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We incorporate innovations from the <bigwig> project into the Java language to provide high-
level features for Web service programming. The resulting language, JWIG, contains an advanced
session model and a flexible mechanism for dynamic construction of XML documents, in particular
XHTML. To support program development we provide a suite of program analyses that at compile
time verify for a given program that no runtime errors can occur while building documents or
receiving form input, and that all documents being shown are valid according to the document
type definition for XHTML 1.0.

We compare JWIG with Servlets and JSP which are widely used Web service development
platforms. Our implementation and evaluation of JWIG indicate that the language extensions
can simplify the program structure and that the analyses are sufficiently fast and precise to be
practically useful.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features; D.2.4 [Software Engineering]: Software/Program Verification

General Terms: Languages, Design, Verification

Additional Key Words and Phrases: Interactive Web services, data-flow analysis, XML

1. INTRODUCTION

The Java language is a natural choice for developing modern Web services. Its
built-in network support, strong security guarantees, concurrency control, and wide-
spread deployment in both browsers and servers, together with popular development
tools, make it relatively easy to create interactive Web services. In particular,
JavaServer Pages (JSP) [Sun Microsystems 2001b] and Servlets [Sun Microsystems
2001a], which are both Java-based technologies, have become immensely popular.
However, both JSP, Servlets, and many other similar and widely used technologies,
such as ASP, PHP, and CGI/Perl, suffer from some problematic shortcomings, as
we will argue in the following and try to address.

1.1 Sessions and Web Pages

In general, JSP, Servlets, and related approaches provide only low-level solutions
to two central aspects of Web service design: sessions and dynamic construction of
Web pages.

A session is conceptually a sequential thread on the server that has local data,
may access data shared with other threads, and can perform several interactions
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with a client. With standard technologies, sessions must be encoded by hand,
which is tedious and error-prone. More significantly, it is difficult to understand
the control-flow of an entire service from the program source since the interactions
between the client and the server are distributed among several seemingly unrelated
code fragments. This makes maintenance harder for the programmer if the service
has a complicated control-flow. Also, it prevents compilers from getting a global
view of the code to perform whole-service program analyses.

The dynamic construction of Web pages is typically achieved by print statements
that piece by piece construct HTML fragments from text strings. Java is a general-
purpose language with no inherent knowledge of HTML, so there are no compile-
time guarantees that the resulting documents are valid HTML. For static pages,
it is easy to verify validity [Oskoboiny 2001], but for pages that are dynamically
generated with a full programming language, the problem is in general undecidable.
Not even the much simpler property of being well-formed can be guaranteed in
this way. Instead of using string concatenation, document fragments may be built
in a more controlled manner with libraries of tree constructor functions. This
automatically ensures well-formedness, but it is more tedious to use and the problem
of guaranteeing validity is still not solved.

The inability to automatically extract the control-flow of the sessions in a service
raises another problem. Typically, the dynamically generated HTML pages contain
input forms allowing the client to submit information back to the server. However,
the HTML page with the form is constructed by one piece of the service code, while
a different piece takes care of receiving the form input. These two pieces must agree
on the input fields that are transmitted, but when the control-flow is unknown to
the compiler, this property cannot be statically checked. Thorough and expensive
runtime testing is then required, and that still cannot give any guarantees.

The <bigwig> language [Brabrand et al. 2002] is a research language designed to
overcome these problems. Its core is a strongly typed C-like language. On top is
a high-level notion of sessions where client interactions resemble remote procedure
calls such that the control-flow is explicit in the source code [Brabrand et al. 1999].
Also, XHTML [Pemberton et al. 2000], the XML version of HTML, is a built-in
data type with operations for dynamically constructing documents. The values
of this data type are well-formed XHTML fragments which may contain “named
gaps”. Such fragments can be combined with a special “plug” operation which
inserts one fragment into a gap in another fragment. This proves to be a highly
flexible but controlled way of building documents.

In <bigwig>, the client interactions and the dynamic document construction are
checked at compile time using a specialized type system [Sandholm and Schwartzbach
2000] and a program analysis [Brabrand et al. 2001] performing a conservative ap-
proximation of the program behavior to attack the problems mentioned above.
More specifically, <bigwig> services are verified at compile time to ensure that (1)
a plug operation always finds a gap with the specified name in the given fragment,
(2) the code that receives form input is presented with the expected fields, and (3)
only valid XHTML 1.0 is ever sent to the clients.
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1.2 Contributions

In this paper we obtain similar benefits for Java applications. Our specific contri-
butions are to show the following:

—how the session model and the dynamic document model of <bigwig> can be
integrated smoothly into Java;

—how the type system from [Sandholm and Schwartzbach 2000] and the program
analysis from [Brabrand et al. 2001] can be combined, generalized, and applied
to Java to provide the strong static guarantees known from <bigwig> in a more
powerful computational model; and

—how our service model subsumes and extends both the Servlet style and the JSP
style of defining Web services.

The main weaknesses of <bigwig> is its core language and built-in libraries, which
increasingly have shown to be inadequate when developing complex Web services.
By replacing the core with Java, these limitations are amended. However, this is
a nontrivial task, primarily because the type system and program analyses used
in <bigwig> are not directly applicable to the much more complex Java language.
As a consequence, the type system from [Sandholm and Schwartzbach 2000] is no
longer used. Instead all type checking is based on a generalization of the notion of
summary graphs introduced in [Brabrand et al. 2001].

The integration of the <bigwig> session model and dynamic document model into
Java is achieved using a class library together with some extensions of the language
syntax. The resulting language is called JWIG. Unlike <bigwig>, programs in Java
and JWIG do not satisfy the closed world assumption, which is a requirement for
our global flow analysis. This is handled by extending the analysis to make sound
and conservative assumptions about the parts of the program that are not known
at the time of the analysis.

JWIG generalizes <bigwig> in other ways as well. An HTML document is al-
lowed to contain multiple forms, each of which may submitted independently. Fewer
restrictions are imposed on form fields, so that they may appear in any combina-
tion, including, for example, mixtures of radio buttons and text fields with the
same name, which was disallowed in <bigwig>. The JWIG analyses are extended
to handle the fully general case. The analysis itself is also generalized, since we
can now validate against DSD2 schemas, which have an expressive power similar
to XML Schema, rather than the variant of DTDs that <bigwig> was restricted to
consider. Additionally, a notion of code gaps is introduced, which provide a gen-
eralized version of the JSP-style code snippets occurring inside XML documents.
Finally, the <bigwig> analyses relied on modifying the code to ensure that joining
branches produced compatible XML documents; in contrast, the JWIG analysis is
able to analyze the unmodified code.

When running a JWIG service without applying the static analyses, a number
of special runtime errors may occur: If one of the three correctness properties
mentioned in the previous section is violated, an exception is thrown. The goal of
the static analyses is to ensure at compile time that these exceptions never occur.
In addition to having this certainty, we can eliminate the overhead of performing
runtime checks.
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Such guarantees cannot be given for general Servlet or JSP programs, or for the
many related languages that are being used for server-side programming, such as
ASP, PHP and CGI/Perl. However, we show that the structures of such programs
are special cases in JWIG: both the script-centered and the page-centered styles
can be emulated by the session-centered, so none of their benefits are lost.

The predominant format of the data that is being transmitted between the servers
and the clients in interactive Web services is HTML or the XML variant, XHTML.
Our current implementation of JWIG uses XHTML 1.0, but the approach general-
izes in a straightforward manner to an arbitrary interaction language described by
an XML schema, such as WML or VoiceXML.

A cornerstone in our program analyses is the notion of summary graphs, which
provide suitable abstractions of the sets of XML fragments that appear at runtime.
We show how these graphs can be obtained from a data-flow analysis and that they
comprise a precise description of the information needed to verify the correctness
properties mentioned above.

Throughout each phase of our program analysis, we will formally define in what
sense the phase is correct and we will give a theoretical bound on the worst-case
complexity. We expect the reader to be familiar with Java and monotone data-flow
analysis, and to have a basic understanding of HTML and XML.

1.3 Problems with Existing Approaches

In the following we give a more thorough explanation of the support for sessions
and dynamic documents in JSP and Servlets and point out some related problems.

The overall structure of a Web service written with Servlets resembles that of
CGI scripts. When a request is received from a client, a thread is started on the
server. This thread generates a response, usually an HTML page, and perhaps
has some side-effects such as updating a database. Before terminating it sends
to the client the response, which is dynamically created by printing strings to an
output stream. We call this a script-centered approach. The main advantages of
Servlets compared to CGI scripts are higher performance and a convenient API
for accessing the HTTP layer. A Servlet engine typically uses a thread pool to
avoid the overhead of constantly starting threads. Also, Servlets have the general
Java benefits of a sandboxed execution model, support for concurrency control, and
access to the large set of available Java packages.

A small Servlet program is shown in Figure 1. This program consists of three in-
dividual Servlets: Enter, Hello, and Goodbye. A client running this service is guided
through a sequence of interactions which we call a session: first, the service prompts
for the client’s name using the Enter Servlet, then the name and the total number
of invocations are shown using the Hello Servlet, and finally a “goodbye” page is
shown using the Goodbye servlet. The ServletContext object contains information
shared to all sessions, while the HttpSession object is local to each session. Both
kinds of state are accessed via a dictionary interface. Note that the three Servlets
are tied together implicitly by the actions of the generated forms. An alternative
code structure could be obtained by combining the three Servlets into a single one,
using an extra session attribute to store the type of the current interaction. The
Servlet API hides the details of cookies and URL rewriting which is used to track
the client throughout the session. HTML documents are generated by printing
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public class Enter extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><head><title>Servlet Demo</title></head><body> " +

"<form action=\"Hello\"> " +

"Enter your name: <input name=\" handle \"> " +

"<input type=\"submit\" value=\"Continue\"></form> " +

"</body></html> ");

} }

public class Hello extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

String name = (String) request.getParameter("handle ");

if (name==null) {

response.sendError(response.SC_BAD_REQUEST, "Illegal request ");

return;

}

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><head><title>Servlet Demo</title></head><body> ");

ServletContext context = getServletContext();

if (context.getAttribute("users")==null)

context.setAttribute("users", new Integer(0));

int users = ((Integer) context.getAttribute("users")).intValue() + 1;

context.setAttribute("users", new Integer(users));

HttpSession session = request.getSession(true);

session.setAttribute("name", name);

out.println("<form action=\"Goodbye\"> " +

"Hello " + name + ", you are user number " + users +

"<input type=\"submit\" value=\"Continue\"></form> " +

"</body></html> ");

} }

public class Goodbye extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

HttpSession session = request.getSession(false);

if (session==null) {

response.sendError(response.SC_BAD_REQUEST, "Illegal request ");

return;

}

String name = (String) session.getAttribute("name");

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><head><title>Servlet Demo</title></head><body> " +

"Goodbye " + name + "</body></html> ");

session.invalidate();

} }

Fig. 1. Example Servlet program. HTML documents are constructed by printing string fragments
to a stream, and the session flow is encoded into the action attributes in the forms.
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<html><head><title>JSP Demo</title></head><body>
Hello <%

String name = request.getParameter("who ");

if (name==null) name = "stranger";

out.print(name);

%>!
<p>
This page was last updated: <%= new java.util.Date() %>

</body></html>

Fig. 2. Example JSP page. Code snippets are embedded within the HTML code using special
<%...%> tags. When a client requests the page, the code snippets are replaced by the strings that
result from the evaluation.

strings to the output stream.
A JSP service turns the picture inside out by being defined by an HTML docu-

ment with embedded code snippets. We call this a page-centered approach. Figure 2
shows a simple JSP program which dynamically inserts the current time together
with a title and a user name based on the input parameters. This approach is quite
similar to ASP and PHP, except that the underlying language and its runtime
model are safer and better designed. An implementation of JSP typically performs
a simple translation into Servlets. This model fits into situations where the ser-
vice presents pages that are essentially static but with a few dynamic fragments
inserted. For more complicated services the code tends to dominate the pages, such
that they converge toward straight Servlet implementations.

Both JSP and Servlets allow only a single interaction with the client before
termination. To simulate a sequential thread, the client is given a session identifier
that is stored either as a cookie, as an SSL session key, or in a hidden form field.
The local state associated with the thread is stored as attributes in an HttpSession

object from which it must be recovered when execution is later resumed. Thus, a
sequence of interactions must be encoded by the programmer in a state machine
fashion where transitions correspond to individual interactions. This is somewhat
cumbersome and precludes cases where the resident local state includes objects in
the heap or a stack of pending method invocations. However, it should be noted that
the state machine model implies other advantages when it is applicable. Specifically,
it allows robust and efficient implementations as evidenced by J2EE engines that
ensure scalability and transaction safety by dividing session interactions into atomic
transitions. If a Web service runs on a J2SE engine, then only the disadvantages
exist since every interaction is then typically handled by a new thread anyway.

Data that is shared between several session threads must in JSP and Servlets be
stored in a dictionary structure or an external databases. This is in many cases
adequate, but still conceptually unsatisfying in a language that otherwise supports
advanced scoping mechanisms, such as nested classes.

Finally, JSP and Servlets offer little support for the dynamic construction of
XHTML or general XML documents. JSP allows the use of static templates in
which gaps are filled with strings generated by code fragments. Servlets generate
all documents as strings. These techniques cannot capture well-formedness of the
generated documents, let alone validation according to some schema definition.
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Well-formedness can be ensured by relying on libraries such as JDOM [Hunter and
McLaughlin 2001], where XML documents are constructed as tree data structures.
However, this loses the advantages from JSP of using human readable templates
and validity can still only be guaranteed by expensive runtime checks.

Another concern in developing Web services is to provide a separation between
the tasks of programmers and designers. With JSP and Servlets, the designer must
work through the programmer who maintains exclusive control of the markup tags
being generated. This creates a bottleneck in the development process.

The JWIG language is designed to attack all of these problems within the Java
framework. For a more extensive treatment of Servlets, JSP, and the many related
languages, we refer to the overview article on <bigwig> [Brabrand et al. 2002]. The
central aspects of JWIG are an explicit session model and a notion of higher-order
XML templates, which we will explain in detail in the following sections.

1.4 Other Related Languages

There are several other language proposals that relate to our work.
Struts [McClanahan et al. 2002] is an application framework for building Web

applications in Java. It offers support for the Model-View-Controller design pattern
through special Servlet applications and custom JSP tags. A consistent use of the
framework will make applications simpler to understand for the programmer, but
the compiler will still just see a straight Servlet application running on the standard
platform. Thus, the problems mentioned above for Servlets and JSP still apply.

Castor XML [Exolab Group 2002] is an XML data-binding framework for Java.
From an XML Schema it can generate a collection of Java classes representing
an object model of the corresponding XML documents. Marshaling and unmar-
shaling methods are automatically generated. XML documents may then be con-
structed in a less generic manner than using JDOM. However, manipulations are
still constructor-based and there is no static guarantee that a constructed document
will satisfy all the requirements of the originating schema. JAXB [Sun Microsys-
tems 2002] is a similar initiative that works on an subset of XML Schema and allows
runtime validation of constructed XML documents.

WSDL [Christensen et al. 2001] is an interface definition language that defines
an abstract view of a Web service, listing the available operations whose arguments
and results are typed using XML Schema. A WSDL document may serve as docu-
mentation for an existing Web service or dually be used to generate stub code in a
particular implementation language, which could for example be JWIG.

SOAP [Box et al. 2000] is a concrete XML language for defining envelopes for
XML documents that are to be transmitted between Web services. The main
connection to JWIG is that our static analysis could be used to guarantee that all
generated SOAP envelopes will be syntactically correct.

PHP [Atkinson 2000] and ASP [Homer et al. 2001] are both fundamentally similar
to JSP, but use different underlying languages, which are less structured than Java.
Thus, all the problems mentioned above still apply. The same holds for Server-Side
JavaScript [Netscape 1999], which allows the evaluation of JavaScript on the server
before an HTML document is sent to the client.
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1.5 Outline

We begin by describing the special JWIG language constructs and packages in
Section 2. These extensions are designed to allow flexible, dynamic construction
of documents and coherent sessions of client interactions. In itself, this section
explains and motivates the design of a Web programming framework that can be
used independently of the remaining parts of this paper. In Section 3 we explain
how to obtain JWIG program flow graphs that abstractly describe the flow of
strings and XML templates through programs. This is done by analyzing class files
that are obtained by compiling instances of our framework using any standard Java
compiler. This analysis contains several technical challenges since we must consider
all aspects of the full Java language. The obtained flow graphs form the basis of
the data-flow analyses that are then described in Section 4. We use the standard
monotone framework with a special lattice of summary graphs that denote possibly
infinite sets of XML documents. The data-flow analysis computes for every program
point and every variable a summary graph that conservatively approximates the set
of XML values that may occur at runtime. To compute this information we need a
preliminary string analysis which computes regular set approximations of the string
values that may appear during execution of the program. In Section 5 we describe
how the results from the summary graph analysis are used to verify that the runtime
errors mentioned earlier cannot occur for a given program. This involves the use
of a novel XML schema language, Document Structure Description 2.0, which we
briefly describe and motivate. We provide an overview of our implementation in
Section 6, and evaluate it on some benchmark programs to show that the analysis
techniques are sufficiently fast and precise to be practically useful. Finally, we
describe ideas for future work in Section 7.

2. THE JWIG LANGUAGE

The JWIG language is designed as an extension of Java. This extension consists
of a service framework for handling session execution, client interaction and server
integration, and some syntactic constructs and support classes for dynamic con-
struction of XML documents.

2.1 Program Structure

A JWIG application is a subclass of the class Service containing a number of fields
and inner classes. An instance of this class plays the role of a running service.

A service contains a number of different sessions, which are defined by inner
classes. Each session class contains a main method, which is invoked when a client
initiates a session. The fields of a service object are then accessible from all sessions.
This provides a simple shared state that is useful for many applications. Concur-
rency control is not automatic but can be obtained in the usual manner through
synchronized methods. Of course, external databases can also be applied, for in-
stance using JDBC, if larger data sets are in use. The fields of a session object as
well as local variables in methods are private to each session thread. This approach
of applying the standard scope mechanisms of Java for expressing both shared
state and per-session state is obviously simpler than using the ServletContext and
HttpSession dictionaries in Servlets and JSP.
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import java.io.*;

import dk.brics.jwig.runtime.*;

public class MyService extends Service {

int counter = 0;

synchronized int next() { return ++counter; }

public class ExampleSession extends Session {

XML wrapper =

[[ <html><head><title>JWIG Demo</title></head>
<body><[ body ]></body></html> ]];

XML form =

[[ <form><[ contents ]>
<input type="submit" value="Continue" /></form> ]];

XML hello =

[[ Enter your name: <input name=" handle " /> ]];

XML greeting =

[[ Hello <[ who]>, you are user number <[ count ]> ]];

XML goodbye =

[[ Goodbye <[ who]> ]];

public void main() throws IOException {

XML x = wrapper<[body =form];

show x<[contents =hello];

String name = receive handle ;

show x<[contents =greeting<[who=name,count =next()]];

exit wrapper<[body =goodbye<[who=name]];
}}}

Fig. 3. Example JWIG program. The MyService service contains one session type named

ExampleSession which has the same functionality as the Servlet service in Figure 1.

Figure 3 shows a JWIG service which is equivalent to the Servlet service from
Figure 1. In the following, we describe the new language constructs for defining
XML templates, showing documents to the clients, and receiving form input.

Session classes come in a number of different flavors, each with different purposes
and capabilities, as indicated by its superclass:

—Service.Session is the most general kind of interaction pattern, allowing any
number of interactions with the client while retaining an arbitrary session state.
When a Service.Session subclass is initiated, a new thread is started on the
server, which lives throughout all interactions with the client. At all intermediate
interactions, after supplying the XML to be sent to the client, the thread simply
sleeps, waiting for the client to respond.

—Service.Page is used for simple requests from the client. A Service.Page is simi-
lar to a Service.Session, except that it allows no intermediate client interactions.
This is conceptually similar to the mechanism used in Servlet and JSP applica-
tions, where a short-lived thread is also initiated for each interaction.

—Service.Seslet is a special kind of session, called a seslet, that is used to interact
with the service from applets residing on the client or with other Web services.
A Service.Seslet does not interact with the client directly in the form of input
forms and, for example, XHTML output; instead, it is parameterized with an
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InputStream and an OutputStream which are used for communication with the
applet or Web service on the client-side. The notion of seslets was introduced in
[Brabrand et al. 2002].

For the remainder of this article we focus on Service.Session. In contrast to the ses-
sion API in Servlets and JSP, it provides a clear view of the service flow because the
sequences of interactions constituting sessions are explicit in the program control-
flow. This session-centered approach originates from the MAWL project [Ladd and
Ramming 1996].

We specify Service.Page by a separate class in order to illustrate that the script-
and page-centered approaches are special cases of the session-centered approach,
and to identify applications of these simpler interaction models to allow implemen-
tations to perform special optimizations.

2.2 Client Interaction

Communication with the client is performed through the show statement, which
takes as argument an XML template to be transmitted to the client. A session
terminates by executing the exit statement whose argument is an XML template
that becomes the final page shown. Intermediate XML templates need not con-
form to any XML schema, but when they are used as arguments to show or exit

statements they must be valid XHTML 1.0 [Pemberton et al. 2000]. Otherwise, a
ValidateException is thrown.

During client interactions, the session thread is suspended on the server. Thus,
the execution of the show statement behaves as a remote procedure call to the client.
Return values are specified by means of form fields in the document. Such show

operations may be performed at any place in the code and, in contrast to Servlets
and JSP, the full state of the session thread—including the invocation stack—
is automatically preserved. For all form elements, a default action attribute is
automatically inserted with a URL pointing to the session thread on the server. The
responses from the client are subsequently obtained using the receive expression,
which takes as argument the name of an input field in the XHTML document
that was last shown to the client and returns the corresponding value provided
by the client as a String. If no such input field was shown to the client, then no
corresponding value is transmitted and a ReceiveException is thrown. There may be
several occurrences of a given input field. In this case, all the corresponding values
may be received in order of occurrence in the document into a String array using
the expression receive[]. The nonarray version is only permitted if the input field
occurs exactly once; otherwise, a ReceiveException is thrown. The array version
cannot fail: in case there are no fields, the empty array is produced.

Figure 4 illustrates the interactions of a session. In the JWIG example service in
Figure 3, the main method contains three client interactions: two show statements
and one exit statement. Clearly, the session flow is more explicit than in the
corresponding Servlet code in Figure 1. The XHTML documents are constructed
from five constant XML templates using plug operations as described in the next
section.
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SESSION
THREAD

PAGE
XHTML

Fig. 4. Client-server sessions in Web services. On the left is the client’s browser, on the right is a
session thread running on the server. The tread is initiated by a client request and controls the
sequence of session interactions.

2.3 Dynamic Document Construction

In Servlets and JSP, document fragments are generated dynamically by printing
strings to a stream. In JWIG, we instead use a notion of XML templates. A
template is a well-formed XML fragment which may contain named gaps. A special
plug operation is used to construct new templates by inserting existing templates
or strings into gaps in other templates. These templates are higher-order, because
we allow the inserted templates to contain gaps which can be filled in later, in a
way that resembles higher-order functions in functional programming languages.
Templates are identified by a special data type, XML, and may be stored in variables
and passed around as any other type. Once a complete XHTML document has
been built, it can be used in a show statement.

The idea of “contexts with holes” is of course widely used in computer science.
One different aspect of our templates is that gap names are significant and may be
captured by enclosing templates. Thus, no alpha renaming takes place.

Syntactically, the JWIG language introduces the following new expressions for
dynamic XML document construction:

[[ xml ]] (template constant)
exp1 <[ g = exp2] (the plug operator)
( [[ xml ]] ) exp (XML cast)
get url (runtime template inclusion)

These expressions are used to define template constants, to plug templates together,
to cast values to the XML type, and to include template constants at runtime, re-
spectively. The url denotes a URL of a template constant located in a separate file,
and xml is a well-formed XML template according to the following grammar:

xml : str (character data)
| <name atts> xml </ name> (element)
| <[ g]> (template gap)
| <{ stm}> (code gap)
| xml xml (sequence)
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who<[ =who<h1>Hello <[   ]></h1> <em>World</em>! ]

<h1>Hello <em>World</em>!</h1>

Fig. 5. The plug operation. The two XHTML templates in the top are combined to produce the
one below by plugging into the who gap.

atts : ε (empty)
| name=" str" (attribute constant)
| name=[ g] (attribute gap)
| atts atts (sequence)

Here, str denotes an arbitrary Unicode string, name an arbitrary identifier, g a gap
name, and stm a statement block that returns a value of type String or XML. Actual
XML values must of course be further constrained to be well-formed according
to the XML 1.0 specification [Bray et al. 2000]. Moreover, in this description we
abstract away all DTD information, comments, processing instructions, etc. In
Figure 3, there are four template constants: wrapper, hello, greeting, and goodbye.
The greeting template, for instance, contains two gaps named who and count ,
respectively.

XML templates can be composed using the plug operation exp1 <[ g = exp2] .
The result of this expression is a copy of exp1 with all occurrences of the gap
named g replaced by copies of exp2. This is illustrated in Figure 5. If exp2 is a
string, all special XML characters (<, >, &, ’, and ") are automatically escaped
by the corresponding XML character references. If exp1 contains no gaps named
g, a PlugException is thrown. A gap that has not been plugged is said to be
open. The exp2 expression is required to be of type String or XML. If it is not one
of these, it is coerced to String. There are three kinds of gaps: template gaps,
attribute gaps, and code gaps. Both strings and templates may be plugged into
template gaps, but only strings may be plugged into attribute gaps. Attempts to
plug templates into attribute gaps will cause a PlugException to be thrown. When
a template is shown, all remaining open gaps are removed in the following way:
each template gap is replaced by the empty string, and for each attribute gap, the
entire attribute containing the gap is removed. As an example, this removal of
attributes is particularly useful for checkboxes and radio buttons where checked

attributes either must have the value checked or be absent. One can use a template
containing the attribute gap checked=[c] and then plug checked into c whenever
the field should be checked and simply omit the plug otherwise.

The code gaps are not filled in using the plug operation: instead, when a template
containing code gaps is shown, the code blocks in the code gaps are executed in
document order. The resulting strings or templates are then inserted in place of
the code. Because this does not happen until the template is shown, the code in
code gaps can only access variables that are declared in the service class or locally
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within the code gap.
The plug operation is the only way of manipulating XML templates. Thus, our

XML type is quite different from both the string output streams in Servlets and JSP
and the explicit tree structures provided by, for instance, JDOM. We exploit this
to obtain a compact and efficient runtime representation, and as a foundation for
performing our program analyses. The notion of code gaps allows us to directly
emulate the JSP style of writing services, which is often convenient, but while still
having the explicit notion of sessions and the guarantees provided by the program
analyses.

In order to be able to perform the static analyses later, we need a simple restric-
tion on the use of forms and input fields in the XML templates: in input and button

elements we require syntactically that attributes named type and multiple cannot
occur as attribute gaps in elements defining input fields. The same restriction holds
for name attributes, unless the type attribute has value submit or image. In addition,
we make a number of simple modifications of the documents being shown and of
the field values being received:

(1) In HTML and XHTML, lists, tables, and select menus are not allowed to have
zero entries. However, it is often inconvenient to be required to perform special
actions in those cases. Just before a document is shown, we therefore remove
all occurrences of <ul></ul> and similar constructs. For select menus, we add
a dummy option in case none are present. The time required to perform this
postprocessing is negligible.

(2) If attempting to receive the selected value of a select menu that is not declared
as multiple or the value of a radio button set, then, if no option is either
preselected using checked or selected by the client, the null value is received
instead of throwing a ReceiveException—even though no name-value pair is
sent according to the XHTML 1.0/HTML 4.01 specification [Raggett et al.
1999].

(3) For submit and image fields, we change the corresponding returned name-value
pair from X=Y to submit=X . This makes it easier to recognize the chosen
submit button in case of graphical buttons.

(4) For submit buttons, a single name-value pair is produced from the name and the
value attributes. However, for graphical submit buttons, that is, fields with
type="image", HTML/XHTML produces two name-value pairs, X .x and X .y
for the click coordinates, where X is the value of the name attribute, but the
value attribute is ignored. To obtain a clean semantics, we ensure by patching
the returned list of pairs that, in every case, all three name-value pairs are
produced. For instance, with graphical submit buttons we add a submit=X
pair, and submit.x and submit.y contain the click coordinates. For normal
submit buttons, submit.x and submit.y contain the value -1.

Clearly, these restrictions and modifications do not impose any practical limitations
on the flexibility of the template mechanism. In fact, they serve as a convenience
to the programmer since many special cases in XHTML need not be considered.

As for other Java types, casting is required when generic containers or methods
are used. An XML template may be cast using the special syntax ([[ xml ]]) exp.
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This is a promise from the JWIG programmer that, in the program analyses de-
scribed later, any value that will ever be contained in exp at this point may be
replaced by the given constant. If this is the case, the cast is said to be valid. At
runtime, a CastException is thrown if the sets of gaps and input fields in exp do
not match those in xml . If casting to a template with exactly one occurrence of
a given field, then it is required that the actual values also has exactly one occur-
rence of that field—except for radio buttons, where multiple occurrences count as
one. For the gaps, two properties must be satisfied: if the template being cast to
has any gaps of a given name, then at least one such gap must also exist in the
actual value; and, if there is a template gap in the template being cast to, then
the actual value cannot contain any attribute gaps of that name. Note that this
runtime check is not complete since it only considers gaps and input fields and not
XHTML validity. However, if invalid XHTML is produced, it will eventually result
in a ValidateException at a show statement.

Alternatively, the ordinary cast ( XML) exp may be used. It generates a Cast-

Exception if the actual type of exp is not XML, but no promises are made about the
gaps or input fields.

Large JWIG applications may easily involve hundreds of template constants. For
this reason, there is support for specifying these externally, instead of inlined in the
program source. The construct get url loads the XML template located at url at
runtime. This template can then later be modified and reloaded by the running
service.

When the service is analyzed, the template constant referred to by the get url
construct is loaded and treated as a constant in the analysis. The analysis is then
of course only valid as long as the template is unchanged. However, validity will be
preserved if the template remains structurally the same. To obtain fresh security
guarantees, it is simply required to reinvoke the program analyzer.

These features can also be used to support cooperation between the program-
mers and the Web page designers. For a first draft, the programmers can create
some templates that have the correct structure but only a primitive design. While
the program is being developed using these templates, the designers can work on
providing a more sophisticated design. The program analyzer will ensure that
the structure of gaps and fields is preserved. This eliminates a bottleneck that is
sometimes present in Web projects, where designers are required to have changes
implemented by programmers, since the HTML they produce must be intermixed
with the code.

In addition to the main features mentioned above, a session object contains a
number of fields and methods that control the current interaction, such as ac-
cess control using HTTP authentication, cookies, environment variables, SSL en-
cryption, and various timeout settings. The service object additionally contains a
checkpoint method which serializes the shared data and stores it on disk. This is
complemented by a rollback method which can be used in case of server crashes
to improve robustness.

To summarize, we have now added special classes and language constructs to sup-
port session management, client interactions, and dynamic construction of XHTML
documents. By themselves, we believe that these high-level language extensions
aid development of Web services. The extensions may cause various exceptions: a
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ValidateException if one attempts to show an XML document which is not valid
XHTML 1.0; a ReceiveException if trying to receive an input field that occurs an
incompatible number of times; a PlugException if a plug operation fails because no
gaps of the given name and type exist in the template; and a CastException if an
illegal cast is performed because the gaps or fields do not match. In the following
sections, we show that it is possible to statically check whether the first three kinds
of exceptions can occur. This is possible only because of the program structure
that the new language constructs enforce. For instance, it is far from obvious that
similar guarantees could be given for Servlet or JSP services.

2.4 Declarative Form Field Validation Using PowerForms

Many existing Web services apply intricate JavaScript client-side code in the Web
documents for checking that input forms are filled in consistently. For instance, it
is typical that certain fields must contain numbers or email addresses, or that some
fields are optional depending on values entered in other fields. Proper error messages
need to be generated when errors are detected such that the clients have the chance
to correct them. Since client-side JavaScript execution cannot be trusted, extra
checks need to be performed on the server.

The PowerForms language [Brabrand et al. 2000] has been developed to attack
the problem of specifying form input validation requirements in a more simple and
maintainable way based on regular expressions and boolean logic. Using an XML
notation, a PowerForms document specifies form field validation requirements. Such
a specification is automatically translated into JavaScript code that incrementally
performs the checking on the client-side and into Java code that performs an extra
check on the server-side. We omit a more thorough description of the PowerForms
language and instead refer the reader to [Brabrand et al. 2000; Christensen and
Møller 2002].

As an extra feature of JWIG, PowerForms has been fully integrated. PowerForms
documents can be constructed using the XML data type and plug operations that have
been described in the previous section. A variant of the show statement connects
JWIG and PowerForms: show X powerforms P . When executed, if P is not a valid
PowerForms document, a ValidateException is thrown. Otherwise P is translated
into JavaScript code, which is inserted into X , and the resulting document is shown
to the client as usual. When a reply is submitted and execution resumes on the
server, the extra server-side check is performed. If JavaScript execution has been
disabled or forged on the client and the submitted form input is not valid, an
XHTML document with a detailed error message is returned, so the session cannot
be continued until the errors are corrected by the client.

The program analysis, which is described later, for checking validity of the gen-
erated XHTML documents is additionally applied to check that the P document is
a valid PowerForms document according to the document type definition of Pow-
erForms.

2.5 Emulation of Script- and Page-Centered Models

The code structure in Servlets closely follows the request–response interaction pat-
tern from HTTP. That structure is essentially the same as the one supported by
Service.Page in JWIG, with two exceptions: (1) while shared data in Servlets is typ-
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Fig. 6. The JWIG program translation process in our current implementation. The JWIG program
is desugared into Java code, which is compiled to class files. These class files are used both in the
Web server and to perform the program analyses.

ically managed by ServletContext objects using the setAttribute and getAttribute

methods, we use nested classes in JWIG to distinguish between shared and local
data; a shared variable is simply declared in the outer class and can be accessed
as any other variable. (2) The construction of the reply HTML page is in Servlets
generated by concatenating string fragments, whereas in JWIG, we use the more
structured notion of templates with gaps and specialized plug operations.

Similarly, the JSP style, where code is embedded within constant HTML pages,
can be emulated by the use of code gaps: A JSP file essentially has the same
structure as a Service.Page program that just returns a constant HTML template
containing a number of code gaps.

Since the JWIG program analyses depend on the fact that the HTML pages
are constructed with templates and plug operations, it is presumably not feasible
to automatically translate preexisting Servlet or JSP code into JWIG code or to
apply our program analysis techniques to Servlets. However, using Service.Page

and code gaps, JWIG programmers are free to apply the script-centered or page-
centered programming styles, if any need should arise, or even to write services
that apply a mixture of script-, page-, and session-centered code. In addition, the
unique static guarantees of, for instance, XHTML validity, are available both when
using Service.Page and the more general Service.Session. In this sense, JWIG
subsumes and extends the Servlet and JSP styles.

For a simple Web service that is structured as a collection of individual pages,
which the clients can browse freely, the page- and script-centered approaches work
well. With such services, the main advantages of using JWIG are the simpler
approach of managing shared data and the static guarantees of validity of the
generated pages.

For more complex Web services, the need for tracking and guiding the indi-
vidual clients through sessions is more important. The JWIG style of modeling
interactions as remote procedure calls from the server to the client gives a more
comprehensible control-flow in the code than possible with the Servlet or JSP style,
where the service code is structured as a collection of event handlers. Not only the
programmers but also the compiler can benefit from this increased comprehensi-
bility: the JWIG style also makes it possible for a program analyzer to statically
check the correspondence between input fields in the HTML pages and the server
code receiving the values.
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Fig. 7. Structure of the program analyzer.

2.6 The JWIG Program Translation Process

The steps involved in compiling, analyzing, and running a JWIG program are de-
picted in Figure 6. First, the special syntactic constructs of JWIG are translated
into appropriate Java constructs by a simple source-to-source desugaring transfor-
mation. The resulting Java source files are compiled into Java class files as usual.
These class files together with the accompanying externally specified XML template
constants constitute the Web service. Of course, an implementation is not forced to
have this structure: for instance, one could imagine a JWIG compiler that directly
produces class files instead of going via Java code.

The analysis works on the class file level. When the analyzer is invoked, it is given
a collection of class files to analyze. We call this collection the application classes ;
all others constitute the nonapplication classes. Exactly one of the application
classes must be a subclass of Service. For efficiency reasons, the application classes
can be just the few classes that actually constitute the JWIG service, not including
all the standard Java classes that the program uses. Our analyses are designed to
cope with this limited view of the program as an open system.

The soundness of the analyses that we describe in the following sections is based
on a set of well-formedness assumptions:

—all invocation sites in the application classes must either always invoke methods
in the application classes or always invoke methods in the nonapplication classes;

—no fields or methods of application classes are accessed by a nonapplication class;

—no XML operations are performed in nonapplication classes; and

—XML casts are always valid, according to the definition in Section 2.3.

These assumptions usually do not limit expressibility in practice. In some cases,
the second assumption can be relaxed slightly, for instance, if some method called
from a nonapplication class does not modify any String or XML value that will
ever reach other application class methods. This makes it possible to safely use
callback mechanisms such as the Comparator interface. The assumption about casts
is deliberately quite strong: as ordinary casts, XML casts provide a back-door to
the programmer to bypass the static type system.

The structure of the program analyzer is shown in Figure 7. From the class files,
we first generate flow graphs. From these, we generate summary graphs, which we
analyze in three different ways corresponding to the properties mentioned in the
previous section.
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2.7 An Example JWIG Program

We will use the following JWIG program throughout the remaining sections to
illustrate the various phases of the analysis. This admittedly rather artificial service
applies most JWIG-specific language constructs:

import dk.brics.jwig.runtime.*;

public class Greetings extends Service {

String greeting = null;

public class Welcome extends Session {

XML cover = [[ <html>
<head><title>Welcome</title></head>
<body bgcolor=[ color ]>

<{
if (greeting==null)

return [[ <em>Hello World!</em> ]];

else

return [[ <b><[ g]></b> ]] <[g =greeting];

}>
<[ contents ]>

</body>
</html> ]];

XML getinput = [[ <form>Enter today’s greeting:
<input type="text" name=" salutation ">
<input type="submit"></form> ]];

XML message = [[ Welcome to <[ what ]>. ]];

public void main() {

XML h = cover<[color ="white",contents =message];

if (greeting==null) {

show cover<[color ="red",contents =getinput];

greeting = receive salutation ;

}

exit h<[what =[[<b>BRICS</b> ]]];

} } }

The first time the Welcome session is initiated, the client is prompted for a greeting
text in one interaction, and then in the next interaction the greeting is shown
together with a “Welcome to BRICS” message. For subsequent sessions, only the
second interaction is performed.

3. FLOW GRAPH CONSTRUCTION

Given a JWIG program, we first construct an abstract flow graph as a basis for
the subsequent data-flow analyses. The flow graph captures the flow of string
and XML template values through the program and their uses in show, plug, and
receive operations, while abstracting away other data types and Java features. We
first define the structure of flow graphs, and then, in order to be able to define
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in what sense a translation of JWIG code into flow graphs is correct, we formally
define their semantics. After that, we present a concrete translation of JWIG code
into flow graphs.

3.1 Structure of Flow Graphs

A flow graph consists of nodes and edges. The nodes correspond to abstract state-
ments:

x = exp; (assignment)
show x; (client interaction)
receive f ; (receive field)
receive[] f ; (receive field array)
nop; (no operation)

where exp denotes an expression of one of the following kinds:

x (variable read)
"str" (string constant)
[[ xml ]] (XML template constant)
x <[ g = y ] (plug operation)
null (null value)
anystring (arbitrary string)

and x and y are program variables, g is a gap name, f is a field name, str is a
string constant, and xml is an XML template constant that does not contain any
code gaps. All code gaps in the original JWIG program are expressed using normal
gaps and plug operations in the flow graph, as will be explained in Section 3.3.

We assume that every variable occurring in the flow graph has a declared type:
STRING representing strings, or XML representing XML templates. These types are
extended to expressions as one would expect, and null has the special type NULL.
Let EXPSTRING denote the expressions of type STRING or NULL, and EXPXML

denote those of type XML or NULL.
The assignment statement evaluates its expression and assigns the value to the

given variable. The variable and the expression must have the same type. All
flow graph variables are assumed to be declared with a global scope. Evaluating
expressions cannot have side-effects. The argument to show statements is always
of type XML. As described later, we model receive expressions from the JWIG
program as pairs of statements, each consisting of a receive statement and an
assignment. The receive and receive[] statements record program locations where
input field values are received. The last kind of flow-graph statement, nop, is the
no-operation statement which we use to model all operations that are irrelevant to
our analyses, except for recording split and join points.

The expressions basically correspond to those in concrete JWIG programs, except
anystring which is used to model standard library string operations where we do
not know the exact result. In the plug operation, the first variable always has type
XML, and the second has type XML or STRING.

Each node in the graph is assigned an entry label and an exit label as in [Nielson
et al. 1999], and additionally each XML template constant has a template label.
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All labels are assumed to be unique. The union of entry labels and exit labels
constitute the program points of the program.

The graph has two kinds of edges: flow edges and receive edges. A flow edge
models the flow of data values between the program points. Each edge has as-
sociated one source node and one destination node, and is labeled with a set of
program variables indicating which values that are allowed to flow along that edge.
A receive edge goes from a receive node to a show node. Its presence indicates that
the control-flow of the program may lead from the corresponding show statement
to the receive statement without reaching another show first. We use these edges
to describe from which show statements the received field can originate.

3.2 Semantics of Flow Graphs

Formally, the semantics of a flow graph is defined by a constraint system. Let V
be the set of variables that occur in the flow graph, XML be the set of all XML
templates, and STRING be the set of all strings over the Unicode alphabet. Each
program point ` is associated an environment E`:

E` : V → 2XML ∪ STRING

The entire set of environments forms a lattice ordered by pointwise set inclusion.
For each node in the graph we generate a constraint. Let entry and exit denote the
entry and exit labels of a given node. If the statement of the node is an assignment,
x = exp; , then the constraint is

Eexit (y) =

{
Êentry(exp) if x = y

Eentry(y) if x 6= y

For all other nodes, the constraint is

Eexit = Eentry

The map Ê` : EXP → 2XML ∪ STRING defines the semantics of flow graph expres-
sions given an environment E`:

Ê`(exp) =



E`(x) if exp = x

{str} if exp = "str"
{xml} if exp = [[ xml ]]

π(E`(x), g, E`(y)) if exp = x <[ g = y ]

∅ if exp = null

STRING if exp = anystring

The function π captures the meaning of the plug operation. Due to the previously
mentioned type requirements, the first argument to π is always a set of XML
template values. The function is defined by

π(A, g, B) =
⋃

xml∈A,b∈B

{π(xml , g, b)}
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where π is defined by induction in the XML template according to the definition
in Section 2.3:

π(xml , g, b) =



str if xml = str
<name π(attr , g, b)>
π(xml ′, g, b) </ name> if xml = <name attr> xml ′ </ name>

b if xml = <[ g]>

<[ h]> if xml = <[ h]> and h 6= g

π(xml1, g, b) π(xml2, g, b) if xml = xml1 xml2

π(attr , g, b) =



ε if attr = ε

name=" str" if attr = name=" str "

name=" b" if attr = name=[ g] and b ∈ STRING
name=[ h] if attr = name=[ h]

and (h 6= g ∨ b ∈ XML)
π(attr1, g, b) π(attr2, g, b) if attr = attr1 attr2

This defines plug as a substitution operation where template gaps may contain both
strings and templates and string gaps may contain only strings.

For each flow edge from ` to `′ labeled with a variable x we add the following
constraint

E`(x) ⊆ E`′(x)

to model that the value of x may flow from ` to `′.
We now define the semantics of the flow graph as the least solution to the con-

straint system. This is well-defined because all the constraints are continuous. Note
that the environment lattice is not finite, but we do not need to actually compute
the solution for any concrete flow graph.

In the following section we specify a translation from JWIG programs into flow
graphs. In this translation, each show statement, plug expression, and receive

expression occurring in the JWIG program has a corresponding node in the flow
graph. Also, each operand of a show or plug operation has a corresponding variable
in the flow graph. Correctness of such a translation is expressed as two require-
ments: (1) let env be the least solution to the flow graph constraint system. If we
observe the store of a JWIG program at either a show or a plug operation during
some execution, then the value of each operand is contained in env `(x) where ` is
the node corresponding to the JWIG operation and x is the variable corresponding
to the operand. (2) If some session thread of an execution of the JWIG program
passes a show statement and later a receive expression without passing any other
show statement in between, then the flow graph contains a receive edge from the
node corresponding to the receive expression to the node corresponding to the show

statement.

3.3 From JWIG Programs to Flow Graphs

The flow graph must capture the flow of string and XML values in the original JWIG
program. Compared to <bigwig> and the flow graph construction in [Brabrand
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et al. 2001] this is substantially more involved due to the many language features of
Java. We divide this data flow into three categories: (1) per-method flow of data in
local variables, (2) data flow to and from field variables, and (3) flow of argument
and return values for method invocations. Since local variables are guaranteed to be
private to each method invocation, we model the first kind of data flow in a control-
flow-sensitive manner. With field variables, this cannot be done because they may
be accessed by other concurrently running session threads, and because we are not
able to distinguish between different instantiations of the same class. The second
kind of data flow is therefore modeled in a control-flow-insensitive manner.

The translation ignores variables whose type is not String, XML, or an array of any
dimension of these two. For each of the two analyzed types, a unique flow graph
pool variable is created for representing all the values of that type that cannot be
tracked by the analysis. Pooled values include those assigned to and from Object

variables and arrays, and arguments and results of methods outside the application
classes. We add an assignment of anystring to the pool variable of type STRING to
be maximally pessimistic about the string operations in the nonapplication classes.
Something similar is not done for the XML type since we have assumed that XML
values are produced only inside the analyzed classes.

In addition to capturing data flow, the flow graph must contain receive edges
that reflect the correspondence between show and receive operations in the JWIG
program. This requires knowledge of the control-flow in addition to the data flow.

Before the actual translation into flow graphs begin, each code gap is converted
to a template gap with a unique name, and the code inside the gap is moved to a
new method in the service class.

The whole translation of JWIG programs into flow graphs proceeds through a
sequence of phases, as described in the following subsections. Since JWIG includes
the entire Java language we attempt to give a brief overview of the translation rather
than explain all its details. We claim that this translation is correct according to
the definition in the previous section; however it is beyond the scope of this article
to state the proof.

1. Individual methods. In the first phase, each method in the application classes
is translated individually into a flow graph. Each statement produces one or more
nodes, and edges are added to reflect the control-flow inside the method. Each
edge is labeled with all local variables of the method. Nested expressions are flat-
tened using fresh local variables and assignments. The special JWIG operations are
translated into the corresponding flow graph statement or expression, and all irrele-
vant operations are modeled with nop nodes. Each receive expression is translated
into two nodes: a receive node and an assignment of anystring, since we need to
model the locations of these operations but have no knowledge of the values being
received. The control structures, if, switch, for, etc., are modeled with nop nodes
and flow edges, while ignoring the results of the branch conditions. XML casts
are translated into XML template constants. This is sound since we have assumed
that all casts are valid. Figure 8 shows the flow graph for the main method of the
example JWIG program in Section 2.7.

2. Code gaps. As mentioned, each code gap has been converted into a template
gap whose name uniquely identifies the method containing its code. Before every
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Fig. 8. Flow graph for the main method after Phase 1. All edges are here implicitly labeled with
the set of variables {h,t1,t2}.

show statement, a sequence of method calls and plug operations is inserted to ensure
that all code gaps that occur in the program are executed and that their results
are inserted. To handle code gaps that generate templates that themselves contain
code gaps, an extra flow edge is added from the end of the plug sequence to the
start. The analysis used in <bigwig> [Brabrand et al. 2001] does not support code
gaps.

3. Method invocations. The methods are combined monovariantly: each method
is represented only once in the flow graph for the whole program. This means that
the subsequent analyses that build on the flow graphs also are monovariant. To
estimate which methods can be called at each invocation site, a call graph of the
JWIG program is constructed using a class hierarchy analysis (CHA) [Dean et al.
1995; Sundaresan et al. 2000]. This gives us for each invocation site a set of possible
target methods. Of course, other call graph analyses could be applied instead, but
CHA has proven to be fast and sufficiently precise for these purposes. This implies
that XML document construction usually is programmed in a simple style that does
not rely on method overriding. Call graph analyses always work under a closed-
world assumption, which is given by the well-formedness assumptions in Section 2.6

For each method invocation, we need to transfer the arguments and the return
value, and to add flow edges to and from the possible target methods. The caller
method uses a set of special local variables for collecting the arguments and the re-
turn value. We first insert a chain of assignments to these caller argument variables.
Then we branch for each possible target method and add a chain of assignments
from the caller argument variables to the target method parameters, followed by a
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Fig. 9. Modeling method invocations. Assuming that the invocation of m in the expression on the
left may lead to the classes F or G, the flow graph on the right is generated where F.m and G.m

are the flow graphs for the target methods. First, the actual parameters are evaluated, then they
are passed to the formal parameters for each method and the method bodies are processed, and
finally, the return value is collected and the flow is merged. The * label denotes all local variables
in the caller method.

flow edge to the target method entry point. Similarly, we add flow edges from the
method exit points and transfer the return value via a caller result variable. For
target methods in nonapplication classes, we use the pool variables in place of the
argument and return value variables of the target method.

Figure 9 shows an example of a flow graph for a method invocation where the
CHA has determined that there are two possible targets.

4. Exceptions. For every try-catch-finally construct, we add edges from all
nodes corresponding to statements in the try block to the entry node of the catch

block. These edges are labeled with all local variables of the method. This ensures
that the data flow for local variables is modeled correctly. Adding edges from all
nodes of the try blocks may seem to cause imprecision. A more complex analysis
would only add edges from the nodes that correspond to statements that actually
may throw exceptions that are caught by the catch block. However, our simple
approach appears to be sufficiently precise in practice. The reason is that we only
consider the flow of XML values and that exceptions are not generally used as a
control structure for this purpose.

In order to be able to set up the receive edges in a later phase, we also need to
capture the interprocedural control-flow of exceptions. For this purpose, we add a
special drain node for each method. For each statement, we add a flow edge with
an empty label to the drain node of its method. This represents the control-flow for
uncaught exceptions within each method. This flow may subsequently lead either
to drain nodes for caller methods or to catch blocks. To model this, we use the CHA
information: for each target method of an invocation site, an edge is added from
the drain node of the target method to the drain node of the method containing
the invocation site. If the invocation site is covered by an exception handler within
the method, an extra edge is added from the drain node of the target method to
the entry of the handler.

5. Show and receive operations. The preceding phases have set up flow edges rep-
resenting all possible control-flow in the program. This means that we at this point
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have sufficient information to create the receive edges, based on the correspondence
between show and receive nodes.

For each receive statement, we want to infer from which show statements the
control-flow may reach this receive without passing another show statement in
between. We treat the entry points of main methods of session classes as if they
were show statements that show a document with a single form containing no input
fields. This models the fact that no input fields can be read with receive until a
document has been shown.

A simple graph reachability computation on the flow graph would be too im-
precise for this purpose. Instead we employ a reachability analysis that takes into
account the correct balancing of method calls and returns. A path in the flow
graph corresponding to possible control-flow must have no mismatched call/return
pairs, that is, a call from one invocation site matched by a return to another in-
vocation site. It may, however, have unmatched returns before the first call and
unmatched calls after the last return. This requirement can be precisely captured
using context-free reachability, as described in [Reps 1998].

We first decorate each edge in the flow graph with an reachability tag, describing
the reachability properties of the edge. These tags are put as follows:

E (Entry) on all outgoing edges from an entry node of a method;
S (Show) on all outgoing edges from a show node;
Cn (Call) on the edge to the target method entry point ending the

argument assignment chain of a method call (the subscript
n is a unique identifier of the invocation site);

Rn (Return) on every return edge to the invocation site identified by n,
and on every edge from the drain node of a method callable
by this invocation site to an exception handler in, or the
drain node of, the method containing this invocation site;
and

N (Normal) on all other edges.
Note that edges from drain nodes can have multiple tags, if some method can be
called from multiple invocation sites within the same method. These are treated as
separate edges, each with one tag, in the following.

The reachability algorithm continuously adds edges to the graph according to a
set of rules, corresponding to the grammar productions in the context-free reacha-
bility formulation. All rules have the form of a two-edge configuration that causes
a shortcut edge to be added. These are shown in the following list:

a
E→ b

N→ c . a
E→ c

a
E→ b

Rn→ c . a
Rn→ c (for any n)

a
Cn→ b

Rm→ c . a
N→ c (if n = m)

a
S→ b

N→ c . a
S→ c

a
S→ b

Rn→ c . a
S→ c (for any n)

a
S→ b

Cn→ c . a
T→ c (for any n)

a
T→ b

Cn→ c . a
T→ c (for any n)

a
T→ b

E→ c . a
T→ c
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nop

nop

x[y]=z x=z x

*

*

Fig. 10. Shortcutting array updates. Assignments into arrays are modeled using weak update
where all entries are merged.

All of the above rules preserve the following invariants of the reachability tags:

a
N→ b a is directly followed by b or is connected to b through a matching

Cn/Rn pair.
a

E→ b b is reachable from the method entry at a with only balanced
calls/returns.

a
Cn→ b a → b is a call edge from invocation site n.

a
Rn→ b The return to invocation site n at b or matching exception arriving

at b is reachable from a with only balanced calls/returns.
a

S→ b b is reachable from the show statement at a with no unmatched
calls.

a
T→ b b is reachable from the show statement at a with one or more

unmatched calls after the last return.

The algorithm terminates when no more shortcut edges can be added. Finally, for
every show node a and receive node b, a receive edge is added from b to a if there
exists an edge a

S→ b or a
T→ b.

We claim that this analysis is sound; that is, for any show node a and receive

node b, if the receive statement at b can be reached from the show statement at
a without passing any other show statements, then we have added a receive edge
from a to b. It is beyond the scope of this article to state the proof.

6. Arrays. Array variables are translated into variables of their base type. An
array is treated like a single entity whose possible values are the union of of its
entries. Construction of arrays using new is modeled with null values to reflect that
they are initially empty.

An assignment to an array entry is modeled using weak updating [Chase et al.
1990] where the existing values of the array are merged with the new value. This
is done by inserting two nop nodes around the assignment and adding an edge
bypassing it labeled by the updated variable. This process is shown in Figure 10.

When one array variable is assigned to another, these variables become aliases.
Such aliased variables are joined into one variable. This variable will be treated as a
field variable and handled as described below, if at least one of its original variables
was a field variable. This joining is similar to the technique used in [Sundaresan
et al. 2000].



Extending Java for High-Level Web Service Construction · 27

7. Field variables. As mentioned, we model the use of field variables in a flow-
insensitive manner where all instances of a given class are merged. This is done for
each field simply by adding flow edges labeled by the name of the field from all its
definitions to all its uses. To avoid constructing a quadratic number of edges, we
add a dummy “x=x” node to collect the definitions and the uses for each variable
x.

In <bigwig>, a simpler and more restrictive approach was chosen: all global
string variables were modeled with anystring, and for the global HTML variables,
which correspond to the XML field variables in JWIG, the initializer expressions
would dictate the types [Brabrand et al. 2001].

8. Graph simplification. Finally, we perform some reductions of the flow graph.
This is not necessary for correctness or precision of the subsequent analyses, but as
we show in Section 6.2, it substantially decreases the time and space requirements.

First, we remove all code that is unreachable from session entry points according
to the flow edges. We ignore edges that originate from method returns since these
edges do not contribute to the reachability.

Using a standard reaching definitions analysis on the flow graph [Aho et al.
1986; Nielson et al. 1999], we then find for each assignment all possible uses of
that definition. This gives us a set of pairs of nodes where the first node is an
assignment to some variable and the second node contains an expression which
uses that variable. Once this information is obtained, we remove every flow edge
and nop node in the graph, and then add new flow edges corresponding to the
definition-use pairs. Each new edge is labeled with the single variable of the pair.
Finally, a copy propagation optimization is performed to compress chains of copying
statements [Aho et al. 1986].

These transformations all preserve the data flow. In the resulting flow graphs,
there are no nop nodes and all edges are labeled with a single variable, which is
crucial for the performance of the subsequent analyses.

This construction of flow graphs for JWIG programs is correct in the sense defined
in Section 3.2, both with and without the simplification phase.

3.4 Complexity

During the construction of the flow graph, we have performed two forward data-
flow analyses on the intermediate graphs: one for setting up the receive edges in
Phase 5 and the other for the reaching definitions analysis in Phase 8. In the
following sections, we will describe two more forward data-flow analyses on flow
graphs. To bound the worst-case time requirements for all these analyses, we make
some general observations. By implementing the analyses using a standard work-
list algorithm rather than the chaotic iteration algorithm [Nielson et al. 1999], the
time can be bound by

O

(
t ·

∑
m∈nodes

|var(m)| · h ·
∑

m′∈succ(m)

|var (m′)|
)

where
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—t is the maximum cost of computing one binary least-upper-bound operation or
one transfer function for a single variable;

—nodes is the set of flow-graph nodes;
—var (m) denotes the union of the labels of edges incident to the node m;
—h is the height of the lattice for a single variable; and
—succ(m) is the set of successor nodes of m.

For each node m, an environment associates two lattice elements to each variable
v in var(m), one for the entry label and one for the exit label. Each can change
at most h times. Because of the work-list, each change for an exit label can result
in at most

∑
m′∈succ(m) |var (m′)| binary least-upper-bound operations and transfer

function computations, that is, one for each variable in each successor node, without
any other environment changes for exit labels.

Phases 1–4 create at most O(n2) flow-graph nodes and O(n2) edges where n
is the textual size of the program. The reason for the quadratic increase in the
number of nodes is the encoding of argument transferring for method invocations
in Phase 3 and the encoding of code gap execution in Phase 2.

All edges created by the receive edge analysis in Phase 5 originate from either
a method entry, an invocation site, or a show statement, of which there are totally
O(n). Rn edges with different n will always go to different nodes, so only a constant
number of edges can be created between any two nodes. Thus, at most O(n3) edges
are created. The algorithm is worklist based, so each new edge incurs at most O(n2)
edge comparisons. Therefore, this analysis runs in time O(n5).

After Phase 5, the control-flow information is no longer needed, so all edges with
empty label can be removed, since they have no influence on the subsequent phases.
This includes all edges added in Phase 5. Furthermore, Phases 6 and 7 only produce
O(n) edges, so the final number of edges after Phases 1–7 is O(n2).

The complexity of the reaching definitions analysis in Phase 8 can be bound by
the formula above. There are O(n) variables, the lattice height is O(n), and the
time t is O(n). Again, since there are O(n2) edges,

∑
m∈nodes |succ(m)| is O(n2).

Together, we get that this analysis runs in time O(n6). Since the other phases
of the flow-graph construction are linear in the size of the flow graph, the total
construction of the flow graph of a given JWIG program requires worst-case O(n6)
time. As shown in Section 6.2, this bound is rarely encountered in practice.

After the simplification phase, an extra property is satisfied: since all flow edges
are definition-use edges, |var (m)| is O(1) for all nodes m. Since the flow graph still
contains only O(n2) nodes and edges, the formula above then reduces to

O(n2 · h · t)
This will be used later to estimate the complexities of the remaining analyses.

3.5 Flow Graph for the Example

Figure 11 shows the flow graph that is generated for the JWIG program from
Section 2.7. The left part of the graph corresponds to the main method, the top
right part is the initialization of the field variables, and the bottom right part
corresponds to the code in the code gap. The thin edges are flow edges, and the
single thick edge is a receive edge. The show node in the top left corresponds
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t3=[[<em>Hello World!</em>]]

greeting=anystring

message=[[Welcome...]]

init=[[...]]

t2=[[<b>BRICS</b>]]

t2=h<[    =t2]

t2=t2<[  =t3]

t1="white"

t2=cover<[     =t1]

h=t2<[        =message]

show t2

t2=t2<[        =getinput]

t1="red"

show t2

t3=t2<[ =greeting]

t2=t2<[  =t3]

t2=[[<b><[ ]></b>]]

receive

contents

c1

salutation

c1

what

contents

g

g

getinput=[[<form>...</form>]]

greeting=null

getinput

h t2

t2 t3

t3

t3

t3

greeting

greeting

message

cover

t1

t2

t1

t2

t2

t2

t2

t2

t2

t2

color

cover

cover=[[<html>...</html>]]

colort2=cover<[     =t1]

show init
init

Fig. 11. Flow graph for the JWIG example program.

to the entry point of the session. The init template is a simple valid XHTML
document with a form that contains no fields. This models the fact that no input
values are receivable when session threads are initiated. Note that edges in the part
corresponding to the main method have changed compared to Figure 8 because of
the graph simplification phase.

4. SUMMARY GRAPH ANALYSIS

To statically verify that a given JWIG program will never throw any of the special
JWIG exceptions, we perform a summary graph analysis based on the flow graph
which contains all the information we need from the original program. Summary
graphs model how templates are constructed and used at runtime. This analysis
depends on a preliminary string analysis that for each string expression finds a
regular language that approximates the set of strings it may evaluate to. For each
analysis we define a lattice expressing an abstraction of the data values along with
a corresponding abstract semantics of the expressions and statements, and then
apply standard data-flow analysis techniques to find the least solutions. We choose
to provide the technical details for two reasons: first, the development of summary
graphs was the main challenge in obtaining a useful tool and, second, we believe that
summary graphs by themselves may be useful for analyzing XML manipulations in
other contexts.
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4.1 String Analysis

Given a flow graph of a JWIG program, we must statically model which strings
are constructed and used at runtime. In [Brabrand et al. 2001] the corresponding
analysis is mixed into the summary graph analysis. Separating these analyses
leads to a simpler specification and implementation without damaging the analysis
precision. We describe here a rather simple analysis which is adequate for all
our benchmarks. However, it should be clear that a more precise string analysis
capturing relevant string operations easily could be applied instead, as explained
in Section 7.

We first define a string environment lattice:

SE = Y → REG

where Y is the set of string variables that occur in the program and REG is the fam-
ily of regular languages over the Unicode alphabet. We choose regular languages for
modeling string sets because they fit elegantly into the validity analysis algorithm
in Section 5.5. The ordering on REG is language inclusion and SE inherits this
ordering pointwise. We compute an element of this lattice for every program point
with a forward data-flow analysis using standard techniques, such as the monotone
frameworks of [Nielson et al. 1999; Kam and Ullman 1977]: For every statement
that can appear in the flow graph we define a monotone transfer function SE → SE
and then compute the least fixed point by iteration. First, for each flow-graph string
expression we define its abstract denotation by extending every environment map
Σ ∈ SE from variables to string expressions, Σ̂ : EXPSTRING → REG:

Σ̂(exp) =


Σ(x) if exp = x,

{str} if exp = "str"
U∗ if exp = anystring

∅ if exp = null

where U denotes the Unicode alphabet.
For every string assignment statement x = exp; the transfer function is defined

by

Σ 7→ Σ[x 7→ Σ̂(exp)]

that is, the string environment is updated for x to the environment value of exp.
Clearly, this is a monotone operation. For all other statements the transfer func-
tion is the identity function, since they do not modify any string variables. The
lattice is not finite, but by observing that the only languages that occur are either
total or subsets of the finitely many string constants that appear in the program,
termination of the fixed point iteration is ensured.

The worst-case complexity of this analysis can be estimated by the formula from
the previous section. By the observation above, we only use a part of the lattice.
This part has height O(n) since there are at most O(n) string constants in the
program. The time t for performing a least-upper-bound or transfer function com-
putation is O(n). Thus, this particularly simple string analysis runs in worst-case
time O(n4) where n is the size of the original JWIG program.
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The result of this analysis is for each program point ` a map: string` : Y → REG .
This analysis is correct in the following sense: for any execution of the program,
any program point `, and any string variable x, the regular language string`(x) will
always contain the value of x at `. That is, the analysis result is a conservative
upper approximation of the string flow.

We are currently working on a more advanced string analysis that models con-
catenations and other string operations more precisely. This cannot be expressed
by a straight application of the monotone framework since the lattice of regular lan-
guages is not finite. Instead, we model each variable by a nonterminal in a context-
free grammar, which is subsequently coarsened into a regular language [Christensen
et al. 2003].

4.2 Summary Graphs

As the string analysis, the summary graph analysis fits into standard data-flow
frameworks, but it uses a significantly more complex lattice which we define in the
following. Let X , G, and N be, respectively, the sets of template variables, gap
names, and template labels that occur in the program. A summary graph SG is a
finite representation of a set of XML documents defined as

SG = (R, T, S, P )

where

R ⊆ N is a set of root nodes,
T ⊆ N ×G×N is a set of template edges,
S : N ×G → REG is a string edge map, and
P : G → 2N × Γ× Γ is a gap presence map.

Here Γ = 2{OPEN,CLOSED} is the gap presence lattice whose ordering is set inclu-
sion. Intuitively, the language L(SG) of a summary graph SG is the set of XML
documents that can be obtained by unfolding its templates, starting from a root
node and plugging templates and strings into gaps according to the edges. Assume
that t : N → xml maps every template label to the associated template constant.
The presence of a template edge (n1, g, n2) ∈ T informally means that the t(n2)
template may be plugged into the g gaps in t(n1), and a string edge S(n, g) = L
means that every string in the regular language L may be plugged into the g gaps
in t(n).

The gap presence map, P , specifies for each gap name g which template constants
may contain open g gaps reachable from a root and whether g gaps may or must
appear somewhere in the unfolding of the graph, either as template gaps or as
attribute gaps. The first component of P (g) denotes the set of template constants
with potentially open g gaps, and the second and third components describe the
presence of template gaps and attribute gaps, respectively. Given such a triple,
P (g), we let nodes(P (g)) denote the first component. For the other components,
the value OPEN means that the gaps may be present, and CLOSED means that they
may be absent. Recall from Section 2.3 that, at runtime, if a document is shown
with open template gaps, these are treated as empty strings. For open attribute
gaps, the entire attribute is removed. We need the gap presence information in
the summary graphs to (1) determine where edges should be added when modeling
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plug operations, (2) model the removal of gaps that remain open when a document
is shown, and (3) detect that plug operations may fail because the specified gaps
have already been closed.

This unfolding of summary graphs is explained more precisely with the following
formalization:

unfold(SG) = {d ∈ XML | ∃r ∈ R : SG , r ` t(r) ⇒ d where SG = (R, T, S, P )}
The unfolding relation, ⇒, is defined by induction in the structure of the summary
graph. We use inference rules as a convenient notation for expressing these mutually
dependent relations. For the parts that do not involve gaps the definition is a simple
recursive traversal:

SG , n ` str ⇒ str

SG, n ` xml1 ⇒ xml ′1 SG, n ` xml2 ⇒ xml ′2
SG , n ` xml1 xml2 ⇒ xml ′1 xml ′2

SG, n ` atts ⇒ atts ′ SG, n ` xml ⇒ xml ′

SG, n ` <name atts> xml </ name> ⇒ <name atts ′> xml ′ </ name>

SG, n ` ε ⇒ ε

SG, n ` name=" str " ⇒ name=" str"

SG, n ` atts1 ⇒ atts ′1 SG, n ` atts2 ⇒ atts ′2
SG, n ` atts1 atts2 ⇒ atts ′1 atts ′2

There is no unfolding for code gaps since they have already been reduced to template
gaps in the flow graph construction. For template gaps we unfold according to the
string edges and template edges and check whether the gaps may be open:

str ∈ S(n, g)
(R, T, S, P ), n ` <[ g ]> ⇒ str

(n, g, m) ∈ T (R, T, S, P ), m ` t(m) ⇒ xml
(R, T, S, P ), n ` <[ g ]> ⇒ xml

n ∈ nodes(P (g))
(R, T, S, P ), n ` <[ g ]> ⇒ <[ g ]>

For attribute gaps we unfold according to the string edges, and check whether the
gaps may be open:

str ∈ S(n, g)
(R, T, S, P ), n ` name=[ g ] ⇒ name=" str "

n ∈ nodes(P (g))
(R, T, S, P ), n ` name=[ g ] ⇒ name=[ g ]
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The following function, close, is used on the unfolded templates to plug the empty
string into remaining template gaps and remove all attributes with gap values:

close(xml) =



<name close(atts)>
close(xml ′) </ name> if xml = <name atts> xml ′ </ name>

ε if xml = <[ g]>

close(xml1) close(xml2) if xml = xml1 xml2
xml otherwise

close(atts) =


close(atts1) close(atts2) if atts = atts1 atts2

ε if atts = name=[ g]

atts otherwise

We now define the language of a summary graph by

L(SG) = {close(d) ∈ XML | d ∈ unfold(SG)}
Let G be the set of all summary graphs. This set is a lattice where the ordering is
defined as one would expect:

(R1, T1, S1, P1) v (R2, T2, S2, P2) ⇔
R1 ⊆ R2 ∧ T1 ⊆ T2 ∧

∀n ∈ N, g ∈ G : S1(n, g) ⊆ S2(n, g) ∧ P1(g) v P2(g)

where the ordering on gap presence maps is defined by componentwise set inclusion.
This ordering respects language inclusion: if SG1 v SG2, then L(SG1) ⊆ L(SG2).

Compared to the summary graphs in [Brabrand et al. 2001] this definition differs
in the following ways: first of all, the gap presence map is added. The old algorithm
worked under the assumption that all incoming branches to join points in the flow
graph would agree on which gaps were open. This was achieved using a simple
preliminary program transformation that would convert the “implicit ε-plugs” of
<bigwig> [Brabrand 2000] into explicit ones using the information from the DynDoc
type system [Sandholm and Schwartzbach 2000]. Since JWIG does not inherit this
implicit-plug feature from the <bigwig> design nor uses a DynDoc-like type system
we have added the gap presence map. This map contains the information from the
“gap track analysis” in [Brabrand et al. 2001], but in addition to finding gaps that
may be open it also tracks must information which we need to verify the use of
plug operations later.

Second, the present definition is more flexible in that it allows strings to be
plugged into template gaps. In [Brabrand et al. 2001], template gaps were com-
pletely separated from attribute gaps. Third, we generalize the flat string lattice to
full regular languages, allowing us to potentially capture many string operations.

Figure 12 shows an example summary graph consisting of two nodes, a single
template edge, and two string edges. The language of this summary graph is the
set of XML documents that consist of ul elements with a class="large" attribute
and zero or more li items containing some text from the language L. Note that the
items gap in the root template may be OPEN according to the gap presence map,
so the empty template may be plugged in here, corresponding to the case where
the list is empty.
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{large}

kind

L

text

<ul class=[    ]>
  <[     ]>
</ul>

items
kind <li><[    ]></li>

<[     ]>items
text

items
items

1 2

Gap presence:   kind
items
text

({1,2},{OPEN}, {CLOSED})

(Ø,{CLOSED},{CLOSED})

{Ø,{CLOSED},{CLOSED})

Fig. 12. A summary graph whose language is a set of XML documents, each containing a ul list
with zero or more text items and a class attribute. The node on the left is a root, and L denotes
some set of strings.

Note that our analysis is monovariant, in the sense that each template constant
is only represented once. It is possible to perform a more expensive analysis that
duplicates summary graph nodes according to some criteria, but we have not yet
encountered the need. On the other hand, our analysis is polyvariant in XML
element constructors, since these are analyzed separately for each occurrence in the
templates.

The summary graph abstraction has evolved through experiments during our
previous work on <bigwig>. We claim that it is in a finely tuned balance between
expressibility and complexity. In [Christensen et al. 2002], we give a construc-
tive proof that summary graphs have essentially the same expressive power as the
regular expression types of XDuce [Hosoya and Pierce 2000], in the sense that
they characterize the same family of XML languages—if disregarding restrictions
on character data and attributes, which are not supported by XDuce. However,
summary graphs contain extra structure, for instance, by the gap presence maps,
which is required during analysis to model the gap plugging mechanism. Summary
graphs contain the structure and expressiveness to capture the intricacies of normal
control-flow in programs and are yet sufficiently tractable to allow efficient analysis.

4.3 Constructing Summary Graphs

At every program point ` in the flow graph, each template variable x ∈ X is asso-
ciated a summary graph, as modeled by the summary graph environment lattice:

SGE = X → G

which inherits its structure pointwise from G. We compute an element of the
lattice for every program point using yet another forward data-flow analysis. Let
[[ xml ]] n mean the template constant labeled n, and let tgaps(n) and agaps(n) be
the sets of template gap names and attribute gap names, respectively, that occur in
the template constant labeled n. Given an environment lattice element ∆ ∈ SGE
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we define an abstract denotation for template expressions, ∆̂ : EXPXML → G:

∆̂(exp) =



∆(x) if exp = x

const(tgaps(n), agaps(n), n) if exp = [[ xml ]] n

tplug(∆(x), g, ∆(y)) if exp = x <[ g = y ]

and y has type XML

splug(∆(x), g, string`(y)) if exp = x <[ g = y ]

and y has type STRING

(∅, ∅, λ(m, h).∅, λh.(∅, ∅, ∅)) if exp = null

where the auxiliary functions are

const(A, B, n) = ({n}, ∅, λ(m, h).∅,
λh.(if h ∈ A ∪B then {n} else ∅,

if h ∈ A then {OPEN} else {CLOSED},
if h ∈ B then {OPEN} else {CLOSED}))

tplug((R1, T1, S1, P1), g, (R2, T2, S2, P2)) =
(R1,
T1 ∪ T2 ∪ {(n, g, m) | n ∈ nodes(P1(g)) ∧ m ∈ R2)},
λ(m, h).S1(m, h) ∪ S2(m, h),
λh.if h=g then P2(h) else (p1 ∪ p2,merge(t1, t2),merge(a1, a2)))

where P1(h) = (p1, t1, a1) and P2(h) = (p2, t2, a2)

merge(γ1, γ2) = if γ1 ={OPEN} ∨ γ2 ={OPEN} then {OPEN} else γ1 ∪ γ2

splug((R, T, S, P ), g, L) =
(R,
T,
λ(m, h).if h=g ∧m ∈ nodes(P (h)) then S(m, h) ∪ L else S(m, h),
λh.if h=g then (∅, {CLOSED}, {CLOSED}) else P (h))

For template constants, we look up the set of gaps that appear and construct a
simple summary graph with one root and no edges. The tplug function models
plug operations where the second operand is a template expression. It finds the
summary graphs for the two subexpressions and combines them as follows: The
roots are those of the first graph since it represents the outermost template. The
template edges become the union of those in the two graphs plus a new edge from
each node that may have open gaps of the given name to each root in the second
graph. The string edge sets are simply joined without adding new information.
For the gaps that are plugged into, we take the gap presence information from
the second graph. For the other gaps we use the merge function to mark gaps
as “definitely open” if they are so in one of the graphs and otherwise take the
least upper bound. The splug function models plug operations where the second
operand is a string expression. It adds the set of strings obtained by the string
analysis for the string expression to the appropriate string edge, and then marks
the designated gaps as “definitely closed”. The null constant is modeled by the
empty set of documents. Attempts to plug or show a null template yield null
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dereference exceptions at runtime, and we do not wish to perform a specific null
analysis.

Having defined the analysis of expressions we can now define transfer functions
for the statements. As for the other data-flow analysis, only assignments are in-
teresting. For every XML assignment statement x = exp; the transfer function is
defined by

∆ 7→ ∆[x 7→ ∆̂(exp)]

and for all other statements the transfer function is the identity function.
By inspecting the tplug , merge, and splug functions it is clear that the transfer

function is always monotone. The lattice SGE is not finite, but analysis termina-
tion is ensured by the following observation: for any program, all summary graph
components are finite, except REG . However, the string analysis produces only a
finite number of regular languages, and we here use at most all possible unions of
these. So, only a finite part of SGE is ever used.

The result of this analysis is for each program point ` a map:

summary` : EXPXML → G

This analysis is conservative as the string analyses; that is, it is sound but not
complete: for any execution of the program, any program point `, and any XML
expression exp, the set of XML documents L(summary`(exp)) will always contain
the value of exp at `.

The worst-case complexity of this analysis can also be estimated using the formula
from Section 3.4. The lattice height is the sum of the heights of the four summary
graph components. The node set N and the gap name set G both have size O(n),
again where n is the size of the original JWIG program. The height of the root
node component is thus O(n). For each template edge (n, g, n′) which is created
during the analysis, (n, g) determines a specific gap in a specific template in the
original JWIG program. Since there can be at most O(n) of these, we can at most
construct O(n2) template edges. Similarly, for the string edge map, all but O(n)
pairs of elements from N and G are mapped to a fixed element. For the string
analysis, we have argued that the height of the used part of the string lattice is
O(n), so the string edge component has height O(n2). Both the domain and the
codomain of the gap presence map have size O(n), so this component also has
height O(n2). In total, the height h of the summary graph lattice is O(n2). For
the same reasons, the sizes of the summary graphs that are constructed are also
at most O(n2). All operations on summary graphs are linear in their sizes, so the
time t for computing a summary graph operation is O(n2). Inserting this in the
formula gives that the summary graph construction runs in time O(n6) in the size
of the program. Note that without the flow-graph simplification phase, the formula
would have given O(n8) instead of O(n6).

4.4 Summary Graphs for the Example

For the JWIG example program from Section 2.7, the following summary graph is
generated for the exit statement in the main method:
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<html>...</html> Welcome ... <b>BRICS</b>

<em>Hello World!</em> <b><[ ]></b>

contents what

c1
c1

{white}

color

g

U*

g

Implicitly in this illustration, the gap presence map maps everything to (∅, {CLOSED},
{CLOSED}), and the string edge map maps to the empty language by default. Be-
cause of the simple flow in the example program, the language of this summary
graph is precisely the set of XML documents that may occur at runtime. In gen-
eral, the summary graphs are conservative since they they may denote languages
that are too large. This means that the subsequent analyses can be sound but not
complete.

5. PROVIDING STATIC GUARANTEES

The remaining analyses are independent of both the original JWIG program and
the flow graphs. All the relevant information is at this stage contained in the
inferred summary graphs. This is a modular approach where the “front-end” and
“back-end” analyses may be improved independently of each other. Also, summary
graphs provide a good context for giving intuitive error messages.

5.1 Plug Analysis

We first validate plug consistency of the program, meaning that gaps are always
present when subjected to the plug operation and that XML templates are never
plugged into attribute gaps. This information is extracted from the summary graph
of the template being plugged into.

In earlier work [Sandholm and Schwartzbach 2000] a similar check was performed
directly on the flow graphs. Our new approach has the same precision, even though
it relies exclusively on the summary graphs. Furthermore, we no longer require the
flow graph to agree on the gap information for all incoming branches in the join
points, as mentioned in Section 4.2.

For a specific plug operation x <[ g = y ] at a program point `, consider the sum-
mary graph summary`(x) = (R, T, S, P ) given by the data-flow analysis described
in the previous section. Let (p, t, a) = P (g). We now check consistency of the plug
operation simply by inspecting that the following condition is satisfied:

t = {OPEN} ∨ a = {OPEN} if y has type STRING, and
t = {OPEN} ∧ a = {CLOSED} if y has type XML.

This captures the requirement that string plug operations are allowed on all gaps
that are present, while template plug operations only are possible for template gaps.
If a violation is detected, a precise error message can be generated: for instance, if
y has type XML, t = {OPEN}, and a = {OPEN,CLOSED}, we report that, although
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there definitely are open template gaps of the given name, there may also be open
attribute gaps, which could result in a PlugException at runtime.

As mentioned, the summary graphs that are constructed are conservative with
respect to the actual values that appear at runtime. However, the plug analysis
clearly introduces no new imprecision, that is, this analysis is both sound and
complete with respect to the summary graphs: it determines that a given plug
operation cannot fail if and only if for every value in unfold(summary`(x)), the
plug operation does not fail. If the plug analysis detects no errors, it is guaranteed
that no PlugException will ever be thrown when running the program. Since the
analysis merely inspects the gap presence map component of each summary graph
that is associated with a plug operation, this analysis takes time O(n).

5.2 Receive Analysis

We now validate receive consistency, meaning that receive and receive[] opera-
tions always succeed. For the single-string variant, receive, it must be the case
that for all program executions, the last document being shown before the receive
operation contained exactly one field of the given name. Also, there must have
been at least one show operation between the initiation of the session thread and
the receive operation. If these properties are satisfied, it is guaranteed that no
ReceiveException will ever be thrown when running the program.

The array variant, receive[], always succeeds, so technically, we do not have to
analyze those operations. However, we choose to consider it as an error if we are
able to detect that for a given receive[] operation, there are no possibility of ever
receiving other that the empty array. This is to follow the spirit of Java where, for
instance, it is considered a compile-time error to specify a cast operation that is
guaranteed to fail for all executions.

In case the name of the field is either submit, submit.x, or submit.y, then we
know that it comes from a submit button or image. As described in Section 2.3,
exactly one value is then always generated. That is, in these cases, both receive

and receive[] always succeed. For the remainder of this section, we thus assume
that the field name is not one among those three.

Given a receive operation, we need to count the number of occurrences of input
fields of the given name that may appear in every document sent to the client
in an associated show operation. For a concrete XHTML/HTML document, this
information is defined by Section 17.13.2 in [Raggett et al. 1999]. For a running
JWIG program, a conservative approximation of the information can be extracted
from the receive edges in the flow graph and the summary graphs of the associated
show operations.

Compared to the field analysis in <bigwig> [Sandholm and Schwartzbach 2000],
this situation differs in a number of ways: (1) the present analysis works on sum-
mary graphs rather than on flow graphs. (2) In the old analysis, the plug and
receive analyses were combined. We separate them into two independent analyses
without losing any precision. (3) In <bigwig>, a form is always inserted automat-
ically around the entire document body. That precludes documents from having
other forms for submitting input to other services. As described in Section 2.2,
JWIG instead allows multiple forms by identifying those relevant to the session by
the absence of an action attribute in the form element. (4) The notions of tuples
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and relations in [Sandholm and Schwartzbach 2000] are in JWIG replaced by arrays
and receive[] operations.

Again, we will define a constraint system for computing the desired information.
This information is represented by a value of the following lattice, C:

*

1
0

The element 0 means that there are always zero occurrences of the field, 1 means
that there is always exactly one occurrence, ∗ means that the number varies de-
pending on the unfolding or that it is greater than one, � represents one or more
radio buttons, and ⊥ represents an unknown number. The constraint system ap-
plies two special monotone operators on C: ⊕ for addition and ⊗ for multiplication.
These are defined as follows:

⊕ ⊥ 0 � 1 ∗
⊥ ⊥ 0 � 1 ∗
0 0 0 � 1 ∗
� � � � ∗ ∗
1 1 1 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

⊗ ⊥ 0 � 1 ∗
⊥ ⊥ 0 ⊥ ⊥ ⊥
0 0 0 0 0 0
� ⊥ 0 � � ∗
1 ⊥ 0 � 1 ∗
∗ ⊥ 0 ∗ ∗ ∗

Assume that we are given a summary graph (R, T, S, P ) corresponding to a specific
show statement. Two special functions are used for extracting information about
fields and gaps for an individual node in the summary graph:

count : N → GFP

allforms : N → 2GFP

where GFP = (F → C) × (G → C) shows the number of occurrences of fields
and gaps in a specific form. The allforms function returns a set of such values,
corresponding to the various forms that may appear, and count counts disregarding
the form elements:

count(n) = (fcount(n, t(n)), gcount(n, t(n)))

allforms(n) =
⋃

k∈forms(t(n))

{(fcount(n, k), gcount(n, k))}
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where

forms(xml) =



{xml} if xml = <form atts> xml ′ </form>
and atts does not contain action

forms(xml ′) if xml = <name atts> xml ′ </name>
and name 6= form

or atts contains action

forms(xml1) ∪ forms(xml2) if xml = xml1 xml2
∅ otherwise

gcount(n, xml)(g) =



gcount(n, xml1)(g)
⊕ gcount(n, xml2)(g) if xml = xml1 xml2

gcount(n, xml ′)(g)
⊕ gcount(n, atts)(g) if xml = <name atts> xml ′ </name>

1 if xml = <[g]>

and n /∈ nodes(P (g))
∗ if xml = <[g]>

and n ∈ nodes(P (g))
0 otherwise

gcount(n, atts)(g) =



gcount(n, atts1)(g)
⊕ gcount(n, atts2)(g) if atts = atts1 atts2

1 if atts = <[g]>

and n /∈ nodes(P (g))
∗ if atts = <[g]>

and n ∈ nodes(P (g))
0 otherwise

fcount(n, xml)(f) =



fcount(n, xml1)(f)
⊕ fcount(n, xml2)(f) if xml = xml1 xml2

fcount(n, xml ′)(f) if xml = <name atts> xml ′ </name>
and name /∈ FIELDS

fc(n, atts) if xml = <name atts> xml ′ </name>
and name ∈ FIELDS
and atts contains name="f"

0 otherwise

The forms function finds the relevant form elements in the given template, gcount
counts the number of occurrences of a given gap name, and fcount counts the num-
ber of occurrences of a given field name. Note that the latter two functions need to
consider the gap presence map of the summary graph. For the field count we can
assume that only valid XHTML is shown because of the show analysis presented in
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the next section, and we can exploit the restrictions about input field elements de-
scribed in Section 2.3. The set FIELDS = {input, button, select, textarea, object}
contains all names of elements that define input fields. The function fc(n, atts)
counts the number of name-value pairs that may be produced: if atts contains
type="radio", then it returns �; otherwise, if atts contains a type attribute with
value reset, submit, or image, or an attribute with name disabled or declare, it re-
turns 0; otherwise, if it contains type="checkbox" or an attribute named multiple,
it returns ∗, and otherwise it returns 1. In order to detect whether disabled or
declare occur, the gap presence map and the string edges need to be consulted in
case of attribute gaps.

With these auxiliary functions in place, we can now define the value fp ∈ C rep-
resenting the number of occurrences of f in the possible unfoldings of the summary
graph:

fp =
⊔
r∈R

Φ(r)

If for every root, the number of occurrences is always 0, always �, or always 1,
the final result is 0, �, or 1, respectively; if it sometimes is � and sometimes 1,
the result is 1; and otherwise it is ∗. The function Φ traverses the nodes in the
summary graph, looking for applicable forms:

Φ(n) =
⊔

(ff ,gg)∈allforms(n)

infields(n, (ff , gg)) t
⊔

(n,h,m)∈T, h∈tgaps(n)

Φ(m)

The left-hand factor counts the field occurrences for each form element that occurs
directly in the template of n, while the right-hand factor looks at the templates
that may be plugged into gaps in n.

infields(n, (ff , gg)) = ff (f)⊕
⊕
h∈G

(gg(h)⊗ infollow (n, h))

infollow (n, h) =
⊔

(n,h,m)∈T

infields(m, count(m))

Given a current node n and an element (ff , gg) of GFP representing the fields
and gaps directly available in a particular form, the infields function sums the
field occurrences according to ff and those that may occur due to plug operations.
For the latter part, we iterate through the possible gaps and multiply each count
with the gap multiplicity. The infollow function follows the template edges and
recursively finds the number of field occurrences in the same way as outfollow but
now assuming that we are inside a form.

As usual, we can compute the least fixed point by iteration because the lattice
is finite and all operations are monotone. Since the count and allforms functions
never return ⊥, the result, fp, is always in the set {0, �, 1, ∗}. The desired properties
can now be verified by inspecting that

fp ∈ {1, �} for receive operations, and
fp 6= 0 for receive[] operations

for every summary graph computed for some show operation that is connected by
a receive edge to the receive operation in the flow graph.
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As the plug analysis, this receive analysis is both sound and complete with respect
to the summary graphs and the receive edges—assuming that only valid XHTML
is ever shown: for a receive f operation, the analysis determines that it cannot
fail if and only if for every label ` of a show node which has an edge to the receive

node, it is the case that in every XML document in L(summary`(x)), each form
without an action attribute produces exactly one f field value. A similar property
holds for receive[] operations.

For each receive and receive[] operation, we calculate fp for every summary
graph of an associated show operation. Thus, fp is calculated O(n2) times, where
n is the size of the original JWIG program. The auxiliary functions count and
allforms can be precomputed in time O(n). Each argument to infields denotes
a specific form element in a template constant. Since there are O(n) template
nodes and O(n) form elements in the program, both Φ and infields are given at
most O(n) different values as arguments. Since the lattice has constant height, we
therefore iterate through the summary graph O(n) times. Each iteration performs
a single traversal of the summary graph which takes time O(n2). In total, the
receive analysis runs in time O(n5) in the size of the original JWIG program.

5.3 Show Analysis

For every show statement in the JWIG program, we have computed a summary
graph that describes how the XML templates are combined in the program and
which XML documents may be shown to the client at that point. This gives us
an opportunity to verify that all documents being shown are valid with respect
to some document type. In particular, we wish to ensure that the documents are
valid XHTML 1.0 [Pemberton et al. 2000], which is the most commonly used XML
language for interactive Web services. XHTML 1.0 is the official XML version of
the popular HTML 4.01. It is relatively easy to translate between the two, so in
principle our technique works for HTML as well.

Validity of an XML document means that it is well-formed and in addition sat-
isfies some requirements given by a schema for the particular language. The first
part, well-formedness, essentially means that the document directly corresponds to
a tree structure whose internal nodes are elements by requiring element tags to bal-
ance and nest properly. This part comes for free in JWIG, since all XML templates
are syntactically required to be well-formed. The remaining validity requirements
specify which attributes a given element may have and which text and subelements
that may appear immediately below the element in the XML tree. Such properties
are specified using a schema language. In XHTML, the requirements are given by a
DTD (Document Type Definition) schema plus some extra restrictions that cannot
be formalized in the DTD language.

Our validation technique is parameterized by the schema description. Thereby we
expect that it will be straightforward to support, for instance, WML or VoiceXML
which are used for alternative interaction methods, in place of XHTML. Rather that
using DTD, we apply a novel schema language, Document Structure Description
2.0 (DSD2) [Møller 2002]. This schema language is more expressive than DTD,
so more validity requirements can be formalized. The expressive power of DSD2
is comparable to that of W3C’s XML Schema [Thompson et al. 2001], but DSD2
is significantly simpler, which is indicated below and substantiated in more detail
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in [Klarlund et al. 2002]. Because of its expressiveness and simplicity, DSD2 is an
ideal choice for the present application.

Recall from Section 2.4 that the PowerForms language for expressing high-level
form field validation constraints is integrated into JWIG by means of the show X
powerforms P operation. Since we have summary graphs corresponding to the P
expression, we can also verify that values of those expressions at runtime always
are valid PowerForms documents. In the following, we focus on the validation of
the XHTML documents; checking validity of the PowerForms documents is merely
a matter of using a schema for the PowerForms language instead of the XHTML
schema as parameter for the validation algorithm that we present in the following.

5.4 The Document Structure Description 2.0 Language

The DSD2 language is designed as a successor to the schema language described in
[Klarlund et al. 2000; 2002]. A DSD2 schema description of an XML language is
itself an XML document. A DSD2 processor is a tool that takes as input a DSD2
schema and an XML document called the instance document. First it normalizes
the instance document according to the schema, for instance, by inserting default
attributes and contents. Then it checks whether the normalized instance document
is valid, that is, that all validity requirements about the attributes and contents of
the elements are satisfied.

The following description of DSD2 is intended to give a brief overview—not to
define the language exhaustively. A normative specification document for DSD2 is
currently under development [Møller 2002].

Conceptually, a DSD2 schema consists of a list of rules. A rule is either a condi-
tional, a declaration, or a requirement. Furthermore, there are notions of uniqueness
and pointers which we can ignore here. To simplify the presentation, we omit a
description of the normalization phase and focus on the two most central phases:
declaration checking and requirement checking. Each of these two phases consist of
a traversal of the instance document tree where each element is processed in turn.
The current element is the one currently being processed.

A conditional rule contains a list of rules whose applicability is guarded by a
boolean expression. Only if the boolean expression evaluates to true for the current
element, the rules within are considered. Boolean expressions are built of the usual
boolean operators, together with element expressions which probe the name of
the current element, attribute expressions which probe the presence and values
of attributes, and parent, ancestor, child, and descendant operators which probe
whether certain properties, which are themselves specified as boolean expressions,
are satisfied for the elements above or below the current element in the instance
document tree.

In the declaration checking phase, it is checked that all present attributes and
contents in the current element are allowed, meaning that they are declared by ap-
plicable declaration rules. A declaration rule contains a list of attribute declarations
and contents declarations. An attribute declaration specifies that an attribute with
a given name is allowed in the current element provided that the value matches
a given regular expression. A contents declaration is a regular expression over
individual characters and elements that specifies a requirement for the presence,
ordering, and number of occurrences of subelements and character data. Elements
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are described using boolean expressions, as described above. A contents declaration
only looks at elements that are mentioned in the regular expression. This subse-
quence of the contents is called the mentioned contents. If the expression contains
any character subexpressions, all character data in the contents is included in the
mentioned contents. Checking a contents declaration succeeds if the mentioned
contents matches the regular expression. This technique allows the contents of an
element to be described by multiple regular expressions, each considering only a
subsequence of the contents. All attributes and contents that have been matched
by an applicable declaration are considered to be declared.

In the requirement checking phase, the requirement rules are considered. A re-
quirement rule contains boolean expressions that must evaluate to true for the
current element, provided that the rule is applicable for that element.

As indicated in the above description, the language is essentially built from
boolean logic and regular expressions. For convenience, specifications can be grouped
and named for modularity and reuse. Furthermore, the DSD2 schema can restrict
the name of the root element: for example, in XHTML, it must be html. DSD2
has full support for Namespaces [Bray et al. 1999]; for XHTML, the namespace
http://www.w3.org/1999/xhtml is used.

As an example, the following snippet of the DSD2 description of XHTML 1.0
describes dl elements:

<if><element name="h:dl"/>

<declare>

<attribute name="compact"><string value="compact"/></attribute>

<contents>

<repeat min="1"><union>

<element name="h:dt"/><element name="h:dd"/>

</union></repeat>

</contents>

</declare>

<rule ref="h:ATTRS"/>

</if>

These rules show that a dl element from the XHTML namespace, which is recog-
nized by the h prefix, may contain a compact attribute, provided that its value is
compact, and that the contents must contain at least one dt or dd element. Ad-
ditionally, ATTRS, which is defined elsewhere, describes some additional common
attributes that may occur.

The following example (abbreviated with “...”) describes a elements:
<if><element name="h:a"/>

<declare>

<attribute name="name"><stringtype ref="h:NMTOKEN"/></attribute>

<attribute name="shape">

<stringtype ref="h:SHAPE"/>

<default value="rect"/>

</attribute>

...

<contents>

<repeat><union>

<string/>

<boolexp ref="h:PHRASE"/>

...
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</union></repeat>

</contents>

</declare>

<rule ref="h:HREFLANG"/>

...

<require>

<not><ancestor><element name="h:a"/></ancestor></not>

</require>

</if>

This reads: If the current element is named “a”, then the subrules are applicable.
First, the attributes name, shape, etc. are declared. The stringtype constructs
are references to regular expressions defining the valid attribute values. For shape

attributes, a default is specified. Then, a contents declaration states that all text
is allowed as contents together with some contents expressions defined elsewhere.
After that, there are some references to rule definitions, and finally, there is a
requirement stating that a elements cannot be nested. The latter rule is an example
of a validity requirement that cannot be expressed by DTD or XML Schema.

As a final example, the following requirement can be found in the description of
input elements:

<require>

<or>

<attribute name="type">

<union><string value="submit"/><string value="reset"/></union>

</attribute>

<attribute name="name"/>

</or>

</require>

This states that there must be a type attribute with value submit or reset or a name

attribute. This is another validity requirement that cannot be expressed concisely
in most other schema languages. The whole DSD2 schema for XHTML 1.0 can be
found at http://www.brics.dk/DSD/xhtml1-transitional.dsd.

5.5 Show Analysis Using DSD2

We show below how the DSD2 processing algorithm explained in the previous sec-
tion generalizes from concrete XML documents to summary graphs. In fact, the
DSD2 language has been designed with summary graph validation in mind. Since
the DSD2 language is a generalization of the DTD language, the following algo-
rithm could be adapted to DTD. One benefit of using DSD2 is that every validity
requirement that merely appear as comments in the DTD schema for XHTML can
be formalized in DSD2, as exemplified in the previous section. Of course, there still
are syntactic requirements that even DSD2 cannot express. For instance, in tables,
the thead, tfoot, and tbody sections must contain the same number of columns, and
the name attributes of a elements must have unique values. Summary graphs clearly
do not have the power to count such numbers of occurrences, so we do not attempt
to also check these requirements. Still, our approach based on DSD2 captures more
syntactic errors than possible with DTD or XML Schema. Only the uniqueness
requirements specified by ID and IDREF attributes are not checked, but they do
not play a central role in the schema for XHTML anyway.
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Recall from Section 2.3 that we make a few modification of the documents at
runtime just before they are sent to the clients. It is trivial to modify the XHTML
schema to take these modifications into account. For instance, rather than requiring
one or more entries in all lists, the analysis can permit any number since lists with
zero entries are always removed.

Given a DSD2 schema and a summary graph SG associated to some show state-
ment, we must check that every XML document in L(SG) is valid according to
the schema. In contrast to the analyses described in the previous sections, we
will describe this one in a less formal manner because of the many technical de-
tails involved. Rather than showing all the complex underlying equation systems
or describing the entire algorithm in detailed pseudocode, we attempt to present
a concise overview of its structure. Again, we focus on the declaration checking
phase and the requirement checking phase. Since neither has side-effects on the
instance document, they can be combined into a single traversal. The main part of
the algorithm is then structured as two phases:

(1) Every boolean formula (including the subformulas) occurring in the schema is
assigned a truth value for every element that occurs in an XML template in
SG. This is done inductively in the structure of the formulas.

(2) For every element that occurs in an XML template in SG, the following steps
are performed:
(a) By considering the conditional rules in the schema, the declaration and

requirement rules that are applicable to the current element are found;
(b) declaration checking is performed; and
(c) requirement checking is performed.

If no violations are detected in the second phase, SG is valid, which implies that all
documents in L(SG) are valid. In a concrete implementation, the first phase is per-
formed lazily, by-need of the second phase. The evaluation of boolean expressions
and the declaration checking require further explanation:

Boolean expressions. Evaluation of boolean expressions is nontrivial (1) because
we now have to consider all the possible unfoldings of the summary graph and (2)
because of the context operators ancestor, descendant, etc. We apply a four-valued
logic for that purpose. Evaluating a boolean expression relative to an element
results in one of the following values:

true – if evaluating the expression on every possible occurrence of the element in
every possible unfolding of the summary graph would result in true;

false – if they all would result in false;
some – if some occurrence of the element in some unfolding would result in true

and others in false;
don’t-know – if the processor is unable to determine any of the above.

All boolean operators extend naturally to these values. The value don’t-know is for
instance produced by the conjunction of some and some. To evaluate ancestor and
descendant operations, additional traversals of the summary graph may be required.
In general, the number of traversals can be bounded by the maximal alternation
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depth of ancestor and descendant operators. For the XHTML schema, a total of
two traversals always suffice.

When evaluation of expressions in requirement rules results in false or some,
it means that invalid documents may be generated in the JWIG program, so an
appropriate warning message is produced. When evaluation of those expressions
results in don’t-know and also when evaluation of the guard expressions of condi-
tional schema rules result in some or don’t-know, we terminate with a “don’t know”
message. However, for our concrete XHTML schema, that can in fact never happen
since all the guard expressions only test the name of the current element.

Declaration checking. In the declaration checking step, we check that all at-
tributes and contents of the current element are declared by applicable declarations.
An attribute is declared by an attribute declaration if the attribute value matches
the regular expression of the declaration. In case the attribute is an attribute gap,
this amounts to checking inclusion of one regular language of Unicode strings in
another. However, it is possible that one attribute declaration specifies that a given
attribute may have one set of values and another declaration specifies that the same
attribute may also have another set of values. Therefore, in general, we check that
all values that are possible according to the string edges match some declaration.
If some attribute is not declared, the summary graph is not valid.

As explained in Section 5.4, a contents sequence matches a contents declara-
tion if the mentioned contents is in the language of the regular expression of the
declaration. In case there are no gaps in the contents, this is a simple check of
string inclusion in a regular language. If there are gaps, the situation is more
involved: the template edges from the gaps may lead to templates which at the
top-level themselves contain gaps. (The top-level of a template is the sequence of
elements, characters, and gaps that are not enclosed by other elements.) In turn,
this may cause loops of template edges. Therefore, in general, the set of possible
contents sequences forms a context-free language, which we represent by a context-
free grammar. Without such loops, the language is regular. The problem of decid-
ing inclusion of a context-free language in a regular language is decidable [Hopcroft
and Ullman 1979], but computationally expensive. For that reason, we approxi-
mate the context-free language by a regular one: whenever a loop is found in the
context-free grammar, we replace it by the regular language A∗ where A consists
of the individual characters and elements occurring in the loop. This allows us to
apply a simpler regular language inclusion algorithm. Although loops in summary
graphs often occur, our experiments show that it is rare that this approximation
actually causes any imprecision. The reason for this is that summary graph loops
result from iteratively or recursively constructed XML values in the JWIG program,
and for such values, the XHTML schema typically does not impose any ordering
requirements on the contents sequences. More precise approximation techniques
could of course also be used [Mohri and Nederhof 2001]. In addition to checking
that all contents declarations are satisfied, we check that all parts of the contents
have been declared, that is, matched by some declaration. If not, the summary
graph is not valid. Again, if any declaration contains a character subexpression, all
character data is considered declared.
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Compared with the technique described in [Brabrand et al. 2001], we have now
moved from an abstract version of DTD to the more powerful DSD2 schema lan-
guage. Furthermore, by the introduction of four-valued logic for evaluation of
boolean expressions, we have repaired a defect that in rare cases caused the old
algorithm to fail.

The whole algorithm runs in linear time in the size of the XML templates. We
show experimental results in the next section. The algorithm is sound; that is, if
it validates a given summary graph it is certain that all unfoldings into concrete
XML documents are also valid. Because of the possibility of returning “don’t know”
and of the approximation of context-free languages by regular ones, the algorithm
is generally not complete. An alternative to our approach of “giving up” when
these situations occur would be to branch out on all individual unfoldings and use
classical two-valued logic. This indicates that the problem is decidable. However,
the complexity of the algorithm would then increase significantly. Anyway, for the
XHTML schema, false errors can only occur in the rare cases where we actually
need to approximate context-free languages by regular ones, as mentioned above.

6. IMPLEMENTATION AND EVALUATION

To make experiments for evaluating the JWIG language design and the performance
of the program analyses, we have made a prototype implementation. It consists
of the following components, roughly corresponding to the structure in Figures 6
and 7:

—a simple desugarer, made with JFlex [Klein 2001], for translating JWIG programs
into Java code;

—the <bigwig> low-level runtime system [Brabrand et al. 1999] which in its newest
version [Møller 2001a] is based on a module for the Apache Web Server [Behlen-
dorf et al. 2002] and extended with Java support;

—a Java-based runtime system for representing and manipulating XML templates;
—a Java implementation of the PowerForms tool [Brabrand et al. 2000];
—a part of the Soot optimization framework for Java [Vallee-Rai et al. 1999; Sun-

daresan et al. 2000], which converts Java bytecode to a more convenient three-
address instruction code language, called Jimple;

—a flow graph package, which operates on the Jimple code generated by Soot and
also uses Soot’s CHA implementation;

—a finite-state automaton package with UTF16 Unicode alphabet and support for
all standard regular operations [Møller 2001b];

—a summary graph construction package which also performs the string analysis;
—a plug and receive analyzer which performs the checks described in Section 5.1

and 5.2; and
—a DSD2 validity checker with summary graph support and schemas for XHTML 1.0

and PowerForms.

All parts are written in Java, except the low-level runtime system which is written
in C. The Java part of the runtime system amounts to 3000 lines, and the analysis
framework is 12,500 lines. A user manual is available online [Christensen and Møller
2002].
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Fig. 13. A snapshot of the Memory Game being played.

6.1 Example: The Memory Game

To give a more complete example of a JWIG service, we present the well-known
Memory Game, where the player must match up pairs of cards lying face down.
First, the number of pairs is chosen, next the game itself proceeds iteratively, and
finally the player is congratulated. A snapshot of the game in progress is seen in
Figure 13.

The main session, presented in Figure 14, looks just like a corresponding se-
quential Java program. The templates being used are presented in Figure 15. The
construction of a grid of cards is performed by the makeCardTable method presented
in Figure 16. The class representing individual cards is seen in Figure 17. In all,
the Memory Game is written in 163 lines of JWIG.

By itself, the session concept and the XML templates simplify the program com-
pared to solutions in JSP or Servlets. Furthermore, since the example is analyzed
without errors, we know that no JWIG exceptions will be thrown while the game
is being played. In particular, we are guaranteed that all documents being shown
are valid XHTML according to the strict standard imposed by the DSD2 schema.

The JWIG runtime system, which is also used in the <bigwig> project, is tailor-
made for session-based Web services. Each session thread is associated a unique
URL which refers to a file on the server. This file at all times contains the most
recent page shown to the client. The session code runs as a JVM thread that
lives for the entire duration of the session. In contrast, sessions in Servlet and
JSP services run as short-lived threads where the session identity is encoded using
cookies or hidden input fields, as described in Section 1.3. This precludes sessions
from being bookmarked, such that the client cannot suspend and later resume a
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public class Game extends Session {

public void main() {

// ask for number of cards

int howmany;

do {

show wrap <[ body = welcome <[ atmost = images.length ]]);

howmany = Integer.parseInt(receive howmany);

} while (howmany < 1 || howmany > images.length);

// generate random permutation of cards

Card[] cards = new Card[howmany*2];

Random random = new Random();

for (int i = 0 ; i < howmany ; i++) {

for (int c = 0 ; c < 2 ; c++) {

int index;

do {

index = random.nextInt(howmany*2);

} while (cards[index] != null);

cards[index] = new Card(i);

}

}

// play the game

int pairsleft = howmany;

int moves = 0;

show makeCardTable(cards);

while (pairsleft > 0) {

// first card picked

int firstcard = Integer.parseInt(receive submit );

cards[firstcard].status = 1;

show makeCardTable(cards);

// second card picked

int secondcard = Integer.parseInt(receive submit);

cards[secondcard].status = 1;

moves++;

// check match

if (cards[firstcard].value == cards[secondcard].value) {

cards[firstcard].status = 2;

cards[secondcard].status = 2;

if (--pairsleft > 0)

show makeCardTable(cards);

} else {

show makeCardTable(cards);

cards[firstcard].status = 0;

cards[secondcard].status = 0;

}

}

// done, show result

exit farewell <[ howmany = howmany, moves = moves ];

}

}

Fig. 14. The main session of the Memory Game.
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private static final XML wrap = [[

<html>
<head><title>The JWIG Memory game</title></head>
<body><form><[body]></form></body>

</html>
]];

private static final XML welcome = [[

<h3>Welcome to the JWIG Memory game!</h3>
<p>How many pairs of cards do you want (from 1 to <[ atmost ]>)?</p>
<input type="text" name=" howmany"/>

]];

private static final XML farewell = wrap <[ body = [[

<h3>Thank you for playing this game!</h3>
<p>You found all <[ howmany]> pairs using <[ moves]> moves.</p>

]] ];

Fig. 15. Templates from the Memory Game.

private XML makeCardTable(Card[] cards) {

XML table = [[ <table><[ row ]></table> ]];

for (int y=0; y < (cards.length+COLS-1)/COLS; y++) {

XML row = [[ <tr><[elem ]></tr><[row ]> ]];

for (int x=0; x < COLS; x++) {

XML elem = [[ <td><[ contents ]></td><[ elem ]> ]];

int index = y*COLS+x;

if (index < cards.length) {

elem = elem <[ contents = cards[index].makeCard(index) ];

}

row = row <[ elem = elem ];

}

table = table <[ row = row ];

}

return wrap <[ body = table ];

}

Fig. 16. Generating a grid of cards in the Memory Game.

session, and the history buffer in the browser typically gets cluttered with references
to obsolete pages. In our solution, the session URL functions as an identity of the
session, which avoids all these problems. These aspects are described in more detail
in [Brabrand et al. 2002].

If we introduce an error in the program, by forgetting the name attribute in the
input field in the welcome template, then the JWIG analyzer produces the following
output:

*** Field ‘howmany’ is never available on line 68

*** Invalid XHTML at line 49

--- element ’input’: requirement not satisfied:

<or xmlns="http://www.brics.dk/DSD/2.0/error">

<attribute name="type">

<union>
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private class Card {

public int status;

public int value;

public Card(int value) {

this.status = 0;

this.value = value;

}

public XML makeCard(int index) {

switch(status) {

case 0:

return [[ <input type="image" alt="card"
src=[ image ] name=[ index ] /> ]]

<[ image = back_image, index = index ];

case 1:

return [[ <img src=[ image ] alt=[ num] /> ]]

<[ image = images[value], num = value ];

case 2:

return [[ <img src=[ image ] alt="" /> ]]

<[ image = blank_image ];

default:

return null;

}

}

}

Fig. 17. Representing a card in the Memory Game.

<string value="submit" />

<string value="reset" />

</union>

</attribute>

<attribute name="name" />

</or>

In the first line, the receive analysis complains that the howmany field is never
available from the client. The remainder of the error message is from the show
analysis, which notices that the input element violates the quoted requirement
from the XHTML schema. This particular validity error is not caught by DTD
validation of the generated document. If the involved element contained gaps, the
error message would include a print of all relevant template and string edges and
values of the gap presence map, which shows the relevant plug operations. Clearly,
such diagnostics are useful for debugging.

6.2 Performance

The JWIG implementation may be evaluated with respect to compile-time, analysis-
time, or runtime. The compile-time performance is not an issue, since JWIG pro-
grams are simply piped through a JFlex desugarer and compiled using a standard
Java compiler. The JWIG runtime performance is not particularly interesting, since
we reuse the <bigwig> runtime system and the standard J2SE JVM. The runtime
implementation of the XML values is quite mature. We have optimal runtime com-
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Name Lines Templates Shows/Exits Total Time

Chat 79 4 3 9.718

Guess 97 8 7 11.126

Calendar 132 6 2 10.032

Memory 163 9 6 15.136

TempMan 216 13 3 11.016

WebBoard 766 32 24 13.507

Bachelor 1078 88 14 131.320

Jaoo 3923 198 9 39.929

Fig. 18. The benchmark services.

Name Load Construct Size Before Simplify Size After

Chat 5.893 1.762 246/399 0.274 107/99

Guess 6.380 1.798 326/506 0.255 124/100

Calendar 6.172 1.957 396/685 1.957 124/127

Memory 6.270 1.997 469/789 0.293 144/129

TempMan 6.084 2.370 792/1440 0.965 205/195

WebBoard 5.973 2.660 990/1330 0.906 422/287

Bachelor 5.777 4.496 2311/3488 22.037 1059/914

Jaoo 6.138 5.588 3078/4484 14.208 1406/1008

Fig. 19. Flow graph construction.

plexities, in the sense that a plug operation always takes constant time and the
printing of a document is linear in the size of the output. The critical component
in our system is the extensive collection of static analyses that we perform on the
generated class files.

As shown in Figure 7, the static analysis is a combination of many components,
which we in the following quantify separately. Our benchmark suite, shown in
Figure 18, is a collection of small- to medium-sized JWIG services, most of which
have been converted from corresponding <bigwig> applications [Brabrand et al.
2001]. The right-most column shows the total time in seconds for the entire suite
of program analyses. All experiments are performed on a 1 GHz Pentium III with
1 GB RAM running Linux. For all benchmarks, at most 150 MB memory is used.

The four larger ones are an XML template manager where templates can be
uploaded and edited (TempMan), an interactive Web board for on-line discussions
(WebBoard), a system for study administration (Bachelor), and a system for man-
agement of the JAOO 2001 conference (Jaoo).

Figure 19 shows the resources involved in computing the flow graphs. For each
benchmark we show the time in seconds used by Soot, the time in seconds used
by Phases 1 through 7 described in Section 3, the size of the resulting flow graph,
the time in seconds used by the simplifying Phase 8, and the size of the simplified
flow graph. The flow-graph sizes are shown as number of nodes and number of flow
edges. The loading time is dominated by initialization of Soot. Phases 1 through 7
of the flow-graph construction are seen to be linear in the program size. The time
for the simplification phase strongly depends on the complexity of the document
constructions, which explains the relatively large number for the Bachelor service.
For all benchmarks, the simplification phase substantially reduces the flow-graph
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Name Time Largest Size

Chat 0.136 2/1/5

Guess 0.114 3/2/2

Calendar 0.347 5/9/5

Memory 2.193 7/8/5

TempMan 0.275 8/9/5

WebBoard 1.473 9/11/11

Bachelor 38.478 47/83/24

Jaoo 5.260 33/45/48

Fig. 20. Summary graph construction.

Name Plug Receive Show

Chat 0.004 0.014 1.645

Guess 0.003 0.011 2.565

Calendar 0.003 0.006 1.353

Memory 0.003 0.008 4.372

TempMan 0.003 0.012 1.370

WebBoard 0.005 0.013 2.477

Bachelor 0.007 0.016 60.509

Jaoo 0.018 0.007 8.710

Fig. 21. Summary graph analysis.

size. Furthermore, recall that before the simplification phase, flow edges may have
multiple variables, while after simplification, they all have exactly one variable.

Figure 20 quantifies the computation of summary graphs, including the string
analysis. For each benchmark we show the total time in seconds and the size of the
largest summary graph, in terms of nodes, template edges, and nontrivial string
edges. The relatively large numbers for the Bachelor example correctly reflects that
it constructs complicated documents. Without graph simplification, the total time
for the Memory example blows up to more than 15 minutes, while the Jaoo example
was aborted after 90 minutes. We conclude that summary graph construction
appears to be inexpensive in practice and that graph simplification is worth the
effort.

Figure 21 deals with the subsequent analysis of all the computed summary graphs.
For each benchmark we show the total time in seconds for each of the three analyses
and the total number of false errors generated by the conservative analyses.

We conclude that the JWIG prototype implementation is certainly feasible to
use, but that there is room for performance improvements for the implementation.

6.3 Precision

Since our analyses are sound, we know that accepted programs will never contain
errors. Thus, the evaluation of precision will focus on our ability to accept safe
programs and the frequency of false errors. Among our benchmark programs, none
contained plug or receive errors and all were accepted by the corresponding analyses.
The larger benchmarks were flagged by the show analysis, but, by careful inspection,
all complaints were seen to correctly identify actual XHTML validity errors. Thus,
the analysis appears to be precise enough to serve as a real help to the programmer.
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All in all, we encountered no false errors. It is, of course, easy to construct programs
that will be unfairly rejected, but those do not seem to occur naturally.

7. PLANS AND IDEAS FOR FUTURE DEVELOPMENT

Our current system can be extended and improved in many different directions
which we plan to investigate in future work. These can be divided into language
design, program analysis, and implementation issues, and are briefly described in
the following.

7.1 Language design

So far, the design of JWIG has focused on two topics that are central to the de-
velopment of interactive Web services: sessions and dynamic construction of Web
documents. However, there are many more topics that could benefit from high-level
language-based solutions, as shown in [Brabrand et al. 2002].

The current XML cast operation in JWIG is somewhat unsatisfactory for two
reasons: (1) if a cast fails due to invalid XHTML, an exception is not thrown
immediately since it is not detected until a subsequent show operation; and (2) its
expressiveness is limited—for instance, unions of templates cannot be expressed.
One solution to this may be to use DSD2 descriptions instead of constant templates
in the cast operations. However, to generalize the analyses correspondingly, a
technique for transforming a DSD2 description of an XML language into a summary
graph is needed. We believe that this is theoretically possible—further investigation
will show whether it is also practically feasible.

Another idea is to broaden the view from interactive Web services to whole Web
sites comprising many services and documents. The Strudel system [Fernandez
et al. 1999] has been designed to support generation and maintenance of Web sites
according to the design principle that the underlying data, the site structure, and
the visual presentation should be separated. A notion of data graphs allows the
underlying data to be described, a specialized query language is used for defining the
site structure, and an HTML template language that resembles the XML template
mechanism in JWIG defines the presentation. We believe that the development of
interactive services can be integrated into such a process. For sites that comprise
both complex interactive session-based services and more static individual pages,
the concepts in the Service.Session and Service.Page classes could be applied.
JWIG could also benefit from a mechanism for specifying dependencies between
the pages or sessions and the data, for instance, such that pages are automatically
cached and only recomputed when certain variables or databases are modified.

We have shown that our template mechanism is suitable for constructing XHTML
documents intended for presentation. If the underlying data of a Web service is
represented with XML, as suggested by Strudel, we will need a general mechanism
for extracting and transforming XML values. Currently, we only provide the plug
operation for combining XML templates—a converse “unplug” operation would
be required for deconstructing XML values. Preliminary results suggest that our
notion of summary graphs and our analyses generalize to such general XML trans-
formations [Christensen et al. 2002]. XDuce [Hosoya and Pierce 2000] is a related
research language designed to make type-safe XML transformations. In XDuce,
types are simplified DTDs where we instead use the more powerful DSD2 notation.
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Furthermore, XDuce is a tiny functional language while JWIG contains the entire
Java language. Instead of relying on a type system for ensuring that the various
XML values are valid according to some schema definition, we perform data-flow
analyses based on summary graphs. Based on these ideas, a current project aims
to make JWIG a general and safe XML transformation language.

The XML template mechanism in JWIG can be separated from the session-based
model. Thereby, the XML template mechanism could be integrated into, for in-
stance, Servlets, replacing its output stream approach for constructing XHTML
documents, and the plug and show analyses could then be applied to obtain the
static guarantees. However, the receive analysis depends on the session-based
model, which is not available in Servlets. Alternatively, our language design and
program analysis ideas are readily applicable to other languages that construct
XML values—all that is needed is a means for obtaining flow graphs similar to
ours.

7.2 Program analysis

The experiments indicate that the notion of summary graphs is suitable for mod-
eling the XML template mechanism and that the analysis precision is adequate.
However, the preliminary string analysis described in Section 4.1 can be improved.
The modular design of the analyses makes it possible to replace this simple string
analysis by a more precise one, such as [Christensen et al. 2003]. For example,
string concatenation operations can be modeled more precisely by exploiting the
fact that regular languages are closed under finite concatenation. Because of loops
in the flow graphs, this will in general produce context-free languages so a suitable
technique for approximating these by regular languages is needed. That essentially
amounts to applying widening for ensuring termination. Other operations, such
as the substring methods, can also easily be modeled more precisely than with
anystring. An advanced version of such an analysis would apply flow-sensitivity,
such that, for example, if statements that branch according to the value of a string
variable would be taken into account, and instead of modeling receive by anystring,
the regular languages provided by PowerForms specifications could be applied. A
natural extension to these ideas would be to add a “regular expression cast” oper-
ator to the JWIG language. As with the other cast operations, that would provide
a back-door to the analysis, which occasionally can be convenient no matter how
precise the analysis may be.

The current program analysis is based on the assumption that the medium used
for communication with the clients is XHTML. However, since the show analysis is
parameterized by a DSD2 description, validity with respect to any XML language
describable by DSD2 can be checked instead. Two obvious alternatives are WML,
Wireless Markup Language [WAP Forum 2001], which is used for mobile WAP
devices with limited network bandwidth and display capabilities, and VoiceXML,
Voice Extensible Markup Language [Boyer et al. 2000], for audio-based dialogs.
Such languages can be described precisely with DSD2. Only the receive analysis
requires modification since it needs to identify the forms and fields, or whatever the
equivalent notions are in other formalisms.
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7.3 Implementation

Our current implementation is a prototype developed to experiment with the design
and test the performance. This means that there are plenty of ways to improve the
performance of the analysis and the runtime system.

We plan to apply the metafront syntax macros [Brabrand et al. 2003] in a future
version to improve the quality of the parsing error messages. This will also allow us
to experiment with syntax macros as a means for developing highly domain-specific
languages in the context of Java-based interactive Web services.

Finally, we believe that it is possible to significantly improve the runtime per-
formance for JWIG services by integrating the JWIG runtime system with a Java
Enterprise Edition server. For instance, this allows Service.Page to become essen-
tially as efficient as JSP code by exploiting that the threads are never suspended
by show statements. JRockit [Appeal Virtual Machines 2002] is a commercial JVM
implementation which is tuned for Web servers with high loads. In particular, it
supports light-weight threads which will significantly reduce the overhead induced
by our session model.

8. CONCLUSION

We have defined JWIG as an extension of the Java language with explicit high-level
support for two central aspects of interactive Web services: (1) sessions consisting
of sequences of client interactions and (2) dynamic construction of Web pages.
Compared to other Web service programming languages, these extensions can im-
prove the structure of the service code. In addition to being convenient during
development and maintenance of Web services, this allows us to perform special-
ized program analyses that check at compile-time whether or not runtime errors
may occur due to the construction of Web pages or communication with the clients
via input forms. The program analyses are based on a unique notion of summary
graphs which model the flow of document fragments and text strings through the
program. These summary graphs prove to contain exactly the information needed
to provide all the desired static guarantees of the program behavior.

This article can be viewed as a case study in program analysis. In contains a total
of seven analyses operating on different abstractions of the source program: one
for making receive edges during flow-graph construction, the reaching definitions
analysis in the flow-graph simplification phase, the string analysis, the summary
graph construction, and the plug, receive, and show analyses. The whole suite of
analyses is modular in the sense that each of them easily can be replaced by a more
precise or efficient one, if the need should arise. If, for example, future experience
shows that the control-flow information in the flow graphs is too imprecise, one
could apply a variable-type analysis [Sundaresan et al. 2000] instead of CHA. Or,
if the string analysis should turn out to be inadequate for developing, for example,
WML services, it could be replaced by another. Analysis correctness is given by the
correctness of each phase. For instance, the flow graphs conservatively approximate
the behavior of the original JWIG programs, the summary graphs conservatively
model the template constructions with respect to the flow graphs, and the validity
results given by the show analysis are conservative with respect to the summary
graphs.
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The language extensions permit efficient implementation, and despite the theo-
retical worst-case complexities of the program analyses, they are sufficiently precise
and fast for practical use. For our benchmark suite we have encountered no false
errors and the overhead of analysis is small enough to fit into a normal development
cycle.

All source code for our JWIG implementation, including API specifications and
the DSD2 schema for XHTML 1.0, is available online from http://www.jwig.org/.
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