Computer Engineering 2012
Mekelweg 4,
2628 CD Delft
The Netherlands
http://ce.et.tudelft.nl/

MSc THESIS

Fault-Tolerant On-Board Computer Software for
the Delfi-n3Xt Nanosatellite

Alexander Franciscus Cornelis (Sander) van den Berg

Abstract

Fault-tolerant On-Board Computer (OBC) software for the Delfi-
T ———— n3Xt nanosatellite is needed in order to minimize the risk of failures
DEIfI-n th that may occur while the satellite is operating in space. Failures
T — - may be OBC specific, but failures that affect the state of the entire
satellite and influence the health of the data bus may occur as well.
Some failures that may occur on the I2C data bus can have a very
large impact on the health of the satellite. The failure cases in which
the I?C data line or I2C clock line is being pulled low for a longer pe-
riod of time make communication over the I?C bus impossible. The
I?C bus recovery mode that is implemented in the OBC, together
with the I2C recovery mechanism that applies to the whole satellite,
provides a way to resolve failure cases like these. The failure cases
on the I2C bus with less disastrous impacts may result in data incon-
sistencies and time-outs and are handled by the OBC as well. The
I?C data bus performance analysis for Delfi-n3Xt shows a bit error
rate of at most 4 - 10™°, which fulfills the requirement that specifies
that the bit error rate must be 1076 or less.
CE-MS-2012-03 Apart from failures on the I2C data bus, failures may occur internally
in the OBC hardware or software. Since the OBC controls the whole
satellite, a permanent failure in the OBC hardware or software may
result in a non-functional satellite. The OBC software is designed and implemented in such a way that it can
not become in an undefined state for longer than 8 seconds. Besides that, the OBC assures that transfers
over the I?C bus never take longer than 30ms. This improves reliablity and performance. Furthermore,
clever routines that save flash memory erase cycles were designed and developed in order to increase the
lifetime of the flash memory.

o]
TU Delft

Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science

Fault-Tolerant On-Board Computer Software for
the Delfi-n3Xt Nanosatellite

Including I?C bus failure and performance analysis

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING

by

Alexander Franciscus Cornelis (Sander) van den Berg
born in Noordwijkerhout, The Netherlands

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Fault-Tolerant On-Board Computer Software for
the Delfi-n3Xt Nanosatellite

by Alexander Franciscus Cornelis (Sander) van den Berg

Abstract

ault-tolerant On-Board Computer (OBC) software for the Delfi-n3Xt nanosatellite is

needed in order to minimize the risk of failures that may occur while the satellite is oper-

ating in space. Failures may be OBC specific, but failures that affect the state of the entire
satellite and influence the health of the data bus may occur as well.

Some failures that may occur on the I?C data bus can have a very large impact on the health
of the satellite. The failure cases in which the I?C data line or I?C clock line is being pulled
low for a longer period of time make communication over the 12C bus impossible. The I2C bus
recovery mode that is implemented in the OBC, together with the I2C recovery mechanism that
applies to the whole satellite, provides a way to resolve failure cases like these. The failure cases
on the I2C bus with less disastrous impacts may result in data inconsistencies and time-outs and
are handled by the OBC as well. The I?C data bus performance analysis for Delfi-n3Xt shows a
bit error rate of at most 4 - 102, which fulfills the requirement that specifies that the bit error
rate must be 1076 or less.

Apart from failures on the I?C data bus, failures may occur internally in the OBC hardware
or software. Since the OBC controls the whole satellite, a permanent failure in the OBC
hardware or software may result in a non-functional satellite. The OBC software is designed
and implemented in such a way that it can not become in an undefined state for longer than 8
seconds. Besides that, the OBC assures that transfers over the 12C bus never take longer than
30ms. This improves reliablity and performance. Furthermore, clever routines that save flash
memory erase cycles were designed and developed in order to increase the lifetime of the flash
memory.

Laboratory : Computer Engineering
Codenumber : CE-MS-2012-03

Committee Members

Advisor: Dr. ir. A.J. van Genderen, CE, TU Delft

Advisor: Ir. J. Bouwmeester, SSE, TU Delft

Chairperson: Dr. K.L.M. Bertels, CE, TU Delft

ii

Dedicated to my beloved family and friends, and in particular to my
parents for their endless love and support

iii

iv

Contents

[List of Figures|

[List of Tables

[Acknowledgements|

(1 _Introduction|

[1.2 Thesis Objectives|.
[1.3 Thesis Organization|

Background|

2.1 Delfi-ndXt Mission|
[2.1.1 Educational Objectivel
[2.1.2 Technology Demonstration Objectivel.

2.2 Delfi-n3Xt Payloads and Subsystems|
[2.2.1 Micro Propulsion Payload|
[2.2.2 Tranceiver Payload|. 0 0oL
[2.2.3 Communications Subsystem|.
[2.2.4 Attitude Determination and Control Subsystem|.
[2.2.5 Electrical Power Subsystem| 00000
[2.2.6 Structure, Mechanisms and Thermal Control Subsystems|
[2.2.7 Command and Data Handling Subsystem|

2.3 Delfi-ndXt CDHS Hardwarel oo L.
[2.3.1 On-Board Computer Hardware]
[2.3.2 Delfi Standard System Bus Hardware]

2.4 TI?C Communication Basics|
[2.4.1 Hardware Setup| o oo
[2.4.2 Start and Stop Conditions|.
[2.4.3 Write Operation|
[2.4.4 Read Operation|. o o
[2.4.5 Sampling vs. Edge-Triggered Interrupts|
[2.4.6 Data Transter Example] o000
[2.4.7 Clock Stretching|
[2.4.8 Data Transfer Speeds|,

2.5 Summary]

xi

xiii

[3 I°C Bus Analysis| 25
[3.1 TI?C Bus Failure Analysis|. 25
3.1.1 Start Condition Faijlures 25
3.1.2 Slave Request Failures) o000 26
[3.1.3 Read/Write Bit Failures| 27
3.1.4 Slave Acknowledgement Failures| 28
[3.1.5 Data Byte Transter Failures| 29
[3.1.6 Stop Condition Failures| 30
13.1.7 Slave Device Missing Clock Pulses| 31
13.1.8 Data Line Pulled Low Indefinitely| 32
3.1.9 Clock Line Pulled Low Indefinitely| 33
3.1.10 I°C Failures Summary| v v v 33

[3.2 T°C Bus Performance Analysis| 35
821 Bit BError Ratelo oo 36
[3.2.2 Test Setup| 36
8.2.3 Test Procedure 37
3.2.4 Software Verification| L. 38
325 Performance Resultsl 39

3.3 Summary| 40
[4 On-Board Computer Software Design| 41
4.1 OBC Software Requirements| 41
4.1.1 Subsystem Communication Requirements| 41
|4.1.2 Fault-Tolerant Software Requirements| 43
4.1.3 Telecommanding Requirements| 44
4.1.4 Data Acquisition Requirements| 46
4.1.5 Monitoring Requirements| 48

4.2 OBC Software Architecturel oL 48
4.2.1 OBC Software Layers| 48
4.2.2 OBC Module Overview] 49

4.3 OBC Service Layer Software Design| 51
4.3.1 Clock Source Modulel., 52
4.3.2 Programmable Interval Timers| 53
4.3.3 Flash Memory Controller| 56
4.3.4 Analog to Digital Converter|. 59
435 T2C Controllerd 61
4.3.6 Watchdog Timer| 65

4.4 OBC Application Layer Software Design| 68
441 Boot Model L 69
4.4.2 Delay Mode| 72
4.4.3 Deployment Mode| L 73
444 Main Model 75
[4.4.5 T°C Bus Recovery Mode| 84

4.5 Summary|l L e e e 85

vi

[> On-Board Computer Software Implementation|
b.1 Service Layer Software|

[5.1.2 Programmable Interval Timers|
5.1.3 Flash Memory Controller|
5.1.4 Analog to Digital Converter|.
Slilllsi IZE: !:szll!lszllg:ll -----------------------------

[5.1.6 Watchdog|
5.2 Application Layer Software|

5.2.2 Delay Mode|o
5.2.3 Deployment Mode|

[5.2.5 T°C Recovery Mode|
b.3 Summary|l

6 Conclusionsl
6.1 Summary] e e
6.2 Contributions

(Bibliography|

[A° OBC Source Code Directory Listing|

vii

87
87
87
89
91
94
96
101
103
103
107
108
110
114
115

117
117
119
120

124

125

viii

List of Figures

1.1 Architectural overview of Delfi-n3Xt on the subsystem level|
2.1 Two nanosatellites that are part of the Delfi program|
2.2 Trancewer payload from ISIS BV|.
2.3 Architectural overview of the Delfi-n3Xt Communications Subsystem| . . .
2.4 Prototype of the ADCS orthogonal reaction wheel assembly|.
2.5 Architectural overview of the Global EPS|
2.6 Example of the rod system of Delfi-C®|
2.7 Functional overview of the DSSB protection circust|
2.8 Delfi-n3Xt On-Board Computer hardware PCB layout|
2.9 I°C single-master, multiple-slave setup|.
[2.10 Start condition and stop condition|
[2.11 Data transfer from master to slave|
2.12 Data transfer from slave to master|
2.13 Ezample of a data transfer over the I°C lines|
2.14 Ezample where the slave device stretches the clock|
3.1 Start condition with SDA high at time t1 _and SDA low at time tof
3.2 Bit flips in a start condition on the I°C' lines between times t; and to| . .
3.3 Stop condition with SDA low at tume t1_and SDA high at time to|
3.4 Bit flips in a stop condition on the I°C' lines between times tq and tof . . .
[3.5 Switch to pull low the SDA line intentionally]
4.1 High level architectural overview of the OBC|
4.2 Module overview of the OBC service layer software|
4.3 Module overview of the OBC" application layer software|.
4.4 Actinty flow for configuring the MSP430 clock system of the OBC|
4.5 16-bit timer A operating in up mode and generating interrupts|
[4.6 16-bit timer A operating in up/down mode and generating interrupts| . . .
4.7 Actinty flow for the configuration of a timer|
4.8 Segmentation of the MSP/30F1611 fiash memory|.
4.9 Actinty flow for reading data from flash memory|
4.10 Actinty flow for writing data to the flash memoryl
[4.11 Activity flow for erasing (part of) the flash memory|
4.12 Temperature sensor transfer function for the on-chip temperature sensor| .
4.13 Actinty flow for the ADC to read out temperaturel
4.14 Activity flow for initializing the I°C' peripheral in master mode|
4.15 Activity flow for reading data from the I°C' bus in master-receiver mode| .
4.16 Activity flow for writing data on the I°C bus in master-transmitter model
4.17 Activity flow for the initialization procedure for an I°C' slave device)

4.18 Activity flow for handling I°C' interrupts for reading data in slave mode| .
4.19 Activity flow for handling I°C' interrupts for writing data in slave mode| .

X

14.20 Actinty flow for the transitions between operational modes|. 68
4.21 Actinty flow for the execution of the boot mode| 69
|4.22 The content of the encoded boot counter that represents a value of 0| . . . 71
[4.23 The content of the encoded boot counter that represents a value of 1| . . . 71
4.24 The content of the encoded boot counter that represents a value of 256| . . 71
[4.25 Actinty flow for the delay that may be needed before deployment| 73
14.26 Activity flow for deploying the solar panels using the primary resistors| . . 74
|4.27 Actinty flow for deploying the solar panels using the secondary resistors| . 75
14.28 The last part of the deployment mode|. 76
4.29 Actinty flow of the main loop| 77
4.30 Activity flow for checking and executing a telecommand| 83
4.31 Activity flow for the I°C bus recovery mode| 84
b.1 The BOSCTLI register that 1s used to configure the clock system| 87
b.2 The BOSCTLZ2 register that 1s used to confiqgure the clock system| 88
b.3 The TACCTL register that 1s used to set the timer threshold valuel 89
5.4 The TACTL register that 1s used to configure timer Al 90
5.5 The FCTL2 register that is used to initialize the flash timing generator|. . 91
5.6 The FCTLI reqister that 1s used to control the flash memory controller|. . 93
b.7 The FCTLS register that is used to control the flash memory controller|. . 93
5.8 The ADC10CTLO register that is used to configure the A/D converter| . . 94
5.9 The ADCI10CTLI register that is used to configure the A/D converter, 95
[5.10 The ADCI0MEM register that is used to store the A/D conversion result| 96
5.11 The UOCTL reqister that configures the MSP450F1611 USART peripherall 97
5.12 The I2CTCTL register that configures and drives the I°C peripherall . . . 97
b.13 The I2CPSC, I2CSCLH and I2CSCLL registers that configure the bus speed| 98
b.14 The [2CTFG register that holds the interrupt status flags| 99
5.15 The I12C0A register that holds the 7-bit slave address|. 100
5.16 The I2CIE reqgister that enables or disables I°C interrupts| 100
5.17 The WDTCTL reqister that 1s used to configure the watchdog timer|. . . . 101

List of Tables

[2.1 T?uPS characteristics and specifications| 10
2.2 Delfi-n3Xt tranceiver payload specifications| 11
[3.1 T°C failures with their causes, impacts and resolve steps| 35
4.1 Selectable watchdog expiration times using the 32768 Hz clock sourcel . . 67
4.2 T°C recovery reset sequence and timings| 86

X1

xii

Acknowledgements

First of all, I would like to thank Jasper Bouwmeester and Arjan van Genderen for
providing me this thesis assignment. I really appreciate their supervision, advises and
especially their time and efforts they have put into reading and reviewing this thesis and
all the developed source code.

Furthermore I want to thank the entire Delfi-n3Xt team as well, with in particular
the embedded software engineers and electrical engineers. 1 really liked the fruitful
discussions during the Delfi-n3Xt progress meetings and the one-to-one conversations
with some of the team members. They gave me the opportunity to learn a lot more
about embedded systems and electronics in general. Besides that, I am very grateful
that working on Delfi-n3Xt offered me opportunities to gain experiences in working with
real flight hardware and software in a cleanroom environment. It is an experience that
will definitely help me in my future professional carreer in the space industry.

Those I will not forget to mention are my relatives, and in particular my parents.
They always motivated me to work and study hard to achieve my goals. They supported
me in all possible ways in order to successfully complete my academic carreer. The
writing of this thesis was definitely not possible without their endless love and support.
Last but not least, I thank my friends for having a great time with me during my whole
academic carreer. The good times with them definitely gave me the power and strength
to go on with my studies.

Alexander Franciscus Cornelis (Sander) van den Berg
Delft, The Netherlands
August 28, 2012

xiii

Xiv

Introduction

Delf-n3Xt is a nanosatellite that is under development at Delft University of Technology.
It will be launched in September 2012 and it consists of various subsystems that together
form the complete satellite. Part of the Delfi-n3Xt satellite is the On-Board Computer
(OBC). The OBC is the central control unit of the satellite. It controls the operational
mode of the satellite and it initiates all data transfers that take place over the satellite
data bus [4].

The OBC, together with the Delfi Standard System Bus (DSSB), is part of the
Command and Data Handlig Subsystem (CDHS) of the satellite. Besides the CDHS,
various other subsystems are present, as will become clear in the next chapter. The
OBC, combined with the DSSB, is able to autonomously control and synchronize all the
subsystems that are part of the satellite. The architectural overview of Delfi-n3Xt on
the subsystems level is shown in Figure [I.]

Figure 1.1: Architectural overview of Delfi-n3Xt on the subsystem level

The internal communication between the OBC and all the other subsystems within
Delfi-n3Xt take place over the I?C data bus. Bidirectional communication is possible,
but the OBC always initiates the data transfers. The OBC transmits data to a
subsystem in order to let the requested subsystems execute a desired task. The data
that is received from the subsystems is used to form the telemetry data frame. This
telemetry data frame consists of payload data [12] and housekeeping data that must be
send to the earth by one of the radios that are present in Delfi-n3Xt. Each radio that is
present in Delfi-n3Xt is considered as a subsystem on its own.

2 CHAPTER 1. INTRODUCTION

From an architectural point of view, the DSSB is part of the CDHS. Physically
the DSSB circuitry is present on all the subsystems. The DSSB circuitry consists of a
control unit that can be commanded by the OBC over the data bus. The DSSB control
unit can be commanded to turn on or off the subsystem on which it is present. These
on/off switching functionalities of the DSSB circuitry, together with the commanding
functionalities of the OBC, form the autonomous control capabilities of the satellite.

The remaining part of this chapter is organized in three sections. In Section the
problem statement is defined. The main goal and objectives of this thesis are described
in Section [[.2] Finally, in Section [[.3] a detailed overview of this thesis is outlined.

1.1 Problem Statement

Because of its central position, the OBC is a critical system within the satellite. A
permanent failure in the OBC means the end of the Delfi-n3Xt mission. This is because
the OBC is responsible for the data acquisition of all the payload data and housekeeping
data from all the powered subsystems. When the OBC is unable to acquire these data
and forward it to one of the radios, no data will be transmitted from the satellite to
the ground station. Acquiring data and analyzing these data on the ground is what the
mission is all about and it is mendatory in order to succeed the mission.

As already mentioned earlier, data transfers take place over the I?C data bus
[24]. When the I?C data bus fails, communication between the OBC and the other
subsystems is not possible anymore. This means that payload data and housekeeping
data of the other subsystems can not be acquired anymore by the OBC. Therefore the
I2C data bus is also a critical part of the satellite system. There are various kind of
failures that may occur on the IC bus, each having one or more different causes. Due to
this, the satellite system is not failure free. A fault-tolerant implementation ensures that
failures like these are properly handled and solved by some kind of recovery procedure.

Other critical systems within the satellite are the electrical power system [26]
and the radio [30]. The electrical power system makes sure the satellite can be powered
properly and the radio is needed for communications between the satellite and the
ground station. A permanent failure in one of these systems means, just as in the case
of the OBC, end of the Delfi-n3Xt mission. This is not acceptable, so each of these
critical systems must be redundant [9] in order to avoid a single point of failure (SPOF).
This has consequences for the OBC software, since the OBC is also a critical system
and hence it must be redundant. To prevent SPOFs in the OBC, a second OBC is
present. The OBC software must be designed and implemented such that when the first
OBC fails in the execution of its operations, the second OBC takes over. The OBC is
also responsible for switching between the radios when one of the radios fail. To handle
the above described failures, a fault-tolerant implementation of the OBC software is
needed. Also a thorough understanding and analysis of the possible I2C failure cases
is necessary. The need for redundancy and a fault-tolerant OBC introduces a certain
degree of complexity in the system.

1.2. THESIS OBJECTIVES 3

1.2 Thesis Objectives

In the previous section, the various problems that exists in designing and implementing
a fault-tolerant OBC are described. Compared to the Delfi-C? nanosatellite, several
improvements can be made in the CDHS for Delfi-n3Xt. These improvements will
become clear in the following chapters.

The main goal of this thesis is to deliver a fault-tolerant flight software imple-
mentation for the Delfi-n3Xt OBC that shows improvements in the performance and
reliability of the CDHS compared to Delfi-C3 [4]. In order to manage this main goal,
several objectives have been defined.

The following objectives are part of this thesis:

e OBC software requirements analysis.
All the requirements for the OBC software must be listed and extensively analysed.
This is necessary in order to understand the needs of the software that must be
designed and implemented. There is already a requirements and configuration item
list [19] in which most of the OBC software requirements are stated. The OBC
software requirements must be rationalized and if needed new requirements must
be added to the requirement list.

e I’C bus performance analysis.

An important improvement compared to Delfi-C? will be the improvement in per-
formance of data transfers over the I?C bus. An extensive I?C bus performance
analysis must be performed in order to judge whether or not improvements have
been made compared to Delfi-C3. Besides the improvements compared to the Delfi-
C? satellite, the I?C bus performance analysis will show results on the bit error
rate of the data bus. The results show whether or not the performance of the I?C
bus meets the requirement that specifies the maximum allowable bit error rate.

e I’C bus failure analysis.

The health of the Delfi-n3Xt satellite highly depends on the health of the I?C
bus. As already discussed in the previous section, critical failures may occur when
the operation of the I?C bus fails. In order to get insights in the different failure
cases that may occur on the IC bus, an extensive I?C bus failure analysis must
be performed. The result of the analysis is a list with the most significant failure
cases that may occur on the I2C bus, including their causes, impacts and resolve
steps.

e OBC service layer software design.
The OBC service layer software must consist of software modules that drive the
needed microprocessor hardware peripherals. The design of the service layer soft-
ware must define these service layer software modules together with their function-
alities and activity flows. Each service layer software module must be mapped to
the corresponding hardware peripheral of the microprocessor.

4 CHAPTER 1. INTRODUCTION

e OBC service layer software implementation.
The OBC service layer software modules must implement the functionalities that
are defined and described during the design of the OBC service layer software.
These software modules must contain a low level implementation that is close to the
OBC hardware. The low level procedures that are part of the service layer software
modules must execute read and write operations from and to the registers of the
microprocessor. Configuration of the microprocessor registers will result in the
execution of the desired actions by the hardware peripherals of the microrprocessor.

e OBC application layer software design.
The OBC application layer software must consist of software modules that make
use of the OBC service layer software modules in order to successfully execute
higher level tasks that control the data flow within the CDHS and the rest of the
satellite. The design of the application layer software must define the application
layer software modules together with their functionalities and activity flows.

e OBC application layer software implementation.
The software modules that are part of the OBC application layer software must
contain a higher level implementation. The application layer software modules
must implement the operational modes of the satellite and the data flow control
within the satellite system. These application layer software modules will execute
procedures that are implemented in the service layer software modules.

e Software testing.

The OBC software must be extensively tested. In the beginning of the project this
will consist of unit tests in order to test the functionality of the service layer software
modules independently. Later on when the application layer software modules are
ready the testing consist of data flow tests in order to check the correctness of the
data that flows in and out of the OBC. In the last phase of the project several
integration tests will be performed in which other subsystems of the satellite are
involved.

1.3 Thesis Organization

In this chapter, the various problems that exists in designing and implementing a
fault-tolerant CDHS and the objectives for this thesis were defined and described. This
thesis is divided in five chapters. The thesis is organized in such a way that the reader
is taken along the analysis, design and implementation phases of the fault-tolerant OBC
software development process.

Chapter [2| describes all the required background information about Delfi-n3Xt. In
this chapter descriptions are given about the Delfi-n3Xt mission, the Delfi-n3Xt payloads
and subsystems and the Delfi-n3Xt CDHS hardware. Besides this background infor-
mation about Delfi-n3Xt, it is also explained how communication over the I?C bus works.

1.3. THESIS ORGANIZATION)

Chapter [3| presents the complete I2C bus failure analysis in which possible I?C bus
failure cases are described together with their causes, impacts and resolve steps. The
I?C bus performance analysis that is performed on engineering models of the CDHS
hardware is also given in this chapter.

The design of the OBC software is explained in Chapter [4l In this chapter the OBC
software requirements are listed and rationalized and an overview of the OBC software
architecture is given. Furthermore, the OBC service layer software design and OBC
application layer software design are discussed and worked out. These designs describe
the functionalities of all the defined software modules.

Chapter [p| describes the implementation of all the OBC software modules. This
includes the software modules for the service layer and the application layer. The
implementation of the service layer software modules shows how the registers of
the microprocessor are manipulated in order to let the hardware peripherals of the
microprocesser execute the desired tasks. The implementation of the application
layer software modules shows how the different operational modes of the satellite are
implemented and how data flows within the satellite are initiated.

Conclusions on the software development process and the developed OBC software are
drawn in Chapter[6l The chapter also gives a summary of this thesis and a description of
my personal contributions to the OBC software and other parts of the Delfi-n3Xt project.
Finally, the future work that is needed to complete the OBC software is described.

CHAPTER 1. INTRODUCTION

Background

The Delfi program is a nanosatellite development line at the faculty of Aerospace Engi-
neering, department of Space Systems Engineering, at Delft University of Technology. It
currently consists of two nanosatellite projects; the Delfi-C? project and the Delfi-n3Xt
project (renderings shown in Figure .

(a) Delfi-C* (b) Delfi-n3Xt

Figure 2.1: Two nanosatellites that are part of the Delfi program

Delfi-C? was the first nanosatellite in the Netherlands and the Delfi-C? project has
been started in 2004 by students and staff members [10]. It is a 3-unit CubeSat and
it was launched on 28 April 2008 from India aboard a PSLV-C9 rocket. The Delfi-C3
nanosatellite is shown in Figure Delfi-n3Xt is the successor of Delfi-C? and the
project was started in November 2007. Once again, it is also designed by students and
supported by staff members. Just like Delfi-C?3, Delfi-n3Xt is a 3-unit CubeSat and it is
planned for launch in September 2012. This nanosatellite is shown in Figure [2.1b

In this chapter, the background information that is needed to understand the
other chapters of this thesis is described. First, the Delfi-n3Xt mission is discussed in
Section by describing the mission objectives and the advancements. The Delfi-n3Xt
payloads and subsystems are described in Section The background information
that is needed on the CDHS hardware is given in Section This includes the OBC
and DSSB hardware. In Section the I?C communication basics are explained.
Section summarizes this chapter.

8 CHAPTER 2. BACKGROUND

2.1 Delfi-n3Xt Mission

The Delfi-n3Xt mission consists of the three general Delfi objectives; the educational
objective, technology demonstration objective and nanosatellite bus development
objective. The mission statement for the Delfi-n3Xt mission [3] is as follows:

”Delfi-Next shall be a reliable triple-unit CubeSat of TU Delft which implements
substantial advances in 1 subsystem with respect to Delfi-C8 and allows technology
demonstration of 2 payloads from external partners from 2012 onwards”.

Substantial advancements have been made in the Attitude and Determination
Control Subsystem (ADCS). This subsystem, together with the other subsystems and
the two payloads from the external partners are described in Section The remainder
of this Section describes the three general Delfi objectives and the advancements of the
Delfi-n3Xt mission with respect to the Delfi-C? mission. The educational objective is
described in Section In Section the technology demonstration objective is
discussed. The nanosatellite bus development objective is described in Section [2.1.3| and
the advancements with respect to Delfi-C? are given in Section

2.1.1 Educational Objective

Since the Delfi nanosatellites are designed and developed by students at Delft University
of Technology, one of the obvious objectives of the Delfi program is education. The
Delfi program gives TU Delft students, as well as international students and students
from other educational institutions, the opportunity to work on a real satellite design
and engineering project. Students working on Delfi-n3Xt will improve their skills in
systems engineering, research, teamwork, scientific writing, communication, mechanics,
astrodynamics, control and simulation, electronics and software.

The goal of this objective is to optimally prepare students for any further careers in
the space industry. The students will acquire hands-on experience with all aspects of
the development of a real spacecraft.

2.1.2 Technology Demonstration Objective

Another aim of the Delfi program is to perform technology demonstrations and/or qual-
ifications of micro-technologies that are designed for space applications. Onboard Delfi-
n3Xt, there will be two experimental payloads:

e A micro-propulsion system developed by TNO in cooperation with Delft University
of Technology and University of Twente.

e An in-orbit configurable, high-efficient transceiver platform developed by ISIS BV
in cooperation with Delft University of Technology and SystematIC BV.

Whether or not these payload experiments work as expected can be determined by
analyzing the telemetry data of the satellite that is received at the ground station once
the satellite is fully operational and flying in space.

2.1. DELFI-N3XT MISSION 9

2.1.3 Nanosatellite Bus Development Objective

One other important objective is the development of the nanosatellite bus. The
nanosatellite bus is an important part of the satellite since it connects all the subsystems
with each other. The aim is to design the bus system in such a way that it is capable
for more advanced technology demonstrations that require more data throughput and
more power. If the satellite bus is capable of handling higher data rates and more data
throughput, Delfi can create spin-offs for the space sector for more advanced scientific
or even commercial missions.

2.1.4 Advancements

As already mentioned, Delfi-n3Xt will consist of several advancements compared to its
predecessor Delfi-C2. The major advancements will be on several subsystems that belong
to Delfi-n3Xt. A detailed description about the subsystems is given in the next Section.
For now, only the advancements are listed. These advancements belong to the following
subsystems:

e Attitude and Determination Control Subsystem
For Delfi-n3Xt, the Attitude and Determination Control Subsystem (ADCS) should
have significant advancements compared to that of the Delfi-C3. The ADCS for
Delfi-n3Xt [25] will provide more advanced capabilities for nanosatellites because
of its full three-axis active control. Delfi-C? has a passive magnetic attitude control
system which is not suitable for more advanced functionalities.

e S-band transmitter
The Delfi-n3Xt nanosatellite will be expanded with an experimental S-band trans-
mitter. The S-band transmitter (also known as the STX subsystem) allows higher
downlink data rates which might be useful for future missions that need higher
data rates.

e Electrical Power Subsystem
The electrical power subsystem (EPS) of the Delfi-C? satellite did not had the
capability of energy storage. The EPS for Delfi-n3Xt will have onboard energy
storage in the form of a battery [26].

¢ Command and Data Handling Subsystem

The OBC, which is part of the CDHS, will be single point of failure (SPoF) free.
This is the reason why the OBC is redundant. In Delfi-C3, the backup for opera-
tions by the single OBC was a distributed autonomous operation by the local mi-
crocontrollers of the other subsystems. However, for the more advanced Delfi-n3Xt
mission this becomes way too complicated. This redundancy feature, together with
the aim for a significant lower bit error rate (BER), makes the CDHS of Delfi-n3Xt
more robust and more fault-tolerant [5] than the CDHS of the Delfi-C3.

The designed fault-tolerant OBC software and the improvements in the BER [6] are
one of the major things that are discussed in the remaining chapters of this thesis.

10 CHAPTER 2. BACKGROUND

2.2 Delfi-n3Xt Payloads and Subsystems

The Delfi-n3Xt nanosatellite consists of various payloads and subsystems. In this Sec-
tion all of these payloads and subsystems are shortly described. Section [2.2.1] gives
background information about the micro propulsion payload. A description about the
tranceiver payload is given in Section In Section the communication sub-
system is explained. The attitude determination and control subsystem is discussed in
Section followed by the electrical power subsystem in Section [2.2.5, Finally, de-
scriptions of the Delfi-n3Xt structure, mechanisms and thermal control subsystems are
given in Section and the already introduced CDHS is discussed in Section [2.2.

2.2.1 Micro Propulsion Payload

Future nanosatellite missions may consist of multiple nanosatellites that fly in forma-
tion or act as a swarm. Such missions require relative orbit control which can only
be accomplished by a propulsion system onboard the satellites. The T3uPS is such a
propulsion system [21] and it is designed and engineered by TNO, together with the TU
Delft and the University of Twente. The main problem for propulsion systems designed

] Characteristic ‘ Specification ‘
Specific impulse > 30 s
Thrust 6 — 100 mN
Propellant mass 0.3 g per CGG, 2.4 g in total
Total mass 120 g
Dimensions 90 mm - 90 mm - 35 mm

Power consumption (per mode) | measuring mode: 63 mW
thrusting mode: 335 mW
ignition mode: 10.6 W

Table 2.1: T3PS characteristics and specifications

for nanosatellites is the contraints in the technical budgets such as volume, mass and
power. In order to deal with these constraints, the T3uPS is based on cold gas gener-
ators (CGGs). The specifications of the T?uPS are listed in Table Delfi-n3Xt will
demonstrate the micropropulsion system by performing the following experiments:

e Ignition of multiple CGGs.
e Thrusting at various levels with pulse-width-modulated duty cycling.

e Determination of the leakage through continuous plenum pressure measurements
during the nominal measurements mode of the micropropulsion system.

e Thrust determination by measuring the pressure drop during thrusting and indi-
rectly by minor orbit changes measured on the ground by radar tracking.

e General housekeeping measurements such as temperature and power consumption.

2.2. DELFI-N3XT PAYLOADS AND SUBSYSTEMS 11

2.2.2 Tranceiver Payload

The Delfi-n3Xt tranceiver payload (Figure from ISIS BV is an experimental, high
efficient radio that is in-orbit configurable. The radio is very flexible since the charac-
teristics of the radio like data rate, modulation, output power and data protocol are
configurable through software. This makes the radio usable for nanosatellite missions
with radio requirements that meet the specifications of the radio.

Figure 2.2: Tranceiver payload from ISIS BV

The tranceiver payload will be optimized such that it can be used with the very
limited available power within the Delfi-n3Xt nanosatellite. The total power consumption
of the tranceiver payload contributes for a significant part to the total power budget that
is available for Delfi-n3Xt [16]. The power amplifier in the transmitter section of the radio
is the electrical component that consumes most of the power [2]. The tranceiver payload
will use a switching mode power amplifier that is being developed in cooperation between
TU Delft, ISIS BV and SystematIC BV. The switching mode power amplifier can yield
an efficiency of above 80%. The specifications of the tranceiver are listed in Table
This table shows that the transmitter consumes over 1.5W of power. For Delfi-n3Xt, the

Characteristic ‘ Specification ‘

Frequency bands VHF downlink, UHF uplink
Supported data rates 1200, 2400, 4800 and 9600 bps
Supported modulation | (A)FSK, BPSK, CW, QPSK, MFSK
Supported protocols AX.25, CW, ISIX, DelfiX

Total mass 90 g
Dimensions 90 mm - 90 mm - 20 mm
Power consumption receiver: 255 mW

transmitter: 1580 mW

Table 2.2: Delfi-n3Xt tranceiver payload specifications

data rate will be set to 2400 bps, the modulation to AFSK for UHF uplink and BPSK
for VHF downlink and the protocol will be set to AX.25.

12 CHAPTER 2. BACKGROUND

2.2.3 Communications Subsystem

The Delfi-n3Xt communications subsystem (COMMS) consists of three radios, phasing
circuitry and antennas. An overview of this subsystem is shown in Figure [2.3

= ™
\/ 3 PTRX
N 4) y
\/ | b y [ib‘r\ Receiver ‘T‘TC;‘I
L X

uHFVHF [)
Phasing
Circuit

UHF/VHF <l Recel | TCs)
Antennas ‘ h\ BSOS Ry

TM/

i

S-band
L Antenna STX < ™/
S-band | Connection
Antenna

Antenna System

Figure 2.3: Architectural overview of the Delfi-n3Xt Communications Subsystem

The PTRX is the primary tranceiver which consists of a transmitter and a receiver.
The ITRX is the experimental high efficiency tranceiver payload from ISIS BV that acts
as a back-up radio for the PTRX. The ITRX was already described in Section [2.2.2]
The experimental S-band transmitter can be used as transmitter only. Furthermore all
the radios must be commanded by the OBC before they transmit data to the ground
station.

2.2.4 Attitude Determination and Control Subsystem

The Attitude and Determination Subsystem (ADCS) consists of an attitude determi-
nation part and an attitude control part. Besides that, various kinds of hardware are
present like sensors, actuators and a microcontroller that executes the determination and
control algorithms [25]. The ADCS is experimental and the subsystem will demonstrate
the following functionalities:

e Detumbling of the satellite

e Three-axis stabilization and pointing of the satellite with an accuracy of 3° with
respect to the sun vector, velocity vector, magnetic field line and nadir.

e Slewing manoeuvre for ground station tracking of the S-band antenna with a 5°
accuracy

In order to control the satellite, the ADCS consists of three magnetorquers and three
reaction wheels. The three reaction wheels control the attitude of the three axes of
the satellite [I4]. A prototype of an orthogonal reaction wheel assembly is shown in

2.2. DELFI-N3XT PAYLOADS AND SUBSYSTEMS 13

Figure 2.4: Prototype of the ADCS orthogonal reaction wheel assembly

Figure [2.4] The magnetorquers must dump the momentum of the spacecraft and the
reaction wheels. Basically the magnetorquers are simple electric coils that will give a
moment when an electric current flows through the coils [31]. Making use of the Earth
its magnetic field, the magnetorquers can create a torque in the axes that are orthogonal
to the magnetic field line of the Earth. The control algorithm in the microcontroller
will be either a basic proportional-integral-derivative (PID) control algorithm or a more
complex linear-quadratic regulator (LQR) control algorithm [25].

2.2.5 Electrical Power Subsystem

The Electrical Power Subsystem (EPS) must deliver a sufficient amount of power to all
the other subsystem of the satellite. Basically, this subsystem consists of solar panels
that generate power, a battery that can store the excessive amount of generated power
by the solar panels and a couple of DC/DC converters that will convert the 12V input
bus voltage to 3.3V and 5V output voltages that are used by the other subsystems [26].
An overview of the EPS is given in Figure

Local EPS

- 33v» Subsystem

Local EPS
3.3V.
/ft‘?;a; Global EPS 12— " Subsystem
' _

Local EPS

. -Dcmc 3.3V,
Batteries > Subsystem
. =
12v—p

Figure 2.5: Architectural overview of the Global EPS

14 CHAPTER 2. BACKGROUND

2.2.6 Structure, Mechanisms and Thermal Control Subsystems

The structural subsystem (STS), mechanical subsystem (MechS) and thermal control
subsystem (TCS) have strong interfaces with one another and therefore they are all
described in this single section. The STS consists of an inner structure and an outer
structure and the outer structure is compliant with the standard triple-unit CubeSat
dimensions [II]. The inner structure consists of 4 rods on which PCBs can be mounted
on top of one another. This forms a stack of all the subsystem electronics. In Figure [2.6
an example of a rod system is shown.

2
!

Figure 2.6: Example of the rod system of Delfi-C?

Part of the MechS is the deployment machanism. This deployment mechanism is
responsible for reliable deployment of the solar panels and the antennas of the radios.
Deployment of a solar panel or antenna is done by letting a current flow through a
resistor on which a thin wire is applied that holds the solar panel or antenna in its
folded position [29]. Eventually, when a large enough current flows through a resistor
for a longer period of time, the resistor will heat up until the wire burns. When the
wire that holds the solar panel or antenna in its folded position burns, the attached
solar panel or antenna will be deployed. The deployment mechanism is redundant in
case one of the mechanisms fails. In total there are 4 solar panels and 4 antennas so
each deployment board consists of 8 resistors that must be burned. For each resistor a
power of 1.92W is required for approximately 12 seconds in order to burn it.

The Delfi-n3Xt thermal control is aimed to be passive by the use of heat radia-
tors, heat sinks and thermal isolation. An analysis has been performed in order to check
whether or not all the systems stay within their nominal operating temperatures [17].

2.2. DELFI-N3XT PAYLOADS AND SUBSYSTEMS 15

2.2.7 Command and Data Handling Subsystem

As already mentioned before in the introduction, the Command and Data Handling
Subsystem (CDHS) consists of the redundant OBC and the Delfi Standard System Bus
(DSSB). The next section gives background information about the OBC and DSSB
hardware details so they will not be discussed here. The operations and functionalities
of the OBC are already described in Chapter (1} In Figure the functional overview
of the DSSB protection circuitry is shown.

Standard System Bus Protection
System
Bus

Powsr Moniter &

—t— Conlrober -

I*C Protector

Subsystem

System
Bus

Figure 2.7: Functional overview of the DSSB protection circuit

The DSSB protection circuit is a combination of hardware and software that is able
to detect the occurrence of short circuits and isolate the subsystem on which a short
circuit occurred [7]. The DSSB protection circuit consists of a power monitor/controller
and a shunt resistor that are together able to detect a short circuit that may have
happened on the subsystem to which the DSSB protection circuit belongs. Since the
DSSB protection circuit is present on all subsystems, all subsystems can be powered off
by the DSSB protection circuit when a short circuit occurs in the subsystem. This DSSB
functionality is an important step in the design and development of a fault-tolerant
satellite.

The I?C protector, as its name says, protects the I2C lines for high currents or
voltages on the lines that may destroy the I2C hardware peripherals of I2C devices that
are connected to the data bus [7].

16 CHAPTER 2. BACKGROUND

2.3 Delfi-n3Xt CDHS Hardware

The CDHS hardware consists of the redundant OBC hardware and the DSSB hardware.
The Delfi-n3Xt redundant OBC hardware PBC layout is shown in Figure The
upper part of the PCB consists of the redundant OBC hardware, with on the left side
the primary OBC and on the right side the secondary OBC (the two OBCs are seperated
by the seperation line in the middle of the PCB). The secondary OBC must take over
all the OBC operations in case of a failure in the primary OBC.

USART Debug 12| USART Debug I2c

Delfi-n3Xt ~» TU Deltt
CDHS On-Board Computer -
Redundant o, .E]

Y cAPLS.B CAPZ_S_.B_ CAP3S.E
ONX_TUD 3
ED_0963 E‘
v3.2 B
2-1-2012

R30_S_8

CAP2_S_| CAP3_S._A []
C20_s_A

— OBC Hardware

uta_s_a

ET
0

. 1
z
WS OMNGY EW YSTOULL L

(=]

_3.3UDC_SUB_S_A

— DSSB Hardware

X_3. 3UDE7RL BJ 3. 3UUU B

Figure 2.8: Delfi-n3Xt On-Board Computer hardware PCB layout

The lower part of the PCB consists of the double DSSB hardware; one DSSB
circuit for the primary OBC and one DSSB circuit for the secondary OBC. With
these two different DSSB circuits, the primary and secondary OBCs can be controlled
independently. Furthermore, the different DSSB circuits make it possible to read out
the operating voltage and the current consumption of the two OBCs.

In the remainder of this section the OBC hardware and DSSB hardware are fur-
ther described into details. Section gives more detailed information about the
OBC hardware. A more detailed description about the DSSB hardware is given in

Section 2.3.2

2.3. DELFI-N3XT CDHS HARDWARE 17

2.3.1 On-Board Computer Hardware

The OBC hardware consists of various passive and active electrical components and a
PCB with traces that connect all the components. The most important components that
form the OBC hardware for a single OBC are the following components:

e One MSP430F1611 microcontroller [23]
e One 8 MHz crystal

e One Elapsed Time Counter

e Two 32768 Hz crystals

e Three supercapacitors

The MSP430F1611 microcontroller is a 16-bit reduced instruction set computer
(RISC) that has an on-chip temperature sensor, a configurable clock source module
and many other hardware peripherals that can be used for a wide range of applications.
The hardware peripherals present on the MSP430F1611 are a flash memory controller,
a DMA controller, a watchdog timer, two ordinary 16-bit timers, an USART peripheral
supporting UART, SPI and I2C modes, a comparator, a 10-bit and 12-bit analog to dig-
ital converter and a 12-bit digital to analog converter. Furthermore, the MSP430F1611
can operate at a clock frequency of at most 8 MHz. An 8 MHz external crystal will be
used to drive the microcontroller chip and most of its peripherals. An external 32768 Hz
crystal will be used to drive the watchdog timer peripheral.

The Elapsed Time Counter (ETC) is a 44-bit counter that maintains the amount of
time that the device operates from main and/or backup power. The elapsed time can be
read out by the microcontroller through a parallel interface [8]. The ETC is driven by
an external 32768 Hz crystal. The three supercapacitors are used as backup power for
the ETC and they ensure that the ETC keeps on working when the main power fails.

2.3.2 Delfi Standard System Bus Hardware

The DSSB hardware also consists of many passive and active electrical components and
traces that connect all the components. The DSSB hardware is part of the PCBs of all
subsystems, as can be seen in Figure [2.8) where the DSSB hardware is part of the OBC
board. The most important components for the DSSB hardware are:

e One Atmel ATmega88PA microcontroller
e One 3.3V DC/DC converter

e Several transistors

The Atmel ATmega88PA microcontroller will be used to switch on or off the subsys-
tem and to read out the operating voltage and the current consumption of the subsystem.
The DSSB microcontroller and the rest of the subsystem operate on a DC voltage of 3.3V,
so the 12V DC system bus voltage must be converted to a 3.3V DC voltage. The tran-
sistors are used for switching the power on or off for the subsystem, and cutting off the
I?C lines to the subsystem if necessary.

18 CHAPTER 2. BACKGROUND

2.4 I?’C Communication Basics

I?C stands for Inter-Integrated Circuit and is designed and developed by Philips. It
allows serial communication between two or more devices (integrated circuits). Only
two lines are needed to connect the devices; the data line and the clock line [24]. This
section describes the basics of I2C communication.

2.4.1 Hardware Setup

There are two kinds of I2C devices: the master device and the slave device. Communi-
cation between master and slave devices takes place over two lines: the I2C Serial Clock
(SCL) line and the I2C Serial Data (SDA) line. The master device controls the SCL line
and initiates data transfers to or from a slave device over the SDA line.

vCcC @
MASTER SLAVE
Pull-up resistors > g
Serial Data (SDA) line l € 4 € €
Serial Clock (SCL) line & D
SLAVE SLAVE

Figure 2.9: I?C single-master, multiple-slave setup

It is possible to have multiple master devices connected to the bus. This multi-
master architecture is not considered in this thesis since it is specified in the On-Board
Computer requirements in Section [£.1] that only one master device is allowed to control
the bus. The architecture of a single-master, multiple-slave setup is shown in figure [2.9
The devices on the bus are also connected to V.. and GND (not shown in the figure).

Each device that is connected to the bus must have an own unique address. Using
this addressing scheme the master device is able to contact a specific slave device and
initiate a read or write operation. An address is 7 bits wide and a total of 112 devices
can be connected to the I2C bus (some addresses are reserved and cannot be used).
There is also a 10-bit addressing mode which allows one to connect more devices to the
bus [24]. However, this generates an overhead of 1 byte for each data transfer compared
to the 7-bit addressing mode. To have a reliable communication the clock speed of the
microcontrollers that act as master and slave devices should be at least 10 times the
I?C bus speed [19]. Note the pull-up resistors between the bus lines and the common-
collector voltage supply line (V..). These pull-up resistors are needed because the 12C
bus is an open-collector design. This means that when the I?C bus is in the idle state,
the bus lines are pulled high to V.. (meaning a logical 1). The I?C devices that are
connected to the bus can pull the bus lines low (meaning a logical 0) or just do nothing
with the bus lines (meaning a logical 1).

2.4. I’C COMMUNICATION BASICS 19

2.4.2 Start and Stop Conditions

There are two kinds of data transfer operations: write operations and read operations.

Both are more elaborated in the subsequent paragraphs of this section. Each operation

starts with a start condition and stops with a stop condition, as shown in Figure [2.10
/_‘_-- SDA

;

SDA } \ }
| |
| . I .

scL | \ / \ / | | scL
| S P

——-

/T

START condition STOP condition

Figure 2.10: Start condition and stop condition

Start and stop conditions are generated by the master device. A high to low transition
on the SDA line while the SCL line is high is known as a start condition. A low to high
transition on the SDA line while the SCL line is high is known as a stop condition. The
bus is busy after a start condition and free after a stop condition.

2.4.3 Write Operation

The master always initiates a transfer, so a write operation means that the master
device writes data on the bus and a slave device reads data from the bus. With such an
operation the master device operates in master transmitter mode and the slave device
in slave receiver mode. To achieve this the following will happen:

e The master sends a start bit (start condition).
e The master sends the 7-bit address of the slave device.
e The master sends a bit with the logical value 0, representing a write operation.

e The slave responds with an acknowledge (ACK) bit (logical 0) if it exists on the
bus.

If an ACK bit with a logical value of 0 (active low) is received from the slave device
the master knows that the slave is present and that the slave is ready to receive data. If
an ACK bit is not received (the master reads a logical value of 1 because the slave did
not pull low the SDA line) the master knows that the slave is not present and that it is
not possible to write data to the slave device. Once the master device received the ACK
bit with a logical value of 0 it can continue with sending data:

e The master sends a data byte on which the slave responds with an ACK bit (logical
value of 0).

e The master continues sending data bytes as specified in the previous step until it
is done.

e The master sends a stop bit (stop condition), this is also the case when the slave
not acknowledges.

20 CHAPTER 2. BACKGROUND

The data transfer from master to slave is shown graphically in Figure [24]. Here
it can be seen how the SDA bus line is used for the data transfer. Note the value of the
R/W bit. It equals 0, representing a write operation.

‘ S ‘ SLAVE ADDRESS ‘ RAW ‘ A ‘ DATA ‘ A ‘ DATA ‘Aif\‘ P ‘

I; data transferred J

‘0" (write) (n bytes + acknowledge)
D from master to slave A = acknowledge (SDA LOW)
A = not acknowledge (SDA HIGH)
D from slave to master S = START conditicn

P = STOP condition

Figure 2.11: Data transfer from master to slave

2.4.4 Read Operation

A read operation means that the master device reads data from the bus and a slave
device writes data on the bus. With such an operation the master device operates in
master receiver mode and the slave device in slave transmitter mode. To achieve this
the following will happen:

e The master sends a start bit (start condition).
e The master sends the 7-bit address of the slave device.
e The master sends a bit with the logical value 1, representing a read operation.

e The slave responds with an acknowledge (ACK) bit (logical 0) if it exists on the
bus.

If an ACK bit with a logical value of 0 (active low) is received from the slave device
the master knows that the slave is present and that the slave is ready to send data. If
an ACK bit is not received (the master reads a logical value of 1 because the slave did
not pulled the SDA line low) the master knows that the slave is not present and that
there is no need to read data from the bus. Once the master device received the ACK
bit with a logical value of 0 it can continue with receiving data:

e The slave sends a data byte on which the master responds with an ACK bit (logical
value of 0).

e The slave continues sending data bytes as specified in the previous step until it is
done. The master acknowledges all the bytes, except for the last byte.

e The master sends a stop bit (stop condition). This is always the case, even if one
or more of the previous steps fail.

The data transfer from slave to master is shown graphically in Figure [24]. Here
it can be seen how the SDA bus line is used for the data transfer. Note the value of the
R/W bit. It equals a logical 1, representing a read operation.

2.4. I’C COMMUNICATION BASICS 21

1
‘S‘ SLAVE ADDRESS ‘RI\T‘V‘A‘ DATA ‘A‘ DATA ‘ JK‘P‘

data transferred

(read) (n bytes + acknowledge)
l:‘ from master to slave A = acknowledge (SDA LOW)
A = not acknowledge (SDA HIGH)
l:‘ from slave to master S = START condition

P = STOP condition

Figure 2.12: Data transfer from slave to master

2.4.5 Sampling vs. Edge-Triggered Interrupts

An I?C controller can be implemented in software or in hardware. Most modern micro-
controllers have a hardware I?C module on-chip. I2C controllers that are implemented
in software use a sampling technique to determine what happens on the SDA and SCL
lines. The sampling rate must be at least twice as high as the I?C data bus rate for
reliable communication. Any sampled data can be stored and processed further. I2C
controllers that are implemented in hardware usually use edge-triggered interrupts to
determine what happens on the I?C bus lines. In this case the I?C controller reacts on a
rising edge (a low to high transition) or a falling edge (a high to low transition) on both
bus lines. Usage of a hardware I2C controller that is based on edge-triggered interrupts
is less error prone compared to the usage of I?C controllers implemented in software.
One advantage of hardware I12C controllers is that they are thoroughly tested by the
manufacturer of the chip. A disadvantage of sampling is that data may be sampled
after the occurrence of a bit flip on one of the lines. The impact of bit flips is further
described in Section which is about I?C communication failures. The Delfi-n3Xt
OBC its microcontroller consists of an I?C hardware peripheral which is edge-triggered.

2.4.6 Data Transfer Example

As already mentioned before, I2C communication works over two lines: the serial data
line (SDA) and the serial clock line (SCL). Each clock pulse on the SCL line corresponds
to a bit that is transferred over the SDA line. Using the clock line the master and slave
devices remain sync to one another. The master generates the clock pulses over the SCL
line and the slave device can read data from or write data to the SDA line on each clock
pulse. The state machines in the hardware of the I2C peripherals of the devices should
count the number of clock pulses on the SCL line, such that data can be read from or
written to the SDA line correctly.

An example of a data transfer over the I2C bus is shown in Figure In the figure
one is able to see a small data transfer of only 1 byte from the master device to a slave
device. The data transfer takes place from left to right. In the very left side of the figure
both the SDA and SCL lines are high.

Suddenly the SDA line makes a transition from high to low while the SCL line is high.
This happens because the master wants to initiate a data transfer. To do this the master
pulls low the SDA line while the SCL line remains high. With this action the master

22 CHAPTER 2. BACKGROUND

SDA

Nl | illll Illli [RN RN | Ilill IIIIII-T-III Illli LR N | Ilill LR N | Il .

SCL

Figure 2.13: Ezample of a data transfer over the I?C lines

issues a start condition; all the slave devices that are connected to the I?C bus will detect
this, such that they know that the master would like to perform a data transfer. Next,
the master sends out clock pulses over the SCL line (nominally at a rate of 100kHz) and
puts data on the SDA line. The first 7 data bits on the SDA line correspond to the first
7 clock pulses on the SCL line and represent the slave address with which the master
would like to communicate. One can see that during the first clock pulse the SDA line
is high and during the next 6 clock pulses the SDA line is low. This means that the
master wants to communicate with a slave device with address 1000000 in binary (0x40
in hexadecimal).

The next clock pulse (i.e. clock pulse number 8) corresponds to the R/W bit which
indicates whether the master would like to read data from the slave or write data to the
slave. In the example shown in Figure the SDA line is low during the clock pulse
that corresponds to the R/W bit, indicating that the master wants to write data.

The ninth clock pulse corresponds to the acknowledgement (ACK) bit. The SDA line
is pulled low by the slave device with address 0x40 during the ninth clock pulse. This
means that the slave device with address 0x40 is present on the bus.

At this point the master knows that the slave is ready to receive data from the
master. Now the master will issue 9 more clock pulses; 8 clock pulses for the data byte
and 1 clock pulse for the acknowledge bit. The SDA line is high on clock pulses 1, 2, 3,
6, 7 and 8 and low on clock pulses 4 and 5. This means that a data byte with a value
of 11100111 in binary has been transferred from the master to the slave. On the ninth
clock pulse of the data byte transfer the slave device pulls low the SDA line in order to
let the master know that it received the data byte properly. After this acknowledgement
the slave releases the SDA line such that is becomes in a high state.

The master now ends the transfer by pulling low the SDA line and release the SDA
line while the SCL line is in the high state, as can be seen in the very right side of
Figure 2.13] This represents a stop condition. The slave device is able to detect this
stop condition such that it knows that the transfer is finished.

2.4. I’C COMMUNICATION BASICS 23

2.4.7 Clock Stretching

The I2C specification allows devices that are connected to the I?C bus to stretch the
clock. This feature is useful when slow devices are connected to the I2C bus. Slower
devices might not be able to handle and process data at the rate at which the master
generates clock pulses. It also might be the case that a slave device is busy with other
things such that the handling of I2C interrupts have to wait. When this happens the
slave device can pull low the SCL line until it is ready to go on with the processing of
I2C events.

SDA

SCL

bmi et i R e ey o i o T T i o o e o 8 e g v g [[e, S R

Figure 2.14: Ezxample where the slave device stretches the clock

The data transfer example shown in Figure [2.13]is also shown in Figure except
that the slave device now stretches the clock after clock pulse number 16 of the transfer.
When the slave stretches the clock, the SDA line remains in the same state as it was one
clock pulse earlier. In this particular example the SDA line remains in the high state.
In Figure [2.14 one can see that after a while the slave device releases the SCL line. This
means that the slave device processed the I2C interrupt event and is ready for further
data reception.

2.4.8 Data Transfer Speeds

In theory there are no restrictions to the data transfer speed for data transfers over the
I?C bus. The main thing is that when one likes to perform data transfers at a desired
rate, two things should be met:

e The master device must be able to generate clock pulses and process data at the
desired rate.

e The slave devices connected to the bus must be able to process data at the desired
rate.

In practice, most I?C peripherals have a data transfer speed restriction in order to
facilitate reliable data transfers. In the I?C specification it is stated that the CPU clock
frequency of devices connected to the I?C bus must be at least 10 times higher than

24 CHAPTER 2. BACKGROUND

the clock frequency of the 12C bus [24]. Furthermore the I?C specification specifies the
following standardized bus speeds:

e Normal mode, 100kHz (100kbit/sec)

e Fast mode, 400kHz (400kbit/sec)

e Fast mode plus, IMHz (1Mbit/sec)

e High speed mode, 3.4MHz (3.4Mbit/sec)

However, the master device is in principle free to select any frequency at which data
will be transferred.

2.5 Summary

The background information that is required to understand the remainder of this thesis
is presented in this chapter. This includes background information about the Delfi
program, the Delfi-n3Xt nanosatellite mission, the payloads and subsystems of Delfi-
n3Xt, the CDHS hardware and the I?C bus communication basics.

The Delfi program is a nanosatellite development line that currently consists of two
satellites: the already launched Delfi-C? and the Delfi-n3Xt which is planned for launch
in September 2012. The Delfi-n3Xt nanosatellite is currently under development at the
Faculty of Aerospace Engineering, department of Space Systems Engineering, Delft Uni-
versity of Technology. The Delfi-n3Xt mission has three objectives: education, technol-
ogy demonstration and nanosatellite bus development. Several significant advancements
have been made in the ADCS, S-band transmitter, EPS and CDHS compared to Delfi-C3.

Delfi-n3Xt consists of various payloads and subsystems. The two payloads are the
micro propulsion payload and the tranceiver payload. The other subsystems are the
communications subsystem, the attitude determination and control subsystem, electrical
power subsystem, structural subsystem, mechanical subsystem, thermal control subsys-
tem and command and data handling subsystem which are all shortly introduced and
described in this chapter.

The On-Board Computer hardware of Delif-n3Xt consists of a MSP430F1611 mi-
crocontroller, an 8 MHz crystal, an elapsed time counter, two 32768 Hz crystals, three
supercapacitors and various other passive and active electrical components. The Delfi
Standard System Bus hardware also consist of several passive and active electrical com-
ponents. The most important components for the DSSB are the Atmel ATmega88PA
microcontroller, the 3.3V DC/DC converter and several transistors that are used to cut
off the power lines or I2C lines to the subsystem.

For I?C communication, one master device and one or more slave devices are needed.
Each I2C slave device has an unique address. A data transfer can be a write operation
or a read operation. A write operation is a data transfer from the master to a slave
device and a read operation is a data transfer from a slave device to the master device.
All data transfers are started with a start condition and stopped with a stop condition.
Furthermore slave devices are allowed to stretch the I?C clock in order to slow down a
data transfer.

[2C Bus Analysis

This chapter is devoted to a failure analysis and performance analysis of the Delfi-n3Xt
I2C bus. In Section the basics of communication over the I?C bus were already
described. In this chapter, an extensive analysis of I2C bus failures with their possible
causes and impacts is given in Section . The 12C bus performance analysis of the
engineering model hardware is discussed in Section Section summarizes this
chapter.

3.1 I?’C Bus Failure Analysis

During I?C communication between a master and a slave device, several failures may
occur. These failures can lead to unpredictably behavior or bus lock-ups. In space, these
failures may be introduced by external factors like electromagnetic radiation (e.g. direct
solar radiation, Albedo radiation and thermal radiation emitted by earth) and particle
radiation [27]. The different kinds of radiation may introduce bit flips or distortions on
the SDA and SCL lines. The failures that may occur are analyzed according to the data
transfer procedure from the beginning to the end (i.e. from the start condition to the
stop condition). In the end of this section the failures are summarized in a table in which
the causes, impacts and resolve steps of the failures are described.

3.1.1 Start Condition Failures

Each data transfer on the I?C bus starts with a start condition. The start condition is
defined as a high to low transition on the SDA line while the SCL line is high, as shown
in Figure [3.1] Here it is assumed that the SDA line and SCL line are sampled at times
tl and tz.

Figure 3.1: Start condition with SDA high at time t1 and SDA low at time to
When slave devices read a high to low transition on the SDA line as shown in Fig-

ure (i.e. SDA is high at time ¢; and SDA is low at time ¢, while SCL is high), the
slaves connected to the bus will continue reading the 7 address bits and the R/W bit

25

26 CHAPTER 3. I’C BUS ANALYSIS

from the SDA line. Once a slave read the 8 bits (address and R/W bit), the slave will
compare its own address with the address that it read from the bus. If the slave its own
address is the same as the address that it read from the bus, the slave will respond with
an ACK bit. If the slave its own address is different than the address that is read from
the bus, the slave does nothing.

SDA : \’ SDA

(a) Bit ﬁlp on SDA (b) Bit flip on SCL

|
|
| m Lip|
|
|

Figure 3.2: Bit flips in a start condition on the I2C lines between times t; and ts

Now suppose a bit flip occurs somewhere between time ¢; and time ¢ such that the
SDA line is also high at time ts, as illustrated in Figure If a bit flip occurs at this
time on the SDA line, the slave devices read SDA high at time ¢; and SDA high at time
to while SCL is high. Because of the bit flip the original start condition has now been
transformed into something which is not a start condition anymore. A similar situation
happens when a bit flip occurs on the SCL line between time ¢; and time t5 as illustrated
in Figure Now the SCL line is not high anymore on time t3, which means that it
is not a start condition anymore.

The direct consequence of bit flips as illustrated in Figure and Figure is that
the slave devices will not read address bits and the R/W bit from the bus, since they
did not read a start condition. The master expects an ACK bit if the slave device with
the requested address is present. But even if the slave device is present it wont respond
with an ACK bit since it missed the start condition. The master device concludes that
the requested slave device is not present on the bus, while it could be the case that it
actually is present.

3.1.2 Slave Request Failures

The next thing that can go wrong is the request for a slave device from the master.
Here it is assumed that the start condition is read and interpreted correctly by the slave
devices. As already explained earlier, the 7 address bits and the R/W bit are send
directly after the start condition. The slave devices read the address bits and the R/W
bit and compare the address with their own address. If there is a match, the requested
slave device will respond with an ACK bit. An error may be introduced by a bit flip
in one or more bits of the 7 address bits. A bit flip in the address may lead to two
situations:

e The address that is put on the bus is turned into an address which is not present
on the bus.

e The address is turned into an address used by another slave device.

3.1. I?C BUS FAILURE ANALYSIS 27

Suppose the master wants to perform a read or write operation from or to a slave
device with address 0x69 in hexadecimal (1101001 in binary). Now suppose a bit flip
occurs in the fifth clock pulse, i.e. the requested slave device address turns from 0x69
into 0x6D (from 1101001 into 1101101 in binary). When there is no slave device present
with address 0x6D (1101101) the master will not read an ACK. The master will read a
NACK (No Acknowledge) so that it knows that the requested slave device is not present.
However, the master does not know that a bit flip occurred and that the requested slave
device actually is present and connected to the bus.

In the other case, the requested slave address can be transformed into a slave address
of another slave device. Suppose one slave device has the address 0x69 (1101001 in
binary) and another slave device has the address 0x6D (1101101 in binary). Now when
the master wants to perform a read or write operation from or to the slave device with
address 0x69 (1101001) and the bit flip transforms the requested slave address into the
address 0x6D (1101101), the master unintentionally performs a request for the wrong
slave device. This should really be avoided, otherwise there is a possibility that the
wrong data is being fetched from the wrong slave device.

To reduce the probability that a bit flip transforms an address into an address that
is in use by another slave device, a minimal hamming distance of 2 between allocated
slave addresses can be used. The hamming distance is defined as the number of different
symbols between two strings. In the case of I?C addresses, the hamming distance is
the number of different bits between two addresses. The higher the hamming distance
between allocated slave addresses means the lower the probability that a requested slave
address will be transformed into another slave address that is present on the bus. In the
CDHS Software ICD [18], most of the I2C addresses of the subsystems in the Delfi-n3Xt
satellite are already defined such that the hamming distance between each allocated
address equals 2.

3.1.3 Read/Write Bit Failures

After the start condition and the requested slave address, the R/W bit is placed on the
bus by the master. A logical value of 1 (SDA line high) means that the master requests
a read operation and a logical value of 0 (SDA line low) represents a write operation,
as shown earlier in this document in Figure 2.12] and Figure [2.11] respectively. For the
R/W bit, a bit flip on the SDA line may result in the two following situations:

e The master wants to read (R/W = 1) but the requested slave reads (R/W = 0).

e The master wants to write (R/W = 0) but the requested slave reads (R/W = 1).

In both situations it is assumed that there were no bit flips in the start condition
and the slave request. The first situation is the case when the master device wants to
read from the requested slave device. In this case the master does not pull low the SDA
bus line during the clock pulse corresponding to the R/W bit (i.e. it does nothing with
the SDA line). Herewith the master indicates that it wants to perform a read operation,
so the master will be in master-receiver mode. Now suppose that a bit flip occurs and
that the SDA line is pulled low by some external event. The requested slave device

28 CHAPTER 3. I’C BUS ANALYSIS

understands that the master wants to write to the slave device (because it reads R/W
= 0 instead of R/W = 1) so the slave will wait for bytes to be received from the master
(i.e. the slave will be in slave-receiver mode). However, the master still wants to perform
a read operation, so the master is waiting for bytes to receive from the requested slave
device. Now both sides are waiting for each other because both sides are in receiver
mode, which obviously should result in a time-out.

A more interesting failure becomes visible when a bit flip occurs if the master device
wants to write to the requested slave device. The master device pulls low the SDA bus
line during the clock cycle that corresponds to the R/W bit to indicate that it wants
to write to the requested slave device (i.e. R/W = 0). The master will be in master-
transmitter mode since it wants to write data on the bus. Now suppose that a bit flip
occurs and the requested slave device reads R/W = 1 instead of R/W = 0. The slave
understands that the master devices wants to read data from the slave device. The
slave device will go into slave-transmitter mode, resulting in both sides to become a
transmitter. Now both the master and the slave device will try to write data on the bus
and both sides will wait for the ACK bit of the other side in order to proceed the data
transfer. In this situation the IC bus its SDA line becomes in an unpredictable state.
However, both sides are waiting for an acknowledgement from the other side. Hence on
both sides a timeout occurs after they wrote the first data byte on the bus.

3.1.4 Slave Acknowledgement Failures

Suppose that the master would like to initiate a data transfer and that the start condition,
slave device address and R/W bit are free of errors (bit flips). The next step is the
acknowledgement which has to be performed by the slave device (if a slave with the
requested address exists on the bus, of course). If there is no slave device present on
the bus with its address equal to the address of the requested slave device, the SDA
line will stay high during the clock cycle that corresponds to the acknowledgement (this
indicates a NACK). If the slave device with the requested address is present, the slave
device will pull the SDA line low to let the master know that it is present. For the slave
acknowledgement bit, two failures may be introduced on the bus because of a bit flip on
the SDA line:

e The slave device is not present, but the master reads an ACK.

e The slave device is present and responds with an ACK, but the master reads a
NACK.

The first failure case is when the master reads an ACK response bit from the slave
device while the slave device is actually not present on the bus. This obviously can only
happen when a bit flip occurs on the SDA line exactly during the clock pulse (on the
SCL line) that corresponds to the slave acknowledgement bit. The bit flip causes the
SDA line to be pulled low, with the consequence that the master receives an acknowledge
from the slave. The master now continues the data transfer. It issues clock cycles and
writes 8 bits on the bus when it would like to write data to the slave, or it just waits for
the 8 bits to be received from the slave device if it wants to read data from the slave. If

3.1. I?C BUS FAILURE ANALYSIS 29

the master wants to write it will write the 8 bits on the bus, but then it wont receive
an acknowledgement from the slave at the ninth clock pulse, which causes the master to
stop the transfer. If the master wants to read it will read all the bytes it wants, but all
bytes will have a value of OxFF in hexadecimal since the SDA line will always be high
during clock pulses corresponding to the data.

The second failure case is the other way around: the slave device is present and
connected to the bus and the slave device responds with an ACK, but the master device
reads a NACK and understands that the slave does not exist. The master will not
attempt to read data from or write data to the bus and will stop the data transfer.

3.1.5 Data Byte Transfer Failures

To illustrate possible failures during the transfer of data bytes, it is again assumed that
during the previous bus activities (start condition, slave address, R/W bit and ACK bit)
no errors (bit flips) occurred. A data transfer is a series (1 or more) of one-byte data
transfers where each data byte is followed by an ACK bit. Bit flips in the data bytes
are at this point unimportant since they do not bring the I?C bus in a failure state and
will only result in bit errors in the data bytes. Bit flips in the data bytes should be
handled by a data consistency check procedure and/or a data error correction procedure
in order to ensure correct data reception. The important part in the data transfer that
may introduce failures is the acknowledgement bit. There are two different modes in
which a failure may occur:

e Master-transmitter, slave-receiver mode: the slave has to acknowledge.

e Master-receiver, slave-transmitter mode: the master has to acknowledge.

In the master-transmitter, slave-receiver mode (i.e. when the master device is sending
data to the slave device), the slave device has to acknowledge each data byte that it
received from the master device. For a transfer from the master to the slave, two failures
may occur:

e The slave device acknowledges, but the master device reads a NACK.

e The slave device does not acknowledge, but the master device reads an ACK.

When a slave device acknowledges but the master reads a NACK, the master device
will abort the transfer by sending out a stop condition such that the bus becomes free.
It may be possible that the slave device does not acknowledge, for example when the
slave device misses clock pulses or the slave device is not operable anymore because of
some kind of hardware failure. In this case the master reads a NACK, but when a bit
flip occurs the master will read an ACK and will continue with sending the next data
byte. This does not harm the health of the I2C bus, since at the end of the next data
byte transfer the master will read the actual NACK (when a bit flip does not occur)
after which the master will eventually issue a stop condition that will free the bus.

For the master-receiver, slave-transmitter mode, the master device receives data from
the slave device so the master device has to acknowledge each data byte that it received

30 CHAPTER 3. I’C BUS ANALYSIS

from the slave device except for the last data byte [24]. The master reads n bytes from
the slave device where n > 1. In this mode there may happen two failures because of a
bit flip on the SDA line:

e For one or more of the first n — 1 bytes, the master device acknowledges but the
slave device reads a NACK.

e The master device does not acknowledge for the ny, byte, but the slave device
reads an ACK.

The first failure should not lead to a problem on the bus. If the slave device reads a
NACK after it wrote a data byte on the bus, the slave device will stop with writing the
next data bytes on the bus and becomes in an idle state. The master however, will still
issue 9 more clock pulses for the next data byte and the ACK bit. The slave device is
in idle mode now so it wont write any data bytes on the bus. This means that the SDA
line will remain high, and thus the master reads for all the next bytes a value of OxFF
(11111111 in binary).

The second failure should not lead to a problem on the bus either. The master did
not acknowledge for the last byte, but the slave device reads that it acknowledged. This
is actually not a problem because the master device will continue with sending a stop
condition anyway (since this was the last byte the master sent). The slave device will
recognize the stop condition and the bus will be released such that it can be used for a
new data transfer.

3.1.6 Stop Condition Failures

Stop condition failures are similar as the start condition failures. As mentioned earlier,
each data transfer on the I?C bus stops with a stop condition. The stop condition is
defined as a low to high transition on the SDA line while the SCL line is high, as shown
in Figure [3.3] Here it is assumed that the SDA line and SCL line are sampled at times
tl and tQ.

Figure 3.3: Stop condition with SDA low at time t; and SDA high at time to

When the slave device the master was reading from or writing to reads a low to high
transition on the SDA line as shown in Figure (i.e. SDA is low at time ¢; and SDA
is high at time ¢ while SCL is high), the slave device understands that the transaction
is about to end. After the stop condition the slave will completely release the bus lines
such that the bus becomes free again for a new transaction between the master and any
slave device.

3.1. I?C BUS FAILURE ANALYSIS 31

t ty t ty
| | | |
L | |
| ' | I
I/ \ | SDA | : SDA
| | | biesig|
| | |4
1
| | scL | | scL
| | |
(a) Bit flip on SDA (b) Bit flip on SCL

Figure 3.4: Bit flips in a stop condition on the I>C' lines between times t, and to

Now suppose a bit flip occurs somewhere between time ¢; and time ¢ such that the
SDA line is also low at time ts, as illustrated in Figure If a bit flip occurs at this
time on the SDA line, the slave devices read SDA low at time ¢; and SDA low at time
to while SCL is high. Because of the bit flip the original stop condition has now been
transformed into something which is not a stop condition anymore. A similar situation
happens when a bit flip occurs on the SCL line between time ¢; and time t5 as illustrated
in Figure Now the SCL line is not high anymore on time t3, which means that it
is not a stop condition anymore.

The direct consequence of bit flips as illustrated in Figure [3.4a)and Figure[3.4b]is that
the slave device will not release the I?C bus lines. When a slave is in slave-transmitter
mode it can still write data on the bus when the master issues clock pulses on the clock
line, while it is not supposed to do that since the master device issued a stop condition.
This may introduce earlier described failure cases and data inconsistencies.

3.1.7 Slave Device Missing Clock Pulses

Besides failures on the SDA line during the transfer of data, failures on the SCL line may
occur as well. When a bit flip on the SCL line occurs in the middle of a data transfer, the
slave device might miss one or more clock pulses. 1C controllers that are implemented
in hardware will then get stuck somewhere in their state machine, meaning that the I?C
controller of the slave device is waiting for more clock pulses from the master in order
to finish the data transfer.

When this happens in master-transmitter, slave-receiver mode, the slave device still
wants to read bits from the bus but the master already expects an ACK from the slave
device. This might happen if the master already send out 9 clock pulses (8 clock pulses
for the data byte and 1 clock pulse for the ACK) but the slave received less than 9 clock
pulses (because of e.g. a bit flip on the SCL line). At the ninth clock pulse the master
will read a NACK because the slave does not pull the SDA line low at this clock pulse
since it still wants to read bits from the bus. This results in an abortion of the data
transfer, followed by a stop condition from the master.

In the case of the master-receiver, slave-transmitter mode, the slave device will write
bits on the bus that are out of sync. Suppose the master already send out 3 clock pulses
but the slave device missed the third clock pulse. This means that the first 2 bits are

32 CHAPTER 3. I’C BUS ANALYSIS

received correctly, but the third bit might or might not be correct. The point is that
the hardware state machine of the slave device is still waiting for a clock pulse from
the master in order to send out the third bit. When the master sends out the fourth
clock pulse and the slave device receives that clock pulse, the slave device will send out
the third bit over the data line while the master expects the fourth bit. At this point
the data transfers runs out of sync, and at the ninth clock pulse the master expects
an ACK (i.e. the slave device pulls the SDA line low) but the slave device will send
out bit number 8 of the data byte (assuming that the slave device missed exactly one
clock pulse). Depending on the value of the last data bit, the following two events may
happen:

e If the last bit of the data byte equals 0, the master will read an ACK at the ninth
clock pulse.

e If the last bit of the data byte equals 1, the master will read a NACK at the ninth
clock pulse.

In the first case the master will continue with sending clock pulses over the SCL line.
If this failure occurs on the very last byte to be transferred, the slave device might pull
low the SDA line indefinitely. In the second case the master will abort the data transfer
and send out a stop condition such that the bus becomes free.

3.1.8 Data Line Pulled Low Indefinitely

A serious failure occurs when one of the I?C devices connected to the I2C bus pulls low
the SDA line indefinitely. When this happens, further communication over the I2C bus
is not possible. Unfortunately, this failure can happen anywhere in the system at any
time. An I?C device can pull low the SDA line indefinitely when one of the following
events occur:

e An electrical short between the ground and the SDA line

e A lock-up in the I2C controller its hardware state machine while it pulls the SDA
line low

e A latch-up in the I?C controller electronics

An electrical short between the ground and the SDA line can be caused by an internal
hardware failure or a soldering failure that connects the SDA line with the ground.
When the SDA line is connected to the ground constantly, the SDA line will be pulled
low constantly. Clearly, this results in a situation where communication is not possible
anymore since the representation of a logical 1 corresponds to a high SDA line (hence
a logical 1 can not be represented anymore in this situation). The SDA line can not
become in the high state anymore since it is pulled low constantly. A failure like this can
be solved if the I?C device that is responsible for pulling the SDA line low constantly is
isolated from the I2C bus. The failure may also be solved by replacing the component
that introduces the electrical short. This is of course not possible once the satellite is in
space, so the only option for solving this problem is to isolate the faulty component.

3.1. I?C BUS FAILURE ANALYSIS 33

If the SDA line is pulled low constantly by a lock-up in the I?C controller its hardware
state machine or by a latch-up in the I2C controller electronics, the SDA line will be
pulled low until the I2C device responsible for pulling the SDA line low is power cycled.
The lock-up in the I2C controller hardware state machine can be caused by a bug in
the hardware I12C controller or when the I2C device missed a clock pulse. This problem
may be solved if the master device issues at least 9 clock pulses over the SCL line [24].
The slave device will receive the clock pulses such that it can continue its hardware state
machine. After those 9 clock pulses, the state machine becomes in the idle state. In the
idle state the slave device releases the SDA line such that the SDA line will be pulled up
by the pull-up resistor, meaning that the health of the IC bus is recovered.

A latch-up in the I?C controller electronics is an unwanted conductance that can
be caused by a charged particle. The charged particle heats up the electronics, which
may create a conducting plasma [13]. If one of these two events occurs and the power
of the responsible I2C device is cycled, the I?C device releases the SDA line so that the
line becomes in a high state. Once the line is in a high state, communication can be
continued.

3.1.9 Clock Line Pulled Low Indefinitely

Another serious failure occurs when one of the I2C devices connected to the I2C bus
pulls low the SCL line indefinitely. Like with pulling low the SDA line continuously,
I2C communication is also not possible when the SCL line is pulled low continuously.
Unfortunately, also this failure can happen anywhere in the system at any time. An I2C
device can pull low the SCL line indefinitely when one of the following events occur:

e An electrical short between the ground and the SCL line
e Indefinite clock stretching
e A latch-up in the I2C controller electronics

The cause and impact of an electrical short between the ground and the SDA line is
described above. For the SCL line the same impact holds: the SCL line is pulled low
continuously, meaning that communication over the I?C lines is not possible anymore
since the SCL line cannot become in the high state anymore.

The impact of a latch-up in the I2C controller electronics is already described above;
the latch-up can pull the SCL line low for an indefinite period of time. A slave device
can pull low the clock line indefinitely if it is stretching the clock and gets trapped in a
software routine such that it cannot release the clock line. This problem can be solved
by implementing time-out detection that will reset the I2C controller when a time-out
occurs. Power cycling the I2C device that is pulling the SCL line low will also solve this
problem [24].

3.1.10 I?C Failures Summary

All the I2C failures that are described in the sections above are summarized and listed
in an overview in this section. The overview is shown in Table The causes, impacts
and possible resolve steps are listed as well.

34 CHAPTER 3. I’C BUS ANALYSIS
Failure Cause Impact ‘ Resolve step
Start condition | Bit flip on the | Slave devices may or may | At this point the master
failure SDA or SCL line | not recognize the start | cannot detect whether or

condition. When a start
condition is not recog-
nized the slave device does
not ACK on a data trans-
fer request

not a slave device missed
the start condition. The
master must put the slave
address on the bus to pro-
ceed

Slave
failure

request

Bit flip on the
SDA line

A slave device does not ac-
knowledge when it missed
the start condition. The
master may read a NACK
while the slave is present,
or another slave device
that is present on the bus
acknowledges. The lat-
ter may result in unde-
sired operations and data
flow

When the master receives
a NACK the master must
stop the data transfer by
issuing a stop condition.
Precautions for this failure
can be taken by using 2
or more different bits be-
tween I?2C addresses such
that the probability for
this error to occur is de-
creased

R/W bit failure

Bit flip on the
SDA line

Master and slave devices
are waiting for each other
for an ACK. Software at
both master and slave side
may enter an infinite loop
if the software does not
check for NACK

On both sides the soft-
ware must stop the data
transfer procedure when a
NACK is read. To achieve
this, the master must send
out a stop condition to
free the bus

Slave acknowl-
edge failure

Bit flip on the
SDA line

The master reads a NACK
while the slave device is
present and stops the data
transfer, or the master
reads an ACK while the
slave device is not present
and reads all ones (data
bytes with value 0xFF) in
case of a read operation

This does not affect the
health of the I2C bus so
no resolve step needs to be
taken

Data byte trans-
fer failure

Bit flip on the
SDA line

Bit errors occur when a
bit flip happens on one
or more of the first 8
clock pulses of a data byte
transfer. When a bit flip
occurs on the ninth clock
pulse (ACK bit) a se-
quence of ones (data bytes
with value OxFF) will be
read by the master during
a read operation

This does not affect the
health of the I2C bus so
no resolve step needs to be
taken

Continued on next page

3.2. I’C BUS PERFORMANCE ANALYSIS

35

Table 3.1 — continued from previous page

Failure ‘ Cause ‘ Impact Resolve step

Stop condition | Bit flip on the | If the slave is in slave- | This is solved by the next

failure SDA or SCL line | transmitter mode and | I?C operation, after the
misses the stop condition | next stop condition has
it still may write bytes | been issued by the master
on the bus since it not | and the slave did not miss
releases the bus lines that stop condition

Slave misses | Bit flip on the | The slave and the master | Let the master send at

clock pulses

device get out of sync and
the slave device might pull
the SDA line low indefi-
nitely

least 9 clock pulses over
the SCL line such that
the slave I?C controller its
hardware state machine
gets out its trapped state

Data line pulled
low indefinitely

SCL line
An electrical
short between

the ground and
the SDA line, a
lock-up in the
12C controller
its hardware
state machine or
a latch-up in the

The SDA line is pulled low
indefinitely such that data
transfers over the I2C lines
are not possible anymore

Isolate the I2C device in
case of an electrical short.
In case of a latch-up,
a power cycle is suffi-
cient. For the I?°C con-
troller lock-up, the master
device must issue 9 clock
pulses such that the 12C
hardware state machine of

I12C controller the slave device that pulls
electronics the SDA line low becomes
in the idle state and re-

leases the SDA line
Clock line | An electrical | The SCL line is pulled low | Isolate the I?C device in
pulled low | short between | indefinitely such that data | case of an electrical short.
indefinitely the ground and | transfers over the I?C lines | In case of a latch-up, a
the SCL line, | are not possible anymore | power cycle is sufficient.
clock stretching For clock stretching, a
by the slave time-out must be imple-

device or a
latch-up in the
I12C controller
electronics

mented at the slave side
such that it resets its
I2C controller and thus re-
leases the SCL line

Table 3.1: I?C failures with their causes, impacts and resolve steps

3.2 I’C Bus Performance Analysis

Using engineering model test boards, an I?C bus performance analysis has been per-
formed. During the performance analysis, the stability and reliability of the I?C bus was
extensively tested. In Section [3.2.1]it is explained how the bit error rate is defined and
in Section the test setup is described. The procedure to measure the performance
of the I2C bus is given in Section and Section describes the verification of the
performance procedure. Finally, in Section the results are presented.

36 CHAPTER 3. I’C BUS ANALYSIS

3.2.1 Bit Error Rate

A good measurement for I?C bus performance is the bit error rate (BER). The BER
is defined as the number of incorrectly transferred bits divided by the total amount
of transffered bits during the performance test. An incorrectly transferred bit may be
caused by a bit flip on the SDA line or a malfunction in one of the I?C devices.

BER = Bincorrect (31)
Btotal

When one keeps track of the amount of transferred bits and the amount of incor-
rectly transffered bits, the BER can be computed using Equation Any bit that is
different than it is supposed to be is considered as an incorrectly transferred bit and will
consequently increase the BER. Ideally the number of incorrectly transferred bits equals
0, which results in a BER of at most Byotq;~'. A lower BER means higher performance
and reliability metrics, which is of course desirable.

3.2.2 Test Setup

To successfully perform the BER measurement test, various kinds of hardware and soft-
ware are needed. Since communication between subsystems is realized over the I?C bus,
all the hardware that is used has to be I?C compatible. The following components are
needed to perform the BER measurement:

e Exactly one microcontroller that acts as the I2C master device

e One or more microcontrollers that act as a I?C slave device

e One I2C sniffer, which is in our case implemented in FPGA technology
e Cables to connect the I2C devices

e Serial cable (RS232) to connect the I?C sniffer device to a computer

In this setup, 10 microcontrollers are used that act as slave device that simulate
subsystems. The I?C master device communicates with the I?C slave devices by initiating
data transfers. Data is transferred from the master device to the slave devices and the
other way around such that I?C write operations and I?C read operations are both
executed during the performance test. The I2C sniffer shows all the transferred data
(including I?C addresses) in real time on the display of the computer. The I?C sniffer is
not a master device nor a slave device. It only listens on the I2C bus to sniff all the data
that is transferred over the bus, so it is invisible to other devices. For this test there are
two kinds of software needed:

e Software for the microcontrollers, including I?C service layer software and test
application layer software that uses the I?C service layer software to measure the
BER

e Software for the I2C sniffer (i.e. I2C Monitor software)

3.2. I’C BUS PERFORMANCE ANALYSIS 37

The microcontroller software that is needed must be able to initialize a microcon-
troller as an I2C master or I?C slave device. Furthermore this software must include
procedures to send and receive data over the I?C bus. With these basic procedures one
is able to design test software on the application layer level to perform BER measure-
ments. With the I?C monitoring software it is possible to read the number of transferred
bits and the number of incorrectly transferred bits if the test software is designed such
that these numbers are transferred over the bus. When these numbers are transferred
over the bus the I?C monitor software will display these numbers on the screen of the
computer. The user can in turn compute the BER using Equation [3.1

3.2.3 Test Procedure

The test procedure needed to measure the BER consists of a couple of steps. In order
to measure the BER, communication is needed between the master device and the 10
slave devices that simulate subsystems. The microcontroller that is the I?C master must
keep track of the number of incorrectly transferred bits and total amount of transferred
bits per slave device. With this approach it can be determined which slave device is
introducing errors on the I?C bus. The test consists of the following steps, which are
executed iteratively till the end of the test:

e The master device sends a request to a slave device for data acquisition, it also
send the contents of the ‘number of transferred bits’ and the ‘number of incorrect
bits’ variables. This is an I2C write operation that tests the reliability from master
to slave.

e The requested slave device responds to the request by putting a block of known,
fixed, data on the bus that is defined a priori. Besides that, the slave will send
back the content of the ‘number of transferred bits’ and the ‘number of incorrect
bits’ variables back to the master.

e The master collects the data from the slave and checks the data for correctness.
The master is able to do this since it knowns what data it should receive (i.e. the
correct data).

e The master updates the ‘number of transferred bits’ variable for the specific slave.

e The master updates the ‘number of incorrect bits’ variable for the specific slave if
one or more bits are incorrect. The master can determine the amount of incorrect
bits by applying an XOR operation to the expected (correct) data and the received
data. The number of incorrect bits will be equal to the amount of ones in the XOR
result and the ‘number of incorrect bits’ variable will be updated accordingly.

The number of transferred bits and the number of incorrect bits must be send to a
slave device in order to be able to sniff it using the I2C sniffer. The I?C monitor software
will display these values on the screen such that the user can use them to compute the
BER. The test data that will be send from a slave device to the master device is known,
so that the master device can check the received data from the slave for correctness.

38 CHAPTER 3. I’C BUS ANALYSIS

Based on this check the number of incorrect bits can be maintained per slave device,
after which the BER can be computed individually for each slave device.

3.2.4 Software Verification

Before the BER test software is being used it is important to test and verify the func-
tionality of the software. This can be accomplished by running the software with the
procedure described above and a switch. By placing a switch between the SDA line and
the ground (see Figure , bit errors can be introduced on the SDA line intentionally
by pressing the switch such that the SDA line is shorted to the ground.

SDA _C)\O_%L
GND

Figure 3.5: Switch to pull low the SDA line intentionally

During the BER measurement software test, the switch must be tipped very shortly
such that the SDA line is pulled low for a small amount of time. The same mechanism
can be used to introduce errors on the SCL line. In order to fully verify the functionality
of the BER measurement software, the following actions must be performed:

e Run the BER measurement procedure as discussed in the previous section.

e Tip the switch shortly while the BER measurement software is running such that
bit errors are introduced.

e Watch the content of the sniffed data that is send from the slave to the master
using the 12C sniffer.

e Check the number of occurred bit errors that was counted by the BER measurement
software.

e Verify whether or not the number of counted bit errors is correct. This can be
done by counting the number of bit errors in the displayed sniffed data by hand.
This can be performed since the transferred data is known a priori. The number
of counted bit errors by the BER measurement software that is being displayed in
the sniffed data by the I2C monitor program must be equal to the number of bit
errors that were counted by the test user that is verifying the BER measurement
software. If the numbers are equal, it is verified for this particular test run that
the BER measurement software is working properly.

The verification procedure described above should be performed several times with
different slaves and different chunks of data. By following the above described procedure
several times, it has been verified that the BER measurement software works correctly.
This means that the developed BER measurement software can be used reliably in order
to produce some real performance results.

3.2. I’C BUS PERFORMANCE ANALYSIS 39

3.2.5 Performance Results

In a preliminary phase of I?C service layer software development, several performance
tests were already performed in order to check the performance and verify the correct-
ness of the hardware and software designs of the MSP430F1611 and the DSSB microcon-
trollers in terms of I2C transfers. Several short duration tests (less than 4 hours) have
been performed with the following setups:

e Transfers of short data packages to and from only 1 slave device

e Transfers of long data packages to and from only 1 slave device

Transfers of short data packages to and from multiple slave devices

Transfers of long data packages to and from multiple slave devices

Short data packages are packages of 10 bytes or less. The test with short data
packages measures how well the I?C hardware and software behave with a lot of 12C
overhead data (i.e. stop conditions, slave address request and stop conditions). The
test with longer data packages measures how well the I?C hardware and service layer
software are able to handle incoming and outgoing I2C data transfers. Transfers of
longer data packages may increase the probability of clock stretching and hence may
influence the performance of the I2C bus. In the tests with multiple slave devices, 6
slave devices were used during the test. All the four tests described above resulted in a
bit error rate of at most 10~ because 1 billion bytes were transferred and no bit errors
were detected.

Later on during the software development of the OBC, more hardware became
available. The new hardware included more engineering model test boards and cables
that could be used to easily connect multiple test boards to one another. With this
setup, and a more completed OBC with a significant amount of service layer software
and application layer software finished, a more representative performance test could be
performed. The more representative performance test setup was as follows:

e Long duration test (around 16 hours)
e Long packages and short packages mixed

e Multiple slave devices (12 slave devices)

The above described test was performed 10 times in order to determine the bit error
rate with the more representative setup reliably. For each test run, a total of 5 billion bits
were transferred from the OBC to the 12 different microcontrollers (Texas Instruments
MSP430F1611 and Atmel AVR88PA) and vice versa. In 2 out of the 10 tests, bit errors
were detected. One test showed 1 bit error and the other test showed 2 bit errors. During
the other 8 tets, no bit errors were detected so it seems that bit errors occur accidentally.
Since during one test 2 bit errors were measured, the bit error can be considered to be
at most 2 (5-10%) " =4.107°.

40 CHAPTER 3. I’C BUS ANALYSIS

3.3 Summary

This Chapter presented a failure analysis and performance analysis on data transfers
that take place over the I?C bus.

For the I2C bus failure analysis, failures that are most likely to occur were extensively
analyzed. The failures that were examined are failures that may occur during a data
transfer and failures that may occur at any time.

Failures that may occur during a data transfer are failures in the start condition,
slave address request, read/write bit assertion, slave device acknowledgement, data byte
transfers and stop condition. The failure case in which a slave misses a clock pulse also
belongs to this category. Failures like these are mostly caused by bit flips on the SDA
or SCL lines and do not much harm. They can end up in a failure of the current data
transfer, but they can not harm the health of the I?C bus permanently.

The I2C bus health can be put into real danger by failures that may occur at any
time. These failures pull low the SDA and/or the SCL line for a longer period of time.
They are usually caused by an electrical short between the lines and the ground, a
lock-up in the I2C controller hardware state machine, indefinite clock stretching by a
poorly implemented or configured I?C slave device, or a latch-up in the I2C controller
electronics. In the case of an electrical short, the slave device causing the failure must be
isolated from the I?C bus in order to recover the I?C bus health. With the other causes,
the failure can usually be solved by power cycling the slave device that is responsible for
the failure.

The I?C performance analysis was performed by measuring the bit error rate for
transfers between the master and the slaves. The software used for this analysis counts
the number of incorrectly transferred bits and the total number of transferred bits.
Using these two numbers, the bit error rate can be computed by dividing the amount of
incorrectly transferred bits by the total number of transferred bits. All the 10 tests were
long duration tests of around 16 hours in which 5 billion bits were transferred. The bit
error rate measurement software has been verified and the tests resulted in a bit error
rate of at most 4 - 107 (2 bit errors out of 5 billion transferred bits).

On-Board Computer Software
Design

This chapter describes the baselined OBC software design of the Delfi-n3Xt Nanosatellite.
In Section the requirements of the OBC software are given. Section gives a
detailed overview of the OBC software architecture. The design of the OBC service
layer software is described in Section Finally, in Section the design of the
application layer software of the OBC is given.

4.1 OBC Software Requirements

In this section the requirements for the OBC software are described. The requirements
are adopted from the CDHS Top Level Design document [9] and the Delfi-n3Xt Require-
ments and Configuration Item List [19] and are split up into five different categories; the
Subsystem Communication Requirements Fault-Tolerant Software Requirements
[4.1.2] Telecommanding Requirements Data Acquisition Requirements [.1.4] and
Monitoring Requirements All the requirements are listed including their require-
ment code, inherited parent requirements codes and rationale.

4.1.1 Subsystem Communication Requirements
This section states the requirements that are related to the communication between the

OBC and the various subsystems present in the Delfi-n3Xt Nanosatellite.

4.1.1.1 The I’C bus protocol must be used for subsystem communications

Requirement code SAT.2.6-C.01 (constraint)

Parent #1 MIS-F.02 (Delfi-C? also used non I2C-compliant devices)
Parent #2 SAT-C.05 (the interfaces must be I?C-compliant)

Parent #3 SAT.2-C.01 (a uniform bus standard is more reliable)
Rationale

During the CDHS top level system design it is decided that the I2C protocol is used for
communications between the OBC and the other subsystems. No adaptations to the I?C
bus protocol are allowed. This means that the I?C design guidelines must be strictly
followed.

41

42 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.1.1.2 The I’C bus must operate in standard mode

Requirement code SAT.2.6.1-C.01 (constraint)
Parent #1 SAT.2.6-C.01 (no adaptations to the I?C bus are allowed)
Rationale

The I?C bus protocol in standard mode operates at a data rate of 100kbit /s. Higher data
rates may result in a higher amount of bit errors and more power consumption. The I2C
bus must be as reliable as possible; therefore the I2C bus protocol will be implemented
in standard mode. It is investigated that a data rate of 100kbit/s is sufficient for full
data acquisition and telemetry [9].

4.1.1.3 Switch subsystems on, off or in different modes

Requirement code SAT.2.6.2.1-F.01 (functional requirement)

Parent #1 SAT-F.03 (the OBC implements the switching of subsystems)
Parent #2 SAT.2.6-F.02 (switching is required for testing and verifying)
Parent #3 SAT.2-C.01 (the OBC switches off malfunctioning subsystems)
Rationale

Subsystems have different modes and each subsystem can be turned on and off (except for
the CDHS where always at least one OBC is turned on). The subsystems can be switched
on, off or into different modes by communicating with the subsystem its controllers over
the IC bus. Subsystems must be switched on or off or in different modes according to
the operational mode of the satellite.

4.1.1.4 A failing I°’C operation must time-out after 30ms

Requirement code SAT.2.6.2.1-P.02 (performance requirement)

Parent #1 SAT.2-F.01 (a suitable time-out period facilitates payloads)
Parent #2 SAT.2.6-F.05 (a time-out is required for correct data flow)
Rationale

During the CDHS top level system design it is calculated that an I?C operation must
time-out after 30ms [9]. The largest possible I2C data transfer will consist of 1 address
byte and 255 data bytes. The address byte and the 255 data bytes all must be acknowl-
edged by 1 acknowledge bit, so a total of 256 x 9 = 2304 bits will be transferred during
the largest possible I2C data transfer. At a bus speed of 100kbit/s such a data transfer
should be finished within 23.04ms when no clock stretching occurs. In order to be safe
and take minimal clock stretching into account, an I?C operation time-out period of
30ms has been defined.

4.1. OBC SOFTWARE REQUIREMENTS 43

4.1.1.5 The bit error rate of the I?C bus must be at most 10~°

Requirement code SAT.2.6.1.3-P.01 (performance requirement)

Parent #1 SAT.2-C.01 (alow bit error rate ensures reliability)

Parent #2 SAT.2.3-P.02 (related to the bit error rate of the COMMS)
Rationale

In the top level design it is defined that a data bus with a bit error rate (BER) of 1076
or less can be considered as reliable enough for Delfi-n3Xt. The BER is defined as the
ratio of the number of erroneous bits and the total number of bits transferred. The I2C
communication software must be optimized such that the combination of hardware and
software results in a bit error rate of at most 1076,

4.1.2 Fault-Tolerant Software Requirements

This section states the requirements that are related to the fault-tolerant implementation
of the OBC software.

4.1.2.1 The OBC software must be fault-tolerant

Requirement code SAT.2.6.2.1.3-F.08 (functional requirement)
Parent #1 SAT.2.6.2-F.03 (acquire housekeeping data)
Parent #2 SAT.2.6.2-F.04 (acquire payload data)

Parent #3 SAT.2-C.01 (loss of the OBC is unacceptable)
Rationale

The OBC software must be fault tolerant in the sense that an OBC software fault must
not lead to undefined states. Software that is trapped in an undefined state may cause
loss of the satellite. This is unacceptable since the OBC is the central control unit of the
satellite. Loss of the OBC means loss of the entire satellite.

4.1.2.2 The OBC software must be redundant

Requirement code SAT.2.6.2-F.09 (functional requirement)
Parent #1 SAT.2-C.01 (loss of the OBC is unacceptable)
Rationale

Single-Point-of-Failures (SPoF's) in the OBC must be avoided, since loss of the OBC
means loss of the satellite. Therefore the OBC must be fully redundant, resulting in a
primary and a secondary OBC. Exactly one of the OBCs must be the I?C master device,
since a design with only one I?C master device is easier to implement and less error
prone compared to a design with multiple master devices. Initially, the primary OBC
takes full control over the I2C bus lines. When the primary OBC fails in its operations,
the secondary OBC must take over.

44 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.1.2.3 Delay between POD ejection and activation of the radios

Requirement code SAT.2.6.2-C.02 (constraint)

Parent #1 SAT-C.06 (the delay is launcher dependent)
Parent #2 SAT-F.02 (the delay is launcher dependent)
Rationale

The launcher that will be used requires a delay between the POD ejection and the
activation of the transmitters and receivers of the satellite. This delay is launcher
dependent and for the launcher that will be used to launch Delfi-n3Xt a delay of 10
minutes must be implemented [15].

4.1.2.4 Delay between POD ejection and deployment

Requirement code SAT.2.6.2-C.03 (constraint)

Parent #1 SAT-C.06 (the delay is launcher dependent)
Parent #2 SAT-F.02 (the delay is launcher dependent)
Rationale

The launcher that will be used requires a delay between the POD ejection and the
deployment of the antennas and the solar panels of the satellite. This delay is launcher
dependent and for the launcher that will be used to launch Delfi-n3Xt a delay of 10
minutes must be implemented [15].

4.1.3 Telecommanding Requirements

Requirements that are related to telecommanding are described in this section.

4.1.3.1 Acquire, interpret and execute incoming telecommands

Requirement code SAT.2.6.2-1.01 (interface requirement)

Parent #1 SAT-F.01 (the ground station transmits telecommands)
Parent #2 SAT-F.01 (the PTRX and/or ITRX receive telecommands)
Parent #3 SAT-F.01 (the OBC must process the telecommands)
Rationale

Telecommands received from the ground station need to be interpreted and executed by
the OBC. A telecommand can be send from a ground station to the PTRX and/or the
ITRX. The PTRX and/or ITRX receive the telecommand and store the INFO field of
the AX.25 frame [22] in a buffer such that the OBC can fetch the data from the PTRX
and/or ITRX. The OBC software has to interpret and execute the telecommand.

4.1. OBC SOFTWARE REQUIREMENTS 45

4.1.3.2 Acknowledge the last received telecommand

Requirement code SAT.2.6.2-F.01 (functional requirement)
Parent #1 SAT-F.01 (acknowledgement of reception is required)
Rationale

Various faults (e.g. bit flips) can occur during the transfer of a telecommand from a
ground station to the satellite [2]. This is the reason why the last received telecommand
needs to be acknowledged back to the ground station. By doing this the engineers can
check whether or not the desired telecommand is received properly.

4.1.3.3 Acknowledge the last executed telecommand

Requirement code SAT.2.6.2-F.02 (functional requirement)
Parent #1 SAT-F.01 (acknowledgement of reception is required)
Rationale

It is important to know which command is executed, since the execution of a telecom-
mand can change the behavior of the satellite. Therefore the last executed telecommand
is also acknowledged back to the ground station. With this feature engineers can detect
faults and take action if needed.

4.1.3.4 Parameters are configurable by telecommands

Requirement code SAT.2.6.2.1.3-1.01 (interface requirement)

Parent #1 SAT-F.01 (communication functionality with ground system)
Parent #2 SAT.2-C.01 (erroneous software may be reparable)

Parent #3 SAT.2.6.2-F.07 (the decoder may have parameter alterations)
Rationale

Various parameters are stored in the memory of the OBC and other subsystems. The
configurable parameters may be stored in the OBC flash memory, the OBC random
access memory (RAM) or in the flash memory or the RAM of the controllers of a
subsystem. Reconfiguration of these parameters may influence the functional behavior
of the satellite.

46 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.1.4 Data Acquisition Requirements

In this section the requirements for the data acquisition are described.

4.1.4.1 Collect all housekeeping data from other subsystems

Requirement code SAT.2.6.2-F.03 (functional requirement)

Parent #1 SAT.2-F.02 (the OBC must acquire housekeeping data)
Parent #2 SAT.2.6-F.02 (housekeeping data is required for verification)
Parent #3 SAT.2.6-F.05 (data flow must be initiated by the OBC)
Rationale

The OBC is the central control unit of the satellite, and therefore one of the tasks
of the OBC is to collect all housekeeping data from the other subsystems. All these
housekeeping data, together with the payload data and the time tag must be put together
in one large data frame. This frame can then be forwarded to the PTRX or ITRX and
the STX such that it can be send to the ground station.

4.1.4.2 Collect all payload data from other subsystems

Requirement code SAT.2.6.2-F.04 (functional requirement)

Parent #1 SAT.2-F.02 (the OBC must acquire payload data)
Parent #2 SAT.2.6-F.02 (payload data is required for verification)
Parent #3 SAT.2.6-F.05 (data flow must be initiated by the OBC)
Rationale

The OBC is the central control unit of the satellite, and therefore one of the tasks of the
OBC is to collect all payload data from the other subsystems. All these payload data,
together with the housekeeping data and the time tag must be put together in one large
data frame. This frame can then be forwarded to the PTRX or ITRX and the STX such
that it can be send to the ground station.

4.1.4.3 Data acquisition must be initiated each 2 seconds

Requirement code SAT.2.6.2.1.3-P.01 (performance requirement)
Parent #1 SAT.2-C.01 (the data bus must adhere to reliability standards)
Rationale

The OBC has to acquire new payload data and housekeeping data from the subsystems
every two seconds. It is decided that it is sufficient to collect data from the subsystems
(both payload data and housekeeping data) with a frequency of 0.5Hz [9]. Therefore
the control loop must be designed such that data acquisition is initiated each 2 seconds.
This has to be accomplished with an accuracy of at least 1ms.

4.1. OBC SOFTWARE REQUIREMENTS 47

4.1.4.4 Payload and housekeeping data must be initiated with dummy data

Requirement code SAT.2.6.2.1.3-F.01 (functional requirement)

Parent #1 SAT.2.6-F.05 (testing the register is part of enabling data flow)
Parent #2 SAT.2.6.2-F.04 (acquired data is stored into the data register)
Parent #3 SAT.2.6.2.1-P.01 (the capacity has to be tested)

Rationale

Distinguishable dummy data should be present in all payload data and housekeeping
data registers that the OBC holds. When a subsystem does not react in a certain period
of time, the payload data or housekeeping data register in the memory of the OBC
corresponding to that particular subsystem will contain the dummy data. Whether or not
a subsystem works properly can be deduced from the received payload or housekeeping
data at the ground station. In the case that the subsystem is not reachable, the payload
data or housekeeping data registers will contain the dummy data. In the case that the
subsystem works properly the payload data or housekeeping data registers will contain
other data than the dummy data.

4.1.4.5 The OBC must determine which radio is used for data transmission

Requirement code SAT.2.6.2.1.3-F.02 (functional requirement)

Parent #1 SAT-F.01 (the OBC determines the communication link to use)
Parent #2 SAT.2.3-F.02 (the OBC supplies data to the PTRX or ITRX)
Rationale

Only one of the transmitters (PTRX or ITRX) must be used to transmit telemetry data
to the ground station. Depending on the operational status of the PTRX and ITRX, the
OBC has to make the decision to which transmitter the data will be send. The telemetry
data consists of unique time tag data, payload data and housekeeping data.

4.1.4.6 Telemetry data must be send to the PTRX or ITRX and the STX

Requirement code SAT.2.6.2-F.05 (functional requirement)

Parent #1 SAT-F.01 (this step is required in the communication link)
Parent #2 SAT.2.3-F.02 (PTRX, ITRX and STX receive telemetry data)
Parent #3 SAT.2.6.2.1-P.01 (the capacity has to be tested)

Rationale

The OBC must send all telemetry data to the PTRX or the ITRX (not both at the same
time) and it should always send the telemetry data to the STX. This is needed such that
the telemetry data is received at the ground station.

48 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.1.4.7 A unique time tag must be added to the telemetry data

Requirement code SAT.2.6.2-F.06 (functional requirement)
Parent #1 MIS-F.02 (improvement with respect to Delfi-C?)
Rationale

Unique timestamps can be very useful when data is being analyzed at the ground station.
Each telemetry data frame must hold a unique time tag such that different frames can
be distinguished from one another.

4.1.5 Monitoring Requirements

In this section the requirements for on-ground monitoring of the satellite are described.

4.1.5.1 The OBC must be monitored through a test interface

Requirement code SAT.2.6-F.04 (functional requirement)

Parent #1 SAT-C.05 (the test interface is a required interface)

Parent #2 SAT-F.03 (switching must be verified using a test interface)
Parent #3 SAT.2-C.01 (testing ensures that the system is reliable)
Rationale

On-ground testing is a very important task in the development of a satellite. Since the
OBC must be able to be monitored through a test interface, test software needs to be
developed. The test software for the OBC must monitor the behavior and data flow of
the satellite during integration and verification of the satellite.

4.2 OBC Software Architecture

The architectural overview of the OBC software is discussed in this section. The OBC
software is subdivided in three different software layers. These software layers, together
with the hardware interfacing, are discussed in Section Furthermore the OBC
software is split up into different modules. Each software layer contains several modules.
The module overview of the OBC software is shown and described in Section

4.2.1 OBC Software Layers

The OBC software is subdivided in three different software layers. These layers are
named the application layer, the subsystem layer and the service layer. The service
layer software is the lower level software. It interfaces with the hardware and consists of
software modules that implement the driving of the MSP430 hardware peripherals. The
application layer software and subsystem layer software are the higher level software.
These layers make use of the service layer software to implement the correct data flows
in order to form the complete system. The subsystem layer is actually a sublayer within
the application layer, as shown in the high level architectural overview of the OBC

4.2. OBC SOFTWARE ARCHITECTURE 49

software in Figure In this figure it can be clearly seen that the subsystem layer is a
sublayer within the application layer and that these layers interact with the service layer.
Furthermore it can be seen that the service layer interfaces with the MSP430 hardware
layer. The external data in and external data out arrows represent the incoming and
outgoing data flows from and to the other subsystems of the satellite. Incoming I?C data
flows from the bottom to the top (i.e. from the MSP430 hardware layer to the service
layer, and then from the service layer to the application layer and subsystem layer). The
outgoing 12C data flows from the top to the bottom (i.e. from the application layer and
the subsystem layer to the service layer, and eventually to the MSP430 hardware layer
where the data is written on the bus).

Subsystem Layer

External data in MSP430 Hardware External data out

Figure 4.1: High level architectural overview of the OBC

The application layer software and service layer software can be further subdivided
into software modules. The MSP430 hardware layer can be further subdivided into the
central processing unit (CPU) and the peripherals that are listed in Section m

4.2.2 OBC Module Overview

As already mentioned earlier, the service layer software implements the driving of the
MSP430 hardware peripherals. In Section [2.3.1|the hardware peripherals of the MSP430
microcontrollers that are used for the OBC are listed. Not all the peripherals of the
microcontroller need to be used. Server layer software modules must be implemented for
the hardware peripherals that are being used by the Delfi-n3Xt OBC application layer
software. The following service layer software modules are implemented:

e Clock source module

e Programmable interval timers module

Flash memory controller module

Analog to digital converter module

12C controller module

Watchdog timer module

50

CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

These software modules that are part of the service layer software are represented
graphically in Figure [£.2] The service layer software modules are mapped to the corre-
sponding hardware peripherals of the MSP430 microcontroller.

Service Layer

Clock Source Programmable Interval Timers Flash Memory Controller
Module Module Module
Analogto Digital Converter I2C Controller WatchdogTimer
Module Module Module

Figure 4

.2: Module overview of the OBC service layer software

From Figure [4.1]it can be seen that the subsystem layer is actually a sublayer within
the application layer. This sublayer is introduced in order to improve the modularity of
the OBC software. The subsystem layer contains software modules that are responsible
for the commanding of the subsystems of the satellite. In this layer a software module is
present for each satellite subsystem. The software modules contain commanding func-
tionalities for the corresponding subsystem. The following software modules are present
within the subsystems layers:

OBC module
ADCS module
DAB module
DSSB module
EPS module
ITRX module
PTRX module
STX module
SDM module
T3PS module
TCS module

In general, these software modules contain functions that command the corresponding
subsystem and acquire housekeeping data or payload data from the subsystem. The
DSSB software module is a special one. The DSSB is actually not a subsystem. The

4.3. OBC SERVICE LAYER SOFTWARE DESIGN 51

DSSB software module is present because it contains functionalities related to the DSSB
microcontrollers, which are identical (except for the I?C address) and present at all
subsystems. The subsystems modules are not described in detail in this thesis.

Besides the subsystem layer, the application layer contains software modules that are
responsible for executing tasks that correspond to the current operational mode of the
satellite. In total there are five different operational mode modules:

e Boot mode module

Delay mode module
e Deployment mode module
e Main mode module
e 12C recovery mode module

The operational modes are all described in the OBC Application Layer Software
Design section (Section . The OBC application layer software modules (including
the subsystem layer and its software modules) are graphically represented in Figure

Boot Mode Delay Mode Deployment Main Mode 12C Recovery
Module Module Mode Module Module Mode Module

Subsystem Layer

OBC DAB EPS STX SDM TCS
Module Module Module Module Module Module
ADCS DSSB PTRX ITRX T3uPS
Module Module Module Module Module

Figure 4.3: Module overview of the OBC application layer software

4.3 OBC Service Layer Software Design

This section gives the detailed design of the OBC service layer software modules. First
the design of the clock source module is given in Section [4.3.1. The programmable
interval timer module design is described in Section [4.3.2] Section [4.3.3| gives the
design of the flash memory controller module. The analog to digital converter module is
discussed in Section Finally, the design of the I2C controller module is given in
Section [£.3.5 and the design of the watchdog timer is discribed in Section [£.3.6]

52 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.3.1 Clock Source Module

The input clock signal for the MSP430F1611 CPU and its peripherals can be selected
using the clock source module. This Section describes the MSP430F1611 clock system
and the clock source software module design.

4.3.1.1 MSP430 Clock System

Three clock sources can be used to drive the MSP430F1611 microcontroller CPU and
peripherals [28]. These three clock sources are:

e LFXT1CLK
This clock source is an external oscillator that can be either a low-frequency 32768
Hz watch crystal or a standard high-frequency crystal or resonator in the 450 kHz
to 8 MHz range.

e XT2CLK
This clock source is an external high-frequency oscillator that can be used with
standard crystals, resonators, or external clock sources in the 450 kHz to 8 MHz
range.

e DCOCLK
This clock source is the on-chip internal digitally controlled oscillator (DCO) with
RC-type characteristics which can be configured by software or external resistors.

The MSP430F1611 basic clock module can be configured such that the microcon-
troller operates with or without any external crystals or resonators. The OBC hardware
has an external low-frequency 32768 Hz watch crystal as the LFXT1CLK clock source
and an external high-frequency 8 MHz crystal as the XT2CLK clock source. The DCO
is not used since this clock source has RC-type characteristics. Oscillators with RC-type
characteristics are known to be less accurate under certain circumstances. Their fre-
quencies vary with temperature, voltage and from device to device [I]. These kind of
oscillators are certainly not appropriate for the OBC of Delfi-n3Xt, since the calculated
OBC temperature range varies from —15.6°C to +22.22°C [I7] and accurate timing is
a requirement.

The three clock sources shown above can be used to drive the three clock signals that
are available from the basic clock module. These three clock signals are:

e ACLK
This clock signal is called the auxiliary clock. The auxiliary clock is the buffered
LFXT1CLK clock source divided by 1, 2, 4 or 8. The clock source divider can
be selected by software and the clock signal is software selectable for individual
peripherals.

e MCLK
This clock signal is called the master clock. The master clock is software selectable
as LFXT1CLK, XT2CLK or DCOCLK. Furthermore the clock source divider can
be selected by software and the clock source divider can be 1, 2, 4 or 8. The master
clock is always used by the CPU of the microcontroller.

4.3. OBC SERVICE LAYER SOFTWARE DESIGN 53

e SMCLK
This clock signal is known as the sub-main clock. The sub-main clock is, like the
master clock, software selectable as LFXT1CLK, XT2CLK or DCOCLK. The sub-
main clock divider can be selected by software as 1, 2 ,4 or 8. Furthermore, the
sub-main clock is software selectable for individual peripherals.

The ACLK clock signal is automatically sourced by the LEXT1CLK clock source.
For Delfi-n3Xt, the MCLK and SMCLK signals must be sourced by the high-frequency
8 MHz external crystal since the CPU of the microcontroller and some of the peripherals
must run at high enough frequencies.

4.3.1.2 Clock Module Design

The aim is to design the clock module software such that the LEXT1CLK clock source
is configured in low-frequency mode and the MCLK and SMCLK clock signals are con-
figured such that they use the high-frequency external 8 MHz crystal that sources the
XT2CLK. This is shown graphically in the activity flow diagram in Figure [£.4]

Select XT2CLK Select XT2CLK
| low-frequency mode for MCLK for SMCLK

Select clock Select clock Select clock
divider for SMCLK divider for MCLK divider for ACLK

Figure 4.4: Actiwity flow for configuring the MSP430 clock system of the OBC

The actions shown in the activity flow diagram above can be executed by configuring
the MSP430F1611 clock module registers.

4.3.2 Programmable Interval Timers

Programmable Interval Timers (PITs), or just timers in short, can be used to generate
intervals for e.g. the execution of periodic functions or the handling of time-outs. This
can be achieved by setting a flag in the Interrupt Service Routine (ISR) of the timer after
a certain amount of time. The application layer software can poll for this flag. In this
section the basics about timers is described. It is also discussed how the interval time of
the timer can be calculated given a desired threshold value, and how the threshold value
can be calculated given a certain desired time interval.

4.3.2.1 Timer Basics

Timers are usually 8-bit or 16-bit. Therefore timers can count up to a maximum 8-bit
value of 28-1 = 255 = OxFF in the case of a 8-bit counter or a maximum 16-bit value of
216_1 = 65535 = 0xFFFF in case of a 16-bit timer. A timer capture/compare interrupt
is generated when the internal timer tick counter of the PIT reaches the configured
threshold value. This interrupt is generated by the timer peripheral and the interrupt

54 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

can be handled in the ISR of the timer. The MSP430F1611 microcontroller on the OBC
of the Delfi-n3Xt Nanosatellite has two 16-bit timers; timer A and timer B.

There are various modes in which a timer can operate. However, we only consider
the up mode and up/down mode here since these are the only interesting modes for
implementation. In the up mode the timer just counts up until the desired threshold
value is reached. This threshold value is stored in a register (named TACCRO for timer
A, and TBCCRO0 for timer B). The timer just actively compares the amount of elapsed
timer ticks with this configured threshold value. Once the value is reached, the timer
will generate a timer capture/compare interrupt which can be handled by the timer ISR.
The operation of timer A in up mode is shown in Figure

OFFFFh
TACCRO

interrupt interrupt interrupt

Figure 4.5: 16-bit timer A operating in up mode and generating interrupts

In the up/down mode the timer counts up until the configured threshold value stored
in the TACCRO register is reached, and then counts back to 0. The timer will generate
an interrupt once the timer tick counter is back at 0. In this timer mode the desired
interval is exactly two times longer compared to the interval generated in the up mode.
The operation of timer A in up/down mode is shown in Figure

OFFFFh
TACCRO

Oh

interrupt

Figure 4.6: 16-bit timer A operating in up/down mode and generating interrupts

From this figure it is clear that the interrupt in up/down mode occurs twice as late
as the interrupt that occurs in up mode.

Normally, timers can be configured to use a clock divider in order to achieve longer
timer interval periods. On the MSP430F1611, the clock divider can be configured such
that the clock input is divided by 1, 2, 4 or 8. With a clock divider of 1 the timer will
count up or down each clock cycle of the input clock. With a clock divider of 2, 4 and 8
the timer will count up or down each 2, 4 or 8 clock cycles of the input clock, respectively.

4.3.2.2 Timer Intervals

As already discussed in Section the two clocks connected to the MSP430 micro-
controller of the OBC are a 32768 Hz low frequency crystal and a 8 MHz high frequency
crystal. The low frequency crystal will be used for the watchdog timer as described in
Section [4.3.6]and the high frequency crystal is used for the timers. A frequency of 8 MHz

4.3. OBC SERVICE LAYER SOFTWARE DESIGN 95

results in a clock period of 8000000~ ! s, or 125 ns. Now let t;, be the threshold value
stored in the TACCRO register, f.; the clock frequency in Hz and clky;, the configured
clock divider. Then, for the up mode, the timer interval ¢;,, in seconds becomes

i - clkgiy

P fa

and for the up/down mode the timer interval Cirpjdown 1S simply the double of the
timer interval as computed in Equation and thus becomes

(4.1)

o - clkiy
fclk
With the high frequency 8 MHz crystal, the longest possible interval can be achieved

with the timer in up/down mode, the threshold value set to 216-1 and the clock divider

set to 8 which is the largest possible clock divider. Putting these values in Equation
gives the longest possible interval and this interval ¢;, . will become

t =2-t,, =2 (4.2)

7:up/dow'n

(216 -1)-8
R U G A 31 43
maz 8000000 ms (4.3)

Now, by rearranging Equation [£:2] the threshold value ¢, can be computed for a
given timer interval ¢; . Solving Equation for t, gives

t

p/down

tiup/down ’ fdk
Clkdw -2

With Equation the threshold value for any timer interval in the range [0, ¢;,,,.]
can be computed when the timer is configured to operate in up/down mode.

L, = (4.4)

4.3.2.3 Timer Module Design

A timer can be intialized and started by setting the timer threshold value, selecting the
clock source for the timer, select the clock source divider, setting the timer mode (e.g. up
mode or up/down mode) and finally enabling the interrupt of the timer. This is shown
in the activity flow diagram in Figure [4.7]

Select clock Select clock
source divider

Enable timer Set timer
interrupt mode

Figure 4.7: Activity flow for the configuration of a timer

Stopping the timer is simple and can be done by disabling the timer interrupt. Dis-
abling the timer interrupt disables the complete timer peripheral such that it does not
consumes any power.

56 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.3.3 Flash Memory Controller

The flash memory controller peripheral of the MSP430F1611 can be used to store OBC
parameters in the flash memory of the microcontroller. The microcontroller has an on-
chip flash memory of 48 kB. Flash memory is a non-volatile memory type, i.e. it keeps
the contents of its memory when the system is unpowered. This can be useful when OBC
parameters must be loaded after a reboot of the OBC. In this section the flash memory
segmentation of the MSP430F1611 is given (see Section [4.3.3.1), including the design of
the functionalities needed for the flash memory controller service layer software module

(Section [4.3.3.2]).
4.3.3.1 Flash Memory Segmentation

The MSP430F1611 has 48KB + 256B of flash memory and 10KB of Random Access
Memory (RAM) [I]. The 48KB chunk of flash memory is called the main memory and
the additional 256B of flash memory is called the information memory. The 48 KB main
flash memory starts at address OxFFFF and stops at address 0x4000. The 256 bytes
of information flash memory starts at address Ox10FF and stops at address 0x1000.
Furthermore, the MSP430 flash memory is memory mapped.

Main Flash

Segment 0= 512 bytes OxFFFF - OxFEOO

Segment 1 =512 bytes OxFDFF - OxFCOO

Segment 94 =512 bytes W E] I T bl

Segment 95 = 512 hytes O0x41FF - 0x4000

Information Flash

Segment A = 128 bytes 0x10FF - 0x1080

Segment B= 128 bytes Ox107F - 0x1000

Figure 4.8: Segmentation of the MSP430F1611 flash memory

As shown in Figure the flash memory of the MSP430F1611 is divided into seg-
ments. The main flash memory is 48 KB and the segments in the main flash memory are
512 bytes each. Hence the main flash memory contains 96 segments and the segments are
called segment 0 till segment 95. The information flash memory consists of two segments
that are 128 bytes each. The two segments are called segment A and B.

4.3. OBC SERVICE LAYER SOFTWARE DESIGN o7

4.3.3.2 Flash Memory Operations

On Random Access Memory (RAM) two operations can be applied. These are the write
and the read operation. The read operation simply reads content from the RAM and
the write operation can change bit values in the RAM from a logical 0 to a logical 1 or
vice versa. For flash memory, the read operation is exactly the same as that for RAM.
However, the write operation for flash memory can only change bit values in the flash
memory from 1 to 0. When a transition of a bit value from 0 to 1 is needed, an erase
operation is needed. So for flash memory there is a total of three different operations:

e Read operation
With this operation data can be read from the flash memory. Since the flash
memory is memory mapped, data bytes can be read directly from the address
values on which the flash memory is mapped.

e Write operation
The operation for writing bytes to the flash memory changes bit values in the flash
memory from a logical 1 to a logical 0. This is also known as a flash write cycle.

e Erase operation
With this operation bit values in the flash memory can be changed from a logical
0 to a logical 1. The transition from a logical 0 to a logical 1 in the flash memory
is known as an erase cycle. Usually an erase cycle is performed to larger chunks of
flash memory. For the MSP430F1611, segments 0 to 95 may be erased in one step
or each segment may be individually erased [28].

It must be noted that flash erase cycles eventually affect the health of the flash
memory. A limited amount of erase cycles can be performed. For the MSP430 the
amount of erase cycles that can be performed lies between 10* and 10° [1].

4.3.3.3 Flash Memory Module Design

With the design of the flash memory software module, care must be taken with the
boundaries of the flash memory. The read operation activity flow is shown in Figure

" theck .NO

. —

Check the flash
memory boundaries

Flash read
operation ready

Decrement flash Read byte from

flash memory

memory address

Yes

Abort flash read No More\m

operation W

Figure 4.9: Activity flow for reading data from flash memory

58 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

A flash memory read operation starts with the fetching of the flash memory address.
Then the flash memory boundaries must be checked before data can be read from the
flash memory. When the flash memory address does not lie within the flash memory
boundaries, the read operation must be aborted. When more bytes needs to be read,
the flash memory address must be decremented and the boundaries must be checked
again before the byte is read from the flash memory. When all bytes are read, the read
operation is finished.

The flash memory write operation is analogue to the flash memory read operation.
The only difference is that a byte must be written to the flash memory. The activity
flow for the write operation is graphically represented in a diagram in Figure [£.10]

-
Check the flash \‘\ No
memory address memory boundaries

Flash write
operation ready

Decrement flash Write byte to
memory address flash memory

Abort flash write
operation

Figure 4.10: Activity flow for writing data to the flash memory

The erase flash memory operation must consist of two options. These options are
to erase an individual segment or to erase the complete main flash memory. When an
individual segment is going to be erased, the segment that corresponds to the given
flash memory address will be erased. When the complete main flash memory is going
to be erased, any given flash memory address within the main flash memory boundaries
suffices. This description of the erase operation results in the activity flow diagram

shown in Figure

Check the flash
memory boundaries

memory address

AN
.
MNo . Erase N

Erase address
segment

Flash erase
operation ready

Abort flash erase Erase all main
operation flash memory

Figure 4.11: Activity flow for erasing (part of) the flash memory

4.3. OBC SERVICE LAYER SOFTWARE DESIGN 99

4.3.4 Analog to Digital Converter

The analog to digital converter (ADC) of the MSP430F1611 can for example be used
to read out sensor values. The ADC converts an analog signal into a digital value. For
the OBC, the ADC must be used to read out the temperature of the OBC. This section
shows the design of the ADC with the functionalities that are needed to read out the OBC
temperature. First it is described why calibration of the temperature sensor is needed.
Finally, the functionalities that are needed to read out the OBC temperature are listed
and a graphical representation of the activity flow is given. The temperature sensor
transfer function is not considered here, since conversion from the digitized calibrated
sensor value to the temperature in degrees Celsius is part of the ground segment data
processing. Still, the temperature transfer function is mentioned because it is needed to
determine the reference voltage needed for the conversion.

4.3.4.1 Temperature Sensor Transfer Function

The temperature sensor transfer function gives the relationship between the measured
sensor output voltage and the temperature in Celsius. The temperature sensor transfer
function for the on-chip temperature sensor of the MSP430F1611 is defined as follows
where the measured output voltage of the sensor is a function of the ambient temperature:

Vour = 0.00355 - T + 0.936 (4.5)

By rearranging Equation the ambient temperature T becomes a function of the
measured output voltage V,; of the sensor:

~ Vour —0.986
~0.00355
The relationship between V,,; and the temperature T is linear, as can be seen in

Figure [28].

(4.6)

Volts

1300 —f
1200 —
1100 —
1000 —
0900 —
0800 —

0.700

Celsius.
-50 0 50 100

Figure 4.12: Temperature sensor transfer function for the on-chip temperature sensor

60 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.3.4.2 Temperature Sensor Calibration

In order to get accurate temperature readings, the on-chip temperature sensor of the
MSP430F1611 must be calibrated. The MSP430F1611 on-chip temperature sensor can
have an offset as much as £20 °C [I]. By substituting a known value for T in Equation
and checking the measured voltage V,, one is able to compute the desired offset value
for the particular MSP430F 1611 chip that is being calibrated.

In order to reliably compute the offset value, an already calibrated temperature
meter must be used as a reference. It is important that this reference temperature meter
has already been calibrated as accurate as possible and does not deviate to much from
the real ambient temperature that is being measured. During the calibration process it
is important that the reference temperature meter is held close to the MSP430F1611
microcontroller chip such that they sense more or less the same ambient temperature.

The computation of the temperature sensor offset is done in three steps:

e First step: Measure the output voltage of the temperature sensor at a known
ambient temperature 77 using Equation

e Second step: Compute the temperature 75 using Equation [£.6] and the temper-
ature sensor output voltage that was measured in the previous step.

e Third step: Subtract 75 from 77 and take the absolute value. The result is the
temperature sensor offset in degrees Celsius.

So the computed offset temperature of the temperature sensor becomes Ty s foer = |12 —T1|
and is expressed in degrees Celsius.

4.3.4.3 ADC Module Design

On the MSP430F1611 there is a 10-bit ADC and a 12-bit ADC. To read out the OBC
temperature, the 10-bit ADC will be used. The reason for this is that the 10-bit ADC
is faster than the 12-bit ADC and it consumes less power. Besides the advantages in
performance, the 10-bit ADC meets the requirements for the resolution of the OBC
temperature which is defined to be 8 bits. The activity flow diagram for reading out the
temperature of the OBC using the ADC is shown in Figure [4.13

In the activity flow diagram shown in the figure, the needed functionalities can be
seen. The use of the 10-bit ADC is obvious, since this functionality has already been
explained above. Furthermore, the ADC has multiple channels that can be used for
conversion and a selectable voltage reference. The ADC channel must be chosen such that
the ADC does conversions on the channel on which the temperature sensor is connected.
The reference voltage must be higher than the maximum voltage that is given by the
temperature sensor. This maximum output voltages becomes clear in Figure that
gives the temperature sensor transfer function. From this figure it is clear that the
maximum output voltage of the temperature sensor will not exceed 1.4V, so the reference
voltage much be chosen such that it is equal to 1.4V or higher. The ADC module
must also contain procedures that enable the ADC interrupt mechanism and start the

4.3. OBC SERVICE LAYER SOFTWARE DESIGN 61

Select reference Select conversion
voltage channel

Enable ADC

Start conversion .
interrupt

Wait for

conversion ready

Figure 4.13: Activity flow for the ADC to read out temperature

conversion. After the conversion has been started, the conversion result will usually be
available within a few microseconds. Finally, the conversion result must be corrected by
the digital sensor offset value that has been calculated during the calibration process of
the temperature sensor.

4.3.5 I2C Controller

The design of the I?C master device and I?C slave device service layer software is de-
scribed in this section. First the design of the master is given. This is followed by the
design of the slave.

4.3.5.1 I?C Master Module Design

The 12C master service layer software module must consist of a couple of elementary
functionalities that are needed for reliable I?C communication. In this section the func-
tionalities needed for the master device module are discussed. The master device module
must consists the following functionalities:

e Initialize the I?C peripheral in master mode
e Read data from the bus and handle time-outs
e Write data on the bus and handle time-outs

e Report I2C bus health status

During the initialization procedure of the master device, the I?C hardware peripheral
must be configured such that it operates in master mode and generates clock pulses at
a frequency of 100 kHz on the SCL line during a data transfer. For the latter the 12C
hardware peripheral must select a clock source. The activity flow for initializing the I?C
peripheral in master mode is shown in Figure .14

The procedure for reading data from the bus must first initialize and start a timer that
generates an interrupt after 30 ms. Once an interrupt occurs, a flag that is being polled

62 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

Select clock | Configure I°Cbus
mode source frequency to 100 kHz

Figure 4.14: Activity flow for initializing the I*C' peripheral in master mode

by the read procedure must be set by the ISR of the timer. This design ensures that the
read procedure does not get stuck in the polling loop forever. After the initialization of
the time-out timer, the read procedure must wait until the bus is free to use. If the bus
does not become free within 30 ms, the read operation must be aborted and the I2C bus
health status must be reported as ’bus lines held low’. In the case of a free bus the read
procedure must continue with putting the I2C peripheral in master-receiver mode. The
next step is to send out a start bit, followed by the desired 7-bit slave device address from
which the master wants to read data and a bit with the logical value 1 that indicates
that the I2C operation is an I?C read operation.

alizeand stz Wait for bus to g Set master-
time-outtimer becomefree ? receiver mode

Report I2C bus
health, send out
a stop bit, stop
time-outtimer

andabort the
read operation

Wait for Send out a1’ Send out Sendouta
acknowledgement slave address start bit

Py
TN

/,/ Got \\ Yes
. data

/’/M N

p ore . No
bytes

?

Wait for data
byte

Send out
acknowledgement

Send outa
stop bit

Report|2C bus
health

Stop time-out
timer

Figure 4.15: Activity flow for reading data from the I*C bus in master-receiver mode

At this point the read procedure must wait for an acknowledgement from the re-
quested slave device. If the acknowledgement from the slave device is not received within
30 ms, the master device must abort the read operation and it must report the I2C bus
health status 'no acknowledgement received’. In the case the master device did receive
the acknowledgement from the requested slave device, the read operation can continue

4.3. OBC SERVICE LAYER SOFTWARE DESIGN 63

with reading data bytes from the bus. For each data byte the master device must wait
until the slave device is ready to put the data byte on the bus. The master device must
acknowledge the reception of each data byte, except for the last data byte. When a
time-out occurs during the reading of the data bytes, the master device must send out
a stop bit, report the I?C bus health status ‘time-out’ and abort the read operation. In
the case that no time-out occured the master must send out a stop bit in order to free
the bus. At this point the read operation is finished. Finally, the master must stop the
time-out timer. The activity flow for reading data from the I?C bus in master-receiver
mode is shown in Figure

The wait actions shown in the activity flow diagram continuously poll a flag that
will be set when the 30 ms time-out period has been elapsed. During intialization of the
time-out timer, the flag that is polled must be cleared.

The procedure for writing data on the bus is analogue to the procedure for reading
data from the bus. The small differences are that the I?C peripheral must be put in
master-transmitter mode and that the master must send out a bit with a logical value
of 0 after writing the 7-bit slave address on the bus to indicate that a write operation
is initiated. Besides that it must of course write data bytes on the bus and wait for
acknowledgements from the slave device, instead of reading data bytes from the bus
and produce acknowledgements. The activity flow for writing data on the I2C bus in
master-transmitter mode is shown in Figure 4.16

Set master-
transmitter
mode

Wait for bus to
time-outtimer becomefree

Report 12C bus
health, send out
a stop bit, stop
time-outtimer

and abort the
write operation

Wait for sendout a0’ Send out Sendouta
acknowledgement slave address start bit

Wait for ~ ~_ Yes - More . No
bytes
?

send databyte acknowledgement

Send outa
stop bit
Report|?C
NO " Time- . Y€S bus health

Stop time-out
timer

Figure 4.16: Activity flow for writing data on the I>C bus in master-transmitter mode

64 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.3.5.2 I?C Slave Module Design

The I2C slave service layer software module must consist, just like the I?C master ser-
vice layer software module, of a couple of elementary functionalities that are needed for
I?C communication with the master device. Since the slave device is contacted by the
master device, the use of interrupts suits best for the read and write operations. With
an interrupt-driven approach, no time-out handling is needed. In this section the func-
tionalities needed for the slave device module are discussed. The slave device module
must consist of the following functionalities:

e Initialize the I?C peripheral in slave mode
e Read data from the bus using interrupts

e Write data on the bus using interrupts

Initialization of the I?C peripheral for a slave device consists of configuring the 1?C
hardware peripheral in slave mode, setting the slave address of the slave device, select-
ing the clock source for the I2C hardware peripheral and enabling the I?C peripheral
interrupts. This is translated in an activity flow diagram that is shown in Figure

Set slave Select clock Enable I2C
address source interrupts

Figure 4.17: Activity flow for the initialization procedure for an I*C' slave device

Reading data from the bus in slave mode starts when a start interrupt is generated
by the I?C hardware peripheral. This interrupt is generated when the I?C hardware
peripheral detects a start condition followed by the slave address of the slave device and
the R/W bit. The detection of events on the I?C bus is completely handled by the I?C
hardware. The only thing the software has to do is execute tasks that are needed such
that data bytes can be received without any problems. A typical example of such a task
is clearing the receive buffer that is used for data byte reception.

After this procedure the I2C hardware peripheral will receive one or more data bytes.
When a single data byte is received, the I?C hardware peripheral will generate an in-
terrupt. The software must handle this interrupt and store the received data byte in
the right place in the receive buffer. Each received data byte must be acknowledged by
the slave and reading data from the bus stops when all bytes have been received. The
ending of the data transfer is indicated by a stop condition that is generated by the
master device. When the I?’C hardware detects a stop condition on the I?C bus it will
generate a stop interrupt that can be used by the software to execute tasks that handle
the ending of a data transfer.

Writing data on the I?C bus in slave mode is analogue to reading data from the
I?C bus in slave mode. The difference here is that the data bytes must be read from a
transmit buffer and that the data bytes must be written on the bus. Also the slave device
has only to acknowledge on the start interrupt. When this interrupt occured the slave

4.3. OBC SERVICE LAYER SOFTWARE DESIGN 65

12C start interrupt Send out Clear I2C receive
received acknowledgement buffer

12C byte received Send out Store byte in 12C

interrupt acknowledgement e e buffer

12C stop interrupt Execute taskif
received needed

Figure 4.18: Activity flow for handling I?C interrupts for reading data in slave mode

device can prepare the data content in the I?C transmit buffer. The acknowledgements
of the data bytes are done by the master device since the master device is receiving
the bytes. A data byte can be transmitted when an acknowledgement of the master
is received and the transmitter is ready. When this occured, the 12C hardware will
generate an interrupt that indicates that a byte can be safely written on the bus by the
slave device. Again, on a stop condition interrupt, the software may execute tasks that
handle the ending of a data transfer. The activity flow diagram for writing data on the
bus in slave mode is shown in Figure 4.19|

Prepare 12C
transmit buffer

Send out
acknowledgement

12C start interrupt
received

12C transmitter
ready interrupt

Send out data byte

Execute task if
needed

12C stop interrupt
received

Figure 4.19: Activity flow for handling I*C interrupts for writing data in slave mode

4.3.6 Watchdog Timer

The watchdog timer is an important peripheral. It is in essence a timer, but it can be
configured to operate in one of the two following modes; the watchdog mode and the
interval timer mode. A requirement for the watchdog timer that must be used in the
OBC software is that it must be able to be configured for an expiration time in the order
of seconds. First, the differences between the modes are discussed in Section [1.3.6.1]
This is followed by a description about the clock source design options (Section
and the watchdog timer module design (Section 4.3.6.3)).

66 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.3.6.1 Watchdog Modes

As already briefly mentioned, the watchdog timer can be configured for either the watch-
dog mode or the interval timer mode. The difference between the two modes is the action
that will be performed when the watchdog timer expires (i.e. when it reached its config-
ured interval). The differences between the two modes are the following;:

e Watchdog mode: in this mode a Power-Up Clear (PUC) will be generated when
the watchdog timer expires.

e Interval timer mode: in this mode an interrupt will be generated when the
watchdog timer expires, which works the same as an ordinary timer in up mode.

For the OBC software the interval timer mode is not of interest, since the ordinary
programmable interval timers are more appropriate to generate the desired interval in-
terrupts or delays. The watchdog mode will be used in order to let the microcontroller
reset itself (generate a PUC) when the watchdog timer counter value is not cleared within
the specified expiration time.

4.3.6.2 Watchdog Clock Signal Design Options

For the watchdog timer to function, a clock signal must be selected. This clock
signal can either be the sub-main clock (SMCLK) or the auxiliary clock (ACLK). In
Section [4.3.1] it has already been explained that the low-frequency 32768 Hz crystal
must be used for the watchdog timer. Furthermore it has been explained that the
low-frequency 32768 Hz drives the ACLK signal and that the ACLK signal is divided
by 8 such that the signal becomes a 4096 Hz signal. This is needed in order to get
a watchdog timer expiration time of 8 seconds, as will be shown later on in this
section. The 8 MHz crystal that drives the SMCLK signal is not suitable for the
watchdog timer in the OBC software. This results in a too low expiration time in the
order of a few milliseconds while an expiration time in the order of seconds is needed [19].

An important limitation of the watchdog peripheral is that the watchdog expiration
interval can only be configured using 4 different clock signal dividers:

e Clock signal divider of 32768
e Clock signal divider of 8192
e Clock signal divider of 512

e Clock signal divider of 64

There is no timer threshold register that can be configured such that the watchdog
timer expires in any desired amount of clock ticks. The best thing one can do is selecting
an appropriate clock signal and configure the clock source divider properly such that the
expiration time interval is as close as possible to the desired expiration time interval. This

4.3. OBC SERVICE LAYER SOFTWARE DESIGN 67

truly limits the flexibility in designing applications that need a wide range of watchdog
expiration time intervals.

In order to get an expiration interval in the order of seconds, the ACLK clock signal
must be used as clock input signal for the watchdog peripheral. Using the ACLK,
various clock signals can be used as clock signal input depending on the clock divider
of the ACLK and the clock divider of the watchdog timer peripheral. All the possible
options are listed in Table

’ facLi ‘ DIVacLk ‘ finput DIVwatchdog Expiration time ‘
32768 Hz | 1 32768 Hz | 32768 1Hz=1s
32768 Hz | 1 32768 Hz | 8192 4 Hz = 250 ms
32768 Hz | 1 32768 Hz | 512 64 Hz = 15.625 ms
32768 Hz | 1 32768 Hz | 64 512 Hz = 1.95 ms
32768 Hz | 2 16384 Hz | 32768 0.5 Hz=2s
32768 Hz | 2 16384 Hz | 8192 2Hz=0.5s
32768 Hz | 2 16384 Hz | 512 32 Hz = 31.25 ms
32768 Hz | 2 16384 Hz | 64 256 Hz = 3.9 ms
32768 Hz | 4 8192 Hz | 32768 025 Hz =4 s
32768 Hz | 4 8192 Hz | 8192 1Hz=1s
32768 Hz | 4 8192 Hz | 512 16 Hz = 62.5 ms
32768 Hz | 4 8192 Hz | 64 128 Hz = 7.8125 ms
32768 Hz | 8 4096 Hz | 32768 0.125 Hz = 8 s
32768 Hz | 8 4096 Hz | 8192 0bHz=2s
32768 Hz | 8 4096 Hz | 512 8 Hz = 125 ms
32768 Hz | 8 4096 Hz | 64 64 Hz = 15.625 ms

Table 4.1: Selectable watchdog expiration times using the 32768 Hz clock source

In this table facrx is the frequency of the crystal that drives the ACLK signal,
DIVycrk the clock divider used for the ACLK clock signal, finp: the input frequency
for the watchdog peripheral which equals facrx divided by DIVacrkx and DIVaichdog
is the clock divider used for the watchdog peripheral input frequency. The expiration
time is calculated by dividing finput by DIViatchdog-

4.3.6.3 Watchdog Module Design

The functionalities for the watchdog timer include configuration of the watchdog timer
and clearing the watchdog timer counter in order to prevent a PUC. Clearing the watch-
dog timer is evident. Configuration of the watchdog timer consists of two steps:

e Select the input clock signal

e Select the appropriate clock signal divider

The order in which these two steps are executed to configure the watchdog timer
peripheral is not important.

68 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.4 OBC Application Layer Software Design

In this section the design of the application layer software for the Delfi-n3Xt Nanosatellite
is described. The application layer software makes use of the service layer software that
is described in the previous section of this chapter. The satellite can be in 6 different
states, called operational modes, or just modes for short. These are the boot mode,
delay mode, deployment mode, main mode, test mode and I?C bus recovery mode. The
OBC can only be in one of these 6 mode at a time.

12C
recovery
mode

1Yes

N

/' N
_Testinterface .

removed?

N

A -
~ Testinterface .

present?

No

\\

" Deployment .

needed?

\\

< Delay needed?

1 No
//’/ ; \\\\\\
<" I12C bus health
OK?

Y ‘\\\
YES/ Deployment

ready?

No

Deployment
mode

Figure 4.20: Activity flow for the transitions between operational modes

In Figure the possible transitions between operational modes are shown. Once the
OBC is powered, the primary OBC microcontroller will start running which will result in
the execution of the boot sequence. During the boot sequence the satellite its operational
mode is the boot mode. The boot mode is described in detail in Section [4.4.1]

After completion of the boot mode, the satellite will become in the test mode, delay
mode, deployment mode or main mode. The test mode will be entered if the test interface
is present on the I?C bus. A transition from the test mode back to the boot mode may
take place when the test interface is removed from the I2C bus. The test mode is not
yet designed and implemented and therefore it is not discussed in this thesis.

When the test interface is not present or if it is removed, the delay mode, deployment
mode or main mode will be entered. The delay mode is described in Section and
will be entered when deployment is needed after a certain amount of time (e.g. when the
satellite is launched and deployed for the first time). The deployment mode is described
in Section and will be entered if no deployment has been attempted before or if
the OBC is commanded (by a telecommand) to make a transition from the main mode
to the deployment mode.

4.4. OBC APPLICATION LAYER SOFTWARE DESIGN 69

The main mode will be entered immediately after the boot mode when there is no
test interface present on the I?C bus and deployment is not needed. The main mode will
also be entered when the deployment mode is ready. Furthermore, the main mode will
switch to I2C bus recovery mode if the I?C bus got stuck. A detailed description of the
main mode is given in Section [4.4.4]

When the I12C bus got stuck, the I2C bus recovery mode will be entered. This mode
will continuously check the status of the I?C bus and will make a transition back to the
main mode when the I?C bus is recovered and considered as healthy. A detailed design
description about this mode is given in Section [4.4.5]

4.4.1 Boot Mode

As already mentioned earlier, every OBC boot starts in the boot mode. The boot mode
initializes all the variables and peripherals that are needed for the OBC to function
properly. Besides that it updates the boot counter, configures the other subsystems of
the satellite and checks whether or not a test interface is present on the I2C bus. The
updating of the boot counter is further described in Section [4.4.1.1and the configuration
of the subsystems at boot time in Section [£.4.1.2] The activity flow of the boot sequence
execution is shown in Figure

Increment the boot
counter

Initialize OBC
peripherals

variables

Check if the test
interface is present

Configure the
subsystems

" Testinterface
present?

Go intotest mode

Go into main mode

Go into delay mode

Go into deployment
mode

Figure 4.21: Activity flow for the execution of the boot mode

70 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

Initialization of the OBC peripherals yields initialization and configuration of the
clock source module (Section , programmable interval timers (Section 4.3.2]),
flash memory controller (Section [4.3.3)), analog to digital converter (Section [4.3.4)),
I*C controller (Section [4.3.5) and watchdog timer (Section . The check for the
presence of the test interface can easily be realised by contacting the test interface I2C
address over the I?C bus. If the OBC receives an acknowledgement on a request to the
test interface device it means that the test interface is present, in the other case the test
interface can be considered as not present.

After this execution, decisions will be made about the next mode to which the OBC
must switch. The delay mode will be entered only if deployment is needed and if the
delay for deployment is needed. If deployment is needed but the deployment delay is not
needed, the OBC will switch to deployment mode immediately. Deployment is needed
when one or more deployment devices have not been attempted to deploy yet. Whether
or not deployment has already been attempted for a deployment device, is stored as an
16-bit vector in the flash memory. This vector contains one bit for each resistor that can
be burned in order to deploy an antenna or solar panel, and it is updated accordingly.
The sequence of deploying the deployment devices is further described in Section 4.4.3
If deployment is not needed the OBC will switch immediately to the main mode.

4.4.1.1 Boot Counter Update

The boot counter is implemented in such a way that it saves flash erase cycles when
the new incremented value must be written to flash memory. As already mentioned in
Section the flash memory of the MSP430F1611 can be erased somewhere between
10* and 10° times before it becomes unpredictable and unstable. The boot counter is
a 2-byte value so it can contain 2'6 = 65536 different values and it overflows back to 0
when the boot counter has reached the value 65535 and is incremented by 1. In order
to save flash erase cycles, the 2-byte boot counter is encoded in a 33-byte boot counter
such that a flash erase cycle only needs to be performed after 256 boots. The 2-byte
boot counter is encoded into a 33-byte boot counter as follows:

e The first 32 bytes (256 bits) are used are used for counting up to 256 boots.

e The last byte (8 bits) is used to hold the amount of multiples that the OBC booted
256 times

With this approach, the 33-byte encoded boot counter can hold up to 256 x 256 =
65536 different values, which is the same as the regular 2-byte boot counter. Initially all
the 264 bits are set to 1, which is the default state of flash memory content after erasing.
This represents a boot counter value of 0. So the 33-byte flash memory content of the
encoded boot counter will initially look as follows (Figure [4.22]).

When the boot counter is incremented by 1, the first 1 that is found in the first 256
bits of the encoded boot counter will be set to 0. For a bit transition from 1 to 0 there is
no flash erase cycle needed, hence the first 256 boots there is no flash erase cycle needed
when the encoded boot counter is updated in the flash memory. After the first boot the
encoded boot counter content will look as follows (Figure .

4.4. OBC APPLICATION LAYER SOFTWARE DESIGN 71

113111121 --- 11111111 | 11111111
-+ > -
32 bytes (256 bits) 1 byte (8 bits)

Figure 4.22: The content of the encoded boot counter that represents a value of 0

011 - 11111111 | 11111111
-+ > -
32 bytes (256 bits) 1 byte (8 bits)

Figure 4.23: The content of the encoded boot counter that represents a value of 1

This can be repeated 256 times such that after 256 times all the bits of the first
256 bits are set to 0. At this point the last byte (byte 33) must be incremented by 1
as well since the boot counter value is now a multiple of 256. However, the last byte
is complemented since its inital value consists of all ones. In order to increment the
represented value of this byte by one, we can simple decrement the byte value by 1 since
it is complemented. The change of this last byte needs a flash erase cycle in order to
store it properly in flash memory. Because of this reason, this is the moment where the
first 256 bits should all be reset to 1 (which is automatically done by the flash erase
cycle). When this is done, the encoded boot counter that represents the value of 256
will look as shown in Figure [4.24

111 --- 11111111 | 01111111
-+ » -
32 bytes (256 bits) 1 byte (8 bits)

Figure 4.24: The content of the encoded boot counter that represents a value of 256

At this point all the first 256 bits are set to 1 again, and the process of scanning
the first 256 bits until a 1 is detected can start over again. After another 256 boots the
first 256 bits are set to 0 again, and the last byte (byte 33) will be decremented by 1
again after which a flash erase cycle is necessary. This whole process can be repeated
in total 256 times (65536 boots) until an overflow occurs which brings the value of the
boot counter back to 0.

4.4.1.2 Configuring Subsystems

The procedure that configures the subsystems and their DSSB power controllers at boot
time ensures that the EPS, CDHS, PTRX, STX, MechS and SDM subsystems are turned
on (i.e. they are powered). All the other subsystems should remain off and thus must
be unpowered.

The EPS and CDHS subsystems are ’standard on’. This means that when power
becomes available on the satellite bus, the CDHS (including the OBC and all the DSSB
microcontrollers) and EPS subsystems are automatically powered. The other subsystems
are 'standard off’; so they must be turned on by the OBC explicitly. Turning on or off

72 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

a subsystems is done by the DSSB power controllers belonging to the subsystems. The
DSSB power controllers are configured by the OBC over the I?C bus.

Once the subsystems are turned on by the OBC after commanding the appropri-
ate DSSB power controllers, the subsystems can be configured to function in a desired
sub-mode. This configuration is also performed over the I?C bus, but this time the
OBC directly commands the microcontroller of the subsystem and not the DSSB power
controller of the subsystem. So for the EPS and CDHS nothing has to be done, since
they are automatically powered and functioning correctly. The next action is to put
the PTRX in RX only mode such that it will not send any data to earth at boot time.
Configuration of the PTRX should be done using the following sequence:

e Turn on the PTRX subsystem by commanding the DSSB power controller belong-
ing to the PTRX

e Command the PTRX subsystem to switch to RX only mode (meaning the tran-
mitter is turned off)

However, the PTRX is not capable of shutting down its transmitter [30] such that
the mode becomes RX only. Because of this reason, no commanding can be performed
by the OBC to configure the PTRX for RX only mode. In order to let the PTRX behave
as a receiver only, the OBC must hold a variable that holds the current sub-mode of the
PTRX. Fortunately this was already taken into account in the CDHS top level design
[9], so the OBC can just stop sending data frames to the PTRX when the RX only
sub-mode for the PTRX is defined in the sub-modes vector.

For the MechS and SDM, nothing more has to be done. They just need to be turned
on and they do not need to be put into a sub-mode. The STX however must be configured
such that it is in the TX off mode. This means that the STX subsystem is powered, but
it is not allowed to transmit any data to the earth. This can be solved in the same way
as for the PTRX. However, the STX does have the ability to turn off its transmitter.
This can be performed by writing a single byte to the STX I?C address.

4.4.2 Delay Mode

When the satellite is just launched and being ejected from the POD, the OBC will start
for the very first time in space. For this very first boot, and after the execution of the
usual boot mode as explained in Section [£.4.1] the satellite will go into the delay mode.
The delay mode is needed in order to make sure that the deployment of the solar panels
and antennas does not happen too early. Early deployment while the satellite is still
in vicinity of the POD may cause damage to one or more of the solar panels and/or
antennas [20]. The delay mode must ensure that the solar panels and antennas can be
deployed safely.

While the idea is simple, the delay mode can introduce a failure case that occurs when
the OBC continuously reboots itself within the amount of time the delay threshold value
is set to. If this is the case, the OBC will never reach the deployment mode. In order
to take this failure case into account, a delay counter will be held in flash memory. This
delay counter must be updated in flash memory every minute until the delay threshold

4.4. OBC APPLICATION LAYER SOFTWARE DESIGN 73

N
N

// ~
" Deployment . YeS

g threshold from flash memory

Increment delay

Wait for 2 seconds
counter

Go into main mode

e
"
e

Write delay counter rTE——
delay threshold? to ﬂash memory modulo 10==07?

Go into
deploymentmode

Figure 4.25: Activity flow for the delay that may be needed before deployment

value is reached. The sequence for the delay mode is given in the form of an activity

flow in Figure

4.4.3 Deployment Mode

After the boot mode or the delay mode (depending on whether or not a delay between
boot mode and deployment mode is necessary), the OBC may enter the deployment
mode if deployment of one or more of the solar panels and/or antennas is needed. The
deployment mode consists of a sequence that deploys the deployment devices one by
one. This sequence is further described in Section When the deployment mode
is entered, the deployment sequence can be started immediately since it is determined
in the previous mode that deployment is needed.

4.4.3.1 Deployment Sequence

The deployment sequence consists of two separate sequences: the primary deployment
sequence and the secondary deployment sequence. The primary deployment sequence
is responsible for commanding the MechS subsystem to deploy the 4 solar panels and 4
antennas by burning the primary resistors. First, the 4 solar panels will be deployed using
the burning of the primary resistors. The activity flow for this is shown in Figure [4.26)

When a deployment device must be deployed, and the command to deploy the device
is sent to the MechS subsystem, the OBC must wait 16 seconds until it goes on with
the next deployment device. This is because burning a wire using the resistors may take
up to 15 seconds worst case, and it is not allowed to burn more than one wire at the
same time because of the high power consumption that is needed to burn a wire. After
deploying the 4 solar panels using the primary resistors, the 4 antennas can be deployed
using their primary resistors using the same mechanism as shown in the activity flow for
the solar panels (Figure [4.26)).

74 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

< Deployment of
Solar Panel 1
needed?

< Deployment of
Solar Panel 2
needed?

Deploy Solar Panel 1
using primary resistor

Wait for 16 seconds

Deploy Solar Panel 2

) .) Wait for 16 seconds
using primary resistor

P Geftsy e of Deploy Solar Panel 3

Solar Panel 3 . - -
s using primary resistor

Wait for 16 seconds

~ Deployment of Deploy Solar Panel 4

Solar Panel 4 . . .
needed? using primary resistor

Deploy antennas using
primary resistors

Figure 4.26: Activity flow for deploying the solar panels using the primary resistors

Wait for 16 seconds

After deploying the solar panels and antennas using the primary resistors, the solar
panels and antennas should be deployed again by burning the secondary resistors. This
is done in order to be sure that they are deployed if one or more of the primary resistors
fail to burn the wires. This redundancy makes sure that there are no Single-point-of
Failures (SPoF's) in the deployment mechanism.

The sequence that burns the secondary resistors to deploy devices that need to be
deployed is a bit different compared to the sequence that burns the primary resistors.
The activity flow for deploying the solar panels using the secondary resistors is shown
in Figure After burning the wire using the secondary resistor, the ’deployment
attempted’ vector in flash memory must be updated accordingly. This vector is an 8-bit
vector because there are in total 8 deployment devices (4 solar panels and 4 antennas).
Each bit in the vector corresponds to a deployment device. The bit that corresponds to a
deployment device must be set to ’1’ immediately after the secondary resistor is used to
burn the wire of that deployment device. This same vector is used to determine whether
or not deployment of a solar panel or antenna is needed. When the corresponding bit
of a deployment device is set to ’1’, deployment is not needed, otherwise deployment

4.4. OBC APPLICATION LAYER SOFTWARE DESIGN 75

‘

 Deployment of | Deploy Solar Panel 1 Update deployment Wait for

Solar Panel 1 . .
P using secondary resistor attempted vector 16 seconds

ka

 Deployment of Deploy Solar Panel 2 Update deployment Wait for

Solar Panel 2 - -
D using secondary resistor attempted vector 16 seconds

X

// Deployment of
Solar Panel 3
needed?

Deploy Solar Panel 3 Update deployment Wait for
using secondary resistor attemptedvector 16 seconds

/lew;nentlz\f Deploy Solar Panel 4 Update deployment Wait for
reded? using secondary resistor attemptedvector 16 seconds

Deploy antennas using
secondary resistors

Figure 4.27: Activity flow for deploying the solar panels using the secondary resistors

is needed. The vector can be modified by a telecommand, this is further described in
Section A.4.4.4]

The very last part of the deployment mode is shown in an activity flow in Figure [£.28]
It is similar to the deployment of the solar panels shown in the activity flow in Figure[4.27]
However, in this very last part of the deployment mode, the antennas are being deploying
using the secondary resistors (if needed). After this the deployment mode is ready and
the OBC must switch to the main mode.

4.4.4 Main Mode

Most of the time, the satellite will be in the main mode. This mode consists of the so
called 'main loop’, which main responsibilities are acquiring data from other subsystems
and the execution of telecommands that are uploaded from a ground station at Earth
to the satellite. Besides that it checks the state of all the subsystems present in the
satellite. A more detailed description about the main loop is given in Section 4.4.4.1
The section about the main loop is followed by a section about the production of OBC

telemetry data (Section 4.4.4.2)), data acquisition (Section [4.4.4.3]) and the execution of
received telecommands (Section 4.4.4.4)) from Earth.

76 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

+

" Deployment of
Antenna 1
needed?

ka

e Deployment of
Antenna 2
needed?

 Deplayment of _ | Deploy Antenna 3 Update deployment Wait for

Ant 3 - .
e using secondary resistor attempted vector 16 seconds

Wait for
16 seconds

Deploy Antenna 1
using secondary resistor

Update deployment
attemptedvector

Wait for
16 seconds

Update deployment
attemptedvector

Deploy Antenna 2
using secondary resistor

/ e o o -
//”3eplwment} | Deploy Antenna 4 Update deployment Wait for

Antenna 4

needed? using secondary resistor attempted vector 16 seconds

v

Go into main mode

Figure 4.28: The last part of the deployment mode

4.4.4.1 Main Loop

The main loop is a procedure that is being executed periodically at a frequency of 0.5Hz
(i.e. it is being executed once every two seconds). The main loop consists of a couple
of blocks that are executed in a timed sequence that is shown in the activity flow in
Figure [£.29]

Basically, the main loop can be subdivided into two large parts: blocks that are being
executed in the first second of the main loop, and blocks that are being executed in the
second second. During the very beginning of the first second, a timer is being initialized
such that every 100ms a timer interrupt is generated as described in Section [.3.2.2] By
having a counter that is incremented every time a timer interrupt occurs and by letting
it count up to 10, a timer interval of 1 second is realised.

After initialization of the timer, the OBC will send out a byte with value OxFF over
the I?C bus to the general call address. This address is like a broadcast and will be
received by every subsystem that is connected to the I?C bus [24]. This standard in the
I2C protocol is exploited and used to synchronize all the subsystem. Subsystems will
start their measurements after receiving this command. The block that checks for the
initial conditions of subsystems is not included in this thesis. Descriptions about the

4.4. OBC APPLICATION LAYER SOFTWARE DESIGN 77

Wait until 1 second

e timer expires

~ Bus health Check I2C bus
OK? health

Go into I2Cbus
recovery mode

Initialize and start 1
second timer

Initialize and start 1 Acquire second Send frame to

onizatio second timer telemetry data active radios
e Create second
eleco clals telemetry frame
e - Wait until 1 second
onditio timer expires

Figure 4.29: Activity flow of the main loop

production of OBC telemetry data, the data acquisition and telecommand execution are
given in Section [4.4.4.2] Section [4.4.4.3] and Section respectively.

When all the blocks in the first second are executed, the main loop will wait until
the second is elapsed. During the second second, the OBC will acquire telemetry data
from the other subsystems and forwards the acquired data to the active radio such that
it can be received at the groundstation(s) on Earth. When this is completed, the main
loop will again wait until the second second is elapsed. After the full two seconds the
main loop will start over again, unless a telecommand has been received that lets the
OBC switch to deployment mode or delay mode.

4.4.4.2 OBC Telemetry Data

The two telemetry frames that are produced by the OBC during the main loop consists of
measurement (housekeeping) data from the subsystems, payload data from the payloads,
housekeeping data from all the DSSB microcontrollers and housekeeping data of the
OBC. The OBC inserts two types of data in the telemetry frames:

e 10-bytes telemetry frame tag data
e 14-bytes OBC housekeeping data

The 10-bytes telemetry frame tag data is inserted in both telemetry frames, whereas
the 14-bytes OBC housekeeping data is inserted into the second telemetry frame only.

78 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

The 10-byte frame tag data consists of the following data in the given order [18]:

e 32-bit elapsed time counter
e 16-bit boot counter
e 31-bit frame counter

e 1-bit frame type identifier

The 32-bit elapsed time counter can be acquired by calling a function that is provided
by the elapsed time counter service layer software. The elapsed time counter service layer
software is not part of this thesis since it is designed and implemented by someone else.
However, it is part of the OBC and therefore the data must be present in the telemetry
frame tag data. The boot counter is already discussed in Section [4.4.1.1

After the creation of each frame, a frame counter must be incremented such that,
after receiving telemetry data on Earth, engineers know how many frames are already
sent since the last boot. By having a 32-bit frame counter variable in the OBC, the
31-bit frame counter and 1-bit frame type identifier can be combined. Using the 1-bit
frame type identifier, the first and second telemetry frames can be distinguished from
one another. The 1-bit value will be set to 0 in case of the first telemetry frame and to
1 in case of the second telemetry frame.

In the second telemetry frame, the 14-bytes OBC housekeeping data will consist
of the following data in the given order:

e 8-bit stuck bus counter

e 8-bit short circuit counter

e 8-bit last short circuit perpetrator

e 11-bit subsystem mode settings vector

e 5-bit allignment bits

e 8-bit OBC temperature

e 32-bit last executed telecommand (first 4 bytes)
e 1-bit last received telecommand receiver ID

e 31-bit communication status vector

The 8-bit stuck bus counter will count how many times the 12C bus got stuck (i.e.
how many times the SDA and/or SCL line were being held low for a longer period of
time). The 8-bit short circuit counter simply counts how many short circuits have been
occurred using the DSSB housekeeping data of all the subsystems. The I2C address of
the subsystem that was responsible for the last short circuit will be stored in the 8-bit
last short circuit perpetrator variable.

4.4. OBC APPLICATION LAYER SOFTWARE DESIGN 79

The 11-bit subsystem mode settings vector indicates whether the subsystems (pri-
mary OBC, secondary OBC, primary ADCS, secondary ADCS, primary DAB, secondary
DAB, PTRX, ITRX, STX, T3uPS and SDM) should be on or off. The 5 alignment bits
are used to fill up the remaining 5 bits of the two bytes that are needed by the 11-bit
subsystem mode settings vector. This makes it easier to concatenate the rest of the data
to the telemetry frame; without the 5 allignment bits, shift operations would be needed
in order to fill the remaining bits. Shifting makes the code of the OBC more complex and
error prone. Besides that, a lot of work must be done when a change is made somewhere
in the telemetry frame without the 5 allignment bits.

From the ADC service layer software (see Section , the OBC temperature can
be requested. The result of the 10-bit ADC is a 10-bit temperature sensor value. It
is decided that a resolution of 8-bit for the OBC temperature is sufficient [9], so the 2
least significant bits can simply be dropped from the 10-bit temperature sensor value in
order to obtain an 8-bit OBC temperature sensor value. This makes it easy to add the
temperature sensor value to the telemetry frame, since it is now exactly 1 byte.

The last telecommand that is executed by the OBC must be acknowledged in the
telemetry frame such that engineers at Earth know that the telecommand they sent to
the satellite is successfully received and executed. For this it is sufficient to acknowledge
only the first 4 bytes of the last executed telecommand. Besides the first 4 bytes of
the last executed telecommand, an additional bit will be added that acknowledges the
receiver ID (PTRX or ITRX) of the last received telecommand. Both should be stored
in a variable by the OBC, such that they can be used once the OBC housekeeping data
is inserted into the second telemetry frame.

Finally, the OBC must hold a 31-bit communication status vector that must be send
with the other OBC housekeeping data to the Earth. This vector will hold a bit for
every DSSB and subsystem microcontroller present in the satellite (including the body
temperature sensors) that gives a status about whether or not communication is possible
with that particular device. A bit with a value of 0 means that no communication is
possible. A bit with a value of 1 indicates that communication is possible with the
particular device. The information about whether or not communication is possible can
be extracted from the I2C service layer software (Section .

After producing the telemetry frame tag data and the OBC housekeeping data,
the data can be inserted into the proper places in the first and second telemetry frames
by the OBC. More about this is discussed in the next section.

4.4.4.3 Data Acquisition

During the data acquisition, all the housekeeping data and payload data is being fetched
from all the other subsystems, including the DSSB microcontrollers of all the subsys-
tems and the body temperature sensors. In total there are two data acquisition chains.
The first one fetches data from the subsystems that belong to the first telemetry frame
and the second one fetches data from the subsystems, DSSB microcontrollers and body
temperature sensors that belong to the second telemetry frame. The OBC actually does
not care about the data content. The only thing the OBC does is fetch the data, put it

80 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

in the first or second telemetry frame and forward the frame to the active transmitter. If
a subsystem is turned off or not reachable, the OBC will fill the space of the subsystem
in the telemetry frame with zeros. It can be distinguished whether or not the zeros are
real data or not by inspecting the 31-bit communication status vector as explained in
Section [4.4.4.2] This relaxes the requirement on dummy data in the telemetry frames
(see Section [4.1.4)).

The first data acquisition chain will fetch in total 194 bytes of data and is executed
during the first second of the main loop. This is data from the following subsystems and
it is being fetched in the following given order:

e 12 bytes from the PTRX

2 bytes from the primary DAB or secondary DAB

10 bytes from the first battery subsystem

10 bytes from the second battery subsystem

35 bytes from the SDM

95 bytes from the T2uPS

30 bytes from the primary EPS or secondary EPS

Whether the OBC fetches housekeeping data from the primary or secondary DAB
subsystems depends on which DAB subsystem is powered and used for data acquisition
(only one DAB subsystem is allowed to be turned on). The same holds for the primary
and secondary EPS subsystems. The first battery subsystem contains housekeeping data
about the first and second batteries, whereas the second battery subsystem will contain
housekeeping data about the third and fourth batteries. The reason why the T3PS and
EPS subsystems are in the end of the first data acquisition chain is because, compared
to the other subsystems, they need some more time in order to have their measurements
ready. The first telemetry frame will contain a total of 204 bytes (the 10 telemetry frame
tag bytes produced by the OBC plus the 194 bytes fetched from the other subsystems).
They are packed in the first telemetry frame in the following order:

e 10 bytes telemetry frame tag data
e 12 bytes PTRX data

2 bytes primary DAB or secondary DAB data

30 bytes primary EPS or secondary EPS data

10 bytes first battery subsystem data

10 bytes second battery subsystem data
95 bytes T3uPS data

35 bytes SDM data

4.4. OBC APPLICATION LAYER SOFTWARE DESIGN 81

The second data acquisition chain will fetch in total 177 bytes of data and is executed
during the second second of the main loop. The data is fetched from subsystems, DSSB
microcontrollers and body temperature sensors. The data is being fetched in the follow-
ing order:

e 12 bytes from the ITRX

e 2 bytes from the STX

e 1 byte per body temperature sensor (4 in total)

e 3 bytes per DSSB microcontroller (11 in total)

e 20 bytes from the primary ADCS or secondary ADCS
e 102 bytes additional data from the primary ADCS

e 4 bytes from the ADCS magnetorquer

There is a total of 4 body temperature sensor and for each temperature sensor 1 byte of
temperature sensor data must be fetched, so for the temperature sensors this results in a
total of 4 bytes. For the DSSB microcontrollers a total of 33 bytes will be fetched, 3 bytes
per DSSB microcontroller while there is a total of 11 DSSB microcontrollers. Whether
the OBC fetches housekeeping data from the primary ADCS or secondary ADCS depends
on which ADCS is operational at that moment. When the primary ADCS is operational,
an additional 102 bytes of ADCS data will be fetched from the primary ADCS. If it is not
operational the space will be filled with zeros. The second telemetry frame will contain
a total of 201 bytes (the 10 telemetry frame tag bytes produced by the OBC and the 14
OBC housekeeping data bytes plus the 177 bytes fetched from the other subsystems).
They are packed in the second telemetry frame in the following order:

e 10 bytes telemetry frame tag data

e 12 bytes ITRX data

e 2 bytes STX data

e 4 bytes body temperature sensor data

e 20 bytes primary ADCS or secondary ADCS data
e 102 bytes additional primary ADCS data

e 4 bytes ADCS magnetorquer data

e 33 bytes DSSB data

e 14 bytes primary OBC or secondary OBC data

When sending a telemetry frame to the active transmitter fails, the telemetry frame will
be discarded and the OBC will not try to send it a second time to the transmitter. This
is in order to assure that the main loop will not stall and will always continue with its
execution at a frequency of 0.5 Hz.

82 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.4.4.4 Telecommand Execution

When the PTRX and ITRX are both powered, they both are able to receive telecom-
mands that are uplinked from a ground station at Earth. Depending on the uplink fre-
quency, the PTRX or ITRX will receive the telecommand (the radios work on different
frequencies). Since the OBC does not know beforehand to which radio a telecommand
is being uplinked, the OBC must check both radios for the presence of a telecommand.
There are 5 different types of telecommands:

e Update nonvolatile parameter

Update volatile parameter
e 12C pass through

e OBC reset

e Dummy telecommand

The 5 different telecommand types can be distinguished from one another by interpreting
the first byte of the telecommand.

A value of 0x01 in hexadecimal means that content in the flash memory of the OBC
must be updated (update nonvolatile parameter). The ’update nonvolatile parameter’
telecommand will always be followed by 2 bytes that specify the flash memory base
address and an additional n bytes that will form the new content of the flash memory
for the specified base address.

A value of 0x02 in hexadecimal means that the content of an OBC variable in RAM
memory must be updated (update volatile parameter). Like the 'update nonvolatile
parameter’ telecommand, the 'update volatile parameter’ telecommand will always be
followed by 2 bytes that specify the flash memory base address and an additional n bytes
that will form the new content of the OBC variable. The specified flash memory base
address will be mapped to the proper volatile OBC variable, and the OBC will update
that variable accordingly.

The telecommand is a 'T>C pass through’ telecommand if the first byte of the telecom-
mand has a value of 0x04 in hexadecimal. The I?C pass through’ telecommand can be
used to send a telecommand from Earth immediately to any powered I?C device that is
present on the bus. The second byte of the telecommand specifies the 7-bit I?C address
of the device to which data must be send (the most significant bit of that byte will always
have a value of 0, the least significant 7-bits specify the I?C address). The next n bytes
will contain the data that must be forwarded from the OBC to the specified I2C device.

A first telecommand byte with a value of 0x40 in hexadecimale will result in a reset
of the OBC. Just the first byte is not sufficient to reset the OBC. In order to be sure that
the telecommand is realy an "OBC reset’ telecommand, a safety content byte is followed.
The safety content byte must have a value of 0xAA in hexaxecimal. If this is the case,
the OBC will reboot itself immediately.

Finally, a so called 'Dummy telecommand’ exists which is a telecommand with a first
byte value of 0x80. The OBC just does nothing after reception of this telecommand. The
only thing the OBC does is store the telecommand in the ’last executed telecommand’

4.4. OBC APPLICATION LAYER SOFTWARE DESIGN 83

variable which is done for any valid received and executed telecommand. The purpose
of the dummy telecommand is purely to test the uplink to the satellite. In the next
telemetry frame after execution of the telecommand, the engineers at Earth can check
whether or not the uplinked telecommand is realy received by one of the radios and
executed by the OBC.

An activity flow of the procedure for checking the radios for a telecommand and
executing the telecommand is given in Figure [£.30

Check ITRX for Done with checking YES ek atready
telecommand telecommand telecommands checedy

e
e

v
g -
Yes Update nonvolatile Save

Present? parameter telecommand

< Telecommand
Present?

Fetch Extract data Extract data Update volatile
telecommand bytes bytes parameter

First byte
equals 0x807

Map address Pass data
bytes through I°’C

“ /Seoond byte
equals OxAA?

Decrypt | Extract2 | Extract2 Extract 1°C
telecommand address bytes address bytes address

Yes

// ///\ // ///
a 4 - y
e ~ e Ve
" Firstbyte -~ First byte " First byte " First byte R OBC
equals 0x017 equals 0x027 equals 0x047 equals 0x407 eset
Yes Yes Yes Yes
No No | No No

Figure 4.30: Activity flow for checking and executing a telecommand

It is worth to mention that the decryption of telecommand data is part of this thesis.
For security reasons, telecommands that are being uplinked from a ground station
to the satellite are encrypted. By encrypting telecommands and keeping secret the
encryption details (the algorithm and the encryption/decryption keys), other users than
the ones who know the encryption details cannot command the satellite by uplinking
telecommands.

Though the decryption mechanism is part of this thesis, details about the en-
cryption algorithm will not be discussed in this thesis since this thesis will be published
publicly.

84 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

4.4.5 I2C Bus Recovery Mode

As already quickly discussed, a switch from the main mode to the I?C bus recovery
mode will be made when the I2C bus got stuck. The I2C bus gets stuck when one of the
I?C lines (SDA or SCL) are being pulled low for a longer period of time. If the 12C bus
got stuck for 4 seconds (i.e. 2 times the execution of the main loop), the main mode
will switch to the I2C bus recovery mode.

Once entered, the I?C bus recovery mode will continuously send out I2C synchro-
nization commands using the I?C general call. The OBC will stay into the I?C bus
recovery mode until the I?C bus is considered as recovered and healthy, meaning that
none of the I?C lines are being pulled low. Once the health of the I?C bus is finally
recovered, the OBC can switch back to the main mode. The activity flow is shown in

Figure [£.31]

CheckI2Cbus
health

Go into main
mode

Figure 4.31: Activity flow for the I>C bus recovery mode

A stuck I2C bus can be caused by any device that is connected to the I?C bus SDA
and SCL lines. Most of the times, a reset of the device that causes the stuck I?C bus
can solve the problem and can fully recover the I2C bus such that it is returned into a
healthy state. However, devices can not know whether they are pulling low one of the
I2C lines, or that another device is responsible for that. Therefore, like the OBC, all
the other subsystem microcontrollers and DSSB microcontrollers have an I?C recovery
mechanism as well. For these microcontrollers, a timer is implemented that counts the
amount of elapsed time since reception of the last I?C synchronization. A predefined
sequence is specified in which is stated how a microcontroller is being reset and at what
time after reception of the last I2C synchronization [I8].

4.5. SUMMARY 85

In the recovery sequence, the subsystem microcontrollers will first reset themselves
after a certain period of time since reception of the last I?C synchronization command.
When this does not recover the bus, the DSSB microcontrollers of all the subsystems
will perform a full subsystem reset in a certain sequence. If this still does not result in
a recovered bus, the DSSB microcontrollers will start to reset themselves in the same
defined sequence as before. In case of still no success in recovery, the primary and
secondary OBC will start to reset themselves, including their DSSB microcontrollers.
As one of the latest steps, the EPS subsystem will perform a full power cycle of the
complete satellite and in the end perform a reset of the microcontrollers on the EPS
subsystem itself. At this point the I?C bus should be recovered. If not, a serious
problem which can not be resolved is responsible for the stuck bus. Usually, this means
end of the mission since the satellite will not be operable anymore. For completeness,
the I2C recovery timings of resetting the I?C devices after the last reception of the I2C
synchronization are given in Table

4.5 Summary

In this chapter, the software requirements for the Delfi-n3Xt CDHS are presented and
a detailed description about the Delfi-n3Xt OBC software architecture is given. Besides
that, a detailed design description about the Delfi-n3Xt OBC software is presented,
which consists of the service layer software and the application layer software.

The requirements are split up into five different categories about subsystem commu-
nication, fault-tolerant software, telecommanding, data acquisition and monitoring. A
requirement can be either a constraint, functional requirement, performance requirement
or an interface requirement.

The architecture of the Delfi-n3Xt OBC software is subdivided in two layers: the
service layer and the application layer. The service layer software is the software that
interfaces with the MSP430F1611 microcontroller hardware. It consists of modules that
drive the MSP430F 1611 peripherals like the programmable interval timers, flash memory
controller, analog to digital converter, I?C controller and watchdog timer. The service
layer software acts as a bridge between the MSP430F1611 hardware peripherals and the
application layer software.

Speaking in terms of software architecture, the application layer software lays on top
of the service layer software. This application layer software consists of a sublayer that
implements subsystem specific functionalities and the implementation of the different
operational modes of the satellite. There is a total of 6 different operational modes: the
boot mode, delay mode, deployment mode, main mode, I?C bus recovery mode and the
test mode. All the modes are discussed in detail in this chapter, except for the test
mode. The test mode is not part of this thesis.

86 CHAPTER 4. ON-BOARD COMPUTER SOFTWARE DESIGN

Recovery type ‘ I2C device ‘ Time since last 12C sync ‘
SDM 4200 ms
T3uPS 4250 ms
primary DAB 4300 ms
secondary DAB 4350 ms
ADCS magnetorquers 4400 ms
STX 4450 ms
Subsystem microcontroller ITRX ITC 4500 ms
reset by internal watchdog ITRX IMC 4550 ms
PTRX ITC 4600 ms
PTRX IMC 4650 ms
secondary ADCS 4700 ms
primary ADCS 4750 ms
primary battery 4800 ms
secondary battery 4850 ms
SDM 5000 ms
T3uPS 5200 ms
primary DAB 5400 ms
secondary DAB 5600 ms
Subsystem switch off STX 5800 ms
by DSSB timer ITRX 6000 ms
PTRX 6200 ms
primary ADCS 6400 ms
secondary ADCS 6600 ms
SDM DSSB 8000 ms
T3PS DSSB 8050 ms
primary DAB DSSB 8100 ms
secondary DAB DSSB 8150 ms
DSSB microcontroller reset STX DSSB 8200 ms
by internal watchdog ITRX DSSB 8250 ms
PTRX DSSB 8300 ms
primary ADCS DSSB 8350 ms
secondary ADCS DSSB 8400 ms
secondary OBC microcontroller 8450 ms
secondary OBC subsystem 8500 ms
OBC reset secondary OBC DSSB microcontroller 8550 ms
sequence primary OBC microcontroller 8600 ms
primary OBC subsystem 8650 ms
primary OBC DSSB microcontroller 8700 ms
Satellite power cycle by primary EPS 10000 ms
reset by secondary EPS 15000 ms
EPS microcontroller primary EPS microcontroller 16000 ms
reset secondary EPS microcontroller 16000 ms

Table 4.2: 12C recovery reset sequence and timings

On-Board Computer Software
Implementation

In this chapter, the implementation of the baselined Delfi-n3Xt OBC software design
that was discussed in Chapter [4]is presented. The implementation of the OBC software
is done in the programming language C and the software is executed on a Texas In-
struments MSP430F1611 microcontroller. The implementation details about the service
layer software are given in Section[5.I]whereas details about the application layer software
implementation are given in Section This chapter is summarized in Section

5.1 Service Layer Software

This section describes the implementation of the Delfi-n3Xt OBC service layer software.
The implementation shows how the peripherals of the MSP430F1611 microcontroller
can be driven such that they fulfil the design requirements that are specified in the
previous chapter. Section describes the implementation that configures the clock
source peripheral of the microcontroller and Section shows how the programmable
interval timers can be configured and used. The implementation that configures and uses
the flash memory controller is given in Section and that for the analog to digital
converter in Section The implementation of the I2C controller driver is discussed
in Section and finally, in Section the watchdog driver implementation is
provided.

5.1.1 Clock Source Module

The Delfi-n3Xt OBC clock source module consists of a function that configures the
MSP430F1611 clock system according to the OBC hardware design explained in Sec-
tion and the activity flow shown in Figure The task of the clock configuration
function is to properly set up the contents of the BCSCTL1 (Figure and BCSCTL2
(Figure registers. Both registers are 8-bits wide.

7 G 5 4 3 2 1 0

XT20FF XTs DIVAX XT5V RSELx

Figure 5.1: The BCSCTLI register that is used to configure the clock system
The BCSCTLI register consists of 5 fields: XT20FF, XTS, DIVAx, XT5V and

RSELx. Only the first three fields are of relevance and the latter two are unused so they
do not need to be configured (they will be just left to a value of 0).

87

88 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

A logical value of 0 for the XT20FF bit means that the crystal on the second clock
source input of the MSP430F1611 is always on. In Section [2.3]it was already explained
that the second clock source input is a clock signal driven by an external SMHz crystal
and that it must drive the MSP430F1611 CPU and most of its peripherals. Therefore
the value of the XT20FF bit must be set to 0.

With the XTS bit it can be specified whether or not the first clock source input is a
low frequency clock signal originating from a 32kHz external crystal or a high frequency
clock signal originating from an external crystal with a frequency between 450kHz and
8MHz [28]. A value of 0 for this XTS bit means that the first clock source input is
a 32kHz external crystal. This is what is needed for the implementation of the clock
source module, since a 32kHz crystal is connected to the first clock source input of the
MSP430F1611 of the OBC. Hence, the XTS bit must be set to 0 as well.

The DIVAx field specifies the clock divider for the auxiliary clock (see Section.
The clock divider can be set to 1 (no clock division), 2, 4 or 8 and they can be set by
loading the bit values 00, 01, 10 or 11 respectively in the DIVAx field of the BCSCTL1
register. The watchdog timer peripheral for the Delfi-n3Xt OBC requires an auxiliary
clock divider of 8, as discussed in Section [5.1.6] so the 2-bits in DIVAx field must be
set to a logical 1 such that the MSP430F1611 auxiliary clock will provide a 4096 Hz
clock signal. The final configuration for the BCSCTL1 register will be set to a value of
00110000 in binary or 0x30 in hexadecimal.

The BCSCTL2 register consists of 5 fields as well: SELMx, DIVMx, SELs, DIVSx
and DCOR. The DCOR field is not of relevance. The first two fields (SELMx and
DIVMXx) select the clock source and the clock divider for the main clock. The other two
fields (SELS and DIVSx) select the clock source and divider for the sub-main clock.

7 6 5 4 3 2 1 0

SELMx DIVMx SELS DIVSx DCOR

Figure 5.2: The BCSCTL2 register that is used to configure the clock system

For the main clock, the clock source can be configured such that the main clock is
driven by the internal DCO clock source, the first external clock source or the second
external clock source. The main clock must run on the 8 MHz external crystal so the
clock source must be set to the second external clock source. This is achieved by setting
both bits in the SELMx field to a logical 1. There should be no clock divider for the
main clock so both bits in the DIVMx field must be set to a logical 0.

The sub-main clock can be configured such that it is driven by the internal DCO
clock source (the SELS bit must be set to 0 in this case) or one of the external clock
sources (SELS set to 1). For the OBC, the sub-main clock must be driven by the external
8 MHz crystal so the SELS bit must be set to 1 and no clock divider must be used (so
the two bits in the DIVSx field must be set to 0). By setting the SELS bit to 1 the
MSP430F1611 will first try to use the second clock source (the 8 MHz crystal) as clock
input, and if it is not present it will try to use the first clock source. Since the second
clock source is present, the sub-main clock will be driven by the 8 MHz crystal. The
content of the BCSCTL2 register thus must be configured to 11001000 in binary or 0xC8.

5.1. SERVICE LAYER SOFTWARE 89

5.1.2 Programmable Interval Timers

For the OBC of Delfi-n3Xt, two MSP430F1611 PITs are used: timer A and timer B.
Timer A is used to handle I?C time-outs and timer B is used for timing of the main loop.
The MSP430F1611 TACCR, TACCTL and TACTL registers can be used to configure
and use timer A (see Section and the TBCCR, TBCCTL and TBCTL registers
can be used for timer B (see Section. Furthermore, interrupt routines are entered
when a timer expires. More about the interrupt routines for timer A and B is discussed

in Section B.1.2.3

5.1.2.1 Timer A

The three MSP430F1611 registers used to configured Timer A are TACCR, TACCTL
and TACTL. The TACCR register is a 16-bit wide register that holds the timer threshold
value. When the amount of counted timer ticks equals the value in the TACCR register,
an interrupt will be generated by the timer A peripheral. The other two registers (TAC-
CTL and TACTL) are 16-bit wide as well and are shown in Figure and Figure
respectively. Since timer A has to handle I?C time-outs, the threshold value of the timer
must be set to 30ms. From Section [£.3.2]it can be derived that a timer interval of 30ms
can be achieved by using the timer in ‘up mode’, use a clock divider of 8 and set the
timer its threshold value (i.e. the content of the TACCR register) to 30000 (the timer
interval in microseconds). The TACCR register can simply be configured by loading the
decimal value of 30000 into the register: TACCR = 30000.

15 14 13 12 1 10 9 8
CMx CClsx SCs sccl Unused CAP

7 6 5 4 3 2 1 0
OUTMODx CCIE (o{04] ouT cov CCIFG

Figure 5.3: The TACCTL register that is used to set the timer threshold value

Actually, for the TACCTL register, the only configuration that must be performed is
setting the CCIE bit high to a logical value of 1. The other fields in the register should
not be altered. Setting the CCIE bit high enables the capture/compare interrupt of timer
A such that the timer A peripheral is able to generate an interrupt when the amount
of elapsed timer ticks is equal to the threshold value stored in the TACCR register.
Setting the CCIE bit field high and leaving the other fields of the register untouched
can be performed by a simple bitwise OR operation on the CCIE bit field: TACCTL |=
0x0010.

The only thing that must be done in order to have the timer working properly is
selecting the clock source for the timer, the clock divider for the input clock signal and
configuring the timer in 'up mode’. Having the timer in ‘up mode’ is sufficient since no
timer interval of 65ms or higher is required. Configuring the clock source, clock divider
and timer mode is all done using the TACTL register (see Figure .

90 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

15 14 13 12 1 10 9 8
Unused TASSELXx
7 6 5 4 3 2 1 0
IDx MCx Unused TACLR TAIE TAIFG

Figure 5.4: The TACTL register that is used to configure timer A

The clock source for the timer A peripheral can be selected with the 2-bit wide
TASSELx field in the register. In the design section of the PIT module (Section
it was already explained that the clock source must be configured to the 8 MHz external
crystal clock source. The main clock and the sub-main clock are driven by this 8 MHz
crystal. For the timer A clock source selection there are four possible selections [28]. The
selection for SMCLK (the sub-main clock) is appropriate. To do so, the two bits in the
TASSELx field must be set to 1 and 0 (bits 9 and 8 in the TACTL register respectively).
The timer A clock source divider can be set through the 2-bit wide IDx field in the
TACTL register. With that field, four possible input clock dividers can be configured:
1 (no clock division), 2, 4 and 8. For the timer A configuration an input clock divider
of 8 is needed. An input clock divider of 8 corresponds to setting both bits high in the
IDx field (bits 7 and 6 in the TACTL register).

Finally, the timer mode must be set such that the timer is configured to work in ‘up
mode’. Setting the timer mode is done through the 2-bit wide MCx field of the register.
Again, four modes are possible: stop mode, up mode, continuous mode and up/down
mode. The ‘up mode’ corresponds to the bit values of 0 and 1 in the IDx field (bits 5 and
4 in the TACTL register respectively). Furthermore, it is worth to mention that during
configuration of the timer peripheral, the TACLR bit in the TACTL register must be
set high such that the internal timer tick counter of the timer peripheral is cleared and
thus reset to 0.

5.1.2.2 Timer B

The registers belonging to the timer B peripheral (TBCCR, TBCCTL and TBCTL) work
in the same way as the registers for timer A as discussed in the previous section. The only
difference in the configuration of the timer B peripheral compared to the configuration
of the timer A peripheral is the content of the threshold register and the timer mode.
The reason for a different timer mode is because a timer interval of 100ms is desirable
to time the main loop that is part of the OBC application layer software. Since a timer
interval of 100ms is greater than 65ms, the timer B peripheral must be configured to
operate in ‘up/down mode’, since this provides a twice as long timer interval compared
with the ‘up mode’ with a maximum of about 131ms.

The timer B peripheral will generate an interrupt every 100ms if the timer threshold
value is set to 50000 and the timer mode is in ‘up/down mode’ (as computed in Sec-
tion . In order to do this, the two bits in the MCx field in the TBCTL register
must be set to 1 and 0 (bit 5 and 4 in the TBCTL register respectively).

5.1. SERVICE LAYER SOFTWARE 91

5.1.2.3 Interrupt routines

When a timer peripheral generates an interrupt, the corresponding interrupt routine
will be entered. The interrupt routine that belongs to the timer A peripheral sets a
flag and clears the CCIE bit in the TACCTL register such that the timer is disabled
and will not continue with counting and generating interrupts. The flag that is being
set in this interrupt routine is used by the I?C service layer software in order to detect
whether or not a time-out on the I?C bus has occurred.

The interrupt routine that corresponds to the timer B peripheral is more com-
plex compared to the one of timer A. It does not need to disable the timer B peripheral
because the timer must run continuously. The complexity lies in the different flags that
must be set in the interrupt routine. The main loop polls for the different flags such
that exact timing can be achieved in order to fetch the housekeeping and payload data
from the various subsystems at the right time.

5.1.3 Flash Memory Controller

The flash memory controller of the MSP430F1611 is driven by three 16-bit registers:
FCTL1, FCTL2 and FCTL3. The higher byte of all the three registers is a security
byte that always must have a value of 0xA5 when data is written to the register. When
data different than 0xA5XX is written to one of the 16-bit registers, the flash memory
controller generates a PUC that immediately resets the microcontroller [28]. From Sec-
tion [4.3.3] it is already known that the flash module must consist of 4 service routines:
configuring and initializing the flash memory timing generator (Section , reading

from the flash memory (Section |5.1.3.2)), writing to the flash memory (Section [5.1.3.3)
and erasing a segment in the flash memory (Section [5.1.3.4)).

5.1.3.1 Initializing the flash timing generator

Setting op the flash memory controller consists of initializing the flash memory timing
generator. The flash memory timing generator controls the data rate on which data is
read from and written to flash memory. It must operate in the frequency range from
257kHz to 476kHz [I]. It is up to the software engineer to select a proper input clock
source and flash controller clock divider such that the desired operating frequency of the
flash memory timing generator is within the specified frequency range. Configuration of
the flash timer generator is done through the FCTL2 register that is shown in Figure[5.5

15 14 13 12 " 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

FSSELx FNx

Figure 5.5: The FCTL2 register that is used to initialize the flash timing generator

92 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

As already mentioned, the higher byte of the 16-bt FCTL2 register must be written
with the value 0xA5. The lower byte of the register contains 2 fields: the 2-bits wide
FSSELx field and the 6-bits wide FNx field. The 2-bits wide FSSELx field is used to
select the clock source input. For the OBC this must be an 8MHz input so the main clock
(MCLK) or sub-main clock (SMCLK) must be used (see Section [£.3.1)). The following
binary values for the FSSELx field will select the following clock source inputs:

e 00 ACLK
e 01 MCLK
e 10 SMCLK
e 11 SMCLK

Since MCLK or SMCLK must be used, the FSSELx field must be set to 01, 10 or 11.
The implementation for the OBC uses MCLK so the 2-bit wide FSSELx field contains
the corresponding bit configurations for MCLK as given above.

The 6-bit wide FNx field configures the flash memory controller clock divider. It
must be properly set such that the 8MHz MCLK source input is divided to a frequency
that is in the range from 257kHz to 476kHz. The divisor value will be FNx + 1 [28], so
a clock division factor between 1 and 64 can be configured. For the OBC, bits 4, 1 and
0 are set high. This means that the FNx field is loaded with the value 19, resulting in a
clock divider value of 20. With the 8MHz MCLK input this will result in a flash timing
generator frequency of 400kHz, which is safely within the specified frequency range. The
above explained configuration results in a FCTL2 register content value of 0xA553 in
hexadecimal.

5.1.3.2 Reading from flash memory

The most simple flash memory operation on the MSP430F1611 microcontroller is reading
from flash memory. Since the flash memory controller is memory mapped, no registers of
the flash memory controller peripheral needs to be configured in order to read data from
the flash memory. By letting a pointer point to the flash memory base address where
the data is stored, the content of the flash memory can easily be copied to a volatile
memory space in the microcontroller its RAM using memcpy.

5.1.3.3 Writing to flash memory

The FCTL1 and FCTL3 registers are used to write data to flash memory and to erase a
segment of the flash memory (Section . Before writing data to the flash memory,
global interrupts must be disabled since the flash memory controller must not be interrupt
while it is writing to the flash memory [28]. Without global interrupts disabled, the flash
memory controller may not write data correctly to the flash memory because it may
get interrupted by the CPU when a higher priority peripheral interrupts the processor.
After the writing process, global interrupts can safely be re-enabled such that other
peripherals are again allowed to interrupt the CPU. The actual writing to the flash

5.1. SERVICE LAYER SOFTWARE 93

memory is controlled with the FCTL1 (see Figure and FCTL3 (see Figure
registers. In order to write to flash memory, the WRT bit of the FCTLI register is used
and the LOCK bit of the FCTL3 register.

15 14 13 12 11 10 9 8

FRKEY, Read as 096h
FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0

BLKWRT WRT Reserved Reserved Reserved MERAS ERASE Reserved

Figure 5.6: The FCTLI register that is used to control the flash memory controller

In order to write data to the flash memory, the WRT bit must first set high in the
FCTLI register. After setting this bit high, data can be written to the content of a
flash memory address. This can be realized by a pointer that points to the flash memory
address destination the byte must be written to. The flash memory controller will further
handle the actual writing to the flash memory. The FCTL1 register can be configured
for a flash memory write operation by loading it with the 16-bit value 0xA540.

15 14 13 12 1 10 9 8

FWKEYX, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

Reserved Reserved EMEX LOCK WAIT ACCVIFG KEYV BUSY

Figure 5.7: The FCTLS3 register that is used to control the flash memory controller

The LOCK bit in the FCTL3 register is used to lock the flash memory controller until
it is finished with writing the data to the flash memory. This ensures that no other flash
memory write or erase operation interferes with the current write operation. The LOCK
bit is automatically cleared by the flash memory controller when the data is written
to the flash memory. In order to lock the flash memory controller, the FCTL3 register
must be loaded with the value 0xA510. The final step in finishing the flash memory
write operation is to re-enable global interrupts such that the CPU can get interrupted
by other peripherals again like for instance one of the timers.

5.1.3.4 Erasing a segment

A flash memory segment can be erased by setting the ERASE bit field in the FCTL1
register high. After setting the ERASE bit high, an arbitrary byte within the desired
flash segment that must be erased has to be written with the value 0. Like writing to
flash memory, the LOCK bit in the FCTL3 register must be set to 1 in order to start
the erase process. The global interrupts must be disabled as well before a flash memory
segment is being erased.

94 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

5.1.4 Analog to Digital Converter

The ADC module that uses the 10-bit analog to digital converter to read out the
OBC temperature sensor can be configured through the 16-bits wide ADC10CTLO and
ADCI10CTLI1 registers. Besides these two control registers, there is a 16-bit register
named ADC10MEM that holds the 10-bit conversion result. In Section B.1.4.]it is de-
scribed how the ADC peripheral can be properly configured in order to read out the
MSP430F1611 microcontroller chip temperature. Section shows how the analog
to digital conversion can be started to obtain the temperature sensor read-out.

5.1.4.1 Configuring the A/D converter

The design of the ADC module in Section already describes that in order to read out
the microcontroller chip its temperature, the reference voltage and conversion channel
of the ADC peripheral must be properly configured. The ADC10CTLO register shown
in Figure [5.8]is used to set the reference voltage. In order to set up the reference voltage
for chip temperature read-out, the SREFx, REFON and REF2_5V fields in the register
must be loaded with correct configuration values.

15 14 13 12 " 10 9 8
SREFx ADC10SHTx ADC10SR REFOUT REFBURST
7 6 5 4 3 2 1 0
MsC REF2_5V REFON ADC100N ADC10IE ADC10IFG ENC ADC10SC

Figure 5.8: The ADC10CTLO register that is used to configure the A/D converter

From the temperature sensor transfer function shown in Figure [4.12] it can be seen
that the minimum output voltage of the temperature sensor is around 0.825V and the
maximum output voltage around 1.35V. In order to increase the precision of the read-
out, an appropriate reference voltage must be configured. For the MSP430F1611, a
voltage reference generator can be used that can generate a reference voltage of 1.5V or
2.5V. This can be set up by the REF2_5V field in the ADC10CTLO register (Figure .
Setting the REF2_5V bit low lets the voltage reference generator generate a reference
voltage of 1.5V, which is the appropriate reference voltage for the temperature sensor
read-out. Furthermore, in order to use the reference generator, the REFON bit must be
set to 1. The reference voltage must be selected by the 3-bit SREFx field which can be
one of the following 8 options:

e 000 Vpi =Vee and Vi = Vgg
e 001 Vg4 =Vgpry and Vi = Vgg
e 010 VR+ = VeREF+ and VR, = VSS

e (011 VR+ = VeREFJr and VR, = VSS

5.1. SERVICE LAYER SOFTWARE 95

e 100 Vgt =Vee and Vi = Viprp—/Verpr—

e 101 Vgt =Vgerpy and Vg = Vier_/Verer—
e 110 Vgt = Veggrt+ and Vr_ = Vipp_/Verprp—
e 111 Vpgy = Veggrt and Vr— = Vipp_/Verpr—

In order to use the voltage reference generated by the voltage reference generator,
V i+ must be set to Vrer4. Besides that, Vi_ must be set to Vgg which is in the case of
the OBC connected to ground and it is equal to 0V. This means that a measured voltage
of Vrer+, which is in this case set to 1.5V, will represent a digital conversion value of
210 _ 1 = 1023 and a measured voltage of 0V represents a digital conversion value of 0.
So the 3-bit SREFx field must be loaded with the binary value 001. As a final setting
for the ADC10CTLO register, the 10-bit ADC peripheral must be (interrupt) enabled so
the ADC100N, ADCIE and the ENC bits in the register must be set high. This results
in an ADC10CTLO register value of 0x203A.

15 14 13 12 1 10 9 8
INCHx SHSx ADC10DF ISSH
7 6 5 4 3 2 1 0
ADC10
ADC10DIVx ADC10SSELx CONSEQx BUSY

Figure 5.9: The ADC10CTL1 register that is used to configure the A/D converter

The ADC10CTL1 register shown in Figure [5.9] is used to select the input channel
that should be used by the A/D converter to perform the A/D conversion on. This input
channel selection is done by configuring the 4-bits wide INCHx field of the register. A
value of 1010 in binary selects the input channel to which the temperature sensor is
connected so the content of this register must be set to 0xA000. Configuring the A/D
converter should be done only once during boot time of the OBC.

5.1.4.2 Temperature sensor read-out

Now that the ADC peripheral is correctly configured, it can be used to perform conver-
sions in order to measure the ambient temperature of the MSP430F1611 microcontroller
chip. To start a conversion, the only thing that needs to be set is the ADC10SC
bit in the ADC10CTLO register. After setting this bit high, the A/D converter will
immediately perform an analog to digital conversion on input channel 10 to which the
internal temperature sensor is connected. The conversion should not take longer than
a few microseconds. Since the ADCI10IE bit is set high during the configuration of the
A/D converter, the A/D converter will generate an interrupt when the conversion is
done and the converted value is ready. The converted value is stored in the 16-bits wide
ADCI10MEM register that is shown in Figure [5.10

96 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

15 14 13 12 " 10 9 8

0 0 0 0 0 0 Conversion Results

7 6 5 4 3 2 1 0
Conversion Results

Figure 5.10: The ADC10MEM register that is used to store the A/D conversion result

As can be seen from the figure, the conversion result is stored in bits 9 to 0 and bits
15 to 10 are not used and have a fixed value of 0. Bit 9 is the most significant bit of the
conversion result and bit 0 the least significant bit. The conversion result is stored in a
local 16-bit wide variable and is corrected by the offset value that was determined during
the calibration process. Application layer software can in turn fetch the local variable
from the ADC server layer software module in which the offset corrected conversion
result is stored.

5.1.5 TI2C Controller

Because of the OBC redundancy requirement, the primary and secondary OBC can be
in an active or an inactive state. The OBC that is in the active state will control the
I?C bus and is by definition the I?C master. The inactive OBC will be an I?C slave
that only listens on the I2C bus in order to check whether or not the active OBC that
is I2C master is still alive and still sending out synchronization commands. When the
inactive OBC does not receive synchronization commands anymore for a certain amount
of time, the inactive OBC must become active and take over control of the I?C bus.
The take-over machanisms that handle OBC redundancy at the application layer level
are not part of this thesis. Only the I?C master and I?C slave service layer software for
the OBC is part of this thesis and some of the implementation details are given in this
Section. Section gives implementation details about the IC master driver and in
Section the implementation details about the I2C slave driver are discussed.

5.1.5.1 I2C Master

Basically, the I?C master service layer software consists of three functional blocks; con-
figuration of the I2C peripheral in master mode, initiating a write operation and write
data on the I?C bus and initiating a read operation and read data from the I2C bus. In
this section, a general description is given about the I?C master module implementation,
including the used registers and how they are configured.

During configuration of the I?C peripheral in master mode, the U0OCTL, I12CPSC,
12CSCLH, I2CSCLL and I2CTCTL registers must be configured properly. The 8-
bits wide UOCTL register is used to configure the Universal Serial Asynchronous Re-
ceiver/Transmitter (USART) into I2C mode. The register consists of 8 fields that are 1
bit wide each. The register, together with its fields, is shown in Figure [5.11

5.1. SERVICE LAYER SOFTWARE 97

7 6 5 4 3 2 1 0

RXDMAEN | TXDMAEN 12C XA LISTEN SYNC MST I2CEN

Figure 5.11: The UOCTL register that configures the MSP430F1611 USART peripheral

In order the configure the USART into I2C master mode, the 12C, SYNC, MST and
I2CEN bits must be set high. The 12C and I2CEN bits are obvious; they configure the
USART for I?C mode. The MST bit enables master mode so the USART knows it has
to generate the I2C clock pulses on the I?C clock line during an I?C transfer. The SYNC
bit must be set such that the USART goes into synchronous mode. This is needed since
the I2C protocol is synchronous. Consequently, the UOCTL register must be loaded with
the value 0x27.

The I2CTCTL register is used to initiate data transfers and select the clock source
input that drives the I2C peripheral. To configure the I2C peripheral, the clock source
should be selected by setting the 2-bits wide I2CSSELx field in the I2CTCTL register

(see Figure |5.12]).

7 6 5 4 3 2 1 0

I2CWORD I12CRM 12CSSELx 12CTRX 12CSTB 12CSTP 12CSTT

Figure 5.12: The I2CTCTL register that configures and drives the I>C' peripheral

The clock source input must be at least 10 times higher than the I?C bus frequency
[24] which operates at 100kHz, so the clock source input frequency must be at least
1MHz. The only two options to select are the ACLK and SMCLK clock sources, which
have a frequency of 4096kHz and 8MHz respectively. Therefore the SMCLK must be
selected. The SMCLK is selected by writing a binary value of 10 or 11 into the I2CSSELx
field in the I2CTCTL register.

The last thing that is needed to properly implement the I2C master service layer
software is configuring the I2CPSC, 12CSCLH and I2CSCLL registers. These registers
configure the I?C bus frequency and the clock high and clock low periods. The three
registers all consist of one big 8-bit field as shown in Figure [5.13

In order to have an I?C bus frequency of 100 kHz, the SCL high period and SCL low
period must both be set to 5 us. The period of the clock input signal is 125 ns and the
SCL high period will be equal to the following [28]:

f input

Without a clock input divider (meaning the I2CPSC register must be loaded with
value 0), finput Will be 8 MHz and Equation reduces to

Thigh = (I2CSCLH + 2) - 0.0000001255 (5.2)

98 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

7 6 5 4 3 2 1 0
I2CPSCx

7 6 5 4 3 2 1 0
12CSCLHx

7 6 5 4 3 2 1 0
I2CSCLLx

Figure 5.13: The I2CPSC, I2CSCLH and I2CSCLL registers that configure the bus speed

Which can be rewritten in order to solve for I2CSCLH:

Thigh
12CSCLH = ——9% 9 5.3
0.000000125s (5:3)

Since Thign must be 5 ps, the value that must be loaded into I2CSCLH equals 38
in decimal (0x26 in hexadecimal). Configuring the clock low time works the same as
configuring the clock high time. The clock high time and clock low time must both
equal to 5 us so the value that is just computed for I2CSCLH can be loaded in the
12CSCLL register as well. So the final register configurations for configuring the bus
frequency to 100 kHz become

12CPSC = 0x00;
12CSCLL = 0x26;
12CSCLH = 0x26;

A write or read operation can be initiated by the master by configuring the I2CSA,
I2CNDAT and I2CTCTL registers. The I2CSA register is a 16-bits wide register that
holds the 7-bit I2C address of the slave with which the master likes to communicate.
Furthermore, the I2CNDAT register is 8-bits wide and contains the number of bytes
that must be received or transmitted. The I2CNDAT register is used by the automatic
data byte counting feature of the MSP430F1611 microcontroller [28]. By loading the
number of bytes that must be received or transmitted, the I2C hardware peripheral will
further take care of acknowledging and setting the start and stop conditions at the right
time. One big disadvantage of this is that the I2CNDAT register is only 8-bits wide so
the transactions are limited to 255 bytes. On the Delfi-n3Xt satellite, no data transfers
larger than 255 bytes take place, so the automatic data byte counting feature can be
used, which is convenient and makes the implementation of the service layer software for
the I2C module less complex.

To configure the I?C peripheral for a write or read operation, the I2CTRX bit in the
I2CTCTL register (see Figure must be set properly. Setting this bit to 0 represents
a read operation and a 1 represents a write operation. Furthermore, to actually initiate
the transfer, the I2CSTT and I2CSTP bits of the I2CTCTL register must be set high.

5.1. SERVICE LAYER SOFTWARE 99

An example of a read transaction of 56 bytes from I?C slave address 0x48 is initiated as
follows:

12CSA = 0x48;

I2CNDAT = 56;

I2CTCTL &= I2CTRX;
I2CTCTL |= I2CSTT | I2CSTP;

In order to read a byte from the I?C bus or write a byte onto it, the OBC must wait
until the bus is ready for it. The [2CIFG register can be used to poll flags that indicate
whether or not a new data byte can be written to or read from the I?C bus. The I2CIFG
register is shown in Figure [5.14]

7 6 5 4 3 2 1 0

STTIFG GCIFG TXRDYIFG | RXRDYIFG ARDYIFG OAIFG NACKIFG ALIFG

Figure 5.14: The I2CIFG register that holds the interrupt status flags

During a read operation, the RXRDYIFG bit in the I2CIFG register must be polled.
This bit is set to 1 by the I2C hardware peripheral when a data byte is just received.
The data byte is stored in the I2CDRB register and the RXRDYIFG bit is cleared
automatically when the received data bytes is read from the 2CDRB register. By polling
the RXRDYIFG flag, the service layer software waits until a data byte is received by the
I2C hardware peripheral. The polling mechanism is demonstrated using the following
code snippet:

Timer_i2¢_timeout_start();

while((I2CIFG & RXRDYIFG) == 0) {

if(timer_i2c_timeout) {

12C_bus_health_status = [2C_BUS_ERROR_TIMEOUT;
break;

}
datali] = I2CDRB;

For a write operation, the same mechanisms applies. The only difference is that the
TXRDYIFG flag is polled and that data is written to the I2CDRB register.

To be sure that the polling will not completely stall the OBC software, a timer is used
that will set the timer_i2c_timeout flag high after a period of 30 ms after it is started.
The health status of the I2C bus is updated accordingly when a time-out has occured.

100 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

5.1.5.2 I2C Slave

Compared to the I?C master service layer software implementation, the implementation
for the I2C slave is much less complex. As already mentioned in the I2C peripheral
design section (see Section , I?C transfers from and to the slave device are handled
using interrupts.

Configuration of the I2C peripheral in slave mode is almost the same as that for the
I?C master. There are a few minor differences and they are described in this section.
First of all, to let the MSP430F1611 I2C peripheral operate in slave mode, the MST bit
in the UOCTL register must be 0. Second, the I?C slave implementation does not need
to configure the I2C bus speed including the prescaler and the clock high and low period.
This is something that is done by the master since the master always controls the I2C
bus. Besides these two differences, two other registers must be configured in order to
enable interrupts and set the I?C slave address. The first one discussed is the 16-bits
wide [2COA register and it is shown in Figure

15 14 13 12 1" 10 9 8
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
0 12COAX

Figure 5.15: The I2COA register that holds the 7-bit slave address

The I2COA register is 16-bits wide because the MSP430F1611 supports 10-bits I?C
addresses. For Delfi-n3Xt, 10-bit I2C addresses are not needed because an address space
of 7-bits wide is enough to address all the I?C devices that are present on the Delfi-n3Xt
I2C bus. Because the I?C peripheral is in 7-bits address mode, bits 15 to 7 of the register
can not be configured and they all have a fixed value of 0. The 7-bit slave address needs
to be loaded in the 7 least significant bits of the register.

7 6 5 4 3 2 1 0

STTIE GCIE TXRDYIE RXRDYIE ARDYIE OAIE NACKIE ALIE

Figure 5.16: The I2CIE register that enables or disables I*C' interrupts

The second register that is used is named 12CIE and using that 8-bits wide register
the different I?C interrupts can be enabled or disabled. The MSP430F1611 I2C interrupt
vector contains 8 different I2C interrupts. The I2CIE register is visualized in Figure
The 8 interrupt enable/disable bit fields represent the following:

e STTIE Start condition detected interrupt
e GCIE General call address interrupt

e TXRDYIE Transmitter ready interrupt

5.1. SERVICE LAYER SOFTWARE 101

RXRDYIE Receiver ready interrupt

ARDYIE Register access read interrupt
e OAIE Own address detected interrupt
e NACKIE No acknowledgement received interrupt

e ALIE Arbitration lost interrupt

For the Delfi-n3Xt OBC in slave mode, the STTIE, GCIE, TXRDYIE and RXRDYIE
interrupts are used so those corresponding bit fields must be set to 1 and the others to 0.
This is done by loading the 8-bit value OxF0 in the I2CIE register. The GCIE interrupt is
used to detect the I2C synchronization command that is send by the OBC that controls
the I?C bus, so it can be used to determine whether or not the I2C master is still working
properly. The STTIE interrupt will interrupt the CPU when a transaction to the slave
is initiated by the master and it is used to notice the slave device for an upcoming
transaction. The TXRDYIE interrupt happens when the transmitter is ready to send a
byte to the master and the RXRDYIE interrupt will happen when a data byte is received
from the master. A received byte must be fetched from the I2CDRB register. A byte
that must be transmitted has to be loaded into the I2CDRB register.

5.1.6 Watchdog

The watchdog timer is used to reset the OBC immediately (through a telecommand)
and to reset the OBC after 8 seconds if it is trapped in an undefined state. The func-
tionality for resetting the OBC directly is needed to reset the OBC by a telecommand
(see Section . The watchdog peripheral is configured through one 16-bit register
that is given in Figure

15 14 13 12 11 10 9 8

Read as 069h
WDTPW, must be written as 05Ah

7 6 5 4 3 2 1 0

WDTHOLD | WDTNMIES WDTNMI WDTTMSEL | WDTCNTCL | WDTSSEL WDTISx

Figure 5.17: The WDTCTL register that is used to configure the watchdog timer

Like the 16-bit flash memory registers, there is a security byte present in the
watchdog peripheral register as well (the higher byte of the 16-bit register). When the
register is read, the higher byte will always have a value of 0x69. Special care must be
taken while writing to the watchdog peripheral register. When a value is written to
the register, the upper byte must have a value of 0x5A, so one should always write a
value of 0xbAXX to the 16-bit register. When a different upper byte value than 0x5A is
written to the register, the watchdog peripheral will reset the OBC its microcontroller.
This property of the MSP430F1611 microcontroller is exploited in order to fulfil the
requirement for a direct OBC reset through a telecommand.

102 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

In order to make full use of the watchdog peripheral, functions for the following
functionalities were created:

e Configure the watchdog peripheral
e (lear the internal watchdog counter

e Reset the OBC

Section shows the implementation for the configuration of the 16-bit watchdog
peripheral register. How the internal counter of the watchdog peripheral can be cleared
is shown in Section In Section [5.1.6.9] it is shown how the OBC can be reset by
writing a specific value to the 16-bit watchdog peripheral register.

5.1.6.1 Watchdog peripheral configuration

Configuration of the watchdog peripheral is done by configuring the WDTSSEL (bits
2) and WDTISx (bits 1 and 0) bits of the WDTCTL register. As already explained in
Section the watchdog peripheral must have ACLK as clock source input and it
must use an input clock divider of 32768 in order to achieve an expiration time of 8
seconds.

From the MSP430F1611 datasheet [28], it is clear that the WDTSSEL bit must
be high in order the select ACLK as clock source input. The two WDTISx bits select
the watchdog timer interval and they must both be set to 0 in order to select an
input clock divider of 32768. This translates into the following two C statements that
configure the watchdog peripheral:

e WDTCTL |= 0x5A04;
e WDTCTL &= 0x5AFC;

The first statement sets the WDTSSEL bit high such that the watchdog peripheral
will use ACLK as clock source input. The second statement sets the WDTISx bits to 0
in order to configure the desired input clock divider.

5.1.6.2 Clearing the internal watchdog peripheral counter

The internal counter of the watchdog peripheral can easily be cleared by setting the
WDTCNTCL bit (bit 3 of the lower byte of the register) of the watchdog peripheral
register high. While the WDTCNTCL bit is set high, it must not be forgotten to write
the proper security value of 0x5A to the higher byte of the register at the same time.
Furthermore, the other bits in the lower byte of the register should not be affected
since they configure the watchdog peripheral. Clearing the internal watchdog peripheral
counter can be accomplished by an OR operation on the WDTCTL register as follows:
WDTCTL |= 0x5A08. This operation assures that the security byte is set to the right
value and that the WDTCNTCL bit is set high while the other fields in the register
remain untouched.

5.2. APPLICATION LAYER SOFTWARE 103

5.1.6.3 Reset the OBC

An OBC reset is as simple as violating the security policy of the WDTCTL register.
The reset can be performed by writing any value that is not equal to 0x5A to the higher
byte of the WDTCTL register value. In the OBC software the content of the WDTCTL
register is just set to 0, after which an OBC reset will be performed immediately.

5.2 Application Layer Software

In this section, only the most important implementations of the application layer software
are discussed. This section about the application layer software implementation describes
how the various modes make use of the before described service layer software to fulfil
various requirements. Section gives the implementation description about the boot
mode. The delay mode that may be executed before solar panel and antenna deployment
is described in Section[5.2.2]and the deployment mode is described in Section[5.2.3] Most
of the time, the OBC will be in the main mode. The implementation of the main mode
is discussed in Section When the I2C bus got stuck, the I2C recovery mode is
executed. The implementation details of the I?C recovery mode are given in Section

5.2.1 Boot Mode

When the OBC becomes active for the first time because power becomes available or
because of an OBC reset, the boot mode is entered first. In Section [5.2.1.1|is shown with
which service layer function calls the hardware peripherals are initialized and configured.
The volatile variables will be initialized to their hard-coded default values. The volatile
variables initialization is not further described in detail here. The implementation on
incrementing the encoded boot counter is given in Section [5.2.1.2 Furthermore, in
Section [5.2.1.3] it is shown how subsystems are configured during boot time. Finally,
in Section an implementation description on making a transition from the boot
mode to another mode is given.

5.2.1.1 Hardware Peripheral Configurations

In the application layer software, configuring the hardware peripherals is not a difficult
task because it is already provided by the service layer software described in the previous
Section. The required service layer modules are the clock source module, watchdog
module, ETC module, ADC module, flash memory module, I?C module, timers module
and interrupts module. The ETC module provides routines that drive the elapsed time
counter. It is designed and implemented by another engineer so the detailed description
about it is not part of this thesis. Furthermore, global interrupts must be enabled since
some of the hardware peripherals (the timers and the ADC) are interrupt driven.

The following C code snippet shows the necessary service layer function calls in
the proper order:

104 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

Clocks_configure();
Watchdog_configure();
ETC_configure();

ADC _configure();
Flash_configure();
12C_configure_master();
Timer_main_loop_configure();
Timer_i2¢c_timeout_configure();
Interrupts_enable();

Obviously, the order of execution is important. Configuration of the clock sys-
tem and watchdog timer stabilize the system and prevent the OBC from reboot-
ing continuously so these service layer function calls must be executed first. The
Timer_main_loop_configure() service layer function call configures Timer B and the
Timer_i2c_timeout_configure() function call configures Timer A.

5.2.1.2 Boot Counter

During the boot mode, the 33-byte encoded boot counter must be read from flash mem-
ory, incremented by 1 and written back to flash memory. In this section it is described
how the encoded boot counter is implemented. The sequence starts with reading the
boot counter from flash memory and decode it into a 2-byte wide unsigned integer. The
following C code snippet is responsible for doing this:

unsigned char i, j;
unsigned int obc_boot_counter = 0;
unsigned char obc_encoded_boot_counter|[33];

flash_read(BOOT_-COUNTER_ADDRESS, 33, obc_encoded_boot_counter);

for(i=0;1 < 32; i++) {

for(j =0;j < & j++) {
obc_boot_counter += ((obc_encoded_boot_counter[i]&(1<<j))==0);

}

obc_boot_counter += ((~obc_encoded_boot_counter[32])<<8);

First the 33-byte encoded boot counter is read from flash memory by calling the
flash memory service layer function named flash_read() that reads data from flash
memory. After doing this, all the bits of the first 32 bytes of the encoded boot counter
are scanned in order to count how many bits are set to 0. The number of multiples of
256 are stored in byte 33 of the encoded boot counter and as already explained during
the design in Section the content of the byte is inverted and must be multiplied
by 256.

5.2. APPLICATION LAYER SOFTWARE 105

In order to increment and write the boot counter back to flash memory, it was
easiest to increment the encoded boot counter directly by changing the very first bit
that is set to 1 in the first 32 bytes of the encoded boot counter to 0. When all the
256 bits in the first 32 bytes of the encoded boot counter are already set to 0, the flash
segment in which the encoded boot counter is stored must be erased and byte 33 must
be decremented by 1 (since the content of that byte is inverted). After doing this, all
the first 32 bytes must be set to OxFF (all the bits set to 1) and the 33 byte encoded
boot counter must be written to flash memory.

for(i=10;i<32i4+=1){

for(j=8;j>0;j-=1) {
if(obc_encoded_boot_counter[i]&(1<<(j-1))) {
obc_encoded_boot_counter[i] &= ~(1<<(j-1));
flash_write(BOOT_COUNTER_ADDRESS,33,0bc_encoded_boot_counter);

return;

}

The code snippet given above scans the first 32 bytes of the encoded boot counter
for the first bit that is set to 1. When a bit with a logical value of 1 is found, the bit is
set to 0 and the incremented encoded boot counter is written to flash memory. When
no bit with logical value 1 is found in the first 32 bytes of the encoded boot counter, the
code snippet shown below is executed.

fori=0;1<32;i4+=1){
obc_encoded_boot_counter[i] = 0xFF;

}

obc_encoded_boot_counter[32] -= 1;
flash_erase(BOOT_COUNTER_ADDRESS);
flash_write(BOOT_COUNTER_ADDRESS, 33, obc_encoded_boot_counter);

When no bit with a logical value of 1 is found in the first 32 bytes of the encoded
boot counter, byte 33 of the encoded boot counter (index 32 in the encoded boot counter
array) is decremented by 1. Besides that, all the bits in te first 32 bytes must be set
to 1. The incremented encoded boot counter can not be successfully written to flash
memory without a flash erase cycle (since one or more bits are changed from 0 to 1).
Therefore, before the encoded boot counter is written to flash memory, the flash memory
segment in which the encoded boot counter value is stored must be erased first by the
flash_erase() function call to the flash peripheral service layer module.

106 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

5.2.1.3 Subsystem Configuration

In Section it is already explained that the EPS, CDHS, PTRX, STX, MechS
and SDM subsystems are turned on at boot time. The MechS consists of a redundant
deployment board (DAB1 and DAB2) and the primary deployment board (DAB1) must
be turned on during boot time. At boot time, the STX is not allowed to transmit data.
Furthermore the PTRX must be configured such that it will operate at a data rate
of 2400 bits/s and sends out flags through the transmitter continuously [30]. This is
performed by the following application layer function calls:

EPS1_on();
DAB1_on();
SDM_on();
STX on();
PTRX on();
STX _tx_off();

PTRX _set_to_callsign();

PTRX _set_from_callsign();

PTRX _set_transmitter_bitrate(PTRX_BITRATE_2400);

PTRX set_transmitter_idle_state(PTRX_TRANSMITTER_IDLE_ON);
PTRX set_transmitter_output_mode(PTRX_TRANSMITTER NOMINAL);

The application layer functions shown in the code snippet above will intern use the
I2C service layer software to write data to the DSSB microcontrollers of the EPSI,
DABI1, SDM, STX, PTRX and STX to turn on those subsystems. The configuration of
the PTRX is done by sending data bytes over the I?C bus to the PTRX its ITC and
IMC microcontrollers [30].

5.2.1.4 Mode Switching

After executing the actual boot mode blocks, the OBC must switch from the boot mode
to one of the other modes. It can switch to the test mode, delay mode, deployment mode
or main mode. Since it was decided that no test mode had to be implemented because
of time constraints, the test mode will actually never get entered since it will never be
present on the I?C bus. The following C code snippet shows the switching logic that
decides to which mode must be switched.

if(OBC_test_interface_present()) {
OBC_set_operational mode(OPERATIONAL_MODE_TEST);

5.2. APPLICATION LAYER SOFTWARE 107

else if(OBC_deployment_delay needed()) {
OBC_set_operational mode(OPERATIONAL_MODE _DELAY);

}

else if(OBC_deployment_needed()) {
OBC_set_operational mode(OPERATIONAL_MODE_DEPLOYMENT);

}

else {

OBC_set_operational mode(OPERATIONAL_MODE_MAIN);
}

As already explained, the test mode will never get entered so the
OBC_test_interface_present() function is just a stub that always returns false.
The OBC_deployment_delay_needed() function determines whether or not a delay for
deployment is needed. It does this by reading the deployment delay counter from
flash memory using the flash memory read data service layer function call described in
Section The delay mode will be entered when the deployment delay counter is
larger than 0, so the C code snippet that performs this check is as easy as the following;:

return (deployment_delay_counter > 0);

For entering the deployment mode, something similar takes place. The 16-bit vector
in flash memory that holds one bit for each deployment device that indicated whether or
not deployment has been attempted for the device can be used to check whether or not
deployment is needed. When deployment is not needed, all the deployment device are
already attempted to deploy so the 16-bit vector contains all ones. Hence, the following C
code snippet implements the OBC_deployment_needed() function and determines whether
or not deployment is needed:

return (deployment_attempted_vector != 0xFF);

Finally, when none of the above transitions is needed, the main mode will be entered.
As can be seen, mode switching is done by setting a global variable that holds the current
operational mode of the satellite. Depending on the content of this global variable, the
content of the modes is executed or not.

5.2.2 Delay Mode

Initially, before Delfi-n3X#t is being launched, the delay counter in flash memory will be
set to 600 seconds (10 minutes). When Delfi-n3Xt is just launched and coming out of
the POD, the delay counter is read from flash memory and it is being used to create a
delay before the satellite its operational mode is switched to the deployment mode. For

108 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

counting and decrementing the delay counter, the main loop can be used such that the
delay counter can be decremented by 2 every iteration of the main loop.

To be sure that the OBC will not get stuck for a long period of time in the de-
lay mode because of OBC resets that may occur within 10 minutes, every minute the
delay counter is written to flash memory. The modulo operator is used to check whether
or not a minute has been elapsed:

if((delay_counter % 60) == 0) {

flash_erase(DELAY_COUNTER_ADDRESS);
flash_write(DELAY_COUNTER_ADDRESS, 2, delay_counter);

}

Suppose the OBC is being reset after 2 minutes and 30 seconds in delay mode. The
delay counter in flash memory will then have a value of 480. The delay mode will again
be entered after the boot mode, but the delay mode will now last for 8 minutes. When
the OBC continuously resets within one minute after boot, the delay counter can be set
to 0 by a telecommand after a while to ensure that the delay mode will not be entered
anymore and the OBC can go on with the deployment mode.

if(delay_counter == 0) {
OBC_set_operational mode(OPERATIONAL_MODE_DEPLOYMENT);

}

Once the delay counter reaches the value of 0, a transition will be made from the
delay mode to the deployment mode.

5.2.3 Deployment Mode

In the deployment mode, the OBC will send the appropriate commands to the DAB1
and DAB2 subsystems such that they will deploy the antennas and/or solar panels by
burning the primary and/or secondary resistors. As explained in Section there
are 4 antennas and 4 solar panels that may be deployed and each one of them must be
deployed for 16 seconds. Only one deployment device is allowed to be deployed at a
time so the OBC must take this into account while commanding the DAB1 and DAB2
to deploy an antenna or solar panel.

Since the main loop has an interval of 2 seconds and a deployment device must have
a deployment time of 16 seconds, the main loop can be used as a timing reference in
order to command the DAB1 and DAB2 to deploy an antenna or solar panel. After 8
main loop executions, the OBC can go on with commanding the DAB1 or DAB2 to
deploy the next deployment device.

The OBC holds a 16-bit vector that holds information about whether or not de-
ployment has been attempted for a device using the primary and secondary resistor.

5.2. APPLICATION LAYER SOFTWARE 109

The burning of the primary resistors are done by the DAB1 and the burning of the
secondary resistors by the DAB2. The vector has the following outline:

bis deploy antenna Y- with secondary resistor

bi4 deploy antenna Y+ with secondary resistor
bi3 deploy antenna X- with secondary resistor

bi2 deploy antenna X+ with secondary resistor
bi1 deploy solar panel Y- with secondary resistor
bip deploy solar panel Y+ with secondary resistor
bg deploy solar panel X- with secondary resistor
bs deploy solar panel X+ with secondary resistor
b7 deploy antenna Y- with primary resistor

be deploy antenna Y+ with primary resistor

bs deploy antenna X- with primary resistor

by deploy antenna X+ with primary resistor

bs deploy solar panel Y- with primary resistor

) deploy solar panel Y+ with primary resistor
by deploy solar panel X- with primary resistor

bo deploy solar panel X+ with primary resistor

where b1 to by represents bit 15 to bit 0 of the 16-bit vector. The deployment mode
will walk through the whole vector from bit 0 to bit 15, so the deployment mode will first
check whether or not deployment has already been attempted before for the solar panel
on the X+ side of the satellite using the primary resistor. A high bit in the 16-bit vector
means that deployment has already been attempted for the corresponding deployment
device, and a low bit means that deployment was not attempted yet. Below, a code
snippet is shown that checks whether or not a deployment device should be deployed.

if(OBC_deployment_current_device_needed()) {

OBC_start_deploy_current_device();

}

The OBC_deployment_current_device_needed() function does a check on the 16-bit
vector with a mask that corresponds to the current device that must be checked for
deployment. For instance, the mask for deployment of solar panel X+ using the primary
resistor is set to 0x01, solar panel X- with primary resistor to 0x02, solar panel Y+ with
primary resistor to 0x04 and so on until the mask for deployment of antenna Y- with
the secondary resistor which has a value of 0x80. The check can now be performed by a
simple bitwise AND operation between the 16-bit vector and the mask of the deployment
device. If the outcome of the check equals 0 it means that no deployment is attempted
before, so the OBC will send the appropriate command to the DAB1 or DAB2 such that
the deployment device will get deployed by burning the primary or secondary resistor (the
OBC_start_deploy_current_device() function handles this). After sending the command
to DAB1 or DAB2, the corresponding bit in the 16-bits wide vector will be set high and
the vector is written to flash memory in order to save the settings permanently.

110 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

5.2.4 Main Mode

In this Section, various parts of the main mode are briefly discussed in terms of imple-
mentation. In Section the implementation of the main loop is discussed. The
implementation of OBC specific data that is put in the telemetry frame is discussed in
Section and Section describes the implementation of the data acquisition.
Finally, in Section the implementation details of the telecommand execution is
given.

5.2.4.1 Main Loop

Basically, the main loop is the mechanism that provides timing and execution of the
functional blocks shown in Figure It is an iterative function that is always executed
until a mode switch is performed from the main mode to a different mode. The code
snippet given below implements the content of the main loop. Mode switching may
be caused by telecommands (switch to delay mode or directly to deployment mode) or
failures on the I?C bus (switch to the I2C recovery mode).

OBC _wait_for_main_loop_execution();
OBC_send_i2c_sync_command();
OBC_clear_watchdog_timer();
OBC_check_telecommand();

OBC _check_initial_conditions();

OBC _clear_telemetry_data();
OBC_produce_frame_tag_data();
OBC_acquire_first_telemetry_frame();
OBC_send_first_telemetry_frame();
OBC_acquire_second_telemetry_frame();
OBC_send_second_telemetry_frame();
OBC_check_bus_status();

The function names given in the code snippet already describe which functional blocks
they implement. Normally, the code will always be executed within 2 seconds and will
wait a significant amount of time until the 2 seconds have been elapsed. Another wait
condition can be found in the OBC_acquire_second_telemetry_frame() function, since the
telemetry data that belongs to the second telemetry frame must be fetched in the second
second of the main loop.

The OBC._clear_watchdog_timer() is an important function since it clears the inter-
nal counter of the watchdog timer. When this is not done within 8 seconds since the
previous watchdog timer clear, the OBC will reset itself. If the OBC got stuck some-
where else in the code, the OBC_clear_watchdog_timer() function will not get executed
which results in an OBC reset that probably solves the problem. Furthermore, the
OBC_check_telecommand() function checks whether or not a telecommand is present in
one of the radios and fetches and executes the telecommand if it is present. More about
the implementation of this function is given in Section Another important de-
tail is the clearing of all the telemetry data that was acquired during the previous loop

5.2. APPLICATION LAYER SOFTWARE 111

execution. When a time-out occurs on the I2C bus during data acquisition for a specific
subsystem, no telemetry data is overwritten so the telemetry data of the previous loop re-
mains in the telemetry data vector of that specific subsystem. To be sure no telemtry data
of the previous loop is present in the subsystem telemetry data vectors, all the vectors
are cleared such that they are filled with all zeros. Finally, the OBC_check_bus_status()
function checks whether or not a failure on the bus happend such that communication
is not possible anymore (i.e. the SCL line or SDA line is pulled low). If this is the case
the function will let the OBC switch to the I2C recovery mode.

5.2.4.2 OBC Telemetry Data

In Section it is shown how the OBC telemetry data is obtained. As already given
in the design section on the OBC telemetry data, the OBC telemetry data consists of the
OBC frame tag data and the OBC housekeeping data. The 10 bytes wide OBC frame
tag data vector is produced by shifting bytes into it, as shown in the code snippet below.

unsigned long ETC _time = read ETC _time();

/* OBC tag for the first telemetry frame */
obc_tag_framel[0] = (ETC_time >> 24);

obc_tag_framel[l
obc_tag_framel[2
obc_tag_framel[3
obc_tag_framel[4
obc_tag_framel[5
obc_tag_framel[6
obc_tag_framel[7
obc_tag_framel[8
obc_tag_framel[9

[

]
]
|
]
]
]
]
]
]
]

(ETC_time >> 16);
(ETC_time >> 8);
(ETC_time >> 0);
(obc_boot_counter >> 8);
(obc_boot_counter >> 0);
(obc_frame_counter >> 24);
(obc_frame_counter >> 16);
(obc_frame_counter >> 8);
(obc_frame_counter >> 0) & 0xFE;

obc_tag_framel[9] |= OBC_.TM_FRAME]1_ID;

/* OBC tag for the second telemetry frame */

obc_tag_frame2[0] =

obc_tag_frame2[1
obc_tag_frame2[2
obc_tag_frame2[3
obc_tag_frame2[4
obc_tag_frame2[5
obc_tag_frame2[6
obc_tag_frame2[7
obc_tag_frame2[8
obc_tag_frame2[9

[

]
]
]
]
]
]
]
]
]
]

(ETC_time >> 24);
(ETC_time >> 16);
(ETC_time >> 8);
(ETC_time >> 0);
(obc_boot_counter >> 8);
(obc_boot_counter >> 0);
(obc_frame_counter >> 24);
(obc_frame_counter >> 16);
(obc_frame_counter >> 8);
(obc_frame_counter >> 0) & OxFE;

obc_tag_frame2[9] |= OBC_.TM_FRAME2_ID;

obc_frame_counter += 2;

112 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

First of all, the 32-bits wide elapsed time counter is requested by calling the
read_ETC_time() function of the ETC module service layer software. The first 4 bytes
of the OBC frame tag data vector are used to store the elapsed time counter. This
is done by shifting the elapsed time counter bytes into the vector. The first byte in
the vector must contain the most significant byte of the elapsed time counter and the
fourth byte in the vector the least significant byte. The most significant byte is obtained
by shifting out the first 3 bytes of the elapsed time counter value such that the most
significant byte is alligned on the least significant byte position of the elapsed time
counter variable (ETC_time). The remaining bytes are shifted as well such that they are
properly alligned on the least significant byte position and can be easily inserted into
the vector. Something similar happens with the OBC boot counter and frame counter
contents, except that the OBC boot counter is only 2 bytes wide.

Besides the OBC frame tag data, the OBC will have to produce housekeeping
data. The housekeeping data contains OBC specific data, whereas the OBC frame tag
data contains more general data that applies to the health of the complete satellite.
The following part describes how the OBC housekeeping data is produced.

The 8-bit stuck bus counter is incremented when the OBC gets no acknowledgement
after sending out and I2C synchronization command. This incrementing is performed
when a transition is made to the I?C recovery mode. The 8-bit short circuit counter and
8-bit last short circuit perpetrator are actually still open action items for implementation.
At the moment of writing it was not clear yet how these features can be implemented.

The idea of the 11-bit subsystem mode settings vector was that it holds a bit for each
subsystem such that the vector provides information about whether or not a subsystem
should be powered on. Later on during the project it was decided that this is shifted to
the initial condition checks, which is not part of this thesis.

The OBC temperature is simply obtained by performing a function call to the ADC
service layer module that starts the A/D conversion and returns the 8 most significant
bits of the read-out. The content that represents the first 4 bytes of the last executed
telecommand is evident and is easily obtained by extracting the first 4 bytes from the
volatile variable that holds the last executed telecommand.

An interesting variable is the 31-bit communication status vector that indicates
whether or not communication is possible with a specific I2C device (this may be a
microcontroller are a specific device like a temperature sensor with an I12C interface).
Every I2C device on the bus corresponds with a bit position in the vector. The bit po-
sition in the vector can be set to either 1 or 0, depending whether communication with
the I2C device is possible or not.

Finally, the 1 bit that provides information about with which receiver (PTRX or
ITRX) the last telecommand was received is produced during the fetching of telecom-
mands. The PTRX will always be checked first, followed by the ITRX. If a telecommand
is present on the PTRX, the ITRX will not be checked anymore for a telecommand. If
a telecommand is not present on the PTRX, the ITRX will be checked for the presence
of a pending telecommand. Therefore the PTRX always has higher priority. When
both receivers have a telecommand pending, the telecommand present on the PTRX
will be fetched and executed during the current main loop execution and the telecom-

5.2. APPLICATION LAYER SOFTWARE 113

mand pending on the ITRX will be ignored (maybe in the next main loop execution the
pending telecommand on the ITRX will be fetched and executed if the PTRX has no
telecommand pending during the execution of that main loop).

5.2.4.3 Data Acquisition

The data acquisition is actually nothing more than payload data and housekeeping data
collection by the OBC. After the I?C synchronization command is sent, the OBC will
wait a while until it will perform I2C read operations with all the subsystems. On the
read request, the requested subsystem will send the payload data or housekeeping data
bytes to the OBC. The amount of bytes is known a priori so the OBC knows how many
bytes it must read from the various subsystems.

In Appendix [A] the directory listing of the OBC source code is given. On the appli-
cation layer software level, source files are present for every subsystem in the subsystems
directory. The source files for the subsystems consist of wrapper functions that make use
of function calls to the I2C service layer software in order to let the OBC communicate
with the other subsystems. After reception of the data from a subsystem, the data is
shifted into one large telemetry vector that is later on send to Earth through the active
transmitter.

5.2.4.4 Telecommand Execution

Regarding telecommanding, first the PTRX is checked for the presence of a telecom-
mand and if no telecommand is present the ITRX will be checked. Whether or not a
telecommand is present can be checked by sending a specific command byte over the I2C
bus to the radio. The radio will receive and interpret the byte, after which it sends back
the number of telecommands in the buffer. If the returned number is greater than 0,
the OBC can fetch the telecommand and send a command to the radio to remove the
telecommand that was just fetched in order to free up its buffer. Below, a code snippet
is shown that fetches a telecommand from the PTRX or ITRX.

unsigned char n;
unsigned char telecommand MAX_TELECOMMAND_LENGTH];
unsigned char telecommand_decrypted MAX_TELECOMMAND_LENGTH];

if(PTRX_get_number_of_telecommands() > 0) {

n = PTRX get_telecommand(telecommand);
PTRX _remove_telecommand|();

OBC_decrypt_telecommand(telecommand,telecommand_decrypted,n,0);
OBC_process_telecommand (telecommand_decrypted,n);

obc_last_receiver_id = ID_PTRX;

114 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

else if(ITRX _get_number_of_telecommands() > 0) {

n = ITRX get_telecommand(telecommand);
ITRX remove_telecommand();

OBC_decrypt_telecommand(telecommand,telecommand_decrypted,n,0);
OBC_process_telecommand (telecommand_decrypted,n);

obc_last_receiver_id = ID_ITRX;

}

Once a telecommand is fetched, the telecommand must be decrypted since it is being
uploaded in an encrypted form from the ground station to the satellite. The result from
the OBC_decrypt_telecommand() function is the decrytped telecommand that is ready
to be processed. The processing is done by the OBC_process_telecommand() function.
During the processing of the telecommand, the telecommand is actually being executed.
The 5 different types of telecommands (see Figure can be distinguished from one
another by inspecting the first byte of the telecommand. Depending on the value of the
first byte, the telecommand is executed in a certain way. The value of the first byte can
efficiently checked with the switch() mechanism.

5.2.5 I?C Recovery Mode

A loop structure is used to implement the I?C recovery mode, since the I?C recovery
mode has to send I>C synchronization commands continuously until the I?C bus becomes
healthy (i.e. none of the I?C lines are in a low state). Inside the continuous loop, the
OBC will execute an I2C service layer procedure that sends out the I?C synchronization
command and it will check the I?C bus health status flag in order to check whether or
not a transition back to the main mode is necessary. The C code snippet from the OBC
source code looks as follows:

do {
OBC_send_i2c_sync_command();

} while(I2C _bus_health_status = 12C_BUS_HEALTH_OK);

OBC_set_operational mode(OPERATIONAL_MODE_MAIN);

Once the bus status becomes healthy because of a free bus due to the I?C recovery
procedure given in Table[£.2] the do-while loop will be skipped and the operational mode
of the OBC is set to main mode such that a transition takes place from 12C recovery
mode to main mode.

5.3. SUMMARY 115

5.3 Summary

The implementation of the OBC service layer software and application layer software
was discussed in this chapter. For the service layer software, implementation details
were given on the level of MSP430F 1611 register configurations and for the application
layer software a more detailed description was given about logical decision making on
the higher software level.

The first section of the chapter gives descriptions about the service layer software im-
plementation. This includes descriptions about the clock source module, programmable
interval timers, flash memory controller, analog to digital converter, I?C controller and
the watchdog timer. The Sections show how the appropriate registers must be con-
figured in order to let the MSP430F1611 microcontroller chip execute actions that are
needed to fulfil several requirements. The clock source module implementation shows
how the internal clock structure of the MSP430F 1611 is configured such that the external
32768Hz and 8MHz crystals are used properly. The programmable interval timers are
implemented in such a way that they produce delays that are used by application layer
software as a timing reference for exact timing. The implementation that drives the flash
memory controller describes how the registers of that peripheral need to be configured
in order to configure the flash timing generator and initiate a flash read, write or erase
operation. The section shows as well that driving the I?C peripheral involves a lot of
registers. Compared to the I?C module, the A/D converter module and the watchdog
timer module are much less complicated.

In the second section, the application layer software is discussed. It is about the
implementation of the various modes in which Delfi-n3Xt may operate. In the section
about the boot mode, it is explained how the hardware peripherals are configured by ser-
vice layer function calls, how the encoded boot counter is implemented, how subsystems
are configured at boot time and how the mode switching logic is implemented at the end
of the boot mode. The implementation details of the delay mode and deployment mode
are given as well in this section. The sections about these 2 modes show how a delay is
introduced before the deployment mode, and how the OBC decides whether or not an
antenna or solar panel must be deployed by burning the primary or secondary resistor on
the DAB. The section about the main mode implementation gives the implementation
details about the main loop, OBC telemetry data creation, data acquisition procedure
and telecommand execution. Finally, the section gives implementation details about the
execution of the I2C recovery mode.

116 CHAPTER 5. ON-BOARD COMPUTER SOFTWARE IMPLEMENTATION

Conclusions

In this thesis, the design and implementation of the higher and lower level software for the
Delfi-n3Xt nanosatellite OBC are described and discussed. The software development
process for the Delfi-n3Xt OBC started with studying and analyzing the already existing
Delfi-n3Xt requirements and configuration items list [19]. Besides that, new requirements
were added to the existing list. During the design stage of the software development
process, the architecture of the OBC software and the individual software blocks that
implement the requirements were clearly defined. All the defined software blocks from the
design stage were implemented and unit tested during the implementation stage and test
stage respectively. The implementation stage iterated numerous times over the design
stage, which resulted in a fine-tuned and optimized software design for this specific
application. In the final stage of the OBC software development process, integration
tests with the other Delfi-n3Xt subsystems were performed. This final stage verified the
defined data flows and activity flows for the OBC and assessed the performance of the
overall satellite in terms of power consumptions and data transfers over the I?C bus.
This final stage is not described in detail in this thesis. A brief description about it is
given in Section

The remaining part of this chapter presents a summary of this thesis in Section
a compiled list of my personal contributions to the Delfi-n3Xt OBC software design
and implementation and the Delfi-n3Xt project in general (Section [6.2). Finally, in
Section a compiled list of future work that can be done in order to finalize and
improve the Delfi-n3Xt OBC software is presented.

6.1 Summary

Chapter [2 describes all the background information that is needed to understand the
core chapters of this thesis. It starts with a description about the Delfi-n3Xt mission,
including its objectives and advancements compared to the nanosatellite its predecessor:
the Delfi-C3. Besides a general description about the Delfi-n3Xt mission, a brief
introduction about the Delfi-n3Xt payloads and subsystems is given. There are two
payloads present: the micro propulsion payload and the tranceiver payload. Besides
these payloads, there are numerous subsystems that are needed for proper functioning
of the satellite. These subsystems include the communications subsystem, attitude de-
termination and control subsystem, electrical power subsystem, structures, mechanisms
and thermal control subsystems and the command and data handling subsystem. The
Delfi-n3Xt OBC is part of the latter mentioned subsystem. Furthermore, the chapter
gives a detailed description about I?C bus communication basics.

117

118 CHAPTER 6. CONCLUSIONS

An I?C bus failure analysis and performance analysis is given in Chapter The I?C
bus failure analysis describes the most likely failure scenarios that may occur on the
I?C bus and may influence the I?C bus health. The failure analysis includes failures
that may occur during an I12C start condition, slave request, read/write bit assertion,
slave acknowledgement, data byte transfer and stop condition. Besides these specific
failures, there are failures that may occur at any time during I?C communication, such
as a slave device that misses clock pulses and a device that pulls low the I2C clock
line or data line for a significant amount of time. The I?C bus performance analysis
shows results about the bit error rate that is measured in a representative setup for the
Delfi-n3Xt nanosatellite. Furthermore, a description is given on how the bit error rate
measurement is assessed and verified. The measured bit error rate turned out to be at
most 4-107Y, which comfortably meets the requirement of a bit error rate of at most 1076.

In Chapter a detailed design description about the Delfi-n3Xt OBC software is
given. This includes an analysis of the OBC software requirements, a detailed de-
scription about the software architecture of the OBC, and the design of service layer
software and application layer software. The OBC software requirements are listed and
rationalized in this chapter and they are split up into 5 different categories: subsystem
communication requirements, fault-tolerant software requirements, telecommanding
requirements, data acquisition requirements and monitoring requirements. Furthermore,
the description about the OBC software architecture gives an overview of the different
software layers that together form the complete set of OBC flight software. Besides this,
it is shown how the different software layers are split up into individual modules. The
OBC service layer software consists of the clock source module, programmable interval
timers module, flash memory controller module, analog to digital converter module,
I?C controller module and the watchdog timer module. The application layer of the
Delfi-n3Xt OBC software implements the 5 different modes of the OBC: the boot mode,
delay mode, deployment mode, main mode and I2C recovery mode. The design of these
modes, including the possible transitions between the different modes, is given in this
chapter as well.

The final chapter of this thesis gives details about the OBC software implemen-
tation (see Chapter . Like the chapter on the OBC software design, the chapter
about the OBC software implementation is split up into a part about the service
layer software and a part about the application layer software. The part about the
service layer software describes how the hardware peripherals of the MSP430F1611
microcontroller are driven by configuring the registers of the microcontroller. This is a
lower level implementation that is very close to the hardware. The implementation of
the application layer software is a higher level implementation that makes use of service
layer software function calls. The part about the application layer software gives a brief
description about its implementation. The detailed C implementation of the complete
OBC software can be examined by obtaining the OBC source code. The OBC source
code is part of this thesis as well.

6.2. CONTRIBUTIONS 119

6.2 Contributions

In this section, my personal main contributions to the Delfi-n3Xt project and this thesis
are described and discussed. Besides these main contributions, many side activities like
general project meetings and subsystem specific meetings took place that contributed
to the project as well. During these side activities, interesting discussions with other
engineers from different disciplines (e.g. electrical engineering, aerospace engineering)
resulted in a continuous and steep learning curve.

The following list describes my personal main contributions to the project:

e OBC software requirements analysis.

The already existing list of OBC software requirements was extensively analyzed.
This was needed in order to determine how long it would take to implement cer-
tain requirements such that an appropriate work package for this thesis could be
defined. However, the main reason for analyzing the OBC software requirements
was to derive a proper software design from the requirements. Analysis of the OBC
software requirements was also performed in order to discover missing requirements
that should be present in the requirements list. The result of this work package is
a comprehensive list of requirements including their rationales. Without this list
of requirments, no successful software design could have been established.

e I2C bus failure analysis.

The investigation of failures that may occur on the I?C bus was also a major
contribution to this thesis. This small research topic gave me the opportunity to
get familiar with the I?C bus protocol and learn more about the influences of the
space environment on satellites and in particular on their data and power buses.
The result of this failure analysis is an overview of possible failure cases, including
their causes, impacts and resolve steps. Some of the failures do not harm much
and can not be or do not need to be resolved. Other failures may have a larger
impact and must be resolved in order to ensure that the satellite is fault-tolerant.
With the results of this analysis in mind, an OBC software design could be made
that is able to handle the high impact failure cases.

e I’C bus performance analysis.
Another major contribution of this thesis is the I?C bus performance analysis that
was performed on Delfi-n3Xt engineering model test boards. At the time of the
performance evaluation, no real flight hardware was available yet. The performance
analysis proved that the bit error rate on the IC bus is lower than the specified bit
error rate value of 107%. Actually, with a representative performance test setup,
the measured bit error rate turned out to be 2 bit errors out of the 5 billion bits
that were transferred. In order to be sure that the bit error rate measurement
software was working correctly, a test setup was created with a switch on the SDA
or SCL line that can be used to short one of the I?C bus lines to the ground. By
shorting one of the I2C bus lines to the ground, bit errors could be introduced
intentionally such that the bit error rate measurement software could be verified.

120 CHAPTER 6. CONCLUSIONS

e OBC service layer software development.

The major part of this thesis was spent on the software development process of
the OBC service layer software. This included software design, implementation
and unit testing. The design stage of the OBC service layer software development
consumed most of the time. During the design phase of the service layer software,
all the needed peripherals of the MSP430F1611 microcontroller had to be studied
extensively. In order to do this, the appropriate sections of the MSP430F1611
datasheet were carefully read many times. This was needed for the service layer
implementation, since knowledge about how the registers of the microcontroller
had to be configured was required. Unit testing of the individual service layer
modules proved the functionalities of the individual modules.

e OBC application layer software development.

The software development process for the OBC application layer software consisted
of a design, implementation and unit test phase as well. In this thesis, a major part
of the application software is covered. The covered parts are the implementation of
the most important modes of the satellite and the implementation of the interfaces
with other subsystems. Some parts of the application layer software are not covered
in this thesis. These missing parts are designed and implemented by other engineers
or they still need to be implemented. The work packages that are still open are
listed in the next section.

e Integration testing.

The final major contribution is on integration testing. Integration testing con-
sisted of running different test cases that verify the functionality of the interfacing
between the OBC and the other subsystems. At the moment of finalizing this the-
sis, not all subsystems were ready and available yet. Integration testing has been
performed with the antenna and solar panel deployment subsystem, the S-band
transmitter, the SDM subsystem and the Delfi standard system bus microcon-
trollers.

6.3 Future Work

Unfortunately, during this thesis, there was not enough time to implement the complete
set of OBC software that is actually needed to successfully finalize the Delfi-n3Xt OBC
software. Besides that, some improvements can be made for future missions. These
future work packages are presented and described in this section.

¢ Implementation of the test mode.

Due to time constraints, it is decided that the test mode will not be implemented
for the Delfi-n3Xt nanosatellite. However, it may be implemented in Delfi-n3Xt
its successor. The test mode is especially useful when the complete satellite is
assembled and ready for launch and some final tests have to be performed. The
final tests can then be performed by an external test device (that is not part of
the satellite itself) through the test interface that connects the test device with the
satellite. Using the test interface the OBC can be commanded to perform tests.

6.3. FUTURE WORK 121

e Implementation of the subsystem initialization checks.

Probably the most important open item for the Delfi-n3Xt OBC software is the
subsystem initialization work package. The actual state of the subsystems on
board of the satellite must be consistent with the state in which they should be.
For example, when a subsystem is actually off while it is supposed to be turned
on, the OBC must decide whether or not the subsystem should be turned on. The
details about the initial condition check procedure are not further described in
detail since it is not part of this thesis.

¢ Implementation of CRC for non-volatile variables.

In order to provide a certain level of fault-tolerance in the storage of non-volatile
parameters, a CRC algorithm should be implemented such that the content of
the flash memory can be checked for errors. The CRC functionality should be
part of the flash memory service layer module and it should notify whether or
not a non-volatile parameter could be read from the flash memory correctly (i.e.
the non-volatile parameter does not contain consistency errors). In the case of
no consistency errors, the non-volatile parameter can be loaded and used by the
application layer software. When there is a consistency error, the application layer
software should load a default value which is hard-coded in the OBC software and
known to be safe.

e Improvements in the I?C recovery procedure.

In order to improve and complete the I?C recovery procedure, the DSSB microcon-
trollers should be equipped with external crystals such that they have the capability
of exact timing. During the hardware design of the DSSB circuitry, a microcon-
troller was selected that can only run on its internal RC-type oscillator. Exact
timing is necessary to implement detection of the I?C slave device that is respon-
sible for pulling low one of the I12C lines for a longer period of time. For exact
timing in space, an external crystal is needed mainly because of the occurrence of
large temperature differences in the space environment. With the given defined
reset procedure in Table and exact timing capabilities, the OBC can reliably
determine which microcontroller held one of the bus lines low. The microcontroller
its I?C address can then be send to Earth (part of the telemetry data) such that
engineers can hold statistics and take action through telecommands if it happens
more often. This improvement is definately something for a future mission, since
it needs a modification in the hardware design of the DSSB circuitry it can not be
applied to Delfi-n3Xt anymore.

122 CHAPTER 6. CONCLUSIONS

Bibliography

1]
[2]

[13]

[14]

MSP430x15x, MSP430x16x Microcontroller Notes, 2006.

L.S. Boersma, Verification and Testing of the Delfi-n3Xt Communications Subsys-
tem, Master’s thesis, Delft University of Technology, department of Space Systems
Engineering, 3 2012, p. 158.

J. Bouwmeester, Delfi Space Homepage: hitp://www.delfispace.nl.

J. Bouwmeester, S. de Jong, and G.T. Aalbers, Improved Command and Data
Handling System for the Delfi-n3Xt Nanosatellite, 59th International Astronauti-
cal Congress, Glasgow, Scotland, UK (2008), 9.

N.E. Cornejo, Fault Detection for the Delfi Nanosatellite Programme, Master’s the-
sis, Delft University of Technology, department of Computer Engineering, 7 2009,
p. 116.

N.E. Cornejo, J. Bouwmeester, and G.N. Gaydadjiev, Implementation of a Reliable
Data Bus for the Delfi Nanosatellite Programme, 7" TAA Symposium on Small
Satellite for Earth Observation (2009), 9.

N.E. Cornejo, L.S.Boersma, J. Bouwmeester, and P.M.C. Beckers, CDHS Delfi Stan-
dard System Bus, Tech. report, Delf University of Technology, department of Space
Systems Engineering.

Dallas Semiconductors, Parallel-Interface Elapsed Time Counter.

T.E. de Groot, Command and Data Handling Subsystem of Delfi-n3Xt, Master’s
thesis, Delft University of Technology, department of Space Systems Engineering, 2
2011, p. 34.

W.J. Ubbels et. al (ed.), The Delfi-C3 Student Nanosatellite - an Educational Test-
Bed for New Space Technology, Delft University of Technology, department of Space
Systems Engineering, 2006.

S.Y. Go, J. Bouwmeester, and G.F. Brouwer, Optimized Three-Unit Cubesat Struc-
ture for Delfi-n3Xt, 59" International Astronautical Congress (2008), 5.

R.J. Hamann and S. de Jong, Trade-off Procedure for Payload Selection in Univer-
sity Small Satellite Projects, Tech. report, Delft University of Technology, depart-
ment of Space Systems Engineering.

T. Hamoen, Delfi-n3Xt Basic Electronics and EMC Guidelines, Tech. report, Delf
University of Technology, department of Space Systems Engineering.

T. Hoevenaars, E. Dekens, and W. Edeling, ADCS Reaction Wheel System De-
sign, Tech. report, Delft University of Technology, department of Space Systems
Engineering.

123

124

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]
[24]
[25]

J. Bouwmeester, Delfi-n3Xt ISILaunch Interface Control Document, Tech. report,
Delft University of Technology, department of Space Systems Engineering, 2011.

J. Bouwmeester,, Delfi-n3Xt Power Budget, Tech. report, Delf University of Tech-
nology, department of Space Systems Engineering, 2012.

J. Bouwmeester, Delfi-n3Xt Thermal Budget, Tech. report, Delf University of Tech-
nology, department of Space Systems Engineering, 2012.

J.Bouwmeester, CDHS Software Interface Control Document, Tech. report, Delf
University of Technology, department of Space Systems Engineering, 2012.

J.Bouwmeester, Delfi-n3Xt Requirements and Configuration Items List, Tech. re-
port, Delft University of Technology, department of Space Systems Engineering,
2012.

G.W. Lebbink, ISIPOD Interface Specification, Tech. report, ISIS - Innovative So-
lutions in Space B.V., 2010.

C. Mller, L. Perez Lebbink, B. Zandbergen, G. Brouwer, R.Amini, D. Kajon, and
B. Sanders, Implementation of the T3PS in the Delfi-n3Xt satellite, 7" TAA sym-
posium on Small Satellites for Earth Observation (2009), 8.

D.E. Nielsen, J. Taylor, and W.A. Beech, AX.25 Link Access Protocol for Amateur
Packet Radio, Tech. report, Tucson Amateur Packet Radio Corporation.

A. Noroozi, OBC Microcontroller Selection, Tech. report, 10 2008.
NXP Semiconductors, I2C-bus specification and user manual.

J. Reijneveld, Design of the Attitude Determination and Control Algorithms for the
Delfi-n3Xt, Master’s thesis, Delft University of Technology, department of Space
Systems Engineering, 1 2012, p. 190.

F. Stelwagen, A Global Electrical Power Supply for the uSatellite Delfi-n3Xt, Tech.
report, Systematic Design B.V.

G. Swinerd, P. Fortescue, and J. Stark, Spacecraft Systems Engineering, Wiley, 2003.

Texas Instruments, MSP430x1xx Family User’s Guide, 2006.

R. van den Eikhoff, Design of a Universal Antenna Deployment System, Master’s
thesis, Delft University of Technology, department of Space Systems Engineering,
10 2006, p. 84.

W. Weggelaar, TRXUV UHF-VHF Tranceiver User Manual, ISIS - Innovative So-
lutions in Space B.V.

B. Wolters, Attitude Determination and Control Subsystem Magnetorquer Design,
Tech. report, 8 2009.

OBC Source Code Directory
Listing

OBC
— main.c

— bool.h

service_layer
—adc.c
—adc.h
— clocks.c
— clocks.h
—etc.c
—etc.h
— flash.c
— flash.h
—1i2c.c
—i2c.h
— interrupts.c
— interrupts.h
— timers.c
— timers.h
— watchdog.c
— watchdog.h

application_layer
— 12c_addresses.h
— flash_addresses.h

modes

— modes.h

— main_mode.c

— main_mode.h

— boot_mode.c

— boot_mode.h

— delay_mode.c

— delay_mode.h

— deployment_mode.c
— deployment_mode.h

125

126 APPENDIX A. OBC SOURCE CODE DIRECTORY LISTING

subsystems
— obc.c
—obc.h
—dab.c
— dab.h
— eps.c
—eps.h
— stx.c
— stx.h
—sdm.c
— sdm.h
— tes.c
— tcs.h
— adcs.c
— adcs.h
— dssb.c
— dssb.h
— ptrx.c
— ptrx.h
— itrx.c
—itrx.h
— t3ups.c
— t3ups.h

Curriculum Vitae

Alexander Franciscus Cornelis (Sander)
van den Berg was born in Noordwijkerhout,
The Netherlands on August 13th of 1985.

He received his Bachelor of Science degree in
Computer Science and Engineering at Delft
University of Technology in 2009. His Bache-
lor’s graduation project was on designing and
implementing an application that had to reduce
the complexity of adding individual software
modules to a project workspace. The application
resulted in a system that was less error prone and
significantly faster than the original procedure.

His growing interest in embedded systems, hardware designs and electronics
motivated him to do a Master of Science degree in Computer Engineering at Delft
University of Technology. He specialized himself in the field of (Real-Time) Embedded
Systems. During his studies he gained knowledge and experiences in the field of software
engineering and software architectures, parallel computing, computer architectures, em-
bedded system architectures and fault-tolerant software implementations. Furthermore,
he broadened his knowledge in the field of earth and planetary observation technology
and space systems engineering. Sander has strong affinity with basically anything that
has to do with space, electronics and computer hardware and software.

During his Master’s thesis Sander worked on the On-Board Computer of the
Delfi-n3Xt Nanosatellite. He was responsible for a major part of the design and
implementation of the fault-tolerant On-Board Computer software. On this project he
worked together with engineers from other disciplines. His contributions to the project
fulfill most of the requirements of the On-Board Computer software.

Parallel to his Master’s thesis work, Sander applied for a job as an (embedded)
software engineer at ISIS - Innovative Solutions in Space. At the moment of writing
he already works for 6 months for this company. At ISIS, Sander worked on the
development of (embedded) ground station software for satellite tracking. Besides that,
he is gaining even more experiences in the development of OBC flight software.

Besides his work and studies, Sander likes sports (fitness and running), travelling,
spending time with his family, exploring other countries and other cultures, reading,
programming, cars, astronomy, and his embedded systems hobby projects.

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Problem Statement
	Thesis Objectives
	Thesis Organization

	Background
	Delfi-n3Xt Mission
	Educational Objective
	Technology Demonstration Objective
	Nanosatellite Bus Development Objective
	Advancements

	Delfi-n3Xt Payloads and Subsystems
	Micro Propulsion Payload
	Tranceiver Payload
	Communications Subsystem
	Attitude Determination and Control Subsystem
	Electrical Power Subsystem
	Structure, Mechanisms and Thermal Control Subsystems
	Command and Data Handling Subsystem

	Delfi-n3Xt CDHS Hardware
	On-Board Computer Hardware
	Delfi Standard System Bus Hardware

	I2C Communication Basics
	Hardware Setup
	Start and Stop Conditions
	Write Operation
	Read Operation
	Sampling vs. Edge-Triggered Interrupts
	Data Transfer Example
	Clock Stretching
	Data Transfer Speeds

	Summary

	I2C Bus Analysis
	I2C Bus Failure Analysis
	Start Condition Failures
	Slave Request Failures
	Read/Write Bit Failures
	Slave Acknowledgement Failures
	Data Byte Transfer Failures
	Stop Condition Failures
	Slave Device Missing Clock Pulses
	Data Line Pulled Low Indefinitely
	Clock Line Pulled Low Indefinitely
	I2C Failures Summary

	I2C Bus Performance Analysis
	Bit Error Rate
	Test Setup
	Test Procedure
	Software Verification
	Performance Results

	Summary

	On-Board Computer Software Design
	OBC Software Requirements
	Subsystem Communication Requirements
	Fault-Tolerant Software Requirements
	Telecommanding Requirements
	Data Acquisition Requirements
	Monitoring Requirements

	OBC Software Architecture
	OBC Software Layers
	OBC Module Overview

	OBC Service Layer Software Design
	Clock Source Module
	Programmable Interval Timers
	Flash Memory Controller
	Analog to Digital Converter
	I2C Controller
	Watchdog Timer

	OBC Application Layer Software Design
	Boot Mode
	Delay Mode
	Deployment Mode
	Main Mode
	I2C Bus Recovery Mode

	Summary

	On-Board Computer Software Implementation
	Service Layer Software
	Clock Source Module
	Programmable Interval Timers
	Flash Memory Controller
	Analog to Digital Converter
	I2C Controller
	Watchdog

	Application Layer Software
	Boot Mode
	Delay Mode
	Deployment Mode
	Main Mode
	I2C Recovery Mode

	Summary

	Conclusions
	Summary
	Contributions
	Future Work

	Bibliography
	OBC Source Code Directory Listing

