
1

Workspace awareness in an eXtreme
Programming context

F. Gullstrand and R. Simko
[dt07fg3 | ada09rsi]@student.lth.se

Lund Institute of Technology, Lund Univeristy (LTH)

Abstract—We would like feedback on the overall structure of the report, the outline, as well as if all sections are
sufficiently detailed. Can a reader understand the background, why are we using this tool, what does it do and do you
know (enough) about how it works after reading this paper?

Index Terms—Workspace awareness, SCM, conflict avoidance, eXtreme Programming, Crystal

F

1 INTRODUCTION

M ERGE conflicts, the bane of every larger
software development project. The fact

that the project is an agile one definitly does
not improve the situation, with shared code
ownership, no strict rules and simultaneous
development the possibility to make a mess is
significant. However, several tools are available
to solve this problem, saving the developers
headache and hours of fixing conflicts.

This paper will try to outline the prob-
lem and a few possible solutions, testing one
of them practically in a comparitive study
done on a team of students taking the course
EDA260 - Software Development in Teams
(Programvaruutveckling i Grupp in swedish
or PVG for short) given at Lund Institute of
Technology (LTH). The paper is part of an in-
depth study in the course EDA270 - Coaching
of Programming Teams also given at LTH.

February 17, 2014

1.1 Problem statement
This paper analyzes the occurence of merge
conflicts in agile software development in gen-
eral as well as how these could be prevented.
Initially we find different tools and practices
which can be used to reduce or even com-
pletely eliminate the occurance of merge con-
flicts.

The authors also performed an empirical
study on a course given at LTH simulating an
agile development environment and some con-
clusions will be drawn based on this. The main
focus in this part will be on actual saved time
compared to simply handling the conflicts.

2 THEORETICAL BACKGROUND

This section focuses on analysing the occurance
of merge conflicts in software development
projects in general and how this can be pre-
vented.

2.1 The occurence of conflicts

Brun et al. analyzed how common merges
and conflicts were across a multitude of large
open-source projects including Git, Perl and
jQuery. [BHDN11] The conclusion was that, in
these projects, 19% of merges were so-called
textual conflicts. The definition of this being
that the tool could not merge one or several
lines of code because simultaneous edits had
been made. The remaining 81% were clean
merges, i.e. merges made automatically by the
version control tool. This does however not
mean that the conflicts resulted in runable code
but simply that they were resolved from an
SCM point of view.



2

2.2 Different kinds of conflicts
Based on Brun et al., conflicts can easily be
divided in to several categories. First is the
textual merge, a merge which is the result of
two developers changing the same line in the
same file, preventing the tool from merging it.
The second type is a build conflict, a conflict
which is resolved textually but still does not
compile. An example could be one developer
changing a method’s signature resulting in a
failure to compile for another developer. The
third one is a test conflict, where the text is
merged, the code builds but tests fail to run,
perhaps because of some changed behaviour in
the code. The two latter kinds of conflicts are
what Brun et al. call higher-order conflicts and
are relatively rare. [BHDN11]

The first of these conflicts can be fixed
through better tools which do a better job of
quickly and automatically merging text files. A
good example of this is the three-way-merge
implemented in, among many other SCM-tools,
Git. It is however not always possible to per-
form an automatic merge and in that case good
information must be presented to the developer
in order to simplify the manual merging. The
result of better SCM tools and better manual
merging tools (Through more modern UIs) is
that this type of merge is the easiest to solve but
it’s also the most common one. Deeply rooted
conflicts (I.e. where merging has been post-
poned for various reasons) can, even though
they are only textual, result in complex merges
later on.

3 POSSIBLE SOLUTIONS TO MERGE
CONFLICTS

This section will discuss possible solutions to
prevent conflicts and how to reduce the impact
if a merge conflict happens.

3.1 Prevention
3.1.1 Comunication
One way to prevent software merge conflicts in
your agile software development team is to im-
prove the comunication in your team. A stand
up meeting is a good time to communicate
what changes are planned in what packages.

Merge conflicts could be a non problem if com-
munication between teams are done properly.

3.1.2 Update/Pull often
Many merge conflicts occure because devel-
opers forget to use the latest version of the
code from the repository. The solution is very
simple but also very difficult to adhere to. The
development team should try to have a method
to their work. If you work together, in the same
room, developers that commit code can call
out ”commit” to make other developers aware
that they have to update/pull the latest version
from the repository.

3.1.3 Commit/Push often
Many merge conflicts occure because develop-
ers keep their code far to long without pushing
or commiting it to the repository. While one
should not commit ”red” code it is also very
bad to work for a couple days and not commit.
The code may very well be so outdated, and
cause so many merge conflicts, that you have
to rewrite everything.

3.1.4 Software and Tools
Another solution is to use some kind of soft-
ware or tool. This can be in the form of a plugin
for integrated development environment IDE
or in the form of a separet program. The idea
is that the program should warn the developers
if a merge conflict is possible in case a cer-
tain change is made. This warning should be
enough to stop the problem before it becomes
a huge problem.

3.2 Mitigation
3.2.1 Comunication
A conflict has happened because two differ-
ent teams have made changes that do not
agree with each other. These two teams have
to comunicate a joint possible solution to the
problem.

3.2.2 Stop Development
If development is continued when there is a
marge conflict the problems can spread, it is a
good idea, if the problem is very large, to tem-
porarily stop development until the problem
has been identified.



3

4 ASSISTANCE FROM SCM-TOOLS

Several tools exist which attempt to prevent
merge conflicts. This section will attempt to
cover some of the tools which exist in order
to mitigate the problem with merge conflicts.

4.1 Crystal
Crystal is an SCM awareness tool, which at-
tempts to prevent merge conflicts in projects.
As their website states “The Crystal tool in-
forms each developer of the answer to the
question, Might my changes conflict with oth-
ers’ changes?”. [VC12]

The tool analyzes each developer’s local Git
repository and compares it to the other de-
velopers’. With the help of this it generates
status for your own repository compared to
the other’s as well as master. Further technical
details are beyond the scope of this paper but
can be found in the user manual. [VC12]

4.2 Palantr
Palantr is a tool which attempt to prevent
conflicts though awareness of simultaneous
changes. Unlike Crystal which monitors each
developer’s commits, Palantr monitors the
developer’s workspaces in order to create
awarenes between developers to promote com-
munication.

From what the developers describe it works
in a more preventive way than Crystal, warn-
ing developers imediatly when conflicting
changes are made. It does not “predict” the
outcome of future commits and merges like
Crystal but rather encourages developers to
solve conflicts before they even arise from an
SCM-tool point-of-view. Since developers are
informed at all times about any changes con-
flicting with the changes they are currently
making it creates the urge to contact the other
developer and communicate the changes being
made and how they affect eachother.

The great advantage of this is that it can
prevent build conflicts as well. For instance,
if one developer changes the public signature
of a method, this change can be compared
to every other developer’s changes. The other
developer is quickly informed that a change to

the method might be impending and can act
accordingly. [SRvdH12]

Palantr is in a way a tool which supports
all the methods covered in Section 3.2. Since
it encourages developers to synchronize their
changes with eachother while developing, as
opposed to doing it after commits through
resolvment of merge conflicts.

4.3 SVN Notifier
SVN notifier has a somewhat different take on
the problem compared to the two previously
mentioned tools. It is basically a “port” of cvs
watch from CVS. It allows a developer to be
notified whenever someone makes a change
to a specific set of files. The big difference
compared to Crystal and Palantr is that it does
not analyze current on-going work but rather
complete commits, notifying other developers
that a new version is available. While this does
not prevent conflicts as such it encourages team
communication and avoids situations where
developers go a long time without updating
their workspace. [Tig]

5 EMPERICAL STUDY – BACKGROUND

This section will provide some background
related to the emperical study which was per-
formed as a part of writing this paper.

5.1 Courses
The research done in this paper is based on the
two courses Software Development in Teams
and Coaching of Programming Teams. This
section aims to give some background as to
what the courses are and what students are
taking them. Both of the courses are given as
part of engineering studies.

5.1.1 Software Development in Teams (PVG)
The PVG course is given mainly for computer
science students as a mandatory course in
their second year as well as for some other
programmes in their forth year. The course
forcuses on software development in relatively
small teams (By industry standards, although
large compared to what the students have
normally worked in previously) usint agile



4

methodology, eXtreme Programming to be spe-
cific. The course revolves around developing
software for measuring time during Enduro1

races, as well as sorting these times to provide
an acurate leaderboard. The requirements for
the software develop gradually through stories,
in alignment with the XP methodology. The
role of the customer is played by a professor
or graduate student at the institution.

5.1.2 Coaching of Programming Teams
(Coaching course)
The coaching course is given as an optional
course in the fourth year for computer science
students. The course is intended as a compli-
ment to the PVG course, enabling students to
take the role of coaches for the teams in the
PVG course. The coaches try to contribute with
some experience as well as guide the students
through development but without stepping in
or acting as a project manager. As a part of the
course, coaches also perform an in-depth study
in a field of their choosing, the result being a
paper like this one.

5.2 Tools
5.2.1 Software Configuration Management
Tools
The course normally uses Subversion (SVN) as
configuration managment tool. Our team how-
ever uses Git as it was the only option which
was compatible with the coflict awareness tool
which we intended to test.

This means that the team using Crystal had
a different version control tool and hence dif-
ferent merge tools compared to the reference
team.

5.3 Choice of Crystal
The motivation for choosing crystal is that it
was the most readily available tool when the
study was planned. It also came recommended
by our supervisor, as a part of the suggested
study. Since it’s Java based it was guaranteed
to work in all environments used during the
course (Mainly Linux and Mac OS X).

1. http://en.wikipedia.org/wiki/Enduro

While the study was ongoing, it was discov-
ered that Palantr was also Java based as well as
an Eclipse plugin and usable with SVN. Since
Eclipse is the IDE being used on the course
and SVN was the standard versioning tool this
would had been a better choice with regards to
the arguments presented for Crystal.

6 EMPIRICAL STUDY
This secion covers the study of Crystal on
two PVG teams, detailing the results and the
difference in the number of merge conflicts and
how long time each team spent resolving them.

6.1 Crystal setup
The setup of crystal was quite complex. It
required a large amount of configuration which
took several ours to figure out and set up
on each developer’s workstation. Crystal also
requires access to each developer’s local git
repository, which means it has to have read
access in the .git folder in all workspaces.
Fortunately LTH’s computer system uses a net-
worked file system where all user files can be
accessible by all other users provided they have
the correct permissions. However, Git refuses
to respect file permissions in the .git direc-
tory, resetting the permissions on the index file
after each action (Commit, Pull, Push etc.). As
a result, the team was forced to make aliases
for each Git command where a chmod is exe-
cuted after the command to restore the correct
permissions on the .git folder.

Apart from all this, Crystal is also quite
poor at providing usable feedback in terms
of what’s wrong with the configuration which
meant that setting it up correctly required a lot
of guesswork.

Since Crystal is somewhat old (It has not
been developed since 2011) and primarily de-
veloped for Mercurial, Git was added as a part
of some of the last commits on the projects, it
is also somewhat lacking in terms of support
for Git. Several bugs were discovered during
the setup which had to be fixed by the au-
thors (Fortunately Crystal is completely open-
source). There are also features mentioned in
the manual and documentation which are not
available when using Git as the backing version
control tool.



5

6.2 Crystal team

Long setup time, big investment

Merge conflicts were maybe worse overall
for Crystal team, but fewer conflicts per
story.

7 CONCLUSIONS

Crystal’s long setup time, combined with the
lack of features and support as well as the risk
of more bugs means that it’s a large and risky
investment for a team. In our case there are
not economical stakes, the point of the course
is to learn about the potential risks and pitfalls
in an agile software development project. As
such, none of these issues affected the project
negatively, however if the project was a real
project, it would have to be a long one where
a return on investment is given on the long
setup time through the avoidance of long and
difficult-to-solve conflicts.

Team maturity is low, may have affected
the result. Processes are not adopted to
using crystal.
Write something about Crystal not really
doing much, observations of our team
shows that they are not using it a lot.
When they use it, they use it more or less
like ”git status” to check if they are in sync
or not. If Crystal shows a conflict there
is nothing you can do, you will get the
conflict, hence it’s more or less useless.
Palantir might have been a better choice,
as it encourages people to communicate
before they commit or develop stuff, which
is kind of the point with the PVG course.

REFERENCES

[BHDN11] Yuriy Brun, Reid Holmes, Michael D. Ernst, and
David Not. Proactive detection of collaboration
conflicts. In European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 2011.

[SRvdH12] Anita Sarma, D F. Redmiles, and Andre van der
Hoek. Palantir: Early detection of development
conflicts arising from parallel code changes. IEEE
TRANSACTIONS ON SOFTWARE ENGINEER-
ING, 38(4):889–908, July/August 2012.

[Tig] Tigris.org. Svn notifier. http://svnnotifier.
tigris.org.

[VC12] Crystal VC. Crystal user manual.
https://code.google.com/p/crystalvc/
wiki/CrystalUserManual, 2012. Retreived
2013-01-27.


