
A Graphical Computer Simulator

for Systems Programming Courses

Mark Newsome and Chemi M. Pancake

Department of Computer Science and Engineering

Auburn University, AL 36849

mnewsome@eng. auburn. edu, pancake @ducvax. auburn. edu

xSICSIH is an X-based graphical interface for the

SICSIM computer simulation tool. Its graphical

portrayal of register-level components tmwforms

the ‘black box” SICSIM machine into a ‘visual

computer”, helping students understand how com-

puters work. Single step, fast-ezecution, and break-

points are among the control features helpful for de-

bugging assembly language programs. Automatic

disassembly and format conversions and displays

for comparing expected to actual execution reduce

fiwstmtion in debugging loader, macro processor,

and assembler projects.

Overview

Computer simulation tools (CSTS) are becoming

increasingly popular in the computer science cur-

riculum. These tools employ software simulation

to mimic the behavior of other hardware systems.

From an educational standpoint, CSTS offer several

benefits:

●

●

By using software layers to extend the capabil-

ities of the underlying system, a CST can pro-

vide students with hands-on experience, with-

out the need to invest in specialized hardware.

Tools such as PARALLAXIS [I], for example,

simulate costly SIMD and MIMD multiproces-

sor systems.

A CST can monitor the execution of stu-

dent programs, providing feedback in situa-

tions where direct execution would be impos-

sible or impractical. VHDL [2], for example,

simulates machine execution based on an ar-

chitectural specification, allowing the student

to test hh or her design.
Permission to copy without fee ell or part of this material is
granted provided that the oopiee ara not made or diatributad for

direct commercial advantage, the ACM copyright notice and the

title of the publication and ite date appear, and notice is given

thet copying ia by permieeion of the Aeeociation for Computing

Machinary. To oopv otharwise, or to rapubliah, requires ● fee

end/Or specific permission.

01992 ACM 0-88781 -488-8/92/0002/0157 . ..$1 .50
157

Because the CST intervenes between the user

and the system, it can mask irrelevant details

in order to maximize the educational experi-

ence. ASSIST [3], for example, hides the intri-

cacies of assembly-language 1/0 by providing

a series of high-level pseudo-instructions.

Since a CST is implemented completely in soft-

ware, it can simulate hypothetical as well as

real systems. MicMac [4] and CPU SIM [5], for

example, allow students to study computer or-
ganization through abstract instructions which

approximate, but do not duplicate, the behav-

ior of actual machines.

Because they are designed for use in a variety

of educational settings, CSTS often are sup-

ported across a range of computer systems.

The SICSIM program [6], for example, is writ-

ten in standard Pascal and has been installed

on such diverse platforms as VAX/VMS, MS-

DOS, and UNIX.

Unlike computer-assisted instructional tools in

other disciplines, however, existing CSTS employ

only the most rudimentary user interface mech-

anisms. They rely on typed commands for in-

put and, with few exceptions, provide only a sin-

gle text-based output stream (CPU SIM and other

Macintosh-baaed systems make use of multiple win-

dows, but their contents are purely textual). Tuto-

rial facilities are noticeably lacking, and online help

is limited to terse explanations of comrnandl syntax.

In the systems programming course at Auburn

University, we employ the SICSIM simulator, de-
veloped by Leland Beck to accompany Eis popu-

lar text [7]. Source code for SICSIM is distributed

with the text and is easily installed on most Pas-

cal hosts, It simulates the SIC/XE, a hypotheti-

cal machine designed to reflect the features of such

diverse systems as IBM 360/370, DEC VAX, and

Intel 80x86. Beck’s model is admirable in its abil-

ity to expose students to the variety of instruction

formats and addressing modes commonly found

on popular “real” machines, while ignoring their

idlosyncracies. SIC/XE’s 59 instructions are dl-
vialed into four formats which support 18 address-

ing modes, integer and floating point arithmetic,

and device-level 1/0. The model provides a uni-

form basis for teaching the fundamentals of assem-

bler, linker, loader, macro processor, and to some

extent, compiler design. The accompanying simu-

lator makes it possible for students to write systems

software for the SIC/XE, then execute their “object

code” and observe the results.

SIC SIMULATORVI. S
comnm:s fT~RT,R(w,E(mTER,D(m, H(comT,B(KPTsQ(uIv
Sm
COBIll~D: S (TIRT,n(UU,E(mTER,D(UMP,E(COU3T,B(KPT,Q(UIT?
DR~

A=FFFFFF X=FFFFFF L=FFFFFF B=FFFFFF

S=FFFFFF T=FFFFFF P=OOOOOO CC=LT

COII04AMD: S(TART, R(U3,E(19TEB,D(UHP, H(COUET,B(KPT,Q (UXT?

D 0000-0090 ~

0000 6910087A 1740034B 10002EO3 40002900

0010 01332007 4BIOO06C 3F2FEC03 20 E.90F20

0020 69010003 0F40004B IOO06C3E 4003B410

0030 B400B440 76100800 E3203A33 2FFADB20

0040 34AO0433 200857&0 31 B8503B 2FEA67A0

0050 29eDOOOl 90411340 004FOOO0 B4107740

0080 00E32012 332 FFA53 AOIODF20 09B8603B

0070 2FEF4FO0 00F10046 4F460000 00000000

0080 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

0090 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

CDHI!AlfD: S(TART,R(US,E(ETER, D(UIIIP, H(COUYT,B(KPT, Q(UIT?

R~
iOti IK4TRUCTIOES EXECUTED

P=OOO06F

COSMMD:s (TART, R(IJM, E(ETER,D(UHP, H(COUST,B(KPT, q(urT?
Him
COHMAED:S(TART, Il(US.E(llTER, D(UHP, H(COWT,B(KPT, q(UIT?

R~
I fisTRucTIOms ExEcuTED

P=ooooel

COllMAMD:S (TART, R(US, B(ETER, D(UHP, E(COUIT, B(KPT, Q(UIT?

Rn
1 IESTRUCTIOES EXECUTED

P=OOO064

COHHAMD:S(TART, R(U8,E(BTER,D(UHP, H(COUIIT, B(KPT, Q(UIT?

D 0000- 0090 ~

EO E$?JDIHGADDRSSS SPECIFIED

COMHARD:S(TART,R(U~,lZ(ETER, D(UHP, E(COUHT,B(KPT, q (uIT?

E RA FF H
COHHAMD:S(TART, R(IJI, E(ITER, D(~, H(COWT, B(KPT, q(urT?

E 0006 ,EA ❑
IEVALID ADD~SS SPECIFIED

IEVALID MEHORY COETEMTS SPECIFIED

COMMAllD: S (TART, R(UM,13(MTER, D(W, E(COWT, B(KPT, q (UIT?

qm

Figure 1. Sample SICSIM session; numbered lines

indicate input typed by the user.

After SICSIM was adopted at Auburn three years

ago, it soon became clear that the clumsy inter-

face was frustrating student attempts to employ the

tool. Figure 1 presents the output from an inter-

active SICSIM session. Although there are only

five commands, they are cryptic (one letter each),

somewhat ambiguous (e.g., Sta~t vs. RurJ), and un-

forgiv@ (compare the effect of blanks in lines 8 and

3). All information on program execution is in hex-

adecimal notation, requiring that the student hand-

disassemble instructions and manually convert data

elements to integer or character form. Error detec-

tion is almost non-existent. Students complained

that testing and debugging their results was easier

by comparing it to printed output than by using

the simulator.
To improve SICSIM’S usability, we added a

graphical user interface. The resulting tool,

xSICSIM, utilizes the X Window System ,[8] plat-

form to provide simple and intuitive access to the

basic functionality of the simulator (see Figure 2).

xSICSIH’S rich visual feedback — in the form of

LED-like light displays and color highlighting —

helps students see the results of program execu-

tion. The graphical presentation also increases stu-

dent interest, making learning more fun. As the

simulator executes instructions, the user can ob-

serve changes to the contents of memory, registers,

and the program count er. The information can be

viewed and manipulated in several familiar formats

(hexadecimal, decimal, binary, and ASCII), with

automatic conversion between them. An automatic

disassembly feature dissects the current instruction

into opcode, addressing mode, and operand fields,

indicating how the object code is interpreted by the

simulator. XSI CSIM’S interface mechanics, based on

single-stroke access to common functions, reduce

the likelihood that new errors will be introduced

by typing mistakes. Finally, students are more pro-

ductive because bugs are easier to identify and fix.

Thb paper describes the structure of XSICSIM.
Although the interface clearly was designed to en-

hance the functionality of Beck’s SICSIM, the prin-

ciples are equally applicable to a variety of related

tools (e.g., MicMac [4], CPU SIM [5], MIC-10 [9],

SIM68 [10]) used in teaching computer organiza-
tion, assembly-language programming, and systems

programming.

Components of xSICSIM

The xSICSIM system exploits recent advances in

graphical interface technology. Its overall structure

158

Location Opde

N Processor StODDed Iii ?!

000000
000000
000003
000006
000009
Oooooc
0000OF
000012
000015
00001 e
00001B
00001E
000021
000022

480022
OOO07A
28007t
300012
4%0052
3COOO0
OOO06A
OCO082
000074
OCO07A
490052

QO06E

Source Line

TEST START
CLOOPJSU8

LOA
CONP
JEQ
JSU8.

ENOFIL tOA
STA
LOA
STA
JSU8
BYTE

RDREC LOX

0000
ROREC
LENGTH
ONE
ENOFI1
WRREC
CLO@
EOF
BUFFER
THREE
LENCTH
WRREC
X’FF’
ZERO

Figure 2. Fmme from sample xSICSIM session.

&.....................................
@g@@@$.

Figure 3’. Structure of xSICSIM.

=-

.E&$@~$@#$@iE{8$$@:%m f#wiwww#i*$#i9#/wm#:

Figure 4. Popup windows control the value and format of each register.

159

is depicted in Figure 3. Beck’s SICSIM simulator

provides the basic functionality, but is no longer in

direct contact with the user. The xSICSIX interface

hides the command-driven simulator completely; it

runs SIC!SIM in the background, taking advantage

of UNIX multitasking and interprocess communi-

cation via pipes.

In the X Window System tradition, the user

interacts with interface objects displayed on the

screen, which in turn communicate with the

xSICSI14 controller. All user input is captured,

interpreted, and responded to by the controller or

reformulated as one or more commands to SICSIM.

SICSIM output is likewise intercepted and refor-

matted for display in one of the interface objects.

The interface objects are implemented using
standard X Window System widgets from the

Athena widget set [11], augmented by specialized

widgets designed at Auburn. The nature and use

of each object is described below.

Ezecution Control. xSICSIH is operated via

pushbutton panels (the white buttons in Figure

2). Selecting Reset cold-starts the SIC/XE pro-

cessor with a “hardware reset.* This causes the

machine to set all memory locations to a hex value

of FF, clear all registers to 00, and reset all 1/0 de-

vices. Reset also precipitates several “housekeep-

ing tasks that previously had to be handled by

the user (such as invoking the SICSIM relocating

loader), as well as loading the USER LISTING win-

dow with the assembly-language listing file. After

a Reset operation has been performed, the object

code is in memory and awaits execution.

The Single Step option allows the user to’ step

through program execution one instruction at a

time. Alternatively, Execute may be used as a tog-

gle to start/stop rapid execution of the program.

Pressing it resumes execution at the location in-

dicated by the Program Counter and changes the

button label to Stop. A subsequent press halts exe-

cution and restores the label to Execut e. Execution

also stops automatically when a HLT (HALT) in-

struction is executed, an error (illegal instruction,

ALU, or 1/0 error) is detected, or a breakpoint is

reached.

Special settings are used to control the rapid-

execution options supported by the simulator. The

count but ton manages the so-called execution
counter, which reflects the number of instructions

executed since the last Reset operation or count ex-

piration. When the value of the counter has been

reached, execution halts and a message is displayed

in the MESSAGES area. Selecting breakpt ac-

tivates a popup window where the user indicates

breakpoint addresses. Whenever a breakpoint lo-
cation is accessed during the instruction fetch se-

quence, execution is halted and a message is issued

to the MESSAGES area. Execution may then be

resumed by the Execute or Single % ep mecha-

nisms. The user may also start execution at an

arbitrary location in the program by selecting the

Program Counter register, entering the new loca-

tion, and and resuming execution via Single Step

or Execute.

Register Display~. The REGISTERS window
contains LED panels representing the SIC/XE reg-
isters: A (Accumulator), X (Index), L (Linkage), B
(Base), S (General Purpose), T (General Purpose),
and Program Counter, each 3 bytes in Iength.1 In-
tegers are stored as 24 bit binary numbers, using
2’s complement to represent negative values, while
characters make use of standard 8-bit ASCII codes.

The LEDs display the binary representation of
the register values, each light representing one bit.
In addition, the hexadecimal (or optionally, the
ASCII) value appears in the upper lefthand corner
of each register display; the display mode is changed
by clicking the righthand mouse button while the
cursor is positioned over the register. A register’s
value may be changed via a popup window, acti-
vated when the lefthand mouse button is pressed.
The popup also allows the student to view the reg-
ister contents in binary, hexadecimal, or decimal
format (see Figure 4).

Figure 5. The MEMORY D t7MP window.

1 ~tho@ &&s model also supports a 6-byte floating-

point register, its is not supported by the SICSIM simulator

and therefore cannot be used in student programs.

160

Figure 6. The USER LISTING window.

Storage Display. The scrollable MEMORY

DUMP window (Figure5) displays the contents of

memory in both hexadecimal and ASCII represen-
tations. To alter storage values, the user presses

the lefthand mouse button while the cursor is posi-

tioned over the window. This activates a data entry

popup similar to the register popup. Again, values

may may be entered in any format. The MEM-

ORY scrollbar is used to bring the desired region of

memory into view. Clicking on the arrows located

at either end of the bar causes the display to scroll

one line; alternatively, the thumb (grey region in-

side the bar) can be dragged until the desired area

is visible.

Source Code Display. The program is executed

directly from the student’s object code file, and re-

flects any anomalies in its format. To facilitate

the identification of incorrect object instructions,

the USER LISTING window (Figure 6) provides

quick access to the “expected” instructions — the

original assembly-language instruction, the location

counter, and the object code generated by the as-

sembler. As in the MEMORY window, a scrollbar

allows easy navigation through the program text.

Help and Tutorial Features. On-line help is al-

ways available via popup windows (see Figure 7).

The Klerarchically-organized help system makes use

of xhelp (an X utility also developed by the au-

thors) to provide a tutorial-style introduction to the

mechanics of the interface, the SIC/XE machhe ar-

chitecture, SIC/XE assembly language, and details

of program execution.

Selecting the master help button, labeled HELP,
enters the help system at the top level and is

used primarily by newcomers to xSICSIM. In addi-
tion, the help facility is activated in context-taensive

mode whenever the user clicks on a windo,w title-

bar (shown here as white text on a black g,round);
. .

appropriate Information about the window is dis-
played in response. For example, clicking on the

REGISTERS titlebar provides infOrmatiOIIl on the

number and purpose of SIC/XE registers, as well

as how the display objects can be manipulated to

change format, register contents, etc.

IT+
EAKPT,are used fqr controlli os prosr.w! execution.

II

~
$

:1 rnl IMT
y

:> -.. .
Pressing this buttm lets You set the number Of

II

$

1!
~instructt ons to be executed each time you press RUN. $

~: TIIe cwnt value is entered and di SP1ayed m a pmi ti w ~
*

$ dwi !!s1 number. The dsfaul t count is 1000. *
,:,

! II
g

$ 0FW3KPT 3
This button 1ets YOU set the breakpoint address. Once s

j a breakpoint is set, subsequent execution wi 11 stop at the t!
j instruction immediately preceding the breakpoint. :

i

I
:~The breakpoint address is specified and di SP1ayed a!s a ~
~ hexadecimal value. Tlw default breakpoint is FfFFh, which

11

:$

~ is bsyond the wpor bwnd of memory (i.e. no breakpoint). ~
,..

Figure 7. The popup HELP facility.

Experiences with xSICSIM

Written in a highly portable subset of the C

language, xSICSIM can be installed on any sys-

tem supporting release Xl 1R4 or later of the X

Window System. To date, it haa been ported to

UNIX workstations (Sun 3/50, SparcStation, and

IPC), IBM/AIX systems (RISC System 6000 and

X Stations). With the exception of one minor
adjustment,2 the interface preserves the total in-

dependence of SICSIM, which may still be invoked

via its command-line interface.

xSICSIM was used successfully over the plast year

in CSE400L, the systems programming laboratory

course required for undergraduates in the Com-

puter Science and the Computer Engineering cur-

ricula at Auburn. The response has been very fa-

vorable. In particular, the graphical interface is

cited ‘as being both appealing and useful.

2SICSIM is written in Paacal, notorious for its 1~0 bufTer-
ing. The program was modified to flush the bfier aft er each
writ e, ensuring that X5 ICS Ill receives an innnediat @response

from the aimulato~ otherwiee, unacceptable delwys would

occur in the display as the bufFer filled.

161

Judging from the quality of student implementa-
tions of assemblers and macro processors, xSICSIM

increases student interest and improves their under-

standing of the interrelationships between source

code, object code, and CPU operation. Students

report that the tool’s error detection capabilities —

which identify illegal opcodes, malformed instruc-

tions, and out-of-range addresses — are helpful in

localizing mistakes or misalignments in the object

code format, a task which previously was frustrat-

ing and time-consuming, In effect, xSICSIH con-

verts the ‘black-box” SICSIM machine into a ‘vi-

sual computer” which reinforces the student’s men-

tal model of computer operation. By observing

how the machine interprets and responds to each

instruction, he or she can identify the cause and ef-

fect of object code anomalies, without the tedium

of manual format conversions and disassembly.

References

[1] Barth, Ingo, Thomas Braunl, and Frank Sem-

bach, Parallazis User Manual, Technical Report

3/90, Universitaet Stuttgart, Computer Science

Department (March 1990).

[2] Coelho, David R., The VHDL Handbook.

Boston, Kluwer Academic Publishers (1989).

[3] Overbeek, Ross A., Assembler langauge with

ASSIST and ASSIST/1, Chicago, Science Re-

search Associates (1986).

[4] Donaldson, John L., “MicMac: a Microprogram

Simulator for Courses in Computer Organiza-
tion,” ACM SIGCSE Bulletin, 20 (3): 428-431

(September 1988).

[5] Skrien, Dale and John Hosack, “Multilevel Sim-

ulator at the Register ‘Transfer Level for Use in

an Introductory Machine Organization Class,”

ACM SIG(7SE Bulletin, 23 (l): 347–351 (March
1991).

[6] Beck, Leland L., “SICSIM documentation,” un-
published manuscript from San Diego State Uni-
versity, distributed by Addison-Wesley (1990).

[7] Beck, Leland L., Systems Software: An Intro-

duction to Systems Programming, Reading MA,

Addison-Wesley (1990).

[9] Sayers, Jerry E. and David E. Martin, “A Hy-
pothetical Computer to Simulate Microprogram-

ming and Conventional Machine Language,”

ACM SIGCSE Bulletin, 20 (4): 43-49 (Decem-

ber 1988).

[10] Allen, Laura “Sim68000, A Simulator for the

MC68000 (Version 2),” unpublished report dis-

tributed by University of Florida (1990).

[11] Peterson, Chris D., Athena Widget Set - C Lan-

guage Interface, Cambridge MA, Massachusetts

Institute of Technology and Digital Equipment

Corporation, 1989.

[8] Scheifler, Robert and James Gettys, X Window

System: Complete Reference to Xlib, X Protocol,

ICCCM, XLFD, Second Edition, Bedford MA,

Digital Press (1990).

162

