VERIFICATION

Report No.: NEI-FCCE-1-1308012 Issued Date: Aug. 15, 2013

This is to certify that the product listed in follows was (were) tested in the Neutron EMC Laboratory to comply with the criteria limits Class A of conducted and radiated emissions of the Technical Standards FCC Part 15, Subpart B: 2012, established by the FCC, USA.

Equipment	Storage Server		
Model Name	NH-4500-PRO; NH-4500-ENT; NH-4xy0-zzz (x=0~F, y=0~F, zzz=ENT or PRO)		
Brand Name	υπηο. υπηο.		
Applicant	NUUO Inc.		
Address	C Block, No. 18, Sihyuan St., Jhongjheng District, Taipei, Taiwan (R.O.C.)		
Standard(s)	ANSI C63.4: 2009		
	ICES-003 Issue 5: 2012		

CISPR 22: 2008

CAN/CSA-CISPR 22-10

The test data, data evaluation, and equipment configuration contained in our test report (Report No. NEI-FCCE-1-1308012) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s). The test data contained in the referenced test report relate only to the EUT sample and item(s) tested.

Chiu And

Andy Chiu Authorized Signatory

Neutron Engineering Inc.

B1, No. 37, Lane 365, YangGuang St., NeiHu District 114, Taipei, Taiwan. TEL: +886-2-2657-3299 FAX: +886-2-2657-3331

FCC Test Report

Issued Date	: Aug. 15, 2013
Project No.	: 1308012
Fauipment	· Storage Server
Model Name	: NH-4500-PRO; NH-4500-ENT; NH-4xy0-zzz (x=0~F, y=0~F, zzz=ENT or PRO)
Applicant	 NUUO Inc. C Block, No. 18, Sihyuan St.,
Address	Jhongjheng District, Taipei, Taiwan

(R.O.C.)

Tested by: Neutron Engineering Inc. EMC Laboratory Date of Receipt: Aug. 01, 2013 Date of Test: Aug. 01, 2013 ~ Aug. 13, 2013

Testing Engineer: <u>Leher</u> <u>Vu</u> (Kener Wu) J.J. (Jeff Yang Technical Manager:

Authorized Signatory : (Andy Chiu)

Neutron Engineering Inc.

B1, No. 37, Lane 365, YangGuang St., NeiHu District 114, Taipei, Taiwan. TEL: +886-2-2657-3299 FAX: +886-2-2657-3331

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

v V

Table of Contents	Page
REPORT ISSUED HISTORY	4
1. CERTIFICATION	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3 . GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
3.4 DESCRIPTION OF SUPPORT UNITS	11
4. EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION TEST	12
4.1.1 LIMITS	12
4.1.2 MEASUREMENT INSTRUMENTS LIST	12
4.1.3 TEST PROCEDURE	13
4.1.4 DEVIATION FROM TEST STANDARD	13
	13
4.1.7 TEST RESULTS	14
4.2 RADIATED EMISSION TEST	17
4.2.1 LIMITS	17
4.2.2 MEASUREMENT INSTRUMENTS LIST	18
4.2.3 TEST PROCEDURE	19
4.2.4 DEVIATION FROM TEST STANDARD	20
4.2.5 TEST SETUP	20
4.2.6 EUT OPERATING CONDITIONS	20
	21 22
4.2.0 IESI KESULIS-ADUVE I UTZ	23
5.EUT TEST PHOTO	25

	REPORT ISSUED HIS	TORY
evised Version No. -	Description Initial Issue.	Issued Date Aug. 15, 2013

Storage Server
NH-4500-PRO; NH-4500-ENT; NH-4xy0-zzz (x=0~F, y=0~F, zzz=ENT or PRO)
NUUO Inc. Aug. 01, 2013 ~ Aug. 13, 2013
FCC Part 15, Subpart B: 2012 Class A ICES-003 Issue 5: 2012 Class A
CAN/CSA CISPR 22-10 Class A
CISPR 22: 2008 Class A

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FCCE-1-1308012) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Emission					
Standard	Test Item	Limit	Judgment	Remark	
FCC Part 15, Subpart B: 2012	Conducted emission	Class A	PASS		
ICES-003 Issue 5: 2012	Radiated emission Below 1 GHz	Class A	PASS		
CAN/CSA CISPR 22-10 CISPR 22: 2008	Radiated emission Above 1 GHz	Class A	PASS	NOTE (2)	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) If the EUT's max operating frequency does not exceed 108 MHz, the test will not be performed.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

Conducted emission Test:

C03: (VCCI RN: C-4461) B1, No. 37, Lane 365, YangGuang St., NeiHu District 114, Taipei, Taiwan.

Radiated emission Test (Below 1 GHz):

OS01: (VCCI RN: R-2829; FCC RN: 95335; FCC DN: TW1010) No.132-1, Ln. 329, Sec. 2, Balian Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

Radiated emission Test (Above 1 GHz):

CB08: (VCCI RN: G-91; FCC RN: 614388; FCC DN: TW1054; IC Assigned Code: 4428C-1) 1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

2.2 MEASUREMENT UNCERTAINTY

The measurement uncertainty is not specified by FCC/ Industry Canada rules and for reference only.

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95**%.

The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2.

A. Conducted emission test:

Test Site	Measurement Frequency Range	U , (dB)	NOTE
C03	150 kHz ~ 30 MHz	1.94	

C. Radiated emission test:

Test Site	Measurement Frequency Range	Ant. H / V	U,(dB)	NOTE
OS01	30 MHz ~ 200 MHz	V	2.86	
	30 MHz ~ 200 MHz	Н	2.56	
	200 MHz ~ 1, 000 MHz	V	2.88	
	200 MHz ~ 1, 000 MHz	Н	2.98	

Test Site	Item	Measurement Frequency Range		Uncertainty	NOTE	
			30 - 200MHz	3.35 dB		
	Radiated	Horizontal	200 - 1000MHz	3.11 dB		
		Pol	Polarization	1 - 18GHz	3.97 dB	
			18 - 40GHz	4.01 dB		
	2m		30 - 200MHz	3.22 dB		
	511	Vertical	Vertical	200 - 1000MHz	3.24 dB	
		Polarization	1 - 18GHz	4.05 dB		
		18 - 40GHz	4.04 dB			

Our calculated Measurement Instrumentation Uncertainty is shown in the tables above. These are our U_{lab} values in CISPR 16-4-2 terminology.

Since Table 1 of CISPR 16-4-2 has values of measurement instrumentation uncertainty, called U_{CISPR}, as follows:

Conducted Disturbance (mains port) - 150 kHz - 30 MHz : 3.6 dB

Radiated Disturbance (electric field strength on an open area test site or alternative test site) – 30 MHz – 1000 MHz : 5.2 dB

It can be seen that our U_{lab} values are smaller than U_{CISPR} .

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Storage Server		
Brand Name			
Model Name	NH-4500-PRO; NH-4500-ENT; NH-4xy0-zzz (x=0~F, y=0~F, zzz=ENT or PRO)		
OEM Brand/Model Name	N/A		
Model Difference	There are some models except the difference of I Model No.: NH-4xy0-ENT NH-4x00-pro Model NH-4500-PRO wa collecting test data include	based on similar electrical circuit ist below: CPU i5-4570S i7-4770S as used for final testing and ded in this report.	
Product Description	The EUT is a Storage Se More details of EUT tech the User's Manual.	erver. nnical specification, please refer to	
Power Source	AC Mains. (Power Build-	in)	
Power Rating	I/P: AC 100-240V~6-3A	60/50Hz	
Connecting I/O Port(s)	Please refer to the User	s Manual	
Products Covered	1 * CPU: Intel(R) / Core(TM) i7-4770 3.40GHz 1 * Memory: Apacer / 4G 1 * HDD: Seagate / 250GB 1 * Power Supply: FSP / FSP400-60PFG		
EUT Modification(s)	N/A		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Test Mode	Description
Mode 1	FULL SYSTEM D-SUB+DVI*2 1920*1200/60Hz (NH-4500-PRO)
Mode 2	FULL SYSTEM D-SUB+DVI*2 1920*1200/60Hz (NH-4500-ent)

Conducted emission test			
Final Test Mode	Description		
Mode 1	FULL SYSTEM D-SUB+DVI*2 1920*1200/60Hz (NH-4500-PRO)		

	Radiated emission test					
Final Test Mode Description						
Mode 1	FULL SYSTEM D-SUB+DVI*2 1920*1200/60Hz (NH-4500-PRO)					

C-1 RJ-45 Cable*2 C-2 D-Sub Cable C-3 DVI Cable*2 C-4 PS/2 Cable C-5 PS/2 Cable C-6 USB Cable*2 C-7 USB Cable C-8 USB Cable*3 C-9 RS232 Cable

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
E-1	Storage Server	UUUO. UUUO.	NH-4500-PRO	N/A	N/A	EUT
E-2	24" LCD Monitor	DELL	2408WFPb	DOC	071863-11	
E-3	E-3 24" LCD DELL		U2410f	DOC	CN-OJ257M-72872-09J- 067L	
E-4	PS/2 K/B	Logitech	Y-SJ17(ACK260A)	DOC	SYU44664880	
E-5	PS/2 Mouse	Logitech	M-SBF69	DOC	HCA44601156	
E-6	Modem	ACEEX	DM-1414V	DOC	8041708	
E-7	External Hard Drive	WD	WDBACW0010HBK- SESN	DOC	WCAV5J749731	
E-8	Printer	HP	VCVRA-1004	DOC	CN17511HHK	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	10M	
C-2	YES	YES	1.8M	
C-3	YES	YES	1.8M	
C-4	YES	NO	1.5M	
C-5	YES	NO	1.8M	
C-6	YES	NO	1.2M	
C-7	YES	NO	1.7M	
C-8	YES	NO	1.2M	
C-9	YES	NO	1.7M	

Note:

(1) The support equipment was authorized by Declaration of Conformity (DOC).

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION TEST

4.1.1 LIMITS (FREQUENCY RANGE 150 KHZ-30MHZ)

FREQUENCY	Class A	(dBuV)	Class B (dBuV)				
(MHz)	Quasi-peak	Average	Quasi-peak	Average			
0.15 - 0.5	79.00	66.00	66 - 56 *	56 - 46 *			
0.50 - 5.0	73.00	60.00	56.00	46.00			
5.0 - 30.0	73.00	60.00	60.00	50.00			

NOTE:

- (1) The tighter limit applies at the band edges.(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

4.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	TWO-LINE V-NETWORK	R&S	ENV216	101051	Jun. 16, 2014
2	Test Cable	TIMES	CFD300-NL	C03	Jun. 16, 2014
3	EMI Test Receiver	R&S	ESCI	100080	Apr. 01, 2014
4	Measurement Software	EZ	EZ_EMC (Version NB-03A)	N/A	N/A

Remark: "N/A" denotes No Model Name, No Serial No. or No Calibration specified.

4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

NOTE:

- a. Reading in which marked as Peak, QP or AVG means measurements by using are Quasi-Peak or Average Mode with Detector BW=9 kHz (6 dB Bandwidth).
- b. All readings are Peak Mode value unless otherwise stated QP or AVG in column of Note. If the Peak or QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only Peak or QP Mode was measured, but AVG Mode didn't perform.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

4.1.6 EUT OPERATING CONDITIONS

The EUT exercise program (EMC.exe) used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The program contained on a PC hard disk and is auto-starting on power-up. Once loaded, the program sequentially exercises each system component in turn. The sequence used is:

- 1. Read (write) from (to) mass storage device (External HDD).
- 2. Send "H" pattern to video port device (Monitor).
- 3. Send "H" pattern to USB port device (Printer).
- 4. Send "H" pattern to serial port device (Modem).
- 5. Send/Receive data to/from remote system.
- 6. Repeated from 2 to 5 continuously.

As the keyboard and mouse are strictly input devices, no data is transmitted to (from) them during test. They are, however, continuously scanned for data input activity.

A 1.7 TEST RESULTS

	. I		Storag	e Server		M	odel Nar	me	NH-4500	NH-4500-PRO				
Ten	npera	ature	24 ° C			Re	elative H	lumidity	48%					
Tes	t Volt	tage	AC 120	AC 120V/60Hz										
Tes	t Moo	de	FULL S	SYSTEM D)-SUB+DV	l*2 192	0*1200/	60Hz (NH	1-4500-PR	0)				
	00.0	dD.M			P	hase: l	ine							
		abuv								Limit: AVG:				
	-													
	_													
	_						_	_						
	50													
		2								Б	6 X			
	×										140.			
		×Λ	4					-		Ť.	white			
	M	and him	han Amaria	Marada	-	Nurmanna	wanthermal	Williamsparters	Nevellow	WWW	www.h			
	M	nmhunÅ	han Amarka	Marada	- Aradam Mark	Verhouse	ninallinahil	Million March	Mudhahan	wr.Åv	M			
	M	hun Min A	hun America	Marada	www.w	Unhadra	ninallinental	uuunninport	Mudhama	www.Åw	MMA I			
	0.0	gran Artin A	a America	warne	hours	Unhandram	nnallunad	within a graph of	Nevellonaprio	wn	mA			
	0.0	алт ⁴ иwn ^A	ture America	0.5	- Madamation Madamatio	(MH2)	nnallsenna	14///www.wyrw7 5	Muruftonapuro	ww	30.000			
No.	0.0 0.15 Mk.	o Freq.	Reading	0.5 Correct Factor	Measure- ment	(MHz)	Over	14//hummy/wp/wy 5	Murallingener	ww.Å	30.000			
No.	0.0 0.15 Mk.	0 Freq. MHz	Reading Level	0.5 Correct Factor dB	Measure- ment dBuV	(MHz) Limit dBuV	Over dB	10 Detector	Comment	wr Åv	30.000			
No.	0.0 0.15 Mk.	0 Freq. MHz 0.1500	Reading Level dBuV 29.75	0.5 Correct Factor dB 9.63	Measure- ment dBuV 39.38	(MHz) Limit dBuV 79.00	Over dB -39.62	5 Detector peak	Comment	wr Åv	30.000			
No. 1 2	0.0 0.15 Mk.	0 Freq. MHz 0.1500 0.2039	Reading Level dBuV 29.75 25.88	0.5 Correct Factor dB 9.63 10.09	Measure- ment dBuV 39.38 35.97	(MHz) Limit dBuV 79.00 79.00	Over dB -39.62 -43.03	5 Detector peak peak	Comment	wrv Åv	30.000			
No. 1 2 3	0.0 0.15 Mk.	0 Freq. MHz 0.1500 0.2039 0.2781	Reading Level dBuV 29.75 25.88 28.54	0.5 Correct Factor dB 9.63 10.09 9.68	Measure- ment dBuV 39.38 35.97 38.22	(MHz) Limit dBuV 79.00 79.00 79.00	Over dB -39.62 -43.03 -40.78	Detector peak peak peak	Comment	Wrv Åv	30.000			
No. 1 2 3 4	0.0 0.15 MK.	р С С С С С С С С С С С С С	Reading Level dBuV 29.75 25.88 28.54 25.58	0.5 Correct Factor dB 9.63 10.09 9.68 9.61	Measure- ment dBuV 39.38 35.97 38.22 35.19	(мнг) Limit dBuV 79.00 79.00 79.00 79.00	Over dB -39.62 -43.03 -40.78 -43.81	Detector peak peak peak peak	Comment	Wrv Åv	30.000			
No. 1 2 3 4 5	0.0 0.15 Mk.	0 Freq. MHz 0.1500 0.2039 0.2781 0.3467 17.4000	Reading Level dBuV 29.75 25.88 28.54 25.58 29.79	0.5 Correct Factor dB 9.63 10.09 9.68 9.61 9.76	Measure- ment dBuV 39.38 35.97 38.22 35.19 39.55	(MHz) Limit dBuV 79.00 79.00 79.00 79.00 79.00 79.00	Over dB -39.62 -43.03 -40.78 -43.81 -33.45	Detector peak peak peak peak peak	Comment	Wrv Å	30.000			

4.2 RADIATED EMISSION TEST

4.2.1 LIMITS

Below 1 GHz

FREQUENCY	Class A (at 10m)	Class B (at 10m)
(MHz)	dBuV/m	dBuV/m
30 - 230	40	30
230 - 1000	47	37

NOTE:

- (1) The limit for radiated test was performed according to as following: FCC Part 15, Subpart B: 2012; ICES-003 Issue 5: 2012; CAN/CSA-CISPR 22-10; CISPR 22: 2008.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Above 1 GHz

FREQUENCY	Class A (dBu	IV/m) (at 3m)	Class A (dBu)	V/m) (at 10m)
(MHz)	PEAK	AVERAGE	PEAK	AVERAGE
Above 1000	80	60	69.5	49.5
FREQUENCY	Class B (dBu	ıV/m) (at 3m)		
(MHz)	PEAK	AVERAGE		
Above 1000	74	54		

NOTE:

- (1) The limit for radiated test was performed according to as following: FCC Part 15, Subpart B: 2012; ICES-003 Issue 5: 2012.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m). 3m Emission level = 10m Emission level + 20log(10m/3m).
 (4) The test result calculated as following:
- (4) The test result calculated as following. Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

4.2.2 MEASUREMENT INSTRUMENTS LIST

Below 1 GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Log-Bicon Antenna	Schwarzbeck	VULB 9160	3176	Jun. 13, 2014
2	Pre-Amplifier	Anritsu	MH648A	M09961	Jun. 02, 2014
3	Test Cable	TIMES	LMR-400	30M	Jun. 02, 2014
4	Test Cable	TIMES	LMR-400	OS01-1	Jun. 02, 2014
5	EMI Measuring Receiver	SHCAFFNER	SCR 3501	408	Jan. 8, 2014
6	Spectrum Analyzer	ADVANTEST	R3162	140100131	Sep. 7, 2013
7	Positioning Controller (OS01)	СТ	SC100	N/A	N/A
8	Turn Table	Chance Most	CMTB-1.5	N/A	N/A
9	Measurement Software	EZ	EZ_EMC (Version NB-02A)	N/A	N/A

Above 1 GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Horn Antenna (1G)	Schwarzbeck	BBHA 9120 D	9120D-325	Jun. 15, 2014
2	Pre_Amplifier	Agilent	8449B	3008A01714	Apr. 16, 2014
3	Microflex Cable	HARBOUR INDUSTRIES	27478 LL142	1M	May. 13, 2014
4	Microflex Cable	AISI	S104-SMAP-1	10M	May. 15, 2014
5	Microflex Cable	HARBOUR INDUSTRIES	27478 LL142	ЗМ	May. 13, 2014
6	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 01, 2013
7	Measurement Software	EZ	EZ_EMC (Version NB-03A)	N/A	N/A

Remark: "N/A" denotes No Model Name, No Serial No. or No Calibration specified.

4.2.3 TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m or 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- d. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

NOTE: (Below 1 GHz)

- a. Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode with Detector BW=120 kHz.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.

NOTE: (Above 1 GHz)

- a. Reading in which marked as Peak means measurements by using are Peak Mode with instrument setting in RBW= 1 MHz, VBW= 1 MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW= 1 MHz, VBW= 10 Hz.
- b. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.

No deviation

4.2.5 TEST SETUP

4.2.6 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.6** Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.7 TEST RESULTS-BELOW 1 GHZ

J.T			Storage Server							del Na	ame	N	NH-4500-PRO				
npera	atur	е		24°C Relative Humidity 67%													
st Vol	tag	е		AC	AC 120V/60Hz												
est Mode FULL SYSTEM D-SUB+DVI*2 1920*1200/60Hz (NH-4500-PRO)																	
	80.0	dBu	iV/m					Pola	rizatio	on: \	/ertic	al					
	Γ														Limi	t: —	-
	-			201		4											
	-					-											
	40																
	40 1 2 3		23	4 5													
	ľ	[ÎÎ	Ť	,	<u> </u>											
	-																
																1	
			1														
	0.0																
	30.	000	in in						515.	000						1000.000	MHz
No.	Mk		Freq.	F	Read Leve	ing el	Correct Factor	Measur ment	e- Lim	nit	Over						
			MHz		dBu	V	dB	dBuV/m	dBuV	/m	dB	Detector	Comme	ent			
1		39.	6800)	41.2	2	-6.34	34.88	40.0	0	-5.12	peak					
2		87.	7000)	45.0	0	-10.45	34.55	40.0	00	-5.45	peak					
3	114.9200)	40.6	7	-6.50	0 34.17	40.0	00	-5.83	peak						
4		156.	0100)	38.7	3	-4.81	33.92	40.0	00	-6.08	peak					
5		213	3400)	41.2	7	-8.02	33.25	40.0	00	-6.75	peak					
6	*	229	0900) _	43 1	5	-6.31	36.84	40 (00	-3 16	QP					

.U.T		Storage Server					odel Na	NH-4	NH-4500-PRO						
emperature			24°C					elative l	67%	67%					
est Voltage				AC 1	AC 120V/60Hz										
st Mo	de			FULI	FULL SYSTEM D-SUB+DVI*2 1920*1200/60Hz (NH-4500-PRO)										
							Polariza	ation: H	lorizor	ntal					
	80.0	dB	uV/m												
												Limi	it:		
	ł			+											
					Г									-	
	40													-6	
		1			5									1	
	ł	¥-	X X	l	*									-	
	ł			1											
							3								
	0.0	000		1				F1F 000					1000.000		
	30.	000		-		0	M	515.000					1000.000	M112	
No.	Mk		Free	q. L	evel.	Factor	ment	Limit	Over						
			MHz	: •	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment				
1	*	61	.088	30 3	8.26	-6.76	31.50	40.00	-8.50	peak					
2		85	.564	0 4	0.73	-10.47	30.26	40.00	-9.74	peak					
3		112	.880	0 3	6.97	-6.67	30.30	40.00	-9.70	peak					
4		224	.800	0 3	6.94	-6.84	30.10	40.00	-9.90	peak					
5		229	.088	5 3	7.00	-6.31	30.69	40.00	-9.31	peak					
6		100	0.00	0 2	6.45	10.56	37.01	47.00	-9.99	peak					

4.2.8 TEST RESULTS-ABOVE 1 GHZ

U.	Т		Storage S	Server		M	odel Na	ame	NH-45	NH-4500-PRO				
emr	per	ature	26°C			R	elative H	Humidity	60%	60%				
Fest	Vol	Itage	AC 120V/60Hz											
Fest	Мо	de	FULL SY	STEM D	-SUB+DV	′l*2 192	20*1200	/60Hz (N	H-4500-F	PRO)				
					Polari	zation:	Vertica	al		,				
1	100.0) dBuV/m								Limit:	_			
										AVG:				
		3 X												
		1 2 4	6×	z										
	50	× ×		Î		-								
	0.0	00.000 2600.0	0 4200.00	5800.00	7400.00	9000.00	10600	0.00 12200.0	00 13800.	00	17000.00 MHz			
	0.0 10	00.000 2600.0	0 4200.00 Reading	5800.00 Correct	7400.00 Measure-	9000.00	10600	.00 12200.	00 13800.	00	17000.00 MHz			
No.	0.0 10	00.000 2600.0	0 4200.00 Reading Level	5800.00 Correct Factor	7400.00 Measure- ment	9000.00	0 10600 Over	.00 12200.	00 13800.	00	17000.00 MHz			
No.	0.0 10 Mk	00.000 2600.0 <. Freq. MHz	0 4200.00 Reading Level dBuV	5800.00 Correct Factor dB	7400.00 Measure- ment dBuV/m	9000.00 Limit dBuV/m	Over dB	0.00 12200.1 Detector	00 13800. Comment	00	17000.00 MHz			
No.	0.0 10 Mk	00.000 2600.0 x. Freq. MHz 1240.000	0 4200.00 Reading Level dBuV 58.17	5800.00 Correct Factor dB -4.66	7400.00 Measure- ment dBuV/m 53.51	9000.00 Limit dBuV/m 80.00	0 10600 Over dB -26.49	0.00 12200.0 Detector peak	00 13800. Comment	00	17000.00 MHz			
No.	0.0 10 Mk	00.000 2600.0 K. Freq. MHz 1240.000 1760.000	0 4200.00 Reading Level dBuV 58.17 53.45	5800.00 Correct Factor dB -4.66 -2.55	7400.00 Measure- ment dBuV/m 53.51 50.90	9000.00 Limit dBuV/m 80.00 80.00	0 10600 Over dB -26.49 -29.10	Detector peak peak	00 13800. Comment	00	17000.00 MHz			
No. 1 2 3	0.0 10 Mk	00.000 2600.0 K. Freq. MHz 1240.000 1760.000 2520.000	0 4200.00 Reading Level dBuV 58.17 53.45 62.39 51.44	5800.00 Correct Factor dB -4.66 -2.55 0.26	7400.00 Measure- ment dBuV/m 53.51 50.90 62.65	9000.00 Limit dBuV/m 80.00 80.00 80.00	0 10600 Over dB -26.49 -29.10 -17.35	Detector peak peak peak	00 13800. Comment	00	17000.00 MHz			
No.	0.0 10 Mk	000.000 2600.0 C. Freq. MHz 1240.000 1760.000 2520.000 2520.000	0 4200.00 Reading Level dBuV 58.17 53.45 62.39 51.14	5800.00 Correct Factor dB -4.66 -2.55 0.26 0.26 0.26	7400.00 Measure- ment dBuV/m 53.51 50.90 62.65 51.40	9000.00 Limit dBuV/m 80.00 80.00 80.00 60.00	Over dB -26.49 -29.10 -17.35 -8.60	Detector peak peak peak AVG	00 13800. Comment	00	17000.00 MHz			
No. 1 2 3 4 5	0.0 10 Mk	00.000 2600.0 C. Freq. MHz 1240.000 1760.000 2520.000 2520.000 2520.000 2520.000 2520.000	0 4200.00 Reading Level dBuV 58.17 53.45 62.39 51.14 55.61 50.02	5800.00 5800.00 Correct Factor dB -4.66 -2.55 0.26 0.26 0.24 4.07	7400.00 Measure- ment dBuV/m 53.51 50.90 62.65 51.40 56.05 51.40	9000.00 Limit dBuV/m 80.00 80.00 80.00 60.00 80.00	0 10600 Over dB -26.49 -29.10 -17.35 -8.60 -23.95	Detector peak peak peak AVG peak	00 13800. Comment	00	17000.00 MHz			

			1											
E.U.T	-		Storage S	Server		Μ	odel Na	ame	NH-45	NH-4500-PRO				
emp	era	ature	26°C				elative	Humidity	60%	60%				
est \	/ol	tage	AC 120V/60Hz											
est I	Мo	de	FULL SY	STEM D-	SUB+DV	l*2 192	20*1200)/60Hz (NH	H-4500-P	RO)				
1	0.00	dBuV/m			Polariza	ation: H	lorizor	ntal						
	[GDGTTI								Limit:	-			
										AVG:	_			
												P.		
		3										-		
		1 3 4	5 ×	Z								-		
	50		-f											
	10	00.000 2600.0	0 4200.00	5800.00	7400.00	9000.00	10600	0.00 12200.0	0 13800.0	0	17000.00	MHz		
Nia	M	Free	Reading	Correct	Measure-	Limit	Over							
NO.	IVIK	. Freq.	Level	Factor	ment	dBul/m	dP	Detector	Commont					
1		MHZ		aB			0B	Detector	Comment					
1		1240.000	59.04	-4.00	50.04	80.00	-25.62	реак						
2		1/60.000	54.80	-2.55	52.31	00.00	-27.09	реак						
3		2520.000	60.20	0.26	60.46	80.00	-19.54	peak						
4	*	2520.000	51.50	0.26	51.76	60.00	-8.24	AVG						
5		3240.000	50.90	1.39	52.29	80.00	-27.71	peak						
6		3760.000	50.38	3.63	54.01	80.00	-25.99	peak						
7		5840.000	44.86	7.77	52.63	80.00	-27.37	peak						

Conducted emission test photos

FULL SYSTEM D-SUB+DVI*2 1920*1200/60Hz (NH-4500-PRO)

Report No.: NEI-FCCE-1-1308012

ATTACHMENT

PHOTOGRAPHS OF EUT

