
FUSE C/C++ API
Developers Guide

NT107-0068- Issue 8

ii
Contacting Nallatech:

Support:

WWW:

Go to www.nallatech.com and click ‘support’.

Email:

support@nallatech.com

Headquarters

Europe and Asia-Pacific: North America: Western Sales Office and Design Center
Nallatech Nallatech Inc Nallatech Inc
Boolean House 12565 Research Parkway 226 Airport Parkway
One Napier Park Orlando Suite 470
Cumbernauld Florida 32826 San Jose 95110-1004
Glasgow G68 0BH USA USA
UK

Phone/Fax

Europe and Asia-Pacific: North America: Western Sales Office and Design Center
Phone: +44 (0)1236 789500 Phone: +1 407 384 9255 Phone: +1 408 467 5075
Fax: +44 (0)1236 789599 Fax: +1 407 384 8555 Fax: +1 408 436 5402

WWW:

www.nallatech.com
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com
http://www.nallatech.com
http://www.nallatech.com
mailto:support@nallatech.com

NT107-00
Document Name: FUSE C/C++ API Developers Guide

Document Number: NT107-0068

Issue Number: Issue 8

Date of Issue: 14/09/04

Revision History:

Trademark Information

The Nallatech Logo, the DIME logo, the DIME-II logo, FUSE, FIELD Upgradeable Systems Environment, DIME, DIME-II,
TCL Plug-In for FUSE, and the “Bally”, Ben and “Strath” product name prefixes are all trademarks of Nallatech Limited.
“The Algorithms to Hardware Company”, “Making Hardware Soft”, “FPGA-Centric Systems”, “the only logical
solution” and “software defined systems” are Service Marks of Nallatech Limited.

All products or brand names mentioned herein are used for identification purposes only and are trademarks,
registered trademarks, or service marks of their respective owners.

Copyright Information

This document, which is supplied in confidence, is the copyright property of Nallatech Limited. Neither the whole, nor
any extract may be disclosed, loaned, copied or used for any purpose other than those purposes for which written
permission was given at the time of release. Application for any uplifting or relaxation of these restrictions must be
made in writing to Nallatech Limited, who may at their discretion refuse any such application or give it qualified or
absolute approval.

Copyright ©1993 - 2004 Nallatech Limited

All Rights Reserved

Date Issue Number Revision

14/09/2004 8 New template
68 Issue 8 September 14, 2004 www.nallatech.com iii

http://www.nallatech.com

iv
 www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00
Contents

About this Developers Guide ... xi

Part I:Introduction.. 1

FUSE C/C++ API Overview ... 3
Key Features ... 3

Getting Started ... 5
Installation .. 5

Host System Requirements.. 5
Software Installation .. 5
Initial Confidence Test .. 6

Part II:Implementation ... 7

Using FUSE C/C++ API ... 9
General Implementation Information .. 9

Examples ..11
Fundamental Steps ...11
Locating and Opening Examples ...11
Device Configuration Examples ..11
DMA Transfer Examples ...12
Non-threaded Interrupts Example ..12

Part III:Reference Information..13

Functions By Category ...15
Locating Cards ...15
Opening and Closing the Card ..15
Oscillator ..15
LEDs ..15
Reset ...15
Interrupts ..16
DMA Transfers ..16
Device Configuration ...16
Card/System Definition Files ..17
JTAG ..17
System Information and Control ..17
68 Issue 8 September 14, 2004 www.nallatech.com v

http://www.nallatech.com

vi
Card/Module/Device Information ..17
Programmable Power Supplies (PPS) ...18
All I/O ...18
Multiple Configuration GUI ...18

Functional Reference ...19
DIME_AddressWriteSingle ...19
DIME_CardControl ..20
DIME_CardControlPtr ..20
DIME_CardResetControl ..20
DIME_CardResetStatus ...22
DIME_CardStatus ...23
DIME_CardStatusPtr ..24
DIME_CloseCard ...25
DIME_CloseLocate ..25
DIME_ConfigCard ..26
DIME_ConfigControl ...26
DIME_ConfigDevice ...27
DIME_ConfigGetBitsFilename ...28
DIME_ConfigGetBitsMemory ..28
DIME_ConfigModule ..29
DIME_ConfigOnBoardDevice ...29
DIME_ConfigSetBitsFilename ...30
DIME_ConfigSetBitsFilenameAndConfig ..30
DIME_ConfigSetBitsMemory ...31
DIME_ConfigSetBitsMemoryAndConfig ..32
DIME_ConfigStatus ...32
DIME_DataRead ...33
DIME_DataReadSingle ...33
DIME_DataWrite ...34
DIME_DataWriteSingle ...34
DIME_DeviceControl ..35
DIME_DeviceControlPtr ..35
DIME_DeviceStatus ...36
DIME_DeviceStatusPtr ..38
DIME_DMAClose ..39
DIME_DMAControl ...39
DIME_DMAOpen ...41
DIME_DMARead ..41
DIME_DMAReadToLockedMem ...42
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00
DIME_DMAStatus ..43
DIME_DMAWrite ..45
DIME_DMAWriteFromLockedMem ...46
DIME_GetCurrentHandle ...47
DIME_GetError ..48
DIME_GetLocateVersionNumber ...48
DIME_GetVersionNumber ...48
DIME_InterruptControl ..49
DIME_InterruptStatus ..51
DIME_JTAGControl ...53
DIME_JTAGStatus ..54
DIME_LoadCardDefinition ..54
DIME_LoadSystemDefinition ...54
DIME_LocateCard ...55
DIME_LocateStatus ...57
DIME_LocateStatusPtr ..59
DIME_LockMemory ..59
DIME_MConfigGUI ...60
DIME_MConfigGUIExit ...61
DIME_MemConfigDevice ...61
DIME_MemConfigOnBoardDevice ...62
DIME_MemReadbackDevice ..62
DIME_MemReadbackOnBoardDevice ..63
DIME_Miscioctl ...63
DIME_ModuleControl ...63
DIME_ModuleControlPtr ..66
DIME_ModuleStatus ...66
DIME_ModuleStatusPtr ...68
DIME_OpenCard ...69
DIME_Peripheralioctl ...69
DIME_PPSControl ...70
DIME_PPSStatus ..70
DIME_ReadLEDs ..71
DIME_ReadPIO ...72
DIME_ReadPIODirection ...72
DIME_SaveCardDefinition ...72
DIME_SaveSystemDefinition ..73
DIME_SetOscillatorFrequency ..74
DIME_ShowMConfigGUI ...75
68 Issue 8 September 14, 2004 www.nallatech.com vii

http://www.nallatech.com

viii
DIME_SystemControl ..75
DIME_SystemStatus ..76
DIME_SystemStatusPtr ..76
DIME_UnLockMemory ...77
DIME_WriteLEDs ..78
DIME_WritePIO ...78
DIME_WritePIODirection ..78

Legacy Functions ...79
CloseDIMEBoard ..79
OpenDIMEBoard ..80
GetDIMEHandle ..80
DIME_SmartScan ..81
DIME_VirtexReset ...81
DIME_VirtexResetEnable ...81
DIME_VirtexResetDisable ...81
DIME_SystemReset ...82
DIME_SystemResetEnable ...82
DIME_SystemResetDisable ...82
DIME_PCIReset ...82
DIME_ReadDigitalIO ..83
DIME_WriteDigitalIO ..83
DIME_ReadDigitalIODirection ..83
DIME_WriteDigitalIODirection ...83
DIME_VirtexIntPin ...84
DIME_InterfaceFlagBusy ...84
DIME_InterfaceFlagEmpty ..84
DIME_InterfaceFlagVirtexReadEmpty ..85
DIME_InterfaceFlagVirtexWriteFull ...85
DIME_JTAGTurboDisable ...85
DIME_JTAGTurboEnable ...85
DIME_BootVirtexSingle ..86
DIME_BootDevice ...86
DIME_SetFilename ...87
DIME_GetFilename ...87
DIME_SetFilenameAndConfig ..88
DIME_SaveSystemConfig ..88
DIME_LoadSystemConfig ...89
DIME_GlobalMode ..89
DIME_GetMotherBoardType ..90
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00
DIME_GetMultiConfigLicence ...90
DIME_ReadSlotUsed ..90
DIME_GetNumberOfModules ..91
DIME_GetFailedMDFFileName ...91
DIME_GetModuleDIMECode ..91
DIME_GetNumberOfDevices ...92
DIME_GetModuleDescription ...92
DIME_GetModuleIconFilename ..92
DIME_GetModuleImageFilename ...93
DIME_GetDeviceIDCode ..93
DIME_GetDeviceType ...93
DIME_GetDeviceXOffset ..94
DIME_GetDeviceYOffset ...94
DIME_GetDeviceWidth ...94
DIME_GetDeviceHeight ...95
DIME_GetDeviceDescription ..95
DIME_GetDeviceIconFilename ...96

Version History List ...97
New in version 1.9 ...97
New in version 1.6 ...97
68 Issue 8 September 14, 2004 www.nallatech.com ix

http://www.nallatech.com

x
 www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
About this Developers Guide
This Developers Guide provides detailed information on the FUSE C/C++ API. It allows you to become
acquainted with the API, its features and the functionality it provides. After reading the introduction you
should proceed with installation instructions then work through the examples which provide a basic
starting point for working with the API. The reference section provides a list of functions which can be
used in conjunction with the FUSE C/C++ API.

Symbols Used

Throughout this Guide there are symbols to draw attention to important information:

The red arrow symbol indicates a set of procedures to follow, such as installing
software or setting up hardware.

The blue ‘i’ symbol indicates useful or important information.

The red ‘!’ symbol indicates a warning, which requires special attention.

Reference Guide Format

The Reference Guide is divided into Sections, which are grouped into Parts. The parts divide the
document as follows:

• Introduction: Provides a brief introduction to the Developers Guide and the FUSE C/C++
API. Installation instructions are also described here

• Implementation: Provides details on how to use the FUSE C/C++ API and example
applications

• Reference Information: Provides reference information on the FUSE API functions. Use this
section as a 'quick reference' to the API functions
68 Issue 8 September 14, 2004 www.nallatech.com xi

http://www.nallatech.com

xii

About this Developers Guide
Related Documentation

• Nallatech FUSE System Software User Guide

Abbreviations

• API: Application Program Interface

• DIME: DSP and Image Processing Modules for Enhanced FPGAs

• DIMESDL: DIME Software Development Library

• DMA: Direct Memory Access

• FPGA: Field Programmable Gate Array

• FUSE: Field Upgradeable System Environment

• GUI: Graphical User Interface

• I/O: Input/Output

• PPS: Programmable Power Supplies

• SRAM: Static Random Access Memory

Typographical Conventions

The following typographical convention are used in this manual:

• Red text indicates a cross-reference to information within the document set you are
currently reading. Click the red text to go to the referenced item. To return to the original
page, right-click anywhere on the current page and select Go To Previous View.

• Blue underlined text indicates a link to a Web page. Click blue-underlined text to browse the
specified Web site.

• Italics denotes the following items:

- References to other documents:

See the FUSE System Software User Guide for more information.

- Emphasis in text:

Enable Loopback should not be enabled until all other registers have been set up.

FUSE Naming Conventions

Please note that the FUSE C/C++ API clocks are named differently in the FUSE System Software
compared to this Developers Guide. The clock naming conventions are shown in Table 1 on page xii.

Comments and Suggestions

Clock Names in FUSE Clock Names in Documentation

System Clock (SYSCLK) Clock A (CLK A)

DSP Clock (DSPCLK) Clock B (CLK B)

Pixel Clock (PIXCLK) Clock C (CLK C)

Table 1: FUSE Naming Conventions
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
At the back of this book, you will find a remarks form. We welcome any comments you may have on our
product or its documentation. Your remarks will be examined thoroughly and taken into account for
future versions of Nallatech products.
68 Issue 8 September 14, 2004 www.nallatech.com xiii

http://www.nallatech.com

xiv

About this Developers Guide
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00
Part I:Introduction
This part of the Reference Guide provides an introduction to the FUSE C/C++ API and outlines its key features and
functionality. Step-by-step installation instructions are also included in the Getting Started section.
68 Issue 8 September 14, 2004 www.nallatech.com 1

http://www.nallatech.com

2
 www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Section 1

FUSE C/C++ API Overview
In this section:

• FUSE C/C++ API Key Features

1.1 Key Features
The FUSE API is a pure software product that allows the Nallatech hardware to be easily integrated with software
removing any interfacing issues. Developers can create their own applications, using the FUSE API in addition to their
own code, to interface directly with their Nallatech hardware. The key features of the FUSE C/C++ API include:

• Fast and simple device configuration

• Multiple card support

• Multiple interface support

• Multiple operating system support

• Interfacing & control of Nallatech hardware features

• Generic function interface

Figure 1 on page 4 shows the layered API approach to interfacing with Nallatech hardware.
68 Issue 8 September 14, 2004 www.nallatech.com 3

http://www.nallatech.com

4

FUSE C/C++ API Overview
The hardware abstract layer interfaces with the custom Nallatech hardware and cannot be accessed by developers.
Access to this layer is only possible indirectly through the developer layer, which effectively removes all hardware
interfacing issues. The interface to the hardware abstract layer is therefore not provided and is only used for internal
development by Nallatech. The developer layer is the main layer used by developers when interfacing with the board
for custom applications. It consists of a library called DIMESDL (DIME Software Development Library), which contains
functions that are detailed later in this Developers Guide. The application layer, intended for high level user interface
access, uses functions from the developer layer to communicate with the hardware. An application such as the FUSE
Probe Tool in which the user can control the hardware via a GUI is an example of an application layer product.

Figure 1: FUSE API Layers

Application Layer

High Level User interface access

Hardware Abstract Layer for Nallatech
Hardware A

Developer Layer

General Interface for Custom Applications

Hardware Abstract Layer for Nallatech
Hardware B
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Section 2

Getting Started
In this section:

• Installation

2.1 Installation
2.1.1 Host System Requirements
The FUSE API runs under the following operating systems:

• Microsoft Windows XP Professional

• Microsoft Windows 2000

• Microsoft Windows Millennium Edition

• Microsoft Windows NT Service Pack 4

• Microsoft Windows 98

2.1.2 Software Installation

Windows

To install FUSE software in Windows NT/2000/XP use the following procedures:

1. Insert the supplied FUSE System Software CD into your system’s CD-ROM drive and wait for the CD to
autorun. If autorun does not start click ‘Start->Run’ from the taskbar and run the following program:
CD_Drive:\ autorun.exe.

2. In the FUSE Main Menu click on ‘Install FUSE Application Software’.

3. The installation process begins. Work through the series of dialog boxes until the ‘Finish’ box is reached.

4. Click ‘Finish’ to install the software.

5. Restart the PC to complete the installation.

Linux

To install FUSE software in Linux RedHat use the following procedures:

1. Insert the supplied FUSE System Software CD into your system’s CD-ROM drive.
68 Issue 8 September 14, 2004 www.nallatech.com 5

http://www.nallatech.com

6

Getting Started
2. Mount the installation CD:

>mount /dev/cdrom /mnt/cdrom

3. Change directory as follows:

cd/mnt/cdrom

4. Type ‘rpm -ihv’ followed by the full name of the rpm (RedHat Package Format) file.

>rpm -ihv fuse-1-7.rpm

5. This installs FUSE to the following location:

>/usr/local/nallatech/FUSE

2.1.3 Initial Confidence Test
After rebooting the machine and installing the DIME-II hardware as described in the DIME-II Installation Guide (located
on your product CD) run the FUSE Probe Tool from the 'Start Menu' - 'Programs' - 'FUSE' - 'Software'. If the software
and drivers have been installed correctly and the hardware is present in the PC, a screen similar to that shown in
Figure 2 on page 6 appears.

Figure 2: FUSE Probe Tool
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00
Part II:Implementation
This part of the Reference Guide provides detailed information on how to use the FUSE C/C++ API and its key
components.
68 Issue 8 September 14, 2004 www.nallatech.com 7

http://www.nallatech.com

8
 www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Section 3

Using FUSE C/C++ API
In this section:

• General Implementation Information

3.1 General Implementation Information
When developing with the FUSE API certain files must be added to your project to gain access to the API functions.
These files are:

• dimesdl.h

• dimesdl.lib (coff version of the library for inclusion in Microsoft projects)

• dimesdlomf.lib (omf version of the library for inclusion in Borland projects)

The above files can all be found in the include directory within the FUSE install.

For some motherboards there will be an additional header file that allows access to specific card
functions. Details of this header file will be included in the FUSE Compatibility section of your Motherboard
Reference Guide. Please refer to this for further information.

The example designs detailed in this part of the Guide have all been produced using Microsoft Visual Version 6 and can
be found in the FUSE API Examples directory with the FUSE install.
68 Issue 8 September 14, 2004 www.nallatech.com 9

http://www.nallatech.com

10

Using FUSE C/C++ API
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Section 4

Examples
In this section:

• Fundamental Steps

• Locating and Opening Examples

• Device Configuration Examples

• DMA Transfer Examples

• Interrupt Example

4.1 Fundamental Steps
There are two key steps that are required to enable all the API functions. The first step is to locate all the cards over
a certain interface and the second is to open a selected card. Once this has been achieved the FPGAs can be
configured, DMA transfers are possible, LEDs can be flashed etc. To locate a card DIME_LocateCard must be called.
After this has returned successfully other locate functions can be called to find out details on what was located and the
card can be opened using DIME_OpenCard. Once the card has been opened the other API functions become
available. Finally the card and the locate must be closed using DIME_CloseCard and DIME_CloseLocate.

4.2 Locating and Opening Examples
There are three example programs included in the FUSE install that specifically deal with locating and opening cards.
These are:

• Opening a single card

• Opening multiple cards over the same interface

• Opening multiple cards over different interfaces

All the above programs open one or more cards and flash LEDs to prove the cards have been opened before closing
the cards down.

4.3 Device Configuration Examples
Once a card has been opened the next step is the configuration of a device - typically an FPGA. This device may be on
the motherboard itself or may be on a module. To configure the device the developer simply needs to use one of the
device configuration functions detailed on page 15 such as DIME_ConfigOnBoardDevice or DIME_ConfigControl.

There are two example programs included in the FUSE install that demonstrate configuration of both the on-board
FPGA and a module FPGA with the LED snake design. Details on the design are included in the Motherboard or Module
Reference Guide. The two example programs are:

• Configuring the on board FPGA with ledsnake
68 Issue 8 September 14, 2004 www.nallatech.com 11

http://www.nallatech.com

12

Examples
• Configuring a module with ledsnake

4.4 DMA Transfer Examples
Once a card has been opened and a design placed into the FPGA, data is normally required to be transferred between
the card and the software application via DMA transfers. Firstly if the transfer is to occur over the PCI then the
memory needs to be locked down prior to the transfer. This is achieved using the DIME_LockMemory function. Now
a DMA channel needs to be opened between the card and the PC. This can be achieved using the DIME_DMAOpen
function. Now the actual transfer of data can take place. Functions such as DIME_DMAReadToLockedMem and
DIME_DMAWriteFromLockedMem perform this data transfer. Once all the data has been transferred the DMA
channel can be closed and the locked memory can be unlocked.

In the examples detailed below the Nallatech ping design is used to 'turn the data around' on the card. Details of this
design can be found in the PCI To User FPGA Interface Core Application Note on the FUSE CD at the location: '<CDROM
Drive>:\ApplicationNotes\NT302-0000 Spartan to Virtex Interface’.

It is worth noting that in the examples the memory is locked down at the start of the program and unlocked at the
end rather than locked and unlocked for each transfer. This improves the speed to the transfers. The two example
programs are:

• DMA transfers

• DMA transfers with two cards

In the second example data is first written and then read back from the first card as in the DMA transfers example and
then the same data is written to and read back from the second card. Data is never sent from one card directly to the
other card.

4.5 Non-threaded Interrupts Example
An FPGA design may need to communicate with the PC using interrupts. In order to use interrupts they must firstly
be enabled using the DIME_InterruptControl function. Once enabled whenever the FPGA produces an interrupt then
a genuine hardware interrupt is produced. For the software to find out if an interrupt has occurred the
DIME_InterruptControl function can be used with the dintWAIT command mode. Once the software has finished
dealing with interrupts and wants to disable then again DIME_InterruptControl is used with the dintDISABLE
command mode. The non-threaded interrupts example program is:

• Non-threaded interrupts

Once interrupts have been enabled only polling DMA transfers should be used. Once interrupts have
been enabled all interrupts that occur are logged. When waiting for interrupts if an interrupt has been
logged then the function will return immediately.

For a threaded example and further information on how to use interrupts please refer to the Interrupts in FUSE
Application Note on the FUSE CD at the location: '<CDROM Drive>:\ApplicationNotes\NT302-0026 Using
Interrupts\documentation’.
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00
Part III:Reference
Information

This part of the Guide provides reference information on the FUSE API, including a list of functions
68 Issue 8 September 14, 2004 www.nallatech.com 13

http://www.nallatech.com

14
 www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Section 5

Functions By Category
In this section:

• FUSE C/C++ API Functions by Category

5.1 Locating Cards
These functions are used to locate the cards within your system and to retrieve simple information about these
located cards to help determine which card should be opened.

• DIME_LocateCard

• DIME_CloseLocate

• DIME_LocateStatus

• DIME_LocateStatusPtr

5.2 Opening and Closing the Card
These functions are used to de/allocate system resources for the chosen card and to create/destroy a handle for the
card. This handle is required for all functions that interface with the card.

• DIME_OpenCard

• DIME_CloseCard

5.3 Oscillator
These functions are used for controlling cards oscillators.

• DIME_SetOscillatorFrequency

5.4 LEDs
These functions are used to read or write to the interface LEDs.

• DIME_ReadLEDs

• DIME_WriteLEDs

5.5 Reset
These functions are used to control the cards various resets.

• DIME_CardResetControl

• DIME_CardResetStatus
68 Issue 8 September 14, 2004 www.nallatech.com 15

http://www.nallatech.com

16

Functions By Category
5.6 Interrupts
These functions are for controlling the cards various interrupts.

• DIME_InterruptStatus

• DIME_InterruptControl

5.7 DMA Transfers
These functions are for dealing with transfer of data between the card(s) and the PC.

• DIME_LockMemory

• DIME_UnLockMemory

• DIME_DMAOpen

• DIME_DMAClose

• DIME_DMAStatus

• DIME_DMAControl

• DIME_DMARead

• DIME_DMAWrite

• DIME_DMAReadToLockedMem

• DIME_DMAWriteFromLockedMem

• DIME_DataWriteSingle

• DIME_DataReadSingle

• DIME_DataRead

• DIME_DataWrite

• DIME_AddressWriteSingle

5.8 Device Configuration
These functions are used to configure devices such as FPGAs and for assigning designs to devices.

• DIME_ConfigOnBoardDevice

• DIME_MemConfigOnBoardDevice

• DIME_ConfigDevice

• DIME_MemConfigDevice

• DIME_ConfigModule

• DIME_ConfigCard

• DIME_ConfigSetBitsFilename

• DIME_ConfigSetBitsMemory

• DIME_ConfigSetBitsFilenameAndConfig

• DIME_ConfigSetBitsMemoryAndConfig

• DIME_ConfigGetBitsFilename
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
5.9 Card/System Definition Files
These functions allow the user to create card and system definition files that allow faster loading of both cards and
systems.

• DIME_SaveCardDefinition

• DIME_LoadCardDefinition

• DIME_SaveSystemDefinition

• DIME_LoadSystemDefinition

5.10 JTAG
These functions allow control over the JTAG chain.

• DIME_JTAGStatus

• DIME_JTAGControl

5.11 System Information and Control
These functions enable the FUSE API to be controlled to suit the developers needs and for system information to be
obtained.

• DIME_SystemStatus

• DIME_SystemControl

• DIME_SystemStatusPtr

• DIME_GetError

• DIME_GetLocateVersionNumber

• DIME_GetVersionNumber

5.12 Card/Module/Device Information
These functions allow control over various aspects of the cards, modules and devices.

• DIME_CardStatus

• DIME_CardControl

• DIME_CardStatusPtr

• DIME_CardControlPtr

• DIME_ModuleStatus

• DIME_ModuleControl

• DIME_ModuleStatusPtr

• DIME_ModuleControlPtr

• DIME_DeviceStatus

• DIME_DeviceControl

• DIME_DeviceStatusPtr

• DIME_DeviceControlPtr
68 Issue 8 September 14, 2004 www.nallatech.com 17

http://www.nallatech.com

18

Functions By Category
5.13 Programmable Power Supplies (PPS)
These functions allow control of the programmable power supplies for certain motherboards.

• DIME_PPSStatus

• DIME_PPSControl

5.14 All I/O
These functions deal with all I/O such as digital, peripheral and miscellaneous I/O.

• DIME_ReadPIO

• DIME_WritePIO

5.15 Multiple Configuration GUI
These functions are for linking the example multiple configuration GUI to your application.

• DIME_MConfigGUI

• DIME_MConfigGUIExit

• DIME_ShowMConfigGUI
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Section 6

Functional Reference
In this section:

• Alphabetical listing of each function within the FUSE API with full details of the function.

6.1 DIME_AddressWriteSingle
Syntax DWORD DIME_AddressWriteSingle(DIME_HANDLE handle, DWORD *Data, volatile DWORD

*Terminate, DWORD Timeout)

Arguments handle is a valid handle to a DIME carrier card.

Data is a pointer to the PC memory that holds the address to be written.

Terminate points to a memory location that enables termination of a transfer. This memory location
is 0 under normal conditions. A non-zero value terminates the transfer. This argument can be NULL
if not used.

Timeout is the maximum time in milliseconds that the transfer is allowed to take. If all the data has
not been transferred within this time period the transfer is terminated and an error condition is
returned. If this is set to zero then the timeout is effectively infinite.

Return There are several possible returns for the DMA transfer. See Table 18 on page 41.

Description This handles the transfer of a single 32-bit word from the PC memory pointed to by 'Data' to the
Interface connected to the on-board FPGA of the DIME Motherboard.

In this case the 'AS/DS' line of the FPGA interface is asserted to indicate that address data is being
passed on the Data lines.

Notes This function should only be used in single card systems. In systems with more than one card it is
strongly advised that the DIME_DMA functions are used instead.
68 Issue 8 September 14, 2004 www.nallatech.com 19

http://www.nallatech.com

20

Functional Reference
6.2 DIME_CardControl
Syntax DWORD DIME_CardControl(DIME_HANDLE handle, DWORD CmdMode, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

CmdMode: This argument is used to specify what particular aspect of a card is to be controlled.
There are no current command modes for this function.

Value: This argument is used to specify the action for a command mode.

Return Returns -1 on error.

Description This function is used to control certain aspects of the card.

6.3 DIME_CardControlPtr
Syntax DWORD DIME_CardControlPtr(DIME_HANDLE handle, DWORD CmdMode, void *pValue)

Arguments handle is a valid handle to a DIME carrier card.

CmdMode: This argument is used to specify what particular aspect of a card is to be controlled.
There are no current command modes for this function.

pValue: This argument is used to specify the action for a command mode.

Return Returns -1 on error.

Description This function is used to control certain aspects of the card that cannot be controlled using
DIME_CardControl.

6.4 DIME_CardResetControl
Syntax DWORD DIME_CardResetControl (DIME_HANDLE handle, DWORD ResetNum, DWORD

CmdMode, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

ResetNum: This argument is used to specify which reset is to be controlled. Table 2 on page 20 gives
details of available resets.

ResetNum Description

drINTERFACE This is the reset for the interface FPGA. Toggling this reset
causes an internal reset of the cards interface (PCI, USB etc.)
that is primarily used to clear the internal interface FIFOs of
the interface FPGA.

Table 2: DIME_CardResetControl ResetNum Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
CmdMode: This argument is used to specify the command on the selected reset. Table 3 on page 21
gives details of the available commands.

The value argument is not used in this function and is only included for consistency.

Return Returns 0 on success. Non-zero on error.

Description This function controls the software resets. For more details on these resets please consult your
Motherboard Reference Guide.

drSYSTEM This is the reset for the DIME system reset. This signal is
typically connected to the User FPGA(s) and all module sites.
This reset is designed to allow a software controlled reset of
your implemented design. Toggling this reset has a minimum
pulse width of 100ns.
Please consult your Motherboard Reference Guide for more
details on this signal.

drONBOARDFPGA This is commonly a single bit signal that is provided as part of
the communications signals between the interface FPGA and
the on board FPGA. This provides an active-low software
controllable reset to on board FPGA. Toggling this reset has a
minimum pulse width of 100ns.

CmdMode Description

drDISABLE This de-asserts the reset line for the selected reset.

drENABLE This asserts the reset line for the selected reset.

drTOGGLE This toggles the reset line for the selected reset.

Table 3: DIME_CardResetControl CmdMode Argument Options

ResetNum Description

Table 2: DIME_CardResetControl ResetNum Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 21

http://www.nallatech.com

22

Functional Reference
Example

6.5 DIME_CardResetStatus
Syntax DWORD DIME_CardResetStatus(DIME_HANDLE handle, DWORD ResetNum, DWORD

CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

ResetNum: This argument is used to specify which reset status information is to be retrieved. See
Table 2 on page 20 for details.

CmdMode: This argument is used to specify the command on the selected reset. See Table 3 on
page 21 for details.

Return Returns 1 on an invalid handle, 0 on error and drCONTROLABLE or drTOGGLEONLY depending
on the resets capabilities. A return of drCONTROLABLE means that the reset can be toggled,
enabled or disabled. A return of drTOGGLEONLY means that the reset can only be toggled.

Description This function allows the user to determine the capability of the selected reset.

Notes PCI resets are toggle only. System and on board FPGA resets are controllable.

Figure 3: Examples of Using DIME_CardResetControl

 //Enable the OnBoardFPGA reset.
DIME_CardResetControl(handle,drONBOARDFPGA,drENABLE,0);
//Disable the OnBoardFPGA reset.
DIME_CardResetControl(handle,drONBOARDFPGA,drDISABLE,0);
//Toggle the OnBoardFPGA reset.
DIME_CardResetControl(handle,drONBOARDFPGA,drTOGGLE,0);

// Enable the System reset.
DIME_CardResetControl(handle,drSYSTEM, drENABLE,0);
// Disable the System reset.
DIME_CardResetControl(handle,drSYSTEM, drDISABLE,0);
// Toggle the System reset.
DIME_CardResetControl(handle,drSYSTEM,drTOGGLE,0);

// Toggle the interface FPGA reset.
DIME_CardResetControl(handle,drINTERFACE,drToggle,0);
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.6 DIME_CardStatus
Syntax DWORD DIME_CardStatus(DIME_HANDLE handle, DWORD CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

CmdMode: This argument is used to specify what particular aspect of card status information is to
be returned. Table 4 on page 23 gives details of the available command modes.

Return The return value is dependant upon the command mode. Returns -1 on error.

Description This function returns card status information.

CmdMode Description

dinfMULTICONFIGLICENCE This function returns whether the multiple configuration licence is valid
on this system.

A return value of 1 indicates that the card has a multiple configuration
licence. A return value of 0 indicates that it does not.

dinfNUMBERMODULES Returns the number of modules installed in the card.
Note the card itself counts as an on-board module.

dinfNUMBERSLOTS Returns the number of module slots there are for the card.

dinfSLOTSUSED This returns a bit wise value to indicate if a module is plugged into a
particular DIME slot.
A '1' in a particular bit location indicates that a module is present
otherwise the slot is free. Bit 0 represents slot 0, bit 1 represents slot 1
etc.

dinfMOTHERBORDTYPE Returns the motherboard type of the card. See Table 29 on page 55
for details.

dinfCARDMAXJTAGSPEED Returns the maximum speed that the cards JTAG chain can be driven.
See Table 26 on page 53 for details.

dinfSERIALNUMBER Returns the serial number of the card.

dinfDESCRIPTION Returns a description of the motherboard

Table 4: DIME_CardStatus CmdMode Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 23

http://www.nallatech.com

24

Functional Reference
6.7 DIME_CardStatusPtr
Syntax void *DIME_CardStatusPtr(DIME_HANDLE handle, DWORD CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

CmdMode: This argument is used to specify what particular aspect of card status information is to
be returned. The Table 5 on page 24 gives details of the available command modes.

Return The return value is dependant upon the command mode. Returns NULL on error.

Description This function returns card status information that cannot be returned using DIME_CardStatus.

Notes If a pointer to a string is returned this string is only valid until the next call is made into the library. It
is therefore advised that either the string is used directly or that it is copied for later use.

CmdMode Description

dinfDEFAULTIMAGE This command mode returns a string (char *), which is the
default image filename for the card.

dinfDEFAULTICON This command mode returns a string (char *), which is the
default icon filename for the card.

dinfFAILEDMDF This command mode returns a string (char *), which is the last
failed mdf.

dinfIMAGEFILENAME This command mode returns a string (char *), which is the
image filename for the card.

dinfICONFILENAME This command mode returns a string (char *), which is the
icon filename for the card.

dinfDESCRIPTION This command mode returns a string (char *), which is a short
description of the card.

Table 5: DIME_CardStatusPtr CmdMode Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.8 DIME_CloseCard
Syntax void DIME_CloseCard(DIME_HANDLE CardHandle)

Arguments handle is a valid handle returned from DIME_OpenCard.

Return N/A

Description This function closes down the handle returned from DIME_OpenCard. It de-allocates all system
resources that where used when interfacing with the card.

Notes Call this function after your application has finished using the card to ensure that the card is closed
properly and all systems resources that where used are available for other applications.

Example

6.9 DIME_CloseLocate
Syntax void DIME_CloseLocate(LOCATE_HANDLE LocateHandle)

Arguments handle is a valid handle returned from DIME_LocateCard.

Return N/A

Description This function closes down the handle returned from DIME_LocateCard.

Notes This function should be the final function called and should only be used after all the cards that were
opened using this locate handle have been closed down.

Example See Figure 4 on page 25.

Figure 4: Locating, Opening and Closing a Card

#include <dimesdl.h> //This is held in the include directory
 within FUSE.
DIME_HANDLE hCard1;
LOCATE_HANDLE hLocate;
DWORD LEDs;
//Locate the Cards on the PCI interface
hLocate=DIME_LocateCard(dlPCI,mbtALL,NULL,dldrDEFAULT,dlDEFAULT);

//Open the first card found in the locate.
hCard1=DIME_OpenCard(hLocate,1,dccOPEN_DEFAULT);

//Change the LEDs
LEDs=DIME_ReadLEDs(hCard1);
DIME_WriteLEDs(hCard1,(LEDs-1));

//Close the card down.
DIME_CloseCard(hCard1);

//Finally close the locate down.
DIME_CloseLocate(hLocate);

68 Issue 8 September 14, 2004 www.nallatech.com 25

http://www.nallatech.com

26

Functional Reference
6.10 DIME_ConfigCard
Syntax DWORD DIME_ConfigCard (DIME_HANDLE handle, DWORD *ModuleProgress, DWORD

*DeviceProgress, DWORD *ConfigProgress)

Arguments handle is a valid handle to a DIME carrier card.

ModuleProgress is the progress through the modules.

DeviceProgress is the progress through the device.

ConfigProgress is the progress through a configuration.

Return The function simply returns the last value returned from the configuration of a module. A return of '-
1' indicates an invalid carrier card.

Description The function simply iterates through each of the detected modules and calls the
DIME_ConfigModule function. The function continues to iterate through the configuration of each
module until a module returns a boot result that is not equal to dcfgOK_NOSTATUS,
dcfgDL_IH_NOCRC or dcfgOK_STATUS. When this happens the invalid boot result is returned.

6.11 DIME_ConfigControl
Syntax DWORD DIME_ConfigControl (DIME_HANDLE handle, DWORD ModuleNumber, DWORD

DeviceNumber, DWORD CmdMode, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the module you want to target.

DeviceNumber is the device in that module you want to target.

CmdMode is control command to implement.

Value is the command specific.

Return Return is zero on success

Description This function is used to control some of the aspects of configuration

Return Description

dcfgFRAMEADDR This command sets the Frame Address. The frame address is
only used in the Readback functions and is used to set what
Frame is to be read back. By default the address is
0x00000000

Table 6: ConfigControl Commands
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.12 DIME_ConfigDevice
Syntax DWORD DIME_ConfigDevice(DIME_HANDLE handle, const char *FileName, DWORD

ModuleNumber, DWORD ModuleDeviceNumber, DWORD *Progress, DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

FileName is the filename of a bitfile for configuring the FPGA.

ModuleNumber is the Module that is being addressed.

ModuleDeviceNumber is the selected device within the selected module.

Progress should point to a variable, which will be updated with the actual position in the
configuration. The position in the configuration file is expressed as a percentage (0 - 100). This is
only useful in multi-threaded applications and may point to a valid location or NULL in single
threaded applications.

Flags: This argument is used to control the configuration of the on-board device.

Return This function has several possible returns. Table 8 on page 27 gives details.

Return Description

dcfgPROGSECURE Program the device in secure mode.

dcfgPROGKEYS This is used to program the triple des keys for that specific
device. Note, a file with extension nky that is output from ISE
is used instead of the bitfile. Note when programming the
encryptions keys the pc has to be turned off and back on
before the encrypted bitstream works.

Table 7: Configuration Flags

Return Description

dcfgOK_NOSTATUS Configured completed successfully although no post
configuration checking carried out.

dcfgOK_STATUS Configuration completed successfully as indicated by read
back of FPGA Status register. DONE high, INIT high, No CRC
errors detected.

dcfgINVALID_CARD The handle argument is invalid.

dcfgBIT_FILE Returned when the specified bitfile could not be successfully
opened.

dcfgINTEG_FAIL Indicates that the JTAG integrity scan check has failed and the
chain is apparently incomplete.

dcfgDL_IL_NOCRC Configuration Status - DONE Low, INIT Low, No CRC errors
detected.

dcfgDL_IL_CRC Configuration Status - DONE Low, INIT Low, CRC errors
detected.

dcfgDL_IH_NOCRC Configuration Status - DONE Low, INIT high, No CRC errors
detected.

Table 8: Configuration Function Return Values
68 Issue 8 September 14, 2004 www.nallatech.com 27

http://www.nallatech.com

28

Functional Reference
Description This function configures the specified device with the specified bitfile.

Notes The bitfile must be configured to use the JTAG clock for configuration rather than the default of the
CCLK.

6.13 DIME_ConfigGetBitsFilename
Syntax const char *DIME_ConfigGetBitsFilename (DIME_HANDLE handle, DWORD ModuleNumber,

DWORD DeviceNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the number of the selected module.

DeviceNumber is the number of the selected device.

Return Returns a pointer to the filename that has been assigned to the selected device. If no filename has
been set for the device then a NULL pointer is returned.

Description This function returns the filename that is assigned to a device.

6.14 DIME_ConfigGetBitsMemory
Syntax DWORD *DIME_ConfigGetBitsMemory (DIME_HANDLE handle, DWORD ModuleNumber,

DWORD DeviceNumber, DWORD *ByteLength)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the number of the selected module.

DeviceNumber is the number of the selected device.

ByteLength is the address of the location that the byte length of the assigned bit-stream will be
placed.

dcfgDL_IH_CRC Configuration Status - DONE Low, INIT high, CRC errors
detected.

dcfgDH_IL_NOCRC Configuration Status - DONE high, INIT low, No CRC errors
detected.

dcfgDH_IL_CRC Configuration Status - DONE high, INIT low, CRC errors
detected.

dcfgDH_IH_CRC Configuration Status - DONE high INIT high, CRC errors
detected.

dcfgUNKNOWN Unidentifiable configuration result.

dcfgNOLIC Multiple Configuration Licence not available.

dcfgDEV_BIT_MIS The bitfile is incorrect for the FPGA device type.

dcfgERROR An unspecified error has occurred.

Return Description

Table 8: Configuration Function Return Values
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Return Returns a pointer to the start of the bit-stream that has been assigned to the selected device. If no
bit-stream has been set for the device then a NULL pointer is returned.

Description This function returns the pointer to the start of the bit-stream that is assigned to a device.

6.15 DIME_ConfigModule
Syntax DWORD DIME_ConfigModule (DIME_HANDLE handle, DWORD ModuleNumber, DWORD

*DeviceProgress, DWORD *ConfigProgress)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the Number of the selected module.

DeviceProgress is the progress through the device.

ConfigProgress is the progress through a configuration.

Return The function simply returns the last value returned from the configuration of a device. A return of '-
1' indicates a non configuration error.

Description The function iterates through each of the devices in a specified module and will configure each device
using DIME_ConfigDevice or DIME_MemConfigDevice provided that the device has been defined in
the MDF as bootable and that a bitfile has actually been assigned to the device.

‘Note that it will stop iterating through the devices at the first device that is unsuccessfully
configured. An unsuccessful configuration is indicated by a returned configuration result that is not
equal to dcfgOK_NOSTATUS, dcfgDL_IH_NOCRC or dcfgOK_STATUS.

6.16 DIME_ConfigOnBoardDevice
Syntax DWORD DIME_ConfigOnBoardDevice(DIME_HANDLE handle, const char *FileName, DWORD

Flags)

Arguments handle is a valid handle to a DIME carrier card.

FileName is the filename of the bitfile that is to be used for booting the on board FPGA.

Flags: This argument is used to control the configuration of the on board device. See Table 7 on
page 27.

Return This function has several possible returns. Please see Table 8 on page 27 for details.

Description This function configures the cards on board FPGA with the specified bitfile. Configuration is carried
out using the cards JTAG chain.

Notes The bitfile must be configured to use the JTAG clock for configuration rather than the default of the
CCLK.
68 Issue 8 September 14, 2004 www.nallatech.com 29

http://www.nallatech.com

30

Functional Reference
6.17 DIME_ConfigSetBitsFilename
Syntax DWORD DIME_ConfigSetBitsFilename (DIME_HANDLE handle, DWORD ModuleNumber,

DWORD DeviceNumber, const char *Filename, DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the number of the selected module.

DeviceNumber is the number of the selected device.

Filename is the filename of the bitfile that is to be assigned to this device.

Flags: This argument allows the developer to configure the assignment of bitfiles to devices to suit
the development requirements. Table 9 on page 30 gives details for the Flags.

Return Returns 0 upon success. Returns non-zero otherwise.

Description This function assigns a bitfile to the specified device. Once a device has a bitfile assigned this
information is stored in any card definition file that is saved. Furthermore when either
DIME_ConfigCard or DIME_ConfigModule is called this assigned bitfile is used to configure the
device.

Notes This function only assigns the name of the bitfile to the device. No configuration is carried out.

6.18 DIME_ConfigSetBitsFilenameAndConfig
Syntax DWORD DIME_ConfigSetBitsFilenameAndConfig (DIME_HANDLE handle, DWORD

ModuleNumber, DWORD DeviceNumber, const char *Filename, DWORD SetFlags, DWORD
*Progress, DWORD ConfigFlags)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the number of the selected module.

DeviceNumber is the number of the selected device.

Filename is the filename of the bitfile that is to be assigned to this device.

SetFlags: These are the flags for the setting of the filename. Please refer to
DIME_ConfigSetBitsFilename on page 30 for further details.

Progress: This is a pointer to a memory location that holds the configuration completion percentage.
Please refer to DIME_ConfigControl on page 26 for further details.

Flags Description

dcfgFREEEMBEDBITS It is possible to embed a bitstream with a particular device
instead of a filename. If this is the case then when assigning a
Filename to a device that already has a bitstream assigned then
the existing assigned bitstream may no longer be required. In
this situation this flag should be used. This will de-allocate the
system resources that were assigned to the embedded bit-
stream.

Table 9: DIME_ConfigSetBitsFilename Flags Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
ConfigFlags: These are the flags for the configuration of the device. Again please refer to
DIME_ConfigControl for further details.

Return Returns the result of DIME_ConfigSetBitsFilename if there is an error. If no error occurs in this
function then it returns the result of the device configuration.

Description This function assigns a bitstream filename to a particular device and then configures the device using
the assigned bitstream file.

6.19 DIME_ConfigSetBitsMemory
Syntax DWORD DIME_ConfigSetBitsMemory (DIME_HANDLE handle, DWORD ModuleNumber,

DWORD DeviceNumber, DWORD *Bits, DWORD ByteLength, DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the number of the selected module.

DeviceNumber is the number of the selected device.

Bits is a pointer to the bitstream that is to be assigned to the device.

ByteLength is the byte length of the bitstream.

Flags: This argument allows the developer to configure the assignment of bitstreams to devices to
suit the development requirements. Table 10 on page 31 gives details for the Flags.

Returns 0 upon success. Returns non-zero otherwise.

Description This function assigns a bitstream to the specified device. Once a device has a bit-stream assigned this
information is stored in any card definition file that is saved. Furthermore when either
DIME_ConfigCard or DIME_ConfigModule is called this assigned bitstream is used to configure the
device.

Notes This function only assigns the memory location of the bitstream to the device. No configuration is
carried out. If the bitstream is moved or altered after it has been assigned then the bitstream will
need to be re-assigned to the device.

Flags Description

dcfgFREEEMBEDBITS If the device already has a bitstream assigned and this bit-
stream is no longer valid then using this flag will de-allocate
the system resources that where assigned to the embedded
bit-stream.

Table 10: DIME_ConfigSetBitsMemory Flags Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 31

http://www.nallatech.com

32

Functional Reference
6.20 DIME_ConfigSetBitsMemoryAndConfig
Syntax DWORD DIME_ConfigSetBitsMemoryAndConfig (DIME_HANDLE handle, DWORD

ModuleNumber, DWORD DeviceNumber, DWORD *Bits, DWORD ByteLength, DWORD
SetFlags, DWORD *Progress, DWORD ConfigFlags)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the number of the selected module.

DeviceNumber is the number of the selected device.

Bits is a pointer to the bitstream that is to be assigned to the device.

ByteLength is the byte length of the bitstream.

SetFlags: These are the flags for the setting of the filename. Please refer to
DIME_ConfigSetBitsMemory on page 31 for further details.

Progress: This is a pointer to a memory location that holds the configuration completion percentage.
Please refer to DIME_MemConfigDevice on page 61 for further details.

ConfigFlags: These are the flags for the configuration of the device. Again please refer to
DIME_MemConfigDevice for further details.

Return Returns the result of DIME_ConfigSetBitsMemory if there is an error. If no error occurs in this
function then it returns the result of the device configuration.

Description This function assigns a bitstream in memory to a particular device and then configures the device
using the assigned bitstream.

6.21 DIME_ConfigStatus
Syntax DWORD DIME_ConfigStatus(DIME_HANDLE handle, DWORD ModuleNumber, DWORD

DeviceNumber, DWORD CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the module you wish to target.

DeviceNumber is the device in that module you wish to target.

CmdMode is control command to implement.

Return The return is the status information from the specific command set in CmdMode.

Description This function is used to return configuration status information.

Return Description

dcfgFRAMEADDR This command sets the Frame Address. The frame address is
only used in the Readback functions and is used to set which
Frame is read back. By default the address is 0x00000000

Table 11: ConfigControl Commands
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.22 DIME_DataRead
Syntax DWORD DIME_DataRead(DIME _HANDLE handle, DWORD *Data, DWORD WordCount,

volatile DWORD *Terminate, DWORD *CurrCount, DWORD Timeout)

Arguments handle is a valid handle to a DIME carrier card.

Data is a pointer to the PC memory which receives data from the card. This should be 32-bit aligned.

WordCount is the number of 32-bit words to transfer.

Terminate is not used.

CurrCount points to memory location that holds the current total of words transferred, which is
useful for feedback to the application. This argument can be NULL if not used. This argument can be
used in multi-threaded applications to monitor the progress of the data transfer. In single threaded
applications it can be used to return the total number of words transferred.

Timeout is the maximum time in milliseconds that the transfer is allowed to take. If all the data has
not been transferred within this time period the transfer is terminated and an error condition is
returned. If this is set to zero then the timeout is effective infinite.

Return There are several possible returns for the data transfer. See Table 19 on page 42 for details.

Description This handles the transfer of 'WordCount' 32-bit words from the Interface with the on board FGPA
of the DIME Motherboard to the PC memory pointed to by 'Data'. The memory pointed to by 'Data'
does not need to be contiguous, as this function will handle the internal transfer and memory
management.

Notes This function should only be used in single card systems. In systems with more than one card it is
strongly advised that the DIME_DMA functions are used instead.

6.23 DIME_DataReadSingle
Syntax DWORD DIME_DataReadSingle(DIME _HANDLE handle, DWORD *Data, volatile DWORD

*Terminate, DWORD Timeout)

Arguments handle is a valid handle to a DIME carrier card.

Data is a pointer to the PC memory which receives data from the card. This should be 32-bit aligned.

Terminate is not used.

Timeout is the maximum time in milliseconds that the transfer is allowed to take. If all the data has
not been transferred within this time period the transfer is terminated and an error condition is
returned. If this is set to zero then the timeout is effectively infinite.

Return There are several possible returns for the DMA transfer. See Table 19 on page 42 for details.

Description This handles the transfer of a single 32-bit word from the Interface with the on board FGPA of the
DIME Motherboard and places this 32-bit word into the PC memory pointed to by 'Data'.

Notes This function should only be used in single card systems. In systems with more than one card it is
strongly advised that the DIME_DMA functions are used instead.
68 Issue 8 September 14, 2004 www.nallatech.com 33

http://www.nallatech.com

34

Functional Reference
6.24 DIME_DataWrite
Syntax DWORD DIME_DataWrite(DIME _HANDLE handle, DWORD *Data, DWORD WordCount,

volatile DWORD *Terminate, DWORD *CurrCount, DWORD Timeout)

Arguments handle is a valid handle to a DIME carrier card.

Data is a pointer to the PC memory which holds the data to be written. This should be 32-bit
aligned.

WordCount is the number of 32-bit words to transfer.

Terminate is not used.

CurrCount points to memory location which holds the current total of words transferred, which is
useful for feedback to the application. This argument can be NULL if not used. This argument can be
used in multi-threaded applications to monitor the progress of the data transfer. In single threaded
applications it can be used to return the total number of words transferred.

Timeout is the maximum time in milliseconds that the transfer is allowed to take. If all the data has
not been transferred within this time period the transfer is terminated and an error condition is
returned. If this is set to zero then the timeout is effectively infinite.

Return There are several possible returns for the data transfer. See Table 19 on page 42 for details.

Description This handles the transfer of 'WordCount' 32-bit words from the PC memory pointed to by 'Data' to
the Interface connected to the on-board FGPA of the DIME Motherboard. The memory pointed to
by 'Data' does not need to be contiguous, as this function will handle the internal transfer and
memory management.

Notes This function should only be used in single card systems. In systems with more than one card it is
strongly advised that the DIME_DMA functions are used instead.

6.25 DIME_DataWriteSingle
Syntax DWORD DIME_DataWriteSingle(DIME_HANDLE handle, DWORD *Data, volatile DWORD

*Terminate, DWORD Timeout)

Arguments handle is a valid handle to a DIME carrier card.

Data is a pointer to the PC memory which holds the data to be written. This should be 32-bit
aligned.

Terminate is not used.

Timeout this is the maximum time in milliseconds that the transfer is allowed to take. If all the data
has not been transferred within this time period the transfer is terminated and an error condition is
returned. If this is set to zero then the timeout is effectively infinite.

Return There are several possible returns for the DMA transfer. See Table 19 on page 42 for details.

Description This handles the transfer of a single 32-bit word from the PC memory pointed to by 'Data' to the
Interface connected to the on-board FGPA of the DIME Motherboard.
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Notes This function should only be used in single card systems. In systems with more than one card it is
strongly advised that the DIME_DMA functions are used instead.

6.26 DIME_DeviceControl
Syntax DWORD DIME_DeviceControl(DIME_HANDLE handle, DWORD ModuleNum, DWORD

DeviceNum, DWORD CmdMode, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNum is the Module that is being addressed. Note modules are numbered from 0.

DeviceNum is the number of the device that is being addressed.

CmdMode: This argument is used to specify what particular aspect of device is to be controlled.
There are no current command modes for this function.

Value: This argument is used to specify the action for a command mode.

Return Returns -1 on error.

Description This function is used to control certain aspects of the selected device.

6.27 DIME_DeviceControlPtr
Syntax DWORD DIME_DeviceControlPtr(DIME_HANDLE handle, DWORD ModuleNum, DWORD

DeviceNum, DWORD CmdMode, void *pValue)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNum is the Module that is being addressed. Note modules are numbered from 0.

DeviceNum is the number of the device that is being addressed.

CmdMode: This argument is used to specify what particular aspect of the device is to be controlled.
There are no current command modes for this function.

Value: This argument is used to specify the action for a command mode.

Return Returns NULL on error.

Description This function is used to control certain aspects of the card that cannot be controlled using
DIME_DeviceControl.
68 Issue 8 September 14, 2004 www.nallatech.com 35

http://www.nallatech.com

36

Functional Reference
6.28 DIME_DeviceStatus
Syntax DWORD DIME_DeviceStatus(DIME_HANDLE handle, DWORD ModuleNum, DWORD

DeviceNum, DWORD CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNum is the Module that is being addressed. Note that modules are numbered from 0.

DeviceNum is the number of the device that is being addressed.

CmdMode: This argument is used to specify what particular aspect of device status information is to
be returned. Table 12 on page 36 gives details of the available command modes.

Return The return value is dependant upon the command mode. Returns -1 on error.

Description This function returns device status information.

Notes

CmdMode Description

dinfDEVICEIDCODE This command mode returns the 32-bit hex-decimal JTAG
device ID code for the device. See Table 14 on page 37 for
details.

dinfDEVICETYPE This command mode returns the device type for the device.
See Table 13 on page 36 for details.

dinfXOFFSET This command mode returns the x co-ordinate from the left
most edge of the module image, which is used to position the
device image correctly on the module image.
This is useful when wishing to display an image of the device
on the module.

dinfYOFFSET This command mode returns the y co-ordinate from the
bottom most edge of the module image, which is used to
position the device image correctly on the module image.
This is useful when wishing to display an image of the device
on the module.

dinfWIDTH This command mode returns the width of the device image.
This is useful when wishing to display an image of the device
on the module.

dinfHEIGHT This command mode returns the height of the device image.
This is useful when wishing to display an image of the device
on the module.

Table 12: DIME_DeviceStatus CmdMode Argument Options

Device Type Description

dinfDEVICEBOOTABLE The device is configurable.

dinfDEVICEBYPASS The device is a bypass device.

dinfDEVICENOBOOT The device cannot be configured.

Table 13: Device Types
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
JTAG device ID code Description JTAG device ID code Description

0 Invalid arguments didXCV50E Xilinx Virtex E device V50

didXCV50 Xilinx Virtex device V50 didXCV100E Xilinx Virtex E device V100

didXCV100 Xilinx Virtex device V100 didXCV200E Xilinx Virtex E device V200

didXCV150 Xilinx Virtex device V100 didXCV300E Xilinx Virtex E device V300

didXCV200 Xilinx Virtex device V200 didXCV400E Xilinx Virtex E device V400

didXCV300 Xilinx Virtex device V300 didXCV600E Xilinx Virtex E device V600

didXCV400 Xilinx Virtex device V400 didXCV1000E Xilinx Virtex E device V1000

didXCV600 Xilinx Virtex device V600 didXCV1600E Xilinx Virtex E device V1600

didXCV800 Xilinx Virtex device V800 didXCV2000E Xilinx Virtex E device V2000

didXCV1000 Xilinx Virtex device V1000 didXCV2600E Xilinx Virtex E device V2600

didXCV405EM Xilinx Virtex EM device V405 didXCV3200E Xilinx Virtex E device V3200

didXCV812EM Xilinx Virtex EM device V812 didXC18V01 Xilinx 1800 PROMs V01

didXC2S50 Xilinx Spartan 2 S50 didXC18V02 Xilinx 1800 PROMs V02

didXC2S100 Xilinx Spartan 2 S100 didXC18V04 Xilinx 1800 PROMs V04

didXC2S150 Xilinx Spartan 2 S150 didXC18V256 Xilinx 1800 PROMs V256

didXC2S200 Xilinx Spartan 2 S200 didXC18V512 Xilinx 1800 PROMs V512

XC9536 Xilinx 9536 CPLD XC9536XL Xilinx 9536XL CPLD

XC9572 Xilinx 9572 CPLD XC9572XL Xilinx 9572XL CPLD

XC95108 Xilinx 95108 CPLD XC95108XL Xilinx 95108XL CPLD

XC95144 Xilinx 95144 CPLD XC95144XL Xilinx 95144XL CPLD

XC95216 Xilinx 95216 CPLD XC95216XL Xilinx 95216XL CPLD

XC95288 Xilinx 95288 CPLD didXC2V40 Xilinx Virtex2 V40

didXC2V80 Xilinx Virtex2 V80 didXC2V250 Xilinx Virtex2 V250

didXC2V500 Xilinx Virtex2 V500 didXC2V1000 Xilinx Virtex2 V1000

didXC2V1500 Xilinx Virtex2 V1500 didXC2V2000 Xilinx Virtex2 V2000

didXC2V3000 Xilinx Virtex2 V3000 didXC2V4000 Xilinx Virtex2 V4000

didXC2V6000 Xilinx Virtex2 V6000 didXC2V8000 Xilinx Virtex2 V8000

didXC2V10000 Xilinx Virtex2 V10000 didXC2VP2 Xilinx Virtex2 Pro P2

didXC2VP4 Xilinx Virtex2 Pro P4 didXC2VP7 Xilinx Virtex2 Pro P7

didXC2VP20 Xilinx Virtex2 Pro P20 didXC2VP30 Xilinx Virtex2 Pro P30

didXC2VP40 Xilinx Virtex2 Pro P40 didXC2VP50 Xilinx Virtex2 Pro P50

didXC2VP70 Xilinx Virtex2 Pro P70 didXC2VP100 Xilinx Virtex2 Pro P100

didXC2VP125 Xilinx Virtex2 Pro P125

Table 14: JTAG Device ID Codes
68 Issue 8 September 14, 2004 www.nallatech.com 37

http://www.nallatech.com

38

Functional Reference
6.29 DIME_DeviceStatusPtr
Syntax void *DIME_DeviceStatusPtr(DIME_HANDLE handle, DWORD ModuleNum, DWORD

DeviceNum, DWORD CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNum is the Module that is being addressed. Note modules are numbered from 0.

DeviceNum is the number of the device that is being addressed.

CmdMode: This argument is used to specify what particular aspect of device status information is to
be returned. Table 15 on page 38 gives details of the available command modes.

Return The return value is dependant upon the command mode. Returns NULL on error.

Description This function returns card status information that cannot be returned using DIME_DeviceStatus.

Notes If a pointer to a string is returned this string is only valid until the next call is made into the library. It
is therefore advised that either the string is used directly or that it is copied for later use.

CmdMode Description

dinfICONFILENAME This command mode returns a string (char *), which is the
icon filename for the device.

dinfDESCRIPTION This command mode returns a string (char *), which is a short
description of the device.

Table 15: DIME_DeviceStatusPtr CmdMode Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.30 DIME_DMAClose
Syntax DWORD DIME_DMAClose(DIME_HANDLE handle, DIME_DMAHANDLE DMAhandle, DWORD

Flags)

Arguments handle is a valid handle to a DIME carrier card.

DMAhandle is a valid DMA handle that was returned from DIME_DMAOpen.

Flags: This argument allows the DMA close process to be customised to suit your development
requirements. Table 16 on page 39 gives details for the Flags.

Return Returns zero on success, non-zero otherwise.

Description This function closes down a valid DMAhandle. In doing this it de-allocates system resources. This
function should be called after all DMA transfers have finished using this DMAhandle.

Notes After successfully calling this function the DMAhandle is no longer valid.

6.31 DIME_DMAControl
Syntax DWORD DIME_DMAControl(DIME_HANDLE handle, DIME_DMAHANDLE DMAChannel,

DWORD CmdMode, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

DMAChannel is a valid DMA handle that was returned from DIME_DMAOpen.

CmdMode: This argument is used to specify which aspect of the open DMA channel is to be
controlled. The available command modes are given in Table 17 on page 39.

Flags Description

ddmaCLOSETERMINATE This will immediately terminate any DMA transfer using this
DMAhandle and then close the handle.

ddmaCLOSEWAITFORFINISH This will wait for any active DMA transfer to finish before
closing down the handle.

Table 16: DIME_DMAClose Flags Argument Options

CmdMode Description

ddmaLOCALNOINC Sets the DMA channel to have no incrementing for the local
address during transfers.
Returns 0 on success.

ddmaREMOTENOINC Sets the DMA channel to have no incrementing for the
remote address during transfers.
Returns 0 on success.

ddmaLOCALINC Sets the DMA channel to have incrementing for the local
address during transfers.
Returns 0 on success.

Table 17: DIME_DMAControl CmdMode Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 39

http://www.nallatech.com

40

Functional Reference
Return Returns are dependant on the selected command mode.

Description This function is used to control DMA transfers for a particular channel.

ddmaREMOTEINC Sets the DMA channel to have incrementing for the remote
address during transfers.
Returns 0 on success.

ddmaTERMINATE If the DMAChannel is a valid handle, the current DMA
transfer for this channel is terminated.
If DMAChannel=NULL. All DMA transfers with this card are
terminated.
Returns 0 on success.

ddmaTIMEOUT Sets the Timeout value for the DMA channel to the number of
milli-seconds specified by the value argument.
The Timeout specifies the maximum period of inactivity that is
acceptable during a DMA transfer. If this value is exceeded
then the DMA transfer is deemed to have failed and is
terminated. If the timeout value is set to zero then the
timeout is effectively infinite. The default value for DMA
timeouts is 5000milli-seconds which is set every time a DMA
handle is created using DIME_DMAOpen.
Returns 0 on success.

ddmaCURRCOUNT This is used to set the address of where the current total of
words transferred is to be stored.

ddmaPOLLED This is used to set all future DMA transfers on this channel to
be polled rather than use interrupts.
When the DMA channel is opened the default state is that all
transfers are polling transfers and not interrupt based.
Returns 0 on success.

ddmaINTERRUPTS This is used to set all future DMA transfers on this channel to
be interrupt based rather than polling.
When the DMA channel is opened the default state is that all
transfers are polling transfers and not interrupt based.
Note that polling transfers are in general faster than interrupt
based transfers although interrupt based transfers use less
CPU time.
Returns 0 on success.

CmdMode Description

Table 17: DIME_DMAControl CmdMode Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.32 DIME_DMAOpen
Syntax DIME_DMAHANDLE DIME_DMAOpen(DIME_HANDLE handle, DWORD DMAChannel,

DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

DMAChannel is used to specify the actual DMA channel on your hardware that is to be addressed.
This is a bit wise argument. Please refer to the Motherboard Reference Guide for more details on what
DMA channels are available for the particular hardware.

Flags: Used to specify special modes of opening the DMA channel. Currently there are none and this
argument is not used.

Return This handle is used to control the desired DMA channel. Returns a valid DMA handle. Returns
NULL otherwise.

Description DMA transfers are fast and efficient ways of transferring large quantities of data between the host PC
and the card. This function checks the availability of the selected DMA channel and if suitable creates
a handle that is required when performing the DMA data transfers.

6.33 DIME_DMARead
Syntax DWORD DIME_DMARead(DIME_HANDLE handle, DIME_DMAHANDLE DMAChannel,

DWORD *DestData, DWORD SrcAddr, DWORD WordCount, DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

DMAChannel: A valid DMA handle that was returned from DIME_DMAOpen.

DestData: This should be a pointer to the PC memory that receives data from the card. This should
be 32-bit aligned.

SrcAddr: This is the source address of the data on the card that is to be read. If this argument is 0
the interface FPGAs FIFOs are to be read.

WordCount: This is the number of 32-bit words to be read.

Flags: This argument allows the DMA transfer to be customised to suit your development
requirements. The flags are bit wise so multiple flags can be combined. Table 18 on page 41 gives
details for the Flags. Obviously directly conflicting flags such as ddmaBLOCKING and
ddmaNONBLOCKING should not be combined. In this case the flag that sets the bit will be taken.
In this case the transfer would be set to be non blocking.

Flags Description

ddmaBLOCKING DIME_DMARead will not return until the DMA transfer is
complete.

ddmaNONBLOCKING DIME_DMARead will return before the DMA transfer is
complete.

Table 18: DMA Transfer Functions Flags Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 41

http://www.nallatech.com

42

Functional Reference
Return There are several possible returns for the DMA transfer. Table 19 on page 42 provides details.

Description This handles the transfer of 'WordCount' 32-bit words from the Interface with the on-board FGPA
of the DIME Motherboard to the memory pointed to by 'DestData'. The memory pointed to by
'DestData' does not need to be contiguous, as this function will handle the internal transfer and
memory management.

Notes To achieve this first it locks down DestData and then performs the DMA transfer. On completion of
the transfer irrespective of the result it then unlocks the DestData. So if your application performs
several DMA reads then it is more efficient to use the DIME_DMAReadToLockedMem function.

6.34 DIME_DMAReadToLockedMem
Syntax DWORD DIME_DMAReadToLockedMem (DIME_HANDLE handle, DIME_DMAHANDLE

DMAChannel, DIME_MEMHANDLE DestData, DWORD SrcAddr, DWORD WordCount,
DWORD Flags);

Arguments handle is a valid handle to a DIME carrier card.

DMAChannel: A valid DMA handle that was returned from DIME_DMAOpen.

DestData: This should be a valid memory handle returned from DIME_LockMemory. This should be
the 32-bit aligned location of the memory for the data is going to read from the card and stored in.

ddmaPHYSICALADDR This is only valid in multiple card systems where DMA transfer
is between two cards. In this case the local address is actually
a physical address and this flag should be used.
Please check your Motherboard Reference Guide for details.

ddmaINITWORDADDR This flag should be used when the initial word of the data is an
address.

DMA transfer function return values Description

ddmaOK The DMA transfer was a success.

ddmaINVALID_HANDLE The DMA transfer could not begin since one of the handles
where invalid.

ddmaMEM_ERROR There are insufficient system resources to carry out the
transfer. Please free some resources by closing down other
applications and retry.

ddmaTIMEDOUT The DMA transfer was terminated due to the transfer
exceeding the specified timeout value.

ddmaINPROGRESS The DMA transfer is in progress.

ddmaINTERRUPT_ERROR The DMA transfer failed due to an error relating to the
interrupts.

ddmaINVALID_MEM_HANDLE The DMA transfer failed due to the locked down memory
handle being invalid.

Table 19: DMA Transfer Functions Return Values

Flags Description

Table 18: DMA Transfer Functions Flags Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
SrcAddr: This is the source address of the data on the card that is to be read. If this argument is 0
the interface FPGAs FIFOs are to be read.

WordCount: This is the number of 32-bit words to be read.

Flags: This argument allows the DMA transfer to be customized to suit your development
requirements. The flags are bit wise so multiple flags can be combined. See Table 18 on page 41 for
valid flags.

Return There are several possible returns for the DMA transfer. See Table 19 on page 42 for details.

Description This handles the transfer of 'WordCount' 32-bit words from the Interface with the on-board FPGA
of the DIME Motherboard to the memory pointed to by 'DestData'. The memory pointed to by
'DestData' does not need to be contiguous, as this function will handle the internal transfer and
memory management.

6.35 DIME_DMAStatus
Syntax DWORD DIME_DMAStatus(DIME_HANDLE handle, DIME_DMAHANDLE DMAChannel,

DWORD CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

DMAChannel is a valid DMA handle that was returned from DIME_DMAOpen or DMAChannel is
ddmaALLDMACHANNELS. This is used under certain command modes to return card specific
information on all DMA channels.

CmdMode: This argument is used to specify which aspect of the open DMA channel is being
addressed. The available command modes are given inTable 20 on page 43.

CmdMode Description

ddmaNUMCHANNELS Used with ddmaALLDMACHANNELS.
Returns the number of DMA channels available for this card.

ddmaREADFLAGS Used with ddmaALLDMACHANNELS.
Returns the number of readable DMA channels for this card.
The return is a bit wise DWORD with a '1' in a particular bit
position indicates that that channel is readable. E.g. a return of
0x00000003 means that channel numbers 1 and 2 are both
readable channels.

ddmaWRITEFLAGS Used with ddmaALLDMACHANNELS.
Returns the number of writeable DMA channels for this card.
The return is a bit wise DWORD with a '1' in a particular bit
position indicates the channel is writeable. E.g. a return of
0x00000004 means that channel number 3 is a writeable
channel.

ddmaREADANDWRITE Used with ddmaALLDMACHANNELS.
Returns the number of DMA channels that are both writeable
and readable for this card. The return is a bit wise DWORD
with a '1' in a particular bit position indicates the channel is
both writeable and readable. E.g. a return of 0x00000001
means that channel number 1 is both a readable and writeable
channel.

Table 20: DIME_DMAStatus CmdMode Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 43

http://www.nallatech.com

44

Functional Reference
ddmaREADABLE Returns a '1' if the DMAChannel is readable. Returns a '0' if
not.

ddmaWRITABLE Returns a '1' if the DMAChannel is writeable. Returns a '0' if
not.

ddmaACTIVE Returns a '1' if the DMAChannel is active. Returns a '0' if not.

ddmaINTERUPTABLE Returns a '1' if the DMAChannel is interruptible. Returns a '0'
if not.

ddmaNONBLOCKINGSUPPORT Returns a '1' if the DMAChannel supports non-blocking DMA
transfers. Returns a '0' if not.

ddmaLOCALINCFLAG Returns a '1' if the DMAChannel at the local side (the PC in
the majority of cases) supports incremental addressing.
Return a '0' if not.

ddmaREMOTEINCFLAG Returns a '1' if the DMAChannel at the remote side (the card
in the majority of cases) supports incremental addressing.
Returns a '0' if not.

ddmaLOCALNOINC Returns a '1' if the DMAChannel can do no incrementing on
local addresses. Returns a '0' if not.

ddmaREMOTENOINC Returns a '1' if the DMAChannel can do no incrementing on
remote addresses. Returns a '0' if not.

ddmaTIMEOUT Returns the DMA timeout value for DMA transfers. This is
defaulted to 5000 milli-seconds.

ddmaCURRCOUNT Returns the current word count of any DMA transfer. This is
useful feedback to the application. This can be used in multi-
threaded applications to monitor the progress of the data
transfer. In single threaded applications it can be used to
return the total number of words transferred.

ddmaEMPTYFLAG When EMPTY is high it indicates that there is no data waiting
to be transferred to the FPGA, i.e. the FPGA application has
read all the available data that has been transferred via DMA
write operation.
Returns the status of the EMPTY signal that is on the interface
FPGA to the on-board FPGA Interface. When the EMPTY
signal is high this function returns a '1' otherwise it returns a
'0'.

ddmaBUSYFLAG When BUSY is high it indicates that the internal transfer
buffer from the on board FPGA to the interface FPGA is full
and cannot accept any more data. The user application should
initiate a DMA read at this stage.
Returns the status of the BUSY signal that is on the interface
FPGA to the on-board FPGA Interface. When the BUSY signal
is high this function returns a '1' otherwise it returns a '0'.

ddmaREADEMPTY Returns the status of the internal buffer between the on board
FPGA and the interface FPGA interface.
If there is no data in the read buffer to be accessed this will
return 1, however 0 will be returned if there is data waiting to
be read.

CmdMode Description

Table 20: DIME_DMAStatus CmdMode Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Return Returns are dependant on the selected command mode.

Description This function returns status information on various DMA operations for the selected DMA channel.

6.36 DIME_DMAWrite
Syntax DWORD DIME_DMAWrite(DIME_HANDLE handle, DIME_DMAHANDLE DMAChannel,

DWORD *SrcData, DWORD DestAddr, DWORD WordCount, DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

DMAChannel: A valid DMA handle that was returned from DIME_DMAOpen.

SrcData: This should be a pointer to the PC memory that contains the data to be written to the
card. This should be 32-bit aligned.

DestAddr: This is the destination address on the card that the data is to be written to. If this
argument is 0 the interface FPGAs FIFOs are assumed.

WordCount: This is the number of 32-bit words to be written.

Flags: This argument allows the DMA transfer to be customized to suit your development
requirements. The flags are bit wise so multiple flags can be combined. See Table 18 on page 41 for
valid flags.

Return There are several possible returns for the DMA transfer. See Table 19 on page 42 for details.

Description This handles the transfer of 'WordCount' 32-bit words from the PC memory pointed to by SrcData
to the Interface connected to the on board FPGA of the DIME Motherboard. The memory pointed
to by SrcData does not need to be contiguous, as this function will handle the internal transfer and
memory management.

Notes To achieve this first it locks down SrcData and then performs the DMA transfer. On completion of
the transfer irrespective of the result it then unlocks the SrcData. So if your application performs
several DMA writes then it is more efficient to use the DIME_DMAWriteFromLockedMem function.

ddmaWRITEFULL This returns a '1' when the internal buffer from the interface
FPGA to the on-board FPGA is full and hence cannot accept
any more data from the user application.
The user application must therefore wait until the FPGA reads
data before any more data will be transferred.

ddmaWAITFORFINISH This returns only when the current DMA transfer over this
channel is finished.

CmdMode Description

Table 20: DIME_DMAStatus CmdMode Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 45

http://www.nallatech.com

46

Functional Reference
6.37 DIME_DMAWriteFromLockedMem
Syntax DWORD DIME_DMAWriteFromLockedMem (DIME_HANDLE handle, DIME_DMAHANDLE

DMAChannel, DIME_MEMHANDLE SrcData, DWORD DestAddr, DWORD WordCount,
DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

DMAChannel: A valid DMA handle that was returned from DIME_DMAOpen.

SrcData: This should be a valid memory handle returned from DIME_LockMemory. This should be
the 32-bit aligned location of the memory of the data that is to be written to the card.

DestAddr: This is the destination address on the card that the data is to be written to. If this
argument is 0 the interface FPGAs FIFOs are assumed.

WordCount: This is the number of 32-bit words to be written.

Flags: This argument allows the DMA transfer to be customized to suit your development
requirements. The flags are bit wise so multiple flags can be combined. See Table 18 on page 41 for
valid flags.

Return There are several possible returns for the DMA transfer. See Table 19 on page 42 for details.

Description This handles the transfer of 'WordCount' 32-bit words from the PC memory pointed to by SrcData
to the Interface connected to the on board FPGA of the DIME motherboard. The memory pointed
to by SrcData does not need to be contiguous, as this function will handle the internal transfer and
memory management.
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.38 DIME_GetCurrentHandle
Syntax DIME_HANDLE DIME_GetCurrentHandle(void)

Arguments N/A

Return Returns the currently selected card handle from the probe utility. If no card is selected in the probe
utility then the return will be NULL.

Description This function gets the current card handle from the probe utility. Note that the probe utility must be
launched and a card selected.

Notes The nueym.lib (nueymomf.lib for Borland projects) needs to included in your design.

Example

Figure 5: DIME_GetCurrentHandle

//Borland example of using DIME_GetCurrentHandle
// Display the GUI for Configuration
DIME_MConfigGUI(NULL,1);

//wait here until a card has been selected.
//Get the current card handle
Handle = DIME_GetCurrentHandle();
if(Handle == NULL){

Application->MessageBox("No card selected.", "Invalid card
 handle",MB_OK || MB_ICONWARNING ||
MB_APPLMODAL);

 return;
}
// Handle is now valid
68 Issue 8 September 14, 2004 www.nallatech.com 47

http://www.nallatech.com

48

Functional Reference
6.39 DIME_GetError
Syntax void DIME_GetError(DIME_HANDLE handle, DWORD *ErrNumber, char* ErrString)

Arguments handle is a valid handle to a DIME carrier card.

ErrNumber is a pointer to the memory where the error number will be returned.

ErrString is a pointer to the start of the memory where the error string will be written.

Return N/A

Description This function allows you to gather information relating to the last error that occurred in the system.
This is particularly useful if the system dialogue boxes have been disabled using
DIME_SystemControl.

Notes You can allocate any memory required by either the ErrNumber or the ErrString arguments. 1000
characters is the maximum error string length.

Example

6.40 DIME_GetLocateVersionNumber
Syntax DWORD DIME_GetLocateVersionNumber(void)

Arguments N/A

Return Returns the version number of the locate unit within the FUSE software. Returns a 0 on an error.

Description Gets the version number of the locate unit within the FUSE software.

6.41 DIME_GetVersionNumber
Syntax DWORD DIME_GetVersionNumber(DIME_HANDLE CardHandle)

Arguments CardHandle: If this argument is NULL then the version number for the FUSE SDL software is
returned. If this is a valid card handle then the returned version number is the version number for
the FUSE card driver.

Figure 6: DIME_GetError Example

//Example of using DIME_GetError
//Note DIME_CardStatusPtr is deliberately getting called with an
//invalid command mode to generate an error.
if(DIME_CardStatusPtr(hCard,dinfYOFFSET)==NULL)
{
 DWORD ErrorNumber;
 char ErrorString[1000];
 DIME_GetError(hCard,&ErrorNumber,ErrorString);
 printf("Error number: %d.\n",ErrorNumber);
 printf(ErrorString);
}
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Return Returns a version number.

Description Gets the version number of the installed software.

6.42 DIME_InterruptControl
Syntax DWORD DIME_InterruptControl(DIME_HANDLE handle, DWORD InterruptFlags, DWORD

CmdMode, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

InterruptFlags: This is used to specify which interrupt the function is to address. See Table 23 on
page 51 for details of the available InterruptFlags.

Note: Currently the only parameter available is dintONBOARDFPGA except for the BenONE. If a
BenONE is used then either dintONBOARDFPGA or dintMODULE1 may be used. Both of these
address the interrupt on the module FPGA.

CmdMode: This argument is used to specify what function is to be performed. Table 21 on page 49
gives details of the available command modes.

Value: This is used in the control to specify the type of interrupts to be used. This is only used in the
dintWAIT command mode. Table 22 on page 49 gives details of the available Values.

Return Returns all '-1' on error, otherwise the return is dependant on the command mode.

Description This function is used to control the interrupts on the card. It allows the interrupts to be enabled,
disabled and allows your program to wait and act on interrupts generated by your design. All
interrupts are genuine hardware interrupts.

Example

CmdMode Description

dintENABLE This is enable the selected interrupt. Returns zero on success,
non-zero otherwise.

dintDISABLE This is used to disable the selected interrupt. Returns zero on
success, non-zero otherwise.

dintWAIT This causes the function to wait for the selected interrupt to
occur providing that the interrupt has been enabled. Returns
zero on success, non-zero otherwise.

Table 21: DIME_InterruptControl CmdMode Argument Options

Value Description

dintBLOCKING Blocks the threads execution until the interrupt occurs.

Table 22: DIME_InterruptControl Value Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 49

http://www.nallatech.com

50

Functional Reference
Figure 7: Interrupt Example using DIME_InterruptControl

//Sample interrupt code. Obviously your design needs to use this
pin.
//enable the interrupt
if((Answer=DIME_InterruptControl(hCard, dintONBOARDFPGA,
 dintENABLE, dintBLOCKING)) == 0)

printf("On board FPGA Interrupt Enabled.\n");
else

printf("failed to enable the on baord FPGA interrupt.\n");

//Wait for the interrupt
if((Answer=DIME_InterruptControl(hCard,dintONBOARDFPGA,dintWAIT,
 dintBLOCKING))==0)

printf("On board interrupt received.\n");
else

printf("Error while waiting for the on board FPGA
interrupt.\n");

//Disable the interrupt
if((Answer=DIME_InterruptControl(hCard,dintONBOARDFPGA,
 dintDISABLE, dintBLOCKING)) ==0)

printf("Disabled the on board FPGA interrupt.\n");
else

printf("Failed to disable the on board FPGA interrupt.\n");
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.43 DIME_InterruptStatus
Syntax DWORD DIME_InterruptStatus(DIME_HANDLE handle, DWORD InterruptFlags, DWORD

CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

InterruptFlags: This is used to specify which interrupt the function is to address. Table 23 on page 51
gives details of the available InterruptFlags.

Note: Currently the only parameter available is dintONBOARDFPGA except for the BenONE. If a
BenONE is used then either dintONBOARDFPGA or dintMODULE1 may be used. Both of these
address the interrupt on the module FPGA.

CmdMode: This argument is used to specify what function is to be performed. Table 24 on page 51
gives details of the available command modes.

Return Returns all '-1' on error, otherwise the return is dependant on the command mode.

Description This function is used to get the status of the interrupts on the card. There are three command
modes available. The first dintFLAGS is used to determine if an interrupt has occurred since the
specified interrupt was enabled. dintAVAILABLE is used to check whether the specified interrupt is
valid for this particular card. Finally dintPINVALUE is used to return the current value of the chosen
interrupt pin.

InterruptFlags Description

dintONBOARDFPGA This is on board FPGA interrupt pin.

dintMODULE1 This is the interrupt for Module 1.

dintMODULE2 This is the interrupt for Module 2.

dintMODULE3 This is the interrupt for Module 3.

dintMODULE4 This is the interrupt for Module 4.

dintALL This is the flag for all the above interrupts.

Table 23: InterruptFlags Argument Options

Condoned Description

dintFLAGS This is used to determine if an interrupt has occurred. Returns
1 if an interrupt has occurred. 0 otherwise.

dintAVAILABLE Allows the user to check whether an interrupt for this card
exists. Returns a one in the relevant bit position if the
interrupt is available. Returns a zero in the relevant bit
position otherwise.

dintPINVALUE This returns the value on the interrupt pin. If the interrupt pin
for the selected interrupt is high then this returns 1 in the
relevant bit position otherwise it returns 0.

Table 24: DIME_InterruptStatus CmdMode Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 51

http://www.nallatech.com

52

Functional Reference
Example

Figure 8: Examples of using DIME_InterruptStatus

//Example Interrupt code
if((Answer=DIME_InterruptStatus(hCard,dintALL,dintAVAILABLE))==0)

printf("No Interrupts are available for this card.\n");
if((Answer=DIME_InterruptStatus(hCard,dintONBOARDFPGA,
 dintAVAILABLE))==dintONBOARDFPGA)
printf("The on-board FPGA interrupt is available for this
 card.\n");
if((Answer=DIME_InterruptStatus(hCard,dintMODULE1,dintAVAILABLE))
 ==dintMODULE1)
printf("The MODULE 1 interrupt is available for this card.\n");
if((Answer=DIME_InterruptStatus(hCard,dintMODULE2,dintAVAILABLE))
 == dintMODULE2)
printf("The MODULE 2 interrupt is available for this card.\n");
if((Answer=DIME_InterruptStatus(hCard,dintMODULE3,dintAVAILABLE))
 == dintMODULE3)
printf("The MODULE 3 interrupt is available for this card.\n");
if((Answer=DIME_InterruptStatus(hCard,dintMODULE4,dintAVAILABLE))
 == dintMODULE4)
printf("The MODULE 4 interrupt is available for this card.\n");

printf("The current state of the on-board FPGA interrupt pin is
%d\n",DIME_InterruptStatus(hCard,dintONBOARDFPGA,dintPINVALUE));

printf("A 0 indicates that an interrupt has not occured, 1
indicates that one has: %d\n",
DIME_InterruptStatus(hCard,dintONBOARDFPGA,dintFLAGS));

printf("The value on the Virtex Int Pin is %d.\n",
DIME_VirtexIntPin(hCard));
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.44 DIME_JTAGControl
Syntax DWORD DIME_JTAGControl(DIME_HANDLE handle, DWORD CmdMode, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

CmdMode: This argument is used to specify which particular aspect of the JTAG chain is to be
returned. Table 25 on page 53 gives details.

Value is used to specify the value that the chain is to be driven at. Table 26 on page 53 provides
details.

Return This function returns '-1' on failure. The function returns 0 on success.

Description This controls the JTAG chain on the card.

Notes Once this function has been called calling the DIME_JTAGStatus function will return the speed at
which the JTAG chain has been set.

CmdMode Description

djtagCONFIGSPEED The will set the current speed that the cards JTAG chain is running at. The value argument is
then taken and the cards chain is set as close to the specified value as possible.
This will return a zero on success.
Please consult your Motherboard Reference Guide for further details on the JTAG chain.

Table 25: DIME_JTAGControl CmdMode Argument Options

Value Description

djtagDEFAULTSPEED This is the default speed for the JTAG chain on the card.
Please consult your motherboards used guide for more
details.

djtagMAXSPEED1 This will attempt to set the cards JTAG chain to 1MHz.

djtagMAXSPEED2 This will attempt to set the cards JTAG chain to 2MHz.

djtagMAXSPEED5 This will attempt to set the cards JTAG chain to 5MHz.

djtagMAXSPEED10 This will attempt to set the cards JTAG chain to 10MHz.

djtagMAXSPEED20 This will attempt to set the cards JTAG chain to 20MHz.

djtagMAXSPEED30 This will attempt to set the cards JTAG chain to 30MHz.

djtagMAXSPEED40 This will attempt to set the cards JTAG chain to 40MHz.

djtagMAXSPEED50 This will attempt to set the cards JTAG chain to 50MHz.

djtagMAXSPEED60 This will attempt to set the cards JTAG chain to 60MHz.

djtagMAXSPEED70 This will attempt to set the cards JTAG chain to 70MHz.

djtagMAXSPEED80 This will attempt to set the cards JTAG chain to 80MHz.

djtagMAXSPEED90 This will attempt to set the cards JTAG chain to 90MHz.

djtagMAXSPEED100 This will attempt to set the cards JTAG chain to 100MHz.

Table 26: JTAG Return Descriptions
68 Issue 8 September 14, 2004 www.nallatech.com 53

http://www.nallatech.com

54

Functional Reference
6.45 DIME_JTAGStatus
Syntax DWORD DIME_JTAGStatus(DIME_HANDLE handle, DWORD CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

CmdMode: This argument is used to specify which particular of the JTAG chain is to be returned.
Table 27 on page 54 provides details.

Return This function returns '-1' on failure. Otherwise the return is dependant upon the command mode.

Description This returns status information regarding the JTAG chain on the card.

6.46 DIME_LoadCardDefinition
Syntax DWORD DIME_LoadCardDefinition (DIME_HANDLE handle, const char *Filename, DWORD

Flags)

Arguments handle is a valid handle to a DIME carrier card.

Filename is the filename that the card definition is to be saved to.

Flags: This argument is used to customize the loading of the card definition file. Currently there are
no flags and this argument is not used. 0 Should be used.

Return Returns 0 on success. Returns non-zero otherwise.

Description This function loads a valid card definition file. By doing this it assigns bitfiles/streams to devices.

Notes If the dcfgEMBEDALLBITS flag was used when creating the card definition file then the bitfiles that
where embedded into the card file will be loaded up into memory.

6.47 DIME_LoadSystemDefinition
Syntax DIME_HANDLE *DIME_LoadSystemDefinition (const char *SysFilename, DWORD *CardCount,

LOCATE_HANDLE **Locate_handles, DWORD Flags)

Arguments SysFilename: This is the name of the system definition file that is to be loaded intomemory.

CardCount: This is a memory location to which the number of cards that the loaded system
contains is returned.

CmdMode Description

djtagCONFIGSPEED The will return the current speed that the cards JTAG chain is
running at. E.g. If the JTAG chain is being driven at its default
speed it will return djtagDEFAULTSPEED. Otherwise it will
return the closest maximum speed of the chain. For example
with the Ballynuey this would return djtagMAXSPEED10. See
Table 26 on page 53 for details.
Please consult your Motherboard Reference Guide for further
details on the JTAG chain.

Table 27: DIME_JTAGStatus CmdMode Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Locate_handles is a pointer to an array that will return with the locate handles for each card that the
loaded system has opened.

Flags: This argument is used to customize the loading of the system definition file. Currently there
are no flags and this argument is not used. 0 Should be used.

Return Returns a pointer to an array containing the card handles for the cards that have been opened. Also
via the Locate_handles argument the locate handles are returned and via the CardCount argument
the number of cards in the system is returned. On error returns NULL.

Description This function takes a valid system definition file and loads it up. In doing this it locates all the cards in
the system and opens each of these cards. Once opened the bitfiles/streams are assigned to every
device in every card.

Notes To successfully load a system definition file the card definition files for each card in the system must
be in the same location as when the system definition file was created.

6.48 DIME_LocateCard
Syntax LOCATE_HANDLE DIME_LocateCard(int LocateType, DWORD MBType, void* LocateTypeArgs,

DWORD DriverVersion, DWORD Flags)

Arguments LocateType: This is the interface that the locate is to be performed over. The Table 28 on page 55
provides further details.

MBType: This argument is used to specify which particular Nallatech motherboard is to be located
(i.e. the motherboard type). Table 29 on page 55 gives details for the MBType.

LocateType Description

dlPCI Searches for all Nallatech cards over the PCI interface.

dlUSB Searches for all Nallatech cards over the USB interface.

dlTCPIP Searches for all Nallatech cards over a network. (note that a
server application has to be running on the destination
machine)

dlCITRIX Searches for all Nallatech cards over a Citrix environment

dlETHERNET Searches for all Nallatech cards that have an Ethernet module.

dlVME Searches for all Nallatech cards over the VME bus.

Table 28: Locate Types

MBType Description

mbtALL All Nallatech motherboards.

mbtNONE No motherboard type not recognized. Not valid for this
function.

mbtTHEBALLYINX The Ballyinx

mbtTHEBALLYNUEY The Ballynuey

mbtTHEBALLYNUEY2 The Ballynuey2

mbtTHEBALLYNUEY3 The Ballynuey3

Table 29: Motherboard Types
68 Issue 8 September 14, 2004 www.nallatech.com 55

http://www.nallatech.com

56

Functional Reference
LocateTypeArgs: This argument is used to provide any specific additional information that is required
to locate a card over a specified interface. Table 30 on page 56 details what information should be
provided dependant on the interface.

DriverVersion: This argument is used to specify a particular software driver that is to be used when
controlling the particular card. This is only required for advanced users. If the specific driver version
number is known then this number can be used. Otherwise an option from Table 31 on page 56
should be used.

Flags: This argument allows the locate process to be customized to suit your development
requirements. Table 32 on page 56 gives details for the Flags.

Return Returns a handle to information pertaining to the detected cards. Returns NULL on failure. The
return type LOCATE_HANDLE is defined as a void pointer.

mbtTHEBENERA The BenERA

mbtTHESTRATHNUEY The Strathnuey

LocateType LocateTypeArgs

dlPCI NULL

dlUSB NULL

dlTCPIP DIME_TCPIP

dlCITRIX DIME_CITRIX

dlETHERNET DIME_ETHERNET

dlVME DIME_VME

Table 30: DIME_LocateCard LocateType Argument Options

DriverVersion Description

dldrDEFAULT This locates the latest driver installed on your system for each
card found.

dldrALL This locates all drivers installed on your system for each card
found.

Table 31: DIME_LocateCard DriverVersion Argument Options

Flags Description

dlDEFAULT This is the default option for the locate. It does not get the
serial number from the cards.

dlSERIALNUM Since getting the serial number from all the cards is a lengthy
(approximately a second per card) process this information is
not requested in the default option. If the serial number is
required then specifying this flag will bring back the serial
number for all cards.

Table 32: DIME_LocateCard Flags Argument Options

MBType Description

Table 29: Motherboard Types
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Description This function must be called before all other functions. It searches the specified interface for the
specified Nallatech motherboards and returns a handle, which is subsequently used to open a chosen
card.

Example See Figure 4 on page 25.

6.49 DIME_LocateStatus
Syntax DWORD DIME_LocateStatus(LOCATE_HANDLE handle, DWORD CardNumber, DWORD

CmdMode)

Arguments handle is a valid locate handle.

CardNumber is the selected cards index. This can be NULL for certain command modes.

CmdMode is the command mode for the status function. This is used to specify what particular piece
of information is required. Table 33 on page 57 gives details for the CmdMode argument.

Return Returns a DWORD that is dependant on the CmdMode argument. Returns 0xFFFFFFFF on error.

Description This function is used by the developer upon a successful return from a DIME_LocateCard function
call to gather information on what has been located. This is normally required for systems that
contain multiple cards over various interfaces. This information is then used to ensure that the
desired card is opened and interfaced with.

CmdMode Description

dlNUMCARDS This command mode returns the number of cards found by
the locate. No card number is required when this command
mode is used.

dlMBTYPE Returns the motherboard type of the selected card.

dlINTERFACE Returns the interface type for the selected card.

dlSERIALNUMBER Returns the serial number for the selected card.

dlDRIVERVERSION Returns the software driver version number that will be used
to control the selected card when it is opened
(DIME_OpenCard).

Table 33: DIME_LocateStatus CmdMode Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 57

http://www.nallatech.com

58

Functional Reference
Figure 9: Getting Information on the Located Cards

#include <dimesdl.h> //This is held in the include directory
 within FUSE.
#include <stdio.h>
int main(int argc, char* argv[])
{
LOCATE_HANDLE hLocate;
DWORD NumOfCards,LoopCntr;
//Locate the Cards on the PCI interface
hLocate=DIME_LocateCard(dlPCI,mbtALL,NULL,dldrDEFAULT,dlDEFAULT);

//Determine how many Nallatech cards have been found.
NumOfCards = DIME_LocateStatus(hLocate,0,dlNUMCARDS);
printf("%d Nallatech card(s) found.\n", NumOfCards);

//Get the details for each card detected.
for (LoopCntr=1; LoopCntr<=NumOfCards; LoopCntr++){
printf("Details of card number %d, of %d:\n",LoopCntr,NumOfCards);
printf("\tThe card driver for this card is a%s.\n",
 (char*)DIME_LocateStatusPtr(hLocate,LoopCntr,
 dlDESCRIPTION));
printf("\tThe cards motherboard type is %d.\n",
 DIME_LocateStatus(hLocate,LoopCntr,dlMBTYPE));
}
//Finally close the locate down.
DIME_CloseLocate(hLocate);
return 0;
}
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.50 DIME_LocateStatusPtr
Syntax void* DIME_LocateStatusPtr(LOCATE_HANDLE handle, DWORD CardNumber, DWORD

CmdMode)

Arguments handle is a valid locate handle.

CardNumber is the selected cards index. This can be NULL for certain command modes.

CmdMode is the command mode for the status function. This is used to specify what particular piece
of information is required. Table 34 on page 59 provides details for the CmdMode argument.

Return See Table 34 on page 59 since the return dependant on CmdMode.

Description This function is used by the developer upon a successful return from a DIME_LocateCard function
call to gather information on what has been located. This is normally required for systems that
contain multiple cards over various interfaces. This information is then used to ensure that the
desired card is opened and interfaced with.

Notes Copy the string into your own programs memory space immediately after the function returns since
the pointer may only be valid until the next call into the library.

Example See Figure 9 on page 58.

6.51 DIME_LockMemory
Syntax DIME_MEMHANDLE DIME_LockMemory(DIME_HANDLE handle, unsigned int *Data, DWORD

Length)

Arguments handle is a valid handle to a DIME carrier card.

Data: This a pointer to the start of the data that is required to be locked down.

Length: This is the byte size of the memory that is to be locked down.

Return Returns a null pointer on error. On success returns a memory handle.

Description When performing PCI DMA transfers the physical memory that your data resides in must be locked
down by the kernel. This function does exactly this and returns a handle to the locked down
memory that can then be passed into the DMA functions.

Notes Locking down and unlocking memory takes a significant amount of time and should therefore be
minimized. Please refer to the DMA examples for further information on efficient memory usage.

When dealing with transferring data between multiple cards, one of which is connected via the USB
interface, the memory should be locked down using the PCI card handle. This allows the one
memory handle to be used with both cards and saves needless data transfers.

CmdMode Description

dlDESCRIPTION This returns a pointer of type CHAR to a string that is a short
description of the software driver for the chosen card.

Table 34: DIME_LocateStatusPtr CmdMode Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 59

http://www.nallatech.com

60

Functional Reference
Locking memory prevents the OS kernel from moving the memory around and hence decreases the
kernel efficiency. Therefore locking down one large segment of memory is better practice than
locking down several smaller segments.

Example

6.52 DIME_MConfigGUI
Syntax void DIME_MConfigGUI(void * handle, DWORD ShowFlag)

Arguments handle is a valid handle to a DIME carrier card.

ShowFlag is a flag for initial condition of the form.

Return N/A

Description Calling this function opens the FUSE Probe Tool provided. It is displayed as a separate window and
can handle all reconfiguration operations.

When 'ShowFlag' is 0 then the window is created but not visible, otherwise the window will be
displayed when this function is called.

Notes The nueym.lib (for Microsoft Visual C++) or nueyomf.lib (for Borland C++ builder) needs to be
included in your design when using this function. These libraries are installed in the include directory
of the FUSE software.

Figure 10: Locking and Unlocking Memory for DMA Transfers

DWORD DataArray[256];
DIME_MEMHANDLE hMem;
DWORD i;

//Put data in the array
for(i=0;i<(sizeof(DataArray)/sizeof(DWORD));i++)

DataArray[i]=i;

//Lock down the memory
if((hMem=DIME_LockMemory(hCard,DataArray,(sizeof(DWORD)*
 sizeof(DataArray))))==NULL)

printf("Unable to lock down the data.\n");
else

printf("Data locked down.\n");

//Do DMA transfer

//Unlock the memory
if(DIME_UnLockMemory(hCard,hMem)==0)

printf("Data unlocked.\n");
else

printf("Unable to unlock the memory.\n");
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.53 DIME_MConfigGUIExit
Syntax void DIME_MConfigGUIExit()

Arguments N/A

Return N/A

Description This function is used to clean up any memory used in the DIME_MConfigGUI.

Notes This function should only be used when you have finished using the Multi config GUI.

6.54 DIME_MemConfigDevice
Syntax DWORD DIME_MemConfigDevice (DIME_HANDLE handle, DWORD *Bitstream, DWORD

ByteLength, DWORD ModuleNumber, DWORD ModuleDeviceNumber, DWORD *Progress,
DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

Bitstream is the start of the Bitstream that is used to configure the device held in PC memory.

ByteLength: This argument specifies the length of the Bitstream in bytes.

ModuleNumber is the Module that is being addressed.

ModuleDeviceNumber is the selected device within the select module.

Progress should point to a variable that will be updated with the actual position in the configuration.
The position in the configuration file is expressed as a percentage (0 - 100). This is only useful in
multi-threaded applications and may point to a valid location or NULL in single threaded applications.

Flags: This argument is used to control the configuration of the on board device. Currently there are
no flags and this argument is ignored.

Return This function has several possible returns. Please see Table 8 on page 27 for details.

Description This function configures the specified device with the specified bitfile.

Notes The bitfile must be configured to use the JTAG clock for configuration rather than the default of the
CCLK.
68 Issue 8 September 14, 2004 www.nallatech.com 61

http://www.nallatech.com

62

Functional Reference
6.55 DIME_MemConfigOnBoardDevice
Syntax DWORD DIME_MemConfigOnBoardDevice (DIME_HANDLE handle, DWORD *Bitstream,

DWORD ByteLength, DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

Bitstream is the start of the bitstream that is used to configure the device held in PC memory.

ByteLength: This argument specifies the length of the bitstream in bytes.

Flags: This argument is used to control the configuration of the on-board device. Currently there are
no flags and this argument is ignored.

Return This function has several possible returns. Please see Table 8 on page 27 for details.

Description This function configures the on-board FPGA of the targeted card in the same manner as
DIME_ConfigOnBoardDevice. The difference is that this function takes the Bitstream used to
configure the device directly from memory and not from a file.

Notes The bitfile must be configured to use the JTAG clock for configuration rather than the default of the
CCLK.

6.56 DIME_MemReadbackDevice
Syntax DWORD DIME_MemReadbackDevice (DIME_HANDLE handle, DWORD *Bitstream, DWORD

ByteLength, DWORD ModuleNumber, DWORD DeviceNumber, DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

Bitstream is a pointer to where you want the readback bitstream to be stored.

ByteLength: This argument specifies the length of the Bitstream to readback.

ModuleNumber is the specific module you want to target.

DeviceNumber is the specific device you want to target.

Flags: This argument is used to control the configuration of the on-board device. Currently there are
no flags and this argument is ignored.

Return This function returns zero on success.

Description This function is used to either readback the configuration registers of the FPGA or readback the
state of the CLBs, IOBs etc. Note, to readback the state of all CLBs, IOBs etc you must use the
CAPTURE_XXX where XXX is the type of FPGA.
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.57 DIME_MemReadbackOnBoardDevice
Syntax DWORD DIME_MemReadbackOnBoardDevice (DIME_HANDLE handle, DWORD *Bitstream,

DWORD ByteLength, DWORD Flags)

Arguments handle is a valid handle to a DIME carrier card.

Bitstream is a pointer to where you want the readback bitstream to be stored.

ByteLength: This argument specifies the length of the Bitstream to readback.

Flags: This argument is used to control the configuration of the on-board device. Currently there are
no flags and this argument is ignored.

Return This function returns zero on success.

Description This function is used to either readback the configuration registers of the FPGA or readback the
state of the CLBs, IOBs etc. Note, to readback the state of all CLBs, IOBs etc you must use the
CAPTURE_XXX where XXX is the type of FPGA.

6.58 DIME_Miscioctl
Syntax DWORD DIME_Miscioctl(DIME_HANDLE handle, DWORD CMD, DWORD *Arg1, DWORD

*Arg2, DWORD *Arg3, DWORD *Arg4, void *Arg5)

Arguments handle is a valid handle to a DIME carrier card.

CMD: The command to be performed. Currently there are no commands.

Arg1, Arg2, Arg3, Arg4 and Arg5 are all dependant upon the command.

Return The return is dependant upon the selected command.

Description This function is used to control and return status information for the miscellaneous I/O.

6.59 DIME_ModuleControl
Syntax DWORD DIME_ModuleControl(DIME_HANDLE handle, DWORD ModuleNum, DWORD

CmdMode, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNum is the module that is being addressed. Note that modules are numbered from 0.
68 Issue 8 September 14, 2004 www.nallatech.com 63

http://www.nallatech.com

64

Functional Reference
CmdMode: This argument is used to specify what particular aspect of module is to be controlled.

CmdMode Description

dinfPRIMTEMPALERTMAX This command mode is used to set the maximum temperature
level for the temperature alert signal on the primary FPGA.
Once set if the FPGA die temperature exceeds this
temperature the temperature alert signal is triggered. Note
that the power on default setting for this temperature is 255
degrees Celsius.
Value should be the integer value that the maximum alert
should be set to in degrees Celsius.
NOTE: This function sets the maximum temperature for the
alert signal to trigger. The alert signal is connected to the
FPGA on the module, so if the user wants to trigger an event
at a certain temperature then the user will have to use the
alert signal in their design.

dinfSECTEMPALERTMAX This command mode is used to set the maximum temperature
level for the temperature alert signal on the secondary FPGA.
Once set if the FPGA die temperature exceeds this
temperature the temperature alert signal is triggered. Note
that the power on default setting for this temperature is 255
degrees Celsius.
Value should be the integer value that the maximum alert
should be set to in degrees Celsius.
NOTE: This function sets the maximum temperature for the
alert signal to trigger. The alert signal is connected to the
FPGA on the module, so if the user wants to trigger an event
at a certain temperature then the user will have to use the
alert signal in their design.

dinfPRIMTEMPALERTMIN This command mode is used to set the minimum temperature
level for the temperature alert signal on the primary FPGA.
Once set if the FPGA die temperature falls below this
temperature the temperature alert signal is triggered. Note
that the power on default setting for this temperature is 0
degrees Celsius.
Value should be the integer value that the minimum alert
should be set to in degrees Celsius.
Note: Not all temperature sense devices have this capability.
Consult your Module Reference Guide or the Temperature Sense
Device Datasheet to confirm if your module has this capability.

dinfSECTEMPALERTMIN This command mode is used to set the minimum temperature
level for the temperature alert signal on the secondary FPGA.
Once set if the FPGA die temperature falls below this
temperature the then the temperature alert signal is triggered.
Note that the power on default setting for this temperature is
0 degrees Celsius.
Value should be the integer value that the minimum alert
should be set to in degrees Celsius.
Note: Not all temperature sense devices have this capability.
Consult your module user guide or the temperature sense
device data sheet to confirm if your module has this capability.

dinfTEMPALERTCLEAR This clears the temperature alert signal if set. Note that if
either the maximum or minimum temperature limits are still
exceeded then the alert signal will immediately be set.
Value should to set to 0.

Table 35: DIME_ModuleControl CmdMode Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Value: This argument is command mode specific.

Return Returns -1 on error.

Description This function is used to control certain aspects of the selected module. Note, for the temperature
functions, not all motherboards support this feature. Check your Motherboard Reference Guide if you
are unsure if your hardware supports this.

Example

Figure 11: Setting the Maximum and Minimum Temperature Alert Limits and Clearing an Alert

{
DWORD MaxAlert=65;
DWORD MinAlert=0;
DWORD ModuleNumber=0;
//Set the max and min alert levels
if(DIME_ModuleControl(hCard1,ModuleNumber,

dinfTEMPALERTMAX,MaxAlert)==0){
printf("Maximum FPGA Temperature set to %d
degrees.\n",MaxAlert);

}

if(DIME_ModuleControl(hCard1,ModuleNumber,

dinfTEMPALERTMIN,MinAlert)==0){
printf("Minimum FPGA Temperature set to %d
degrees.\n",MinAlert);

 }

//this code should be place in your temperature alert handler
//once you've dealt with the alert and desire to clear the alert
//line to the FPGA
if(DIME_ModuleControl(hCard1,ModuleNumber,

dinfTEMPALERTCLEAR,0)==0){
printf("The temperature alert line for module %d has been
cleared.\n",ModuleNumber);

}
}
68 Issue 8 September 14, 2004 www.nallatech.com 65

http://www.nallatech.com

66

Functional Reference
6.60 DIME_ModuleControlPtr
Syntax DWORD DIME_ModuleControlPtr(DIME_HANDLE handle, DWORD ModuleNum, DWORD

CmdMode, void *pValue)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNum is the module that is being addressed. Note modules are numbered from 0.

CmdMode: This argument is used to specify what particular aspect of module is to be controlled.
There are no current command modes for this function.

Value: This argument is used to specify the action for a command mode.

Return Returns NULL on error.

Description This function is used to control certain aspects of the card that cannot be controlled using
DIME_ModuleControl.

6.61 DIME_ModuleStatus
Syntax DWORD DIME_ModuleStatus(DIME_HANDLE handle, DWORD ModuleNum, DWORD

CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNum is the module that is being addressed. Note modules are numbered from 0.

CmdMode: This argument is used to specify what particular aspect of module status information is
to be returned. Table 36 on page 66 gives details of the available command modes.

CmdMode Description

dinfDIMECODE This command mode returns the 32-bit hex-decimal DIME
Code (User Code) for the module. Please check your Module
Reference Guide for further details.

dinfNUMDEVICES This command mode returns the number of devices on the
module.

dinfPRIMFPGATEMP This command mode returns the die temperature of the
primary FPGA in degrees Celsius. Temperatures are accurate
to +/- 1 degree.

dinfSECFPGATEMP This command mode returns the die temperature of the
secondary FPGA in degrees Celsius. Temperatures are
accurate to +/- 1 degree.

dinfMODULETEMP This command mode returns the temperature of the module
in degrees Celsius. Temperatures are accurate to +/- 1 degree.
Note that this temperature is measured next to the User
FPGA and hence usually follows the FPGA temperature. It
shows the temperature of the module as a whole but not one
specific device.

Table 36: DIME_ModuleStatus CmdMode Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Return The return value is dependant upon the command mode. Returns -1 on error.

Description This function returns module status information. Note, for the temperature functions, not all
motherboards support this feature. Check your Motherboard Reference Guide if you are unsure if your
hardware supports this.

dinfPRIMTEMPALERTMAX This command mode is used to read the maximum
temperature level for the temperature alert signal on the
primary FPGA. Once set if the FPGA die temperature exceeds
this temperature the temperature alert signal is triggered.
Note that the power on default setting for this temperature is
255 degrees Celsius.
NOTE: The TempAlertMax temperature only sets the trigger
for the alert signal. For an event to happen at that temperature
the user will have to use the alert signal in their design.

dinfSECTEMPALERTMAX This command mode is used to read the maximum
temperature level for the temperature alert signal on the
secondary FPGA. Once set if the FPGA die temperature
exceeds this temperature the temperature alert signal is
triggered. Note that the power on default setting for this
temperature is 255 degrees Celsius.
NOTE: The TempAlertMax temperature only sets the trigger
for the alert signal. For an event to happen at that temperature
the user will have to use the alert signal in their design.

dinfPRIMTEMPALERTMIN This command mode is used to set the minimum temperature
level for the temperature alert signal on the primary FPGA.
Once set if the FPGA die temperature falls below this
temperature the temperature alert signal is triggered. Note
that the power on default setting for this temperature is 0
degrees Celsius.
Note: not all temperature sense devices used have this
capability. Consult your Module Reference Guide or the
Temperature Sense Datasheet to find out if the temperature
sense device on your module supports this.

dinfSECTEMPALERTMIN This command mode is used to set the minimum temperature
level for the temperature alert signal on the secondary FPGA.
Once set if the FPGA die temperature falls below this
temperature the temperature alert signal is triggered. Note
that the power on default setting for this temperature is 0
degrees Celsius.
Note: not all temperature sense devices used have this
capability. Consult your Module Reference Guide or the
Temperature Sense Datasheet to find out if the temperature
sense device on your module supports this.

dinfSERIALNUMBER This command mode is used to return the serial number of
the module.

CmdMode Description

Table 36: DIME_ModuleStatus CmdMode Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 67

http://www.nallatech.com

68

Functional Reference
Example

6.62 DIME_ModuleStatusPtr
Syntax void *DIME_ModuleStatusPtr(DIME_HANDLE handle, DWORD ModuleNum, DWORD

CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNum is the module that is being addressed. Note modules are numbered from 0.

CmdMode: This argument is used to specify what particular aspect of module status information is
to be returned. The Table 37 on page 68 gives details of the available command modes.

Return The return value is dependant upon the command mode. Returns NULL on error.

Description This function returns card status information that cannot be returned using DIME_ModuleStatus.

Notes If a pointer to a string is returned this string is only valid until the next call is made into the library. It
is therefore advised that either the string is used directly or that it is copied for later use.

Figure 12: Reading the Temperature Alert Levels and the FPGA and module temperatures

CmdMode Description

dinfIMAGEFILENAME This command mode returns a string (char *), which is the
image filename for the module.

dinfICONFILENAME This command mode returns a string (char *), which is the
icon filename for the module.

dinfDESCRIPTION This command mode returns a string (char *), which is a short
description of the module.

Table 37: DIME_ModuleStatusPtr CmdMode Argument Options

//read the temperature alert levels and both the module and FPGA
//temperatures
{
DWORD ModuleNumber=0;
DWORD FPGATemp,ModuleTemp,MaxAlert,MinAlert;
//Read the FPGA temperature (degrees c)
FPGATemp=DIME_ModuleStatus(hCard1,ModuleNumber,dinfFPGATEMP);
//Read the module temperature (degrees c)
ModuleTemp=DIME_ModuleStatus(hCard1,ModuleNumber,dinfMODULETEMP);
//Read the maximum alert threshold temperature (degrees c)
MaxAlert=DIME_ModuleStatus(hCard1,ModuleNumber,dinfTEMPALERTMAX);
//Read the minimum alert threshold temperature (degrees c)
MinAlert=DIME_ModuleStatus(hCard1,ModuleNumber,dinfTEMPALERTMIN);
}
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.63 DIME_OpenCard
Syntax DIME_HANDLE DIME_OpenCard(LOCATE_HANDLE LocateHandle, int CardNumber, DWORD

Flags)

Arguments LocateHandle is a valid handle returned from the DIME_LocateCard function.

CardNumber is the index of the card within the locate handle that the developer wishes to open.

Flags: This argument allows the open process to be customised to suit the development
requirements. The Table 38 on page 69 gives details for the Flags.

Return Returns a handle that is used when calling other functions for this card. Returns NULL on error.

Description Calling this function opens the motherboard and performs all the required set up so that the
motherboard can be interfaced with. Once this function has been called all other functions are
available.

Example See Figure 4 on page 25.

6.64 DIME_Peripheralioctl
Syntax DWORD DIME_Peripheralioctl(DIME_HANDLE handle, DWORD CMD, DWORD *Arg1,

DWORD *Arg2, DWORD *Arg3, DWORD *Arg4, void *Arg5)

Arguments handle is a valid handle to a DIME carrier card.

CMD: The command to be performed. Currently there are no commands.

Arg1, Arg2, Arg3, Arg4 and Arg5 are all dependant upon the command.

Return The return is dependant upon the selected command.

Description This function is used to control and return status information for the peripheral I/O.

Flags Description

dccOPEN_DEFAULT This is the default option for opening the card. With this
option the on-board oscillators will get set to their default
frequencies if this is appropriate for the card. See your
Motherboard Reference Guide for card specific details.

dccOPEN_NO_OSCILLATOR_SETUP This option opens the card as in the default mode except that
the on-board oscillators are not set to their default
frequencies.

Table 38: DIME_OpenCard Flags Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 69

http://www.nallatech.com

70

Functional Reference
6.65 DIME_PPSControl
Syntax DWORD DIME_PPSControl(DIME_HANDLE handle, DWORD ModuleNum, DWORD CmdMode,

DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNum: This is the module number.

CmdMode: This argument is used to specify what particular aspect of programmable power supplies
information is required. There are no current command modes for this function.

Value: This argument is used to specify the action for a command mode.

Return The return is dependant upon the selected command mode.

Description Allows control of the programmable power supplies.

6.66 DIME_PPSStatus
Syntax DIME_PPSStatus(DIME_HANDLE handle, DWORD ModuleNum, DWORD SupplyNum, DWORD

CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNum: This is the module number.

SupplyNum: This argument is used to specify what particular power supply is targeted. Valid supply
numbers are provided Table 39 on page 70.

CmdMode: This argument is used to specify what particular aspect of programmable power supplies
information is required.

Return The return is dependant upon the selected command mode.

Description Returns status information for the programmable power supplies.

SupplyNum Description

dppsSUPPLYA Power Supply A is selected.

dppsSUPPLYB Power Supply B is selected.

dppsSUPPLYC Power Supply C is selected.

dppsSUPPLYD Power Supply D is selected.

dppsALLSUPPLYS All supplies are selected.

Table 39: DIME_PPSStatus Supply Number Options

CmdMode Description

dppsVOLTAGE This command mode selects that only voltage information is
returned. The voltage returned is given in millivolts and has an
error of +/- 100millivolts.

Table 40: DIME_PPSStatus Command Mode Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Note The voltage and current capabilities are only applicable to DIME-II systems.

Example

6.67 DIME_ReadLEDs
Syntax DWORD DIME_ReadLEDs(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return This returns the current setting of the LEDs which are controlled via the PCI interface.

Description The values are stored in the least significant bits with a value of '0' indicating that the LED is
illuminated. If a valid card has not been opened then a 0 is returned by the function. The number of
active bits depends on the number of LEDs on the motherboard.

Please check your Motherboard Reference Guide for details on the LEDs.

Example See Figure 4 on page 25.

Figure 13: Getting Information on Power Supply Voltages and Currents

//Get the Voltage and Currents for module 0 power supply C.
{
DWORD Current,Voltage;
Voltage=DIME_PPSStatus(hCard1,dppsMODULE0,

dppsSUPPLYC, dppsVOLTAGE);
printf("Core Voltage is %d millivolts.\n", Voltage);

//Get the Voltage and current for all of module 0.
Voltage=DIME_PPSStatus(hCard1,dppsMODULE0,

dppsALLSUPPLIES, dppsVOLTAGE);
printf("The total Voltage for Module 0 is %d.\n", Voltage);
}

68 Issue 8 September 14, 2004 www.nallatech.com 71

http://www.nallatech.com

72

Functional Reference
6.68 DIME_ReadPIO
Syntax DWORD DIME_ReadPIO(DIME_HANDLE handle, DWORD Bank)

Arguments handle is a valid handle to a DIME carrier card.

Bank is used to indicate which bank of periphery I/O is to be read. Table 41 on page 72 gives details
of the available banks.

Please check your Motherboard Reference Guide for details on available periphery I/O.

Return Returns the value of the requested pins. Returns all ones on error.

Description This function reads the values on the pins of the periphery I/O.

6.69 DIME_ReadPIODirection
Syntax DWORD DIME_ReadPIODirection(DIME_HANDLE handle, DWORD Bank)

Arguments handle is a valid handle to a DIME carrier card.

Bank is used to indicate which bank of periphery I/O direction is to be read. See Table 41 on page 72
for details of the available banks.

Please check your Motherboard Reference Guide for details on available periphery I/O.

Return A '1' in a particular bit location indicates that the pin is an input, otherwise the pins is an output.
Returns -1 on error.

Description This returns the setting of the direction for the specified bank.

6.70 DIME_SaveCardDefinition
Syntax DWORD DIME_SaveCardDefinition (DIME_HANDLE handle, const char *Filename, DWORD

Flags)

Arguments handle is a valid handle to a DIME carrier card.

Filename is the filename that the card definition is to be saved to.

Bank Description

dpioDIGITAL This is the digital I/O. Data will be read from the digital I/O
connector.

Table 41: Periphery I/O Bank Argument Options
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Flags: This argument allows the developer to configure the information held within the card
definition files to suit their development needs. Table 42 on page 73 gives details for the Flags.

Return Returns a pointer to the start of the bit-stream that has been assigned to the selected device. If no
bit-stream has been set for the device then a NULL pointer is returned.

Description This function should be used to save information regarding the current configuration of your card to
a file. Information such as the modules, devices and the assigned bitfiles/bitstreams to particular
devices is all saved.

Notes By using the dcfgEMBEDALLBITS flag a complete system 'snapshot' is created. This can be very useful
for back-up purposes or when porting the set-up to different PCs.

6.71 DIME_SaveSystemDefinition
Syntax DWORD DIME_SaveSystemDefinition (DIME_HANDLE **handles, char **CardFilenames, const

char *SysFilename, DWORD NumOfCards, DWORD Flags)

Arguments handles is a pointer to an array containing the valid card handles for the system.

CardFilenames is a pointer to an array containing the card definition filenames that correspond with
the card handle array.

SysFilename is a pointer to the system definition filename to be created.

NumOfCards is the number of cards that are to be used to create this system. This number should
correspond with the number of elements in the handles array and the CardFilenames array.

Flags: This argument is used to customize the saving of the system definition file. Currently there are
no flags and this argument is not used. 0 Should be used.

Return Returns 0 on success. Returns non-zero otherwise.

Description This function takes a group of card handles and card definition files and creates one system definition
file. This file can then be used to load the complete system without the requirement of locating or
opening the cards.

Notes The system definition file that is created does not incorporate the information held within the card
definition files. Hence to successfully load a system definition file the card definition files for each
card in the system must be in the same location as when the system definition file was created.

Flags Description

dcfgEMBEDALLBITS It is possible not only to save the name of the assigned bitfiles
into the card definition but also to save the bitstreams
themselves. If this is desired then this flag should be used.
This flag saves the bitstreams from the assigned bitfiles or the
assigned bitstreams for each device on the card into the card
definition file.
This file can then be used to completely configure the card. It
is the only file required.
Note: If there are several bitstreams associated to large
devices then the saved card definition file will become very
large.

Table 42: DIME_SaveCardDefinition Flags Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 73

http://www.nallatech.com

74

Functional Reference
6.72 DIME_SetOscillatorFrequency
Syntax DWORD DIME_SetOscillatorFrequency(DIME_HANDLE handle, DWORD OscillatorNum, double

DesiredFrequency, double *ActualFrequency)

Arguments handle is a valid handle to a DIME carrier card.

OscillatorNum determines which clock is changed where:

0 = All Clocks

1 = SYSCLK

2 = DSPCLK

3 = PIXCLK

DesiredFrequency is the desired frequency that the oscillator should be changed to. Note not all
frequencies are achievable precisely and some error may result, this is where the ActualFrequency
argument can be used to provide the actual frequency obtained.

ActualFrequency points to a memory location which is loaded with the actual frequency
programmed. This last argument can be set to NULL if the returned value is not required.

Return A return value of 0 indicates success, 1 means that a NULL handle has been given, 2 means that the
Oscillator Number is out of range, 3 indicates a invalid frequency requested.

Description This function is used to control frequency of the programmable oscillators. The frequency is given in
Mhz and the frequency change is carried out glitch free.

Notes Please check your Motherboard Reference Guide for further details on the programmable oscillators.

Example

Figure 14: Getting Information on the Located Cards

//Change the oscillators.
{
double ActualFrequency;
//Try and set oscillator 1, the system clock to 41.23456MHz
DIME_SetOscillatorFrequency(hCard1,1,41.23456,&ActualFrequency);
printf("Actual frequency is %f.\n",ActualFrequency);
}
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
6.73 DIME_ShowMConfigGUI
Syntax void DIME_ShowMConfigGUI(void * handle, DWORD ShowFlag)

Arguments handle is a valid handle to a DIME carrier card.

ShowFlag is a flag for the visibility of the form.

Return N/A

Description This function changes whether the Multiple DIME configuration window is visible or not.

Notes The nueym.lib (for Microsoft Visual C++) or nueyomf.lib (for Borland C++ builder) needs to be
included in your design when using this function. These libraries are installed in the include directory
of the FUSE software.

6.74 DIME_SystemControl
Syntax DWORD DIME_SystemControl(DIME_HANDLE handle, DWORD CmdMode, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

CmdMode: This argument is used to specify what particular aspect of system information is to be
controlled. Table 43 on page 75 provides details of the available command modes.

Value: This argument is used to specify the action for a command mode. Table 44 on page 75
provides details.

Return The return is dependant upon the command mode. A return of '-1' indicates an error.

Description This function is used to control system features.

CmdMode Description

dinfDIME_MODE_GUI Controls whether dialog boxes are displayed within the SDL
or whether no dialog boxes are displayed so that the calling
applications can control any error message boxes.
If the Value argument is dinfDISABLE then dialogue boxes will
not be displayed. If the Value argument is dinfENABLE then
dialogue boxes will be displayed.
Note that the actual error will not be altered by this function
and the can be used to return the error information.
Returns 0 on success.

Table 43: DIME_SystemControl CmdMode Argument Options

Value Description

dinfDISABLE Disables the selected command mode feature.

dinfENABLE Enables the selected command mode feature.

Table 44: DIME_SystemControl Value Argument Options
68 Issue 8 September 14, 2004 www.nallatech.com 75

http://www.nallatech.com

76

Functional Reference
6.75 DIME_SystemStatus
Syntax DWORD DIME_SystemStatus(DIME_HANDLE handle, DWORD CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

CmdMode: This argument is used to specify what particular aspect of system status information is to
be returned. Table 45 on page 76 provides details of the available command modes.

Return The return is dependant upon the command mode. A return of '-1' indicates an error.

Description This function is used to return system status information.

6.76 DIME_SystemStatusPtr
Syntax void *DIME_SystemStatusPtr(DIME_HANDLE handle, DWORD CmdMode)

Arguments handle is a valid handle to a DIME carrier card.

CmdMode: This argument is used to specify what particular aspect of system status information is to
be returned. Table 46 on page 76 provides details of the available command modes.

Return Return NULL on error.

For the command mode dinfDIME_SWMBTS the return will be a pointer of type SWMBInfo.

CmdMode Description

dinfDIME_MODE_GUI Returns whether dialog boxes are displayed within the SDL or
whether no dialog boxes are displayed so that the calling
applications can control any error message boxes.
A return of '1' indicates that the dialogue boxes will appear
and a return of '0' indicates that the dialogue boxes will not
appear.
Note that the actual error will not be altered by this function
and can be used to return the error information.

Table 45: DIME_SystemStatus CmdMode Argument Options

CmdMode Description

dinfDIME_SWMBTS This command mode does not require a card to be opened.
The Handle argument is not used.
This command mode is used to return a structure that
contains the system information on what motherboard types it
can detect and a brief description of each of these
motherboard types.

Table 46: DIME_SystemStatusPtr CmdMode Argument Options

Type Name Description

DWORD NumTypes The number of motherboard types returned.

CardInfo pCardInfo Pointer to an array containing the motherboard
information. The number of elements in this
array corresponds with NumTypes.

Table 47: Type SWMBInfo Members
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Description This function is used to return system status information that cannot be returned using
DIME_SystemStatus.

Example

6.77 DIME_UnLockMemory
Syntax DWORD DIME_UnLockMemory(DIME_HANDLE handle, DIME_MEMHANDLE MemHandle)

Arguments handle is a valid handle to the DIME carrier card that performed the DIME_LockMemory.

MemHandle is the valid memory handle that needs to be unlocked.

Return Returns zero on success, non-zero otherwise.

Description This unlocks memory and gives control of the memory back to the OS kernel.

Example See Figure 10 on page 60.

Type Name Description

DWORD MotherBoardType The motherboard type. See Table 29 on
page 55 details.

char MotherBoardDesc[200] A short description of the motherboard. E.g.
"Ballynuey2".

Table 48: Type CardInfo members

Figure 15: DIME_SystemStatusPtr Example

DWORD i;
SWMBInfo* pSWMBInfo;
//Using the DIME_SystemStatusPtr function

if((pSWMBInfo=(SWMBInfo*)DIME_SystemStatusPtr(0,dinfDIME_SWMBTS))
 !=NULL)
{
 printf("The software detects %d motherboards.\n",
 pSWMBInfo->NumTypes);
 for (i=0; i<pSWMBInfo->NumTypes; i++)
 {
 printf("Details of mothreboard number %d of %d
 follows:\n",(1+i),pSWMBInfo->NumTypes);
 printf("\tMotherboard type: %d.\n",pSWMBInfo
 ->pCardInfo[i].MotherBoardType);
 printf("\tMotherboard description: %s.\n",pSWMBInfo
 ->pCardInfo[i].MotherBoardDesc);
 }
}
68 Issue 8 September 14, 2004 www.nallatech.com 77

http://www.nallatech.com

78

Functional Reference
6.78 DIME_WriteLEDs
Syntax void DIME_WriteLEDs(DIME_HANDLE handle, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

Value is the value that is to be written to the LEDs.

Return N/A

Description This function sets the status of the LEDs that are controlled via the PCI interface. The values are
stored in the least significant bits with a value of '0' indicating that the LED is to be illuminated. The
function checks that a valid card has been opened before setting the LEDs status.

Please check your Motherboard Reference Guide for details on the LEDs.

Example See Figure 4 on page 25.

6.79 DIME_WritePIO
Syntax DWORD DIME_WritePIO(DIME_HANDLE handle, DWORD Bank, DWORD Data)

Arguments handle is a valid handle to a DIME carrier card.

Bank is used to indicate which bank of periphery I/O is to be written to. See Table 41 on page 72 for
details of the available banks.

Please check your Motherboard Reference Guide for details of available periphery I/O.

Data is the data to be written to the periphery I/O.

Return Returns 0 on success. Returns non-zero on error.

Description This function writes the values to the pins of the periphery I/O.

6.80 DIME_WritePIODirection
Syntax DWORD DIME_WritePIODirection(DIME_HANDLE handle, DWORD Bank, DWORD Data)

Arguments handle is a valid handle to a DIME carrier card.

Bank is used to indicate which bank of periphery I/O direction is to be written to. See Table 41 on
page 72 for details of the available banks

Please check your Motherboard Reference Guide for details of available periphery I/O.

Return Returns zero on success, non zero on error.

Description This function sets the direction of individual pins for the specified bank. A '1' in a particular bit
location sets that pin to an input, otherwise the pins is an output.
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Section 7

Legacy Functions
In this section:

• The FUSE API is backward compatible with Nallatech's DIME system software. These legacy
functions are from the DIME system software library and, although still supported under the FUSE
API, you should convert to the new FUSE API functions. This section contains full details of all
obsolete functions with alternative FUSE API function suggestions.

7.1 CloseDIMEBoard
Syntax void CloseDIMEBoard(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME Carrier Card that was returned from the OpenDIMEBoard
function.

Return N/A

Description This function should be called at the end of the program. This closes access to the DIME Carrier
card and frees the resources used by the card and the software library.

Notes Should only be used when a card has been opened using the OpenDIMEBoard function.

Alternative DIME_CloseCard providing OpenDIMEBoard was not used to open the card.
68 Issue 8 September 14, 2004 www.nallatech.com 79

http://www.nallatech.com

80

Legacy Functions
7.2 OpenDIMEBoard
Syntax DIME_HANDLE OpenDIMEBoard(void)

Arguments N/A

Return Returns a handle for the card, otherwise NULL is returned. The return type DIME_HANDLE is
defined as a void pointer.

Description This function will search the PCI interface for any Nallatech motherboard and then call
DIME_OpenCard for the first Nallatech motherboard found.

Notes Included only for backward compatibility. When this function is used to provide a handle for a card
the CloseDIMEBoard function must be used to close down the card. This function cannot be used in
conjunction with the DIME_LocateCard or DIME_OpenCard functions.

Alternative It is strongly advised that DIME_LocateCard then DIME_OpenCard is used as shown in Figure 16 on
page 80 as an alternative.

7.3 GetDIMEHandle
Syntax DIME_HANDLE GetDIMEHandle(void)

Arguments N/A

Return Always returns NULL.

Description This function previously returned the handle that was last returned by OpenDIMEBoard. This cannot
be achieved now since it is possible that multiple cards and hence handles have been generated. It is
now up to the developer to store all valid handles returned. This function has now been made fully
obsolete and will now simply return NULL.

Figure 16: Alternative to OpenDIMECard

 LOCATE_HANDLE hLocate;
DIME_HANDLE hCard;

//Opening the card
hLocate=DIME_LocateCard(dlPCI,mbtALL,NULL,dldrDEFAULT,dlDEFAULT);
hCard=DIME_OpenCard(hLocate,1,dccOPEN_DEFAULT);

//Main code

//Closing the card
DIME_CloseCard(hCard);
DIME_CloseLocate(hLocate);
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
7.4 DIME_SmartScan
Syntax DWORD DIME_SmartScan(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return ssOK SmartScan has been successfully completed.

Description This function previously carried out a scan of all the hardware modules and devices that were
present in the cards JTAG chain. However this scan is now incorporated into the DIME_OpenCard
function. So if a card is open then a successful SmartScan has already been carried out. For this
reason this function does nothing except return ssOK.

7.5 DIME_VirtexReset
Syntax void DIME_VirtexReset(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return N/A.

Description Simply calls DIME_CardResetControl (handle, drONBOARDFPGA, drTOGGLE, 0).

Functionality not changed. Enables the reset for the on-board FPGA.

Alternative DIME_CardResetControl (handle, drONBOARDFPGA, drTOGGLE, 0).

7.6 DIME_VirtexResetEnable
Syntax void DIME_VirtexResetEnable(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return N/A.

Description Simply calls DIME_CardResetControl (handle, drONBOARDFPGA, drENABLE, 0).

Functionality not changed. Enables the reset for the on-board FPGA.

Alternative DIME_CardResetControl (handle, drONBOARDFPGA, drENABLE, 0).

7.7 DIME_VirtexResetDisable
Syntax void DIME_VirtexResetDisable (DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return N/A.

Description Simply calls DIME_CardResetControl (handle, drONBOARDFPGA, drDISABLE, 0).

Functionality not changed. Disables the reset for the on-board FPGA.

Alternative DIME_CardResetControl (handle, drONBOARDFPGA, drDISABLE, 0).
68 Issue 8 September 14, 2004 www.nallatech.com 81

http://www.nallatech.com

82

Legacy Functions
7.8 DIME_SystemReset
Syntax void DIME_SystemReset(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return N/A.

Description Simply calls DIME_CardResetControl (handle, drSYSTEM, drTOGGLE, 0).

Functionality not changed. Toggles the reset for the system.

Alternative DIME_CardResetControl (handle, drSYSTEM, drTOGGLE, 0).

7.9 DIME_SystemResetEnable
Syntax void DIME_SystemResetEnable(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return N/A.

Description Simply calls DIME_CardResetControl (handle, drSYSTEM, drENABLE, 0).

Functionality not changed. Enables the reset for the system.

Alternative DIME_CardResetControl (handle, drSYSTEM, drENABLE, 0).

7.10 DIME_SystemResetDisable
Syntax void DIME_SystemResetDisable(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return N/A.

Description Simply calls DIME_CardResetControl (handle, drSYSTEM, drDISABLE, 0).

Functionality not changed. Disables the reset for the system.

Alternative DIME_CardResetControl (handle, drSYSTEM, drDISABLE, 0).

7.11 DIME_PCIReset
Syntax void DIME_PCIReset(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return N/A.

Description Simply calls DIME_CardResetControl(handle, drINTERFACE, drTOGGLE, 0)

Functionality not changed. Disables the reset for the system.

Alternative DIME_CardResetControl(handle, drINTERFACE, drTOGGLE, 0).
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
7.12 DIME_ReadDigitalIO
Syntax DWORD DIME_ReadDigitalIO(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return Returns the value of the digital I/O pins.

Description Simply calls DIME_ReadPIO(handle, dpioDIGITAL).

Functionality not changed. Reads the pins on the digital I/O connector.

Alternative DIME_ReadPIO(handle, dpioDIGITAL).

7.13 DIME_WriteDigitalIO
Syntax DWORD DIME_WriteDigitalIO(DIME_HANDLE handle, DWORD Data)

Arguments handle is a valid handle to a DIME carrier card.

Data is the values to be written to the pins on the digital I/O connector.

Return Returns 0 on success. Returns non-zero on error.

Description Simply calls DIME_WritePIO(handle, dpioDIGITAL, Data).

Functionality not changed. Writes the pins on the digital I/O connector.

Alternative DIME_WritePIO(handle, dpioDIGITAL, Data).

7.14 DIME_ReadDigitalIODirection
Syntax DWORD DIME_ReadDigitalIODirection(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return A '1' in a particular bit location indicates that the pin is an input, otherwise the pins is an output.
Returns -1 on error.

Description Simply calls DIME_ReadPIODirection(handle, dpioDIGITAL)

Functionality not changed. Reads the pins on the digital I/O connector.

Alternative DIME_ReadPIODirection(handle, dpioDIGITAL).

7.15 DIME_WriteDigitalIODirection
Syntax DWORD DIME_WriteDigitalIODirection(DIME_HANDLE handle,DWORD Data)

Arguments handle is a valid handle to a DIME carrier card.

Data is the data used to set the direction of individual pins.

Return Returns zero on success, non zero on error.
68 Issue 8 September 14, 2004 www.nallatech.com 83

http://www.nallatech.com

84

Legacy Functions
Description Simply calls DIME_WritePIODirection(handle, dpioDIGITAL, Data). This function sets the direction
of individual pins of the Digital I/O connector. A '1' in a particular bit location sets that pin to an
input, otherwise the pin is an output.

Functionality not changed.

Alternative DIME_WritePIODirection(handle, dpioDIGITAL, Data).

7.16 DIME_VirtexIntPin
Syntax DWORD DIME_VirtexIntPin(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return If the interrupt pin on the FGPA is high then this returns 1, otherwise it returns 0. Returns -1 on
error.

Description This function returns the value on the Interrupt pin from the FPGA. Simply calls
DIME_InterruptStatus(handle, dintONBOARDFPGA, dintPINVALUE).

Alternative DIME_InterruptStatus(handle, dintONBOARDFPGA, dintPINVALUE).

7.17 DIME_InterfaceFlagBusy
Syntax DWORD DIME_InterfaceFlagBusy(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return Returns the status of the BUSY signal that is on the PCI to FPGA Interface. When the BUSY signal is
high this function returns a 1 otherwise it returns a 0.

Description When BUSY is high it indicates that the internal transfer buffer from the FPGA to the PCI is full and
cannot accept any more data. The user application should initiate a data read at this stage.

Simply calls DIME_DMAStatus(handle, ddmaALLDMACHANNELS, ddmaBUSYFLAG).

Alternative DIME_DMAStatus(handle, ddmaALLDMACHANNELS, ddmaBUSYFLAG).

7.18 DIME_InterfaceFlagEmpty
Syntax DWORD DIME_InterfaceFlagEmpty(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return Returns the status of the EMPTY signal that is on the PCI to FPGA Interface. When the EMPTY
signal is high this function returns a 1 otherwise it returns a 0.

Description When EMPTY is high it indicate that there is no data waiting to be transferred to the FPGA, i.e. the
FPGA application has read all the available data that has been transferred via a PCI write operation.

Calls DIME_DMAStatus(handle, ddmaALLDMACHANNELS, ddmaEMPTYFLAG).

Alternative DIME_DMAStatus(handle, ddmaALLDMACHANNELS, ddmaEMPTYFLAG).
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
7.19 DIME_InterfaceFlagVirtexReadEmpty
Syntax DWORD DIME_InterfaceFlagVirtexReadEmpty(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return If there is no data in read buffer to be accessed this function will return 0, however 1 will be
returned if there is data waiting to be read.

Description This function returns the status of the internal buffer between the FPGA and the PCI interface.
Therefore when the function returns a 0 the data is available to be read DIME_DataRead or
DIME_DataReadSingle.

Calls DIME_DMAStatus(handle, ddmaALLDMACHANNELS, ddmaREADEMPTY).

Alternative DIME_DMAStatus(handle, ddmaALLDMACHANNELS, ddmaEMPTYFLAG).

7.20 DIME_InterfaceFlagVirtexWriteFull
Syntax DWORD DIME_InterfaceFlagVirtexWriteFull(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return This function returns a 1 when the internal buffer from the PCI to the FPGA is full and hence cannot
accept any more data from the user application.

Description The user application must therefore wait until the FPGA reads data before any more data will be
transferred.

Calls DIME_DMAStatus(handle, ddmaALLDMACHANNELS, ddmaWRITEFULL).

Alternative DIME_DMAStatus(handle, ddmaALLDMACHANNELS, ddmaWRITEFULL).

7.21 DIME_JTAGTurboDisable
Syntax void DIME_JTAGTurboDisable(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return N/A.

Description This sets the cards JTAG chain to run at its default speed.

Alternative DIME_JTAGControl(handle, djtagCONFIGSPEED, djtagDEFAULTSPEED).

7.22 DIME_JTAGTurboEnable
Syntax void DIME_JTAGTurboEnable(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return N/A.

Description This sets the cards JTAG chain to run faster than its default speed.
68 Issue 8 September 14, 2004 www.nallatech.com 85

http://www.nallatech.com

86

Legacy Functions
Alternative DIME_JTAGControl(handle, djtagCONFIGSPEED, djtagMAXSPEED20).

7.23 DIME_BootVirtexSingle
Syntax DWORD DIME_BootVirtexSingle(DIME_HANDLE handle, const char *FileName)

Arguments handle is a valid handle to a DIME carrier card.

FileName is the filename of the bitfile that is to be used for booting the on-board FPGA.

Return If successful this function returns a 0, otherwise a non-zero result is returned on error and the
device was not configured properly.

The return values are as listed for the function DIME_BootDevice.

Description This function boots the on-board FPGA device using the bitfile given by 'filename'. Note that the
bitfile must be configured to use the JTAG clock for configuration rather than the default of the
CCLK.

Alternative DIME_ConfigOnBoardDevice(handle, FileName, 0).

7.24 DIME_BootDevice
Syntax DWORD DIME_BootDevice(DIME_HANDLE handle, const char *FileName, DWORD

ModuleNumber, DWORD ModuleDeviceNumber, DWORD *Progress)

Arguments handle is a valid handle to a DIME carrier card.

FileName is the filename of a bit for loading into the FPGA.

ModuleNumber is the Module that is being addressed.

ModuleDeviceNumber is the selected device within the select module.

Progress should point to a variable which will be updated with the actual position in the
configuration. The position in the configuration file is expressed as a percentage (0 - 100). This is
only useful in multi-threaded applications and may point to a valid location or NULL in single
threaded applications.

Return cfgINVLAID_CARD Indicates a valid card has not been detected.

cfgOK_NOSTATUS Indicates that a bitfile has been successfully shifted
into the chain, with no post configuration checking carried out.

cfgBIT_FILE If a the specified bitfile could not be successfully opened.

cfgINTEG_FAIL Indicates that the JTAG integrity scan check has failed and the chain is
apparently incomplete.

cfgDL_IL_NOCRC Configuration Status - DONE Low, INIT Low, No CRC errors detected.

cfgDL_IL_CRC Configuration Status - DONE Low, INIT Low, CRC errors detected.

cfgDL_IH_NOCRC Configuration Status - DONE Low, INIT high, No CRC errors detected.
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
cfg_DL_IH_CRC Configuration Status - DONE Low, INIT high, CRC errors detected.

cfgDH_IL_NOCRC Configuration Status - DONE high, INIT low, No CRC errors detected.

cfgDH_IL_CRC Configuration Status - DONE high, INIT low, CRC errors detected.

cfgOK_STATUS Configuration completed successfully as indicated by read back of FPGA
Status register. DONE high, INIT high, No CRC errors detected.

cfgDH_IH_CRC Configuration Status - DONE high INIT high, CRC errors detected.

cfgNOLIC Multiple Configuration Licence not available.

cfg_UNKNOWN Unidentifiable configuration result.

Description This is the main function used for carrying out the actual configuration sequence of a specific single
Programmable Logic device. The main arguments apart from handle, to denote if a card has actually
been detected, are ModuleNumber and ModuleDeviceNumber. These are used to identify a
particular device in the JTAG chain and provides enough information to configure the selected
device.

Alternative DIME_ConfigDevice(handle, FileName, ModuleNumber, ModuleDeviceNumber, Progress, 0).

7.25 DIME_SetFilename
Syntax DWORD DIME_SetFilename(DIME_HANDLE handle, DWORD ModuleNumber, DWORD

DeviceNumber, const char *Filename)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the Module that is being addressed.

DeviceNumber is the selected device within the select module.

Filename is the filename of a bit for loading into the FPGA.

Return Returns 0 upon success. Returns non-zero otherwise.

Description This function can be used to set the filename for the specified device on the specified module. The
handle for the particular board also needs to be passed to the function The specified filename is
stored in internal data structures for later use.

Alternative DIME_ConfigSetBitsFilename(handle, ModuleNumber, DeviceNumber, Filename,0).

7.26 DIME_GetFilename
Syntax const char *DIME_GetFilename(DIME_HANDLE handle, DWORD ModuleNumber, DWORD

DeviceNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

DeviceNumber is the selected Device number.
68 Issue 8 September 14, 2004 www.nallatech.com 87

http://www.nallatech.com

88

Legacy Functions
Return Returns a pointer to the filename that has been assigned to the selected device. If no filename has
been set for the device then a NULL pointer is returned.

Description This function is used to read the filename that has been set for a particular device on a module. The
handle for the particular board also needs to be passed to the function.

Alternative DIME_ConfigGetBitsFilename(handle, ModuleNumber, DeviceNumber).

7.27 DIME_SetFilenameAndConfig
Syntax DWORD DIME_SetFilenameAndConfig (DIME_HANDLE handle, DWORD ModuleNumber,

DWORD DeviceNumber, const char *Filename, DWORD *Progress)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the Number of the selected module.

DeviceNumber is the selected device.

Filename is the filename used to assign for configuration.

Progress is the progress through a configuration.

Return Returns the result of DIME_ConfigSetBitsFilename if there is an error. If no error occurs in this
function then it returns the result of the device configuration.

Description This function calls the function, DIME_ConfigSetBitsFilenameAndConfig to assign the filename to the
device and then to configure the device.

Alternative DIME_ConfigSetBitsFilenameAndConfig(handle, ModuleNumber, DeviceNumber, Filename, 0,
Progress, 0).

7.28 DIME_SaveSystemConfig
Syntax DWORD DIME_SaveSystemConfig (DIME_HANDLE handle, const char *Filename)

Arguments handle is a valid handle to a DIME carrier card.

Filename is the file to save the system configuration to.

Return If the information is successfully written to a file then the function returns a 0 otherwise a non-zero
result indicates an unsuccessful configuration.

Description This function can be used to save existing configuration information such as module, device
information and which bitfiles have been assigned to particular devices. The information can simply
be written to the file specified.

Alternative DIME_SaveCardDefinition(handle,Filename,0).
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
7.29 DIME_LoadSystemConfig
Syntax DWORD DIME_LoadSystemConfig (DIME_HANDLE handle, const char *Filename)

Arguments handle is a valid handle to a DIME carrier card.

Filename is the file to load the system configuration from.

Return A successful load is indicated by a return value of 0.

Description This function can be used to load back into the program existing information previously saved to a
file.

Alternative DIME_LoadCardDefinition(handle,Filename,0).

7.30 DIME_GlobalMode
Syntax DWORD DIME_GlobalMode(DIME_HANDLE handle, DWORD CmdMode, DWORD Value)

Arguments handle is a valid handle to a DIME carrier card.

CmdMode is the mode to change.

Value is the value to set the mode to.

Return Returns non-zero value on error.

Description This is a function to add greater global control over the functionality of the development libraries.
The details are given in the Notes below.

The general operation of this functions is to pass the global mode operation to be changed in the
'CmdMode argument and to pass its state in the 'Value' argument.

Notes

CmdMode Function

DIME_MODE_GUI Sets whether dialog boxes are displayed within the SDL or
whether no dialog boxes are displayed so that the calling
applications can control any error message boxes.

This does not affect the return values of functions.

When 'Value' is TRUE, dialog boxes are displayed, when FALSE
they are not displayed.

Default is on, i.e. Value = TRUE.

Table 49: DIME_GlobalMode
68 Issue 8 September 14, 2004 www.nallatech.com 89

http://www.nallatech.com

90

Legacy Functions
Alternative DIME_SystemControl(handle, CmdMode, Value).

7.31 DIME_GetMotherBoardType
Syntax DWORD DIME_GetMotherBoardType(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME Card.

Return See Table 29 on page 55 for details.

Description The DIME API is made as generic as possible for all DIME Carrier cards and this function returns the
type of Motherboard installed. This enables an application to take advantage of any special facilities
for a particular card.

Alternative DIME_CardStatus(handle, dinfMOTHERBORDTYPE).

7.32 DIME_GetMultiConfigLicence
Syntax DWORD DIME_GetMultiConfigLicence(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return A return value of 0 indicates that no multiple configuration licence is available and a value of 1
indicates that a multiple configuration licence is available.

Description This function returns whether the multiple configuration licence is valid on this system.

Alternative DIME_CardStatus(handle, dinfMULTICONFIGLICENCE).

7.33 DIME_ReadSlotUsed
Syntax DWORD DIME_ReadSlotUsed(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return A '1' in a particular bit location indicates that a Module is present, otherwise the slot is free. Bit 0
represents slot 0, bit 1 represents slot 1 etc.

Description This returns flags to indicate if a module is plugged into a particular DIME slot.

Alternative DIME_CardStatus(handle, dinfSLOTSUSED).

DIME_JTAG_CHECK When a Configuration of the FPGA is performed it is possible
for a post configuration check to be done on the configuration
of the FPGA itself. Essentially, this reads the contents out of
the 32-bit internal FPGA status register.

When 'Value' is TRUE post configuration status checking is
carried out, otherwise when 'Value' is FALSE no checking is
done and the FPGA is still sent the selected bit-stream.
Default is on in multiple configuration, i.e. Value = TRUE.

CmdMode Function

Table 49: DIME_GlobalMode
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
7.34 DIME_GetNumberOfModules
Syntax DWORD DIME_GetNumberOfModules(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return Returns the number of modules installed in the card

Description The function first checks that a valid card has in fact been successfully opened, if not a 0 is returned.
The function accesses the internal data structure of board information and returns the value for the
number of modules detected in the current board set-up.

Notes The on-board FGPA device is counted as a module itself.

Alternative DIME_CardStatus(handle, dinfNUMBERMODULES).

7.35 DIME_GetFailedMDFFileName
Syntax const char *DIME_GetFailedMDFFileName(DIME_HANDLE handle)

Arguments handle is a valid handle to a DIME carrier card.

Return The filename can be returned through the use of this function. If a card has not successfully been
opened then NULL is returned, otherwise the MDF filename is returned.

Description When opening the card a number of associated Module Definition Files are read into the program. If
there is a problem with a required MDF file then the card will not be opened.

Alternative DIME_CardStatusPtr(handle, dinfFAILEDMDF).

7.36 DIME_GetModuleDIMECode
Syntax DWORD DIME_GetModuleDIMECode(DIME_HANDLE handle, DWORD ModuleNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

Return The function accesses the internal data structure of board information and returns the 32-bit
hexadecimal DIME Code (User Code) for the specified module. On error 0 is returned.

Please refer to the Module Reference Guide for the code details.

Description The function also checks that the specified module number is not greater than the total number of
modules detected on the board.

Alternative DIME_ModuleStatus(handle, ModuleNumber, dinfDIMECODE).
68 Issue 8 September 14, 2004 www.nallatech.com 91

http://www.nallatech.com

92

Legacy Functions
7.37 DIME_GetNumberOfDevices
Syntax DWORD DIME_GetNumberOfDevices(DIME_HANDLE handle, DWORD ModuleNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

Return The function accesses the internal data structure of board information and returns the number of
devices for the specified module.

Description The function first checks that a valid card has in fact been successfully opened, if not 0 is returned.
The function also checks that the specified module number is not greater than the total number of
modules detected on the board.

Alternative DIME_ModuleStatus(handle, ModuleNumber, dinfNUMDEVICES).

7.38 DIME_GetModuleDescription
Syntax const char *DIME_GetModuleDescription (DIME_HANDLE handle, DWORD ModuleNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

Return Returns a pointer to a string that describes the module selected. Returns NULL on error.

Description The function first checks that a valid card has in fact been successfully opened, if not a NULL is
returned. The function also checks that the specified module number is not greater than the total
number of modules detected on the board. The function accesses the internal data structure of
board information and returns the description for the specified module.

Alternative DIME_ModuleStatusPtr(handle, ModuleNumber, dinfDESCRIPTION).

7.39 DIME_GetModuleIconFilename
Syntax const char *DIME_GetModuleIconFilename(DIME_HANDLE handle, DWORD ModuleNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

Return The function accesses the internal data structure of board information and returns the complete
path and filename for the icon representing the specified module.

Description The function first checks that a valid card has in fact been successfully opened, if not a NULL is
returned. The function also checks that the specified module number is not greater than the total
number of modules detected on the board.

Note If an icon has not been specified in the MDF associated with the module a default icon filename is
loaded.

Alternative DIME_ModuleStatusPtr(handle, ModuleNumber, dinfICONFILENAME).
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
7.40 DIME_GetModuleImageFilename
Syntax const char *DIME_GetModuleImageFilename(DIME_HANDLE handle, DWORD ModuleNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

Return The function accesses the internal data structure of board information and returns the complete
path and filename of the Image representing the specified module.

Description The function first checks that a valid card has in fact been successfully opened, if not a NULL is
returned. The function also checks that the specified module number is not greater than the total
number of modules detected on the board.

Alternative DIME_ModuleStatusPtr(handle, ModuleNumber, dinfIMAGEFILENAME).

7.41 DIME_GetDeviceIDCode
Syntax DWORD DIME_GetDeviceIDCode(DIME_HANDLE handle, DWORD ModuleNumber, DWORD

DeviceNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

DeviceNumber is the selected Device number.

Return The function accesses the internal data structure of board information and returns the 32-bit ID
code for the specified module device. See Table 26 on page 53 for all possible returns values.

Description The function first checks that a valid card has in fact been successfully opened, if not a 0 is returned.
The function also checks that the specified module and device numbers are not greater than the total
number of modules detected on the board and the total number of devices for the module
respectively.

Alternative DIME_DeviceStatus(handle, ModuleNumber, DeviceNumber, dinfDEVICEIDCODE).

7.42 DIME_GetDeviceType
Syntax DWORD DIME_GetDeviceType(DIME_HANDLE handle, DWORD ModuleNumber, DWORD

DeviceNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

DeviceNumber is the selected Device number.

Return This function returns the type of the specified device on the specified module. See Table 13 on
page 36 for details.

Description As part of the MDF file format each device is classified as a particular type corresponding to whether
it can be configured or not.
68 Issue 8 September 14, 2004 www.nallatech.com 93

http://www.nallatech.com

94

Legacy Functions
Alternative DIME_DeviceStatus(handle, ModuleNumber, DeviceNumber, dinfDEVICETYPE).

7.43 DIME_GetDeviceXOffset
Syntax DWORD DIME_GetDeviceXOffset(DIME_HANDLE handle, DWORD ModuleNumber, DWORD

DeviceNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

DeviceNumber is the selected Device number.

Return The function accesses the internal data structure of board information and returns the X-Offset for
the specified module device in the module image.

Description The function first checks that a valid card has in fact been successfully opened, if not a 0 is returned.
The function also checks that the specified module and device numbers are not greater than the total
number of modules detected on the board and the total number of devices for the module
respectively.

Alternative DIME_DeviceStatus(handle, ModuleNumber, DeviceNumber, dinfXOFFSET).

7.44 DIME_GetDeviceYOffset
Syntax DWORD DIME_GetDeviceYOffset(DIME_HANDLE handle, DWORD ModuleNumber, DWORD

DeviceNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

DeviceNumber is the selected Device number.

Return The function accesses the internal data structure of board information and returns the Y-Offset for
the specified module device in the module image.

Description The function first checks that a valid card has in fact been successfully opened, if not a 0 is returned.
The function also checks that the specified module and device numbers are not greater than the total
number of modules detected on the board and the total number of devices for the module
respectively.

Alternative DIME_DeviceStatus(handle, ModuleNumber, DeviceNumber, dinfYOFFSET).

7.45 DIME_GetDeviceWidth
Syntax DWORD DIME_GetDeviceWidth(DIME_HANDLE handle, DWORD ModuleNumber, DWORD

DeviceNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

DeviceNumber is the selected Device number.
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Return The function accesses the internal data structure of board information and returns the width for the
specified module device in the module image.

Description The function first checks that a valid card has in fact been successfully opened, if not a 0 is returned.
The function also checks that the specified module and device numbers are not greater than the total
number of modules detected on the board and the total number of devices for the module
respectively.

Alternative DIME_DeviceStatus(handle, ModuleNumber, DeviceNumber, dinfWIDTH).

7.46 DIME_GetDeviceHeight
Syntax DWORD DIME_GetDeviceHeight(DIME_HANDLE handle, DWORD ModuleNumber, DWORD

DeviceNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

DeviceNumber is the selected Device number.

Return The function accesses the internal data structure of board information and returns the height for the
specified module device in the module image.

Description The function first checks that a valid card has in fact been successfully opened, if not a 0 is returned.
The function also checks that the specified module and device numbers are not greater than the total
number of modules detected on the board and the total number of devices for the module
respectively.

Alternative DIME_DeviceStatus(handle, ModuleNumber, DeviceNumber, dinfHEIGHT).

7.47 DIME_GetDeviceDescription
Syntax const char *DIME_GetDeviceDescription(DIME_HANDLE handle, DWORD ModuleNumber,

DWORD DeviceNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

DeviceNumber is the selected Device number.

Return The function accesses the internal data structure of board information and returns the description
for the specified module device. A pointer to a string that describes the device is returned.

Description The function first checks that a valid card has in fact been successfully opened, if not a NULL is
returned. The function also checks that the specified module and device numbers are not greater
than the total number of modules detected on the board and the total number of devices for the
module respectively.

Alternative DIME_DeviceStatusPtr(handle, ModuleNumber, DeviceNumber, dinfDESCRIPTION).
68 Issue 8 September 14, 2004 www.nallatech.com 95

http://www.nallatech.com

96

Legacy Functions
7.48 DIME_GetDeviceIconFilename
Syntax const char *DIME_GetDeviceIconFilename(DIME_HANDLE handle, DWORD ModuleNumber,

DWORD DeviceNumber)

Arguments handle is a valid handle to a DIME carrier card.

ModuleNumber is the selected Module number.

DeviceNumber is the selected Device number.

Return The function accesses the internal data structure of board information and returns the complete
path and filename representative of the specified module device. If an icon filename has not been
specified in the MDF then a default device icon filename is returned.

Description The function first checks that a valid card has in fact been successfully opened, if not a NULL is
returned. The function also checks that the specified module and device numbers are not greater
than the total number of modules detected on the board and the total number of devices for the
module respectively.

Alternative DIME_DeviceStatusPtr(handle, ModuleNumber, DeviceNumber, dinfICONFILENAME).
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Section 8

Version History List
In this section:

• Version History of FUSE C/C++ API.

8.1 New in version 1.9
"Enhancement: DIME_GetCurrentHandle added.

"Enhancement: Added the following command modes to DIME_ModuleStatus: dinfFPGATEMP,
dinfMODULETEMP, dinfTEMPALERTMAX, dinfTEMPALERTMIN

"Enhancement: Added the following command modes to DIME_ModuleControl:
dinfTEMPALERTMAX, dinfTEMPALERTMIN, dinfTEMPALERTCLEAR

"Enhancement: Added the following command modes to DIME_PPSStatus: dppsVOLTAGE,
dppsCURRENT

8.2 New in version 1.6
"Fix: Several minor bug fixes to the API

"Fix: When using DIME_DataRead and DIME_DataWrite for transfers greater than 32768 words the
transfer will return a timeout error. Transfers greater than 32K words are now allowed.

"Fix: DIME_DMARead and DIME_DMAWrite where previously only locking down ¼ of the required
memory for the transfer. This has been fixed so the correct amount of memory is locked down.

"Enhancement: DIME_PPSStatus and DIME_PPSControl now have a supply number argument added.
68 Issue 8 September 14, 2004 www.nallatech.com 97

http://www.nallatech.com

98

Version History List
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Standard Terms and Conditions
GENERAL
These Terms and Conditions shall apply to all contracts for
goods sold or work done by Nallatech Limited. (hereinafter
referred to as the “company” or Nallatech) and purchased by
any customer (hereinafter referred to as the customer).

Nallatech Limited trading in the style Nallatech (the company),
submits all quotations and price lists and accepts all orders
subject to the following conditions of contract which apply to
all contracts for goods supplied or work done by them or their
employees to the exclusion of all other representations,
conditions or warranties, express or implied.

The buyer agrees to execute and return any license agreements
as may be required by the company in order to authorize the
use of those licensable items. If the licensable item is to be
resold this condition shall be enforced by the re-seller on the
end customer.

 Each order received by the company will be deemed to form a
separate contract to which these conditions apply and any
waiver or any act of non-enforcement or variation of these
terms or part thereof shall not bind or prejudice the company
in relation to any other contract.

The company reserves the right to re-issue its price list at any
time and to refuse to accept orders at a price other than at the
price stated on the price list in force at the time of order.

The company reserves the right to vary the specification or
withdraw from the offer any of its products without prior
warning.

The company reserves the right to refuse to accept any
contract that is deemed to be contrary to the companies
policies in force at the time.

PRICING
All prices shown on the company's price list, or on quotations
offered by them, are based upon the acceptance of these
conditions. Any variation of these conditions requested by the
buyer could result in changes in the offered pricing or refusal to
supply.

All quoted pricing is in Pounds Sterling and is exclusive of Value
Added Tax (VAT) and delivery. In addition to the invoiced value
the buyer is liable for all import duty as may be applicable in the
buyer's location. If there is any documentation required for
import formalities, whether or not for the purposes of duty
assessment, the buyer shall make this clear at the time of order.

Quotations are made by Nallatech upon the customer's
request but there is no obligation for either party until
Nallatech accepts the customer's order.

Nallatech reserves the right to increase the price of goods
agreed to be sold in proportion to any increase of costs to
Nallatech between the date of acceptance of the order and the
date of delivery or where the increase is due to any act or
default of the customer, including the cancellation or
rescheduling by the customer of part of any order.

Nallatech reserves the right (without prejudice to any other
remedy) to cancel any uncompleted order or to suspend
delivery in the event of any of the customer's commitment
with Nallatech not being met.

DELIVERY
All delivery times offered by the company are to be treated as
best estimates and no penalty can be accepted for non
compliance with them.

Delivery shall be made by the company using a courier service
of its choice. The cost of the delivery plus a nominal fee for
administration will be added to the invoice issued. Payment of
all inward customs duties and fees are the sole responsibility of
the buyer. If multiple shipments are requested by the buyer,
multiple delivery charges will be made. In the case of multiple
deliveries separate invoices will be raised.

If requested at the time of ordering an alternative delivery
service can be used, but only if account details are supplied to
the company so that the delivery can be invoiced directly to
the buyer by the delivery service.

The buyer accepts that any 'to be advised' scheduled orders
not completed within twelve months from the date of
acceptance of the original order, or orders held up by the
buyers lack of action regarding delivery, can be shipped and
invoiced by the company and paid in full by the buyer,
immediately after completion of that twelve month period.

INSURANCE
All shipments from the company are insured by them. If any
goods received by the buyer are in an unsatisfactory condition,
the following courses of action shall be taken.

If the outer packaging is visibly damaged, then the goods should
not be accepted from the courier, or they should be signed for
only after noting that the packaging has sustained damage.

If the goods are found to be damaged after unpacking, the
company must be informed immediately.

Under no circumstances should the damaged goods be
returned, unless expressly authorized by the company.

If the damage is not reported within 48 hours of receipt, the
insurers of the company shall bear no liability.

Any returns made to the company for any reason, at any time
shall be packaged in the original packaging, or its direct
equivalent and must be adequately insured by the buyer.

Any equipment sent to the company for any purpose, including
but not limited to equipment originally supplied by the
company must be adequately insured by the buyer while on the
premises of the company.

PAYMENT
Nallatech Ltd. terms of payment are 30 days net.

Any charges incurred in making the payment, either

currency conversion or otherwise shall be paid by the buyer.
68 Issue 8 September 14, 2004 www.nallatech.com 99

http://www.nallatech.com

100

Standard Terms and Conditions
The company reserves the right to charge interest at a rate of
2% above the base rate of the Bank of Scotland PLC on any
overdue accounts. The interest will be charged on any
outstanding amount from said due date of payment, until
payment is made in full, such interest will accrue on a daily
basis.

TECHNICAL SUPPORT
The company offers a dedicated technical support via
telephone and an E-mail address. It will also accept faxed
support queries.

Technical support will be given free of charge for 90 days from
the date of invoice, for queries regarding the use of the
products in the system configuration for which they were sold.
Features not documented in the user manual or a written offer
of the company will not be supported. Interfacing with other
products other than those that are pre-approved by the
company as compatible will not be supported. If the
development tools and system hardware is demonstrably
working, no support can be given with application level
problems.

WARRANTY
The company offers as part of a purchase contract 12 months
warranty against parts and defective workmanship of hardware
elements of a system. The basis of this warranty is that the fault
be discussed with the companies technical support staff before
any return is made. If it is agreed that a return for repair is
necessary then the faulty item and any other component of the
system as requested by those staff shall be returned carriage
paid to the company. Insurance terms as discussed in the
INSURANCE Section will apply.

Returned goods will not be accepted by the company unless
this has been expressly authorized.

After warranty repair, goods will be returned to the buyer
carriage paid by the company using their preferred method.

Faults incurred by abuse of the product (as defined by the
company) are not covered by the warranty.

Attempted repair or alteration of the goods as supplied by the
company, by another party immediately invalidates the
warranty offered.

The said warranty is contingent upon the proper use of the
goods by the customer and does not cover any part of the
goods which has been modified without Nallatech's prior
written consent or which has been subjected to unusual
physical or electrical stress or on which the original
identification marks have been removed or altered. Nor will
such warranty apply if repair or parts required as a result of
causes other than ordinary authorized use including without
limitation accident, air conditioning, humidity control or other
environmental conditions.

Under no circumstances will the company be liable for any
incidental or consequential damage or expense of any kind,
including, but not limited to, personal injuries and loss of
profits arising in connection with any contract or with the use,
abuse, unsafe use or inability to use the companies goods. The

company's maximum liability shall not exceed and the
customers remedy is limited to, either:

i. repair or replacement of the defective part or product
or at the companies option.

ii. return of the product and refund of the purchase price
and such remedy shall be the customer's entire and
exclusive remedy.

Warranty of the software written by the company shall be
limited to 90 days warranty that the media is free from defects
and no warranty express or implied is given that the computer
software will be free from error or will meet the specification
requirements of the buyer.

The terms of any warranty offered by a third party whose
software is supplied by the company will be honoured by the
company exactly. No other warranty is offered by the company
on these products.

Return of faulty equipment after the warranty period has
expired, the company may at its discretion make a quotation
for repair of the equipment or declare that the equipment is
beyond repair.

PASSING OF RISK AND TITLE
The passing of risk for any supply made by the company shall
occur at the time of delivery. The title however shall not pass
to the buyer until payment has been received in full by the
company. And no other sums whatever shall be due from the
customer to Nallatech.

If the customer (who shall in such case act on his own account
and not as agent for Nallatech) shall sell the goods prior to
making payment in full for them, the beneficial entitlement of
Nallatech therein shall attach to the proceeds of such sale or
to the claim for such proceeds.

The customer shall store any goods owned by Nallatech in
such a way that they are clearly identifiable as Nallatech's
property and shall maintain records of them identifying them as
Nallatech's property. The customer will allow Nallatech to
inspect these records and the goods themselves upon request.

In the event of failure by the customer to pay any part of the
price of the goods, in addition to any other remedies available
to Nallatech under these terms and conditions or otherwise,
Nallatech shall be entitled to repossess the goods. The
customer will assist and allow Nallatech to repossess the
goods as aforesaid and for this purpose admit or procure the
admission of Nallatech or its employees and agents to the
premises in which the goods are situated.

INTELLECTUAL PROPERTY
The buyer agrees to preserve the Intellectual Property Rights
(IPR) of the company at all times and that no contract for
supply of goods involves loss of IPR by the company unless
expressly offered as part of the contract by the company.

GOVERNING LAW
This agreement and performance of both parties shall be
governed by Scottish law.
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide
Any disputes under any contract entered into by the company
shall be settled in a court if the company's choice operating
under Scottish law and the buyer agrees to attend any such
proceedings. No action can be brought arising out of any
contract more than 12 months after the completion of the
contract.

INDEMNITY
The buyer shall indemnify the company against all claims made
against the company by a third party in respect of the goods
supplied by the company.

SEVERABILITY
If any part of these terms and conditions is found to be illegal,
void or unenforceable for any reason, then such clause or
Section shall be severable from the remaining clauses and
Sections of these terms and conditions which shall remain in
force.

NOTICES
Any notice to be given hereunder shall be in writing and shall
be deemed to have been duly given if sent or delivered to the
party concerned at its address specified on the invoice or such
other addresses as that party may from time to time notify in
writing and shall be deemed to have been served, if sent by
post, 48 hours after posting.

SOFTWARE LICENSING AGREEMENT
Nallatech Ltd. software is licensed for use by end users under
the following conditions. By installing the software you agree to
be bound by the terms of this license. If you do not agree with
the terms of this license, do not install the Software and
promptly return it to the place where you obtained it.:

1. License: Nallatech Ltd. grants you a licence to use the
software programs and documentation in this pack-
age(“Licensed materials”). If you have a single license,
on only one computer at a time or by only one user at
a time;

if you have acquired multiple licenses, the Software may
be used on either stand alone computers or on com-
puter networks, by a number of simultaneous users
equal to or less than the number of licenses that you
have acquired; and, if you maintain the confidentiality of
the Software and documentation at all times.

2. Restrictions: This software contains trade secrets in
its human perceivable form and, to protect them,
except as permitted by applicable law, you may not
reverse engineer, disassemble or otherwise reduce the
software to any human perceivable form. You may not
modify, translate, rent, lease, loan or create derivative
works based upon the software or part thereof with-
out a specific run-time licence from Nallatech Ltd.

3. Copyright: The Licensed Materials are Copyrighted.
Accordingly, you may either make one copy of the
Licensed Materials for backup and/or archival purposes
or copy the Licensed Materials to another medium and
keep the original Licensed Materials for backup and/or

archival purposes. Additionally, if the package contains
multiple versions of the Licensed Materials, then you
may only use the Licensed Materials in one version on a
single computer. In no event may you use two copies of
the Licensed Materials at the same time.

4. Warranty: Nallatech Ltd. warrants the media to be
free from defects in material and workmanship and that
the software will substantially conform to the related
documentation for a period of ninety (90) days after
the date of your purchase. Nallatech Ltd. does not war-
rant that the Licensed Materials will be free from error
or will meet your specific requirements.

5. Limitations: Nallatech Ltd. makes no warranty or
condition, either expressed or implied, including but
not limited to any implied warranties of merchantability
and fitness for a particular purpose, regarding the
Licensed Materials.

Neither Nallatech Ltd. nor any applicable Licenser will
be liable for any incidental or consequential damages,
including but not limited to lost profits.

6. Export Control: The Software is subject to the
export control laws of the United States and of the
United Kingdom. The Software may not be shipped,
transferred, or re-exported directly or indirectly into
any country prohibited by the United States Export
Administration Act 1969 as amended, and the regula-
tions there under, or be used for any purpose prohib-
ited by the Act.

DEVELOPERS GUIDE CONDITIONS
Information in this Developers Guide is subject to change
without notice. Any changes will be included in future versions
of this document. Information within this manual may include
technical, typing or printing inaccuracies or errors and no
liability will arise therefrom.

This Developers Guide is supplied without warranty or
condition, either expressed or implied, including but not
limited to any implied warranties of merchantability and fitness
for a particular purpose, regarding the information provided
herein.

Under no circumstances will Nallatech Limited be liable for any
incidental or consequential damage or expense of any kind,
including, but not limited to, loss of profits, arising in
connection with the use of the information provided herein.
68 Issue 8 September 14, 2004 www.nallatech.com 101

http://www.nallatech.com

102

Standard Terms and Conditions
www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

NT107-00

FUSE C/C++ API Developers Guide

Index

A
abbreviations ... xii
API layers ... 4

C
contact details ..ii

E
examples... 11

device configuration examples 11
DMA transfer examples .. 12
locating and opening... 11
non-threaded interrupts example 12
overview.. 11

F
files to be added ... 9
functional reference... 19
functions by category .. 15

all I/O ... 18
card/module/device information.................................... 17
card/system definition files.. 17
device configuration ... 16
DMA transfers ... 16
interrupts .. 16
JTAG .. 17
LEDs... 15
multiple configuration GUI ... 18
oscillator.. 15
programmable power supplies....................................... 18
reset ... 15
system information and control 17

FUSE naming conventions .. xii

G
getting started ... 5

I
implementation ... 7
installation .. 5

confidence test .. 6
Linux... 5
Windows... 5

introduction... 1

K
key features ..3

L
legacy functions... 79
locating cards .. 15

O
opening and closing cards... 15

R
reference guide symbols ...xi
reference information ... 13
related documentation...xii
revision ...iii

T
typographical considerations ..xii

U
using FUSE C/C++API..9

V
version history list.. 97
68 Issue 8 September 14, 2004 www.nallatech.com 103

http://www.nallatech.com

104
 www.nallatech.com NT107-0068 Issue 8 September 14, 2004

http://www.nallatech.com

Remarks Form
We welcome any comments you may have on our product and its documentation. Your remarks will be examined
thoroughly and taken into account for future versions of this product.

Errors Detected

Suggested Improvement

Please send this completed form to:

Nallatech
Boolean House
One Napier Park
Cumbernauld
Glasgow G68 0BH
United Kingdom

If you prefer you may send your remarks via E-mail to support@nallatech.com or by fax to +44 (0) 1236 789599.

If you want Nallatech to reply to your comments, please include your name, address and telephone number.

FUSE C/C++ API Developers Guide NT107-0068 Issue 8 14/09/04

mailto:support@nallatech.com

	FUSE C/C++ API Developers Guide
	Contents
	About this Developers Guide
	Part I:Introduction
	FUSE C/C++ API Overview
	1.1 Key Features

	Getting Started
	2.1 Installation
	2.1.1 Host System Requirements
	2.1.2 Software Installation
	2.1.3 Initial Confidence Test

	Part II:Implementation
	Using FUSE C/C++ API
	3.1 General Implementation Information

	Examples
	4.1 Fundamental Steps
	4.2 Locating and Opening Examples
	4.3 Device Configuration Examples
	4.4 DMA Transfer Examples
	4.5 Non-threaded Interrupts Example

	Part III:Reference Information
	Functions By Category
	5.1 Locating Cards
	5.2 Opening and Closing the Card
	5.3 Oscillator
	5.4 LEDs
	5.5 Reset
	5.6 Interrupts
	5.7 DMA Transfers
	5.8 Device Configuration
	5.9 Card/System Definition Files
	5.10 JTAG
	5.11 System Information and Control
	5.12 Card/Module/Device Information
	5.13 Programmable Power Supplies (PPS)
	5.14 All I/O
	5.15 Multiple Configuration GUI

	Functional Reference
	6.1 DIME_AddressWriteSingle
	6.2 DIME_CardControl
	6.3 DIME_CardControlPtr
	6.4 DIME_CardResetControl
	6.5 DIME_CardResetStatus
	6.6 DIME_CardStatus
	6.7 DIME_CardStatusPtr
	6.8 DIME_CloseCard
	6.9 DIME_CloseLocate
	6.10 DIME_ConfigCard
	6.11 DIME_ConfigControl
	6.12 DIME_ConfigDevice
	6.13 DIME_ConfigGetBitsFilename
	6.14 DIME_ConfigGetBitsMemory
	6.15 DIME_ConfigModule
	6.16 DIME_ConfigOnBoardDevice
	6.17 DIME_ConfigSetBitsFilename
	6.18 DIME_ConfigSetBitsFilenameAndConfig
	6.19 DIME_ConfigSetBitsMemory
	6.20 DIME_ConfigSetBitsMemoryAndConfig
	6.21 DIME_ConfigStatus
	6.22 DIME_DataRead
	6.23 DIME_DataReadSingle
	6.24 DIME_DataWrite
	6.25 DIME_DataWriteSingle
	6.26 DIME_DeviceControl
	6.27 DIME_DeviceControlPtr
	6.28 DIME_DeviceStatus
	6.29 DIME_DeviceStatusPtr
	6.30 DIME_DMAClose
	6.31 DIME_DMAControl
	6.32 DIME_DMAOpen
	6.33 DIME_DMARead
	6.34 DIME_DMAReadToLockedMem
	6.35 DIME_DMAStatus
	6.36 DIME_DMAWrite
	6.37 DIME_DMAWriteFromLockedMem
	6.38 DIME_GetCurrentHandle
	6.39 DIME_GetError
	6.40 DIME_GetLocateVersionNumber
	6.41 DIME_GetVersionNumber
	6.42 DIME_InterruptControl
	6.43 DIME_InterruptStatus
	6.44 DIME_JTAGControl
	6.45 DIME_JTAGStatus
	6.46 DIME_LoadCardDefinition
	6.47 DIME_LoadSystemDefinition
	6.48 DIME_LocateCard
	6.49 DIME_LocateStatus
	6.50 DIME_LocateStatusPtr
	6.51 DIME_LockMemory
	6.52 DIME_MConfigGUI
	6.53 DIME_MConfigGUIExit
	6.54 DIME_MemConfigDevice
	6.55 DIME_MemConfigOnBoardDevice
	6.56 DIME_MemReadbackDevice
	6.57 DIME_MemReadbackOnBoardDevice
	6.58 DIME_Miscioctl
	6.59 DIME_ModuleControl
	6.60 DIME_ModuleControlPtr
	6.61 DIME_ModuleStatus
	6.62 DIME_ModuleStatusPtr
	6.63 DIME_OpenCard
	6.64 DIME_Peripheralioctl
	6.65 DIME_PPSControl
	6.66 DIME_PPSStatus
	6.67 DIME_ReadLEDs
	6.68 DIME_ReadPIO
	6.69 DIME_ReadPIODirection
	6.70 DIME_SaveCardDefinition
	6.71 DIME_SaveSystemDefinition
	6.72 DIME_SetOscillatorFrequency
	6.73 DIME_ShowMConfigGUI
	6.74 DIME_SystemControl
	6.75 DIME_SystemStatus
	6.76 DIME_SystemStatusPtr
	6.77 DIME_UnLockMemory
	6.78 DIME_WriteLEDs
	6.79 DIME_WritePIO
	6.80 DIME_WritePIODirection

	Legacy Functions
	7.1 CloseDIMEBoard
	7.2 OpenDIMEBoard
	7.3 GetDIMEHandle
	7.4 DIME_SmartScan
	7.5 DIME_VirtexReset
	7.6 DIME_VirtexResetEnable
	7.7 DIME_VirtexResetDisable
	7.8 DIME_SystemReset
	7.9 DIME_SystemResetEnable
	7.10 DIME_SystemResetDisable
	7.11 DIME_PCIReset
	7.12 DIME_ReadDigitalIO
	7.13 DIME_WriteDigitalIO
	7.14 DIME_ReadDigitalIODirection
	7.15 DIME_WriteDigitalIODirection
	7.16 DIME_VirtexIntPin
	7.17 DIME_InterfaceFlagBusy
	7.18 DIME_InterfaceFlagEmpty
	7.19 DIME_InterfaceFlagVirtexReadEmpty
	7.20 DIME_InterfaceFlagVirtexWriteFull
	7.21 DIME_JTAGTurboDisable
	7.22 DIME_JTAGTurboEnable
	7.23 DIME_BootVirtexSingle
	7.24 DIME_BootDevice
	7.25 DIME_SetFilename
	7.26 DIME_GetFilename
	7.27 DIME_SetFilenameAndConfig
	7.28 DIME_SaveSystemConfig
	7.29 DIME_LoadSystemConfig
	7.30 DIME_GlobalMode
	7.31 DIME_GetMotherBoardType
	7.32 DIME_GetMultiConfigLicence
	7.33 DIME_ReadSlotUsed
	7.34 DIME_GetNumberOfModules
	7.35 DIME_GetFailedMDFFileName
	7.36 DIME_GetModuleDIMECode
	7.37 DIME_GetNumberOfDevices
	7.38 DIME_GetModuleDescription
	7.39 DIME_GetModuleIconFilename
	7.40 DIME_GetModuleImageFilename
	7.41 DIME_GetDeviceIDCode
	7.42 DIME_GetDeviceType
	7.43 DIME_GetDeviceXOffset
	7.44 DIME_GetDeviceYOffset
	7.45 DIME_GetDeviceWidth
	7.46 DIME_GetDeviceHeight
	7.47 DIME_GetDeviceDescription
	7.48 DIME_GetDeviceIconFilename

	Version History List
	8.1 New in version 1.9
	8.2 New in version 1.6

	Index

