, direction, and a brief description of the signals which connect to
the IP from the IPIF Slave FIFO module.

Table 6-7: Signals for the IPIF Slave FIFO Module

Name Direction Description

Bus2IP_Clk From IPIF Clock source (from global buffer)

Bus2IP_Reset From IPIF Active-high synchronous reset source (from global buffer)

IP2Bus_Intr[0:i] To IPIF Interrupt input from IP to IPIF

IP2Bus_Error To IPIF Error signal from IP to IPIF (Valid only during a data
acknowledge cycle)

IP2Bus_Retry To IPIF Indicates IP wants master to retry the cycle

IP2Bus_ToutSup To IPIF Forces the suppression of watch dog timeout on the bus

IP2Bus_Clk (optional) To IPIF Optional clock source to control IPIF Slave FIFO module signals
(not yet available

Bus2IP_FIFO_CE From IPIF Clock enable of decoded IPIF Slave FIFO address space, high for
entire bus cycle

http://www.xilinx.com

96 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

FIFO2IP_WrFIFO_Data[0:n] From IPIF IPIF write FIFO data
(where n = IPIF_WR_FIFO_DATA_WIDTH –1)

FIFO2IP_WrFIFO_Empty From IPIF IPIF write FIFO is empty when high

FIFO2IP_WrFIFO_WrReq From IPIF IPIF write FIFO request, single Bus2IP_Clk
(or IP2Bus_Clk) high per datum

IP2FIFO_WrFIFO_WrAck To IPIF IPIF write FIFO acknowledge, single Bus2IP_Clk
(or IP2Bus_Clk) high per datum

IP2FIFO_RdFIFO_Data[0:n] To IPIF IPIF read FIFO data
(where n = IPIF_RD_FIFO_DATA_WIDTH –1)

FIFO2IP_RdFIFO_Full From IPIF IPIF write FIFO is empty when this signal is high

FIFO2IP_RdFIFO_WrReq To IPIF IPIF read FIFO request, single Bus2IP_Clk
(or IP2Bus_Clk) high per datum

IP2FIFO_RdFIFO_WrAck From IPIF IPIF read FIFO acknowledge, single Bus2IP_Clk
(or IP2Bus_Clk) high per datum

IP2FIFO_WrFIFO_Mark To IPIF Marks datum as first datum of packet, high during
IP2FIFO_WrFIFO_WrAck only

IP2FIFO_WrFIFO_Restore To IPIF Restores write FIFO to marked location, next request will be at
marked data (this signal is valid high only during an
IP2FIFO_WrFIFO_WrAck)

IP2FIFO_WrFIFO_Release To IPIF Releases the marked position, write FIFO can now accumulate
data from mark forward

FIFO2IP_WrFIFO_Occupancy[0:fo] From IPIF Indicates how much data is in the write FIFO
(where fo=IPIF_WR_FIFO_NUMBER_OF_OCC_BITS –1)

IP2FIFO_RdFIFO_Mark To IPIF Marks datum as first datum of packet, high during
IP2FIFO_RdFIFO_WrAck only

IP2FIFO_RdFIFO_Restore To IPIF Restores write FIFO to marked location, next request will be at
marked data (this signal is valid high only during an
IP2FIFO_RdFIFO_WrAck)

IP2FIFO_RdFIFO_Release To IPIF Releases the marked position, read FIFO can now accumulate
data from mark forward

FIFO2IP_WrFIFO_Vacancy[0:fv] From IPIF Indicates how much data is in the read FIFO (where
fv=IPIF_WR_FIFO_NUMBER_OF_VAC_BITS –1)

Table 6-7: Signals for the IPIF Slave FIFO Module (Continued)

Name Direction Description

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 97
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Slave FIFO Parameters

Table 6-8 shows the parameters that can be selected for the IPIF Slave FIFO module.

Table 6-8: Parameters for the IPIF Slave FIFO Module

Affects Parameter Value Type

General IPIF IPIF_DATA_BUS_WIDTH

Sets the size of the data bus for IPIF (where “n” in
Bus2IP_Data[0:n] or IP2Bus_Data[0:n] is equal to
IPIF_DATA_BUS_WIDTH)

8, 16, or 32 number

IPIF_NUMBER_OF_BYTE_ENABLES

Sets the number of byte enables

1, 2, or 4 number

IPIF_NUMBER_OF_INTR

Sets the number of interrupts the IP provides to the IPIF
(where “i” in IP2Bus_Intr[0:i] is equal to
IPIF_NUMBER_OF_INTR)

0 to 8 number

IPIF_INTR_ID

Sets the unique interrupt ID for this IPIF

16 bits number

IPIF_HAS_INTC

Sets whether the IPIF has a built-in interrupt controller (See
Figure 6-5 for more information)

0 or 1, 1 = true boolean

IP_HAS_OWN_INTC

Sets whether the IP has its own interrupt controller (See
Figure 6-5 for more information)

0 or 1, 1 = true boolean

http://www.xilinx.com

98 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Master Module
• “Example Master Application”

• “Generic Master Model”

• “Master Signal Protocol”

• “Master Signal List”

• “Master Parameters”

Example Master Application

Figure 6-22, page 99 is a simplified example of an IPIF Master module application and is
intended for illustrative and informative purposes only. This example illustrates a basic
state machine that monitors a block RAM (BRAM) for a semaphore, and based upon
receiving the semaphore initiates a dump from the BRAM across the bus to a slave device.

General IPIF
Slave FIFO
Module

IPIF_RD_FIFO_DEPTH

Sets the depth of the Read FIFO in
IPIF_RD_FIFO_DATA_WIDTH units

1 to 2048, in units
of data width

number

IPIF_RD_FIFO_DATA_WIDTH

Sets the width of the Read FIFO data bus

1 to 32 bits number

IPIF_RD_FIFO_TRIG_THRESHOLD

Sets the trigger point of the Read FIFO if packet processing

1 to 2048 number

IPIF_WR_FIFO_DEPTH

Sets the depth of the Write FIFO in
IPIF_WR_FIFO_DATA_WIDTH units

1 to 2048, in units
of data width

number

IPIF_WR_FIFO_DATA_WIDTH

Sets the width of the Write FIFO data bus

1 to 32 bits number

IPIF_WR_FIFO_TRIG_THRESHOLD

Sets the trigger point of the Write FIFO if packet processing

1 to 2048 number

IPIF_PACKET_FIFO_MODE_ENBL

Enables the IPIF Slave FIFO module with packet FIFO
functionality

0 or 1, 1 = true boolean

IPIF_WR_FIFO_NUMBER_OF_OCC_BITS

Sets the total number of bits in the
FIFO2IP_WrFIFO_Occupancy[0:fo] signals

0 TO 12 number

IPIF_WR_FIFO_NUMBER_OF_VAC_BITS

Sets the total number of bits in the
FIFO2IP_WrFIFO_Vacancy[0:fv] signals

0 TO 12 number

Table 6-8: Parameters for the IPIF Slave FIFO Module (Continued)

Affects Parameter Value Type

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 99
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

In Figure 6-22, a state machine watches for a semaphore, and then initiates a set of burst
cycles across the bus as required to dump the data frame. The IP2Bus_Addr signal is
generated by a simple 32-bit counter controlled by the state machine. The
IP2Bus_MstWrReq and IP2Bus_MstRdReq signals are also controlled by the state
machine. When the state machine is told that the appropriate semaphore is found, it
initiates a read or write cycle. The Bus2IP_MstWrAck and Bus2IP_MstRdAck signals are
also brought into the state machine in order to properly sequence the address from the
counter and the data to and from the BRAM. The dual port feature of the BRAM allows
independence between the IPIF and the rest of the IP.

The address counter generates addresses for the BRAM using the lower-ordered bits. This
allows the IPIF to have a range of memory on the bus that coincides with the BRAM. The
address counter also provides the address for the IPIF Master module.

The hit logic is connected to the B port of the BRAM and the IPIF Master module is
connected to the A port. It is possible to use the BRAM to cross clock boundaries with other

Figure 6-22: Example Application of IPIF Master Module

IPIF Master Module

IP2Bus_Addr

Bus2IP_WrAck
IP2Bus_WrReq

Bus2IP_Data

IP2Bus_Data

Bus2IP_RdAck
IP2Bus_MstBurst

IP2Bus_RdReq

Bus2IP_Clk

UG057_30_010804

D
CE
LD
C

Q

CNTR
32

32

32

BRAM

DIB

DOB

WR

DOA

DIA

A

Hit Logic

State
Machine

ARB

http://www.xilinx.com

100 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

elements of the IP. This is a useful technique for dealing with the often asynchronous
nature of communications systems.

Generic Master Model

Figure 6-23 illustrates a general model of the IPIF Master module. This module is used to
initiate transactions across the IPIF and onto the bus and is only required for those IPs that
need to initiate bus cycles.

The IPIF Master module provides a clock output, Bus2IP_Clk, which allows the IP to be
clocked synchronously by the IPIF. This clock is provided via a BUFG in the FPGA, and
thus no extra clock buffering is required in the IP.

Initiating a Cycle

In order to initiate a cycle on the bus, the IP must provide a full 32-bit address to the IPIF
module by way of IP2Bus_Addr[0:31]. The addresses that are valid during IP to IPIF cycles
are placed on the bus at the appropriate time by the IPIF. The lower two address bits,
IP2Bus_Addr[30:31], can be tied to logic 0 if the IP always performs 32-bit transfers across
the IPIF.

Figure 6-23: Master IP Protocol Block Diagram

UG057_31_010804

IP Master
Peripheral

Bus2IP_Clk

IP2Bus_Addr[0:31]

IPB2Bus_Data[0:n]

Bus2IP_Data[0:n]

IPB2Bus_MstBE[0:b]

IP2Bus_MstWrReq

IP2Bus_MstRdReq

IP2Bus_MstBurst (32 bit)

Bus2IP_MstWrAck

IP2Bus_BusLock

IP2Bus_Error

IPIF Master
Module

Bus

Bus2IP_Reset

Bus2IP_Retry

Bus2IP_TimeOut

IP2Bus_Intr[0:i]

Bus2IP_MstRdAck

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 101
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Figure 6-23 shows the data buses for the IP. The IP2Bus_Data bus is the write data bus
from the IP; that is, when the IP wishes to write data to the IPIF Master module, it asserts
its write data on the IP2Bus_Data lines. Similarly, when the IP wishes to read data from
the IPIF Master module, it looks for read data on the Bus2IP_Data lines.

The IPIF Master module uses byte enables to select the size of the data transferred during
the initiated bus cycle. For 32-bit IP masters, the IPIF requires four byte enables,
IP2Bus_MstBE[0:3]. Each byte enable corresponds to the byte lane in which to enable
transfers. Accordingly, byte, half word, and word transfers can be accommodated by
asserting the correct IP2Bus_MstBE[0:3]. The IP2Bus_MstBE[0] corresponds to the byte
lane contained in IP2Bus_Data[0:7] or Bus2IP_Data[0:7] when in IBM-endianess mode.

Requesting Service

In order to initiate the request for service, the IP must assert the IP2Bus_Addr, the
IP2Bus_MstBE, IP2Bus_Data (if required), and issue an IP2Bus_MstWrReq or
IP2Bus_MstRdReq. Asserting the IP2Bus_MstWrReq, along with the proper qualifiers,
initiates a master write transaction across the bus to the address pointed at by the
IP2Bus_Addr. Asserting the IP2Bus_MstRdReq, along with the proper qualifiers, initiates
a master read transaction across the bus to the address pointed at by the IP2Bus_Addr.

IP masters that are 32 bits can also issue an IP2Bus_MstBurst signal along with the
IP2Bus_MstWrReq or IP2Bus_MstRdReq signals, indicating that the IP wishes to place a
set of contiguous 32-bit transfers on the bus. The address of the transfer must always be
word aligned (e.g. address bits 30, 31 are both low). For best bus performance across the
IPIF, the master must only perform cacheline-aligned transfers using the
IP2Bus_MstBurst signal.

When the IPIF receives an acknowledge from the bus slave it is talking to, it issues either
the Bus2IP_MstWrAck or Bus2IP_MstRdAck according to the cycle type initiated by the
IP. In the case of read cycles, the assertion of Bus2IP_MstRdAck indicates that valid data
will be removed from the Bus2IP_Data bus.

Asserting Bus Locking

The IP may also choose to lock multiple transactions together via the IP2Bus_MstBusLock
signal. This asserts the Bus Locking mechanism on the bus and prevents any other Masters
from gaining access to the bus until the IP2Bus_MstBusLock signal is deasserted. A
substantial loss in performance may result if the bus locking mechanism is used too
frequently. In general, only use bus lock if a set of transactions must remain atomic across
the bus.

Completing a Cycle

The IPIF provides error feedback to the IP master about how the IP-initiated cycle
completed. If the cycle is completed normally, then none of the error feedback signals will
be true. However, the IPIF provides the Bus2IP_MstRetry signal to tell the IPIF Master
module it must back off the bus and restart the transaction. Additionally, the IPIF also
provides Bus2IP_MstError to indicate that the bus cycle(s) ended in an error condition.
Finally, the IPIF provides the Bus2IP_MstTimeout signal to indicate that the bus cycle
timed out. Timeouts are usually caused by an invalid address.

http://www.xilinx.com

102 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Master Signal Protocol

Figure 6-24 and Figure 6-25 illustrate single write and read cycles of an IP bus cycle
initiation. Each figure shows two possible access times in response to the IP, short and
long.

Write Transactions

The IP initiates a single write cycle by presenting the IP2Bus_MstWrReq, along with all
the transaction qualifiers (including IP2Bus_MstAddr, IP2Bus_MstBE, and IP2Bus_Data)
to the IPIF master. When the IPIF master receives a write request, it initiates a write
transaction. The transaction qualifiers are also used to correctly construct the master bus
cycle. In general, if the bus is not busy, then the IPIF will quickly acknowledge the IP’s
initiated bus cycle. If the bus is busy, and the IPIF Master module has to wait for another
master before it gets the bus, then the IPIF may take longer to acknowledge the cycle.

Figure 6-24 illustrates both not busy and busy cases. In the first case (left of diagram), the IP
has requested the bus write data to the bus slave, specified by the address provided by the
IP. In this case, the bus answers quickly, allowing the IPIF to quickly acknowledge the
cycle. In contrast, the right side of the diagram indicates a case where the IPIF Master
module has to wait for another master to get off the bus, and then arbitrate for the bus. In
this case, the bus takes much longer to acknowledge the cycle back to the IPIF, therefore
delaying the IPIF’s acknowledge to the IP.

Note: In this example, the bus transactions all completed normally. In the case of an error, retry, or
timeout, the IPIF Master module generates the Bus2IP_Error, Bus2IP_Retry, and/or
Bus2IP_Timeout during the Bus2IP_MstWrAck signal. It is the IP’s responsibility to correctly address
the problem.

Figure 6-24: Timing Diagram for the Master IP Module Protocol
Single Write Transaction

UG057_32_010804

IP2Bus_Addr

IP2Bus_Data

IP2Bus_MstBE

Bus2IP_MstAck

IP2Bus_MstWrReq

Bus2IP_Clk

Valid Valid

Valid Valid

Valid Valid

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 103
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Read Transactions

The IP initiates a single read cycle by presenting the IP2Bus_MstRdReq, along with all the
transaction qualifiers including IP2Bus_MstAddr and IP2Bus_MstBE. When the IPIF
master receives a read request, it initiates a bus read transaction. The transaction qualifiers
are also used to correctly construct the master bus cycle. In general, if the bus is not busy,
the IPIF will quickly acknowledge the IP’s initiated bus cycle. If the bus is busy, and the
IPIF master module has to wait for another master before it gets the bus, then the IPIF may
take longer to acknowledge the cycle.

Figure 6-25 illustrates both not busy and busy cases. In the first case (left of diagram), the IP
has requested the bus read data to the bus slave specified by the address provided by the
IP. In this case, the bus answers quickly, allowing the IPIF to quickly acknowledge the
cycle. In contrast, the right side of the diagram indicates a case where the IPIF Master
module has to wait for another master to get off the bus, and then arbitrate for the bus. In
this case, the bus takes much longer to acknowledge the cycle back to the IPIF, therefore
delaying the IPIF’s acknowledge to the IP.

Note: In this example, the bus transactions all completed normally. In the case of an error, retry, or
timeout, the IPIF Master module generates the Bus2IP_Error, Bus2IP_Retry, and/or
Bus2IP_Timeout during the Bus2IP_MstWrAck signal. It is the IP’s responsibility to correctly address
the problem.

Figure 6-25: Timing Diagram for the Master IP Module Protocol
Single Read Transaction

UG057_33_010804

IP2Bus_Addr

Bus2IP_Data

IP2Bus_BE

Bus2IP_MstAck

IP2Bus_MstRd

Bus2IP_Clk

Valid Valid

Valid Valid

Valid Valid

http://www.xilinx.com

104 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

Burst Write Transactions

Figure 6-26 illustrates the burst write cycle case of an IP bus cycle initiation. This diagram
indicates a burst write transfer. There is no real limit on the number of datums that can be
transferred, other than the attendant needs of other masters on the bus or the requirements
of the memory subsystem.

The IP initiates a a burst write cycle by presenting the IP2Bus_MstWrReq, along with all
the transaction qualifiers including IP2Bus_MstAddr, IP2Bus_MstBE, IP2Bus_MstBurst,
and IP2Bus_Data. When the IPIF master receives a burst write request, it initiates a bus
burst write transaction. The transaction qualifiers are also used to correctly construct the
Master bus cycle. In general, if the bus is not busy, the IPIF will quickly acknowledge the
IP’s initiated bus cycle. If the bus is busy, and the IPIF Master module has to wait for
another master before it gets the bus, then the IPIF may take longer to acknowledge the
cycle.

Note:

The first write datum is held until acknowledged by Bus2IP_MstWrAck. Datums are
then sent per every active Bus2IP_MstWrAck. Since the bus slave on the other end of
the transaction can throttle the data rate, it is possible that gaps may exist such as that
shown between cycle 3 and cycle K-1.

There is no limit to the number of burst cycles that can be accomplished other than the
practical utilization of the bus. It is recommended that only cache-aligned bursts be
done in order to maximize system performance.

The IP deasserts the IP2Bus_MstBurst signal when the second to last datum is transferred.
This is required to inform the IPIF logic that the next datum is the last datum of the
transfer, and to get off the bus efficiently. Figure 6-26 indicates no gap in the
Bus2IP_MstWrAcks for the last two cycles. However, in some cases the datums may be
separated by several clocks. In this case, the IP2Bus_MstBurst signal must be terminated
in the same cycle that a the second to last datum is acknowledged.

Figure 6-26: Timing Diagram for the Master IP Module Protocol Burst Write Transaction

UG057_34_010804

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_Data

IP2Bus_MstBurst

Shows throttling
of data by slave

IP2Bus_MstWrReq

Bus2IP_Clk

Bus2IP_MstWrAck

A0

1 2 3

1 2 3 4

4

5

50

0

D0 D1 D2 D3

BE0 BE1 BE2 BE3

D4

BE4

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 105
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Burst Read Transactions

Figure 6-27 illustrates the burst read cycle case of an IP bus cycle initiation. This diagram
indicates a burst read transfer. There is no real limit on the number of datums that can be
transferred, other than the attendant needs of other masters on the bus or the requirements
of the memory subsystem.

The IP initiates a burst read cycle by presenting the IP2Bus_MstRdReq, along with all the
transaction qualifiers including IP2Bus_MstAddr, IP2Bus_MstBE, and IP2Bus_MstBurst.
When the IPIF master receives a burst read request, it initiates a bus burst read transaction.
The transaction qualifiers are also used to correctly construct the bus Master bus cycle. In
general, if the bus is not busy, the IPIF will quickly acknowledge the IP’s initiated bus
cycle. If the bus is busy, and the IPIF Master module has to wait for another master before
it gets the bus, then the IPIF may take longer to acknowledge the cycle.

Note:

The first read datum is not available until acknowledged by Bus2IP_MstRdAck.
Datums are then sent per every active Bus2IP_MstRdAck. Since the bus slave on the
other end of the transaction can throttle the data rate, it is possible that gaps may exist
such as that shown between cycle 3 and cycle K-1.

There is no limit to the number of burst cycles that can be accomplished other than the
practical utilization of the bus. It is recommended that only cache-aligned bursts be
done in order to maximize system performance.

The IP deasserts the IP2Bus_MstBurst signal when the second to last datum is transferred.
This is required to inform the IPIF logic that the next datum is the last datum of the
transfer, and to get off the bus efficiently. Figure 6-27 indicates no gap in the
Bus2IP_MstWrAcks for the last two cycles. However, in some cases the datums may be
separated by several clocks. In this case, the IP2Bus_MstBurst signal must be terminated
in the same cycle that the second to last datum is acknowledged.

Figure 6-27: Timing Diagram for the Master IP Module Protocol Burst Read Transaction

UG057_35_010804

IP2Bus_Addr

IP2Bus_MstBE

Bus2IP_Data

IP2Bus_MstBurst

Bus2IP_Clk

IP2Bus_MstRdReq

Bus2IP_MstRdAck
Shows throttling
of data by slave

A0

1 2 3

1 2 3 4

4

5

50

0

D0 D1 D2 D3

BE0 BE1 BE2 BE3

D4

BE4

http://www.xilinx.com

106 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

General Burst Cycle Issues

When issuing burst cycle, the IPIF Master module must be capable of providing or
receiving a datum per Bus2IP_Clk. The bus permits slaves to respond each cycle of a burst
operation, so there is no means to tell the slave to hold off. Only slaves can throttle
transactions.

Master Signal List

Table 6-9 shows the names, direction, and a brief description of the signals that connect to
the IP from the IPIF Master module.

Table 6-9: Signals for the IPIF Master Module

Name Direction Description

Bus2IP_Clk From IPIF Clock source (from global buffer)

Bus2IP_Reset From IPIF Active-high synchronous reset source (from global buffer)

IP2Bus_Intr[0:i] To IPIF Interrupt input from IP to IPIF

IP2Bus_Addr[0:31] To IPIF 32-bit address of location Master wants to read or write

IP2Bus_MstBE[0:b] To IPIF Master byte enable, 1 = byte late valid
(where b = IPIF_NUMBER_OF_BYTE_ENABLES –1)

IP2Bus_MstWrReq To IPIF Master requests write access to the bus, single Bus2IP_Clk high

IP2Bus_MstRdReq To IPIF Master requests read access to the bus, single Bus2IP_Clk high

IP2Bus_MstBurst To IPIF Master requests burst access to bus, goes low at data
acknowledge for second to last datum

IP2Bus_MstBusLock To IPIF Master requires bus to lock, not allowing release of this master
until transfer is complete

Bus2IP_MstWrAck From IPIF Acknowledge from bus that Master write datum has been
accepted, single Bus2IP_Clk high

Bus2IP_MstRdAck From IPIF Acknowledge from bus that Master read datum has been
presented, single Bus2IP_Clk high

Bus2IP_MstError From IPIF Bus tells IP that last transfer was in error, valid during
MstRdAck or MstWrAck only

Bus2IP_MstTimeout From IPIF Bus tells IP that transfer timed out at bus slave. (Data may be
unknown.) Valid in place of MstRdAck or MstWrAck. If valid
at same time as ack, then data transferred OK.

Bus2IP_MstRetry From IPIF Bus tells IP to get off bus now. Valid in place of MstRdAck or
MstWrAck

NOTE: Acks are OK, but data must be assumed not have been
transferred in any case.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 107
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Module Specifications
R

Master Parameters

Table 6-10 shows the parameters that are associated with the IPIF Master module..

Table 6-10: Parameters for the IPIF Master Module

Affects Parameter Value Type

General IPIF IPIF_DATA_BUS_WIDTH

Sets the size of the data bus for IPIF (where “n” in
Bus2IP_Data[0:n] or IP2Bus_Data[0:n] is equal to
IPIF_DATA_BUS_WIDTH)

8, 16, or 32 number

IPIF_NUMBER_OF_BYTE_ENABLES

Sets the number of byte enables

1, 2, or 4 number

IPIF_NUMBER_OF_INTR

Sets the number of interrupts the IP provides to the IPIF
(where “i” in IP2Bus_Intr[0:i] is equal to
IPIF_NUMBER_OF_INTR)

0 to 8 number

IPIF_INTR_ID

Sets the unique interrupt ID for this IPIF

16 bits number

IPIF_HAS_INTC

Sets whether the IPIF has a built-in interrupt controller
(See Figure 6-5 for more information)

0 or 1, 1 = true boolean

IP_HAS_OWN_INTC

Sets whether the IP has its own interrupt controller
(See Figure 6-5 for more information)

0 or 1, 1 = true boolean

General IPIF
Master
Module

TBD

http://www.xilinx.com

108 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

IPIF Parameterization
Table 6-11 includes parameters and their accompanying descriptions for all modules.

Table 6-11: Complete Parameters for All IPIF Modules

Affects Parameter Value Type Module

General
IPIF

IPIF_DATA_BUS_WIDTH

Sets the size of the data bus for IPIF

(where “n” in Bus2IP_Data[0:n] or IP2Bus_Data[0:n]
is equal to IPIF_DATA_BUS_WIDTH)

8, 16, or 32 number All

IPIF_NUMBER_OF_BYTE_ENABLES

Sets the number of byte enables

1, 2, or 4 number

IPIF_NUMBER_OF_INTR

Sets the number of interrupts the IP provides to the
IPIF (where “i” in IP2Bus_Intr[0:i] is equal to
IPIF_NUMBER_OF_INTR)

0 to 8 number

IPIF_INTR_ID

Sets the unique interrupt ID for this IPIF

16 bits number

IPIF_HAS_INTC

Sets whether the IPIF has a built-in interrupt controller

(See Figure 6-5 for more information)

0 or 1, 1 = true boolean

IP_HAS_OWN_INTC

Sets whether the IP has its own interrupt controller

(See Figure 6-5 for more information)

0 or 1, 1 = true boolean

General
IPIF Slave
DMA
Handshake
Module

DMA_HNDSHK_RESPONSE_TIME_MIN

Sets the minimum number of Bus2IP_Clk cycles in
which the IPIF will respond with a DMA_ACK

0 to 255 number Slave DMA
Handshake

DMA_HNDSHK_DATA_VALID_WIDTH

Sets the number of Bus2IP_Clk cycles that the data
will remain valid during DMA handshaking

0 to 255 number

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 109
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Parameterization
R

General IPIF
Slave Control
Register
Module

IPIF_NUMBER_OF_REGS

Sets the total number of registers at the bus width set by
IPIF_DATA_BUS_WIDTH

1 to 255 number Slave
Control
Register

IPIF_REG_BASE_ADDR

Sets the base address where IPIF registers will start in
memory

32-bit decode number

IPIF_REG_BASE_ADDR_BIT_ENBL[0:31]

Allows specification of which address bits to decode in
IPIF_REG_BASE_ADDR

1 = decode
respective
address bit

mask

IPIF Slave
Control
Register
(Arrays of
Parameters)

IPIF_REGx_NUMBER_OF_BITS

Defines the number of bits for each register (where x = 0 to
IP_NUMBER_OF_REGS –1)

ordinal 0 to 32 number

IPIF_REGx_DATA_BIT_VALID_MASK[0:n]

Defines which bits in each register are physically present
(where x = 0 to IP_NUMBER_OF_REGS –1
and n = IPIF_DATA_BUS_WIDTH -1)

1 = bit position
is used in this
register

mask

IPIF_REGx_READABLE_BITS[0:n]

Defines which bits in each register are readable by the IPIF
(where x = 0 to IP_NUMBER_OF_REGS –1
and n = IPIF_DATA_BUS_WIDTH -1)

1 = bit position
will be readable
by IPIF

mask

IPIF_REGx_WRITEABLE_BITS[0:n]

Defines which bits in each register are writable by the IPIF
(where x = 0 to IP_NUMBER_OF_REGS –1

and n = IPIF_DATA_BUS_WIDTH –1)

1 = bit position
will be writable
by IPIF

mask

General IPIF
Slave SRAM
Module

IPIF_NUMBER_OF_SRAM_DECODER_REGIONS

Defines the number of decoded regions of memory address
space for the IPIF Slave SRAM module

1 to 4 decoded
regions allowed

number Slave SRAM

IPIF_SLV_SRAM_ADDR_BUS_LSB

Sets the LSB index number for the address provided by the
IPIF to the IP

ordinal 0 to 31 number

IPIF_SLV_SRAM_ADDR_BUS_MSB

Sets the MSB index number for the address provided by the
IPIF to the IP

ordinal 0 to 31 number

IPIF Slave
SRAM
Module
(Arrays of
Parameters)

IPIF_SRAMd_BASE_ADDR

Sets the base address of the “d” region for the Slave SRAM
module (where d = 0 to
IPIF_NUMBER_SRAM_DECODER_REGIONS –1)

32-bit decode of
one region

number

IPIF_SRAMd_BASE_ADDR_BIT_ENBL[0:31]

Allows specification of which bits address bits to decode in
the IPIF_SRAMd_BASE_ADDR (where d = 0 to
IPIF_NUMBER_SRAM_DECODER_REGIONS –1)

1 = decode
respective
address bit

mask

Table 6-11: Complete Parameters for All IPIF Modules (Continued)

Affects Parameter Value Type Module

http://www.xilinx.com

110 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

IPIF Signals
Table 6-12 includes signals and their accompanying descriptions for all modules.

General IPIF
Slave FIFO
Module

IPIF_RD_FIFO_DEPTH

Sets the depth of the Read FIFO in
IPIF_RD_FIFO_DATA_WIDTH units

1 to 2048, in
units of data
width

number Slave FIFO

IPIF_RD_FIFO_DATA_WIDTH

Sets the width of the Read FIFO data bus

1 to 32 bits number

IPIF_RD_FIFO_TRIG_THRESHOLD

Sets the trigger point of the Read FIFO if packet processing

1 to 2048 number

IPIF_WR_FIFO_DEPTH

Sets the depth of the Write FIFO in
IPIF_WR_FIFO_DATA_WIDTH units

1 to 2048, in
units of data
width

number

IPIF_WR_FIFO_DATA_WIDTH

Sets the width of the Write FIFO data bus

1 to 32 bits number

IPIF_WR_FIFO_TRIG_THRESHOLD

Sets the trigger point of the Write FIFO if packet processing

1 to 2048 number

IPIF_PACKET_FIFO_MODE_ENBL

Enables the IPIF Slave FIFO module with packet FIFO func-
tionality

0 or 1, 1 = true boolean

IPIF_WR_FIFO_NUMBER_OF_OCC_BITS

Sets the total number of bits in the
FIFO2IP_WrFIFO_Occupancy[0:fo] signals

0 TO 12 number

IPIF_WR_FIFO_NUMBER_OF_VAC_BITS

Sets the total number of bits in the
FIFO2IP_WrFIFO_Vacancy[0:fv] signals

0 TO 12 number

IPIF Master
Module

TBD Master

Table 6-11: Complete Parameters for All IPIF Modules (Continued)

Affects Parameter Value Type Module

Table 6-12: IPIF Signals Connecting to IP for All Modules

Name Dir Description

Slave
DMA
Hand-
shake

Slave
Ctrl
Reg

Slave
SRAM

Slave
FIFO Mstr

 Bus2IP_Clk From
IPIF

Clock source (from global buffer) x x x x x

Bus2IP_Reset From
IPIF

Active-high synchronous reset source (from global buffer) x x x x x

IP2Bus_Intr[0:i] To
IPIF

Interrupt input from IP to IPIF x x x x x

IP2Bus_Error To
IPIF

Error signal from IP to IPIF (Valid only during a data
acknowledge cycle)

x x x x

IP2Bus_Retry To
IPIF

Indicates IP wants master to retry the cycle x x x x

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 111
UG057 (v1.1) March 18, 2004 1-800-255-7778

IPIF Signals
R

IP2Bus_ToutSup To
IPIF

Forces the suppression of watch dog timeout on the bus x x x x

Bus2IP_Data[0:n] From
IPIF

IPIF Write data (where n = IPIF_DATA_BUS_WIDTH –1) x x x

IP2Bus_Data[0:n] To
IPIF

IPIF Read data (where n = IPIF_DATA_BUS_WIDTH –1) x x x

Bus2IP_BE[0:b] From
IPIF

Byte enable, 1 = byte lane valid (where b =
IPIF_NUMBER_OF_BYTE_ENABLES –1)

x x x

Bus2IP_WrReq From
IPIF

Write request from IPIF to IP, single clock high x x

IP2Bus_WrAck To
IPIF

Acknowledge that write data has been taken from
Bus2IP_Data[0:n], single Bus2IP_Clk high

x x

Bus2IP_RdReq From
IPIF

Read request from IPIF to IP, single clock high x x

IP2Bus_RdAck To
IPIF

Acknowledge that read data has been placed on
IP2Bus_Data[0:n], single Bus2IP_Clk high

x x

IP2Bus_DMA_Req To
IPIF

DMA handshake transfer request from IP x

Bus2IP_DMA_Ack From
IPIF

DMA handshake transfer acknowledge from IPIF x

Bus2IP_RegCE(r) From
IPIF

Clock enable of decoded “r” register (where r = 0 to
IPIF_NUMBER_OF_REGS –1)

x

Bus2IP_Addr[al:ah] From
IPIF

IPIF Slave SRAM address, where:
al = IPIF_SLV_SRAM_ADDR_BUS_MSB
ah = IPIF_SLV_SRAM_ADDR_BUS_LSB
(al is a lower number than ah due to big-endian

numbering)

x

Bus2IP_SRAM_CE From
IPIF

Clock enable of decoded SRAM address space, high for entire
bus cycle

x

IP2Bus_Clk (optional) To
IPIF

Optional clock source to control IPIF Slave FIFO module
signals (not yet available

x

Bus2IP_FIFO_CE From
IPIF

Clock enable of decoded IPIF Slave FIFO address space, high
for entire bus cycle

x

FIFO2IP_WrFIFO_Data[0:n] From
IPIF

IPIF write FIFO data (where n =
IPIF_WR_FIFO_DATA_WIDTH –1)

x

FIFO2IP_WrFIFO_Empty From
IPIF

IPIF write FIFO is empty when high x

FIFO2IP_WrFIFO_WrReq From
IPIF

IPIF write FIFO request, single Bus2IP_Clk
(or IP2Bus_Clk) high per datum

x

IP2FIFO_WrFIFO_WrAck To
IPIF

IPIF write FIFO acknowledge, single Bus2IP_Clk
(or IP2Bus_Clk) high per datum

x

IP2FIFO_RdFIFO_Data[0:n] To
IPIF

IPIF read FIFO data
(where n = IPIF_RD_FIFO_DATA_WIDTH –1)

x

FIFO2IP_RdFIFO_Full From
IPIF

IPIF write FIFO is empty when this signal is high x

FIFO2IP_RdFIFO_WrReq To
IPIF

IPIF read FIFO request, single Bus2IP_Clk
(or IP2Bus_Clk) high per datum

x

IP2FIFO_RdFIFO_WrAck From
IPIF

IPIF read FIFO acknowledge, single Bus2IP_Clk
(or IP2Bus_Clk) high per datum

x

Table 6-12: IPIF Signals Connecting to IP for All Modules (Continued)

Name Dir Description

Slave
DMA
Hand-
shake

Slave
Ctrl
Reg

Slave
SRAM

Slave
FIFO Mstr

http://www.xilinx.com

112 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 6: IPIF Specification
R

IP2FIFO_WrFIFO_Mark To
IPIF

Marks datum as first datum of packet, high during
IP2FIFO_WrFIFO_WrAck only

x

IP2FIFO_WrFIFO_Restore To
IPIF

Restores write FIFO to marked location, next request will be
at marked data (this signal is valid high only during an
IP2FIFO_WrFIFO_WrAck)

x

IP2FIFO_WrFIFO_Release To
IPIF

Releases the marked position, write FIFO can now
accumulate data from mark forward

x

FIFO2IP_WrFIFO_Occupancy[0:fo] From
IPIF

Indicates how much data is in the write FIFO (where fo =
IPIF_WR_FIFO_NUMBER_OF_OCC_BITS –1)

x

IP2FIFO_RdFIFO_Mark To
IPIF

Marks datum as first datum of packet, high during
IP2FIFO_RdFIFO_WrAck only

x

IP2FIFO_RdFIFO_Restore To
IPIF

Restores write FIFO to marked location, next request will be
at marked data (this signal is valid high only during an
IP2FIFO_RdFIFO_WrAck)

x

IP2FIFO_RdFIFO_Release To
IPIF

Releases the marked position, read FIFO can now accumulate
data from mark forward

x

FIFO2IP_WrFIFO_Vacancy[0:fv] From
IPIF

Indicates how much data is in the read FIFO (where
fv = IPIF_WR_FIFO_NUMBER_OF_VAC_BITS –1)

x

IP2Bus_Addr[0:31] To
IPIF

32-bit address of location Master wants to read or write x

IP2Bus_MstBE[0:b] To
IPIF

Master byte enable, 1 = byte late valid (where b =
IPIF_NUMBER_OF_BYTE_ENABLES –1)

x

IP2Bus_MstWrReq To
IPIF

Master requests write access to the bus, single Bus2IP_Clk
high

x

IP2Bus_MstRdReq To
IPIF

Master requests read access to the bus, single Bus2IP_Clk
high

x

IP2Bus_MstBurst To
IPIF

Master requests burst access to bus, goes low at data
acknowledge for second to last datum

x

IP2Bus_MstBusLock To
IPIF

Master requires bus to lock, not allowing release of this
master until transfer is complete

x

Bus2IP_MstWrAck From
IPIF

Acknowledge from bus that Master write datum has been
accepted, single Bus2IP_Clk high

x

Bus2IP_MstRdAck From
IPIF

Acknowledge from bus that Master read datum has been
presented, single Bus2IP_Clk high

x

Bus2IP_MstError From
IPIF

Bus tells IP that last transfer was in error, valid during
MstRdAck or MstWrAck only

x

Bus2IP_MstTimeout From
IPIF

Bus tells IP that transfer timed out at bus slave. (Data may be
unknown.) Valid in place of MstRdAck or MstWrAck. If
valid at same time as ack, then data transferred OK.

x

Bus2IP_MstRetry From
IPIF

Bus tells IP to get off bus now. Valid in place of MstRdAck
or MstWrAck
NOTE: B Acks are OK, but data must be assumed not have
been transferred in any case.

x

Table 6-12: IPIF Signals Connecting to IP for All Modules (Continued)

Name Dir Description

Slave
DMA
Hand-
shake

Slave
Ctrl
Reg

Slave
SRAM

Slave
FIFO Mstr

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 113
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 7

OPB to PCI Bridge Lite

Overview
The OPB to PCI Bridge translates transactions between OPB and the PCI Bus. It has a
master/slave OPB interface and can be an initiator or target on PCI. Its design utilizes an
Intellectual Property InterFace (IPIF) module to abstract OPB transactions into a simple
protocol that is easier to design with.

This document describes the “Lite” or simplified version of the OPB PCI Bridge. It is fully
capable of translating data transfers between OPB to PCI, but does not have large data
buffering capabilities. This makes the overall design much smaller in terms of FPGA
resource utilization, but also reduces the potential bandwidth for data transfers.

The PCI interface logic utilizes the Xilinx LogiCORE PCI 32/33 product which helps
designers to develop high performance, fully compliant PCI devices. The OPB to PCI
Bridge uses the PCI Core to implement a simple 32-bit, 33 MHz PCI initiator or target.
Configuration, I/O, and Memory transfer types are supported over PCI to provide
compatibility with a large number of common PCI devices.

Related Documents
• IPIF Specification

• IBM CoreConnect 64-Bit On-Chip Peripheral Bus: Architecture Specifications

• Virtex-II Pro Platform FPGAs (Advance Product Specification)

Features
• 32-bit OPB Master/Slave interface with IPIF-based design

• 32-bit/33 MHz PCI interface that is V2.2 compliant to the PCI specification

• Capable of generating Configuration, I/O, and Memory transactions

• PCI clock can be divided down from the OPB clock by any integer divisor. PCI to OPB
clock ratios of 1:1, 1:2, 1:3, etc. are possible

http://www.xilinx.com

114 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 7: OPB to PCI Bridge Lite
R

Module Port Interface

Table 7-1: Global Signals

Name Direction Description

OPB_Clk Input OPB system clock

OPB_Rst Input OPB system reset

Table 7-2: OPB Slave Signals

Name Direction Description

OPB_ABus[0:31] Input OPB address bus

OPB_BE[0:3] Input OPB byte enables

OPB_DBus[0:31] Input OPB data bus

OPB_RNW Input OPB read not write

OPB_select Input OPB select

OPB_seqAddr Input OPB sequential address

S1_DBus[0:31] Output Slave data bus

S1_errAck Output Slave error acknowledge

S1_retry Output Slave bus cycle retry

S1_toutSup Output Slave timeout suppress

S1_xferAck Output Slave transfer acknowledge

Table 7-3: PCI Master Signals

Signal Direction Description

GNT_N Input PCI Grant

PCLK_IN Input PCI Reference Clock In

IDSEL Output PCI Identification Select

REQ_N Output PCI Request Bus Access

RST_N Output PCI Reset External PCI Devices

ACK64_N Input-Output PCI 64-Bit Transfer Acknowledge (Should be
connected to external pull-up for a 32-bit PCI
bus)

AD[31:0] Input-Output PCI Address/Data Bus

CBE[3:0] Input-Output PCI Command/Byte Enables

DEVSEL_N Input-Output PCI Device Select

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 115
UG057 (v1.1) March 18, 2004 1-800-255-7778

Module Port Interface
R

FRAME_N Input-Output PCI Framing Signal

IRDY_N Input-Output PCI Initiator Ready

PAR Input-Output PCI Parity

PERR_N Input-Output PCI Parity Error

REQ64_N Input-Output PCI 64-Bit Transfer Request (Should be
connected to external pull-up for a 32-bit PCI
bus)

SERR_N Input-Output PCI Error

STOP_N Input-Output PCI Stop

TRDY_N Input-Output PCI Target Ready

Table 7-4: OPB Master Signals

Signal Direction Description

M_Abus[0:31] Output Master address bus

M_BE[0:3] Output Master Byte Enables

M_busLock Output Master bus arbitration lock

M_request Output Master bus request

M_RNW Output Master read not write

M_select Output Master select

M_seqAddr Output Master sequential address

OPB_errAck Input OPB error acknowledge

OPB_MnGrant Input OPB master bus grant

OPB_retry Input OPB bus cycle retry

OPB_timeout Input OPB timeout error

OPB_xferAck Input OPB transfer acknowledge

Table 7-5: Misc. Signals

Name Direction Description

FRAMEQ_N Output FRAME_N signal delayed by one PCI clock (for
PCI Arbiter)

IRDYQ_N Output IRDY_N signal delayed by one PCI clock (for
PCI Arbiter)

INTA Input PCI Interrupt A

Table 7-3: PCI Master Signals (Continued)

Signal Direction Description

http://www.xilinx.com

116 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 7: OPB to PCI Bridge Lite
R

Implementation
Figure 7-1 shows a conceptual high-level view of the design OPB PCI Lite Bridge. The
Bridge uses master and slave IPIF modules to help abstract the OPB interface into a
simpler protocol. It also includes a Xilinx PCI Core to simplify the task of building a fully
compliant PCI interface. The interface logic between the IPIFs and PCI Core is roughly
based on the sample target and initiator designs described in detail by the LogiCORE PCI
Design Guide. The IPIF signals are decoded into a simple set of signals that control the
initiator and target state machine logic described by the above document.

INTB Input PCI Interrupt B

INTC Input PCI Interrupt C

INTD Input PCI Interrupt D

INTR_OUT Output Logical OR of all PCI interrupts (active high)

GRST_N Output Secondary PCI global reset

Table 7-6: Parameters

Name Description

C_BASEADDR 32-bit base address of OPB to PCI Bridge (must be aligned to a
512 MB boundary)

C_HIGHADDR Must be set to C_BASEADDR + 0x1FFFFFFF

Table 7-5: Misc. Signals (Continued)

Name Direction Description

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 117
UG057 (v1.1) March 18, 2004 1-800-255-7778

Implementation
R

The IPIF signals are passed through synchronization logic to allow the OPB and PCI clock
domains to be different. The synchronization logic requires that the OPB clock be an
integer multiple of the PCI clock and that the rising edges of the two clocks be phase-
aligned to each other. In typical systems the PCI clock will operate at 25-33 MHz while the
OPB clock would be 50-100 MHz. Supporting different clock frequencies between OPB and
PCI prevents the PCI clock from limiting the OPB clock.

The bridge is designed for 33 MHz PCI clock frequencies. The designer is responsible for
ensuring that the external PCI clock is phase aligned with respect to the internal PCI clock.
This can be accomplished by utilizing the Digital Clock Managers available in the
Virtex II-Pro FPGA to deskew the external PCI clock from the internal reference clock.

OPB uses big-endian byte addressing, while PCI uses little-endian byte addressing. To
translate data between the two busses and preserve byte addressing, the data bytes and
byte enable bits for each 32-bit OPB word are swapped when going to or from PCI.
Accesses to the Configuration Address/Data Registers (described below) are also affected
by the endian swapping logic.

OPB Slave to PCI Initiator Transactions
The OPB PCI Bridge takes read/write requests at its OPB interface and completes the
transaction on PCI. Since this bridge is “Lite” it does not have large data buffers. Therefore
each single 32-bit OPB data transfer must be completed on PCI before the next data

Figure 7-1: OPB to PCI Bridge

Clock
Sync
Logic

IPIF
Slave

Module

IPIF
Master
Module

PCI
Initiator
Control
Logic

PCI
Target
Control
Logic

Handshaking Signals
(Prevent Deadlock)

O
n-C

hip P
eripheral B

us (O
P

B
)

P
C

I B
us

UG057_36_010804

PCI
LogiCORE

PCI Clock Domain OPB Clock Domain

http://www.xilinx.com

118 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 7: OPB to PCI Bridge Lite
R

transfer can begin. This is accomplished by holding back Sl_xferAck in between each word
of OPB data until the corresponding PCI data transfer has completed. This allows the
design to be very small but also reduces performance.

PCI errors due to target abort conditions are passed back to the OPB as an errAck response.
To allow for PCI device discovery without causing CPU machine-check exceptions, errors
that occur during configuration cycles are not reported back to OPB. Reading from a non-
existent PCI device during a configuration cycle will return data of 0xFFFFFFFF. PCI retry
is fed back to cause an OPB retry.

PCI Target to OPB Master Transactions
The OPB PCI Bridge takes read/write requests at its PCI target interface and completes the
transaction on OPB. Since this bridge is “Lite” it does not have large data buffers.
Therefore each single 32-bit PCI data transfer must be completed on OPB before the next
data transfer can begin. This is accomplished by performing a target disconnect with data.
The interface disconnects the PCI bus after the OPB data transfer of the first word has
completed.

OPB retries are reflected back to PCI as a target disconnect without data. OPB timeouts or
OPB transactions terminated with OPB_errAck result in a target abort on the PCI interface.

Arbiter
A simple six-master companion PCI arbiter is provided with the OPB PCI Bridge. The
arbiter implements a simple round robin arbitration scheme.

Memory Map
The Bridge maps a 512 MB OPB address space into four PCI memory regions. Each
memory region corresponds to a different transaction type as shown in Table 7-7. The base
address is user-specified as a parameter during module instantiation. Note that the
mapping from OPB to PCI address space is transparent (1:1) for the Memory transaction
type. For transactions going from PCI to OPB, the bridge responds to PCI addresses of
0x00000000 - 0x0FFFFFFF (PCI BAR 0) and generates an OPB transaction to the same
address. Edit the pci_cfg.v to change this memory window.

Table 7-7: OPB to PCI Bridge Memory Map

PCI Transfer Type / Register Name
OPB Address Boundaries (Hex) PCI Address Boundaries (Hex)

Lower Upper Lower Upper

Memory Base Addr +
00000000

Base Addr +
17FFFFFF

Base Addr +
00000000

Base Addr +
17FFFFFF

I/O Base Addr +
18000000

Base Addr +
1BFFFFFF

Base Addr +
00000000

Base Addr +
03FFFFFF

Configuration Address Base Addr +
1C000000

Base Addr +
1C000003

N/A N/A

Configuration Data Base Addr +
1C000004

Base Addr +
1C000007

N/A N/A

Configuration (External Device, Memory
Mapped, Type 0 only)

Base Addr +
1C000008

Base Addr +
1DFFFFFF

00000000 01FFFFFF

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 119
UG057 (v1.1) March 18, 2004 1-800-255-7778

Memory Map
R

Configuration
Before the PCI Bridge can generate any PCI transactions, its master interface must first be
enabled. This can be performed by another external PCI bus master if one is available.
Alternatively, the PCI Bridge supports a self configuration process whereby its master
interface can be enabled via OPB commands. Reading/writing to the self configuration
space will access the PCI configuration registers in the PCI Core (via a loopback over the
PCI Bus). Therefore it is recommended you write the value 0xFFFF0147 to address (Base
Addr + 1E000004) in order to enable the initiator functions of the PCI Core).

For configuration of external PCI devices, the PCI Bridge also supports the configuration
address and data registers that are commonly used on PCs and other embedded PCI
controllers. This configuration mechanism is described in detail in the PCI Specification. In
summary, the user first writes to the Configuration Address Register to specify the bus
number, device number, function number, register number, and so on, of the PCI device
they wish to access. Subsequently a read from Configuration Data Register will return the
contents of the specified register. Similarly, a write to the Configuration Data Register will
write data to the specified register. Note that the enable bit (MSB of the Configuration
Address Register) must be set before configuration reads or writes can be performed over
the PCI bus. A configuration read that results in a PCI transaction abort will return
0xFFFFFFFF. See Table 7-8 for a summary of the Configuration Address/Data Registers.
Note that the bit definitions for the fields of the configuration registers reflect the register
value in the PCI domain. Therefore, data being read from or written to these registers will
pass through the byte swapping logic.

Configuration (Self)(1) Base Addr +
1E000000

Base Addr +
1FFFFFFF

00000000 01FFFFFF

Note: Software must first use self-configuration accesses to enable the master interface on the bridge before it can perform any
Memory or I/O transactions.

Table 7-7: OPB to PCI Bridge Memory Map (Continued)

PCI Transfer Type / Register Name
OPB Address Boundaries (Hex) PCI Address Boundaries (Hex)

Lower Upper Lower Upper

Table 7-8: Configuration Address Register (CAR) and Configuration Data Register
(CDR)

Register
Name

Address Bits Description

CAR_EN Base Addr +
1C000000

[31] Enable Configuration Data Register
Transaction.

1 = enable

0 = disable

Base Addr +
1C000000

[30:24] Unused

CAR_BN Base Addr +
1C000000

[23:16] Bus Number

Note: For configuration access to PCI bus
number 0, a Type 0 PCI configuration access is
generated. For all other bus numbers, a Type 1
PCI configuration access is generated.

http://www.xilinx.com

120 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 7: OPB to PCI Bridge Lite
R

Xilinx LogiCORE PCI
The OPB PCI Bridge includes the V3 Xilinx PCI LogicCore. The PCI Core helps to abstract
the PCI bus into a simpler interface that makes it easier to implement full compliant PCI
devices. An evaluation version of the PCI Core is provided that will stop responding after
some hours of use. Contact your local sales office or go to http://www.xilinx.com/pci for
more information about purchasing the full (non-evaluation) version of the PCI core or for
other PCI offerings from Xilinx.

CAR_DN Base Addr +
1C000000

[15:11] Device Number

CAR_FN Base Addr +
1C000000

[10:8] Function Number

CAR_RN Base Addr +
1C000000

[7:2] Register Number

Base Addr +
1C000000

[1:0] Unused

CDR Base Addr +
1C000004

[31:0] Read/write to the register specified by the
CAR. The CAR_EN bit must be high to allow a
PCI configuration transaction to be generated.

Table 7-8: Configuration Address Register (CAR) and Configuration Data Register
(CDR) (Continued)

Register
Name

Address Bits Description

http://www.xilinx.com/pci
http://www.xilinx.com

ML300 Reference Design www.xilinx.com 121
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 8

OPB to PCI Bridge Lite

Overview
The OPB to PCI Bridge translates transactions between OPB and the PCI Bus. It has a
master/slave OPB interface and can be an initiator or target on PCI. Its design utilizes an
Intellectual Property InterFace (IPIF) module to abstract OPB transactions into a simple
protocol that is easier to design with.

This document describes the “Lite” or simplified version of the OPB PCI Bridge. It is fully
capable of translating data transfers between OPB to PCI, but does not have large data
buffering capabilities. This makes the overall design much smaller in terms of FPGA
resource utilization, but also reduces the potential bandwidth for data transfers.

The PCI interface logic utilizes the Xilinx LogiCORE PCI 32/33 product which helps
designers to develop high performance, fully compliant PCI devices. The OPB to PCI
Bridge uses the PCI Core to implement a simple 32-bit, 33 MHz PCI initiator or target.
Configuration, I/O, and Memory transfer types are supported over PCI to provide
compatibility with a large number of common PCI devices.

Related Documents
• IPIF Specification

• IBM CoreConnect 64-Bit On-Chip Peripheral Bus: Architecture Specifications

• Virtex-II Pro Platform FPGAs (Advance Product Specification)

Features
• 32-bit OPB Master/Slave interface with IPIF-based design

• 32-bit/33 MHz PCI interface that is V2.2 compliant to the PCI specification

• Capable of generating Configuration, I/O, and Memory transactions

• PCI clock can be divided down from the OPB clock by any integer divisor. PCI to OPB
clock ratios of 1:1, 1:2, 1:3, etc. are possible

http://www.xilinx.com

122 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 8: OPB to PCI Bridge Lite
R

Module Port Interface

Table 8-1: Global Signals

Name Direction Description

OPB_Clk Input OPB system clock

OPB_Rst Input OPB system reset

Table 8-2: OPB Slave Signals

Name Direction Description

OPB_ABus[0:31] Input OPB address bus

OPB_BE[0:3] Input OPB byte enables

OPB_DBus[0:31] Input OPB data bus

OPB_RNW Input OPB read not write

OPB_select Input OPB select

OPB_seqAddr Input OPB sequential address

S1_DBus[0:31] Output Slave data bus

S1_errAck Output Slave error acknowledge

S1_retry Output Slave bus cycle retry

S1_toutSup Output Slave timeout suppress

S1_xferAck Output Slave transfer acknowledge

Table 8-3: PCI Master Signals

Signal Direction Description

GNT_N Input PCI Grant

PCLK_IN Input PCI Reference Clock In

IDSEL Output PCI Identification Select

REQ_N Output PCI Request Bus Access

RST_N Output PCI Reset External PCI Devices

ACK64_N Input-Output PCI 64-Bit Transfer Acknowledge (Should be
connected to external pull-up for a 32-bit PCI
bus)

AD[31:0] Input-Output PCI Address/Data Bus

CBE[3:0] Input-Output PCI Command/Byte Enables

DEVSEL_N Input-Output PCI Device Select

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 123
UG057 (v1.1) March 18, 2004 1-800-255-7778

Module Port Interface
R

FRAME_N Input-Output PCI Framing Signal

IRDY_N Input-Output PCI Initiator Ready

PAR Input-Output PCI Parity

PERR_N Input-Output PCI Parity Error

REQ64_N Input-Output PCI 64-Bit Transfer Request (Should be
connected to external pull-up for a 32-bit PCI
bus)

SERR_N Input-Output PCI Error

STOP_N Input-Output PCI Stop

TRDY_N Input-Output PCI Target Ready

Table 8-4: OPB Master Signals

Signal Direction Description

M_Abus[0:31] Output Master address bus

M_BE[0:3] Output Master Byte Enables

M_busLock Output Master bus arbitration lock

M_request Output Master bus request

M_RNW Output Master read not write

M_select Output Master select

M_seqAddr Output Master sequential address

OPB_errAck Input OPB error acknowledge

OPB_MnGrant Input OPB master bus grant

OPB_retry Input OPB bus cycle retry

OPB_timeout Input OPB timeout error

OPB_xferAck Input OPB transfer acknowledge

Table 8-5: Misc. Signals

Name Direction Description

FRAMEQ_N Output FRAME_N signal delayed by one PCI clock (for
PCI Arbiter)

IRDYQ_N Output IRDY_N signal delayed by one PCI clock (for
PCI Arbiter)

INTA Input PCI Interrupt A

Table 8-3: PCI Master Signals (Continued)

Signal Direction Description

http://www.xilinx.com

124 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 8: OPB to PCI Bridge Lite
R

Implementation
Figure 8-1 shows a conceptual high-level view of the design OPB PCI Lite Bridge. The
Bridge uses master and slave IPIF modules to help abstract the OPB interface into a
simpler protocol. It also includes a Xilinx PCI Core to simplify the task of building a fully
compliant PCI interface. The interface logic between the IPIFs and PCI Core is roughly
based on the sample target and initiator designs described in detail by the LogiCORE PCI
Design Guide. The IPIF signals are decoded into a simple set of signals that control the
initiator and target state machine logic described by the above document.

INTB Input PCI Interrupt B

INTC Input PCI Interrupt C

INTD Input PCI Interrupt D

INTR_OUT Output Logical OR of all PCI interrupts (active high)

GRST_N Output Secondary PCI global reset

Table 8-6: Parameters

Name Description

C_BASEADDR 32-bit base address of OPB to PCI Bridge (must be aligned to a
512 MB boundary)

C_HIGHADDR Must be set to C_BASEADDR + 0x1FFFFFFF

Table 8-5: Misc. Signals (Continued)

Name Direction Description

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 125
UG057 (v1.1) March 18, 2004 1-800-255-7778

Implementation
R

The IPIF signals are passed through synchronization logic to allow the OPB and PCI clock
domains to be different. The synchronization logic requires that the OPB clock be an
integer multiple of the PCI clock and that the rising edges of the two clocks be phase-
aligned to each other. In typical systems the PCI clock will operate at 25-33 MHz while the
OPB clock would be 50-100 MHz. Supporting different clock frequencies between OPB and
PCI prevents the PCI clock from limiting the OPB clock.

The bridge is designed for 33 MHz PCI clock frequencies. The designer is responsible for
ensuring that the external PCI clock is phase aligned with respect to the internal PCI clock.
This can be accomplished by utilizing the Digital Clock Managers available in the
Virtex II-Pro FPGA to deskew the external PCI clock from the internal reference clock.

OPB uses big-endian byte addressing, while PCI uses little-endian byte addressing. To
translate data between the two busses and preserve byte addressing, the data bytes and
byte enable bits for each 32-bit OPB word are swapped when going to or from PCI.
Accesses to the Configuration Address/Data Registers (described below) are also affected
by the endian swapping logic.

OPB Slave to PCI Initiator Transactions
The OPB PCI Bridge takes read/write requests at its OPB interface and completes the
transaction on PCI. Since this bridge is “Lite” it does not have large data buffers. Therefore
each single 32-bit OPB data transfer must be completed on PCI before the next data

Figure 8-1: OPB to PCI Bridge

Clock
Sync
Logic

IPIF
Slave

Module

IPIF
Master
Module

PCI
Initiator
Control
Logic

PCI
Target
Control
Logic

Handshaking Signals
(Prevent Deadlock)

O
n-C

hip P
eripheral B

us (O
P

B
)

P
C

I B
us

UG057_37_010804

PCI
LogiCORE

PCI Clock Domain OPB Clock Domain

http://www.xilinx.com

126 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 8: OPB to PCI Bridge Lite
R

transfer can begin. This is accomplished by holding back Sl_xferAck in between each word
of OPB data until the corresponding PCI data transfer has completed. This allows the
design to be very small but also reduces performance.

PCI errors due to target abort conditions are passed back to the OPB as an errAck response.
To allow for PCI device discovery without causing CPU machine-check exceptions, errors
that occur during configuration cycles are not reported back to OPB. Reading from a non-
existent PCI device during a configuration cycle will return data of 0xFFFFFFFF. PCI retry
is fed back to cause an OPB retry.

PCI Target to OPB Master Transactions
The OPB PCI Bridge takes read/write requests at its PCI target interface and completes the
transaction on OPB. Since this bridge is “Lite” it does not have large data buffers.
Therefore each single 32-bit PCI data transfer must be completed on OPB before the next
data transfer can begin. This is accomplished by performing a target disconnect with data.
The interface disconnects the PCI bus after the OPB data transfer of the first word has
completed.

OPB retries are reflected back to PCI as a target disconnect without data. OPB timeouts or
OPB transactions terminated with OPB_errAck result in a target abort on the PCI interface.

Arbiter
A simple six-master companion PCI arbiter is provided with the OPB PCI Bridge. The
arbiter implements a simple round robin arbitration scheme.

Memory Map
The Bridge maps a 512 MB OPB address space into four PCI memory regions. Each
memory region corresponds to a different transaction type as shown in Table 8-7. The base
address is user-specified as a parameter during module instantiation. Note that the
mapping from OPB to PCI address space is transparent (1:1) for the Memory transaction
type. For transactions going from PCI to OPB, the bridge responds to PCI addresses of
0x00000000 - 0x0FFFFFFF (PCI BAR 0) and generates an OPB transaction to the same
address. Edit the pci_cfg.v to change this memory window.

Table 8-7: OPB to PCI Bridge Memory Map

PCI Transfer Type / Register Name
OPB Address Boundaries (Hex) PCI Address Boundaries (Hex)

Lower Upper Lower Upper

Memory Base Addr +
00000000

Base Addr +
17FFFFFF

Base Addr +
00000000

Base Addr +
17FFFFFF

I/O Base Addr +
18000000

Base Addr +
1BFFFFFF

Base Addr +
00000000

Base Addr +
03FFFFFF

Configuration Address Base Addr +
1C000000

Base Addr +
1C000003

N/A N/A

Configuration Data Base Addr +
1C000004

Base Addr +
1C000007

N/A N/A

Configuration (External Device, Memory
Mapped, Type 0 only)

Base Addr +
1C000008

Base Addr +
1DFFFFFF

00000000 01FFFFFF

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 127
UG057 (v1.1) March 18, 2004 1-800-255-7778

Memory Map
R

Configuration
Before the PCI Bridge can generate any PCI transactions, its master interface must first be
enabled. This can be performed by another external PCI bus master if one is available.
Alternatively, the PCI Bridge supports a self configuration process whereby its master
interface can be enabled via OPB commands. Reading/writing to the self configuration
space will access the PCI configuration registers in the PCI Core (via a loopback over the
PCI Bus). Therefore it is recommended you write the value 0xFFFF0147 to address (Base
Addr + 1E000004) in order to enable the initiator functions of the PCI Core).

For configuration of external PCI devices, the PCI Bridge also supports the configuration
address and data registers that are commonly used on PCs and other embedded PCI
controllers. This configuration mechanism is described in detail in the PCI Specification. In
summary, the user first writes to the Configuration Address Register to specify the bus
number, device number, function number, register number, and so on, of the PCI device
they wish to access. Subsequently a read from Configuration Data Register will return the
contents of the specified register. Similarly, a write to the Configuration Data Register will
write data to the specified register. Note that the enable bit (MSB of the Configuration
Address Register) must be set before configuration reads or writes can be performed over
the PCI bus. A configuration read that results in a PCI transaction abort will return
0xFFFFFFFF. See Table 8-8 for a summary of the Configuration Address/Data Registers.
Note that the bit definitions for the fields of the configuration registers reflect the register
value in the PCI domain. Therefore, data being read from or written to these registers will
pass through the byte swapping logic.

Configuration (Self)(1) Base Addr +
1E000000

Base Addr +
1FFFFFFF

00000000 01FFFFFF

Note: Software must first use self-configuration accesses to enable the master interface on the bridge before it can perform any
Memory or I/O transactions.

Table 8-7: OPB to PCI Bridge Memory Map (Continued)

PCI Transfer Type / Register Name
OPB Address Boundaries (Hex) PCI Address Boundaries (Hex)

Lower Upper Lower Upper

Table 8-8: Configuration Address Register (CAR) and Configuration Data Register
(CDR)

Register
Name

Address Bits Description

CAR_EN Base Addr +
1C000000

[31] Enable Configuration Data Register
Transaction.

1 = enable

0 = disable

Base Addr +
1C000000

[30:24] Unused

CAR_BN Base Addr +
1C000000

[23:16] Bus Number

Note: For configuration access to PCI bus
number 0, a Type 0 PCI configuration access is
generated. For all other bus numbers, a Type 1
PCI configuration access is generated.

http://www.xilinx.com

128 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 8: OPB to PCI Bridge Lite
R

Xilinx LogiCORE PCI
The OPB PCI Bridge includes the V3 Xilinx PCI LogicCore. The PCI Core helps to abstract
the PCI bus into a simpler interface that makes it easier to implement full compliant PCI
devices. An evaluation version of the PCI Core is provided that will stop responding after
some hours of use. Contact your local sales office or go to http://www.xilinx.com/pci for
more information about purchasing the full (non-evaluation) version of the PCI core or for
other PCI offerings from Xilinx.

CAR_DN Base Addr +
1C000000

[15:11] Device Number

CAR_FN Base Addr +
1C000000

[10:8] Function Number

CAR_RN Base Addr +
1C000000

[7:2] Register Number

Base Addr +
1C000000

[1:0] Unused

CDR Base Addr +
1C000004

[31:0] Read/write to the register specified by the
CAR. The CAR_EN bit must be high to allow a
PCI configuration transaction to be generated.

Table 8-8: Configuration Address Register (CAR) and Configuration Data Register
(CDR) (Continued)

Register
Name

Address Bits Description

http://www.xilinx.com/pci
http://www.xilinx.com

ML300 Reference Design www.xilinx.com 129
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 9

OPB Touch Screen Controller

Overview
This module is an On-Chip Peripheral Bus (OPB) slave device that is designed to control a
touch screen digitizer chip. It is designed to interface to the Texas Instruments (Burr-
Brown) ADS7846 touch screen controller chip present on the ML300 board but will likely
work with other compatible digitizer chips. The OPB Touch Screen Controller module
utilizes the Xilinx Intellectual Property InterFace (IPIF) to simplify its design. Interrupts for
“pen-down“ and “pen-up“ events are also supported.

Related Documents
The following documents provide additional information:

• IPIF Specification

• IBM CoreConnect™ 64-Bit On-Chip Peripheral Bus: Architecture Specifications,
Version 2.1

• Virtex-II Pro™ Platform FPGAs (Data Sheets)

• Texas Instruments (Burr-Brown) ADS7846 Touch Screen Controller Data Sheet
(http://www-s.ti.com/sc/ds/ads7846.pdf)

Features
• 32-bit OPB slave utilizing a 32-bit IPIF Slave SRAM interface

• Handles serial-to-parallel and parallel-to-serial data conversions

• Generates interrupts for “pen-down” and “pen-up” events

Module Port Interface
Information about the signals, pins, and parameters for the module are listed in the
following tables: Table 9-1, Table 9-2, Table 9-3, and Table 9-4 .

Table 9-1: Global Signals

Name Direction Description

OPB_Clk Input OPB system clock

OPB_Rst Input OPB system reset

http://www-s.ti.com/sc/ds/ads7846.pdf
http://www.xilinx.com

130 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 9: OPB Touch Screen Controller
R

Table 9-2: OPB Slave Signals

Name Direction Description

OPB_ABus[0:31] Input OPB address bus

OPB_BE[0:3] Input OPB byte enables

OPB_DBus[0:31] Input OPB data bus

OPB_RNW Input OPB read not write

OPB_select Input OPB select

OPB_seqAddr Input OPB sequential address

S1_DBus[0:31] Output Slave data bus

S1_DBusEn Output Slave data bus enable

S1_errAck Output Slave error acknowledge

S1_retry Output Slave bus cycle retry

S1_toutSup Output Slave time-out suppress

S1_xferAck Output Slave transfer acknowledge

Table 9-3: External I/O Pins

Name Direction Description

BUSY Input Busy Status flag from Touch Screen Digitizer
Chip

CS Output Chip Select

DCLK Output Serial Data Clock

DIN Output Data input to Touch Screen Digitizer Chip

DOUT Input Data Output from Touch Screen Digitizer
Chip

Intr Output Interrupt to CPU

PENIRQ Input Pen down interrupt from Touch Screen
Digitizer Chip

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 131
UG057 (v1.1) March 18, 2004 1-800-255-7778

Implementation
R

Implementation
The OPB Touch Screen Controller module uses an IPIF slave (with SRAM interface)
attached to a state machine to provide a simple interface to the touch screen digitizer (TSD)
chip. This state machine begins running when a byte is written to the control register. This
control byte is serialized and sent on to the TSD chip. The TSD chip asserts busy while it
performs the necessary analog-to-digital conversion. When complete, the TSD deasserts
busy and shifts out the result data. The serial data is converted back to parallel form and
stored in a data buffer. This buffer can then be read to return the X (horizontal), Y (vertical),
or Z (pressure) information.

Another group of logic provides simple debouncing (filtering) of the PENIRQ input to
look for clean “pen-up”/“pen-down” transitions. The Touch Screen Controller can be
operated in a polled or interrupt driven mode. In the polled mode, a status register can be
continuously read to determine when the screen is being touched. To reduce the amount of
wasted CPU time due to polling, an interrupt driven mode is also supported. In the
interrupt driven mode, a level sensitive interrupt is generated for pen-up or pen-down
transitions. Once triggered, these interrupts stay actively asserted until the corresponding
bits of the interrupt status register are cleared. To reduce the effect of noise causing
spurious interrupts, the PENIRQ signal from the TSD chip is filtered by only sampling the
PENIRQ signal at the DCLK rate (typically < 1 MHz) instead of the OPB clock rate
(typically > 50 MHz). Additionally, PENIRQ sampling is disabled during Analog-to-
Digital conversion operations in the TSD chip to further prevent unnecessary interrupts.

An internal clock divider divides down the OPB clock by a factor of 200 to generate the
serial clock to the TSD chip. It may be necessary to adjust the counter logic in the design to
support a different ratio between the OPB clock and TSD serial clock.

Table 9-4: Parameters

Name Description

C_BASEADDR 32-bit base address of Touch Screen Controller (must be
aligned to 8 byte boundary)

C_HIGHADDR Upper address boundary, must be set to value of
C_BASEADDR + 0x7 (8 byte boundary)

http://www.xilinx.com

132 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 9: OPB Touch Screen Controller
R

Memory Map
Information about the memory mapped registers is shown in Table 9-5.

Table 9-5: Memory Map

Register Address Bits
Read/
Write

Description

Base Address + 0 [0:7] W Send Command Byte: A Write to this register
will send the corresponding command byte to
the TSD Chip. Consult TSD Chip data sheet for
a description of the possible command bytes.
These command bytes control many different
functions in the TSD chip (i.e. initiating X, Y, and
Z digitize operations, setting various power
mode, etc.).

[0:3] R Returns “0000“

[4:15] R Return Data: Returns 12 bits of data returned by
the TSD chip from the previous command sent
to it. This data remains until the next time a
command byte is sent.

[16:30] - Undefined.

[31] R PENIRQ status:

0=Screen is not being touched
1=BusyScreen is being touched

This status bit is typically used when operating
in a polled mode. It reflects the current state of
the PENIRQ input from the TSD chip. Note that
the value read in this register is inverted from
the actual I/O pin.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 133
UG057 (v1.1) March 18, 2004 1-800-255-7778

Memory Map
R

Base Address + 4 [0:29] - Undefined

[30] R Pen-Down Interrupt Status Bit: *

0 = Pen-Down condition was not detected
1 = Pen-Down condition was detected

[30] W Pen-Down Interrupt Acknowledge Bit:

0 = Do not Clear/Acknowledge a Pen-Down
interrupt
1 = Clear/Acknowledge a Pen-Down interrupt

[31] R Pen-Up Interrupt Status Bit: *

0 = Pen-Up condition was not detected
1 = Pen-Up condition was detected

[31] W Pen-Up Interrupt Acknowledge Bit:

0 = Do not Clear/Acknowledge a Pen-Up
interrupt
1 = Clear/Acknowledge a Pen-Up interrupt

* Note: If either the Pen-Down or Pen-Up Interrupt Status bit is active, then an interrupt is generated
to the CPU on the Intr pin.

Table 9-5: Memory Map (Continued)

Register Address Bits
Read/
Write

Description

http://www.xilinx.com

134 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 9: OPB Touch Screen Controller
R

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 135
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 10

OPB AC97 Sound Controller

Overview
This module is an On-Chip Peripheral Bus (OPB) slave device that is designed to control an
AC97 Audio Codec chip. It provides a simple memory mapped interface to communicate
with the high-speed serial ports of the AC97 Codec. The OPB AC97 Sound Controller
module allows full access to all control and status registers in the AC97 chip and provides
data buffering for stereo playback and recording.

Related Documents
The following documents provide additional information:

• IBM CoreConnect™ 64-Bit On-Chip Peripheral Bus: Architecture Specifications,
Version 2.1

• Virtex-II Pro™ Platform FPGAs (Data Sheets)

• Intel AC'97 Specification (http://www.intel.com/labs/media/audio/)

Features
• 16-deep FIFO buffer for record and playback data

• Capable of generating interrupts when play/record FIFOs reach given fullness
thresholds

Module Port Interface
Information about the signals, pins, and parameters for the module are listed in tables
Table 10-1, Table 10-2, Table 10-3, Table 10-4.

Table 10-1: Global Signals

Name Direction Description

OPB_Clk Input OPB system clock

OPB_Rst Input OPB system reset

http://www.intel.com/labs/media/audio/
http://www.xilinx.com

136 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 10: OPB AC97 Sound Controller
R

Table 10-2: OPB Slave Signals

Name Direction Description

OPB_ABus[0:31] Input OPB address bus

OPB_BE[0:3] Input OPB byte enables

OPB_DBus[0:31] Input OPB data bus

OPB_RNW Input OPB read not write

OPB_select Input OPB select

OPB_seqAddr Input OPB sequential address

OPB_AC97_CONTROLLER_DBus[0:31] Output Slave data bus

OPB_AC97_CONTROLLER_errAck Output Slave error acknowledge

OPB_AC97_CONTROLLER_retry Output Slave bus cycle retry

OPB_AC97_CONTROLLER_toutSup Output Slave time-out suppress

OPB_AC97_CONTROLLER_xferAck Output Slave transfer acknowledge

Table 10-3: External I/O Pins

Name Direction Description

Playback_Interrupt Output Interrupt generated when play buffer fullness
is at or below programmed threshold

Record_Interrupt Output Interrupt generated when record buffer
fullness is at or above programmed threshold

Bit_Clk Input Serial Bit Clock from AC97 Codec

Sync Output Frame synchronization signal to AC97 Codec

SData_Out Output Serial Data output to AC97 Codec

SData_In Input Serial Data input from AC97 Codec

Table 10-4: Generics (Parameters)

Name Default Description

C_OPB_AWIDTH 32 Address bus width of OPB. Should be set to 32.

C_OPB_DWIDTH 32 Data bus width of OPB. Should be set to 32.

C_BASEADDR N/A Base Address of AC97 Sound Controller. Should
be set to 256 byte (or higher power of 2) boundary.

C_HIGHADDR N/A End Address of AC97 Sound Controller. Should
be set to (Base Address + 0xFF) or higher. Total
memory space from C_BASEADDR to
C_HIGHADDR must be power of 2.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 137
UG057 (v1.1) March 18, 2004 1-800-255-7778

Implementation
R

Implementation
Figure 10-1, page 138 shows a block diagram of the OPB AC97 Sound Controller. The OPB
AC97 Sound Controller module manages three primary functions to control the AC97
Codec chip. It handles the playback FIFO, record FIFO, and the Codec's control/status
registers.

C_PLAYBACK 1 Playback Enable. Set to "1" to allow playback. Set
to "0" to remove playback logic.

C_RECORD 1 Record Enable. Set to "1" to allow record. Set to "0"
to remove record logic.

C_PLAY_INTR_LEVEL 2 Sets playback FIFO fullness threshold at which
interrupt is generated:

0 = No Interrupt
1 = empty NumWords = 0
2 = halfempty Num Words <= 7
3 = halffull Num Words >= 8
4 = full Num Words = 16

C_REC_INTR_LEVEL 3 Sets record FIFO fullness threshold at which
interrupt is generated:

0 = No Interrupt
1 = empty Num Words = 0
2 = halfempty Num Words <= 7
3 = halffull Num Words >= 8
4 = full Num Words = 16

Table 10-4: Generics (Parameters) (Continued)

Name Default Description

http://www.xilinx.com

138 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 10: OPB AC97 Sound Controller
R

The playback FIFO is a 16 entry deep x 16 bit wide FIFO. The playback data is stored by
alternating between Left and Right channel data (beginning with the Left channel). This
allows the 16 entry FIFO to store a total of eight stereo data samples. Software should be
interrupt driven and programmed to refill the playback FIFO after an interrupt is received
stating that the FIFO is nearly empty. If operating in polled mode, the software should poll
the playback FIFO full status bit and refill the FIFO when it is not full. If the playback FIFO
goes into an underrun condition (FIFO is empty and Codec requests more data), an error
flag bit is set. If the playback FIFO is underrun, the FIFO must be reset to clear the error flag
and to ensure proper operation. The FIFO threshold at which an interrupt is generated can
be set to one of four possible fullness levels. The OPB AC97 controller logic automatically
handles the process of serializing the left/right playback data and sending it out to the
Codec chip when requested.

The record FIFO is a 16 entry deep x 16 bit wide FIFO. The record data is stored in an
alternating fashion between Left and Right channel data (beginning with the Left channel).
This allows the 16 entry FIFO to store a total of eight stereo data samples. Software should
be interrupt driven and programmed to empty the record FIFO after an interrupt is
received stating that the FIFO is nearly full. If operating in polled mode, the software
should poll the playback FIFO empty status bit and get data from the FIFO when it is not

Figure 10-1: OPB AC97 Sound Controller Block Diagram

SData_In

SData_Out

Parallel
to

Serial

Serial
to

Parallel

Serial
to

Parallel

Parallel
to

Serial

Parallel
to

Serial

Playback FIFO

Record FIFO

AC97
Codes

A
C

97
 In

te
rf

ac
e

L
o

g
ic

C
od

ec
 D

at
a

C
od

ec
 C

on
tr

ol
/S

ta
tu

s
R

eg
is

te
r

O
P

B
 In

te
rf

ac
e

L
o

g
ic

16

16

16

16

7

16

16

16

16

7 Address

Write Data

Read Data

OPB
OPB AC97 Sound Controller

UG057_38_010804

M
U
X

Q D

Q D

D Q

AC97 Clock Domain OPB Clock Domain

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 139
UG057 (v1.1) March 18, 2004 1-800-255-7778

Memory Map
R

empty. If the record FIFO goes into an overrun condition (FIFO is full and Codec sends
more data), an error flag bit is set. If the record FIFO is overrun, the FIFO must be reset to
clear the error flag and to ensure proper operation. The FIFO threshold at which an
interrupt is generated can be set to one of four possible emptiness levels. The OPB AC97
controller logic automatically handles the process of parallelizing the left/right serial
record data that is received from the Codec chip.

The playback and record FIFOs must be operated with the same sampling frequency
between the left and right channels. The FIFO logic does not support the left and right
channels operating at different frequencies.

Access to the control/status registers in the Codec chip is performed through a set of
keyhole registers. To write to the control registers in the Codec chip, the write data and
then the address to be accessed are written to two registers in the OPB AC97 controller.
This causes the write data to be serialized and sent to the Codec chip. A status bit signals
when the write is complete. Reading a status register in the Codec chip is performed in a
similar manner. The read address is written to the OPB AC97 controller. This causes a read
command to be serialized and sent to the Codec chip. When the Codec responds with the
read data, a status bit is set indicating that the return data is available. See the “Memory
Map” section below for more information about using these registers.

The Bit_Clk from the AC97 Codec typically runs at a frequency of 12.288 MHz while the
OPB clock runs with a typical frequency of 50-100 MHz. Because of the asynchronous
relationship between these two clock domains, the OPB AC97 controller contains special
logic to pass data between these two clock domains. In order for this synchronizing logic to
function properly, it is important that the OPB clock frequency by at least two times higher
than the AC97 Bit_Clk frequency.

Memory Map
Information about the memory mapped registers is shown in Table 10-5.

Table 10-5: Memory Map

Register
Address

Bits
Read/
Write

Description

Base Address + 0 [16:31] W Write 16 bit data sample to playback FIFO. Data should
be written two at a time to write data to the left channel
followed by the right channel.

Base Address + 4 [16:31] R Read 16 bit data sample from record FIFO. Data should be
read two at a time to get data from the left channel
followed by the right channel.

http://www.xilinx.com

140 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 10: OPB AC97 Sound Controller
R

Base Address + 8 [24] R Record FIFO Overrun:

0 = FIFO has not overrun
1 = FIFO has overrun
Note: Record FIFO must be reset to clear this bit. Once an
overrun has occurred, the Record FIFO will not operate
properly until it is reset.

[25] R Play FIFO Underrun:

0 = FIFO has not underrun
1 = FIFO has underrun

Note: Play FIFO must be reset to clear this bit. Once an
underrun has occurred, the Play FIFO will not operate
properly until it is reset.

[26] R Codec Ready:

0 = Codec is not ready to receive commands or data.
(This may occur during initial power-on of
immediately after reset.)
1 = Codec ready to run

[27] R Register Access Finish:

0 = AC97 Controller waiting for access to
control/status register in Codec to complete.
1 = AC97 Controller is finished accessing the
control/status register in Codec.

Note: This bit is cleared when there is a write to the
"AC97 Control Address Register" (described below).

[28] R Record FIFO Empty:

0 = Record FIFO not Empty
1 = Record FIFO Empty

[29] R Record FIFO Full:

0 = Record FIFO not Full
1 = Record FIFO Full

[30] R Playback FIFO Half Full:

0 = Playback FIFO not Half Full
1 = Playback FIFO Half Full

[31]
(LSB)

R Playback FIFO Full:

0 = Playback FIFO not Full
1 = Playback FIFO Full

Base Address +
12

[30] W Clear/Reset Record FIFO:

0 = Do not Reset Record FIFO
1 = Reset Record FIFO. Resetting the record FIFO also
clears the "Record FIFO Overrun" status bit.

[31] W Clear/Reset Play FIFO:

0 = Do not Reset Play FIFO
1 = Reset Play FIFO. Resetting the Play FIFO also
clears the "Play FIFO Underrun" status bit.

Table 10-5: Memory Map (Continued)

Register
Address

Bits
Read/
Write

Description

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 141
UG057 (v1.1) March 18, 2004 1-800-255-7778

Memory Map
R

Base Address +
16

[24:30] W AC97 Control Address Register:

Sets the 7 bit address of control or status register in the
Codec chip to be accessed. Writing to this register
clears the "Register Access Finish" status bit.

[31] W AC97 Control Address Register:

0 = Perform a write to the address specified above. The
write data comes from the "AC97 Control Data Write
Register" which should be set beforehand.
1 = Performs a read to the address above. Writing to
this register clears the "Register Access Finish" status
bit. This bit will be asserted high when the operation is
complete.

Base Address +
20

[24:31] R AC97 Status Data Read Register. Returns data from the
status register in the Codec that was read by the
command above. Data is valid when the "Register Access
Finish" flag is set.

Base Address +
24

[24:31] W AC97 Control Data Write Register. Contains the data to
be written to the control register in the Codec. This
register is used in conjunction with the "AC97 Control
Address Register" described above.

Table 10-5: Memory Map (Continued)

Register
Address

Bits
Read/
Write

Description

http://www.xilinx.com

142 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 10: OPB AC97 Sound Controller
R

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 143
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 11

OPB to PLB Bridge-In Module (Lite)

Overview
The OPB to PLB Bridge-In module translates OPB transactions into PLB transactions. It
functions as a slave on the OPB side and a master on the PLB side. The Bridge-In is
necessary in systems where an OPB master device requires access to PLB slave devices.
This document describes the “Lite” or simplified version of the OPB to PLB Bridge. It is
fully capable of translating data transfers from OPB to PLB, but does not have large data
buffering capabilities. This makes the overall design much smaller in terms of FPGA
resource utilization, but also reduces the potential bandwidth for data transfers. For
systems requiring maximum bandwidth across the OPB to PLB Bridge, the full version
(available through EDK) should be used. The implementation of the OPB to PLB Bridge
uses a slightly modified version of the Xilinx Intellectual Property InterFace (IPIF) module
to simplify its design.

Related Documents
The following documents provide additional information

• IPIF Specification

• IBM CoreConnect™ 64-Bit On-Chip Peripheral Bus: Architecture Specifications,
Version 2.1

• IBM CoreConnect™ 64-Bit Processor Local Bus: Architecture Specification

• Virtex-II Pro™ Platform FPGAs (Data Sheets)

Features
• 32-bit OPB slave interface utilizing a 32-bit IPIF Slave SRAM interface

• 64-bit PLB master interface

• Configurable address decoders in bridge memory window

• Small size: low FPGA resource utilization

• Logic that prevents deadlock conditions when used in systems containing the PLB to
OPB Bridge

http://www.xilinx.com

144 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 11: OPB to PLB Bridge-In Module (Lite)
R

Module Port Interface

Table 11-1: Global Signals

Name Direction Description

OPB_Clk Input OPB system clock

OPB_Rst Input OPB system reset

PLB_Clk Input PLB system clock

PLB_Rst Input PLB system reset

Table 11-2: OPB Slave Signals

Name Direction Description

OPB_ABus[0:31] Input OPB address bus

OPB_BE[0:3] Input OPB byte enables

OPB_DBus[0:31] Input OPB data bus

OPB_RNW Input OPB read not write

OPB_select Input OPB select

OPB_seqAddr Input OPB sequential address

Sl_DBus[0:31] Output Slave data bus

S1_errAck Output Slave error acknowledge

S1_retry Output Slave bus cycle retry

S1_toutSup Output Slave time-out suppress

S1_xferAck Output Slave transfer acknowledge

Table 11-3: PLB Master Signals

Name Direction Description

PLB_MnAddrAck Input PLB master address acknowledge

PLB_MnBusy Input PLB master slave busy indicator

PLB_MnErr Input PLB master slave error indicator

PLB_MnRdBTerm Input PLB master terminate read burst indicator

PLB_MnRdDAck Input PLB master read data acknowledge

PLB_MnRdDBus[0:63] Input PLB master read data bus

PLB_MnRdWdAddr[0:3] Input PLB master read word address

PLB_MnRearbitrate Input PLB master bus rearbitrate indicator

PLB_Mnssize[0:1] Input PLB slave data bus size

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 145
UG057 (v1.1) March 18, 2004 1-800-255-7778

Module Port Interface
R

PLB_MnWrBTerm Input PLB master terminate write burst indicator

PLB_MnWrDAck Input PLB master write data acknowledge

PLB_pendPri[0:1] Input PLB pending request priority

PLB_pendReq Input PLB pending bus request indicator

PLB_reqPri[0:1] Input PLB current request priority

Mn_abort Output Master abort bus request indicator

Mn_ABus[0:31] Output Master address bus

Mn_BE[0:7] Output Master byte enables

Mn_busLock Output Master bus lock

Mn_compress Output Master compressed data transfer indicator

Mn_guarded Output Master guarded transfer indicator

Mn_lockErr Output Master lock error indicator

Mn_msize[0:1] Output Master data bus size

Mn_ordered Output Master synchronize transfer indicator

Mn_priority[0:1] Output Master bus request priority

Mn_rdBurst Output Master burst read transfer indicator

Mn_request Output Master bus request

Mn_RNW Output Master read/not write

Mn_size[0:3] Output Master transfer size

Mn_type[0:2] Output Master transfer type

Mn_wrBurst Output Master burst write transfer indicator

Mn_wrDBus[0:63] Output Master write data bus

Table 11-4: DCR Slave Signals

Name Direction Description

DCR_ABus[0:9] Input DCR Address Bus

DCR_DBusIn[0:31] Input DCR Data Bus In

DCR_Read Input DCR Read Strobe

DCR_Write Input DCR Write Strobe

DCR_Ack Output DCR Acknowledge

DCR_DBusOut[0:31] Output DCR Data Bus Out

Table 11-3: PLB Master Signals (Continued)

Name Direction Description

http://www.xilinx.com

146 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 11: OPB to PLB Bridge-In Module (Lite)
R

Table 11-5: Miscellaneous I/O Pins

Name Direction Description

Bus_Error_Det Output Bus Error Detected - Interrupt Request

BGI_Trans_Abort Input Retry Request - Prevents deadlock between
bridges

Table 11-6: Parameters

Name Default Description

C_CLK_ASYNC 1 Specifies if OPB and PLB clocks are
synchronous (= 0) or asynchronous (= 1) to
each other. The synchronous setting can only
be used if the PLB clock is an integer frequency
multiple of the OPB clock and if the two clocks
are rising edge phase aligned. Setting this
parameter to 1 will increase the latency
through the bridge.

C_CLK_SAME 0 Specifies that OPB and PLB clocks are driven
by the same global clock buffer (= 1). Set to 0 if
clocks are not driven from the same global
buffer. Setting this parameter to 1 is only
allowed if C_CLK_ASYNC = 0.

C_PRECISE_ABORTS 0 Specifies that an aborted OPB write must never
cause a PLB write transaction to be requested
(=1). Otherwise set to 0. This parameter should
normally be set to 0 and is mainly provided to
support special OPB master devices requiring
precise aborts. Setting this parameter to 1 will
increase the latency through the bridge.

C_NUM_ADDR_RNG 2 Specifies number of address range
comparators are used to decode OPB addresses
destined for the PLB. Valid values are 1 or 2
only.

C_RNG0_BASEADDR N/A 32-bit lower address boundary of range
comparator #0.

C_RNG0_HIGHADDR N/A 32-bit upper address boundary of range
comparator #0. Note: this parameter has no
effect on hardware, it is used only for EDK
address checking.

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 147
UG057 (v1.1) March 18, 2004 1-800-255-7778

Implementation
R

Implementation

High Level Description
Figure 11-1, page 148 provides a high-level overview of the design of the OPB to PLB
Bridge. OPB transactions destined for the PLB are first received and decoded in the OPB
IPIF slave logic. The IPIF simplifies the design of the bridge since it converts the OPB
transactions into a simpler SRAM-like protocol.

On write transactions, up to 32 bits of write data is buffered. The OPB interface logic then
signals the PLB interface logic with the necessary information to begin the PLB transaction
at the address specified. Once the PLB write transaction is complete, the next data transfer
can begin.

On read transactions, the OPB interface logic signals the PLB interface logic with the
necessary information to begin the PLB transaction at the address specified. Up to 32 bits of
read data is then latched from the PLB to be sent back to the OPB. When the PLB
transaction is complete, the PLB interface logic signals the OPB interface so that another
transaction can be performed.

The PLB and OPB logic is decoupled so that the OPB and PLB clocks can be different. In
order to reduce the FPGA resource utilization, this “Lite” version of the bridge supports
only minimal data buffering. The Lite Bridge design can only transfer 32 bits of data per
OPB-to-PLB transaction. Therefore, on the OPB interface it will only accept a single 32-bit
data transfer at a time and must complete the transfer over the PLB before the next piece of

C_RNG0_ADDR_LSB 3 Least significant bit for address comparator #0
to look at when checking addresses. For
example:

0 = 2 GB address comparator
1 = 1 GB address comparator
...
11 = 1 MB address comparator

C_RNG1_BASEADDR N/A 32-bit lower address boundary of range
comparator #1. Valid only if
C_NUM_ADDR_RNG = 2

C_RNG1_HIGHADDR N/A 32-bit upper address boundary of range
comparator #0. Note: this parameter has no
effect on hardware, it is used only for EDK
address checking. Valid only if
C_NUM_ADDR_RNG = 2

C_RNG1_ADDR_LSB 3 Least significant bit for address comparator #1
to look at when checking addresses. For
example:

0 = 2 GB address comparator
1 = 1 GB address comparator
...
11 = 1 MB address comparator

Table 11-6: Parameters (Continued)

Name Default Description

http://www.xilinx.com

148 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 11: OPB to PLB Bridge-In Module (Lite)
R

data can be transferred. This will result in a lower maximum throughput compared to the
full bridge.

The Lite version of the OPB to PLB Bridge does not implement DCR registers. The module
contains port declarations for a DCR interface, but this is only provided for compatibility
with the full bridge. The DCR interface holds DCR_Ack at 0 and passes data through from
DCR_DBusIn to DCR_DBusOut. Also, the Bus_Error_Det interrupt bit is not
implemented, so it is driven to 0.

OPB Interface
The OPB slave interface is only designed to respond as a 32 bit byte-enable device. It does
not support dynamic bus sizing transactions.

Address Decode Cycle

OPB transactions in the IPIF begin with an address decode cycle. An extra clock cycle is
used to decode the address and transfer qualifiers of an OPB request before the request is
presented on the IP side of the IPIF.

The OPB interface is designed to handle a single data transfer at a time. It must complete a
transaction before it will accept another transaction. While it is busy performing a
transaction it will assert Sl_Retry on any subsequent transactions. Since data is transferred
one word (32 bits) at a time and there is no FIFO buffering capability, the OPB_seqAddr
signal is ignored.

Figure 11-1: High-Level Overview of OPB to PLB Bridge

UG057_39_010804

Control
State

Machine

Start/Stop
Flags

Read
Data

Start/Stop
Flags

Synchronizer

OPB
IPIF

Slave
SRAM

Address/Transfer
Qualifiers

Address/Data Acks

Read Data

Write Data

PLB PLB Interface OPB Interface
OPB-to-PLB

Transfer Interface OPB

PLB Clock Domain OPB Clock Domain

PLB Clock Domain OPB Clock Domain

Q D

D Q

Address/Transfer Qualifiers

Control
Signals

Write
Data

64

64

3232

32

32

Control
State

Machine

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 149
UG057 (v1.1) March 18, 2004 1-800-255-7778

Implementation
R

In order to prevent deadlock between the PLB to OPB Bridge and the OPB to PLB Bridge,
a BGI_Trans_Abort signal goes from the PLB to OPB Bridge to the OPB to PLB Bridge. The
signal causes the OPB to PLB Bridge to issue a retry over OPB. This forces the OPB to PLB
Bridge to relinquish the OPB when the PLB to OPB Bridge is waiting for the bus. Note that
BGI_Trans_Abort can only interrupt a read transaction. Since writes are buffered by the
OPB to PLB Bridge, they do not cause deadlock. Also note that the PLB to OPB Bridge also
buffers write data so it only needs to assert BGI_Trans_Abort when it has an OPB read
pending. If an OPB read transaction is interrupted by BGI_Trans_Abort, but the read
transaction has already been requested over PLB, the PLB transaction is allowed to
complete, but the result will be discarded.

The OPB interface is designed to handle OPB master abort conditions. An OPB master
abort occurs when the master deasserts Mn_Select before a transaction has completed. By
default, the handling of aborts is “imprecise.” This means that an aborted OPB write
transaction may still cause a PLB write transaction to be requested. If this is not acceptable,
the parameter C_PRECISE_ABORTS can be set to “1” to guarantee that aborted writes
never result in a PLB write being generated. It is uncommon for OPB masters to utilize
abort functionality, so it is recommended that this parameter be set to “0” to reduce the
overall latency of the bridge.

Write Transactions

On a write transaction from the OPB, the write data is registered allowing the OPB side of
the transaction to be acknowledged and completed. Next, the OPB interface logic signals to
the PLB interface logic to carry out the transaction over the PLB. It then provides relevant
information such as the byte enable values, destination address, and write data. The OPB
interface logic then waits for confirmation that the data transfer is complete before it can
accept another OPB transaction.

Read Transactions

On a read transaction, data must be requested from the PLB before the OPB transaction can
be acknowledged. A single word of data is requested from PLB to complete the
transaction. When the read data is available, the PLB interface signals that the data is
present.

Transfer Interface
The transfer interface facilitates the movement of data between the OPB and PLB interface
logic, which may be operating in different clock domains. Control signals are passed
through synchronizing logic to handle the transition between OPB and PLB clock
domains. Before any control signals are asserted, the data being transferred between the
OPB and PLB interfaces is latched and held valid. The user has the option to specify either
a synchronous or asynchronous timing relationship between the PLB and OPB clocks. If
the clocks are known to be synchronous, then much of the transfer interface logic can be
simplified to reduce both logic utilization and latency. The PLB clock frequency must be
greater than or equal to the frequency of the OPB clock.

PLB Interface
The PLB interface logic initiates PLB read/write transactions as a PLB master to transfer
data as requested by the OPB interface logic. Though the PLB interface is 64 bits wide, it
will not request more than 32 bits of data be transferred at a time.

http://www.xilinx.com

150 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 11: OPB to PLB Bridge-In Module (Lite)
R

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 151
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 12

OPB PS/2 Controller (Dual)

Overview
This module is an On-Chip Peripheral Bus (OPB) slave device that is designed to control
two PS/2 devices such as a mouse and keyboard. It utilizes the Xilinx Intellectual Property
InterFace (IPIF) to simplify its design. The OPB PS/2 Controller module generates
interrupts upon various transmit or receive conditions. This document assumes the user is
already familiar with the PS/2 interface protocol. Additional information about PS/2 ports
and peripherals is widely available on the Internet or through a computer hardware
reference manual.

Related Documents
The following documents provide additional information:

• IPIF Specification

• IBM CoreConnect™ 64-Bit On-Chip Peripheral Bus: Architecture Specifications,
Version 2.1

• Virtex-II Pro™ Platform FPGAs (Data Sheets)

Features
• 32-bit OPB slave utilizing a 32-bit IPIF Slave SRAM interface

• Implements 8-bit read/write interface found in many PCs to control each PS/2 port

Module Port Interface
Information about the signals, pins, and parameters for the module are listed in the
following tables.

Table 12-1: OPB Slave Signals

Name Direction Description

IPIF_Rst Input OPB system reset

OPB_BE[0:3] Input OPB byte enables

OPB_Select Input OPB select

OPB_Dbus[0:31] Input OPB data bus

OPB_Clk Input OPB system clock

http://www.xilinx.com

152 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 12: OPB PS/2 Controller (Dual)
R

OPB_Abus[0:31] Input OPB address bus

OPB_RNW Input OPB read not write

OPB_seqAddr Input OPB sequential address

Sln_XferAck Output Slave transfer acknowledge

Sln_Dbus[0:31] Output Slave data bus

Sln_DBusEn Output Slave data bus enable

Sln_errAck Output Slave error acknowledge

Sln_retry Output Slave bus cycle retry

Sln_toutSup Output Slave timeout suppress

Table 12-2: External I/O Pins

Name Direction Description

Sys_Intr1 Output Interrupt, Port #1

Clkin1 Input PS/2 Clock In, Port #1

Clkpd1 Output PS/2 Clock Pulldown, Port #1

Rx1 Input PS/2 Serial Data In, Port #1

Txpd1 Output PS/2 Serial Data Out Pulldown, Port #1

Sys_Intr2 Output Interrupt, Port #2

Clkin2 Input PS/2 Clock In, Port #2

Clkpd2 Output PS/2 Clock Pulldown, Port #2

Rx2 Input PS/2 Serial Data In, Port #2

Txpd2 Output PS/2 Serial Data Out Pulldown, Port #2

Table 12-3: Parameters

Name Description

C_BASEADDR 32-bit base address of PS/2 controller (must be aligned to 8K Byte
boundary)

C_HIGHADDR Upper address boundary, must be set to value of C_BASEADDR +
0x1FFF (8K Byte boundary)

Table 12-1: OPB Slave Signals

Name Direction Description

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 153
UG057 (v1.1) March 18, 2004 1-800-255-7778

Implementation
R

Implementation
Figure 12-1 shows a block diagram of the OPB PS/2 Controller module. It uses an IPIF
slave with an SRAM interface in addition to simple state machines and shift registers to
implement its functionality. Each PS/2 port is controlled by a separate set of eight byte-
wide registers.

For transmitting data, a byte write to the transmit register will cause that data to be
serialized and sent to the PS/2 device. Status registers and interrupts then signal when the
transmission is complete and if there are any errors reported. Similarly, receiver status
registers and interrupts signal when data has been received from the PS/2 device. Any
errors with received data are also reported.

The PS/2 controller can be operated in a polled mode or an interrupt driven mode. In the
interrupt driven mode, separate register bits for setting, clearing, and masking of
individual interrupts are provided.

Since the PS/2 interface uses a open collector circuit for transmitting data, the output
signals Clkpd and Txpd should be tied to a transistor or logic gate capable of pulling the
5V PS/2 clock and data signals low. Note that the PS/2 protocol specifies 5V signalling.
Therefore, it is necessary to have the proper interface circuitry to prevent over-voltage
conditions on the FPGA I/O. Consult the schematics and documentation for the Xilinx
ML300 board for an example implementation of a PS/2 port interface circuit.

Figure 12-1: OPB PS/2 Controller Block Diagram

Misc control logic

TX State Machine

RX State Machine

PS2_1_DATA_OUT

PS2_1_DATA_IN

PS2_1_CLK_OUT

PS2_1_CLK_IN

PS2_2_DATA_OUT

PS2_2_DATA_IN

PS2_2_CLK_OUT

PS2_2_CLK_IN

UG057_40_010804

Shift
Registers

and
Clock

Controls

Memory
Mapped

Registers

ps2_reg.v

ps2_sie.v

OPB
Slave
IPIF

Misc control logic

TX State Machine

RX State Machine

Shift
Registers

and
Clock

Controls

Memory
Mapped

Registers

ps2_reg.v

ps2_sie.v

OPB

http://www.xilinx.com

154 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 12: OPB PS/2 Controller (Dual)
R

Memory Map
Information about the memory mapped registers is shown in Table 12-4.

Note:

1. Control/status registers for PS/2 Port #1 start at the base address
(value of parameter C_BASEADDR).

2. Control/status registers for PS/2 Port #2 start at the base address + 0x1000
(value of parameter C_BASEADDR + 0x1000).

All fields marked “Reserved” will return zero. The field in INTSTA(x10) will be AND'ed
with the fields in INTM(x18), then the bits get OR'ed to form a single Interrupt signal.

The register pairs INTSTA/INTCLR and INTMSET/INTMCLR are implemented to allow
single bit register updates which reduce the latency of interrupt handling. INTCLR and
INTMCLR are helper functions that make setting and clearing the Interrupt Status Register
and Interrupt Mask Register faster.

The register definitions are shown in Table 12-5, page 155 (this table spans several pages).

Note:

The second PS/2 Port has an identical set of control/status registers at an additional
offset of 0x1000.

Table 12-4: Memory Map Table

Offset Bit
0

Bit
1

Bit
2

Bit
3

Bit
4

Bit
5

Bit
6

Bit
7

Bit
8-31

x00 Reserved SRST R*

x04 Reserved STR.6
tx_full_sta

STR.7
rx_full_sta

R*

x08 RXR R*

x0c TXR R*

x10 Reserved INSTA.2
rx_full

INSTA.3
rx_err

INSTA.4
rx_ovf

INSTA.5
tx_ackf

INSTA.6
tx_noack

INSTA.7
wdt_tout

R*

x14 Reserved INTCLR.2
rx_full

INTCLR.3
rx_err

INTCLR.4
rx_ovf

INTCLR.5
tx_ackf

INTCLR.6
tx_noack

INTCLR.7
wdt_tout

R*

x18 Reserved INTMSET.2
rx_full

INTMSET.3
rx_err

INTMSET.4
rx_ovf

INTMSET.5
tx_ackf

INTMSET.6
tx_noack

INTMSET.7
wdt_tout

R*

x1c Reserved INTMCLR.2
rx_full

INTMCLR.3
rx_err

INTMCLR.4
rx_ovf

INTMCLR.5
tx_ackf

INTMCLR.6
tx_noack

INTMCLR.7
wdt_tout

R*

* R = Reserved

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 155
UG057 (v1.1) March 18, 2004 1-800-255-7778

Memory Map
R

Table 12-5: OPB PS/2 Slave Device Pin Description

Name Field Name Bit Direction Description

Base Address + 0
(Offset x00)

SRST 7 W Software Reset.

Writing '1' into this register results in the PS/2 controller
being reset to idle state. Also, registers at offset x04, x10,
x14 will be reset by this bit as well.

Base Address + 4
(Offset x04)

STR.6
tx_full_sta

6 R TX Register Full.

PS/2 Serial Interface Engine is busy. This register can
only be modified by PS/2 SIE hardware. Software does
not have direct write permission to change this field since
this field is set by the state machine in the SIE. Software
can clear this field indirectly is by using the SRST register.

STR.7
rx_full_sta

7 R RX Register Full.

PS/2 Serial Interface Engine received a byte package. The
associated interrupt “rx_full” (INTSTA.3) will also be set.
Software does not have direct write permission to change
this field since this field is set by the state machine in the
SIE. Software can clear this field indirectly is by using the
SRST register.

Base Address + 8
(Offset x08)

RXR [0:7] R RX received data.

Base Address + 12
(Offset x0c)

TXR [0:7] W TX transmission data.

http://www.xilinx.com

156 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 12: OPB PS/2 Controller (Dual)
R

Base Address + 16
(Offset x10)

INSTA.2
rx_full

2 R Interrupt Status Register - RX data register full.

This field will be updated by the PS/2 Serial Interface
when the SIE has received a data packet. Software can
clear this field by writing a '1' into the corresponding
interrupt clear register INTCLR.2 (offset x14.2)

INSTA.3
rx_err

3 R Interrupt Status Register - RX data error.

This field will be updated by the PS/2 Serial Interface
when the SIE has found that RX data is a bad packet.
Software can clear this field by writing a '1' into the
corresponding interrupt clear register INTCLR.3
(offset x14.3)

INSTA.4
rx_ovf

4 R Interrupt Status Register - RX data register overflow.

This field will be updated by the PS/2 Serial Interface
when the SIE overwrites a data packet before the
previous data was read. Software can clear this field by
writing an '1' into the corresponding interrupt clear
register INTCLR.4 (offset x14.4)

INSTA.5
tx_ackf

5 R Interrupt Status Register - TX acknowledge received.

This field will be updated by the PS/2 Serial Interface
when the SIE completes transmission of a data byte and
has received acknowledgement from the PS/2
device.Software can clear this field by writing an '1' into
the corresponding interrupt clear register INTCLR.5
(offset x14.5)

INSTA.6
tx_noack

6 R Interrupt Status Register - TX acknowledge not received.

This field will be updated by the PS/2 Serial Interface
when the SIE completes transmission of a data byte but
has not yet received acknowledgement from the PS/2
device.Software can clear this field by writing an '1' into
the corresponding interrupt clear register INTCLR.6
(offset x14.6)

INSTA.7
wdt_tout

7 R Interrupt Status Register - Watch dog timer timeout.

This field will be updated by the PS/2 Serial Interface
when the SIE does not receive a PS/2 Clock while a
packet is still being transmitted. Software can clear this
field by writing an '1' into the corresponding interrupt
clear register INTCLR.7 (offset x14.7)

Table 12-5: OPB PS/2 Slave Device Pin Description (Continued)

Name Field Name Bit Direction Description

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 157
UG057 (v1.1) March 18, 2004 1-800-255-7778

Memory Map
R

Base Address + 20
(Offset x14)

INTCLR.2
rx_full

2 R*/W Interrupt Clear Register - RX data register full.

Writing a '1' to this field will clear INTSTA.2.
Writing a '0' has no effect.

INTCLR.3
rx_err

3 R*/W Interrupt Clear Register - RX data error.

Writing a '1' to this field will clear INTSTA.3.
Writing a '0' has no effect.

INTCLR.4
rx_ovfl

4 R*/W Interrupt Clear Register - RX data register overflow.

Writing a '1' to this field will clear INTSTA.4.
Writing a '0' has no effect.

INTCLR.5
tx_ack

5 R*/W Interrupt Clear Register - TX acknowledge received.

Writing a '1' to this field will clear INTSTA.5.
Writing a '0' has no effect.

INTCLR.6
tx_noak

6 R*/W Interrupt Clear Register - TX acknowledge not received.

Writing a '1' to this field will clear INTSTA.6.
Writing a '0' has no effect.

INTCLR.7
wdt_toutl

7 R*/W Interrupt Clear Register - Watch dog timer timeout.

Writing a '1' to this field will clear INTSTA.7.
Writing a '0' has no effect.

* If software tries to read from INTCLR (offset x14), the value of INTSTA (offset x10) will be returned.

Base Address + 24
(Offset x18)

INTMSET.2
rx_full

2 R*/W Interrupt Mask Set Register - RX data register full.
Writing a '1' to this field will set INTM.2.
Writing a '0' has no effect.

INTMSET.3
rx_err

3 R*/W Interrupt Mask Set Register - RX data error.

Writing a '1' to this field will set INTM.3.
Writing a '0' has no effect.

INTMSET.4
rx_ovf

4 R*/W Interrupt Mask Set Register - RX data register overflow.

Writing a '1' to this field will set INTM.4.
Writing a '0' has no effect.

INTMSET.5
tx_ack

5 R*/W Interrupt Mask Set Register - TX acknowledge received.

Writing a '1' to this field will set INTM.5.
Writing a '0' has no effect.

INTMSET.6
tx_noack

6 R*/W Interrupt Mask Set Register - TX acknowledge not
received.

Writing a '1' to this field will set INTM.6.
Writing a '0' has no effect.

INTMSET.7
wdt_tout

7 R*/W Interrupt Mask Set Register - Watch dog timer timeout.

Writing a '1' to this field will set INTM.7.
Writing a '0' has no effect.

* If software tries to read from INTMSET (offset x18), the value of INTM register will be returned.

Table 12-5: OPB PS/2 Slave Device Pin Description (Continued)

Name Field Name Bit Direction Description

http://www.xilinx.com

158 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 12: OPB PS/2 Controller (Dual)
R

Base Address + 28
(Offset x1C)

INTMCLR.
2
rx_full

2 R*/W Interrupt Mask Clear Register - RX data register full.

Writing a '1' to this field will clear INTM.2.
Writing a '0' has no effect.

INTMCLR.
3
rx_err

3 R*/W Interrupt Mask Clear Register - RX data error.

Writing a '1' to this field will clear INTM.3.
Writing a '0' has no effect.

INTMCLR.
4
rx_ovf

4 R*/W Interrupt Mask Clear Register - RX data register
overflow.

Writing a '1' to this field will clear INTM.4.
Writing a '0' has no effect.

INTMCLR.
5
rx_ack

5 R*/W Interrupt Mask Clear Register - TX acknowledge
received.

Writing a '1' to this field will clear INTM.5.
Writing a '0' has no effect

INTMCLR.
6
rx_noack

6 R*/W Interrupt Mask Clear Register - TX acknowledge not
received.

Writing a '1' to this field will clear INTM.6.
Writing a '0' has no effect.

INTMCLR.
7
wdt_tout

7 R*/W Interrupt Mask Clear Register - Watch dog timer timeout.

Writing a '1' to this field will clear INTM.7.
Writing a '0' has no effect.

* If software tries to read from IINTMCLR (offset x1C), the value of INTM (offset x18) will be returned.

Table 12-5: OPB PS/2 Slave Device Pin Description (Continued)

Name Field Name Bit Direction Description

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 159
UG057 (v1.1) March 18, 2004 1-800-255-7778

R

Chapter 13

PLB TFT LCD Controller

Overview
The PLB TFT LCD Controller is a hardware display controller for a 640x480 resolution
VGA screen. It is capable of showing up to 256K colors and is designed for the NEC TFT
Color LCD Module NL6448BC20-08 that is mounted on the Xilinx ML300 board. The
design contains a PLB master interface that reads video data from a PLB attached memory
device (not part of this design) and displays the data onto the TFT screen. The design also
contains a Device Control Register (DCR) interface used for configuring the controller.

Related Documents
The following documents provide additional information

• IBM CoreConnect™ 32-Bit Device Control Register Bus: Architecture Specifications

• IBM CoreConnect™ 64-Bit Processor Local Bus: Architecture Specification

• Virtex-II Pro™ Platform FPGAs (Data Sheets)

• NEC TFT Color LCD Module: NL6448BC20-08
(http://www.nec-lcd.com/english/pdf/en0442ej.pdf)

Features
• 32-bit DCR slave interface for control registers

• 64-bit PLB master interface for fetching pixel data

• Support for asynchronous PLB and TFT clocks

Module Port Interface

Table 13-1: Global Signals

Name Direction Description

SYS_dcrClk Input DCR System Clock

SYS_plbClk Input PLB System Clock

SYS_plbReset Input PLB System Reset

SYS_tftClk Input TFT Video Clock

http://www.xilinx.com
http://www.nec-lcd.com/english/pdf/en0442ej.pdf

160 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 13: PLB TFT LCD Controller
R

Table 13-2: PLB Master Signals

Name Direction Description

PLB_MnAddrAck Input PLB master address acknowledge

PLB_MnBusy Input PLB master slave busy indicator

PLB_MnErr Input PLB master slave error indicator

PLB_MnRdBTerm Input PLB master terminate read burst indicator

PLB_MnRdDAck Input PLB master read data acknowledge

PLB_MnRdDBus[0:63] Input PLB master read data bus

PLB_MnRdWdAddr[0:3] Input PLB master read word address

PLB_MnRearbitrate Input PLB master bus rearbitrate indicator

PLB_Mnssize[0:1] Input PLB slave data bus size

PLB_MnWrBTerm Input PLB master terminate write burst indicator

PLB_MnWrDAck Input PLB master write data acknowledge

PLB_pendPri[0:1] Input PLB pending request priority

PLB_pendReq Input PLB pending bus request indicator

PLB_reqPri[0:1] Input PLB current request priority

Mn_abort Output Master abort bus request indicator

Mn_ABus[0:31] Output Master address bus

Mn_BE[0:7] Output Master byte enables

Mn_busLock Output Master bus lock

Mn_compress Output Master compressed data transfer indicator

Mn_guarded Output Master guarded transfer indicator

Mn_lockErr Output Master lock error indicator

Mn_msize[0:1] Output Master data bus size

Mn_ordered Output Master synchronize transfer indicator

Mn_priority[0:1] Output Master bus request priority

Mn_rdBurst Output Master burst read transfer indicator

Mn_request Output Master bus request

Mn_RNW Output Master read/not write

Mn_size[0:3] Output Master transfer size

Mn_type[0:2] Output Master transfer type

Mn_wrBurst Output Master burst write transfer indicator

Mn_wrDBus[0:63] Output Master write data bus

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 161
UG057 (v1.1) March 18, 2004 1-800-255-7778

Module Port Interface
R

Table 13-3: DCR Slave Signals

Name Direction Description

DCR_ABus[0:9] Input DCR Address Bus

DCR_DBusIn[0:31] Input DCR Data Bus In

DCR_Read Input DCR Read Strobe

DCR_Write Input DCR Write Strobe

DCR_Ack Output DCR Acknowledge

DCR_DBusOut[0:31] Output DCR Data Bus Out

Table 13-4: External Output Pins

Name Direction Description

TFT_LCD_HSYNC Output Horizontal Sync (Negative Polarity)

TFT_LCD_VSYNC Output Vertical Sync (Negative Polarity)

TFT_LCD_DE Output Data Enable

TFT_LCD_CLK Output Video Clock

TFT_LCD_DPS Output Selection of Scan Direction

TFT_LCD_R[5:0] Output Red Pixel Data

TFT_LCD_G[5:0] Output Green Pixel Data

TFT_LCD_B[5:0] Output Blue Pixel Data

Table 13-5: Parameters

Name Default Description

C_DCR_BASEADDR N/A Base address of DCR control
registers. Must be aligned on an even
DCR address boundary (least
significant bit = 0)

C_DCR_HIGHADDR N/A Upper address boundary, must be set
to value of C_DCR_BASEADDR + 1

C_DEAFULT_TFT_BASE_ADDR[0:10] N/A Most significant bits of base address
for video memory. The 11 most
significant bits of this address define
the 2 MB region of memory used for
the video frame storage.

http://www.xilinx.com

162 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 13: PLB TFT LCD Controller
R

Hardware

Implementation
Figure 13-1, page 163 shows a high-level block diagram of the design. The PLB TFT LCD
Controller has a PLB master interface that reads pixel data from an external PLB memory
device. It reads the pixel data for each display line using a series of 8-word cacheline
transactions. The pixel data is stored in an internal line buffer and then sent out to the TFT
display with the necessary timing to correctly display the image. The video memory is
arranged so that each RGB pixel is represented by a 32-bit word in memory (See “Memory
Map,” page 166). As each line interval begins, data is fetched from memory, buffered, and
then displayed. This process repeats continuously over every line and frame to be
displayed on the 640x480 VGA TFT screen.

C_DPS_INIT 1 Initial Reset State of DPS control bit:

0 = DPS output bit resets to 0.
This initializes the display to use a
normal scan direction.

1 = DPS output bit resets to 1.
This initializes the display to use a
reverse scan direction (rotates
screen 180 degrees).

C_ON_INIT 1 Initial Reset State of TFT
enable/disable bit:

0 = Disable TFT display on reset.
The causes a black screen to be
displayed on reset.

1 = Enable TFT display on reset.
The causes the PLB TFT LCD
Controller to operate normally on
reset.

Table 13-5: Parameters (Continued)

Name Default Description

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 163
UG057 (v1.1) March 18, 2004 1-800-255-7778

Hardware
R

The back-end logic driving the TFT display operates in the same clock domain as the video
clock. It reads out data from the dual port line buffer and transmits the pixel data to the
TFT. The back-end logic automatically handles the timing of all the video synchronization
signals including back porch and front porch blanking. See “Video Timing,” page 164 for
more information.

The PLB TFT LCD Controller allows for the PLB clock and TFT video clocks to be
asynchronous to each other. Special logic allows control signals to be passed between
asynchronous PLB and TFT clock domains. A dual port BRAM is used as the line buffer to
pass video data between the two clock domains.

It is important to design the system so that there is sufficient bandwidth between the PLB
TFT LCD Controller and the PLB memory device to meet the video bandwidth
requirements of the TFT. Furthermore, there must be enough available bandwidth left
over for the rest of the system. If more bandwidth is needed for the rest of the system, the
TFT clock frequency can be reduced. However, reducing the TFT clock frequency also
lowers the refresh rate of the screen. This may lead to a noticeable flicker on the screen if
the TFT clock is too slow.

The PLB interface logic has the ability to skip reading a line of data if it fails to finish
reading data from a previous line. This prevents temporary shortages of available PLB
bandwidth from causing the PLB TFT controller from losing synchronization between the
PLB and TFT interface logic. Note that extreme shortages of available bandwidth for the
PLB TFT controller may cause the screen to appear “unstable” as stale lines of video data
are displayed on the screen.

A DCR interface allows software to change the base address of video memory to be read
from. This allows frames of video to be drawn in other memory locations without being
seen on the display. The software can then change the video memory base address to
display a different frame when it is ready. The DCR interface also allows the display to be
rotated by 180 degrees or turned off. When the display is turned off a black screen is output
while the PLB interface stops requesting data.

Figure 13-1: High-Level Block Diagram

UG057_41_010804

1 kB x 18 bit
Dual Port

BRAM

TFT
Interface

Logic

Synchronizer

Column Addr

Red Data

Green Data

Blue Data

Column Addr

Get Line

Video Signals
to TFT Display

Red Data

Green Data

Blue Data

PLB
Interface

Logic
(Master)

PLB

TFT Clock Domain PLB Clock Domain

10

6

6

6

10

6

6

6

http://www.xilinx.com

164 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 13: PLB TFT LCD Controller
R

Video Timing
The diagrams in Figure 13-2 through Figure 13-5 describe the timing of video signals from
the PLB TFT LCD Controller.

Figure 13-2: Hsync and TFT Clock

Figure 13-3: Horizontal Data

UG057_42_010804

th = 800 TFT Clocks (Horizontal)

Hsync

thp = 96 TFT Clocks

th

thp

UG057_43_010804

D (0,Y)

thp = 96 TFT Clocks
thb = 48 TFT Clocks
DE = 640 TFT Clocks
thf = 16 TFT Clocks

thp

1 12

thb thf640CLK (Fixed)

1CLK

Invalid Invalid

Hsync

CLK

DE
R0 to R5
G0 to G5
B0 to B5

D (1,Y) D (639,Y)

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 165
UG057 (v1.1) March 18, 2004 1-800-255-7778

Hardware
R

Figure 13-4: Vsync and h_syncs

UG057_44_010804

tvp = 2 h_syncs
tv = 525 h_syncs (Vertical)

Vsync

Display period is 480 h_syncs

tv

tvp

Figure 13-5: Vertical Data

UG057_45_010804

D(0,Y)

tvp = 2 h_syncs
tvb = 31 h_syncs
DE = 640 TFT Clocks
tvf = 12 h_syncs

tvp

1

D(X,Y)D(X,0) D(X,479)

12 3

tvb tvf480H (Fixed)

1H

Invalid Invalid

Invalid Invalid

Note: X = 0 to 639

Vsync

DE
R0 to R5
G0 to G5
B0 to B5

R0 to R5
G0 to G5
B0 to B5

Hsync

D(1,Y) D(639,Y)D(638,Y)D(X,Y)

DE

Display period is 480 h_syncs

http://www.xilinx.com

166 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 13: PLB TFT LCD Controller
R

Memory Map

Video Memory
The video memory is stored in a 2 MB region of memory consisting of 1024 data words (1
word = 32 bits) per line by 512 lines per frame. Of this 1024 x 512 memory space only the
first 640 columns and 480 rows are displayed on the screen.

For a given row (0 to 479) and column (0 to 639), the pixel color information is encoded as
shown in Table 13-6.

Table 13-6: Pixel Color Encoding

Pixel Address Bits Description

TFT Base Address +
(4096 * row) +
(4 * column)

[31:24] Undefined

[23:18] Red Pixel Data:

000000 = darkest → 111111 = brightest

[17:16] Undefined

[15:10] Green Pixel Data:

000000 = darkest→111111 = brightest

[9:8] Undefined

[7:2] Blue Pixel Data:

000000 = darkest→111111 = brightest

[1:0] Undefined

http://www.xilinx.com

ML300 Reference Design www.xilinx.com 167
UG057 (v1.1) March 18, 2004 1-800-255-7778

Memory Map
R

Control Registers (DCR Interface)

Table 13-7: Control Registers (DCR Interface)

Register Address Bits Read/Write Description

DCR Base Address + 0 [31:0] RW Base Address of video memory. This is
the address of a PLB accessible
memory device that acts as the video
memory. This address must be aligned
on a 2 MB boundary (i.e. only the
upper 11 bits are writable, the
remaining address bits are always 0)

DCR Base Address + 1 [31:2] - Undefined

[1] RW DPS control bit:

0 = Set DPS output bit to 0. The sets
the display to use a normal scan
direction.

1 = Set DPS output bit to 1. The sets
the display to use a reverse scan
direction (rotates screen 180
degrees).

[0] RW TFT enable/disable bit:

0 = Disable TFT display. The causes
a black screen to be displayed and it
disables the generation of PLB read
transactions.

1 = Enable TFT display. The causes
the PLB TFT LCD Controller to
operate normally.

http://www.xilinx.com

168 www.xilinx.com ML300 Reference Design
1-800-255-7778 UG057 (v1.1) March 18, 2004

Chapter 13: PLB TFT LCD Controller
R

http://www.xilinx.com

	ML300 Reference Design
	Table of Contents
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Introduction to ML300 Embedded PPC405 Reference System
	Introduction
	Requirements
	V2PDK Users and New EDK Users
	CoreConnect
	Reference System Information
	Further Reading
	Resources for EDK Users (Including New Users)
	Documentation Provided by Xilinx
	IBM ® CoreConnect™ Documentation

	ML300 Embedded PPC405 Reference System
	Introduction
	Hardware
	Overview
	Processor Local Bus (PLB)
	On-Chip Peripheral Bus (OPB)
	Device Control Registers (DCR)
	Other Devices
	Interrupts
	Clock/Reset Distribution
	CPU Debug via JTAG
	IP Version and Source

	Simulation and Verification
	Simulation Overview
	SWIFT and BFM CPU Models
	Behavioral Models

	Design Flow Environment
	Memory Map
	ML300 Specific Registers
	Extending or Modifying the Design
	Adding or Removing IP Cores
	Other Modifications
	Behavioral Models/Testbenches

	Directory and File Listings

	EDK Tutorial and Demonstration
	Introduction
	Instructions for Invoking the EDK tools
	Launching Xilinx Platform Studio (XPS)

	Instructions for Selecting Software Application
	Instructions for Running Functional Simulations
	Instructions for Building / Implementing Design
	Instructions for Downloading Design
	Download Using Parallel Cable IV (iMPACT Program)
	Download Using System ACE

	Software
	Building the Software Demo Applications
	Building the Linux BSP

	Introduction to Hardware Reference IP
	Introduction
	Hardware Reference IP Source Format and Size
	Further Reading
	Resources for EDK Users (Including New Users)
	Documentation Provided by Xilinx
	IBM CoreConnect Documentation

	Using IPIF to Build IP
	Abstract
	Introduction
	SRAM Protocol Overview of IPIF
	Basic Write Transactions
	Basic Read Transactions
	IPIF Status and Control Signals

	Using IPIF to Create a GPIO Peripheral from Scratch
	Using IPIF to Connect a Pre-existent Peripheral to the Bus
	Conclusion

	IPIF Specification
	Overview
	IPIF Master Module Overview
	IPIF Slave Modules Overview

	Signal Conventions
	Bus Numbering and Bit Ordering
	Parameter Indexing Versus Parameter Numbering
	IPIF Modules in an Example OPB System

	Design Considerations
	DMA Engine
	Interrupts
	Bus Arbiter and Bridges
	Data Bus Width
	Retry, Error, and Timeout Suppress

	IPIF Module Specifications
	Slave DMA Handshake Module
	Slave Control Register Module
	Slave SRAM Module
	Slave FIFO Module
	Master Module

	IPIF Parameterization
	IPIF Signals

	OPB to PCI Bridge Lite
	Overview
	Related Documents
	Features
	Module Port Interface
	Implementation
	OPB Slave to PCI Initiator Transactions
	PCI Target to OPB Master Transactions
	Arbiter

	Memory Map
	Configuration

	Xilinx LogiCORE PCI

	OPB to PCI Bridge Lite
	Overview
	Related Documents
	Features
	Module Port Interface
	Implementation
	OPB Slave to PCI Initiator Transactions
	PCI Target to OPB Master Transactions
	Arbiter

	Memory Map
	Configuration

	Xilinx LogiCORE PCI

	OPB Touch Screen Controller
	Overview
	Related Documents
	Features
	Module Port Interface
	Implementation
	Memory Map

	OPB AC97 Sound Controller
	Overview
	Related Documents
	Features
	Module Port Interface
	Implementation
	Memory Map

	OPB to PLB Bridge-In Module (Lite)
	Overview
	Related Documents
	Features
	Module Port Interface
	Implementation
	High Level Description
	OPB Interface
	Transfer Interface
	PLB Interface

	OPB PS/2 Controller (Dual)
	Overview
	Related Documents
	Features
	Module Port Interface
	Implementation
	Memory Map

	PLB TFT LCD Controller
	Overview
	Related Documents
	Features
	Module Port Interface
	Hardware
	Implementation
	Video Timing

	Memory Map
	Video Memory
	Control Registers (DCR Interface)

